Merge tag 'for-v5.7' of git://git.kernel.org/pub/scm/linux/kernel/git/sre/linux-power...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem_fence_reg.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include "i915_drv.h"
25 #include "i915_scatterlist.h"
26 #include "i915_pvinfo.h"
27 #include "i915_vgpu.h"
28
29 /**
30  * DOC: fence register handling
31  *
32  * Important to avoid confusions: "fences" in the i915 driver are not execution
33  * fences used to track command completion but hardware detiler objects which
34  * wrap a given range of the global GTT. Each platform has only a fairly limited
35  * set of these objects.
36  *
37  * Fences are used to detile GTT memory mappings. They're also connected to the
38  * hardware frontbuffer render tracking and hence interact with frontbuffer
39  * compression. Furthermore on older platforms fences are required for tiled
40  * objects used by the display engine. They can also be used by the render
41  * engine - they're required for blitter commands and are optional for render
42  * commands. But on gen4+ both display (with the exception of fbc) and rendering
43  * have their own tiling state bits and don't need fences.
44  *
45  * Also note that fences only support X and Y tiling and hence can't be used for
46  * the fancier new tiling formats like W, Ys and Yf.
47  *
48  * Finally note that because fences are such a restricted resource they're
49  * dynamically associated with objects. Furthermore fence state is committed to
50  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
51  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
52  * for cpu access. Also note that some code wants an unfenced view, for those
53  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
54  *
55  * Internally these functions will synchronize with userspace access by removing
56  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
57  */
58
59 #define pipelined 0
60
61 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
62 {
63         return fence->ggtt->vm.i915;
64 }
65
66 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
67 {
68         return fence->ggtt->vm.gt->uncore;
69 }
70
71 static void i965_write_fence_reg(struct i915_fence_reg *fence,
72                                  struct i915_vma *vma)
73 {
74         i915_reg_t fence_reg_lo, fence_reg_hi;
75         int fence_pitch_shift;
76         u64 val;
77
78         if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
79                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
80                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
81                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
82
83         } else {
84                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
85                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
86                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
87         }
88
89         val = 0;
90         if (vma) {
91                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
92
93                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
94                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, I965_FENCE_PAGE));
95                 GEM_BUG_ON(!IS_ALIGNED(vma->fence_size, I965_FENCE_PAGE));
96                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
97
98                 val = (vma->node.start + vma->fence_size - I965_FENCE_PAGE) << 32;
99                 val |= vma->node.start;
100                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
101                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
102                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
103                 val |= I965_FENCE_REG_VALID;
104         }
105
106         if (!pipelined) {
107                 struct intel_uncore *uncore = fence_to_uncore(fence);
108
109                 /*
110                  * To w/a incoherency with non-atomic 64-bit register updates,
111                  * we split the 64-bit update into two 32-bit writes. In order
112                  * for a partial fence not to be evaluated between writes, we
113                  * precede the update with write to turn off the fence register,
114                  * and only enable the fence as the last step.
115                  *
116                  * For extra levels of paranoia, we make sure each step lands
117                  * before applying the next step.
