drm/i915: Use multiple VMs -- the point of no return
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem_gtt.c
1 /*
2  * Copyright © 2010 Daniel Vetter
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drmP.h>
26 #include <drm/i915_drm.h>
27 #include "i915_drv.h"
28 #include "i915_trace.h"
29 #include "intel_drv.h"
30
31 #define GEN6_PPGTT_PD_ENTRIES 512
32 #define I915_PPGTT_PT_ENTRIES (PAGE_SIZE / sizeof(gen6_gtt_pte_t))
33 typedef uint64_t gen8_gtt_pte_t;
34 typedef gen8_gtt_pte_t gen8_ppgtt_pde_t;
35
36 /* PPGTT stuff */
37 #define GEN6_GTT_ADDR_ENCODE(addr)      ((addr) | (((addr) >> 28) & 0xff0))
38 #define HSW_GTT_ADDR_ENCODE(addr)       ((addr) | (((addr) >> 28) & 0x7f0))
39
40 #define GEN6_PDE_VALID                  (1 << 0)
41 /* gen6+ has bit 11-4 for physical addr bit 39-32 */
42 #define GEN6_PDE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
43
44 #define GEN6_PTE_VALID                  (1 << 0)
45 #define GEN6_PTE_UNCACHED               (1 << 1)
46 #define HSW_PTE_UNCACHED                (0)
47 #define GEN6_PTE_CACHE_LLC              (2 << 1)
48 #define GEN7_PTE_CACHE_L3_LLC           (3 << 1)
49 #define GEN6_PTE_ADDR_ENCODE(addr)      GEN6_GTT_ADDR_ENCODE(addr)
50 #define HSW_PTE_ADDR_ENCODE(addr)       HSW_GTT_ADDR_ENCODE(addr)
51
52 /* Cacheability Control is a 4-bit value. The low three bits are stored in *
53  * bits 3:1 of the PTE, while the fourth bit is stored in bit 11 of the PTE.
54  */
55 #define HSW_CACHEABILITY_CONTROL(bits)  ((((bits) & 0x7) << 1) | \
56                                          (((bits) & 0x8) << (11 - 3)))
57 #define HSW_WB_LLC_AGE3                 HSW_CACHEABILITY_CONTROL(0x2)
58 #define HSW_WB_LLC_AGE0                 HSW_CACHEABILITY_CONTROL(0x3)
59 #define HSW_WB_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0xb)
60 #define HSW_WB_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x8)
61 #define HSW_WT_ELLC_LLC_AGE0            HSW_CACHEABILITY_CONTROL(0x6)
62 #define HSW_WT_ELLC_LLC_AGE3            HSW_CACHEABILITY_CONTROL(0x7)
63
64 #define GEN8_PTES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_gtt_pte_t))
65 #define GEN8_PDES_PER_PAGE              (PAGE_SIZE / sizeof(gen8_ppgtt_pde_t))
66 #define GEN8_LEGACY_PDPS                4
67
68 #define PPAT_UNCACHED_INDEX             (_PAGE_PWT | _PAGE_PCD)
69 #define PPAT_CACHED_PDE_INDEX           0 /* WB LLC */
70 #define PPAT_CACHED_INDEX               _PAGE_PAT /* WB LLCeLLC */
71 #define PPAT_DISPLAY_ELLC_INDEX         _PAGE_PCD /* WT eLLC */
72
73 static void ppgtt_bind_vma(struct i915_vma *vma,
74                            enum i915_cache_level cache_level,
75                            u32 flags);
76 static void ppgtt_unbind_vma(struct i915_vma *vma);
77 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt);
78
79 static inline gen8_gtt_pte_t gen8_pte_encode(dma_addr_t addr,
80                                              enum i915_cache_level level,
81                                              bool valid)
82 {
83         gen8_gtt_pte_t pte = valid ? _PAGE_PRESENT | _PAGE_RW : 0;
84         pte |= addr;
85         if (level != I915_CACHE_NONE)
86                 pte |= PPAT_CACHED_INDEX;
87         else
88                 pte |= PPAT_UNCACHED_INDEX;
89         return pte;
90 }
91
92 static inline gen8_ppgtt_pde_t gen8_pde_encode(struct drm_device *dev,
93                                              dma_addr_t addr,
94                                              enum i915_cache_level level)
95 {
96         gen8_ppgtt_pde_t pde = _PAGE_PRESENT | _PAGE_RW;
97         pde |= addr;
98         if (level != I915_CACHE_NONE)
99                 pde |= PPAT_CACHED_PDE_INDEX;
100         else
101                 pde |= PPAT_UNCACHED_INDEX;
102         return pde;
103 }
104
105 static gen6_gtt_pte_t snb_pte_encode(dma_addr_t addr,
106                                      enum i915_cache_level level,
107                                      bool valid)
108 {
109         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
110         pte |= GEN6_PTE_ADDR_ENCODE(addr);
111
112         switch (level) {
113         case I915_CACHE_L3_LLC:
114         case I915_CACHE_LLC:
115                 pte |= GEN6_PTE_CACHE_LLC;
116                 break;
117         case I915_CACHE_NONE:
118                 pte |= GEN6_PTE_UNCACHED;
119                 break;
120         default:
121                 WARN_ON(1);
122         }
123
124         return pte;
125 }
126
127 static gen6_gtt_pte_t ivb_pte_encode(dma_addr_t addr,
128                                      enum i915_cache_level level,
129                                      bool valid)
130 {
131         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
132         pte |= GEN6_PTE_ADDR_ENCODE(addr);
133
134         switch (level) {
135         case I915_CACHE_L3_LLC:
136                 pte |= GEN7_PTE_CACHE_L3_LLC;
137                 break;
138         case I915_CACHE_LLC:
139                 pte |= GEN6_PTE_CACHE_LLC;
140                 break;
141         case I915_CACHE_NONE:
142                 pte |= GEN6_PTE_UNCACHED;
143                 break;
144         default:
145                 WARN_ON(1);
146         }
147
148         return pte;
149 }
150
151 #define BYT_PTE_WRITEABLE               (1 << 1)
152 #define BYT_PTE_SNOOPED_BY_CPU_CACHES   (1 << 2)
153
154 static gen6_gtt_pte_t byt_pte_encode(dma_addr_t addr,
155                                      enum i915_cache_level level,
156                                      bool valid)
157 {
158         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
159         pte |= GEN6_PTE_ADDR_ENCODE(addr);
160
161         /* Mark the page as writeable.  Other platforms don't have a
162          * setting for read-only/writable, so this matches that behavior.
