drm/i915: Handle full s64 precision for wait-ioctl
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include <linux/dma-fence-array.h>
39 #include <linux/kthread.h>
40 #include <linux/reservation.h>
41 #include <linux/shmem_fs.h>
42 #include <linux/slab.h>
43 #include <linux/stop_machine.h>
44 #include <linux/swap.h>
45 #include <linux/pci.h>
46 #include <linux/dma-buf.h>
47
48 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
49
50 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
51 {
52         if (obj->cache_dirty)
53                 return false;
54
55         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
56                 return true;
57
58         return obj->pin_display;
59 }
60
61 static int
62 insert_mappable_node(struct i915_ggtt *ggtt,
63                      struct drm_mm_node *node, u32 size)
64 {
65         memset(node, 0, sizeof(*node));
66         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
67                                            size, 0, I915_COLOR_UNEVICTABLE,
68                                            0, ggtt->mappable_end,
69                                            DRM_MM_INSERT_LOW);
70 }
71
72 static void
73 remove_mappable_node(struct drm_mm_node *node)
74 {
75         drm_mm_remove_node(node);
76 }
77
78 /* some bookkeeping */
79 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
80                                   u64 size)
81 {
82         spin_lock(&dev_priv->mm.object_stat_lock);
83         dev_priv->mm.object_count++;
84         dev_priv->mm.object_memory += size;
85         spin_unlock(&dev_priv->mm.object_stat_lock);
86 }
87
88 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
89                                      u64 size)
90 {
91         spin_lock(&dev_priv->mm.object_stat_lock);
92         dev_priv->mm.object_count--;
93         dev_priv->mm.object_memory -= size;
94         spin_unlock(&dev_priv->mm.object_stat_lock);
95 }
96
97 static int
98 i915_gem_wait_for_error(struct i915_gpu_error *error)
99 {
100         int ret;
101
102         might_sleep();
103
104         /*
105          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
106          * userspace. If it takes that long something really bad is going on and
107          * we should simply try to bail out and fail as gracefully as possible.
108          */
109         ret = wait_event_interruptible_timeout(error->reset_queue,
110                                                !i915_reset_backoff(error),
111                                                I915_RESET_TIMEOUT);
112         if (ret == 0) {
113                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
114                 return -EIO;
115         } else if (ret < 0) {
116                 return ret;
117         } else {
118                 return 0;
119         }
120 }
121
122 int i915_mutex_lock_interruptible(struct drm_device *dev)
123 {
124         struct drm_i915_private *dev_priv = to_i915(dev);
125         int ret;
126
127         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
128         if (ret)
129                 return ret;
130
131         ret = mutex_lock_interruptible(&dev->struct_mutex);
132         if (ret)
133                 return ret;
134
135         return 0;
136 }
137
138 int
139 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
140                             struct drm_file *file)
141 {
142         struct drm_i915_private *dev_priv = to_i915(dev);
143         struct i915_ggtt *ggtt = &dev_priv->ggtt;
144         struct drm_i915_gem_get_aperture *args = data;
145         struct i915_vma *vma;
146         u64 pinned;
147
148         pinned = ggtt->base.reserved;
149         mutex_lock(&dev->struct_mutex);
150         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
151                 if (i915_vma_is_pinned(vma))
152                         pinned += vma->node.size;
153         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
154                 if (i915_vma_is_pinned(vma))
155                         pinned += vma->node.size;
156         mutex_unlock(&dev->struct_mutex);
157
158         args->aper_size = ggtt->base.total;
159         args->aper_available_size = args->aper_size - pinned;
160
161         return 0;
162 }
163
164 static struct sg_table *
165 i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173
174         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
175                 return ERR_PTR(-EINVAL);
176
177         /* Always aligning to the object size, allows a single allocation
178          * to handle all possible callers, and given typical object sizes,
179          * the alignment of the buddy allocation will naturally match.
180          */
181         phys = drm_pci_alloc(obj->base.dev,
182                              obj->base.size,
183                              roundup_pow_of_two(obj->base.size));
184         if (!phys)
185                 return ERR_PTR(-ENOMEM);
186
187         vaddr = phys->vaddr;
188         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
189                 struct page *page;
190                 char *src;
191
192                 page = shmem_read_mapping_page(mapping, i);
193                 if (IS_ERR(page)) {
194                         st = ERR_CAST(page);
195                         goto err_phys;
196                 }
197
198                 src = kmap_atomic(page);
199                 memcpy(vaddr, src, PAGE_SIZE);
200                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
201                 kunmap_atomic(src);
202
203                 put_page(page);
204                 vaddr += PAGE_SIZE;
205         }
206
207         i915_gem_chipset_flush(to_i915(obj->base.dev));
208
209         st = kmalloc(sizeof(*st), GFP_KERNEL);
210         if (!st) {
211                 st = ERR_PTR(-ENOMEM);
212                 goto err_phys;
213         }
214
215         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
216                 kfree(st);
217                 st = ERR_PTR(-ENOMEM);
218                 goto err_phys;
219         }
220
221         sg = st->sgl;
222         sg->offset = 0;
223         sg->length = obj->base.size;
224
225         sg_dma_address(sg) = phys->busaddr;
226         sg_dma_len(sg) = obj->base.size;
227
228         obj->phys_handle = phys;
229         return st;
230
231 err_phys:
232         drm_pci_free(obj->base.dev, phys);
233         return st;
234 }
235
236 static void __start_cpu_write(struct drm_i915_gem_object *obj)
237 {
238         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
239         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
240         if (cpu_write_needs_clflush(obj))
241                 obj->cache_dirty = true;
242 }
243
244 static void
245 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
246                                 struct sg_table *pages,
247                                 bool needs_clflush)
248 {
249         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
250
251         if (obj->mm.madv == I915_MADV_DONTNEED)
252                 obj->mm.dirty = false;
253
254         if (needs_clflush &&
255             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
256             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
257                 drm_clflush_sg(pages);
258
259         __start_cpu_write(obj);
260 }
261
262 static void
263 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
264                                struct sg_table *pages)
265 {
266         __i915_gem_object_release_shmem(obj, pages, false);
267
268         if (obj->mm.dirty) {
269                 struct address_space *mapping = obj->base.filp->f_mapping;
270                 char *vaddr = obj->phys_handle->vaddr;
271                 int i;
272
273                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
274                         struct page *page;
275                         char *dst;
276
277                         page = shmem_read_mapping_page(mapping, i);
278                         if (IS_ERR(page))
279                                 continue;
280
281                         dst = kmap_atomic(page);
282                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
283                         memcpy(dst, vaddr, PAGE_SIZE);
284                         kunmap_atomic(dst);
285
286                         set_page_dirty(page);
287                         if (obj->mm.madv == I915_MADV_WILLNEED)
288                                 mark_page_accessed(page);
289                         put_page(page);
290                         vaddr += PAGE_SIZE;
291                 }
292                 obj->mm.dirty = false;
293         }
294
295         sg_free_table(pages);
296         kfree(pages);
297
298         drm_pci_free(obj->base.dev, obj->phys_handle);
299 }
300
301 static void
302 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
303 {
304         i915_gem_object_unpin_pages(obj);
305 }
306
307 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
308         .get_pages = i915_gem_object_get_pages_phys,
309         .put_pages = i915_gem_object_put_pages_phys,
310         .release = i915_gem_object_release_phys,
311 };
312
313 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
314
315 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
316 {
317         struct i915_vma *vma;
318         LIST_HEAD(still_in_list);
319         int ret;
320
321         lockdep_assert_held(&obj->base.dev->struct_mutex);
322
323         /* Closed vma are removed from the obj->vma_list - but they may
324          * still have an active binding on the object. To remove those we
325          * must wait for all rendering to complete to the object (as unbinding
326          * must anyway), and retire the requests.
327          */
328         ret = i915_gem_object_wait(obj,
329                                    I915_WAIT_INTERRUPTIBLE |
330                                    I915_WAIT_LOCKED |
331                                    I915_WAIT_ALL,
332                                    MAX_SCHEDULE_TIMEOUT,
333                                    NULL);
334         if (ret)
335                 return ret;
336
337         i915_gem_retire_requests(to_i915(obj->base.dev));
338
339         while ((vma = list_first_entry_or_null(&obj->vma_list,
340                                                struct i915_vma,
341                                                obj_link))) {
342                 list_move_tail(&vma->obj_link, &still_in_list);
343                 ret = i915_vma_unbind(vma);
344                 if (ret)
345                         break;
346         }
347         list_splice(&still_in_list, &obj->vma_list);
348
349         return ret;
350 }
351
352 static long
353 i915_gem_object_wait_fence(struct dma_fence *fence,
354                            unsigned int flags,
355                            long timeout,
356                            struct intel_rps_client *rps)
357 {
358         struct drm_i915_gem_request *rq;
359
360         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
361
362         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
363                 return timeout;
364
365         if (!dma_fence_is_i915(fence))
366                 return dma_fence_wait_timeout(fence,
367                                               flags & I915_WAIT_INTERRUPTIBLE,
368                                               timeout);
369
370         rq = to_request(fence);
371         if (i915_gem_request_completed(rq))
372                 goto out;
373
374         /* This client is about to stall waiting for the GPU. In many cases
375          * this is undesirable and limits the throughput of the system, as
376          * many clients cannot continue processing user input/output whilst
377          * blocked. RPS autotuning may take tens of milliseconds to respond
378          * to the GPU load and thus incurs additional latency for the client.
379          * We can circumvent that by promoting the GPU frequency to maximum
380          * before we wait. This makes the GPU throttle up much more quickly
381          * (good for benchmarks and user experience, e.g. window animations),
382          * but at a cost of spending more power processing the workload
383          * (bad for battery). Not all clients even want their results
384          * immediately and for them we should just let the GPU select its own
385          * frequency to maximise efficiency. To prevent a single client from
386          * forcing the clocks too high for the whole system, we only allow
387          * each client to waitboost once in a busy period.
388          */
389         if (rps) {
390                 if (INTEL_GEN(rq->i915) >= 6)
391                         gen6_rps_boost(rq, rps);
392                 else
393                         rps = NULL;
394         }
395
396         timeout = i915_wait_request(rq, flags, timeout);
397
398 out:
399         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
400                 i915_gem_request_retire_upto(rq);
401
402         return timeout;
403 }
404
405 static long
406 i915_gem_object_wait_reservation(struct reservation_object *resv,
407                                  unsigned int flags,
408                                  long timeout,
409                                  struct intel_rps_client *rps)
410 {
411         unsigned int seq = __read_seqcount_begin(&resv->seq);
412         struct dma_fence *excl;
413         bool prune_fences = false;
414
415         if (flags & I915_WAIT_ALL) {
416                 struct dma_fence **shared;
417                 unsigned int count, i;
418                 int ret;
419
420                 ret = reservation_object_get_fences_rcu(resv,
421                                                         &excl, &count, &shared);
422                 if (ret)
423                         return ret;
424
425                 for (i = 0; i < count; i++) {
426                         timeout = i915_gem_object_wait_fence(shared[i],
427                                                              flags, timeout,
428                                                              rps);
429                         if (timeout < 0)
430                                 break;
431
432                         dma_fence_put(shared[i]);
433                 }
434
435                 for (; i < count; i++)
436                         dma_fence_put(shared[i]);
437                 kfree(shared);
438
439                 prune_fences = count && timeout >= 0;
440         } else {
441                 excl = reservation_object_get_excl_rcu(resv);
442         }
443
444         if (excl && timeout >= 0) {
445                 timeout = i915_gem_object_wait_fence(excl, flags, timeout, rps);
446                 prune_fences = timeout >= 0;
447         }
448
449         dma_fence_put(excl);
450
451         /* Oportunistically prune the fences iff we know they have *all* been
452          * signaled and that the reservation object has not been changed (i.e.
453          * no new fences have been added).
454          */
455         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
456                 if (reservation_object_trylock(resv)) {
457                         if (!__read_seqcount_retry(&resv->seq, seq))
458                                 reservation_object_add_excl_fence(resv, NULL);
459                         reservation_object_unlock(resv);
460                 }
461         }
462
463         return timeout;
464 }
465
466 static void __fence_set_priority(struct dma_fence *fence, int prio)
467 {
468         struct drm_i915_gem_request *rq;
469         struct intel_engine_cs *engine;
470
471         if (!dma_fence_is_i915(fence))
472                 return;
473
474         rq = to_request(fence);
475         engine = rq->engine;
476         if (!engine->schedule)
477                 return;
478
479         engine->schedule(rq, prio);
480 }
481
482 static void fence_set_priority(struct dma_fence *fence, int prio)
483 {
484         /* Recurse once into a fence-array */
485         if (dma_fence_is_array(fence)) {
486                 struct dma_fence_array *array = to_dma_fence_array(fence);
487                 int i;
488
489                 for (i = 0; i < array->num_fences; i++)
490                         __fence_set_priority(array->fences[i], prio);
491         } else {
492                 __fence_set_priority(fence, prio);
493         }
494 }
495
496 int
497 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
498                               unsigned int flags,
499                               int prio)
500 {
501         struct dma_fence *excl;
502
503         if (flags & I915_WAIT_ALL) {
504                 struct dma_fence **shared;
505                 unsigned int count, i;
506                 int ret;
507
508                 ret = reservation_object_get_fences_rcu(obj->resv,
509                                                         &excl, &count, &shared);
510                 if (ret)
511                         return ret;
512
513                 for (i = 0; i < count; i++) {
514                         fence_set_priority(shared[i], prio);
515                         dma_fence_put(shared[i]);
516                 }
517
518                 kfree(shared);
519         } else {
520                 excl = reservation_object_get_excl_rcu(obj->resv);
521         }
522
523         if (excl) {
524                 fence_set_priority(excl, prio);
525                 dma_fence_put(excl);
526         }
527         return 0;
528 }
529
530 /**
531  * Waits for rendering to the object to be completed
532  * @obj: i915 gem object
533  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
534  * @timeout: how long to wait
535  * @rps: client (user process) to charge for any waitboosting
536  */
537 int
538 i915_gem_object_wait(struct drm_i915_gem_object *obj,
539                      unsigned int flags,
540                      long timeout,
541                      struct intel_rps_client *rps)
542 {
543         might_sleep();
544 #if IS_ENABLED(CONFIG_LOCKDEP)
545         GEM_BUG_ON(debug_locks &&
546                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
547                    !!(flags & I915_WAIT_LOCKED));
548 #endif
549         GEM_BUG_ON(timeout < 0);
550
551         timeout = i915_gem_object_wait_reservation(obj->resv,
552                                                    flags, timeout,
553                                                    rps);
554         return timeout < 0 ? timeout : 0;
555 }
556
557 static struct intel_rps_client *to_rps_client(struct drm_file *file)
558 {
559         struct drm_i915_file_private *fpriv = file->driver_priv;
560
561         return &fpriv->rps;
562 }
563
564 static int
565 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
566                      struct drm_i915_gem_pwrite *args,
567                      struct drm_file *file)
568 {
569         void *vaddr = obj->phys_handle->vaddr + args->offset;
570         char __user *user_data = u64_to_user_ptr(args->data_ptr);
571
572         /* We manually control the domain here and pretend that it
573          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
574          */
575         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
576         if (copy_from_user(vaddr, user_data, args->size))
577                 return -EFAULT;
578
579         drm_clflush_virt_range(vaddr, args->size);
580         i915_gem_chipset_flush(to_i915(obj->base.dev));
581
582         intel_fb_obj_flush(obj, ORIGIN_CPU);
583         return 0;
584 }
585
586 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
587 {
588         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
589 }
590
591 void i915_gem_object_free(struct drm_i915_gem_object *obj)
592 {
593         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
594         kmem_cache_free(dev_priv->objects, obj);
595 }
596
597 static int
598 i915_gem_create(struct drm_file *file,
599                 struct drm_i915_private *dev_priv,
600                 uint64_t size,
601                 uint32_t *handle_p)
602 {
603         struct drm_i915_gem_object *obj;
604         int ret;
605         u32 handle;
606
607         size = roundup(size, PAGE_SIZE);
608         if (size == 0)
609                 return -EINVAL;
610
611         /* Allocate the new object */
612         obj = i915_gem_object_create(dev_priv, size);
613         if (IS_ERR(obj))
614                 return PTR_ERR(obj);
615
616         ret = drm_gem_handle_create(file, &obj->base, &handle);
617         /* drop reference from allocate - handle holds it now */
618         i915_gem_object_put(obj);
619         if (ret)
620                 return ret;
621
622         *handle_p = handle;
623         return 0;
624 }
625
626 int
627 i915_gem_dumb_create(struct drm_file *file,
628                      struct drm_device *dev,
629                      struct drm_mode_create_dumb *args)
630 {
631         /* have to work out size/pitch and return them */
632         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
633         args->size = args->pitch * args->height;
634         return i915_gem_create(file, to_i915(dev),
635                                args->size, &args->handle);
636 }
637
638 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
639 {
640         return !(obj->cache_level == I915_CACHE_NONE ||
641                  obj->cache_level == I915_CACHE_WT);
642 }
643
644 /**
645  * Creates a new mm object and returns a handle to it.