118                  */
119                 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
120                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
121
122                 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
123                 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
124                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
125         }
126 }
127
128 static void i915_write_fence_reg(struct i915_fence_reg *fence,
129                                  struct i915_vma *vma)
130 {
131         u32 val;
132
133         val = 0;
134         if (vma) {
135                 unsigned int tiling = i915_gem_object_get_tiling(vma->obj);
136                 bool is_y_tiled = tiling == I915_TILING_Y;
137                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
138
139                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
140                 GEM_BUG_ON(vma->node.start & ~I915_FENCE_START_MASK);
141                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
142                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
143
144                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
145                         stride /= 128;
146                 else
147                         stride /= 512;
148                 GEM_BUG_ON(!is_power_of_2(stride));
149
150                 val = vma->node.start;
151                 if (is_y_tiled)
152                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
153                 val |= I915_FENCE_SIZE_BITS(vma->fence_size);
154                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
155
156                 val |= I830_FENCE_REG_VALID;
157         }
158
159         if (!pipelined) {
160                 struct intel_uncore *uncore = fence_to_uncore(fence);
161                 i915_reg_t reg = FENCE_REG(fence->id);
162
163                 intel_uncore_write_fw(uncore, reg, val);
164                 intel_uncore_posting_read_fw(uncore, reg);
165         }
166 }
167
168 static void i830_write_fence_reg(struct i915_fence_reg *fence,
169                                  struct i915_vma *vma)
170 {
171         u32 val;
172
173         val = 0;
174         if (vma) {
175                 unsigned int stride = i915_gem_object_get_stride(vma->obj);
176
177                 GEM_BUG_ON(!i915_vma_is_map_and_fenceable(vma));
178                 GEM_BUG_ON(vma->node.start & ~I830_FENCE_START_MASK);
179                 GEM_BUG_ON(!is_power_of_2(vma->fence_size));
180                 GEM_BUG_ON(!is_power_of_2(stride / 128));
181                 GEM_BUG_ON(!IS_ALIGNED(vma->node.start, vma->fence_size));
182
183                 val = vma->node.start;
184                 if (i915_gem_object_get_tiling(vma->obj) == I915_TILING_Y)
185                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
186                 val |= I830_FENCE_SIZE_BITS(vma->fence_size);
187                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
188                 val |= I830_FENCE_REG_VALID;
189         }
190
191         if (!pipelined) {
192                 struct intel_uncore *uncore = fence_to_uncore(fence);
193                 i915_reg_t reg = FENCE_REG(fence->id);
194
195                 intel_uncore_write_fw(uncore, reg, val);
196                 intel_uncore_posting_read_fw(uncore, reg);
197         }
198 }
199
200 static void fence_write(struct i915_fence_reg *fence,
201                         struct i915_vma *vma)
202 {
203         struct drm_i915_private *i915 = fence_to_i915(fence);
204
205         /*
206          * Previous access through the fence register is marshalled by
207          * the mb() inside the fault handlers (i915_gem_release_mmaps)
208          * and explicitly managed for internal users.
209          */
210
211         if (IS_GEN(i915, 2))
212                 i830_write_fence_reg(fence, vma);
213         else if (IS_GEN(i915, 3))
214                 i915_write_fence_reg(fence, vma);
215         else
216                 i965_write_fence_reg(fence, vma);
217
218         /*
219          * Access through the fenced region afterwards is
220          * ordered by the posting reads whilst writing the registers.
221          */
222
223         fence->dirty = false;
224 }
225
226 static int fence_update(struct i915_fence_reg *fence,
227                         struct i915_vma *vma)
228 {
229         struct i915_ggtt *ggtt = fence->ggtt;
230         struct intel_uncore *uncore = fence_to_uncore(fence);
231         intel_wakeref_t wakeref;
232         struct i915_vma *old;
233         int ret;
234
235         if (vma) {
236                 if (!i915_vma_is_map_and_fenceable(vma))
237                         return -EINVAL;
238
239                 if (drm_WARN(&uncore->i915->drm,
240                              !i915_gem_object_get_stride(vma->obj) ||
241                              !i915_gem_object_get_tiling(vma->obj),
242                              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
243                              i915_gem_object_get_stride(vma->obj),
244                              i915_gem_object_get_tiling(vma->obj)))
245                         return -EINVAL;
246
247                 ret = i915_vma_sync(vma);
248                 if (ret)
249                         return ret;
250         }
251
252         old = xchg(&fence->vma, NULL);
253         if (old) {
254                 /* XXX Ideally we would move the waiting to outside the mutex */
255                 ret = i915_vma_sync(old);
256                 if (ret) {
257                         fence->vma = old;
258                         return ret;
259                 }
260
261                 i915_vma_flush_writes(old);
262
263                 /*
264                  * Ensure that all userspace CPU access is completed before
265                  * stealing the fence.
