Merge tag 'trace-v5.17-3' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56
57 #include "intel_pm.h"
58
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62         int err;
63
64         err = mutex_lock_interruptible(&ggtt->vm.mutex);
65         if (err)
66                 return err;
67
68         memset(node, 0, sizeof(*node));
69         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70                                           size, 0, I915_COLOR_UNEVICTABLE,
71                                           0, ggtt->mappable_end,
72                                           DRM_MM_INSERT_LOW);
73
74         mutex_unlock(&ggtt->vm.mutex);
75
76         return err;
77 }
78
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82         mutex_lock(&ggtt->vm.mutex);
83         drm_mm_remove_node(node);
84         mutex_unlock(&ggtt->vm.mutex);
85 }
86
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89                             struct drm_file *file)
90 {
91         struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92         struct drm_i915_gem_get_aperture *args = data;
93         struct i915_vma *vma;
94         u64 pinned;
95
96         if (mutex_lock_interruptible(&ggtt->vm.mutex))
97                 return -EINTR;
98
99         pinned = ggtt->vm.reserved;
100         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101                 if (i915_vma_is_pinned(vma))
102                         pinned += vma->node.size;
103
104         mutex_unlock(&ggtt->vm.mutex);
105
106         args->aper_size = ggtt->vm.total;
107         args->aper_available_size = args->aper_size - pinned;
108
109         return 0;
110 }
111
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113                            unsigned long flags)
114 {
115         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116         LIST_HEAD(still_in_list);
117         intel_wakeref_t wakeref;
118         struct i915_vma *vma;
119         int ret;
120
121         if (list_empty(&obj->vma.list))
122                 return 0;
123
124         /*
125          * As some machines use ACPI to handle runtime-resume callbacks, and
126          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127          * as they are required by the shrinker. Ergo, we wake the device up
128          * first just in case.
129          */
130         wakeref = intel_runtime_pm_get(rpm);
131
132 try_again:
133         ret = 0;
134         spin_lock(&obj->vma.lock);
135         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136                                                        struct i915_vma,
137                                                        obj_link))) {
138                 struct i915_address_space *vm = vma->vm;
139
140                 list_move_tail(&vma->obj_link, &still_in_list);
141                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142                         continue;
143
144                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145                         ret = -EBUSY;
146                         break;
147                 }
148
149                 ret = -EAGAIN;
150                 if (!i915_vm_tryopen(vm))
151                         break;
152
153                 /* Prevent vma being freed by i915_vma_parked as we unbind */
154                 vma = __i915_vma_get(vma);
155                 spin_unlock(&obj->vma.lock);
156
157                 if (vma) {
158                         ret = -EBUSY;
159                         if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160                             !i915_vma_is_active(vma)) {
161                                 if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) {
162                                         if (mutex_trylock(&vma->vm->mutex)) {
163                                                 ret = __i915_vma_unbind(vma);
164                                                 mutex_unlock(&vma->vm->mutex);
165                                         } else {
166                                                 ret = -EBUSY;
167                                         }
168                                 } else {
169                                         ret = i915_vma_unbind(vma);
170                                 }
171                         }
172
173                         __i915_vma_put(vma);
174                 }
175
176                 i915_vm_close(vm);
177                 spin_lock(&obj->vma.lock);
178         }
179         list_splice_init(&still_in_list, &obj->vma.list);
180         spin_unlock(&obj->vma.lock);
181
182         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
183                 rcu_barrier(); /* flush the i915_vm_release() */
184                 goto try_again;
185         }
186
187         intel_runtime_pm_put(rpm, wakeref);
188
189         return ret;
190 }
191
192 static int
193 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
194             bool needs_clflush)
195 {
196         char *vaddr;
197         int ret;
198
199         vaddr = kmap(page);
200
201         if (needs_clflush)
202                 drm_clflush_virt_range(vaddr + offset, len);
203
204         ret = __copy_to_user(user_data, vaddr + offset, len);
205
206         kunmap(page);
207
208         return ret ? -EFAULT : 0;
209 }
210
211 static int
212 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
213                      struct drm_i915_gem_pread *args)