163          */
164         pte |= BYT_PTE_WRITEABLE;
165
166         if (level != I915_CACHE_NONE)
167                 pte |= BYT_PTE_SNOOPED_BY_CPU_CACHES;
168
169         return pte;
170 }
171
172 static gen6_gtt_pte_t hsw_pte_encode(dma_addr_t addr,
173                                      enum i915_cache_level level,
174                                      bool valid)
175 {
176         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
177         pte |= HSW_PTE_ADDR_ENCODE(addr);
178
179         if (level != I915_CACHE_NONE)
180                 pte |= HSW_WB_LLC_AGE3;
181
182         return pte;
183 }
184
185 static gen6_gtt_pte_t iris_pte_encode(dma_addr_t addr,
186                                       enum i915_cache_level level,
187                                       bool valid)
188 {
189         gen6_gtt_pte_t pte = valid ? GEN6_PTE_VALID : 0;
190         pte |= HSW_PTE_ADDR_ENCODE(addr);
191
192         switch (level) {
193         case I915_CACHE_NONE:
194                 break;
195         case I915_CACHE_WT:
196                 pte |= HSW_WT_ELLC_LLC_AGE3;
197                 break;
198         default:
199                 pte |= HSW_WB_ELLC_LLC_AGE3;
200                 break;
201         }
202
203         return pte;
204 }
205
206 /* Broadwell Page Directory Pointer Descriptors */
207 static int gen8_write_pdp(struct intel_ring_buffer *ring, unsigned entry,
208                            uint64_t val, bool synchronous)
209 {
210         struct drm_i915_private *dev_priv = ring->dev->dev_private;
211         int ret;
212
213         BUG_ON(entry >= 4);
214
215         if (synchronous) {
216                 I915_WRITE(GEN8_RING_PDP_UDW(ring, entry), val >> 32);
217                 I915_WRITE(GEN8_RING_PDP_LDW(ring, entry), (u32)val);
218                 return 0;
219         }
220
221         ret = intel_ring_begin(ring, 6);
222         if (ret)
223                 return ret;
224
225         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
226         intel_ring_emit(ring, GEN8_RING_PDP_UDW(ring, entry));
227         intel_ring_emit(ring, (u32)(val >> 32));
228         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
229         intel_ring_emit(ring, GEN8_RING_PDP_LDW(ring, entry));
230         intel_ring_emit(ring, (u32)(val));
231         intel_ring_advance(ring);
232
233         return 0;
234 }
235
236 static int gen8_mm_switch(struct i915_hw_ppgtt *ppgtt,
237                           struct intel_ring_buffer *ring,
238                           bool synchronous)
239 {
240         int i, ret;
241
242         /* bit of a hack to find the actual last used pd */
243         int used_pd = ppgtt->num_pd_entries / GEN8_PDES_PER_PAGE;
244
245         for (i = used_pd - 1; i >= 0; i--) {
246                 dma_addr_t addr = ppgtt->pd_dma_addr[i];
247                 ret = gen8_write_pdp(ring, i, addr, synchronous);
248                 if (ret)
249                         return ret;
250         }
251
252         return 0;
253 }
254
255 static void gen8_ppgtt_clear_range(struct i915_address_space *vm,
256                                    unsigned first_entry,
257                                    unsigned num_entries,
258                                    bool use_scratch)
259 {
260         struct i915_hw_ppgtt *ppgtt =
261                 container_of(vm, struct i915_hw_ppgtt, base);
262         gen8_gtt_pte_t *pt_vaddr, scratch_pte;
263         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
264         unsigned first_pte = first_entry % GEN8_PTES_PER_PAGE;
265         unsigned last_pte, i;
266
267         scratch_pte = gen8_pte_encode(ppgtt->base.scratch.addr,
268                                       I915_CACHE_LLC, use_scratch);
269
270         while (num_entries) {
271                 struct page *page_table = &ppgtt->gen8_pt_pages[act_pt];
272
273                 last_pte = first_pte + num_entries;
274                 if (last_pte > GEN8_PTES_PER_PAGE)
275                         last_pte = GEN8_PTES_PER_PAGE;
276
277                 pt_vaddr = kmap_atomic(page_table);
278
279                 for (i = first_pte; i < last_pte; i++)
280                         pt_vaddr[i] = scratch_pte;
281
282                 kunmap_atomic(pt_vaddr);
283
284                 num_entries -= last_pte - first_pte;
285                 first_pte = 0;
286                 act_pt++;
287         }
288 }
289
290 static void gen8_ppgtt_insert_entries(struct i915_address_space *vm,
291                                       struct sg_table *pages,
292                                       unsigned first_entry,
293                                       enum i915_cache_level cache_level)
294 {
295         struct i915_hw_ppgtt *ppgtt =
296                 container_of(vm, struct i915_hw_ppgtt, base);
297         gen8_gtt_pte_t *pt_vaddr;
298         unsigned act_pt = first_entry / GEN8_PTES_PER_PAGE;
299         unsigned act_pte = first_entry % GEN8_PTES_PER_PAGE;
300         struct sg_page_iter sg_iter;
301
302         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
303         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
304                 dma_addr_t page_addr;
305
306                 page_addr = sg_dma_address(sg_iter.sg) +
307                                 (sg_iter.sg_pgoffset << PAGE_SHIFT);
308                 pt_vaddr[act_pte] = gen8_pte_encode(page_addr, cache_level,
309                                                     true);
310                 if (++act_pte == GEN8_PTES_PER_PAGE) {
311                         kunmap_atomic(pt_vaddr);
312                         act_pt++;
313                         pt_vaddr = kmap_atomic(&ppgtt->gen8_pt_pages[act_pt]);
314                         act_pte = 0;
315
316                 }
317         }
318         kunmap_atomic(pt_vaddr);
319 }
320
321 static void gen8_ppgtt_cleanup(struct i915_address_space *vm)
322 {
323         struct i915_hw_ppgtt *ppgtt =
324                 container_of(vm, struct i915_hw_ppgtt, base);
325         int i, j;
326
327         list_del(&vm->global_link);
328         drm_mm_takedown(&vm->mm);
329
330         for (i = 0; i < ppgtt->num_pd_pages ; i++) {
331                 if (ppgtt->pd_dma_addr[i]) {
332                         pci_unmap_page(ppgtt->base.dev->pdev,
333                                        ppgtt->pd_dma_addr[i],
334                                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
335
336                         for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
337                                 dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
338                                 if (addr)
339                                         pci_unmap_page(ppgtt->base.dev->pdev,
340                                                        addr,
341                                                        PAGE_SIZE,
342                                                        PCI_DMA_BIDIRECTIONAL);
343
344                         }
345                 }
346                 kfree(ppgtt->gen8_pt_dma_addr[i]);
347         }
348
349         __free_pages(ppgtt->gen8_pt_pages, get_order(ppgtt->num_pt_pages << PAGE_SHIFT));
350         __free_pages(ppgtt->pd_pages, get_order(ppgtt->num_pd_pages << PAGE_SHIFT));
351 }
352
353 /**
354  * GEN8 legacy ppgtt programming is accomplished through 4 PDP registers with a
355  * net effect resembling a 2-level page table in normal x86 terms. Each PDP
356  * represents 1GB of memory
357  * 4 * 512 * 512 * 4096 = 4GB legacy 32b address space.
358  *
359  * TODO: Do something with the size parameter
360  **/
361 static int gen8_ppgtt_init(struct i915_hw_ppgtt *ppgtt, uint64_t size)
362 {
363         struct page *pt_pages;
364         int i, j, ret = -ENOMEM;
365         const int max_pdp = DIV_ROUND_UP(size, 1 << 30);
366         const int num_pt_pages = GEN8_PDES_PER_PAGE * max_pdp;
367
368         if (size % (1<<30))
369                 DRM_INFO("Pages will be wasted unless GTT size (%llu) is divisible by 1GB\n", size);
370
371         /* FIXME: split allocation into smaller pieces. For now we only ever do
372          * this once, but with full PPGTT, the multiple contiguous allocations
373          * will be bad.
374          */
375         ppgtt->pd_pages = alloc_pages(GFP_KERNEL, get_order(max_pdp << PAGE_SHIFT));
376         if (!ppgtt->pd_pages)
377                 return -ENOMEM;
378
379         pt_pages = alloc_pages(GFP_KERNEL, get_order(num_pt_pages << PAGE_SHIFT));
380         if (!pt_pages) {
381                 __free_pages(ppgtt->pd_pages, get_order(max_pdp << PAGE_SHIFT));
382                 return -ENOMEM;
383         }
384
385         ppgtt->gen8_pt_pages = pt_pages;
386         ppgtt->num_pd_pages = 1 << get_order(max_pdp << PAGE_SHIFT);
387         ppgtt->num_pt_pages = 1 << get_order(num_pt_pages << PAGE_SHIFT);
388         ppgtt->num_pd_entries = max_pdp * GEN8_PDES_PER_PAGE;
389         ppgtt->enable = gen8_ppgtt_enable;
390         ppgtt->switch_mm = gen8_mm_switch;
391         ppgtt->base.clear_range = gen8_ppgtt_clear_range;
392         ppgtt->base.insert_entries = gen8_ppgtt_insert_entries;
393         ppgtt->base.cleanup = gen8_ppgtt_cleanup;
394         ppgtt->base.start = 0;
395         ppgtt->base.total = ppgtt->num_pt_pages * GEN8_PTES_PER_PAGE * PAGE_SIZE;
396
397         BUG_ON(ppgtt->num_pd_pages > GEN8_LEGACY_PDPS);
398
399         /*
400          * - Create a mapping for the page directories.
401          * - For each page directory:
402          *      allocate space for page table mappings.