646  * @dev: drm device pointer
647  * @data: ioctl data blob
648  * @file: drm file pointer
649  */
650 int
651 i915_gem_create_ioctl(struct drm_device *dev, void *data,
652                       struct drm_file *file)
653 {
654         struct drm_i915_private *dev_priv = to_i915(dev);
655         struct drm_i915_gem_create *args = data;
656
657         i915_gem_flush_free_objects(dev_priv);
658
659         return i915_gem_create(file, dev_priv,
660                                args->size, &args->handle);
661 }
662
663 static inline enum fb_op_origin
664 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
665 {
666         return (domain == I915_GEM_DOMAIN_GTT ?
667                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
668 }
669
670 static void
671 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
672 {
673         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
674
675         if (!(obj->base.write_domain & flush_domains))
676                 return;
677
678         /* No actual flushing is required for the GTT write domain.  Writes
679          * to it "immediately" go to main memory as far as we know, so there's
680          * no chipset flush.  It also doesn't land in render cache.
681          *
682          * However, we do have to enforce the order so that all writes through
683          * the GTT land before any writes to the device, such as updates to
684          * the GATT itself.
685          *
686          * We also have to wait a bit for the writes to land from the GTT.
687          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
688          * timing. This issue has only been observed when switching quickly
689          * between GTT writes and CPU reads from inside the kernel on recent hw,
690          * and it appears to only affect discrete GTT blocks (i.e. on LLC
691          * system agents we cannot reproduce this behaviour).
692          */
693         wmb();
694
695         switch (obj->base.write_domain) {
696         case I915_GEM_DOMAIN_GTT:
697                 if (INTEL_GEN(dev_priv) >= 6 && !HAS_LLC(dev_priv)) {
698                         if (intel_runtime_pm_get_if_in_use(dev_priv)) {
699                                 spin_lock_irq(&dev_priv->uncore.lock);
700                                 POSTING_READ_FW(RING_ACTHD(dev_priv->engine[RCS]->mmio_base));
701                                 spin_unlock_irq(&dev_priv->uncore.lock);
702                                 intel_runtime_pm_put(dev_priv);
703                         }
704                 }
705
706                 intel_fb_obj_flush(obj,
707                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
708                 break;
709
710         case I915_GEM_DOMAIN_CPU:
711                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
712                 break;
713
714         case I915_GEM_DOMAIN_RENDER:
715                 if (gpu_write_needs_clflush(obj))
716                         obj->cache_dirty = true;
717                 break;
718         }
719
720         obj->base.write_domain = 0;
721 }
722
723 static inline int
724 __copy_to_user_swizzled(char __user *cpu_vaddr,
725                         const char *gpu_vaddr, int gpu_offset,
726                         int length)
727 {
728         int ret, cpu_offset = 0;
729
730         while (length > 0) {
731                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
732                 int this_length = min(cacheline_end - gpu_offset, length);
733                 int swizzled_gpu_offset = gpu_offset ^ 64;
734
735                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
736                                      gpu_vaddr + swizzled_gpu_offset,
737                                      this_length);
738                 if (ret)
739                         return ret + length;
740
741                 cpu_offset += this_length;
742                 gpu_offset += this_length;
743                 length -= this_length;
744         }
745
746         return 0;
747 }
748
749 static inline int
750 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
751                           const char __user *cpu_vaddr,
752                           int length)
753 {
754         int ret, cpu_offset = 0;
755
756         while (length > 0) {
757                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
758                 int this_length = min(cacheline_end - gpu_offset, length);
759                 int swizzled_gpu_offset = gpu_offset ^ 64;
760
761                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
762                                        cpu_vaddr + cpu_offset,
763                                        this_length);
764                 if (ret)
765                         return ret + length;
766
767                 cpu_offset += this_length;
768                 gpu_offset += this_length;
769                 length -= this_length;
770         }
771
772         return 0;
773 }
774
775 /*
776  * Pins the specified object's pages and synchronizes the object with
777  * GPU accesses. Sets needs_clflush to non-zero if the caller should
778  * flush the object from the CPU cache.
779  */
780 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
781                                     unsigned int *needs_clflush)
782 {
783         int ret;
784
785         lockdep_assert_held(&obj->base.dev->struct_mutex);
786
787         *needs_clflush = 0;
788         if (!i915_gem_object_has_struct_page(obj))
789                 return -ENODEV;
790
791         ret = i915_gem_object_wait(obj,
792                                    I915_WAIT_INTERRUPTIBLE |
793                                    I915_WAIT_LOCKED,
794                                    MAX_SCHEDULE_TIMEOUT,
795                                    NULL);
796         if (ret)
797                 return ret;
798
799         ret = i915_gem_object_pin_pages(obj);
800         if (ret)
801                 return ret;
802
803         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
804             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
805                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
806                 if (ret)
807                         goto err_unpin;
808                 else
809                         goto out;
810         }
811
812         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
813
814         /* If we're not in the cpu read domain, set ourself into the gtt
815          * read domain and manually flush cachelines (if required). This
816          * optimizes for the case when the gpu will dirty the data
817          * anyway again before the next pread happens.
818          */
819         if (!obj->cache_dirty &&
820             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
821                 *needs_clflush = CLFLUSH_BEFORE;
822
823 out:
824         /* return with the pages pinned */
825         return 0;
826
827 err_unpin:
828         i915_gem_object_unpin_pages(obj);
829         return ret;
830 }
831
832 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
833                                      unsigned int *needs_clflush)
834 {
835         int ret;
836
837         lockdep_assert_held(&obj->base.dev->struct_mutex);
838
839         *needs_clflush = 0;
840         if (!i915_gem_object_has_struct_page(obj))
841                 return -ENODEV;
842
843         ret = i915_gem_object_wait(obj,
844                                    I915_WAIT_INTERRUPTIBLE |
845                                    I915_WAIT_LOCKED |
846                                    I915_WAIT_ALL,
847                                    MAX_SCHEDULE_TIMEOUT,
848                                    NULL);
849         if (ret)
850                 return ret;
851
852         ret = i915_gem_object_pin_pages(obj);
853         if (ret)
854                 return ret;
855
856         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
857             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
858                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
859                 if (ret)
860                         goto err_unpin;
861                 else
862                         goto out;
863         }
864
865         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
866
867         /* If we're not in the cpu write domain, set ourself into the
868          * gtt write domain and manually flush cachelines (as required).
869          * This optimizes for the case when the gpu will use the data
870          * right away and we therefore have to clflush anyway.
871          */
872         if (!obj->cache_dirty) {
873                 *needs_clflush |= CLFLUSH_AFTER;
874
875                 /*
876                  * Same trick applies to invalidate partially written
877                  * cachelines read before writing.
878                  */
879                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
880                         *needs_clflush |= CLFLUSH_BEFORE;
881         }
882
883 out:
884         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
885         obj->mm.dirty = true;
886         /* return with the pages pinned */
887         return 0;
888
889 err_unpin:
890         i915_gem_object_unpin_pages(obj);
891         return ret;
892 }
893
894 static void
895 shmem_clflush_swizzled_range(char *addr, unsigned long length,
896                              bool swizzled)
897 {
898         if (unlikely(swizzled)) {
899                 unsigned long start = (unsigned long) addr;
900                 unsigned long end = (unsigned long) addr + length;
901
902                 /* For swizzling simply ensure that we always flush both
903                  * channels. Lame, but simple and it works. Swizzled
904                  * pwrite/pread is far from a hotpath - current userspace
905                  * doesn't use it at all. */
906                 start = round_down(start, 128);
907                 end = round_up(end, 128);
908
909                 drm_clflush_virt_range((void *)start, end - start);
910         } else {
911                 drm_clflush_virt_range(addr, length);
912         }
913
914 }
915
916 /* Only difference to the fast-path function is that this can handle bit17
917  * and uses non-atomic copy and kmap functions. */
918 static int
919 shmem_pread_slow(struct page *page, int offset, int length,
920                  char __user *user_data,
921                  bool page_do_bit17_swizzling, bool needs_clflush)
922 {
923         char *vaddr;
924         int ret;
925
926         vaddr = kmap(page);
927         if (needs_clflush)
928                 shmem_clflush_swizzled_range(vaddr + offset, length,
929                                              page_do_bit17_swizzling);
930
931         if (page_do_bit17_swizzling)
932                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
933         else
934                 ret = __copy_to_user(user_data, vaddr + offset, length);
935         kunmap(page);
936
937         return ret ? - EFAULT : 0;
938 }
939
940 static int
941 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
942             bool page_do_bit17_swizzling, bool needs_clflush)
943 {
944         int ret;
945
946         ret = -ENODEV;
947         if (!page_do_bit17_swizzling) {
948                 char *vaddr = kmap_atomic(page);
949
950                 if (needs_clflush)
951                         drm_clflush_virt_range(vaddr + offset, length);
952                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
953                 kunmap_atomic(vaddr);
954         }
955         if (ret == 0)
956                 return 0;
957
958         return shmem_pread_slow(page, offset, length, user_data,
959                                 page_do_bit17_swizzling, needs_clflush);
960 }
961
962 static int
963 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
964                      struct drm_i915_gem_pread *args)
965 {
966         char __user *user_data;
967         u64 remain;
968         unsigned int obj_do_bit17_swizzling;
969         unsigned int needs_clflush;
970         unsigned int idx, offset;
971         int ret;
972
973         obj_do_bit17_swizzling = 0;
974         if (i915_gem_object_needs_bit17_swizzle(obj))
975                 obj_do_bit17_swizzling = BIT(17);
976
977         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
978         if (ret)
979                 return ret;
980
981         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
982         mutex_unlock(&obj->base.dev->struct_mutex);
983         if (ret)
984                 return ret;
985
986         remain = args->size;
987         user_data = u64_to_user_ptr(args->data_ptr);
988         offset = offset_in_page(args->offset);
989         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
990                 struct page *page = i915_gem_object_get_page(obj, idx);
991                 int length;
992
993                 length = remain;
994                 if (offset + length > PAGE_SIZE)
995                         length = PAGE_SIZE - offset;
996
997                 ret = shmem_pread(page, offset, length, user_data,
998                                   page_to_phys(page) & obj_do_bit17_swizzling,
999                                   needs_clflush);
1000                 if (ret)
1001                         break;
1002
1003                 remain -= length;
1004                 user_data += length;
1005                 offset = 0;
1006         }
1007
1008         i915_gem_obj_finish_shmem_access(obj);
1009         return ret;
1010 }
1011
1012 static inline bool
1013 gtt_user_read(struct io_mapping *mapping,
1014               loff_t base, int offset,
1015               char __user *user_data, int length)
1016 {
1017         void *vaddr;
1018         unsigned long unwritten;
1019
1020         /* We can use the cpu mem copy function because this is X86. */
1021         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1022         unwritten = __copy_to_user_inatomic(user_data, vaddr + offset, length);
1023         io_mapping_unmap_atomic(vaddr);
1024         if (unwritten) {
1025                 vaddr = (void __force *)
1026                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1027                 unwritten = copy_to_user(user_data, vaddr + offset, length);
1028                 io_mapping_unmap(vaddr);
1029         }
1030         return unwritten;
1031 }
1032
1033 static int
1034 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1035                    const struct drm_i915_gem_pread *args)
1036 {
1037         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1038         struct i915_ggtt *ggtt = &i915->ggtt;
1039         struct drm_mm_node node;
1040         struct i915_vma *vma;
1041         void __user *user_data;
1042         u64 remain, offset;
1043         int ret;
1044
1045         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1046         if (ret)
1047                 return ret;
1048
1049         intel_runtime_pm_get(i915);
1050         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1051                                        PIN_MAPPABLE | PIN_NONBLOCK);
1052         if (!IS_ERR(vma)) {
1053                 node.start = i915_ggtt_offset(vma);
1054                 node.allocated = false;
1055                 ret = i915_vma_put_fence(vma);
1056                 if (ret) {
1057                         i915_vma_unpin(vma);
1058                         vma = ERR_PTR(ret);
1059                 }
1060         }
1061         if (IS_ERR(vma)) {
1062                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1063                 if (ret)
1064                         goto out_unlock;
1065                 GEM_BUG_ON(!node.allocated);
1066         }
1067
1068         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1069         if (ret)
1070                 goto out_unpin;
1071
1072         mutex_unlock(&i915->drm.struct_mutex);
1073
1074         user_data = u64_to_user_ptr(args->data_ptr);
1075         remain = args->size;
1076         offset = args->offset;
1077
1078         while (remain > 0) {
1079                 /* Operation in this page
1080                  *
1081                  * page_base = page offset within aperture
1082                  * page_offset = offset within page
1083                  * page_length = bytes to copy for this page
1084                  */
1085                 u32 page_base = node.start;
1086                 unsigned page_offset = offset_in_page(offset);
1087                 unsigned page_length = PAGE_SIZE - page_offset;
1088                 page_length = remain < page_length ? remain : page_length;
1089                 if (node.allocated) {
1090                         wmb();
1091                         ggtt->base.insert_page(&ggtt->base,
1092                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1093                                                node.start, I915_CACHE_NONE, 0);
1094                         wmb();
1095                 } else {
1096                         page_base += offset & PAGE_MASK;
1097                 }
1098
1099                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1100                                   user_data, page_length)) {
1101                         ret = -EFAULT;
1102                         break;
1103                 }
1104
1105                 remain -= page_length;
1106                 user_data += page_length;
1107                 offset += page_length;
1108         }
1109
1110         mutex_lock(&i915->drm.struct_mutex);
1111 out_unpin:
1112         if (node.allocated) {
1113                 wmb();
1114                 ggtt->base.clear_range(&ggtt->base,
1115                                        node.start, node.size);
1116                 remove_mappable_node(&node);
1117         } else {
1118                 i915_vma_unpin(vma);
1119         }
1120 out_unlock:
1121         intel_runtime_pm_put(i915);
1122         mutex_unlock(&i915->drm.struct_mutex);
1123
1124         return ret;
1125 }
1126
1127 /**
1128  * Reads data from the object referenced by handle.