214 {
215         unsigned int needs_clflush;
216         unsigned int idx, offset;
217         char __user *user_data;
218         u64 remain;
219         int ret;
220
221         ret = i915_gem_object_lock_interruptible(obj, NULL);
222         if (ret)
223                 return ret;
224
225         ret = i915_gem_object_pin_pages(obj);
226         if (ret)
227                 goto err_unlock;
228
229         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
230         if (ret)
231                 goto err_unpin;
232
233         i915_gem_object_finish_access(obj);
234         i915_gem_object_unlock(obj);
235
236         remain = args->size;
237         user_data = u64_to_user_ptr(args->data_ptr);
238         offset = offset_in_page(args->offset);
239         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
240                 struct page *page = i915_gem_object_get_page(obj, idx);
241                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
242
243                 ret = shmem_pread(page, offset, length, user_data,
244                                   needs_clflush);
245                 if (ret)
246                         break;
247
248                 remain -= length;
249                 user_data += length;
250                 offset = 0;
251         }
252
253         i915_gem_object_unpin_pages(obj);
254         return ret;
255
256 err_unpin:
257         i915_gem_object_unpin_pages(obj);
258 err_unlock:
259         i915_gem_object_unlock(obj);
260         return ret;
261 }
262
263 static inline bool
264 gtt_user_read(struct io_mapping *mapping,
265               loff_t base, int offset,
266               char __user *user_data, int length)
267 {
268         void __iomem *vaddr;
269         unsigned long unwritten;
270
271         /* We can use the cpu mem copy function because this is X86. */
272         vaddr = io_mapping_map_atomic_wc(mapping, base);
273         unwritten = __copy_to_user_inatomic(user_data,
274                                             (void __force *)vaddr + offset,
275                                             length);
276         io_mapping_unmap_atomic(vaddr);
277         if (unwritten) {
278                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
279                 unwritten = copy_to_user(user_data,
280                                          (void __force *)vaddr + offset,
281                                          length);
282                 io_mapping_unmap(vaddr);
283         }
284         return unwritten;
285 }
286
287 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
288                                              struct drm_mm_node *node,
289                                              bool write)
290 {
291         struct drm_i915_private *i915 = to_i915(obj->base.dev);
292         struct i915_ggtt *ggtt = &i915->ggtt;
293         struct i915_vma *vma;
294         struct i915_gem_ww_ctx ww;
295         int ret;
296
297         i915_gem_ww_ctx_init(&ww, true);
298 retry:
299         vma = ERR_PTR(-ENODEV);
300         ret = i915_gem_object_lock(obj, &ww);
301         if (ret)
302                 goto err_ww;
303
304         ret = i915_gem_object_set_to_gtt_domain(obj, write);
305         if (ret)
306                 goto err_ww;
307
308         if (!i915_gem_object_is_tiled(obj))
309                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
310                                                   PIN_MAPPABLE |
311                                                   PIN_NONBLOCK /* NOWARN */ |
312                                                   PIN_NOEVICT);
313         if (vma == ERR_PTR(-EDEADLK)) {
314                 ret = -EDEADLK;
315                 goto err_ww;
316         } else if (!IS_ERR(vma)) {
317                 node->start = i915_ggtt_offset(vma);
318                 node->flags = 0;
319         } else {
320                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
321                 if (ret)
322                         goto err_ww;
323                 GEM_BUG_ON(!drm_mm_node_allocated(node));
324                 vma = NULL;
325         }
326
327         ret = i915_gem_object_pin_pages(obj);
328         if (ret) {
329                 if (drm_mm_node_allocated(node)) {
330                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
331                         remove_mappable_node(ggtt, node);
332                 } else {
333                         i915_vma_unpin(vma);
334                 }
335         }
336
337 err_ww:
338         if (ret == -EDEADLK) {
339                 ret = i915_gem_ww_ctx_backoff(&ww);
340                 if (!ret)
341                         goto retry;
342         }
343         i915_gem_ww_ctx_fini(&ww);
344
345         return ret ? ERR_PTR(ret) : vma;
346 }
347
348 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
349                                  struct drm_mm_node *node,
350                                  struct i915_vma *vma)
351 {
352         struct drm_i915_private *i915 = to_i915(obj->base.dev);
353         struct i915_ggtt *ggtt = &i915->ggtt;
354
355         i915_gem_object_unpin_pages(obj);
356         if (drm_mm_node_allocated(node)) {
357                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
358                 remove_mappable_node(ggtt, node);
359         } else {
360                 i915_vma_unpin(vma);
361         }
362 }
363
364 static int
365 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