403          *      map each page table
404          */
405         for (i = 0; i < max_pdp; i++) {
406                 dma_addr_t temp;
407                 temp = pci_map_page(ppgtt->base.dev->pdev,
408                                     &ppgtt->pd_pages[i], 0,
409                                     PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
410                 if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
411                         goto err_out;
412
413                 ppgtt->pd_dma_addr[i] = temp;
414
415                 ppgtt->gen8_pt_dma_addr[i] = kmalloc(sizeof(dma_addr_t) * GEN8_PDES_PER_PAGE, GFP_KERNEL);
416                 if (!ppgtt->gen8_pt_dma_addr[i])
417                         goto err_out;
418
419                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
420                         struct page *p = &pt_pages[i * GEN8_PDES_PER_PAGE + j];
421                         temp = pci_map_page(ppgtt->base.dev->pdev,
422                                             p, 0, PAGE_SIZE,
423                                             PCI_DMA_BIDIRECTIONAL);
424
425                         if (pci_dma_mapping_error(ppgtt->base.dev->pdev, temp))
426                                 goto err_out;
427
428                         ppgtt->gen8_pt_dma_addr[i][j] = temp;
429                 }
430         }
431
432         /* For now, the PPGTT helper functions all require that the PDEs are
433          * plugged in correctly. So we do that now/here. For aliasing PPGTT, we
434          * will never need to touch the PDEs again */
435         for (i = 0; i < max_pdp; i++) {
436                 gen8_ppgtt_pde_t *pd_vaddr;
437                 pd_vaddr = kmap_atomic(&ppgtt->pd_pages[i]);
438                 for (j = 0; j < GEN8_PDES_PER_PAGE; j++) {
439                         dma_addr_t addr = ppgtt->gen8_pt_dma_addr[i][j];
440                         pd_vaddr[j] = gen8_pde_encode(ppgtt->base.dev, addr,
441                                                       I915_CACHE_LLC);
442                 }
443                 kunmap_atomic(pd_vaddr);
444         }
445
446         ppgtt->base.clear_range(&ppgtt->base, 0,
447                                 ppgtt->num_pd_entries * GEN8_PTES_PER_PAGE,
448                                 true);
449
450         DRM_DEBUG_DRIVER("Allocated %d pages for page directories (%d wasted)\n",
451                          ppgtt->num_pd_pages, ppgtt->num_pd_pages - max_pdp);
452         DRM_DEBUG_DRIVER("Allocated %d pages for page tables (%lld wasted)\n",
453                          ppgtt->num_pt_pages,
454                          (ppgtt->num_pt_pages - num_pt_pages) +
455                          size % (1<<30));
456         return 0;
457
458 err_out:
459         ppgtt->base.cleanup(&ppgtt->base);
460         return ret;
461 }
462
463 static void gen6_write_pdes(struct i915_hw_ppgtt *ppgtt)
464 {
465         struct drm_i915_private *dev_priv = ppgtt->base.dev->dev_private;
466         gen6_gtt_pte_t __iomem *pd_addr;
467         uint32_t pd_entry;
468         int i;
469
470         WARN_ON(ppgtt->pd_offset & 0x3f);
471         pd_addr = (gen6_gtt_pte_t __iomem*)dev_priv->gtt.gsm +
472                 ppgtt->pd_offset / sizeof(gen6_gtt_pte_t);
473         for (i = 0; i < ppgtt->num_pd_entries; i++) {
474                 dma_addr_t pt_addr;
475
476                 pt_addr = ppgtt->pt_dma_addr[i];
477                 pd_entry = GEN6_PDE_ADDR_ENCODE(pt_addr);
478                 pd_entry |= GEN6_PDE_VALID;
479
480                 writel(pd_entry, pd_addr + i);
481         }
482         readl(pd_addr);
483 }
484
485 static uint32_t get_pd_offset(struct i915_hw_ppgtt *ppgtt)
486 {
487         BUG_ON(ppgtt->pd_offset & 0x3f);
488
489         return (ppgtt->pd_offset / 64) << 16;
490 }
491
492 static int hsw_mm_switch(struct i915_hw_ppgtt *ppgtt,
493                          struct intel_ring_buffer *ring,
494                          bool synchronous)
495 {
496         struct drm_device *dev = ppgtt->base.dev;
497         struct drm_i915_private *dev_priv = dev->dev_private;
498         int ret;
499
500         /* If we're in reset, we can assume the GPU is sufficiently idle to
501          * manually frob these bits. Ideally we could use the ring functions,
502          * except our error handling makes it quite difficult (can't use
503          * intel_ring_begin, ring->flush, or intel_ring_advance)
504          *
505          * FIXME: We should try not to special case reset
506          */
507         if (synchronous ||
508             i915_reset_in_progress(&dev_priv->gpu_error)) {
509                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
510                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
511                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
512                 POSTING_READ(RING_PP_DIR_BASE(ring));
513                 return 0;
514         }
515
516         /* NB: TLBs must be flushed and invalidated before a switch */
517         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
518         if (ret)
519                 return ret;
520
521         ret = intel_ring_begin(ring, 6);
522         if (ret)
523                 return ret;
524
525         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
526         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
527         intel_ring_emit(ring, PP_DIR_DCLV_2G);
528         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
529         intel_ring_emit(ring, get_pd_offset(ppgtt));
530         intel_ring_emit(ring, MI_NOOP);
531         intel_ring_advance(ring);
532
533         return 0;
534 }
535
536 static int gen7_mm_switch(struct i915_hw_ppgtt *ppgtt,
537                           struct intel_ring_buffer *ring,
538                           bool synchronous)
539 {
540         struct drm_device *dev = ppgtt->base.dev;
541         struct drm_i915_private *dev_priv = dev->dev_private;
542         int ret;
543
544         /* If we're in reset, we can assume the GPU is sufficiently idle to
545          * manually frob these bits. Ideally we could use the ring functions,
546          * except our error handling makes it quite difficult (can't use
547          * intel_ring_begin, ring->flush, or intel_ring_advance)
548          *
549          * FIXME: We should try not to special case reset
550          */
551         if (synchronous ||
552             i915_reset_in_progress(&dev_priv->gpu_error)) {
553                 WARN_ON(ppgtt != dev_priv->mm.aliasing_ppgtt);
554                 I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
555                 I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
556                 POSTING_READ(RING_PP_DIR_BASE(ring));
557                 return 0;
558         }
559
560         /* NB: TLBs must be flushed and invalidated before a switch */
561         ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
562         if (ret)
563                 return ret;
564
565         ret = intel_ring_begin(ring, 6);
566         if (ret)
567                 return ret;
568
569         intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(2));
570         intel_ring_emit(ring, RING_PP_DIR_DCLV(ring));
571         intel_ring_emit(ring, PP_DIR_DCLV_2G);
572         intel_ring_emit(ring, RING_PP_DIR_BASE(ring));
573         intel_ring_emit(ring, get_pd_offset(ppgtt));
574         intel_ring_emit(ring, MI_NOOP);
575         intel_ring_advance(ring);
576
577         /* XXX: RCS is the only one to auto invalidate the TLBs? */
578         if (ring->id != RCS) {
579                 ret = ring->flush(ring, I915_GEM_GPU_DOMAINS, I915_GEM_GPU_DOMAINS);
580                 if (ret)
581                         return ret;
582         }
583
584         return 0;
585 }
586
587 static int gen6_mm_switch(struct i915_hw_ppgtt *ppgtt,
588                           struct intel_ring_buffer *ring,
589                           bool synchronous)
590 {
591         struct drm_device *dev = ppgtt->base.dev;
592         struct drm_i915_private *dev_priv = dev->dev_private;
593
594         if (!synchronous)
595                 return 0;
596
597         I915_WRITE(RING_PP_DIR_DCLV(ring), PP_DIR_DCLV_2G);
598         I915_WRITE(RING_PP_DIR_BASE(ring), get_pd_offset(ppgtt));
599
600         POSTING_READ(RING_PP_DIR_DCLV(ring));
601
602         return 0;
603 }
604
605 static int gen8_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
606 {
607         struct drm_device *dev = ppgtt->base.dev;
608         struct drm_i915_private *dev_priv = dev->dev_private;
609         struct intel_ring_buffer *ring;
610         int j, ret;
611
612         for_each_ring(ring, dev_priv, j) {
613                 I915_WRITE(RING_MODE_GEN7(ring),
614                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
615                 ret = ppgtt->switch_mm(ppgtt, ring, true);
616                 if (ret)
617                         goto err_out;
618         }
619
620         return 0;
621
622 err_out:
623         for_each_ring(ring, dev_priv, j)
624                 I915_WRITE(RING_MODE_GEN7(ring),
625                            _MASKED_BIT_DISABLE(GFX_PPGTT_ENABLE));
626         return ret;
627 }
628
629 static int gen7_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
630 {
631         struct drm_device *dev = ppgtt->base.dev;
632         drm_i915_private_t *dev_priv = dev->dev_private;
633         struct intel_ring_buffer *ring;
634         uint32_t ecochk, ecobits;
635         int i;
636
637         ecobits = I915_READ(GAC_ECO_BITS);
638         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_PPGTT_CACHE64B);
639
640         ecochk = I915_READ(GAM_ECOCHK);
641         if (IS_HASWELL(dev)) {
642                 ecochk |= ECOCHK_PPGTT_WB_HSW;
643         } else {
644                 ecochk |= ECOCHK_PPGTT_LLC_IVB;
645                 ecochk &= ~ECOCHK_PPGTT_GFDT_IVB;
646         }
647         I915_WRITE(GAM_ECOCHK, ecochk);
648
649         for_each_ring(ring, dev_priv, i) {
650                 int ret;
651                 /* GFX_MODE is per-ring on gen7+ */
652                 I915_WRITE(RING_MODE_GEN7(ring),
653                            _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
654                 ret = ppgtt->switch_mm(ppgtt, ring, true);
655                 if (ret)
656                         return ret;
657
658         }
659         return 0;
660 }
661
662 static int gen6_ppgtt_enable(struct i915_hw_ppgtt *ppgtt)
663 {
664         struct drm_device *dev = ppgtt->base.dev;
665         drm_i915_private_t *dev_priv = dev->dev_private;
666         struct intel_ring_buffer *ring;
667         uint32_t ecochk, gab_ctl, ecobits;
668         int i;
669
670         ecobits = I915_READ(GAC_ECO_BITS);
671         I915_WRITE(GAC_ECO_BITS, ecobits | ECOBITS_SNB_BIT |
672                    ECOBITS_PPGTT_CACHE64B);
673
674         gab_ctl = I915_READ(GAB_CTL);