1129  * @dev: drm device pointer
1130  * @data: ioctl data blob
1131  * @file: drm file pointer
1132  *
1133  * On error, the contents of *data are undefined.
1134  */
1135 int
1136 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1137                      struct drm_file *file)
1138 {
1139         struct drm_i915_gem_pread *args = data;
1140         struct drm_i915_gem_object *obj;
1141         int ret;
1142
1143         if (args->size == 0)
1144                 return 0;
1145
1146         if (!access_ok(VERIFY_WRITE,
1147                        u64_to_user_ptr(args->data_ptr),
1148                        args->size))
1149                 return -EFAULT;
1150
1151         obj = i915_gem_object_lookup(file, args->handle);
1152         if (!obj)
1153                 return -ENOENT;
1154
1155         /* Bounds check source.  */
1156         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1157                 ret = -EINVAL;
1158                 goto out;
1159         }
1160
1161         trace_i915_gem_object_pread(obj, args->offset, args->size);
1162
1163         ret = i915_gem_object_wait(obj,
1164                                    I915_WAIT_INTERRUPTIBLE,
1165                                    MAX_SCHEDULE_TIMEOUT,
1166                                    to_rps_client(file));
1167         if (ret)
1168                 goto out;
1169
1170         ret = i915_gem_object_pin_pages(obj);
1171         if (ret)
1172                 goto out;
1173
1174         ret = i915_gem_shmem_pread(obj, args);
1175         if (ret == -EFAULT || ret == -ENODEV)
1176                 ret = i915_gem_gtt_pread(obj, args);
1177
1178         i915_gem_object_unpin_pages(obj);
1179 out:
1180         i915_gem_object_put(obj);
1181         return ret;
1182 }
1183
1184 /* This is the fast write path which cannot handle
1185  * page faults in the source data
1186  */
1187
1188 static inline bool
1189 ggtt_write(struct io_mapping *mapping,
1190            loff_t base, int offset,
1191            char __user *user_data, int length)
1192 {
1193         void *vaddr;
1194         unsigned long unwritten;
1195
1196         /* We can use the cpu mem copy function because this is X86. */
1197         vaddr = (void __force *)io_mapping_map_atomic_wc(mapping, base);
1198         unwritten = __copy_from_user_inatomic_nocache(vaddr + offset,
1199                                                       user_data, length);
1200         io_mapping_unmap_atomic(vaddr);
1201         if (unwritten) {
1202                 vaddr = (void __force *)
1203                         io_mapping_map_wc(mapping, base, PAGE_SIZE);
1204                 unwritten = copy_from_user(vaddr + offset, user_data, length);
1205                 io_mapping_unmap(vaddr);
1206         }
1207
1208         return unwritten;
1209 }
1210
1211 /**
1212  * This is the fast pwrite path, where we copy the data directly from the
1213  * user into the GTT, uncached.
1214  * @obj: i915 GEM object
1215  * @args: pwrite arguments structure
1216  */
1217 static int
1218 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1219                          const struct drm_i915_gem_pwrite *args)
1220 {
1221         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1222         struct i915_ggtt *ggtt = &i915->ggtt;
1223         struct drm_mm_node node;
1224         struct i915_vma *vma;
1225         u64 remain, offset;
1226         void __user *user_data;
1227         int ret;
1228
1229         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1230         if (ret)
1231                 return ret;
1232
1233         intel_runtime_pm_get(i915);
1234         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1235                                        PIN_MAPPABLE | PIN_NONBLOCK);
1236         if (!IS_ERR(vma)) {
1237                 node.start = i915_ggtt_offset(vma);
1238                 node.allocated = false;
1239                 ret = i915_vma_put_fence(vma);
1240                 if (ret) {
1241                         i915_vma_unpin(vma);
1242                         vma = ERR_PTR(ret);
1243                 }
1244         }
1245         if (IS_ERR(vma)) {
1246                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1247                 if (ret)
1248                         goto out_unlock;
1249                 GEM_BUG_ON(!node.allocated);
1250         }
1251
1252         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1253         if (ret)
1254                 goto out_unpin;
1255
1256         mutex_unlock(&i915->drm.struct_mutex);
1257
1258         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1259
1260         user_data = u64_to_user_ptr(args->data_ptr);
1261         offset = args->offset;
1262         remain = args->size;
1263         while (remain) {
1264                 /* Operation in this page
1265                  *
1266                  * page_base = page offset within aperture
1267                  * page_offset = offset within page
1268                  * page_length = bytes to copy for this page
1269                  */
1270                 u32 page_base = node.start;
1271                 unsigned int page_offset = offset_in_page(offset);
1272                 unsigned int page_length = PAGE_SIZE - page_offset;
1273                 page_length = remain < page_length ? remain : page_length;
1274                 if (node.allocated) {
1275                         wmb(); /* flush the write before we modify the GGTT */
1276                         ggtt->base.insert_page(&ggtt->base,
1277                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1278                                                node.start, I915_CACHE_NONE, 0);
1279                         wmb(); /* flush modifications to the GGTT (insert_page) */
1280                 } else {
1281                         page_base += offset & PAGE_MASK;
1282                 }
1283                 /* If we get a fault while copying data, then (presumably) our
1284                  * source page isn't available.  Return the error and we'll
1285                  * retry in the slow path.
1286                  * If the object is non-shmem backed, we retry again with the
1287                  * path that handles page fault.
1288                  */
1289                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1290                                user_data, page_length)) {
1291                         ret = -EFAULT;
1292                         break;
1293                 }
1294
1295                 remain -= page_length;
1296                 user_data += page_length;
1297                 offset += page_length;
1298         }
1299         intel_fb_obj_flush(obj, ORIGIN_CPU);
1300
1301         mutex_lock(&i915->drm.struct_mutex);
1302 out_unpin:
1303         if (node.allocated) {
1304                 wmb();
1305                 ggtt->base.clear_range(&ggtt->base,
1306                                        node.start, node.size);
1307                 remove_mappable_node(&node);
1308         } else {
1309                 i915_vma_unpin(vma);
1310         }
1311 out_unlock:
1312         intel_runtime_pm_put(i915);
1313         mutex_unlock(&i915->drm.struct_mutex);
1314         return ret;
1315 }
1316
1317 static int
1318 shmem_pwrite_slow(struct page *page, int offset, int length,
1319                   char __user *user_data,
1320                   bool page_do_bit17_swizzling,
1321                   bool needs_clflush_before,
1322                   bool needs_clflush_after)
1323 {
1324         char *vaddr;
1325         int ret;
1326
1327         vaddr = kmap(page);
1328         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1329                 shmem_clflush_swizzled_range(vaddr + offset, length,
1330                                              page_do_bit17_swizzling);
1331         if (page_do_bit17_swizzling)
1332                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1333                                                 length);
1334         else
1335                 ret = __copy_from_user(vaddr + offset, user_data, length);
1336         if (needs_clflush_after)
1337                 shmem_clflush_swizzled_range(vaddr + offset, length,
1338                                              page_do_bit17_swizzling);
1339         kunmap(page);
1340
1341         return ret ? -EFAULT : 0;
1342 }
1343
1344 /* Per-page copy function for the shmem pwrite fastpath.
1345  * Flushes invalid cachelines before writing to the target if
1346  * needs_clflush_before is set and flushes out any written cachelines after
1347  * writing if needs_clflush is set.
1348  */
1349 static int
1350 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1351              bool page_do_bit17_swizzling,
1352              bool needs_clflush_before,
1353              bool needs_clflush_after)
1354 {
1355         int ret;
1356
1357         ret = -ENODEV;
1358         if (!page_do_bit17_swizzling) {
1359                 char *vaddr = kmap_atomic(page);
1360
1361                 if (needs_clflush_before)
1362                         drm_clflush_virt_range(vaddr + offset, len);
1363                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1364                 if (needs_clflush_after)
1365                         drm_clflush_virt_range(vaddr + offset, len);
1366
1367                 kunmap_atomic(vaddr);
1368         }
1369         if (ret == 0)
1370                 return ret;
1371
1372         return shmem_pwrite_slow(page, offset, len, user_data,
1373                                  page_do_bit17_swizzling,
1374                                  needs_clflush_before,
1375                                  needs_clflush_after);
1376 }
1377
1378 static int
1379 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1380                       const struct drm_i915_gem_pwrite *args)
1381 {
1382         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1383         void __user *user_data;
1384         u64 remain;
1385         unsigned int obj_do_bit17_swizzling;
1386         unsigned int partial_cacheline_write;
1387         unsigned int needs_clflush;
1388         unsigned int offset, idx;
1389         int ret;
1390
1391         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1392         if (ret)
1393                 return ret;
1394
1395         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1396         mutex_unlock(&i915->drm.struct_mutex);
1397         if (ret)
1398                 return ret;
1399
1400         obj_do_bit17_swizzling = 0;
1401         if (i915_gem_object_needs_bit17_swizzle(obj))
1402                 obj_do_bit17_swizzling = BIT(17);
1403
1404         /* If we don't overwrite a cacheline completely we need to be
1405          * careful to have up-to-date data by first clflushing. Don't
1406          * overcomplicate things and flush the entire patch.
1407          */
1408         partial_cacheline_write = 0;
1409         if (needs_clflush & CLFLUSH_BEFORE)
1410                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1411
1412         user_data = u64_to_user_ptr(args->data_ptr);
1413         remain = args->size;
1414         offset = offset_in_page(args->offset);
1415         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1416                 struct page *page = i915_gem_object_get_page(obj, idx);
1417                 int length;
1418
1419                 length = remain;
1420                 if (offset + length > PAGE_SIZE)
1421                         length = PAGE_SIZE - offset;
1422
1423                 ret = shmem_pwrite(page, offset, length, user_data,
1424                                    page_to_phys(page) & obj_do_bit17_swizzling,
1425                                    (offset | length) & partial_cacheline_write,
1426                                    needs_clflush & CLFLUSH_AFTER);
1427                 if (ret)
1428                         break;
1429
1430                 remain -= length;
1431                 user_data += length;
1432                 offset = 0;
1433         }
1434
1435         intel_fb_obj_flush(obj, ORIGIN_CPU);
1436         i915_gem_obj_finish_shmem_access(obj);
1437         return ret;
1438 }
1439
1440 /**
1441  * Writes data to the object referenced by handle.
1442  * @dev: drm device
1443  * @data: ioctl data blob
1444  * @file: drm file
1445  *
1446  * On error, the contents of the buffer that were to be modified are undefined.
1447  */
1448 int
1449 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1450                       struct drm_file *file)
1451 {
1452         struct drm_i915_gem_pwrite *args = data;
1453         struct drm_i915_gem_object *obj;
1454         int ret;
1455
1456         if (args->size == 0)
1457                 return 0;
1458
1459         if (!access_ok(VERIFY_READ,
1460                        u64_to_user_ptr(args->data_ptr),
1461                        args->size))
1462                 return -EFAULT;
1463
1464         obj = i915_gem_object_lookup(file, args->handle);
1465         if (!obj)
1466                 return -ENOENT;
1467
1468         /* Bounds check destination. */
1469         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1470                 ret = -EINVAL;
1471                 goto err;
1472         }
1473
1474         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1475
1476         ret = -ENODEV;
1477         if (obj->ops->pwrite)
1478                 ret = obj->ops->pwrite(obj, args);
1479         if (ret != -ENODEV)
1480                 goto err;
1481
1482         ret = i915_gem_object_wait(obj,
1483                                    I915_WAIT_INTERRUPTIBLE |
1484                                    I915_WAIT_ALL,
1485                                    MAX_SCHEDULE_TIMEOUT,
1486                                    to_rps_client(file));
1487         if (ret)
1488                 goto err;
1489
1490         ret = i915_gem_object_pin_pages(obj);
1491         if (ret)
1492                 goto err;
1493
1494         ret = -EFAULT;
1495         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1496          * it would end up going through the fenced access, and we'll get
1497          * different detiling behavior between reading and writing.
1498          * pread/pwrite currently are reading and writing from the CPU
1499          * perspective, requiring manual detiling by the client.
1500          */
1501         if (!i915_gem_object_has_struct_page(obj) ||
1502             cpu_write_needs_clflush(obj))
1503                 /* Note that the gtt paths might fail with non-page-backed user
1504                  * pointers (e.g. gtt mappings when moving data between
1505                  * textures). Fallback to the shmem path in that case.
1506                  */
1507                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1508
1509         if (ret == -EFAULT || ret == -ENOSPC) {
1510                 if (obj->phys_handle)
1511                         ret = i915_gem_phys_pwrite(obj, args, file);
1512                 else
1513                         ret = i915_gem_shmem_pwrite(obj, args);
1514         }
1515
1516         i915_gem_object_unpin_pages(obj);
1517 err:
1518         i915_gem_object_put(obj);
1519         return ret;
1520 }
1521
1522 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1523 {
1524         struct drm_i915_private *i915;
1525         struct list_head *list;
1526         struct i915_vma *vma;
1527
1528         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1529                 if (!i915_vma_is_ggtt(vma))
1530                         break;
1531
1532                 if (i915_vma_is_active(vma))
1533                         continue;
1534
1535                 if (!drm_mm_node_allocated(&vma->node))
1536                         continue;
1537
1538                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1539         }
1540
1541         i915 = to_i915(obj->base.dev);
1542         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1543         list_move_tail(&obj->global_link, list);
1544 }
1545
1546 /**
1547  * Called when user space prepares to use an object with the CPU, either
1548  * through the mmap ioctl's mapping or a GTT mapping.