366                    const struct drm_i915_gem_pread *args)
367 {
368         struct drm_i915_private *i915 = to_i915(obj->base.dev);
369         struct i915_ggtt *ggtt = &i915->ggtt;
370         intel_wakeref_t wakeref;
371         struct drm_mm_node node;
372         void __user *user_data;
373         struct i915_vma *vma;
374         u64 remain, offset;
375         int ret = 0;
376
377         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
378
379         vma = i915_gem_gtt_prepare(obj, &node, false);
380         if (IS_ERR(vma)) {
381                 ret = PTR_ERR(vma);
382                 goto out_rpm;
383         }
384
385         user_data = u64_to_user_ptr(args->data_ptr);
386         remain = args->size;
387         offset = args->offset;
388
389         while (remain > 0) {
390                 /* Operation in this page
391                  *
392                  * page_base = page offset within aperture
393                  * page_offset = offset within page
394                  * page_length = bytes to copy for this page
395                  */
396                 u32 page_base = node.start;
397                 unsigned page_offset = offset_in_page(offset);
398                 unsigned page_length = PAGE_SIZE - page_offset;
399                 page_length = remain < page_length ? remain : page_length;
400                 if (drm_mm_node_allocated(&node)) {
401                         ggtt->vm.insert_page(&ggtt->vm,
402                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
403                                              node.start, I915_CACHE_NONE, 0);
404                 } else {
405                         page_base += offset & PAGE_MASK;
406                 }
407
408                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
409                                   user_data, page_length)) {
410                         ret = -EFAULT;
411                         break;
412                 }
413
414                 remain -= page_length;
415                 user_data += page_length;
416                 offset += page_length;
417         }
418
419         i915_gem_gtt_cleanup(obj, &node, vma);
420 out_rpm:
421         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
422         return ret;
423 }
424
425 /**
426  * Reads data from the object referenced by handle.
427  * @dev: drm device pointer
428  * @data: ioctl data blob
429  * @file: drm file pointer
430  *
431  * On error, the contents of *data are undefined.
432  */
433 int
434 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
435                      struct drm_file *file)
436 {
437         struct drm_i915_private *i915 = to_i915(dev);
438         struct drm_i915_gem_pread *args = data;
439         struct drm_i915_gem_object *obj;
440         int ret;
441
442         /* PREAD is disallowed for all platforms after TGL-LP.  This also
443          * covers all platforms with local memory.
444          */
445         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
446                 return -EOPNOTSUPP;
447
448         if (args->size == 0)
449                 return 0;
450
451         if (!access_ok(u64_to_user_ptr(args->data_ptr),
452                        args->size))
453                 return -EFAULT;
454
455         obj = i915_gem_object_lookup(file, args->handle);
456         if (!obj)
457                 return -ENOENT;
458
459         /* Bounds check source.  */
460         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
461                 ret = -EINVAL;
462                 goto out;
463         }
464
465         trace_i915_gem_object_pread(obj, args->offset, args->size);
466         ret = -ENODEV;
467         if (obj->ops->pread)
468                 ret = obj->ops->pread(obj, args);
469         if (ret != -ENODEV)
470                 goto out;
471
472         ret = i915_gem_object_wait(obj,
473                                    I915_WAIT_INTERRUPTIBLE,
474                                    MAX_SCHEDULE_TIMEOUT);
475         if (ret)
476                 goto out;
477
478         ret = i915_gem_shmem_pread(obj, args);
479         if (ret == -EFAULT || ret == -ENODEV)
480                 ret = i915_gem_gtt_pread(obj, args);
481
482 out:
483         i915_gem_object_put(obj);
484         return ret;
485 }
486
487 /* This is the fast write path which cannot handle
488  * page faults in the source data
489  */
490
491 static inline bool
492 ggtt_write(struct io_mapping *mapping,
493            loff_t base, int offset,
494            char __user *user_data, int length)
495 {
496         void __iomem *vaddr;
497         unsigned long unwritten;
498
499         /* We can use the cpu mem copy function because this is X86. */
500         vaddr = io_mapping_map_atomic_wc(mapping, base);
501         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
502                                                       user_data, length);
503         io_mapping_unmap_atomic(vaddr);
504         if (unwritten) {
505                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
506                 unwritten = copy_from_user((void __force *)vaddr + offset,
507                                            user_data, length);
508                 io_mapping_unmap(vaddr);
509         }
510
511         return unwritten;
512 }
513
514 /**
515  * This is the fast pwrite path, where we copy the data directly from the
516  * user into the GTT, uncached.