266                  */
267                 if (old != vma) {
268                         GEM_BUG_ON(old->fence != fence);
269                         i915_vma_revoke_mmap(old);
270                         old->fence = NULL;
271                 }
272
273                 list_move(&fence->link, &ggtt->fence_list);
274         }
275
276         /*
277          * We only need to update the register itself if the device is awake.
278          * If the device is currently powered down, we will defer the write
279          * to the runtime resume, see i915_gem_restore_fences().
280          *
281          * This only works for removing the fence register, on acquisition
282          * the caller must hold the rpm wakeref. The fence register must
283          * be cleared before we can use any other fences to ensure that
284          * the new fences do not overlap the elided clears, confusing HW.
285          */
286         wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
287         if (!wakeref) {
288                 GEM_BUG_ON(vma);
289                 return 0;
290         }
291
292         WRITE_ONCE(fence->vma, vma);
293         fence_write(fence, vma);
294
295         if (vma) {
296                 vma->fence = fence;
297                 list_move_tail(&fence->link, &ggtt->fence_list);
298         }
299
300         intel_runtime_pm_put(uncore->rpm, wakeref);
301         return 0;
302 }
303
304 /**
305  * i915_vma_revoke_fence - force-remove fence for a VMA
306  * @vma: vma to map linearly (not through a fence reg)
307  *
308  * This function force-removes any fence from the given object, which is useful
309  * if the kernel wants to do untiled GTT access.
310  *
311  * Returns:
312  *
313  * 0 on success, negative error code on failure.
314  */
315 int i915_vma_revoke_fence(struct i915_vma *vma)
316 {
317         struct i915_fence_reg *fence = vma->fence;
318
319         lockdep_assert_held(&vma->vm->mutex);
320         if (!fence)
321                 return 0;
322
323         if (atomic_read(&fence->pin_count))
324                 return -EBUSY;
325
326         return fence_update(fence, NULL);
327 }
328
329 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
330 {
331         struct i915_fence_reg *fence;
332
333         list_for_each_entry(fence, &ggtt->fence_list, link) {
334                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
335
336                 if (atomic_read(&fence->pin_count))
337                         continue;
338
339                 return fence;
340         }
341
342         /* Wait for completion of pending flips which consume fences */
343         if (intel_has_pending_fb_unpin(ggtt->vm.i915))
344                 return ERR_PTR(-EAGAIN);
345
346         return ERR_PTR(-EDEADLK);
347 }
348
349 int __i915_vma_pin_fence(struct i915_vma *vma)
350 {
351         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
352         struct i915_fence_reg *fence;
353         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
354         int err;
355
356         lockdep_assert_held(&vma->vm->mutex);
357
358         /* Just update our place in the LRU if our fence is getting reused. */
359         if (vma->fence) {
360                 fence = vma->fence;
361                 GEM_BUG_ON(fence->vma != vma);
362                 atomic_inc(&fence->pin_count);
363                 if (!fence->dirty) {
364                         list_move_tail(&fence->link, &ggtt->fence_list);
365                         return 0;
366                 }
367         } else if (set) {
368                 fence = fence_find(ggtt);
369                 if (IS_ERR(fence))
370                         return PTR_ERR(fence);
371
372                 GEM_BUG_ON(atomic_read(&fence->pin_count));
373                 atomic_inc(&fence->pin_count);
374         } else {
375                 return 0;
376         }
377
378         err = fence_update(fence, set);
379         if (err)
380                 goto out_unpin;
381
382         GEM_BUG_ON(fence->vma != set);
383         GEM_BUG_ON(vma->fence != (set ? fence : NULL));
384
385         if (set)
386                 return 0;
387
388 out_unpin:
389         atomic_dec(&fence->pin_count);
390         return err;
391 }
392
393 /**
394  * i915_vma_pin_fence - set up fencing for a vma
395  * @vma: vma to map through a fence reg
396  *
397  * When mapping objects through the GTT, userspace wants to be able to write
398  * to them without having to worry about swizzling if the object is tiled.