1549  * @dev: drm device
1550  * @data: ioctl data blob
1551  * @file: drm file
1552  */
1553 int
1554 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1555                           struct drm_file *file)
1556 {
1557         struct drm_i915_gem_set_domain *args = data;
1558         struct drm_i915_gem_object *obj;
1559         uint32_t read_domains = args->read_domains;
1560         uint32_t write_domain = args->write_domain;
1561         int err;
1562
1563         /* Only handle setting domains to types used by the CPU. */
1564         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1565                 return -EINVAL;
1566
1567         /* Having something in the write domain implies it's in the read
1568          * domain, and only that read domain.  Enforce that in the request.
1569          */
1570         if (write_domain != 0 && read_domains != write_domain)
1571                 return -EINVAL;
1572
1573         obj = i915_gem_object_lookup(file, args->handle);
1574         if (!obj)
1575                 return -ENOENT;
1576
1577         /* Try to flush the object off the GPU without holding the lock.
1578          * We will repeat the flush holding the lock in the normal manner
1579          * to catch cases where we are gazumped.
1580          */
1581         err = i915_gem_object_wait(obj,
1582                                    I915_WAIT_INTERRUPTIBLE |
1583                                    (write_domain ? I915_WAIT_ALL : 0),
1584                                    MAX_SCHEDULE_TIMEOUT,
1585                                    to_rps_client(file));
1586         if (err)
1587                 goto out;
1588
1589         /* Flush and acquire obj->pages so that we are coherent through
1590          * direct access in memory with previous cached writes through
1591          * shmemfs and that our cache domain tracking remains valid.
1592          * For example, if the obj->filp was moved to swap without us
1593          * being notified and releasing the pages, we would mistakenly
1594          * continue to assume that the obj remained out of the CPU cached
1595          * domain.
1596          */
1597         err = i915_gem_object_pin_pages(obj);
1598         if (err)
1599                 goto out;
1600
1601         err = i915_mutex_lock_interruptible(dev);
1602         if (err)
1603                 goto out_unpin;
1604
1605         if (read_domains & I915_GEM_DOMAIN_WC)
1606                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1607         else if (read_domains & I915_GEM_DOMAIN_GTT)
1608                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1609         else
1610                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1611
1612         /* And bump the LRU for this access */
1613         i915_gem_object_bump_inactive_ggtt(obj);
1614
1615         mutex_unlock(&dev->struct_mutex);
1616
1617         if (write_domain != 0)
1618                 intel_fb_obj_invalidate(obj,
1619                                         fb_write_origin(obj, write_domain));
1620
1621 out_unpin:
1622         i915_gem_object_unpin_pages(obj);
1623 out:
1624         i915_gem_object_put(obj);
1625         return err;
1626 }
1627
1628 /**
1629  * Called when user space has done writes to this buffer
1630  * @dev: drm device
1631  * @data: ioctl data blob
1632  * @file: drm file
1633  */
1634 int
1635 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1636                          struct drm_file *file)
1637 {
1638         struct drm_i915_gem_sw_finish *args = data;
1639         struct drm_i915_gem_object *obj;
1640
1641         obj = i915_gem_object_lookup(file, args->handle);
1642         if (!obj)
1643                 return -ENOENT;
1644
1645         /* Pinned buffers may be scanout, so flush the cache */
1646         i915_gem_object_flush_if_display(obj);
1647         i915_gem_object_put(obj);
1648
1649         return 0;
1650 }
1651
1652 /**
1653  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1654  *                       it is mapped to.
1655  * @dev: drm device
1656  * @data: ioctl data blob
1657  * @file: drm file
1658  *
1659  * While the mapping holds a reference on the contents of the object, it doesn't
1660  * imply a ref on the object itself.
1661  *
1662  * IMPORTANT:
1663  *
1664  * DRM driver writers who look a this function as an example for how to do GEM
1665  * mmap support, please don't implement mmap support like here. The modern way
1666  * to implement DRM mmap support is with an mmap offset ioctl (like
1667  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1668  * That way debug tooling like valgrind will understand what's going on, hiding
1669  * the mmap call in a driver private ioctl will break that. The i915 driver only
1670  * does cpu mmaps this way because we didn't know better.
1671  */
1672 int
1673 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1674                     struct drm_file *file)
1675 {
1676         struct drm_i915_gem_mmap *args = data;
1677         struct drm_i915_gem_object *obj;
1678         unsigned long addr;
1679
1680         if (args->flags & ~(I915_MMAP_WC))
1681                 return -EINVAL;
1682
1683         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1684                 return -ENODEV;
1685
1686         obj = i915_gem_object_lookup(file, args->handle);
1687         if (!obj)
1688                 return -ENOENT;
1689
1690         /* prime objects have no backing filp to GEM mmap
1691          * pages from.
1692          */
1693         if (!obj->base.filp) {
1694                 i915_gem_object_put(obj);
1695                 return -EINVAL;
1696         }
1697
1698         addr = vm_mmap(obj->base.filp, 0, args->size,
1699                        PROT_READ | PROT_WRITE, MAP_SHARED,
1700                        args->offset);
1701         if (args->flags & I915_MMAP_WC) {
1702                 struct mm_struct *mm = current->mm;
1703                 struct vm_area_struct *vma;
1704
1705                 if (down_write_killable(&mm->mmap_sem)) {
1706                         i915_gem_object_put(obj);
1707                         return -EINTR;
1708                 }
1709                 vma = find_vma(mm, addr);
1710                 if (vma)
1711                         vma->vm_page_prot =
1712                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1713                 else
1714                         addr = -ENOMEM;
1715                 up_write(&mm->mmap_sem);
1716
1717                 /* This may race, but that's ok, it only gets set */
1718                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1719         }
1720         i915_gem_object_put(obj);
1721         if (IS_ERR((void *)addr))
1722                 return addr;
1723
1724         args->addr_ptr = (uint64_t) addr;
1725
1726         return 0;
1727 }
1728
1729 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1730 {
1731         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1732 }
1733
1734 /**
1735  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1736  *
1737  * A history of the GTT mmap interface:
1738  *
1739  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1740  *     aligned and suitable for fencing, and still fit into the available
1741  *     mappable space left by the pinned display objects. A classic problem
1742  *     we called the page-fault-of-doom where we would ping-pong between
1743  *     two objects that could not fit inside the GTT and so the memcpy
1744  *     would page one object in at the expense of the other between every
1745  *     single byte.
1746  *
1747  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1748  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1749  *     object is too large for the available space (or simply too large
1750  *     for the mappable aperture!), a view is created instead and faulted
1751  *     into userspace. (This view is aligned and sized appropriately for
1752  *     fenced access.)
1753  *
1754  * 2 - Recognise WC as a separate cache domain so that we can flush the
1755  *     delayed writes via GTT before performing direct access via WC.
1756  *
1757  * Restrictions:
1758  *
1759  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1760  *    hangs on some architectures, corruption on others. An attempt to service
1761  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1762  *
1763  *  * the object must be able to fit into RAM (physical memory, though no
1764  *    limited to the mappable aperture).
1765  *
1766  *
1767  * Caveats:
1768  *
1769  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1770  *    all data to system memory. Subsequent access will not be synchronized.
1771  *
1772  *  * all mappings are revoked on runtime device suspend.
1773  *
1774  *  * there are only 8, 16 or 32 fence registers to share between all users
1775  *    (older machines require fence register for display and blitter access
1776  *    as well). Contention of the fence registers will cause the previous users
1777  *    to be unmapped and any new access will generate new page faults.
1778  *
1779  *  * running out of memory while servicing a fault may generate a SIGBUS,
1780  *    rather than the expected SIGSEGV.
1781  */
1782 int i915_gem_mmap_gtt_version(void)
1783 {
1784         return 2;
1785 }
1786
1787 static inline struct i915_ggtt_view
1788 compute_partial_view(struct drm_i915_gem_object *obj,
1789                      pgoff_t page_offset,
1790                      unsigned int chunk)
1791 {
1792         struct i915_ggtt_view view;
1793
1794         if (i915_gem_object_is_tiled(obj))
1795                 chunk = roundup(chunk, tile_row_pages(obj));
1796
1797         view.type = I915_GGTT_VIEW_PARTIAL;
1798         view.partial.offset = rounddown(page_offset, chunk);
1799         view.partial.size =
1800                 min_t(unsigned int, chunk,
1801                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1802
1803         /* If the partial covers the entire object, just create a normal VMA. */
1804         if (chunk >= obj->base.size >> PAGE_SHIFT)
1805                 view.type = I915_GGTT_VIEW_NORMAL;
1806
1807         return view;
1808 }
1809
1810 /**
1811  * i915_gem_fault - fault a page into the GTT
1812  * @vmf: fault info
1813  *
1814  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1815  * from userspace.  The fault handler takes care of binding the object to
1816  * the GTT (if needed), allocating and programming a fence register (again,
1817  * only if needed based on whether the old reg is still valid or the object
1818  * is tiled) and inserting a new PTE into the faulting process.
1819  *
1820  * Note that the faulting process may involve evicting existing objects
1821  * from the GTT and/or fence registers to make room.  So performance may
1822  * suffer if the GTT working set is large or there are few fence registers
1823  * left.
1824  *
1825  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1826  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1827  */
1828 int i915_gem_fault(struct vm_fault *vmf)
1829 {
1830 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1831         struct vm_area_struct *area = vmf->vma;
1832         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1833         struct drm_device *dev = obj->base.dev;
1834         struct drm_i915_private *dev_priv = to_i915(dev);
1835         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1836         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1837         struct i915_vma *vma;
1838         pgoff_t page_offset;
1839         unsigned int flags;
1840         int ret;
1841
1842         /* We don't use vmf->pgoff since that has the fake offset */
1843         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1844
1845         trace_i915_gem_object_fault(obj, page_offset, true, write);
1846
1847         /* Try to flush the object off the GPU first without holding the lock.
1848          * Upon acquiring the lock, we will perform our sanity checks and then
1849          * repeat the flush holding the lock in the normal manner to catch cases
1850          * where we are gazumped.
1851          */
1852         ret = i915_gem_object_wait(obj,
1853                                    I915_WAIT_INTERRUPTIBLE,
1854                                    MAX_SCHEDULE_TIMEOUT,
1855                                    NULL);
1856         if (ret)
1857                 goto err;
1858
1859         ret = i915_gem_object_pin_pages(obj);
1860         if (ret)
1861                 goto err;
1862
1863         intel_runtime_pm_get(dev_priv);
1864
1865         ret = i915_mutex_lock_interruptible(dev);
1866         if (ret)
1867                 goto err_rpm;
1868
1869         /* Access to snoopable pages through the GTT is incoherent. */
1870         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1871                 ret = -EFAULT;
1872                 goto err_unlock;
1873         }
1874
1875         /* If the object is smaller than a couple of partial vma, it is
1876          * not worth only creating a single partial vma - we may as well
1877          * clear enough space for the full object.
1878          */
1879         flags = PIN_MAPPABLE;
1880         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1881                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1882
1883         /* Now pin it into the GTT as needed */
1884         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1885         if (IS_ERR(vma)) {
1886                 /* Use a partial view if it is bigger than available space */
1887                 struct i915_ggtt_view view =
1888                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1889
1890                 /* Userspace is now writing through an untracked VMA, abandon
1891                  * all hope that the hardware is able to track future writes.
1892                  */
1893                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1894
1895                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1896         }
1897         if (IS_ERR(vma)) {
1898                 ret = PTR_ERR(vma);
1899                 goto err_unlock;
1900         }
1901
1902         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1903         if (ret)
1904                 goto err_unpin;
1905
1906         ret = i915_vma_get_fence(vma);
1907         if (ret)
1908                 goto err_unpin;
1909
1910         /* Mark as being mmapped into userspace for later revocation */
1911         assert_rpm_wakelock_held(dev_priv);
1912         if (list_empty(&obj->userfault_link))
1913                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1914
1915         /* Finally, remap it using the new GTT offset */
1916         ret = remap_io_mapping(area,
1917                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1918                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1919                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1920                                &ggtt->mappable);
1921
1922 err_unpin:
1923         __i915_vma_unpin(vma);
1924 err_unlock:
1925         mutex_unlock(&dev->struct_mutex);
1926 err_rpm:
1927         intel_runtime_pm_put(dev_priv);
1928         i915_gem_object_unpin_pages(obj);
1929 err:
1930         switch (ret) {
1931         case -EIO:
1932                 /*
1933                  * We eat errors when the gpu is terminally wedged to avoid
1934                  * userspace unduly crashing (gl has no provisions for mmaps to
1935                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1936                  * and so needs to be reported.
1937                  */
1938                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1939                         ret = VM_FAULT_SIGBUS;
1940                         break;
1941                 }
1942         case -EAGAIN:
1943                 /*
1944                  * EAGAIN means the gpu is hung and we'll wait for the error
1945                  * handler to reset everything when re-faulting in
1946                  * i915_mutex_lock_interruptible.
1947                  */
1948         case 0:
1949         case -ERESTARTSYS:
1950         case -EINTR:
1951         case -EBUSY:
1952                 /*
1953                  * EBUSY is ok: this just means that another thread
1954                  * already did the job.
1955                  */
1956                 ret = VM_FAULT_NOPAGE;
1957                 break;
1958         case -ENOMEM:
1959                 ret = VM_FAULT_OOM;
1960                 break;
1961         case -ENOSPC:
1962         case -EFAULT:
1963                 ret = VM_FAULT_SIGBUS;
1964                 break;
1965         default:
1966                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1967                 ret = VM_FAULT_SIGBUS;
1968                 break;
1969         }
1970         return ret;
1971 }
1972
1973 /**
1974  * i915_gem_release_mmap - remove physical page mappings
1975  * @obj: obj in question
1976  *
1977  * Preserve the reservation of the mmapping with the DRM core code, but
1978  * relinquish ownership of the pages back to the system.
1979  *
1980  * It is vital that we remove the page mapping if we have mapped a tiled
1981  * object through the GTT and then lose the fence register due to
1982  * resource pressure. Similarly if the object has been moved out of the
1983  * aperture, than pages mapped into userspace must be revoked. Removing the
1984  * mapping will then trigger a page fault on the next user access, allowing
1985  * fixup by i915_gem_fault().
1986  */
1987 void
1988 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1989 {
1990         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1991
1992         /* Serialisation between user GTT access and our code depends upon
1993          * revoking the CPU's PTE whilst the mutex is held. The next user
1994          * pagefault then has to wait until we release the mutex.
1995          *
1996          * Note that RPM complicates somewhat by adding an additional
1997          * requirement that operations to the GGTT be made holding the RPM
1998          * wakeref.