675         I915_WRITE(GAB_CTL, gab_ctl | GAB_CTL_CONT_AFTER_PAGEFAULT);
676
677         ecochk = I915_READ(GAM_ECOCHK);
678         I915_WRITE(GAM_ECOCHK, ecochk | ECOCHK_SNB_BIT | ECOCHK_PPGTT_CACHE64B);
679
680         I915_WRITE(GFX_MODE, _MASKED_BIT_ENABLE(GFX_PPGTT_ENABLE));
681
682         for_each_ring(ring, dev_priv, i) {
683                 int ret = ppgtt->switch_mm(ppgtt, ring, true);
684                 if (ret)
685                         return ret;
686         }
687
688         return 0;
689 }
690
691 /* PPGTT support for Sandybdrige/Gen6 and later */
692 static void gen6_ppgtt_clear_range(struct i915_address_space *vm,
693                                    unsigned first_entry,
694                                    unsigned num_entries,
695                                    bool use_scratch)
696 {
697         struct i915_hw_ppgtt *ppgtt =
698                 container_of(vm, struct i915_hw_ppgtt, base);
699         gen6_gtt_pte_t *pt_vaddr, scratch_pte;
700         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
701         unsigned first_pte = first_entry % I915_PPGTT_PT_ENTRIES;
702         unsigned last_pte, i;
703
704         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, true);
705
706         while (num_entries) {
707                 last_pte = first_pte + num_entries;
708                 if (last_pte > I915_PPGTT_PT_ENTRIES)
709                         last_pte = I915_PPGTT_PT_ENTRIES;
710
711                 pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
712
713                 for (i = first_pte; i < last_pte; i++)
714                         pt_vaddr[i] = scratch_pte;
715
716                 kunmap_atomic(pt_vaddr);
717
718                 num_entries -= last_pte - first_pte;
719                 first_pte = 0;
720                 act_pt++;
721         }
722 }
723
724 static void gen6_ppgtt_insert_entries(struct i915_address_space *vm,
725                                       struct sg_table *pages,
726                                       unsigned first_entry,
727                                       enum i915_cache_level cache_level)
728 {
729         struct i915_hw_ppgtt *ppgtt =
730                 container_of(vm, struct i915_hw_ppgtt, base);
731         gen6_gtt_pte_t *pt_vaddr;
732         unsigned act_pt = first_entry / I915_PPGTT_PT_ENTRIES;
733         unsigned act_pte = first_entry % I915_PPGTT_PT_ENTRIES;
734         struct sg_page_iter sg_iter;
735
736         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
737         for_each_sg_page(pages->sgl, &sg_iter, pages->nents, 0) {
738                 dma_addr_t page_addr;
739
740                 page_addr = sg_page_iter_dma_address(&sg_iter);
741                 pt_vaddr[act_pte] = vm->pte_encode(page_addr, cache_level, true);
742                 if (++act_pte == I915_PPGTT_PT_ENTRIES) {
743                         kunmap_atomic(pt_vaddr);
744                         act_pt++;
745                         pt_vaddr = kmap_atomic(ppgtt->pt_pages[act_pt]);
746                         act_pte = 0;
747
748                 }
749         }
750         kunmap_atomic(pt_vaddr);
751 }
752
753 static void gen6_ppgtt_cleanup(struct i915_address_space *vm)
754 {
755         struct i915_hw_ppgtt *ppgtt =
756                 container_of(vm, struct i915_hw_ppgtt, base);
757         int i;
758
759         list_del(&vm->global_link);
760         drm_mm_takedown(&ppgtt->base.mm);
761         drm_mm_remove_node(&ppgtt->node);
762
763         if (ppgtt->pt_dma_addr) {
764                 for (i = 0; i < ppgtt->num_pd_entries; i++)
765                         pci_unmap_page(ppgtt->base.dev->pdev,
766                                        ppgtt->pt_dma_addr[i],
767                                        4096, PCI_DMA_BIDIRECTIONAL);
768         }
769
770         kfree(ppgtt->pt_dma_addr);
771         for (i = 0; i < ppgtt->num_pd_entries; i++)
772                 __free_page(ppgtt->pt_pages[i]);
773         kfree(ppgtt->pt_pages);
774         kfree(ppgtt);
775 }
776
777 static int gen6_ppgtt_init(struct i915_hw_ppgtt *ppgtt)
778 {
779 #define GEN6_PD_ALIGN (PAGE_SIZE * 16)
780 #define GEN6_PD_SIZE (GEN6_PPGTT_PD_ENTRIES * PAGE_SIZE)
781         struct drm_device *dev = ppgtt->base.dev;
782         struct drm_i915_private *dev_priv = dev->dev_private;
783         bool retried = false;
784         int i, ret;
785
786         /* PPGTT PDEs reside in the GGTT and consists of 512 entries. The
787          * allocator works in address space sizes, so it's multiplied by page
788          * size. We allocate at the top of the GTT to avoid fragmentation.
789          */
790         BUG_ON(!drm_mm_initialized(&dev_priv->gtt.base.mm));
791 alloc:
792         ret = drm_mm_insert_node_in_range_generic(&dev_priv->gtt.base.mm,
793                                                   &ppgtt->node, GEN6_PD_SIZE,
794                                                   GEN6_PD_ALIGN, 0,
795                                                   0, dev_priv->gtt.base.total,
796                                                   DRM_MM_SEARCH_DEFAULT);
797         if (ret == -ENOSPC && !retried) {
798                 ret = i915_gem_evict_something(dev, &dev_priv->gtt.base,
799                                                GEN6_PD_SIZE, GEN6_PD_ALIGN,
800                                                I915_CACHE_NONE, false, true);
801                 if (ret)
802                         return ret;
803
804                 retried = true;
805                 goto alloc;
806         }
807
808         if (ppgtt->node.start < dev_priv->gtt.mappable_end)
809                 DRM_DEBUG("Forced to use aperture for PDEs\n");
810
811         ppgtt->base.pte_encode = dev_priv->gtt.base.pte_encode;
812         ppgtt->num_pd_entries = GEN6_PPGTT_PD_ENTRIES;
813         if (IS_GEN6(dev)) {
814                 ppgtt->enable = gen6_ppgtt_enable;
815                 ppgtt->switch_mm = gen6_mm_switch;
816         } else if (IS_HASWELL(dev)) {
817                 ppgtt->enable = gen7_ppgtt_enable;
818                 ppgtt->switch_mm = hsw_mm_switch;
819         } else if (IS_GEN7(dev)) {
820                 ppgtt->enable = gen7_ppgtt_enable;
821                 ppgtt->switch_mm = gen7_mm_switch;
822         } else
823                 BUG();
824         ppgtt->base.clear_range = gen6_ppgtt_clear_range;
825         ppgtt->base.insert_entries = gen6_ppgtt_insert_entries;
826         ppgtt->base.cleanup = gen6_ppgtt_cleanup;
827         ppgtt->base.scratch = dev_priv->gtt.base.scratch;
828         ppgtt->base.start = 0;
829         ppgtt->base.total = GEN6_PPGTT_PD_ENTRIES * I915_PPGTT_PT_ENTRIES * PAGE_SIZE;
830         ppgtt->pt_pages = kcalloc(ppgtt->num_pd_entries, sizeof(struct page *),
831                                   GFP_KERNEL);
832         if (!ppgtt->pt_pages) {
833                 drm_mm_remove_node(&ppgtt->node);
834                 return -ENOMEM;
835         }
836
837         for (i = 0; i < ppgtt->num_pd_entries; i++) {
838                 ppgtt->pt_pages[i] = alloc_page(GFP_KERNEL);
839                 if (!ppgtt->pt_pages[i])
840                         goto err_pt_alloc;
841         }
842
843         ppgtt->pt_dma_addr = kcalloc(ppgtt->num_pd_entries, sizeof(dma_addr_t),
844                                      GFP_KERNEL);
845         if (!ppgtt->pt_dma_addr)
846                 goto err_pt_alloc;
847
848         for (i = 0; i < ppgtt->num_pd_entries; i++) {
849                 dma_addr_t pt_addr;
850
851                 pt_addr = pci_map_page(dev->pdev, ppgtt->pt_pages[i], 0, 4096,
852                                        PCI_DMA_BIDIRECTIONAL);
853
854                 if (pci_dma_mapping_error(dev->pdev, pt_addr)) {
855                         ret = -EIO;
856                         goto err_pd_pin;
857
858                 }
859                 ppgtt->pt_dma_addr[i] = pt_addr;
860         }
861
862         ppgtt->base.clear_range(&ppgtt->base, 0,
863                                 ppgtt->num_pd_entries * I915_PPGTT_PT_ENTRIES, true);
864
865         DRM_DEBUG_DRIVER("Allocated pde space (%ldM) at GTT entry: %lx\n",
866                          ppgtt->node.size >> 20,
867                          ppgtt->node.start / PAGE_SIZE);
868         ppgtt->pd_offset =
869                 ppgtt->node.start / PAGE_SIZE * sizeof(gen6_gtt_pte_t);
870
871         return 0;
872
873 err_pd_pin:
874         if (ppgtt->pt_dma_addr) {
875                 for (i--; i >= 0; i--)
876                         pci_unmap_page(dev->pdev, ppgtt->pt_dma_addr[i],
877                                        4096, PCI_DMA_BIDIRECTIONAL);
878         }
879 err_pt_alloc:
880         kfree(ppgtt->pt_dma_addr);
881         for (i = 0; i < ppgtt->num_pd_entries; i++) {
882                 if (ppgtt->pt_pages[i])
883                         __free_page(ppgtt->pt_pages[i]);
884         }
885         kfree(ppgtt->pt_pages);
886         drm_mm_remove_node(&ppgtt->node);
887
888         return ret;
889 }
890
891 int i915_gem_init_ppgtt(struct drm_device *dev, struct i915_hw_ppgtt *ppgtt)
892 {
893         struct drm_i915_private *dev_priv = dev->dev_private;
894         int ret = 0;
895
896         ppgtt->base.dev = dev;
897
898         if (INTEL_INFO(dev)->gen < 8)
899                 ret = gen6_ppgtt_init(ppgtt);
900         else if (IS_GEN8(dev))
901                 ret = gen8_ppgtt_init(ppgtt, dev_priv->gtt.base.total);
902         else
903                 BUG();
904
905         if (!ret) {
906                 struct drm_i915_private *dev_priv = dev->dev_private;
907                 kref_init(&ppgtt->ref);
908                 drm_mm_init(&ppgtt->base.mm, ppgtt->base.start,
909                             ppgtt->base.total);
910                 i915_init_vm(dev_priv, &ppgtt->base);
911                 if (INTEL_INFO(dev)->gen < 8) {
912                         gen6_write_pdes(ppgtt);
913                         DRM_DEBUG("Adding PPGTT at offset %x\n",
914                                   ppgtt->pd_offset << 10);
915                 }
916         }
917
918         return ret;
919 }
920
921 static void
922 ppgtt_bind_vma(struct i915_vma *vma,
923                enum i915_cache_level cache_level,
924                u32 flags)
925 {
926         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
927
928         WARN_ON(flags);
929
930         vma->vm->insert_entries(vma->vm, vma->obj->pages, entry, cache_level);
931 }
932
933 static void ppgtt_unbind_vma(struct i915_vma *vma)
934 {
935         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
936
937         vma->vm->clear_range(vma->vm,
938                              entry,
939                              vma->obj->base.size >> PAGE_SHIFT,
940                              true);
941 }
942
943 extern int intel_iommu_gfx_mapped;
944 /* Certain Gen5 chipsets require require idling the GPU before
945  * unmapping anything from the GTT when VT-d is enabled.