399  * This function walks the fence regs looking for a free one for @obj,
400  * stealing one if it can't find any.
401  *
402  * It then sets up the reg based on the object's properties: address, pitch
403  * and tiling format.
404  *
405  * For an untiled surface, this removes any existing fence.
406  *
407  * Returns:
408  *
409  * 0 on success, negative error code on failure.
410  */
411 int i915_vma_pin_fence(struct i915_vma *vma)
412 {
413         int err;
414
415         if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
416                 return 0;
417
418         /*
419          * Note that we revoke fences on runtime suspend. Therefore the user
420          * must keep the device awake whilst using the fence.
421          */
422         assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
423         GEM_BUG_ON(!i915_vma_is_pinned(vma));
424         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
425
426         err = mutex_lock_interruptible(&vma->vm->mutex);
427         if (err)
428                 return err;
429
430         err = __i915_vma_pin_fence(vma);
431         mutex_unlock(&vma->vm->mutex);
432
433         return err;
434 }
435
436 /**
437  * i915_reserve_fence - Reserve a fence for vGPU
438  * @ggtt: Global GTT
439  *
440  * This function walks the fence regs looking for a free one and remove
441  * it from the fence_list. It is used to reserve fence for vGPU to use.
442  */
443 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
444 {
445         struct i915_fence_reg *fence;
446         int count;
447         int ret;
448
449         lockdep_assert_held(&ggtt->vm.mutex);
450
451         /* Keep at least one fence available for the display engine. */
452         count = 0;
453         list_for_each_entry(fence, &ggtt->fence_list, link)
454                 count += !atomic_read(&fence->pin_count);
455         if (count <= 1)
456                 return ERR_PTR(-ENOSPC);
457
458         fence = fence_find(ggtt);
459         if (IS_ERR(fence))
460                 return fence;
461
462         if (fence->vma) {
463                 /* Force-remove fence from VMA */
464                 ret = fence_update(fence, NULL);
465                 if (ret)
466                         return ERR_PTR(ret);
467         }
468
469         list_del(&fence->link);
470
471         return fence;
472 }
473
474 /**
475  * i915_unreserve_fence - Reclaim a reserved fence
476  * @fence: the fence reg
477  *
478  * This function add a reserved fence register from vGPU to the fence_list.
479  */
480 void i915_unreserve_fence(struct i915_fence_reg *fence)
481 {
482         struct i915_ggtt *ggtt = fence->ggtt;
483
484         lockdep_assert_held(&ggtt->vm.mutex);
485
486         list_add(&fence->link, &ggtt->fence_list);
487 }
488
489 /**
490  * i915_gem_restore_fences - restore fence state
491  * @ggtt: Global GTT
492  *
493  * Restore the hw fence state to match the software tracking again, to be called
494  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
495  * the fences, to be reacquired by the user later.
496  */
497 void i915_gem_restore_fences(struct i915_ggtt *ggtt)
498 {
499         int i;
500
501         rcu_read_lock(); /* keep obj alive as we dereference */
502         for (i = 0; i < ggtt->num_fences; i++) {
503                 struct i915_fence_reg *reg = &ggtt->fence_regs[i];
504                 struct i915_vma *vma = READ_ONCE(reg->vma);
505
506                 GEM_BUG_ON(vma && vma->fence != reg);
507
508                 /*
509                  * Commit delayed tiling changes if we have an object still
510                  * attached to the fence, otherwise just clear the fence.
511                  */
512                 if (vma && !i915_gem_object_is_tiled(vma->obj))
513                         vma = NULL;
514
515                 fence_write(reg, vma);
516         }
517         rcu_read_unlock();
518 }
519
520 /**
521  * DOC: tiling swizzling details
522  *
523  * The idea behind tiling is to increase cache hit rates by rearranging
524  * pixel data so that a group of pixel accesses are in the same cacheline.
525  * Performance improvement from doing this on the back/depth buffer are on
526  * the order of 30%.