517  * @obj: i915 GEM object
518  * @args: pwrite arguments structure
519  */
520 static int
521 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
522                          const struct drm_i915_gem_pwrite *args)
523 {
524         struct drm_i915_private *i915 = to_i915(obj->base.dev);
525         struct i915_ggtt *ggtt = &i915->ggtt;
526         struct intel_runtime_pm *rpm = &i915->runtime_pm;
527         intel_wakeref_t wakeref;
528         struct drm_mm_node node;
529         struct i915_vma *vma;
530         u64 remain, offset;
531         void __user *user_data;
532         int ret = 0;
533
534         if (i915_gem_object_has_struct_page(obj)) {
535                 /*
536                  * Avoid waking the device up if we can fallback, as
537                  * waking/resuming is very slow (worst-case 10-100 ms
538                  * depending on PCI sleeps and our own resume time).
539                  * This easily dwarfs any performance advantage from
540                  * using the cache bypass of indirect GGTT access.
541                  */
542                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
543                 if (!wakeref)
544                         return -EFAULT;
545         } else {
546                 /* No backing pages, no fallback, we must force GGTT access */
547                 wakeref = intel_runtime_pm_get(rpm);
548         }
549
550         vma = i915_gem_gtt_prepare(obj, &node, true);
551         if (IS_ERR(vma)) {
552                 ret = PTR_ERR(vma);
553                 goto out_rpm;
554         }
555
556         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
557
558         user_data = u64_to_user_ptr(args->data_ptr);
559         offset = args->offset;
560         remain = args->size;
561         while (remain) {
562                 /* Operation in this page
563                  *
564                  * page_base = page offset within aperture
565                  * page_offset = offset within page
566                  * page_length = bytes to copy for this page
567                  */
568                 u32 page_base = node.start;
569                 unsigned int page_offset = offset_in_page(offset);
570                 unsigned int page_length = PAGE_SIZE - page_offset;
571                 page_length = remain < page_length ? remain : page_length;
572                 if (drm_mm_node_allocated(&node)) {
573                         /* flush the write before we modify the GGTT */
574                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
575                         ggtt->vm.insert_page(&ggtt->vm,
576                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
577                                              node.start, I915_CACHE_NONE, 0);
578                         wmb(); /* flush modifications to the GGTT (insert_page) */
579                 } else {
580                         page_base += offset & PAGE_MASK;
581                 }
582                 /* If we get a fault while copying data, then (presumably) our
583                  * source page isn't available.  Return the error and we'll
584                  * retry in the slow path.
585                  * If the object is non-shmem backed, we retry again with the
586                  * path that handles page fault.
587                  */
588                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
589                                user_data, page_length)) {
590                         ret = -EFAULT;
591                         break;
592                 }
593
594                 remain -= page_length;
595                 user_data += page_length;
596                 offset += page_length;
597         }
598
599         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
600         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
601
602         i915_gem_gtt_cleanup(obj, &node, vma);
603 out_rpm:
604         intel_runtime_pm_put(rpm, wakeref);
605         return ret;
606 }
607
608 /* Per-page copy function for the shmem pwrite fastpath.
609  * Flushes invalid cachelines before writing to the target if
610  * needs_clflush_before is set and flushes out any written cachelines after
611  * writing if needs_clflush is set.
612  */
613 static int
614 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
615              bool needs_clflush_before,
616              bool needs_clflush_after)
617 {
618         char *vaddr;
619         int ret;
620
621         vaddr = kmap(page);
622
623         if (needs_clflush_before)
624                 drm_clflush_virt_range(vaddr + offset, len);
625
626         ret = __copy_from_user(vaddr + offset, user_data, len);
627         if (!ret && needs_clflush_after)
628                 drm_clflush_virt_range(vaddr + offset, len);
629
630         kunmap(page);
631
632         return ret ? -EFAULT : 0;
633 }
634
635 static int
636 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
637                       const struct drm_i915_gem_pwrite *args)
638 {
639         unsigned int partial_cacheline_write;
640         unsigned int needs_clflush;
641         unsigned int offset, idx;
642         void __user *user_data;
643         u64 remain;
644         int ret;
645
646         ret = i915_gem_object_lock_interruptible(obj, NULL);
647         if (ret)
648                 return ret;
649
650         ret = i915_gem_object_pin_pages(obj);
651         if (ret)
652                 goto err_unlock;
653
654         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
655         if (ret)
656                 goto err_unpin;
657
658         i915_gem_object_finish_access(obj);
659         i915_gem_object_unlock(obj);
660
661         /* If we don't overwrite a cacheline completely we need to be
662          * careful to have up-to-date data by first clflushing. Don't
663          * overcomplicate things and flush the entire patch.