946  */
947 static inline bool needs_idle_maps(struct drm_device *dev)
948 {
949 #ifdef CONFIG_INTEL_IOMMU
950         /* Query intel_iommu to see if we need the workaround. Presumably that
951          * was loaded first.
952          */
953         if (IS_GEN5(dev) && IS_MOBILE(dev) && intel_iommu_gfx_mapped)
954                 return true;
955 #endif
956         return false;
957 }
958
959 static bool do_idling(struct drm_i915_private *dev_priv)
960 {
961         bool ret = dev_priv->mm.interruptible;
962
963         if (unlikely(dev_priv->gtt.do_idle_maps)) {
964                 dev_priv->mm.interruptible = false;
965                 if (i915_gpu_idle(dev_priv->dev)) {
966                         DRM_ERROR("Couldn't idle GPU\n");
967                         /* Wait a bit, in hopes it avoids the hang */
968                         udelay(10);
969                 }
970         }
971
972         return ret;
973 }
974
975 static void undo_idling(struct drm_i915_private *dev_priv, bool interruptible)
976 {
977         if (unlikely(dev_priv->gtt.do_idle_maps))
978                 dev_priv->mm.interruptible = interruptible;
979 }
980
981 void i915_check_and_clear_faults(struct drm_device *dev)
982 {
983         struct drm_i915_private *dev_priv = dev->dev_private;
984         struct intel_ring_buffer *ring;
985         int i;
986
987         if (INTEL_INFO(dev)->gen < 6)
988                 return;
989
990         for_each_ring(ring, dev_priv, i) {
991                 u32 fault_reg;
992                 fault_reg = I915_READ(RING_FAULT_REG(ring));
993                 if (fault_reg & RING_FAULT_VALID) {
994                         DRM_DEBUG_DRIVER("Unexpected fault\n"
995                                          "\tAddr: 0x%08lx\\n"
996                                          "\tAddress space: %s\n"
997                                          "\tSource ID: %d\n"
998                                          "\tType: %d\n",
999                                          fault_reg & PAGE_MASK,
1000                                          fault_reg & RING_FAULT_GTTSEL_MASK ? "GGTT" : "PPGTT",
1001                                          RING_FAULT_SRCID(fault_reg),
1002                                          RING_FAULT_FAULT_TYPE(fault_reg));
1003                         I915_WRITE(RING_FAULT_REG(ring),
1004                                    fault_reg & ~RING_FAULT_VALID);
1005                 }
1006         }
1007         POSTING_READ(RING_FAULT_REG(&dev_priv->ring[RCS]));
1008 }
1009
1010 void i915_gem_suspend_gtt_mappings(struct drm_device *dev)
1011 {
1012         struct drm_i915_private *dev_priv = dev->dev_private;
1013
1014         /* Don't bother messing with faults pre GEN6 as we have little
1015          * documentation supporting that it's a good idea.
1016          */
1017         if (INTEL_INFO(dev)->gen < 6)
1018                 return;
1019
1020         i915_check_and_clear_faults(dev);
1021
1022         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1023                                        dev_priv->gtt.base.start / PAGE_SIZE,
1024                                        dev_priv->gtt.base.total / PAGE_SIZE,
1025                                        false);
1026 }
1027
1028 void i915_gem_restore_gtt_mappings(struct drm_device *dev)
1029 {
1030         struct drm_i915_private *dev_priv = dev->dev_private;
1031         struct drm_i915_gem_object *obj;
1032         struct i915_address_space *vm;
1033
1034         i915_check_and_clear_faults(dev);
1035
1036         /* First fill our portion of the GTT with scratch pages */
1037         dev_priv->gtt.base.clear_range(&dev_priv->gtt.base,
1038                                        dev_priv->gtt.base.start / PAGE_SIZE,
1039                                        dev_priv->gtt.base.total / PAGE_SIZE,
1040                                        true);
1041
1042         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1043                 struct i915_vma *vma = i915_gem_obj_to_vma(obj,
1044                                                            &dev_priv->gtt.base);
1045                 if (!vma)
1046                         continue;
1047
1048                 i915_gem_clflush_object(obj, obj->pin_display);
1049                 /* The bind_vma code tries to be smart about tracking mappings.
1050                  * Unfortunately above, we've just wiped out the mappings
1051                  * without telling our object about it. So we need to fake it.
1052                  */
1053                 obj->has_global_gtt_mapping = 0;
1054                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
1055         }
1056
1057
1058         if (INTEL_INFO(dev)->gen >= 8)
1059                 return;
1060
1061         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
1062                 /* TODO: Perhaps it shouldn't be gen6 specific */
1063                 if (i915_is_ggtt(vm)) {
1064                         if (dev_priv->mm.aliasing_ppgtt)
1065                                 gen6_write_pdes(dev_priv->mm.aliasing_ppgtt);
1066                         continue;
1067                 }
1068
1069                 gen6_write_pdes(container_of(vm, struct i915_hw_ppgtt, base));
1070         }
1071
1072         i915_gem_chipset_flush(dev);
1073 }
1074
1075 int i915_gem_gtt_prepare_object(struct drm_i915_gem_object *obj)
1076 {
1077         if (obj->has_dma_mapping)
1078                 return 0;
1079
1080         if (!dma_map_sg(&obj->base.dev->pdev->dev,
1081                         obj->pages->sgl, obj->pages->nents,
1082                         PCI_DMA_BIDIRECTIONAL))
1083                 return -ENOSPC;
1084
1085         return 0;
1086 }
1087
1088 static inline void gen8_set_pte(void __iomem *addr, gen8_gtt_pte_t pte)
1089 {
1090 #ifdef writeq
1091         writeq(pte, addr);
1092 #else
1093         iowrite32((u32)pte, addr);
1094         iowrite32(pte >> 32, addr + 4);
1095 #endif
1096 }
1097
1098 static void gen8_ggtt_insert_entries(struct i915_address_space *vm,
1099                                      struct sg_table *st,
1100                                      unsigned int first_entry,
1101                                      enum i915_cache_level level)
1102 {
1103         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1104         gen8_gtt_pte_t __iomem *gtt_entries =
1105                 (gen8_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1106         int i = 0;
1107         struct sg_page_iter sg_iter;
1108         dma_addr_t addr;
1109
1110         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1111                 addr = sg_dma_address(sg_iter.sg) +
1112                         (sg_iter.sg_pgoffset << PAGE_SHIFT);
1113                 gen8_set_pte(&gtt_entries[i],
1114                              gen8_pte_encode(addr, level, true));
1115                 i++;
1116         }
1117
1118         /*
1119          * XXX: This serves as a posting read to make sure that the PTE has
1120          * actually been updated. There is some concern that even though
1121          * registers and PTEs are within the same BAR that they are potentially
1122          * of NUMA access patterns. Therefore, even with the way we assume
1123          * hardware should work, we must keep this posting read for paranoia.
1124          */
1125         if (i != 0)
1126                 WARN_ON(readq(&gtt_entries[i-1])
1127                         != gen8_pte_encode(addr, level, true));
1128
1129 #if 0 /* TODO: Still needed on GEN8? */
1130         /* This next bit makes the above posting read even more important. We
1131          * want to flush the TLBs only after we're certain all the PTE updates
1132          * have finished.