1999          */
2000         lockdep_assert_held(&i915->drm.struct_mutex);
2001         intel_runtime_pm_get(i915);
2002
2003         if (list_empty(&obj->userfault_link))
2004                 goto out;
2005
2006         list_del_init(&obj->userfault_link);
2007         drm_vma_node_unmap(&obj->base.vma_node,
2008                            obj->base.dev->anon_inode->i_mapping);
2009
2010         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2011          * memory transactions from userspace before we return. The TLB
2012          * flushing implied above by changing the PTE above *should* be
2013          * sufficient, an extra barrier here just provides us with a bit
2014          * of paranoid documentation about our requirement to serialise
2015          * memory writes before touching registers / GSM.
2016          */
2017         wmb();
2018
2019 out:
2020         intel_runtime_pm_put(i915);
2021 }
2022
2023 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2024 {
2025         struct drm_i915_gem_object *obj, *on;
2026         int i;
2027
2028         /*
2029          * Only called during RPM suspend. All users of the userfault_list
2030          * must be holding an RPM wakeref to ensure that this can not
2031          * run concurrently with themselves (and use the struct_mutex for
2032          * protection between themselves).
2033          */
2034
2035         list_for_each_entry_safe(obj, on,
2036                                  &dev_priv->mm.userfault_list, userfault_link) {
2037                 list_del_init(&obj->userfault_link);
2038                 drm_vma_node_unmap(&obj->base.vma_node,
2039                                    obj->base.dev->anon_inode->i_mapping);
2040         }
2041
2042         /* The fence will be lost when the device powers down. If any were
2043          * in use by hardware (i.e. they are pinned), we should not be powering
2044          * down! All other fences will be reacquired by the user upon waking.
2045          */
2046         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2047                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2048
2049                 /* Ideally we want to assert that the fence register is not
2050                  * live at this point (i.e. that no piece of code will be
2051                  * trying to write through fence + GTT, as that both violates
2052                  * our tracking of activity and associated locking/barriers,
2053                  * but also is illegal given that the hw is powered down).
2054                  *
2055                  * Previously we used reg->pin_count as a "liveness" indicator.
2056                  * That is not sufficient, and we need a more fine-grained
2057                  * tool if we want to have a sanity check here.
2058                  */
2059
2060                 if (!reg->vma)
2061                         continue;
2062
2063                 GEM_BUG_ON(!list_empty(&reg->vma->obj->userfault_link));
2064                 reg->dirty = true;
2065         }
2066 }
2067
2068 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2069 {
2070         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2071         int err;
2072
2073         err = drm_gem_create_mmap_offset(&obj->base);
2074         if (likely(!err))
2075                 return 0;
2076
2077         /* Attempt to reap some mmap space from dead objects */
2078         do {
2079                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2080                 if (err)
2081                         break;
2082
2083                 i915_gem_drain_freed_objects(dev_priv);
2084                 err = drm_gem_create_mmap_offset(&obj->base);
2085                 if (!err)
2086                         break;
2087
2088         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2089
2090         return err;
2091 }
2092
2093 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2094 {
2095         drm_gem_free_mmap_offset(&obj->base);
2096 }
2097
2098 int
2099 i915_gem_mmap_gtt(struct drm_file *file,
2100                   struct drm_device *dev,
2101                   uint32_t handle,
2102                   uint64_t *offset)
2103 {
2104         struct drm_i915_gem_object *obj;
2105         int ret;
2106
2107         obj = i915_gem_object_lookup(file, handle);
2108         if (!obj)
2109                 return -ENOENT;
2110
2111         ret = i915_gem_object_create_mmap_offset(obj);
2112         if (ret == 0)
2113                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2114
2115         i915_gem_object_put(obj);
2116         return ret;
2117 }
2118
2119 /**
2120  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2121  * @dev: DRM device
2122  * @data: GTT mapping ioctl data
2123  * @file: GEM object info
2124  *
2125  * Simply returns the fake offset to userspace so it can mmap it.
2126  * The mmap call will end up in drm_gem_mmap(), which will set things
2127  * up so we can get faults in the handler above.
2128  *
2129  * The fault handler will take care of binding the object into the GTT
2130  * (since it may have been evicted to make room for something), allocating
2131  * a fence register, and mapping the appropriate aperture address into
2132  * userspace.
2133  */
2134 int
2135 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2136                         struct drm_file *file)
2137 {
2138         struct drm_i915_gem_mmap_gtt *args = data;
2139
2140         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2141 }
2142
2143 /* Immediately discard the backing storage */
2144 static void
2145 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2146 {
2147         i915_gem_object_free_mmap_offset(obj);
2148
2149         if (obj->base.filp == NULL)
2150                 return;
2151
2152         /* Our goal here is to return as much of the memory as
2153          * is possible back to the system as we are called from OOM.
2154          * To do this we must instruct the shmfs to drop all of its
2155          * backing pages, *now*.
2156          */
2157         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2158         obj->mm.madv = __I915_MADV_PURGED;
2159         obj->mm.pages = ERR_PTR(-EFAULT);
2160 }
2161
2162 /* Try to discard unwanted pages */
2163 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2164 {
2165         struct address_space *mapping;
2166
2167         lockdep_assert_held(&obj->mm.lock);
2168         GEM_BUG_ON(obj->mm.pages);
2169
2170         switch (obj->mm.madv) {
2171         case I915_MADV_DONTNEED:
2172                 i915_gem_object_truncate(obj);
2173         case __I915_MADV_PURGED:
2174                 return;
2175         }
2176
2177         if (obj->base.filp == NULL)
2178                 return;
2179
2180         mapping = obj->base.filp->f_mapping,
2181         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2182 }
2183
2184 static void
2185 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2186                               struct sg_table *pages)
2187 {
2188         struct sgt_iter sgt_iter;
2189         struct page *page;
2190
2191         __i915_gem_object_release_shmem(obj, pages, true);
2192
2193         i915_gem_gtt_finish_pages(obj, pages);
2194
2195         if (i915_gem_object_needs_bit17_swizzle(obj))
2196                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2197
2198         for_each_sgt_page(page, sgt_iter, pages) {
2199                 if (obj->mm.dirty)
2200                         set_page_dirty(page);
2201
2202                 if (obj->mm.madv == I915_MADV_WILLNEED)
2203                         mark_page_accessed(page);
2204
2205                 put_page(page);
2206         }
2207         obj->mm.dirty = false;
2208
2209         sg_free_table(pages);
2210         kfree(pages);
2211 }
2212
2213 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2214 {
2215         struct radix_tree_iter iter;
2216         void **slot;
2217
2218         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2219                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2220 }
2221
2222 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2223                                  enum i915_mm_subclass subclass)
2224 {
2225         struct sg_table *pages;
2226
2227         if (i915_gem_object_has_pinned_pages(obj))
2228                 return;
2229
2230         GEM_BUG_ON(obj->bind_count);
2231         if (!READ_ONCE(obj->mm.pages))
2232                 return;
2233
2234         /* May be called by shrinker from within get_pages() (on another bo) */
2235         mutex_lock_nested(&obj->mm.lock, subclass);
2236         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2237                 goto unlock;
2238
2239         /* ->put_pages might need to allocate memory for the bit17 swizzle
2240          * array, hence protect them from being reaped by removing them from gtt
2241          * lists early. */
2242         pages = fetch_and_zero(&obj->mm.pages);
2243         GEM_BUG_ON(!pages);
2244
2245         if (obj->mm.mapping) {
2246                 void *ptr;
2247
2248                 ptr = page_mask_bits(obj->mm.mapping);
2249                 if (is_vmalloc_addr(ptr))
2250                         vunmap(ptr);
2251                 else
2252                         kunmap(kmap_to_page(ptr));
2253
2254                 obj->mm.mapping = NULL;
2255         }
2256
2257         __i915_gem_object_reset_page_iter(obj);
2258
2259         if (!IS_ERR(pages))
2260                 obj->ops->put_pages(obj, pages);
2261
2262 unlock:
2263         mutex_unlock(&obj->mm.lock);
2264 }
2265
2266 static bool i915_sg_trim(struct sg_table *orig_st)
2267 {
2268         struct sg_table new_st;
2269         struct scatterlist *sg, *new_sg;
2270         unsigned int i;
2271
2272         if (orig_st->nents == orig_st->orig_nents)
2273                 return false;
2274
2275         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2276                 return false;
2277
2278         new_sg = new_st.sgl;
2279         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2280                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2281                 /* called before being DMA mapped, no need to copy sg->dma_* */
2282                 new_sg = sg_next(new_sg);
2283         }
2284         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2285
2286         sg_free_table(orig_st);
2287
2288         *orig_st = new_st;
2289         return true;
2290 }
2291
2292 static struct sg_table *
2293 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2294 {
2295         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2296         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2297         unsigned long i;
2298         struct address_space *mapping;
2299         struct sg_table *st;
2300         struct scatterlist *sg;
2301         struct sgt_iter sgt_iter;
2302         struct page *page;
2303         unsigned long last_pfn = 0;     /* suppress gcc warning */
2304         unsigned int max_segment;
2305         gfp_t noreclaim;
2306         int ret;
2307
2308         /* Assert that the object is not currently in any GPU domain. As it
2309          * wasn't in the GTT, there shouldn't be any way it could have been in
2310          * a GPU cache
2311          */
2312         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2313         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2314
2315         max_segment = swiotlb_max_segment();
2316         if (!max_segment)
2317                 max_segment = rounddown(UINT_MAX, PAGE_SIZE);
2318
2319         st = kmalloc(sizeof(*st), GFP_KERNEL);
2320         if (st == NULL)
2321                 return ERR_PTR(-ENOMEM);
2322
2323 rebuild_st:
2324         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2325                 kfree(st);
2326                 return ERR_PTR(-ENOMEM);
2327         }
2328
2329         /* Get the list of pages out of our struct file.  They'll be pinned
2330          * at this point until we release them.
2331          *
2332          * Fail silently without starting the shrinker
2333          */
2334         mapping = obj->base.filp->f_mapping;
2335         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2336         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2337
2338         sg = st->sgl;
2339         st->nents = 0;
2340         for (i = 0; i < page_count; i++) {
2341                 const unsigned int shrink[] = {
2342                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2343                         0,
2344                 }, *s = shrink;
2345                 gfp_t gfp = noreclaim;
2346
2347                 do {
2348                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2349                         if (likely(!IS_ERR(page)))
2350                                 break;
2351
2352                         if (!*s) {
2353                                 ret = PTR_ERR(page);
2354                                 goto err_sg;
2355                         }
2356
2357                         i915_gem_shrink(dev_priv, 2 * page_count, *s++);
2358                         cond_resched();
2359
2360                         /* We've tried hard to allocate the memory by reaping
2361                          * our own buffer, now let the real VM do its job and
2362                          * go down in flames if truly OOM.
2363                          *
2364                          * However, since graphics tend to be disposable,
2365                          * defer the oom here by reporting the ENOMEM back
2366                          * to userspace.
2367                          */
2368                         if (!*s) {
2369                                 /* reclaim and warn, but no oom */
2370                                 gfp = mapping_gfp_mask(mapping);
2371
2372                                 /* Our bo are always dirty and so we require
2373                                  * kswapd to reclaim our pages (direct reclaim
2374                                  * does not effectively begin pageout of our
2375                                  * buffers on its own). However, direct reclaim
2376                                  * only waits for kswapd when under allocation
2377                                  * congestion. So as a result __GFP_RECLAIM is
2378                                  * unreliable and fails to actually reclaim our
2379                                  * dirty pages -- unless you try over and over
2380                                  * again with !__GFP_NORETRY. However, we still
2381                                  * want to fail this allocation rather than
2382                                  * trigger the out-of-memory killer and for
2383                                  * this we want __GFP_RETRY_MAYFAIL.
2384                                  */
2385                                 gfp |= __GFP_RETRY_MAYFAIL;
2386                         }
2387                 } while (1);
2388
2389                 if (!i ||
2390                     sg->length >= max_segment ||
2391                     page_to_pfn(page) != last_pfn + 1) {
2392                         if (i)
2393                                 sg = sg_next(sg);
2394                         st->nents++;
2395                         sg_set_page(sg, page, PAGE_SIZE, 0);
2396                 } else {
2397                         sg->length += PAGE_SIZE;
2398                 }
2399                 last_pfn = page_to_pfn(page);
2400
2401                 /* Check that the i965g/gm workaround works. */
2402                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2403         }
2404         if (sg) /* loop terminated early; short sg table */
2405                 sg_mark_end(sg);
2406
2407         /* Trim unused sg entries to avoid wasting memory. */
2408         i915_sg_trim(st);
2409
2410         ret = i915_gem_gtt_prepare_pages(obj, st);
2411         if (ret) {
2412                 /* DMA remapping failed? One possible cause is that
2413                  * it could not reserve enough large entries, asking
2414                  * for PAGE_SIZE chunks instead may be helpful.
2415                  */
2416                 if (max_segment > PAGE_SIZE) {
2417                         for_each_sgt_page(page, sgt_iter, st)
2418                                 put_page(page);
2419                         sg_free_table(st);
2420
2421                         max_segment = PAGE_SIZE;
2422                         goto rebuild_st;
2423                 } else {
2424                         dev_warn(&dev_priv->drm.pdev->dev,
2425                                  "Failed to DMA remap %lu pages\n",
2426                                  page_count);
2427                         goto err_pages;
2428                 }
2429         }
2430
2431         if (i915_gem_object_needs_bit17_swizzle(obj))
2432                 i915_gem_object_do_bit_17_swizzle(obj, st);
2433
2434         return st;
2435
2436 err_sg:
2437         sg_mark_end(sg);
2438 err_pages:
2439         for_each_sgt_page(page, sgt_iter, st)
2440                 put_page(page);
2441         sg_free_table(st);
2442         kfree(st);
2443
2444         /* shmemfs first checks if there is enough memory to allocate the page
2445          * and reports ENOSPC should there be insufficient, along with the usual
2446          * ENOMEM for a genuine allocation failure.
2447          *
2448          * We use ENOSPC in our driver to mean that we have run out of aperture
2449          * space and so want to translate the error from shmemfs back to our
2450          * usual understanding of ENOMEM.