664          */
665         partial_cacheline_write = 0;
666         if (needs_clflush & CLFLUSH_BEFORE)
667                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
668
669         user_data = u64_to_user_ptr(args->data_ptr);
670         remain = args->size;
671         offset = offset_in_page(args->offset);
672         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
673                 struct page *page = i915_gem_object_get_page(obj, idx);
674                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
675
676                 ret = shmem_pwrite(page, offset, length, user_data,
677                                    (offset | length) & partial_cacheline_write,
678                                    needs_clflush & CLFLUSH_AFTER);
679                 if (ret)
680                         break;
681
682                 remain -= length;
683                 user_data += length;
684                 offset = 0;
685         }
686
687         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
688
689         i915_gem_object_unpin_pages(obj);
690         return ret;
691
692 err_unpin:
693         i915_gem_object_unpin_pages(obj);
694 err_unlock:
695         i915_gem_object_unlock(obj);
696         return ret;
697 }
698
699 /**
700  * Writes data to the object referenced by handle.
701  * @dev: drm device
702  * @data: ioctl data blob
703  * @file: drm file
704  *
705  * On error, the contents of the buffer that were to be modified are undefined.
706  */
707 int
708 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
709                       struct drm_file *file)
710 {
711         struct drm_i915_private *i915 = to_i915(dev);
712         struct drm_i915_gem_pwrite *args = data;
713         struct drm_i915_gem_object *obj;
714         int ret;
715
716         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
717          * covers all platforms with local memory.
718          */
719         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
720                 return -EOPNOTSUPP;
721
722         if (args->size == 0)
723                 return 0;
724
725         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
726                 return -EFAULT;
727
728         obj = i915_gem_object_lookup(file, args->handle);
729         if (!obj)
730                 return -ENOENT;
731
732         /* Bounds check destination. */
733         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
734                 ret = -EINVAL;
735                 goto err;
736         }
737
738         /* Writes not allowed into this read-only object */
739         if (i915_gem_object_is_readonly(obj)) {
740                 ret = -EINVAL;
741                 goto err;
742         }
743
744         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
745
746         ret = -ENODEV;
747         if (obj->ops->pwrite)
748                 ret = obj->ops->pwrite(obj, args);
749         if (ret != -ENODEV)
750                 goto err;
751
752         ret = i915_gem_object_wait(obj,
753                                    I915_WAIT_INTERRUPTIBLE |
754                                    I915_WAIT_ALL,
755                                    MAX_SCHEDULE_TIMEOUT);
756         if (ret)
757                 goto err;
758
759         ret = -EFAULT;
760         /* We can only do the GTT pwrite on untiled buffers, as otherwise
761          * it would end up going through the fenced access, and we'll get
762          * different detiling behavior between reading and writing.
763          * pread/pwrite currently are reading and writing from the CPU
764          * perspective, requiring manual detiling by the client.
765          */
766         if (!i915_gem_object_has_struct_page(obj) ||
767             i915_gem_cpu_write_needs_clflush(obj))
768                 /* Note that the gtt paths might fail with non-page-backed user
769                  * pointers (e.g. gtt mappings when moving data between
770                  * textures). Fallback to the shmem path in that case.
771                  */
772                 ret = i915_gem_gtt_pwrite_fast(obj, args);
773
774         if (ret == -EFAULT || ret == -ENOSPC) {
775                 if (i915_gem_object_has_struct_page(obj))
776                         ret = i915_gem_shmem_pwrite(obj, args);
777         }
778
779 err:
780         i915_gem_object_put(obj);
781         return ret;
782 }
783
784 /**
785  * Called when user space has done writes to this buffer
786  * @dev: drm device
787  * @data: ioctl data blob
788  * @file: drm file
789  */
790 int
791 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
792                          struct drm_file *file)
793 {
794         struct drm_i915_gem_sw_finish *args = data;
795         struct drm_i915_gem_object *obj;
796
797         obj = i915_gem_object_lookup(file, args->handle);
798         if (!obj)
799                 return -ENOENT;
800
801         /*
802          * Proxy objects are barred from CPU access, so there is no
803          * need to ban sw_finish as it is a nop.
804          */
805
806         /* Pinned buffers may be scanout, so flush the cache */
807         i915_gem_object_flush_if_display(obj);
808         i915_gem_object_put(obj);
809
810         return 0;
811 }
812
813 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
814 {
815         struct drm_i915_gem_object *obj, *on;
816         int i;
817
818         /*
819          * Only called during RPM suspend. All users of the userfault_list
820          * must be holding an RPM wakeref to ensure that this can not
821          * run concurrently with themselves (and use the struct_mutex for
822          * protection between themselves).