1133          */
1134         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1135         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1136 #endif
1137 }
1138
1139 /*
1140  * Binds an object into the global gtt with the specified cache level. The object
1141  * will be accessible to the GPU via commands whose operands reference offsets
1142  * within the global GTT as well as accessible by the GPU through the GMADR
1143  * mapped BAR (dev_priv->mm.gtt->gtt).
1144  */
1145 static void gen6_ggtt_insert_entries(struct i915_address_space *vm,
1146                                      struct sg_table *st,
1147                                      unsigned int first_entry,
1148                                      enum i915_cache_level level)
1149 {
1150         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1151         gen6_gtt_pte_t __iomem *gtt_entries =
1152                 (gen6_gtt_pte_t __iomem *)dev_priv->gtt.gsm + first_entry;
1153         int i = 0;
1154         struct sg_page_iter sg_iter;
1155         dma_addr_t addr;
1156
1157         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0) {
1158                 addr = sg_page_iter_dma_address(&sg_iter);
1159                 iowrite32(vm->pte_encode(addr, level, true), &gtt_entries[i]);
1160                 i++;
1161         }
1162
1163         /* XXX: This serves as a posting read to make sure that the PTE has
1164          * actually been updated. There is some concern that even though
1165          * registers and PTEs are within the same BAR that they are potentially
1166          * of NUMA access patterns. Therefore, even with the way we assume
1167          * hardware should work, we must keep this posting read for paranoia.
1168          */
1169         if (i != 0)
1170                 WARN_ON(readl(&gtt_entries[i-1]) !=
1171                         vm->pte_encode(addr, level, true));
1172
1173         /* This next bit makes the above posting read even more important. We
1174          * want to flush the TLBs only after we're certain all the PTE updates
1175          * have finished.
1176          */
1177         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
1178         POSTING_READ(GFX_FLSH_CNTL_GEN6);
1179 }
1180
1181 static void gen8_ggtt_clear_range(struct i915_address_space *vm,
1182                                   unsigned int first_entry,
1183                                   unsigned int num_entries,
1184                                   bool use_scratch)
1185 {
1186         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1187         gen8_gtt_pte_t scratch_pte, __iomem *gtt_base =
1188                 (gen8_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1189         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1190         int i;
1191
1192         if (WARN(num_entries > max_entries,
1193                  "First entry = %d; Num entries = %d (max=%d)\n",
1194                  first_entry, num_entries, max_entries))
1195                 num_entries = max_entries;
1196
1197         scratch_pte = gen8_pte_encode(vm->scratch.addr,
1198                                       I915_CACHE_LLC,
1199                                       use_scratch);
1200         for (i = 0; i < num_entries; i++)
1201                 gen8_set_pte(&gtt_base[i], scratch_pte);
1202         readl(gtt_base);
1203 }
1204
1205 static void gen6_ggtt_clear_range(struct i915_address_space *vm,
1206                                   unsigned int first_entry,
1207                                   unsigned int num_entries,
1208                                   bool use_scratch)
1209 {
1210         struct drm_i915_private *dev_priv = vm->dev->dev_private;
1211         gen6_gtt_pte_t scratch_pte, __iomem *gtt_base =
1212                 (gen6_gtt_pte_t __iomem *) dev_priv->gtt.gsm + first_entry;
1213         const int max_entries = gtt_total_entries(dev_priv->gtt) - first_entry;
1214         int i;
1215
1216         if (WARN(num_entries > max_entries,
1217                  "First entry = %d; Num entries = %d (max=%d)\n",
1218                  first_entry, num_entries, max_entries))
1219                 num_entries = max_entries;
1220
1221         scratch_pte = vm->pte_encode(vm->scratch.addr, I915_CACHE_LLC, use_scratch);
1222
1223         for (i = 0; i < num_entries; i++)
1224                 iowrite32(scratch_pte, &gtt_base[i]);
1225         readl(gtt_base);
1226 }
1227
1228
1229 static void i915_ggtt_bind_vma(struct i915_vma *vma,
1230                                enum i915_cache_level cache_level,
1231                                u32 unused)
1232 {
1233         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1234         unsigned int flags = (cache_level == I915_CACHE_NONE) ?
1235                 AGP_USER_MEMORY : AGP_USER_CACHED_MEMORY;
1236
1237         BUG_ON(!i915_is_ggtt(vma->vm));
1238         intel_gtt_insert_sg_entries(vma->obj->pages, entry, flags);
1239         vma->obj->has_global_gtt_mapping = 1;
1240 }
1241
1242 static void i915_ggtt_clear_range(struct i915_address_space *vm,
1243                                   unsigned int first_entry,
1244                                   unsigned int num_entries,
1245                                   bool unused)
1246 {
1247         intel_gtt_clear_range(first_entry, num_entries);
1248 }
1249
1250 static void i915_ggtt_unbind_vma(struct i915_vma *vma)
1251 {
1252         const unsigned int first = vma->node.start >> PAGE_SHIFT;
1253         const unsigned int size = vma->obj->base.size >> PAGE_SHIFT;
1254
1255         BUG_ON(!i915_is_ggtt(vma->vm));
1256         vma->obj->has_global_gtt_mapping = 0;
1257         intel_gtt_clear_range(first, size);
1258 }
1259
1260 static void ggtt_bind_vma(struct i915_vma *vma,
1261                           enum i915_cache_level cache_level,
1262                           u32 flags)
1263 {
1264         struct drm_device *dev = vma->vm->dev;
1265         struct drm_i915_private *dev_priv = dev->dev_private;
1266         struct drm_i915_gem_object *obj = vma->obj;
1267         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1268
1269         /* If there is no aliasing PPGTT, or the caller needs a global mapping,
1270          * or we have a global mapping already but the cacheability flags have
1271          * changed, set the global PTEs.
1272          *
1273          * If there is an aliasing PPGTT it is anecdotally faster, so use that
1274          * instead if none of the above hold true.
1275          *
1276          * NB: A global mapping should only be needed for special regions like
1277          * "gtt mappable", SNB errata, or if specified via special execbuf
1278          * flags. At all other times, the GPU will use the aliasing PPGTT.
1279          */
1280         if (!dev_priv->mm.aliasing_ppgtt || flags & GLOBAL_BIND) {
1281                 if (!obj->has_global_gtt_mapping ||
1282                     (cache_level != obj->cache_level)) {
1283                         vma->vm->insert_entries(vma->vm, obj->pages, entry,
1284                                                 cache_level);
1285                         obj->has_global_gtt_mapping = 1;
1286                 }
1287         }
1288
1289         if (dev_priv->mm.aliasing_ppgtt &&
1290             (!obj->has_aliasing_ppgtt_mapping ||
1291              (cache_level != obj->cache_level))) {
1292                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1293                 appgtt->base.insert_entries(&appgtt->base,
1294                                             vma->obj->pages, entry, cache_level);
1295                 vma->obj->has_aliasing_ppgtt_mapping = 1;
1296         }
1297 }
1298
1299 static void ggtt_unbind_vma(struct i915_vma *vma)
1300 {
1301         struct drm_device *dev = vma->vm->dev;
1302         struct drm_i915_private *dev_priv = dev->dev_private;
1303         struct drm_i915_gem_object *obj = vma->obj;
1304         const unsigned long entry = vma->node.start >> PAGE_SHIFT;
1305
1306         if (obj->has_global_gtt_mapping) {
1307                 vma->vm->clear_range(vma->vm, entry,
1308                                      vma->obj->base.size >> PAGE_SHIFT,
1309                                      true);
1310                 obj->has_global_gtt_mapping = 0;
1311         }
1312
1313         if (obj->has_aliasing_ppgtt_mapping) {
1314                 struct i915_hw_ppgtt *appgtt = dev_priv->mm.aliasing_ppgtt;
1315                 appgtt->base.clear_range(&appgtt->base,
1316                                          entry,
1317                                          obj->base.size >> PAGE_SHIFT,
1318                                          true);
1319                 obj->has_aliasing_ppgtt_mapping = 0;
1320         }
1321 }
1322
1323 void i915_gem_gtt_finish_object(struct drm_i915_gem_object *obj)
1324 {
1325         struct drm_device *dev = obj->base.dev;
1326         struct drm_i915_private *dev_priv = dev->dev_private;
1327         bool interruptible;
1328
1329         interruptible = do_idling(dev_priv);
1330
1331         if (!obj->has_dma_mapping)
1332                 dma_unmap_sg(&dev->pdev->dev,
1333                              obj->pages->sgl, obj->pages->nents,
1334                              PCI_DMA_BIDIRECTIONAL);
1335
1336         undo_idling(dev_priv, interruptible);
1337 }
1338
1339 static void i915_gtt_color_adjust(struct drm_mm_node *node,
1340                                   unsigned long color,
1341                                   unsigned long *start,
1342                                   unsigned long *end)
1343 {
1344         if (node->color != color)
1345                 *start += 4096;
1346
1347         if (!list_empty(&node->node_list)) {
1348                 node = list_entry(node->node_list.next,
1349                                   struct drm_mm_node,
1350                                   node_list);
1351                 if (node->allocated && node->color != color)
1352                         *end -= 4096;
1353         }
1354 }
1355
1356 void i915_gem_setup_global_gtt(struct drm_device *dev,
1357                                unsigned long start,
1358                                unsigned long mappable_end,
1359                                unsigned long end)
1360 {
1361         /* Let GEM Manage all of the aperture.