2451          */
2452         if (ret == -ENOSPC)
2453                 ret = -ENOMEM;
2454
2455         return ERR_PTR(ret);
2456 }
2457
2458 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2459                                  struct sg_table *pages)
2460 {
2461         lockdep_assert_held(&obj->mm.lock);
2462
2463         obj->mm.get_page.sg_pos = pages->sgl;
2464         obj->mm.get_page.sg_idx = 0;
2465
2466         obj->mm.pages = pages;
2467
2468         if (i915_gem_object_is_tiled(obj) &&
2469             to_i915(obj->base.dev)->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2470                 GEM_BUG_ON(obj->mm.quirked);
2471                 __i915_gem_object_pin_pages(obj);
2472                 obj->mm.quirked = true;
2473         }
2474 }
2475
2476 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2477 {
2478         struct sg_table *pages;
2479
2480         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2481
2482         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2483                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2484                 return -EFAULT;
2485         }
2486
2487         pages = obj->ops->get_pages(obj);
2488         if (unlikely(IS_ERR(pages)))
2489                 return PTR_ERR(pages);
2490
2491         __i915_gem_object_set_pages(obj, pages);
2492         return 0;
2493 }
2494
2495 /* Ensure that the associated pages are gathered from the backing storage
2496  * and pinned into our object. i915_gem_object_pin_pages() may be called
2497  * multiple times before they are released by a single call to
2498  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2499  * either as a result of memory pressure (reaping pages under the shrinker)
2500  * or as the object is itself released.
2501  */
2502 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2503 {
2504         int err;
2505
2506         err = mutex_lock_interruptible(&obj->mm.lock);
2507         if (err)
2508                 return err;
2509
2510         if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2511                 err = ____i915_gem_object_get_pages(obj);
2512                 if (err)
2513                         goto unlock;
2514
2515                 smp_mb__before_atomic();
2516         }
2517         atomic_inc(&obj->mm.pages_pin_count);
2518
2519 unlock:
2520         mutex_unlock(&obj->mm.lock);
2521         return err;
2522 }
2523
2524 /* The 'mapping' part of i915_gem_object_pin_map() below */
2525 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2526                                  enum i915_map_type type)
2527 {
2528         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2529         struct sg_table *sgt = obj->mm.pages;
2530         struct sgt_iter sgt_iter;
2531         struct page *page;
2532         struct page *stack_pages[32];
2533         struct page **pages = stack_pages;
2534         unsigned long i = 0;
2535         pgprot_t pgprot;
2536         void *addr;
2537
2538         /* A single page can always be kmapped */
2539         if (n_pages == 1 && type == I915_MAP_WB)
2540                 return kmap(sg_page(sgt->sgl));
2541
2542         if (n_pages > ARRAY_SIZE(stack_pages)) {
2543                 /* Too big for stack -- allocate temporary array instead */
2544                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_TEMPORARY);
2545                 if (!pages)
2546                         return NULL;
2547         }
2548
2549         for_each_sgt_page(page, sgt_iter, sgt)
2550                 pages[i++] = page;
2551
2552         /* Check that we have the expected number of pages */
2553         GEM_BUG_ON(i != n_pages);
2554
2555         switch (type) {
2556         case I915_MAP_WB:
2557                 pgprot = PAGE_KERNEL;
2558                 break;
2559         case I915_MAP_WC:
2560                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2561                 break;
2562         }
2563         addr = vmap(pages, n_pages, 0, pgprot);
2564
2565         if (pages != stack_pages)
2566                 kvfree(pages);
2567
2568         return addr;
2569 }
2570
2571 /* get, pin, and map the pages of the object into kernel space */
2572 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2573                               enum i915_map_type type)
2574 {
2575         enum i915_map_type has_type;
2576         bool pinned;
2577         void *ptr;
2578         int ret;
2579
2580         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2581
2582         ret = mutex_lock_interruptible(&obj->mm.lock);
2583         if (ret)
2584                 return ERR_PTR(ret);
2585
2586         pinned = true;
2587         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2588                 if (unlikely(IS_ERR_OR_NULL(obj->mm.pages))) {
2589                         ret = ____i915_gem_object_get_pages(obj);
2590                         if (ret)
2591                                 goto err_unlock;
2592
2593                         smp_mb__before_atomic();
2594                 }
2595                 atomic_inc(&obj->mm.pages_pin_count);
2596                 pinned = false;
2597         }
2598         GEM_BUG_ON(!obj->mm.pages);
2599
2600         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2601         if (ptr && has_type != type) {
2602                 if (pinned) {
2603                         ret = -EBUSY;
2604                         goto err_unpin;
2605                 }
2606
2607                 if (is_vmalloc_addr(ptr))
2608                         vunmap(ptr);
2609                 else
2610                         kunmap(kmap_to_page(ptr));
2611
2612                 ptr = obj->mm.mapping = NULL;
2613         }
2614
2615         if (!ptr) {
2616                 ptr = i915_gem_object_map(obj, type);
2617                 if (!ptr) {
2618                         ret = -ENOMEM;
2619                         goto err_unpin;
2620                 }
2621
2622                 obj->mm.mapping = page_pack_bits(ptr, type);
2623         }
2624
2625 out_unlock:
2626         mutex_unlock(&obj->mm.lock);
2627         return ptr;
2628
2629 err_unpin:
2630         atomic_dec(&obj->mm.pages_pin_count);
2631 err_unlock:
2632         ptr = ERR_PTR(ret);
2633         goto out_unlock;
2634 }
2635
2636 static int
2637 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2638                            const struct drm_i915_gem_pwrite *arg)
2639 {
2640         struct address_space *mapping = obj->base.filp->f_mapping;
2641         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2642         u64 remain, offset;
2643         unsigned int pg;
2644
2645         /* Before we instantiate/pin the backing store for our use, we
2646          * can prepopulate the shmemfs filp efficiently using a write into
2647          * the pagecache. We avoid the penalty of instantiating all the
2648          * pages, important if the user is just writing to a few and never
2649          * uses the object on the GPU, and using a direct write into shmemfs
2650          * allows it to avoid the cost of retrieving a page (either swapin
2651          * or clearing-before-use) before it is overwritten.
2652          */
2653         if (READ_ONCE(obj->mm.pages))
2654                 return -ENODEV;
2655
2656         /* Before the pages are instantiated the object is treated as being
2657          * in the CPU domain. The pages will be clflushed as required before
2658          * use, and we can freely write into the pages directly. If userspace
2659          * races pwrite with any other operation; corruption will ensue -
2660          * that is userspace's prerogative!
2661          */
2662
2663         remain = arg->size;
2664         offset = arg->offset;
2665         pg = offset_in_page(offset);
2666
2667         do {
2668                 unsigned int len, unwritten;
2669                 struct page *page;
2670                 void *data, *vaddr;
2671                 int err;
2672
2673                 len = PAGE_SIZE - pg;
2674                 if (len > remain)
2675                         len = remain;
2676
2677                 err = pagecache_write_begin(obj->base.filp, mapping,
2678                                             offset, len, 0,
2679                                             &page, &data);
2680                 if (err < 0)
2681                         return err;
2682
2683                 vaddr = kmap(page);
2684                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2685                 kunmap(page);
2686
2687                 err = pagecache_write_end(obj->base.filp, mapping,
2688                                           offset, len, len - unwritten,
2689                                           page, data);
2690                 if (err < 0)
2691                         return err;
2692
2693                 if (unwritten)
2694                         return -EFAULT;
2695
2696                 remain -= len;
2697                 user_data += len;
2698                 offset += len;
2699                 pg = 0;
2700         } while (remain);
2701
2702         return 0;
2703 }
2704
2705 static bool ban_context(const struct i915_gem_context *ctx,
2706                         unsigned int score)
2707 {
2708         return (i915_gem_context_is_bannable(ctx) &&
2709                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2710 }
2711
2712 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2713 {
2714         unsigned int score;
2715         bool banned;
2716
2717         atomic_inc(&ctx->guilty_count);
2718
2719         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2720         banned = ban_context(ctx, score);
2721         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2722                          ctx->name, score, yesno(banned));
2723         if (!banned)
2724                 return;
2725
2726         i915_gem_context_set_banned(ctx);
2727         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2728                 atomic_inc(&ctx->file_priv->context_bans);
2729                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2730                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2731         }
2732 }
2733
2734 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2735 {
2736         atomic_inc(&ctx->active_count);
2737 }
2738
2739 struct drm_i915_gem_request *
2740 i915_gem_find_active_request(struct intel_engine_cs *engine)
2741 {
2742         struct drm_i915_gem_request *request, *active = NULL;
2743         unsigned long flags;
2744
2745         /* We are called by the error capture and reset at a random
2746          * point in time. In particular, note that neither is crucially
2747          * ordered with an interrupt. After a hang, the GPU is dead and we
2748          * assume that no more writes can happen (we waited long enough for
2749          * all writes that were in transaction to be flushed) - adding an
2750          * extra delay for a recent interrupt is pointless. Hence, we do
2751          * not need an engine->irq_seqno_barrier() before the seqno reads.
2752          */
2753         spin_lock_irqsave(&engine->timeline->lock, flags);
2754         list_for_each_entry(request, &engine->timeline->requests, link) {
2755                 if (__i915_gem_request_completed(request,
2756                                                  request->global_seqno))
2757                         continue;
2758
2759                 GEM_BUG_ON(request->engine != engine);
2760                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2761                                     &request->fence.flags));
2762
2763                 active = request;
2764                 break;
2765         }
2766         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2767
2768         return active;
2769 }
2770
2771 static bool engine_stalled(struct intel_engine_cs *engine)
2772 {
2773         if (!engine->hangcheck.stalled)
2774                 return false;
2775
2776         /* Check for possible seqno movement after hang declaration */
2777         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2778                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2779                 return false;
2780         }
2781
2782         return true;
2783 }
2784
2785 /*
2786  * Ensure irq handler finishes, and not run again.
2787  * Also return the active request so that we only search for it once.
2788  */
2789 struct drm_i915_gem_request *
2790 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2791 {
2792         struct drm_i915_gem_request *request = NULL;
2793
2794         /* Prevent the signaler thread from updating the request
2795          * state (by calling dma_fence_signal) as we are processing
2796          * the reset. The write from the GPU of the seqno is
2797          * asynchronous and the signaler thread may see a different
2798          * value to us and declare the request complete, even though
2799          * the reset routine have picked that request as the active
2800          * (incomplete) request. This conflict is not handled
2801          * gracefully!
2802          */
2803         kthread_park(engine->breadcrumbs.signaler);
2804
2805         /* Prevent request submission to the hardware until we have
2806          * completed the reset in i915_gem_reset_finish(). If a request
2807          * is completed by one engine, it may then queue a request
2808          * to a second via its engine->irq_tasklet *just* as we are
2809          * calling engine->init_hw() and also writing the ELSP.
2810          * Turning off the engine->irq_tasklet until the reset is over
2811          * prevents the race.
2812          */
2813         tasklet_kill(&engine->irq_tasklet);
2814         tasklet_disable(&engine->irq_tasklet);
2815
2816         if (engine->irq_seqno_barrier)
2817                 engine->irq_seqno_barrier(engine);
2818
2819         request = i915_gem_find_active_request(engine);
2820         if (request && request->fence.error == -EIO)
2821                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2822
2823         return request;
2824 }
2825
2826 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2827 {
2828         struct intel_engine_cs *engine;
2829         struct drm_i915_gem_request *request;
2830         enum intel_engine_id id;
2831         int err = 0;
2832
2833         for_each_engine(engine, dev_priv, id) {
2834                 request = i915_gem_reset_prepare_engine(engine);
2835                 if (IS_ERR(request)) {
2836                         err = PTR_ERR(request);
2837                         continue;
2838                 }
2839
2840                 engine->hangcheck.active_request = request;
2841         }
2842
2843         i915_gem_revoke_fences(dev_priv);
2844
2845         return err;
2846 }
2847
2848 static void skip_request(struct drm_i915_gem_request *request)
2849 {
2850         void *vaddr = request->ring->vaddr;
2851         u32 head;
2852
2853         /* As this request likely depends on state from the lost
2854          * context, clear out all the user operations leaving the
2855          * breadcrumb at the end (so we get the fence notifications).
2856          */
2857         head = request->head;
2858         if (request->postfix < head) {
2859                 memset(vaddr + head, 0, request->ring->size - head);
2860                 head = 0;
2861         }
2862         memset(vaddr + head, 0, request->postfix - head);
2863
2864         dma_fence_set_error(&request->fence, -EIO);
2865 }
2866
2867 static void engine_skip_context(struct drm_i915_gem_request *request)
2868 {
2869         struct intel_engine_cs *engine = request->engine;
2870         struct i915_gem_context *hung_ctx = request->ctx;
2871         struct intel_timeline *timeline;
2872         unsigned long flags;
2873
2874         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2875
2876         spin_lock_irqsave(&engine->timeline->lock, flags);
2877         spin_lock(&timeline->lock);
2878
2879         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2880                 if (request->ctx == hung_ctx)
2881                         skip_request(request);
2882
2883         list_for_each_entry(request, &timeline->requests, link)
2884                 skip_request(request);
2885
2886         spin_unlock(&timeline->lock);
2887         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2888 }
2889
2890 /* Returns the request if it was guilty of the hang */
2891 static struct drm_i915_gem_request *
2892 i915_gem_reset_request(struct intel_engine_cs *engine,
2893                        struct drm_i915_gem_request *request)
2894 {
2895         /* The guilty request will get skipped on a hung engine.
2896          *
2897          * Users of client default contexts do not rely on logical
2898          * state preserved between batches so it is safe to execute
2899          * queued requests following the hang. Non default contexts
2900          * rely on preserved state, so skipping a batch loses the
2901          * evolution of the state and it needs to be considered corrupted.
2902          * Executing more queued batches on top of corrupted state is
2903          * risky. But we take the risk by trying to advance through
2904          * the queued requests in order to make the client behaviour
2905          * more predictable around resets, by not throwing away random
2906          * amount of batches it has prepared for execution. Sophisticated
2907          * clients can use gem_reset_stats_ioctl and dma fence status
2908          * (exported via sync_file info ioctl on explicit fences) to observe
2909          * when it loses the context state and should rebuild accordingly.
2910          *
2911          * The context ban, and ultimately the client ban, mechanism are safety
2912          * valves if client submission ends up resulting in nothing more than
2913          * subsequent hangs.
2914          */
2915
2916         if (engine_stalled(engine)) {
2917                 i915_gem_context_mark_guilty(request->ctx);
2918                 skip_request(request);
2919
2920                 /* If this context is now banned, skip all pending requests. */
2921                 if (i915_gem_context_is_banned(request->ctx))
2922                         engine_skip_context(request);
2923         } else {
2924                 /*
2925                  * Since this is not the hung engine, it may have advanced
2926                  * since the hang declaration. Double check by refinding
2927                  * the active request at the time of the reset.