527  *
528  * Intel architectures make this somewhat more complicated, though, by
529  * adjustments made to addressing of data when the memory is in interleaved
530  * mode (matched pairs of DIMMS) to improve memory bandwidth.
531  * For interleaved memory, the CPU sends every sequential 64 bytes
532  * to an alternate memory channel so it can get the bandwidth from both.
533  *
534  * The GPU also rearranges its accesses for increased bandwidth to interleaved
535  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
536  * it does it a little differently, since one walks addresses not just in the
537  * X direction but also Y.  So, along with alternating channels when bit
538  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
539  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
540  * are common to both the 915 and 965-class hardware.
541  *
542  * The CPU also sometimes XORs in higher bits as well, to improve
543  * bandwidth doing strided access like we do so frequently in graphics.  This
544  * is called "Channel XOR Randomization" in the MCH documentation.  The result
545  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
546  * decode.
547  *
548  * All of this bit 6 XORing has an effect on our memory management,
549  * as we need to make sure that the 3d driver can correctly address object
550  * contents.
551  *
552  * If we don't have interleaved memory, all tiling is safe and no swizzling is
553  * required.
554  *
555  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
556  * 17 is not just a page offset, so as we page an object out and back in,
557  * individual pages in it will have different bit 17 addresses, resulting in
558  * each 64 bytes being swapped with its neighbor!
559  *
560  * Otherwise, if interleaved, we have to tell the 3d driver what the address
561  * swizzling it needs to do is, since it's writing with the CPU to the pages
562  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
563  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
564  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
565  * to match what the GPU expects.
566  */
567
568 /**
569  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
570  * @ggtt: Global GGTT
571  *
572  * Detects bit 6 swizzling of address lookup between IGD access and CPU
573  * access through main memory.
574  */
575 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
576 {
577         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
578         struct drm_i915_private *i915 = ggtt->vm.i915;
579         u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
580         u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
581
582         if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
583                 /*
584                  * On BDW+, swizzling is not used. We leave the CPU memory
585                  * controller in charge of optimizing memory accesses without
586                  * the extra address manipulation GPU side.
587                  *
588                  * VLV and CHV don't have GPU swizzling.
589                  */
590                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
591                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
592         } else if (INTEL_GEN(i915) >= 6) {
593                 if (i915->preserve_bios_swizzle) {
594                         if (intel_uncore_read(uncore, DISP_ARB_CTL) &
595                             DISP_TILE_SURFACE_SWIZZLING) {
596                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
597                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
598                         } else {
599                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
600                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
601                         }
602                 } else {
603                         u32 dimm_c0, dimm_c1;
604                         dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
605                         dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
606                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
607                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
608                         /*
609                          * Enable swizzling when the channels are populated
610                          * with identically sized dimms. We don't need to check
611                          * the 3rd channel because no cpu with gpu attached
612                          * ships in that configuration. Also, swizzling only
613                          * makes sense for 2 channels anyway.
614                          */
615                         if (dimm_c0 == dimm_c1) {
616                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
617                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
618                         } else {
619                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
620                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
621                         }
622                 }
623         } else if (IS_GEN(i915, 5)) {
624                 /*
625                  * On Ironlake whatever DRAM config, GPU always do
626                  * same swizzling setup.
627                  */
628                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
629                 swizzle_y = I915_BIT_6_SWIZZLE_9;
630         } else if (IS_GEN(i915, 2)) {
631                 /*
632                  * As far as we know, the 865 doesn't have these bit 6
633                  * swizzling issues.
634                  */
635                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
636                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
637         } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
638                 /*
639                  * The 965, G33, and newer, have a very flexible memory
640                  * configuration.  It will enable dual-channel mode
641                  * (interleaving) on as much memory as it can, and the GPU
642                  * will additionally sometimes enable different bit 6
643                  * swizzling for tiled objects from the CPU.