823          */
824
825         list_for_each_entry_safe(obj, on,
826                                  &i915->ggtt.userfault_list, userfault_link)
827                 __i915_gem_object_release_mmap_gtt(obj);
828
829         /*
830          * The fence will be lost when the device powers down. If any were
831          * in use by hardware (i.e. they are pinned), we should not be powering
832          * down! All other fences will be reacquired by the user upon waking.
833          */
834         for (i = 0; i < i915->ggtt.num_fences; i++) {
835                 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
836
837                 /*
838                  * Ideally we want to assert that the fence register is not
839                  * live at this point (i.e. that no piece of code will be
840                  * trying to write through fence + GTT, as that both violates
841                  * our tracking of activity and associated locking/barriers,
842                  * but also is illegal given that the hw is powered down).
843                  *
844                  * Previously we used reg->pin_count as a "liveness" indicator.
845                  * That is not sufficient, and we need a more fine-grained
846                  * tool if we want to have a sanity check here.
847                  */
848
849                 if (!reg->vma)
850                         continue;
851
852                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
853                 reg->dirty = true;
854         }
855 }
856
857 static void discard_ggtt_vma(struct i915_vma *vma)
858 {
859         struct drm_i915_gem_object *obj = vma->obj;
860
861         spin_lock(&obj->vma.lock);
862         if (!RB_EMPTY_NODE(&vma->obj_node)) {
863                 rb_erase(&vma->obj_node, &obj->vma.tree);
864                 RB_CLEAR_NODE(&vma->obj_node);
865         }
866         spin_unlock(&obj->vma.lock);
867 }
868
869 struct i915_vma *
870 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
871                             struct i915_gem_ww_ctx *ww,
872                             const struct i915_ggtt_view *view,
873                             u64 size, u64 alignment, u64 flags)
874 {
875         struct drm_i915_private *i915 = to_i915(obj->base.dev);
876         struct i915_ggtt *ggtt = &i915->ggtt;
877         struct i915_vma *vma;
878         int ret;
879
880         GEM_WARN_ON(!ww);
881
882         if (flags & PIN_MAPPABLE &&
883             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
884                 /*
885                  * If the required space is larger than the available
886                  * aperture, we will not able to find a slot for the
887                  * object and unbinding the object now will be in
888                  * vain. Worse, doing so may cause us to ping-pong
889                  * the object in and out of the Global GTT and
890                  * waste a lot of cycles under the mutex.
891                  */
892                 if (obj->base.size > ggtt->mappable_end)
893                         return ERR_PTR(-E2BIG);
894
895                 /*
896                  * If NONBLOCK is set the caller is optimistically
897                  * trying to cache the full object within the mappable
898                  * aperture, and *must* have a fallback in place for
899                  * situations where we cannot bind the object. We
900                  * can be a little more lax here and use the fallback
901                  * more often to avoid costly migrations of ourselves
902                  * and other objects within the aperture.
903                  *
904                  * Half-the-aperture is used as a simple heuristic.
905                  * More interesting would to do search for a free
906                  * block prior to making the commitment to unbind.
907                  * That caters for the self-harm case, and with a
908                  * little more heuristics (e.g. NOFAULT, NOEVICT)
909                  * we could try to minimise harm to others.