1362          *
1363          * However, leave one page at the end still bound to the scratch page.
1364          * There are a number of places where the hardware apparently prefetches
1365          * past the end of the object, and we've seen multiple hangs with the
1366          * GPU head pointer stuck in a batchbuffer bound at the last page of the
1367          * aperture.  One page should be enough to keep any prefetching inside
1368          * of the aperture.
1369          */
1370         struct drm_i915_private *dev_priv = dev->dev_private;
1371         struct i915_address_space *ggtt_vm = &dev_priv->gtt.base;
1372         struct drm_mm_node *entry;
1373         struct drm_i915_gem_object *obj;
1374         unsigned long hole_start, hole_end;
1375
1376         BUG_ON(mappable_end > end);
1377
1378         /* Subtract the guard page ... */
1379         drm_mm_init(&ggtt_vm->mm, start, end - start - PAGE_SIZE);
1380         if (!HAS_LLC(dev))
1381                 dev_priv->gtt.base.mm.color_adjust = i915_gtt_color_adjust;
1382
1383         /* Mark any preallocated objects as occupied */
1384         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
1385                 struct i915_vma *vma = i915_gem_obj_to_vma(obj, ggtt_vm);
1386                 int ret;
1387                 DRM_DEBUG_KMS("reserving preallocated space: %lx + %zx\n",
1388                               i915_gem_obj_ggtt_offset(obj), obj->base.size);
1389
1390                 WARN_ON(i915_gem_obj_ggtt_bound(obj));
1391                 ret = drm_mm_reserve_node(&ggtt_vm->mm, &vma->node);
1392                 if (ret)
1393                         DRM_DEBUG_KMS("Reservation failed\n");
1394                 obj->has_global_gtt_mapping = 1;
1395         }
1396
1397         dev_priv->gtt.base.start = start;
1398         dev_priv->gtt.base.total = end - start;
1399
1400         /* Clear any non-preallocated blocks */
1401         drm_mm_for_each_hole(entry, &ggtt_vm->mm, hole_start, hole_end) {
1402                 const unsigned long count = (hole_end - hole_start) / PAGE_SIZE;
1403                 DRM_DEBUG_KMS("clearing unused GTT space: [%lx, %lx]\n",
1404                               hole_start, hole_end);
1405                 ggtt_vm->clear_range(ggtt_vm, hole_start / PAGE_SIZE, count, true);
1406         }
1407
1408         /* And finally clear the reserved guard page */
1409         ggtt_vm->clear_range(ggtt_vm, end / PAGE_SIZE - 1, 1, true);
1410 }
1411
1412 void i915_gem_init_global_gtt(struct drm_device *dev)
1413 {
1414         struct drm_i915_private *dev_priv = dev->dev_private;
1415         unsigned long gtt_size, mappable_size;
1416
1417         gtt_size = dev_priv->gtt.base.total;
1418         mappable_size = dev_priv->gtt.mappable_end;
1419
1420         i915_gem_setup_global_gtt(dev, 0, mappable_size, gtt_size);
1421 }
1422
1423 static int setup_scratch_page(struct drm_device *dev)
1424 {
1425         struct drm_i915_private *dev_priv = dev->dev_private;
1426         struct page *page;
1427         dma_addr_t dma_addr;
1428
1429         page = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
1430         if (page == NULL)
1431                 return -ENOMEM;
1432         get_page(page);
1433         set_pages_uc(page, 1);
1434
1435 #ifdef CONFIG_INTEL_IOMMU
1436         dma_addr = pci_map_page(dev->pdev, page, 0, PAGE_SIZE,
1437                                 PCI_DMA_BIDIRECTIONAL);
1438         if (pci_dma_mapping_error(dev->pdev, dma_addr))
1439                 return -EINVAL;
1440 #else
1441         dma_addr = page_to_phys(page);
1442 #endif
1443         dev_priv->gtt.base.scratch.page = page;
1444         dev_priv->gtt.base.scratch.addr = dma_addr;
1445
1446         return 0;
1447 }
1448
1449 static void teardown_scratch_page(struct drm_device *dev)
1450 {
1451         struct drm_i915_private *dev_priv = dev->dev_private;
1452         struct page *page = dev_priv->gtt.base.scratch.page;
1453
1454         set_pages_wb(page, 1);
1455         pci_unmap_page(dev->pdev, dev_priv->gtt.base.scratch.addr,
1456                        PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
1457         put_page(page);
1458         __free_page(page);
1459 }
1460
1461 static inline unsigned int gen6_get_total_gtt_size(u16 snb_gmch_ctl)
1462 {
1463         snb_gmch_ctl >>= SNB_GMCH_GGMS_SHIFT;
1464         snb_gmch_ctl &= SNB_GMCH_GGMS_MASK;
1465         return snb_gmch_ctl << 20;
1466 }
1467
1468 static inline unsigned int gen8_get_total_gtt_size(u16 bdw_gmch_ctl)
1469 {
1470         bdw_gmch_ctl >>= BDW_GMCH_GGMS_SHIFT;
1471         bdw_gmch_ctl &= BDW_GMCH_GGMS_MASK;
1472         if (bdw_gmch_ctl)
1473                 bdw_gmch_ctl = 1 << bdw_gmch_ctl;
1474         if (bdw_gmch_ctl > 4) {
1475                 WARN_ON(!i915_preliminary_hw_support);
1476                 return 4<<20;
1477         }
1478
1479         return bdw_gmch_ctl << 20;
1480 }
1481
1482 static inline size_t gen6_get_stolen_size(u16 snb_gmch_ctl)
1483 {
1484         snb_gmch_ctl >>= SNB_GMCH_GMS_SHIFT;
1485         snb_gmch_ctl &= SNB_GMCH_GMS_MASK;
1486         return snb_gmch_ctl << 25; /* 32 MB units */
1487 }
1488
1489 static inline size_t gen8_get_stolen_size(u16 bdw_gmch_ctl)
1490 {
1491         bdw_gmch_ctl >>= BDW_GMCH_GMS_SHIFT;
1492         bdw_gmch_ctl &= BDW_GMCH_GMS_MASK;
1493         return bdw_gmch_ctl << 25; /* 32 MB units */
1494 }
1495
1496 static int ggtt_probe_common(struct drm_device *dev,
1497                              size_t gtt_size)
1498 {
1499         struct drm_i915_private *dev_priv = dev->dev_private;
1500         phys_addr_t gtt_bus_addr;
1501         int ret;
1502
1503         /* For Modern GENs the PTEs and register space are split in the BAR */
1504         gtt_bus_addr = pci_resource_start(dev->pdev, 0) +
1505                 (pci_resource_len(dev->pdev, 0) / 2);
1506
1507         dev_priv->gtt.gsm = ioremap_wc(gtt_bus_addr, gtt_size);
1508         if (!dev_priv->gtt.gsm) {
1509                 DRM_ERROR("Failed to map the gtt page table\n");
1510                 return -ENOMEM;
1511         }
1512
1513         ret = setup_scratch_page(dev);
1514         if (ret) {
1515                 DRM_ERROR("Scratch setup failed\n");
1516                 /* iounmap will also get called at remove, but meh */
1517                 iounmap(dev_priv->gtt.gsm);
1518         }
1519
1520         return ret;
1521 }
1522
1523 /* The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
1524  * bits. When using advanced contexts each context stores its own PAT, but
1525  * writing this data shouldn't be harmful even in those cases. */
1526 static void gen8_setup_private_ppat(struct drm_i915_private *dev_priv)
1527 {
1528 #define GEN8_PPAT_UC            (0<<0)
1529 #define GEN8_PPAT_WC            (1<<0)
1530 #define GEN8_PPAT_WT            (2<<0)
1531 #define GEN8_PPAT_WB            (3<<0)
1532 #define GEN8_PPAT_ELLC_OVERRIDE (0<<2)
1533 /* FIXME(BDW): Bspec is completely confused about cache control bits. */
1534 #define GEN8_PPAT_LLC           (1<<2)
1535 #define GEN8_PPAT_LLCELLC       (2<<2)
1536 #define GEN8_PPAT_LLCeLLC       (3<<2)
1537 #define GEN8_PPAT_AGE(x)        (x<<4)
1538 #define GEN8_PPAT(i, x) ((uint64_t) (x) << ((i) * 8))
1539         uint64_t pat;
1540
1541         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC)     | /* for normal objects, no eLLC */
1542               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) | /* for something pointing to ptes? */
1543               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) | /* for scanout with eLLC */
1544               GEN8_PPAT(3, GEN8_PPAT_UC)                     | /* Uncached objects, mostly for scanout */
1545               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
1546               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
1547               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
1548               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
1549
1550         /* XXX: spec defines this as 2 distinct registers. It's unclear if a 64b
1551          * write would work. */
1552         I915_WRITE(GEN8_PRIVATE_PAT, pat);
1553         I915_WRITE(GEN8_PRIVATE_PAT + 4, pat >> 32);
1554 }
1555
1556 static int gen8_gmch_probe(struct drm_device *dev,
1557                            size_t *gtt_total,
1558                            size_t *stolen,
1559                            phys_addr_t *mappable_base,
1560                            unsigned long *mappable_end)
1561 {
1562         struct drm_i915_private *dev_priv = dev->dev_private;
1563         unsigned int gtt_size;
1564         u16 snb_gmch_ctl;
1565         int ret;
1566
1567         /* TODO: We're not aware of mappable constraints on gen8 yet */
1568         *mappable_base = pci_resource_start(dev->pdev, 2);
1569         *mappable_end = pci_resource_len(dev->pdev, 2);
1570
1571         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(39)))
1572                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(39));
1573
1574         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1575
1576         *stolen = gen8_get_stolen_size(snb_gmch_ctl);
1577
1578         gtt_size = gen8_get_total_gtt_size(snb_gmch_ctl);
1579         *gtt_total = (gtt_size / sizeof(gen8_gtt_pte_t)) << PAGE_SHIFT;
1580
1581         gen8_setup_private_ppat(dev_priv);
1582
1583         ret = ggtt_probe_common(dev, gtt_size);
1584
1585         dev_priv->gtt.base.clear_range = gen8_ggtt_clear_range;
1586         dev_priv->gtt.base.insert_entries = gen8_ggtt_insert_entries;
1587
1588         return ret;
1589 }
1590
1591 static int gen6_gmch_probe(struct drm_device *dev,
1592                            size_t *gtt_total,
1593                            size_t *stolen,
1594                            phys_addr_t *mappable_base,
1595                            unsigned long *mappable_end)
1596 {
1597         struct drm_i915_private *dev_priv = dev->dev_private;
1598         unsigned int gtt_size;
1599         u16 snb_gmch_ctl;
1600         int ret;
1601
1602         *mappable_base = pci_resource_start(dev->pdev, 2);
1603         *mappable_end = pci_resource_len(dev->pdev, 2);
1604
1605         /* 64/512MB is the current min/max we actually know of, but this is just
1606          * a coarse sanity check.