644                  *
645                  * Here's what I found on the G965:
646                  *    slot fill         memory size  swizzling
647                  * 0A   0B   1A   1B    1-ch   2-ch
648                  * 512  0    0    0     512    0     O
649                  * 512  0    512  0     16     1008  X
650                  * 512  0    0    512   16     1008  X
651                  * 0    512  0    512   16     1008  X
652                  * 1024 1024 1024 0     2048   1024  O
653                  *
654                  * We could probably detect this based on either the DRB
655                  * matching, which was the case for the swizzling required in
656                  * the table above, or from the 1-ch value being less than
657                  * the minimum size of a rank.
658                  *
659                  * Reports indicate that the swizzling actually
660                  * varies depending upon page placement inside the
661                  * channels, i.e. we see swizzled pages where the
662                  * banks of memory are paired and unswizzled on the
663                  * uneven portion, so leave that as unknown.
664                  */
665                 if (intel_uncore_read(uncore, C0DRB3) ==
666                     intel_uncore_read(uncore, C1DRB3)) {
667                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
668                         swizzle_y = I915_BIT_6_SWIZZLE_9;
669                 }
670         } else {
671                 u32 dcc = intel_uncore_read(uncore, DCC);
672
673                 /*
674                  * On 9xx chipsets, channel interleave by the CPU is
675                  * determined by DCC.  For single-channel, neither the CPU
676                  * nor the GPU do swizzling.  For dual channel interleaved,
677                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
678                  * 9 for Y tiled.  The CPU's interleave is independent, and
679                  * can be based on either bit 11 (haven't seen this yet) or
680                  * bit 17 (common).
681                  */
682                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
683                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
684                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
685                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
686                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
687                         break;
688                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
689                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
690                                 /*
691                                  * This is the base swizzling by the GPU for
692                                  * tiled buffers.
693                                  */
694                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
695                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
696                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
697                                 /* Bit 11 swizzling by the CPU in addition. */
698                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
699                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
700                         } else {
701                                 /* Bit 17 swizzling by the CPU in addition. */
702                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
703                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
704                         }
705                         break;
706                 }
707
708                 /* check for L-shaped memory aka modified enhanced addressing */
709                 if (IS_GEN(i915, 4) &&
710                     !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
711                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
712                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
713                 }
714
715                 if (dcc == 0xffffffff) {
716                         drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
717                                   "Disabling tiling.\n");
718                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
719                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
720                 }
721         }
722
723         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
724             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
725                 /*
726                  * Userspace likes to explode if it sees unknown swizzling,
727                  * so lie. We will finish the lie when reporting through
728                  * the get-tiling-ioctl by reporting the physical swizzle
729                  * mode as unknown instead.
730                  *
731                  * As we don't strictly know what the swizzling is, it may be
732                  * bit17 dependent, and so we need to also prevent the pages
733                  * from being moved.
734                  */
735                 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
736                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
737                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
738         }
739
740         i915->ggtt.bit_6_swizzle_x = swizzle_x;
741         i915->ggtt.bit_6_swizzle_y = swizzle_y;
742 }
743
744 /*
745  * Swap every 64 bytes of this page around, to account for it having a new
746  * bit 17 of its physical address and therefore being interpreted differently
747  * by the GPU.
748  */
749 static void i915_gem_swizzle_page(struct page *page)
750 {
751         char temp[64];
752         char *vaddr;
753         int i;
754
755         vaddr = kmap(page);
756
757         for (i = 0; i < PAGE_SIZE; i += 128) {
758                 memcpy(temp, &vaddr[i], 64);
759                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
760                 memcpy(&vaddr[i + 64], temp, 64);
761         }
762
763         kunmap(page);
764 }
765
766 /**
767  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
768  * @obj: i915 GEM buffer object
769  * @pages: the scattergather list of physical pages
770  *
771  * This function fixes up the swizzling in case any page frame number for this
772  * object has changed in bit 17 since that state has been saved with
773  * i915_gem_object_save_bit_17_swizzle().