910                  */
911                 if (flags & PIN_NONBLOCK &&
912                     obj->base.size > ggtt->mappable_end / 2)
913                         return ERR_PTR(-ENOSPC);
914         }
915
916 new_vma:
917         vma = i915_vma_instance(obj, &ggtt->vm, view);
918         if (IS_ERR(vma))
919                 return vma;
920
921         if (i915_vma_misplaced(vma, size, alignment, flags)) {
922                 if (flags & PIN_NONBLOCK) {
923                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
924                                 return ERR_PTR(-ENOSPC);
925
926                         if (flags & PIN_MAPPABLE &&
927                             vma->fence_size > ggtt->mappable_end / 2)
928                                 return ERR_PTR(-ENOSPC);
929                 }
930
931                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
932                         discard_ggtt_vma(vma);
933                         goto new_vma;
934                 }
935
936                 ret = i915_vma_unbind(vma);
937                 if (ret)
938                         return ERR_PTR(ret);
939         }
940
941         ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
942
943         if (ret)
944                 return ERR_PTR(ret);
945
946         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
947                 mutex_lock(&ggtt->vm.mutex);
948                 i915_vma_revoke_fence(vma);
949                 mutex_unlock(&ggtt->vm.mutex);
950         }
951
952         ret = i915_vma_wait_for_bind(vma);
953         if (ret) {
954                 i915_vma_unpin(vma);
955                 return ERR_PTR(ret);
956         }
957
958         return vma;
959 }
960
961 struct i915_vma * __must_check
962 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
963                          const struct i915_ggtt_view *view,
964                          u64 size, u64 alignment, u64 flags)
965 {
966         struct i915_gem_ww_ctx ww;
967         struct i915_vma *ret;
968         int err;
969
970         for_i915_gem_ww(&ww, err, true) {
971                 err = i915_gem_object_lock(obj, &ww);
972                 if (err)
973                         continue;
974
975                 ret = i915_gem_object_ggtt_pin_ww(obj, &ww, view, size,
976                                                   alignment, flags);
977                 if (IS_ERR(ret))
978                         err = PTR_ERR(ret);
979         }
980
981         return err ? ERR_PTR(err) : ret;
982 }
983
984 int
985 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
986                        struct drm_file *file_priv)
987 {
988         struct drm_i915_private *i915 = to_i915(dev);
989         struct drm_i915_gem_madvise *args = data;
990         struct drm_i915_gem_object *obj;
991         int err;
992
993         switch (args->madv) {
994         case I915_MADV_DONTNEED:
995         case I915_MADV_WILLNEED:
996             break;
997         default:
998             return -EINVAL;
999         }
1000
1001         obj = i915_gem_object_lookup(file_priv, args->handle);
1002         if (!obj)
1003                 return -ENOENT;
1004
1005         err = i915_gem_object_lock_interruptible(obj, NULL);
1006         if (err)
1007                 goto out;
1008
1009         if (i915_gem_object_has_pages(obj) &&
1010             i915_gem_object_is_tiled(obj) &&
1011             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
1012                 if (obj->mm.madv == I915_MADV_WILLNEED) {
1013                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
1014                         i915_gem_object_clear_tiling_quirk(obj);
1015                         i915_gem_object_make_shrinkable(obj);
1016                 }
1017                 if (args->madv == I915_MADV_WILLNEED) {
1018                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1019                         i915_gem_object_make_unshrinkable(obj);
1020                         i915_gem_object_set_tiling_quirk(obj);
1021                 }
1022         }
1023
1024         if (obj->mm.madv != __I915_MADV_PURGED) {
1025                 obj->mm.madv = args->madv;
1026                 if (obj->ops->adjust_lru)
1027                         obj->ops->adjust_lru(obj);
1028         }
1029
1030         if (i915_gem_object_has_pages(obj) ||
1031             i915_gem_object_has_self_managed_shrink_list(obj)) {
1032                 unsigned long flags;
1033
1034                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1035                 if (!list_empty(&obj->mm.link)) {
1036                         struct list_head *list;
1037
1038                         if (obj->mm.madv != I915_MADV_WILLNEED)
1039                                 list = &i915->mm.purge_list;
1040                         else
1041                                 list = &i915->mm.shrink_list;
1042                         list_move_tail(&obj->mm.link, list);
1043
1044                 }
1045                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1046         }
1047
1048         /* if the object is no longer attached, discard its backing storage */
1049         if (obj->mm.madv == I915_MADV_DONTNEED &&
1050             !i915_gem_object_has_pages(obj))
1051                 i915_gem_object_truncate(obj);
1052
1053         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1054
1055         i915_gem_object_unlock(obj);
1056 out:
1057         i915_gem_object_put(obj);
1058         return err;
1059 }
1060
1061 int i915_gem_init(struct drm_i915_private *dev_priv)
1062 {
1063         int ret;
1064
1065         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1066         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1067                 mkwrite_device_info(dev_priv)->page_sizes =
1068                         I915_GTT_PAGE_SIZE_4K;
1069
1070         ret = i915_gem_init_userptr(dev_priv);
1071         if (ret)
1072                 return ret;
1073
1074         intel_uc_fetch_firmwares(&to_gt(dev_priv)->uc);
1075         intel_wopcm_init(&dev_priv->wopcm);
1076
1077         ret = i915_init_ggtt(dev_priv);
1078         if (ret) {
1079                 GEM_BUG_ON(ret == -EIO);
1080                 goto err_unlock;
1081         }
1082
1083         /*
1084          * Despite its name intel_init_clock_gating applies both display
1085          * clock gating workarounds; GT mmio workarounds and the occasional
1086          * GT power context workaround. Worse, sometimes it includes a context
1087          * register workaround which we need to apply before we record the
1088          * default HW state for all contexts.