1607          */
1608         if ((*mappable_end < (64<<20) || (*mappable_end > (512<<20)))) {
1609                 DRM_ERROR("Unknown GMADR size (%lx)\n",
1610                           dev_priv->gtt.mappable_end);
1611                 return -ENXIO;
1612         }
1613
1614         if (!pci_set_dma_mask(dev->pdev, DMA_BIT_MASK(40)))
1615                 pci_set_consistent_dma_mask(dev->pdev, DMA_BIT_MASK(40));
1616         pci_read_config_word(dev->pdev, SNB_GMCH_CTRL, &snb_gmch_ctl);
1617
1618         *stolen = gen6_get_stolen_size(snb_gmch_ctl);
1619
1620         gtt_size = gen6_get_total_gtt_size(snb_gmch_ctl);
1621         *gtt_total = (gtt_size / sizeof(gen6_gtt_pte_t)) << PAGE_SHIFT;
1622
1623         ret = ggtt_probe_common(dev, gtt_size);
1624
1625         dev_priv->gtt.base.clear_range = gen6_ggtt_clear_range;
1626         dev_priv->gtt.base.insert_entries = gen6_ggtt_insert_entries;
1627
1628         return ret;
1629 }
1630
1631 static void gen6_gmch_remove(struct i915_address_space *vm)
1632 {
1633
1634         struct i915_gtt *gtt = container_of(vm, struct i915_gtt, base);
1635
1636         drm_mm_takedown(&vm->mm);
1637         iounmap(gtt->gsm);
1638         teardown_scratch_page(vm->dev);
1639 }
1640
1641 static int i915_gmch_probe(struct drm_device *dev,
1642                            size_t *gtt_total,
1643                            size_t *stolen,
1644                            phys_addr_t *mappable_base,
1645                            unsigned long *mappable_end)
1646 {
1647         struct drm_i915_private *dev_priv = dev->dev_private;
1648         int ret;
1649
1650         ret = intel_gmch_probe(dev_priv->bridge_dev, dev_priv->dev->pdev, NULL);
1651         if (!ret) {
1652                 DRM_ERROR("failed to set up gmch\n");
1653                 return -EIO;
1654         }
1655
1656         intel_gtt_get(gtt_total, stolen, mappable_base, mappable_end);
1657
1658         dev_priv->gtt.do_idle_maps = needs_idle_maps(dev_priv->dev);
1659         dev_priv->gtt.base.clear_range = i915_ggtt_clear_range;
1660
1661         return 0;
1662 }
1663
1664 static void i915_gmch_remove(struct i915_address_space *vm)
1665 {
1666         intel_gmch_remove();
1667 }
1668
1669 int i915_gem_gtt_init(struct drm_device *dev)
1670 {
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672         struct i915_gtt *gtt = &dev_priv->gtt;
1673         int ret;
1674
1675         if (INTEL_INFO(dev)->gen <= 5) {
1676                 gtt->gtt_probe = i915_gmch_probe;
1677                 gtt->base.cleanup = i915_gmch_remove;
1678         } else if (INTEL_INFO(dev)->gen < 8) {
1679                 gtt->gtt_probe = gen6_gmch_probe;
1680                 gtt->base.cleanup = gen6_gmch_remove;
1681                 if (IS_HASWELL(dev) && dev_priv->ellc_size)
1682                         gtt->base.pte_encode = iris_pte_encode;
1683                 else if (IS_HASWELL(dev))
1684                         gtt->base.pte_encode = hsw_pte_encode;
1685                 else if (IS_VALLEYVIEW(dev))
1686                         gtt->base.pte_encode = byt_pte_encode;
1687                 else if (INTEL_INFO(dev)->gen >= 7)
1688                         gtt->base.pte_encode = ivb_pte_encode;
1689                 else
1690                         gtt->base.pte_encode = snb_pte_encode;
1691         } else {
1692                 dev_priv->gtt.gtt_probe = gen8_gmch_probe;
1693                 dev_priv->gtt.base.cleanup = gen6_gmch_remove;
1694         }
1695
1696         ret = gtt->gtt_probe(dev, &gtt->base.total, &gtt->stolen_size,
1697                              &gtt->mappable_base, &gtt->mappable_end);
1698         if (ret)
1699                 return ret;
1700
1701         gtt->base.dev = dev;
1702
1703         /* GMADR is the PCI mmio aperture into the global GTT. */
1704         DRM_INFO("Memory usable by graphics device = %zdM\n",
1705                  gtt->base.total >> 20);
1706         DRM_DEBUG_DRIVER("GMADR size = %ldM\n", gtt->mappable_end >> 20);
1707         DRM_DEBUG_DRIVER("GTT stolen size = %zdM\n", gtt->stolen_size >> 20);
1708
1709         return 0;
1710 }
1711
1712 static struct i915_vma *__i915_gem_vma_create(struct drm_i915_gem_object *obj,
1713                                               struct i915_address_space *vm)
1714 {
1715         struct i915_vma *vma = kzalloc(sizeof(*vma), GFP_KERNEL);
1716         if (vma == NULL)
1717                 return ERR_PTR(-ENOMEM);
1718
1719         INIT_LIST_HEAD(&vma->vma_link);
1720         INIT_LIST_HEAD(&vma->mm_list);
1721         INIT_LIST_HEAD(&vma->exec_list);
1722         vma->vm = vm;
1723         vma->obj = obj;
1724
1725         switch (INTEL_INFO(vm->dev)->gen) {
1726         case 8:
1727         case 7:
1728         case 6:
1729                 if (i915_is_ggtt(vm)) {
1730                         vma->unbind_vma = ggtt_unbind_vma;
1731                         vma->bind_vma = ggtt_bind_vma;
1732                 } else {
1733                         vma->unbind_vma = ppgtt_unbind_vma;
1734                         vma->bind_vma = ppgtt_bind_vma;
1735                 }
1736                 break;
1737         case 5:
1738         case 4:
1739         case 3:
1740         case 2:
1741                 BUG_ON(!i915_is_ggtt(vm));
1742                 vma->unbind_vma = i915_ggtt_unbind_vma;
1743                 vma->bind_vma = i915_ggtt_bind_vma;
1744                 break;
1745         default:
1746                 BUG();
1747         }
1748
1749         /* Keep GGTT vmas first to make debug easier */
1750         if (i915_is_ggtt(vm))
1751                 list_add(&vma->vma_link, &obj->vma_list);
1752         else
1753                 list_add_tail(&vma->vma_link, &obj->vma_list);
1754
1755         return vma;
1756 }
1757
1758 struct i915_vma *
1759 i915_gem_obj_lookup_or_create_vma(struct drm_i915_gem_object *obj,
1760                                   struct i915_address_space *vm)
1761 {
1762         struct i915_vma *vma;
1763
1764         vma = i915_gem_obj_to_vma(obj, vm);
1765         if (!vma)
1766                 vma = __i915_gem_vma_create(obj, vm);
1767
1768         return vma;
1769 }