774  *
775  * This is called when pinning backing storage again, since the kernel is free
776  * to move unpinned backing storage around (either by directly moving pages or
777  * by swapping them out and back in again).
778  */
779 void
780 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
781                                   struct sg_table *pages)
782 {
783         struct sgt_iter sgt_iter;
784         struct page *page;
785         int i;
786
787         if (obj->bit_17 == NULL)
788                 return;
789
790         i = 0;
791         for_each_sgt_page(page, sgt_iter, pages) {
792                 char new_bit_17 = page_to_phys(page) >> 17;
793                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
794                         i915_gem_swizzle_page(page);
795                         set_page_dirty(page);
796                 }
797                 i++;
798         }
799 }
800
801 /**
802  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
803  * @obj: i915 GEM buffer object
804  * @pages: the scattergather list of physical pages
805  *
806  * This function saves the bit 17 of each page frame number so that swizzling
807  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
808  * be called before the backing storage can be unpinned.
809  */
810 void
811 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
812                                     struct sg_table *pages)
813 {
814         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
815         struct sgt_iter sgt_iter;
816         struct page *page;
817         int i;
818
819         if (obj->bit_17 == NULL) {
820                 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
821                 if (obj->bit_17 == NULL) {
822                         DRM_ERROR("Failed to allocate memory for bit 17 "
823                                   "record\n");
824                         return;
825                 }
826         }
827
828         i = 0;
829
830         for_each_sgt_page(page, sgt_iter, pages) {
831                 if (page_to_phys(page) & (1 << 17))
832                         __set_bit(i, obj->bit_17);
833                 else
834                         __clear_bit(i, obj->bit_17);
835                 i++;
836         }
837 }
838
839 void i915_ggtt_init_fences(struct i915_ggtt *ggtt)
840 {
841         struct drm_i915_private *i915 = ggtt->vm.i915;
842         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
843         int num_fences;
844         int i;
845
846         INIT_LIST_HEAD(&ggtt->fence_list);
847         INIT_LIST_HEAD(&ggtt->userfault_list);
848         intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
849
850         detect_bit_6_swizzle(ggtt);
851
852         if (!i915_ggtt_has_aperture(ggtt))
853                 num_fences = 0;
854         else if (INTEL_GEN(i915) >= 7 &&
855                  !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
856                 num_fences = 32;
857         else if (INTEL_GEN(i915) >= 4 ||
858                  IS_I945G(i915) || IS_I945GM(i915) ||
859                  IS_G33(i915) || IS_PINEVIEW(i915))
860                 num_fences = 16;
861         else
862                 num_fences = 8;
863
864         if (intel_vgpu_active(i915))
865                 num_fences = intel_uncore_read(uncore,
866                                                vgtif_reg(avail_rs.fence_num));
867
868         /* Initialize fence registers to zero */
869         for (i = 0; i < num_fences; i++) {
870                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
871
872                 fence->ggtt = ggtt;
873                 fence->id = i;
874                 list_add_tail(&fence->link, &ggtt->fence_list);
875         }
876         ggtt->num_fences = num_fences;
877
878         i915_gem_restore_fences(ggtt);
879 }
880
881 void intel_gt_init_swizzling(struct intel_gt *gt)
882 {
883         struct drm_i915_private *i915 = gt->i915;
884         struct intel_uncore *uncore = gt->uncore;
885
886         if (INTEL_GEN(i915) < 5 ||
887             i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
888                 return;
889
890         intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
891
892         if (IS_GEN(i915, 5))
893                 return;
894
895         intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
896
897         if (IS_GEN(i915, 6))
898                 intel_uncore_write(uncore,
899                                    ARB_MODE,
900                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
901         else if (IS_GEN(i915, 7))
902                 intel_uncore_write(uncore,
903                                    ARB_MODE,
904                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
905         else if (IS_GEN(i915, 8))
906                 intel_uncore_write(uncore,
907                                    GAMTARBMODE,
908                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
909         else
910                 MISSING_CASE(INTEL_GEN(i915));
911 }