2928                  */
2929                 request = i915_gem_find_active_request(engine);
2930                 if (request) {
2931                         i915_gem_context_mark_innocent(request->ctx);
2932                         dma_fence_set_error(&request->fence, -EAGAIN);
2933
2934                         /* Rewind the engine to replay the incomplete rq */
2935                         spin_lock_irq(&engine->timeline->lock);
2936                         request = list_prev_entry(request, link);
2937                         if (&request->link == &engine->timeline->requests)
2938                                 request = NULL;
2939                         spin_unlock_irq(&engine->timeline->lock);
2940                 }
2941         }
2942
2943         return request;
2944 }
2945
2946 void i915_gem_reset_engine(struct intel_engine_cs *engine,
2947                            struct drm_i915_gem_request *request)
2948 {
2949         engine->irq_posted = 0;
2950
2951         if (request)
2952                 request = i915_gem_reset_request(engine, request);
2953
2954         if (request) {
2955                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
2956                                  engine->name, request->global_seqno);
2957         }
2958
2959         /* Setup the CS to resume from the breadcrumb of the hung request */
2960         engine->reset_hw(engine, request);
2961 }
2962
2963 void i915_gem_reset(struct drm_i915_private *dev_priv)
2964 {
2965         struct intel_engine_cs *engine;
2966         enum intel_engine_id id;
2967
2968         lockdep_assert_held(&dev_priv->drm.struct_mutex);
2969
2970         i915_gem_retire_requests(dev_priv);
2971
2972         for_each_engine(engine, dev_priv, id) {
2973                 struct i915_gem_context *ctx;
2974
2975                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
2976                 ctx = fetch_and_zero(&engine->last_retired_context);
2977                 if (ctx)
2978                         engine->context_unpin(engine, ctx);
2979         }
2980
2981         i915_gem_restore_fences(dev_priv);
2982
2983         if (dev_priv->gt.awake) {
2984                 intel_sanitize_gt_powersave(dev_priv);
2985                 intel_enable_gt_powersave(dev_priv);
2986                 if (INTEL_GEN(dev_priv) >= 6)
2987                         gen6_rps_busy(dev_priv);
2988         }
2989 }
2990
2991 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
2992 {
2993         tasklet_enable(&engine->irq_tasklet);
2994         kthread_unpark(engine->breadcrumbs.signaler);
2995 }
2996
2997 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
2998 {
2999         struct intel_engine_cs *engine;
3000         enum intel_engine_id id;
3001
3002         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3003
3004         for_each_engine(engine, dev_priv, id) {
3005                 engine->hangcheck.active_request = NULL;
3006                 i915_gem_reset_finish_engine(engine);
3007         }
3008 }
3009
3010 static void nop_submit_request(struct drm_i915_gem_request *request)
3011 {
3012         GEM_BUG_ON(!i915_terminally_wedged(&request->i915->gpu_error));
3013         dma_fence_set_error(&request->fence, -EIO);
3014         i915_gem_request_submit(request);
3015         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3016 }
3017
3018 static void engine_set_wedged(struct intel_engine_cs *engine)
3019 {
3020         struct drm_i915_gem_request *request;
3021         unsigned long flags;
3022
3023         /* We need to be sure that no thread is running the old callback as
3024          * we install the nop handler (otherwise we would submit a request
3025          * to hardware that will never complete). In order to prevent this
3026          * race, we wait until the machine is idle before making the swap
3027          * (using stop_machine()).
3028          */
3029         engine->submit_request = nop_submit_request;
3030
3031         /* Mark all executing requests as skipped */
3032         spin_lock_irqsave(&engine->timeline->lock, flags);
3033         list_for_each_entry(request, &engine->timeline->requests, link)
3034                 if (!i915_gem_request_completed(request))
3035                         dma_fence_set_error(&request->fence, -EIO);
3036         spin_unlock_irqrestore(&engine->timeline->lock, flags);
3037
3038         /*
3039          * Clear the execlists queue up before freeing the requests, as those
3040          * are the ones that keep the context and ringbuffer backing objects
3041          * pinned in place.
3042          */
3043
3044         if (i915.enable_execlists) {
3045                 struct execlist_port *port = engine->execlist_port;
3046                 unsigned long flags;
3047                 unsigned int n;
3048
3049                 spin_lock_irqsave(&engine->timeline->lock, flags);
3050
3051                 for (n = 0; n < ARRAY_SIZE(engine->execlist_port); n++)
3052                         i915_gem_request_put(port_request(&port[n]));
3053                 memset(engine->execlist_port, 0, sizeof(engine->execlist_port));
3054                 engine->execlist_queue = RB_ROOT;
3055                 engine->execlist_first = NULL;
3056
3057                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3058
3059                 /* The port is checked prior to scheduling a tasklet, but
3060                  * just in case we have suspended the tasklet to do the
3061                  * wedging make sure that when it wakes, it decides there
3062                  * is no work to do by clearing the irq_posted bit.
3063                  */
3064                 clear_bit(ENGINE_IRQ_EXECLIST, &engine->irq_posted);
3065         }
3066
3067         /* Mark all pending requests as complete so that any concurrent
3068          * (lockless) lookup doesn't try and wait upon the request as we
3069          * reset it.
3070          */
3071         intel_engine_init_global_seqno(engine,
3072                                        intel_engine_last_submit(engine));
3073 }
3074
3075 static int __i915_gem_set_wedged_BKL(void *data)
3076 {
3077         struct drm_i915_private *i915 = data;
3078         struct intel_engine_cs *engine;
3079         enum intel_engine_id id;
3080
3081         for_each_engine(engine, i915, id)
3082                 engine_set_wedged(engine);
3083
3084         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3085         wake_up_all(&i915->gpu_error.reset_queue);
3086
3087         return 0;
3088 }
3089
3090 void i915_gem_set_wedged(struct drm_i915_private *dev_priv)
3091 {
3092         stop_machine(__i915_gem_set_wedged_BKL, dev_priv, NULL);
3093 }
3094
3095 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3096 {
3097         struct i915_gem_timeline *tl;
3098         int i;
3099
3100         lockdep_assert_held(&i915->drm.struct_mutex);
3101         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3102                 return true;
3103
3104         /* Before unwedging, make sure that all pending operations
3105          * are flushed and errored out - we may have requests waiting upon
3106          * third party fences. We marked all inflight requests as EIO, and
3107          * every execbuf since returned EIO, for consistency we want all
3108          * the currently pending requests to also be marked as EIO, which
3109          * is done inside our nop_submit_request - and so we must wait.
3110          *
3111          * No more can be submitted until we reset the wedged bit.
3112          */
3113         list_for_each_entry(tl, &i915->gt.timelines, link) {
3114                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3115                         struct drm_i915_gem_request *rq;
3116
3117                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3118                                                   &i915->drm.struct_mutex);
3119                         if (!rq)
3120                                 continue;
3121
3122                         /* We can't use our normal waiter as we want to
3123                          * avoid recursively trying to handle the current
3124                          * reset. The basic dma_fence_default_wait() installs
3125                          * a callback for dma_fence_signal(), which is
3126                          * triggered by our nop handler (indirectly, the
3127                          * callback enables the signaler thread which is
3128                          * woken by the nop_submit_request() advancing the seqno
3129                          * and when the seqno passes the fence, the signaler
3130                          * then signals the fence waking us up).
3131                          */
3132                         if (dma_fence_default_wait(&rq->fence, true,
3133                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3134                                 return false;
3135                 }
3136         }
3137
3138         /* Undo nop_submit_request. We prevent all new i915 requests from
3139          * being queued (by disallowing execbuf whilst wedged) so having
3140          * waited for all active requests above, we know the system is idle
3141          * and do not have to worry about a thread being inside
3142          * engine->submit_request() as we swap over. So unlike installing
3143          * the nop_submit_request on reset, we can do this from normal
3144          * context and do not require stop_machine().
3145          */
3146         intel_engines_reset_default_submission(i915);
3147         i915_gem_contexts_lost(i915);
3148
3149         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3150         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3151
3152         return true;
3153 }
3154
3155 static void
3156 i915_gem_retire_work_handler(struct work_struct *work)
3157 {
3158         struct drm_i915_private *dev_priv =
3159                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3160         struct drm_device *dev = &dev_priv->drm;
3161
3162         /* Come back later if the device is busy... */
3163         if (mutex_trylock(&dev->struct_mutex)) {
3164                 i915_gem_retire_requests(dev_priv);
3165                 mutex_unlock(&dev->struct_mutex);
3166         }
3167
3168         /* Keep the retire handler running until we are finally idle.
3169          * We do not need to do this test under locking as in the worst-case
3170          * we queue the retire worker once too often.
3171          */
3172         if (READ_ONCE(dev_priv->gt.awake)) {
3173                 i915_queue_hangcheck(dev_priv);
3174                 queue_delayed_work(dev_priv->wq,
3175                                    &dev_priv->gt.retire_work,
3176                                    round_jiffies_up_relative(HZ));
3177         }
3178 }
3179
3180 static void
3181 i915_gem_idle_work_handler(struct work_struct *work)
3182 {
3183         struct drm_i915_private *dev_priv =
3184                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3185         struct drm_device *dev = &dev_priv->drm;
3186         bool rearm_hangcheck;
3187
3188         if (!READ_ONCE(dev_priv->gt.awake))
3189                 return;
3190
3191         /*
3192          * Wait for last execlists context complete, but bail out in case a
3193          * new request is submitted.
3194          */
3195         wait_for(intel_engines_are_idle(dev_priv), 10);
3196         if (READ_ONCE(dev_priv->gt.active_requests))
3197                 return;
3198
3199         rearm_hangcheck =
3200                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3201
3202         if (!mutex_trylock(&dev->struct_mutex)) {
3203                 /* Currently busy, come back later */
3204                 mod_delayed_work(dev_priv->wq,
3205                                  &dev_priv->gt.idle_work,
3206                                  msecs_to_jiffies(50));
3207                 goto out_rearm;
3208         }
3209
3210         /*
3211          * New request retired after this work handler started, extend active
3212          * period until next instance of the work.
3213          */
3214         if (work_pending(work))
3215                 goto out_unlock;
3216
3217         if (dev_priv->gt.active_requests)
3218                 goto out_unlock;
3219
3220         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3221                 DRM_ERROR("Timeout waiting for engines to idle\n");
3222
3223         intel_engines_mark_idle(dev_priv);
3224         i915_gem_timelines_mark_idle(dev_priv);
3225
3226         GEM_BUG_ON(!dev_priv->gt.awake);
3227         dev_priv->gt.awake = false;
3228         rearm_hangcheck = false;
3229
3230         if (INTEL_GEN(dev_priv) >= 6)
3231                 gen6_rps_idle(dev_priv);
3232         intel_runtime_pm_put(dev_priv);
3233 out_unlock:
3234         mutex_unlock(&dev->struct_mutex);
3235
3236 out_rearm:
3237         if (rearm_hangcheck) {
3238                 GEM_BUG_ON(!dev_priv->gt.awake);
3239                 i915_queue_hangcheck(dev_priv);
3240         }
3241 }
3242
3243 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3244 {
3245         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3246         struct drm_i915_file_private *fpriv = file->driver_priv;
3247         struct i915_vma *vma, *vn;
3248
3249         mutex_lock(&obj->base.dev->struct_mutex);
3250         list_for_each_entry_safe(vma, vn, &obj->vma_list, obj_link)
3251                 if (vma->vm->file == fpriv)
3252                         i915_vma_close(vma);
3253
3254         vma = obj->vma_hashed;
3255         if (vma && vma->ctx->file_priv == fpriv)
3256                 i915_vma_unlink_ctx(vma);
3257
3258         if (i915_gem_object_is_active(obj) &&
3259             !i915_gem_object_has_active_reference(obj)) {
3260                 i915_gem_object_set_active_reference(obj);
3261                 i915_gem_object_get(obj);
3262         }
3263         mutex_unlock(&obj->base.dev->struct_mutex);
3264 }
3265
3266 static unsigned long to_wait_timeout(s64 timeout_ns)
3267 {
3268         if (timeout_ns < 0)
3269                 return MAX_SCHEDULE_TIMEOUT;
3270
3271         if (timeout_ns == 0)
3272                 return 0;
3273
3274         return nsecs_to_jiffies_timeout(timeout_ns);
3275 }
3276
3277 /**
3278  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3279  * @dev: drm device pointer
3280  * @data: ioctl data blob
3281  * @file: drm file pointer
3282  *
3283  * Returns 0 if successful, else an error is returned with the remaining time in
3284  * the timeout parameter.
3285  *  -ETIME: object is still busy after timeout
3286  *  -ERESTARTSYS: signal interrupted the wait
3287  *  -ENONENT: object doesn't exist
3288  * Also possible, but rare:
3289  *  -EAGAIN: incomplete, restart syscall
3290  *  -ENOMEM: damn
3291  *  -ENODEV: Internal IRQ fail
3292  *  -E?: The add request failed
3293  *
3294  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3295  * non-zero timeout parameter the wait ioctl will wait for the given number of
3296  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3297  * without holding struct_mutex the object may become re-busied before this
3298  * function completes. A similar but shorter * race condition exists in the busy
3299  * ioctl
3300  */
3301 int
3302 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3303 {
3304         struct drm_i915_gem_wait *args = data;
3305         struct drm_i915_gem_object *obj;
3306         ktime_t start;
3307         long ret;
3308
3309         if (args->flags != 0)
3310                 return -EINVAL;
3311
3312         obj = i915_gem_object_lookup(file, args->bo_handle);
3313         if (!obj)
3314                 return -ENOENT;
3315
3316         start = ktime_get();
3317
3318         ret = i915_gem_object_wait(obj,
3319                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3320                                    to_wait_timeout(args->timeout_ns),
3321                                    to_rps_client(file));
3322
3323         if (args->timeout_ns > 0) {
3324                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3325                 if (args->timeout_ns < 0)
3326                         args->timeout_ns = 0;
3327
3328                 /*
3329                  * Apparently ktime isn't accurate enough and occasionally has a
3330                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3331                  * things up to make the test happy. We allow up to 1 jiffy.
3332                  *
3333                  * This is a regression from the timespec->ktime conversion.
3334                  */
3335                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3336                         args->timeout_ns = 0;
3337
3338                 /* Asked to wait beyond the jiffie/scheduler precision? */
3339                 if (ret == -ETIME && args->timeout_ns)
3340                         ret = -EAGAIN;
3341         }
3342
3343         i915_gem_object_put(obj);
3344         return ret;
3345 }
3346
3347 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3348 {
3349         int ret, i;
3350
3351         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3352                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3353                 if (ret)
3354                         return ret;
3355         }
3356
3357         return 0;
3358 }
3359
3360 static int wait_for_engine(struct intel_engine_cs *engine, int timeout_ms)
3361 {
3362         return wait_for(intel_engine_is_idle(engine), timeout_ms);
3363 }
3364
3365 static int wait_for_engines(struct drm_i915_private *i915)
3366 {
3367         struct intel_engine_cs *engine;
3368         enum intel_engine_id id;
3369
3370         for_each_engine(engine, i915, id) {
3371                 if (GEM_WARN_ON(wait_for_engine(engine, 50))) {
3372                         i915_gem_set_wedged(i915);
3373                         return -EIO;
3374                 }
3375
3376                 GEM_BUG_ON(intel_engine_get_seqno(engine) !=
3377                            intel_engine_last_submit(engine));
3378         }
3379
3380         return 0;
3381 }
3382
3383 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3384 {
3385         int ret;
3386
3387         /* If the device is asleep, we have no requests outstanding */
3388         if (!READ_ONCE(i915->gt.awake))
3389                 return 0;
3390
3391         if (flags & I915_WAIT_LOCKED) {
3392                 struct i915_gem_timeline *tl;
3393
3394                 lockdep_assert_held(&i915->drm.struct_mutex);
3395
3396                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3397                         ret = wait_for_timeline(tl, flags);
3398                         if (ret)
3399                                 return ret;
3400                 }
3401
3402                 i915_gem_retire_requests(i915);
3403                 GEM_BUG_ON(i915->gt.active_requests);
3404
3405                 ret = wait_for_engines(i915);
3406         } else {
3407                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3408         }
3409
3410         return ret;
3411 }
3412
3413 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3414 {
3415         /*
3416          * We manually flush the CPU domain so that we can override and
3417          * force the flush for the display, and perform it asyncrhonously.