1089          *
1090          * FIXME: break up the workarounds and apply them at the right time!
1091          */
1092         intel_init_clock_gating(dev_priv);
1093
1094         ret = intel_gt_init(to_gt(dev_priv));
1095         if (ret)
1096                 goto err_unlock;
1097
1098         return 0;
1099
1100         /*
1101          * Unwinding is complicated by that we want to handle -EIO to mean
1102          * disable GPU submission but keep KMS alive. We want to mark the
1103          * HW as irrevisibly wedged, but keep enough state around that the
1104          * driver doesn't explode during runtime.
1105          */
1106 err_unlock:
1107         i915_gem_drain_workqueue(dev_priv);
1108
1109         if (ret != -EIO)
1110                 intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1111
1112         if (ret == -EIO) {
1113                 /*
1114                  * Allow engines or uC initialisation to fail by marking the GPU
1115                  * as wedged. But we only want to do this when the GPU is angry,
1116                  * for all other failure, such as an allocation failure, bail.
1117                  */
1118                 if (!intel_gt_is_wedged(to_gt(dev_priv))) {
1119                         i915_probe_error(dev_priv,
1120                                          "Failed to initialize GPU, declaring it wedged!\n");
1121                         intel_gt_set_wedged(to_gt(dev_priv));
1122                 }
1123
1124                 /* Minimal basic recovery for KMS */
1125                 ret = i915_ggtt_enable_hw(dev_priv);
1126                 i915_ggtt_resume(&dev_priv->ggtt);
1127                 intel_init_clock_gating(dev_priv);
1128         }
1129
1130         i915_gem_drain_freed_objects(dev_priv);
1131
1132         return ret;
1133 }
1134
1135 void i915_gem_driver_register(struct drm_i915_private *i915)
1136 {
1137         i915_gem_driver_register__shrinker(i915);
1138
1139         intel_engines_driver_register(i915);
1140 }
1141
1142 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1143 {
1144         i915_gem_driver_unregister__shrinker(i915);
1145 }
1146
1147 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1148 {
1149         intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1150
1151         i915_gem_suspend_late(dev_priv);
1152         intel_gt_driver_remove(to_gt(dev_priv));
1153         dev_priv->uabi_engines = RB_ROOT;
1154
1155         /* Flush any outstanding unpin_work. */
1156         i915_gem_drain_workqueue(dev_priv);
1157
1158         i915_gem_drain_freed_objects(dev_priv);
1159 }
1160
1161 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1162 {
1163         intel_gt_driver_release(to_gt(dev_priv));
1164
1165         intel_uc_cleanup_firmwares(&to_gt(dev_priv)->uc);
1166
1167         i915_gem_drain_freed_objects(dev_priv);
1168
1169         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1170 }
1171
1172 static void i915_gem_init__mm(struct drm_i915_private *i915)
1173 {
1174         spin_lock_init(&i915->mm.obj_lock);
1175
1176         init_llist_head(&i915->mm.free_list);
1177
1178         INIT_LIST_HEAD(&i915->mm.purge_list);
1179         INIT_LIST_HEAD(&i915->mm.shrink_list);
1180
1181         i915_gem_init__objects(i915);
1182 }
1183
1184 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1185 {
1186         i915_gem_init__mm(dev_priv);
1187         i915_gem_init__contexts(dev_priv);
1188
1189         spin_lock_init(&dev_priv->fb_tracking.lock);
1190 }
1191
1192 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1193 {
1194         i915_gem_drain_freed_objects(dev_priv);
1195         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1196         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1197         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1198 }
1199
1200 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1201 {
1202         struct drm_i915_file_private *file_priv;
1203         int ret;
1204
1205         DRM_DEBUG("\n");
1206
1207         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1208         if (!file_priv)
1209                 return -ENOMEM;
1210
1211         file->driver_priv = file_priv;
1212         file_priv->dev_priv = i915;
1213         file_priv->file = file;
1214
1215         file_priv->bsd_engine = -1;
1216         file_priv->hang_timestamp = jiffies;
1217
1218         ret = i915_gem_context_open(i915, file);
1219         if (ret)
1220                 kfree(file_priv);
1221
1222         return ret;
1223 }
1224
1225 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1226 #include "selftests/mock_gem_device.c"
1227 #include "selftests/i915_gem.c"
1228 #endif