3418          */
3419         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3420         if (obj->cache_dirty)
3421                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3422         obj->base.write_domain = 0;
3423 }
3424
3425 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3426 {
3427         if (!READ_ONCE(obj->pin_display))
3428                 return;
3429
3430         mutex_lock(&obj->base.dev->struct_mutex);
3431         __i915_gem_object_flush_for_display(obj);
3432         mutex_unlock(&obj->base.dev->struct_mutex);
3433 }
3434
3435 /**
3436  * Moves a single object to the WC read, and possibly write domain.
3437  * @obj: object to act on
3438  * @write: ask for write access or read only
3439  *
3440  * This function returns when the move is complete, including waiting on
3441  * flushes to occur.
3442  */
3443 int
3444 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3445 {
3446         int ret;
3447
3448         lockdep_assert_held(&obj->base.dev->struct_mutex);
3449
3450         ret = i915_gem_object_wait(obj,
3451                                    I915_WAIT_INTERRUPTIBLE |
3452                                    I915_WAIT_LOCKED |
3453                                    (write ? I915_WAIT_ALL : 0),
3454                                    MAX_SCHEDULE_TIMEOUT,
3455                                    NULL);
3456         if (ret)
3457                 return ret;
3458
3459         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3460                 return 0;
3461
3462         /* Flush and acquire obj->pages so that we are coherent through
3463          * direct access in memory with previous cached writes through
3464          * shmemfs and that our cache domain tracking remains valid.
3465          * For example, if the obj->filp was moved to swap without us
3466          * being notified and releasing the pages, we would mistakenly
3467          * continue to assume that the obj remained out of the CPU cached
3468          * domain.
3469          */
3470         ret = i915_gem_object_pin_pages(obj);
3471         if (ret)
3472                 return ret;
3473
3474         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3475
3476         /* Serialise direct access to this object with the barriers for
3477          * coherent writes from the GPU, by effectively invalidating the
3478          * WC domain upon first access.
3479          */
3480         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3481                 mb();
3482
3483         /* It should now be out of any other write domains, and we can update
3484          * the domain values for our changes.
3485          */
3486         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3487         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3488         if (write) {
3489                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3490                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3491                 obj->mm.dirty = true;
3492         }
3493
3494         i915_gem_object_unpin_pages(obj);
3495         return 0;
3496 }
3497
3498 /**
3499  * Moves a single object to the GTT read, and possibly write domain.
3500  * @obj: object to act on
3501  * @write: ask for write access or read only
3502  *
3503  * This function returns when the move is complete, including waiting on
3504  * flushes to occur.
3505  */
3506 int
3507 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3508 {
3509         int ret;
3510
3511         lockdep_assert_held(&obj->base.dev->struct_mutex);
3512
3513         ret = i915_gem_object_wait(obj,
3514                                    I915_WAIT_INTERRUPTIBLE |
3515                                    I915_WAIT_LOCKED |
3516                                    (write ? I915_WAIT_ALL : 0),
3517                                    MAX_SCHEDULE_TIMEOUT,
3518                                    NULL);
3519         if (ret)
3520                 return ret;
3521
3522         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3523                 return 0;
3524
3525         /* Flush and acquire obj->pages so that we are coherent through
3526          * direct access in memory with previous cached writes through
3527          * shmemfs and that our cache domain tracking remains valid.
3528          * For example, if the obj->filp was moved to swap without us
3529          * being notified and releasing the pages, we would mistakenly
3530          * continue to assume that the obj remained out of the CPU cached
3531          * domain.
3532          */
3533         ret = i915_gem_object_pin_pages(obj);
3534         if (ret)
3535                 return ret;
3536
3537         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3538
3539         /* Serialise direct access to this object with the barriers for
3540          * coherent writes from the GPU, by effectively invalidating the
3541          * GTT domain upon first access.
3542          */
3543         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3544                 mb();
3545
3546         /* It should now be out of any other write domains, and we can update
3547          * the domain values for our changes.
3548          */
3549         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3550         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3551         if (write) {
3552                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3553                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3554                 obj->mm.dirty = true;
3555         }
3556
3557         i915_gem_object_unpin_pages(obj);
3558         return 0;
3559 }
3560
3561 /**
3562  * Changes the cache-level of an object across all VMA.
3563  * @obj: object to act on
3564  * @cache_level: new cache level to set for the object
3565  *
3566  * After this function returns, the object will be in the new cache-level
3567  * across all GTT and the contents of the backing storage will be coherent,
3568  * with respect to the new cache-level. In order to keep the backing storage
3569  * coherent for all users, we only allow a single cache level to be set
3570  * globally on the object and prevent it from being changed whilst the
3571  * hardware is reading from the object. That is if the object is currently
3572  * on the scanout it will be set to uncached (or equivalent display
3573  * cache coherency) and all non-MOCS GPU access will also be uncached so
3574  * that all direct access to the scanout remains coherent.
3575  */
3576 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3577                                     enum i915_cache_level cache_level)
3578 {
3579         struct i915_vma *vma;
3580         int ret;
3581
3582         lockdep_assert_held(&obj->base.dev->struct_mutex);
3583
3584         if (obj->cache_level == cache_level)
3585                 return 0;
3586
3587         /* Inspect the list of currently bound VMA and unbind any that would
3588          * be invalid given the new cache-level. This is principally to
3589          * catch the issue of the CS prefetch crossing page boundaries and
3590          * reading an invalid PTE on older architectures.
3591          */
3592 restart:
3593         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3594                 if (!drm_mm_node_allocated(&vma->node))
3595                         continue;
3596
3597                 if (i915_vma_is_pinned(vma)) {
3598                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3599                         return -EBUSY;
3600                 }
3601
3602                 if (i915_gem_valid_gtt_space(vma, cache_level))
3603                         continue;
3604
3605                 ret = i915_vma_unbind(vma);
3606                 if (ret)
3607                         return ret;
3608
3609                 /* As unbinding may affect other elements in the
3610                  * obj->vma_list (due to side-effects from retiring
3611                  * an active vma), play safe and restart the iterator.
3612                  */
3613                 goto restart;
3614         }
3615
3616         /* We can reuse the existing drm_mm nodes but need to change the
3617          * cache-level on the PTE. We could simply unbind them all and
3618          * rebind with the correct cache-level on next use. However since
3619          * we already have a valid slot, dma mapping, pages etc, we may as
3620          * rewrite the PTE in the belief that doing so tramples upon less
3621          * state and so involves less work.
3622          */
3623         if (obj->bind_count) {
3624                 /* Before we change the PTE, the GPU must not be accessing it.
3625                  * If we wait upon the object, we know that all the bound
3626                  * VMA are no longer active.
3627                  */
3628                 ret = i915_gem_object_wait(obj,
3629                                            I915_WAIT_INTERRUPTIBLE |
3630                                            I915_WAIT_LOCKED |
3631                                            I915_WAIT_ALL,
3632                                            MAX_SCHEDULE_TIMEOUT,
3633                                            NULL);
3634                 if (ret)
3635                         return ret;
3636
3637                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3638                     cache_level != I915_CACHE_NONE) {
3639                         /* Access to snoopable pages through the GTT is
3640                          * incoherent and on some machines causes a hard
3641                          * lockup. Relinquish the CPU mmaping to force
3642                          * userspace to refault in the pages and we can
3643                          * then double check if the GTT mapping is still
3644                          * valid for that pointer access.
3645                          */
3646                         i915_gem_release_mmap(obj);
3647
3648                         /* As we no longer need a fence for GTT access,
3649                          * we can relinquish it now (and so prevent having
3650                          * to steal a fence from someone else on the next
3651                          * fence request). Note GPU activity would have
3652                          * dropped the fence as all snoopable access is
3653                          * supposed to be linear.
3654                          */
3655                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3656                                 ret = i915_vma_put_fence(vma);
3657                                 if (ret)
3658                                         return ret;
3659                         }
3660                 } else {
3661                         /* We either have incoherent backing store and
3662                          * so no GTT access or the architecture is fully
3663                          * coherent. In such cases, existing GTT mmaps
3664                          * ignore the cache bit in the PTE and we can
3665                          * rewrite it without confusing the GPU or having
3666                          * to force userspace to fault back in its mmaps.
3667                          */
3668                 }
3669
3670                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3671                         if (!drm_mm_node_allocated(&vma->node))
3672                                 continue;
3673
3674                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3675                         if (ret)
3676                                 return ret;
3677                 }
3678         }
3679
3680         list_for_each_entry(vma, &obj->vma_list, obj_link)
3681                 vma->node.color = cache_level;
3682         i915_gem_object_set_cache_coherency(obj, cache_level);
3683         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3684
3685         return 0;
3686 }
3687
3688 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3689                                struct drm_file *file)
3690 {
3691         struct drm_i915_gem_caching *args = data;
3692         struct drm_i915_gem_object *obj;
3693         int err = 0;
3694
3695         rcu_read_lock();
3696         obj = i915_gem_object_lookup_rcu(file, args->handle);
3697         if (!obj) {
3698                 err = -ENOENT;
3699                 goto out;
3700         }
3701
3702         switch (obj->cache_level) {
3703         case I915_CACHE_LLC:
3704         case I915_CACHE_L3_LLC:
3705                 args->caching = I915_CACHING_CACHED;
3706                 break;
3707
3708         case I915_CACHE_WT:
3709                 args->caching = I915_CACHING_DISPLAY;
3710                 break;
3711
3712         default:
3713                 args->caching = I915_CACHING_NONE;
3714                 break;
3715         }
3716 out:
3717         rcu_read_unlock();
3718         return err;
3719 }
3720
3721 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3722                                struct drm_file *file)
3723 {
3724         struct drm_i915_private *i915 = to_i915(dev);
3725         struct drm_i915_gem_caching *args = data;
3726         struct drm_i915_gem_object *obj;
3727         enum i915_cache_level level;
3728         int ret = 0;
3729
3730         switch (args->caching) {
3731         case I915_CACHING_NONE:
3732                 level = I915_CACHE_NONE;
3733                 break;
3734         case I915_CACHING_CACHED:
3735                 /*
3736                  * Due to a HW issue on BXT A stepping, GPU stores via a
3737                  * snooped mapping may leave stale data in a corresponding CPU
3738                  * cacheline, whereas normally such cachelines would get
3739                  * invalidated.
3740                  */
3741                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3742                         return -ENODEV;
3743
3744                 level = I915_CACHE_LLC;
3745                 break;
3746         case I915_CACHING_DISPLAY:
3747                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3748                 break;
3749         default:
3750                 return -EINVAL;
3751         }
3752
3753         obj = i915_gem_object_lookup(file, args->handle);
3754         if (!obj)
3755                 return -ENOENT;
3756
3757         if (obj->cache_level == level)
3758                 goto out;
3759
3760         ret = i915_gem_object_wait(obj,
3761                                    I915_WAIT_INTERRUPTIBLE,
3762                                    MAX_SCHEDULE_TIMEOUT,
3763                                    to_rps_client(file));
3764         if (ret)
3765                 goto out;
3766
3767         ret = i915_mutex_lock_interruptible(dev);
3768         if (ret)
3769                 goto out;
3770
3771         ret = i915_gem_object_set_cache_level(obj, level);
3772         mutex_unlock(&dev->struct_mutex);
3773
3774 out:
3775         i915_gem_object_put(obj);
3776         return ret;
3777 }
3778
3779 /*
3780  * Prepare buffer for display plane (scanout, cursors, etc).
3781  * Can be called from an uninterruptible phase (modesetting) and allows
3782  * any flushes to be pipelined (for pageflips).
3783  */
3784 struct i915_vma *
3785 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3786                                      u32 alignment,
3787                                      const struct i915_ggtt_view *view)
3788 {
3789         struct i915_vma *vma;
3790         int ret;
3791
3792         lockdep_assert_held(&obj->base.dev->struct_mutex);
3793
3794         /* Mark the pin_display early so that we account for the
3795          * display coherency whilst setting up the cache domains.
3796          */
3797         obj->pin_display++;
3798
3799         /* The display engine is not coherent with the LLC cache on gen6.  As
3800          * a result, we make sure that the pinning that is about to occur is
3801          * done with uncached PTEs. This is lowest common denominator for all
3802          * chipsets.
3803          *
3804          * However for gen6+, we could do better by using the GFDT bit instead
3805          * of uncaching, which would allow us to flush all the LLC-cached data
3806          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3807          */
3808         ret = i915_gem_object_set_cache_level(obj,
3809                                               HAS_WT(to_i915(obj->base.dev)) ?
3810                                               I915_CACHE_WT : I915_CACHE_NONE);
3811         if (ret) {
3812                 vma = ERR_PTR(ret);
3813                 goto err_unpin_display;
3814         }
3815
3816         /* As the user may map the buffer once pinned in the display plane
3817          * (e.g. libkms for the bootup splash), we have to ensure that we
3818          * always use map_and_fenceable for all scanout buffers. However,
3819          * it may simply be too big to fit into mappable, in which case
3820          * put it anyway and hope that userspace can cope (but always first
3821          * try to preserve the existing ABI).
3822          */
3823         vma = ERR_PTR(-ENOSPC);
3824         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3825                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3826                                                PIN_MAPPABLE | PIN_NONBLOCK);
3827         if (IS_ERR(vma)) {
3828                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3829                 unsigned int flags;
3830
3831                 /* Valleyview is definitely limited to scanning out the first
3832                  * 512MiB. Lets presume this behaviour was inherited from the
3833                  * g4x display engine and that all earlier gen are similarly
3834                  * limited. Testing suggests that it is a little more
3835                  * complicated than this. For example, Cherryview appears quite
3836                  * happy to scanout from anywhere within its global aperture.
3837                  */
3838                 flags = 0;
3839                 if (HAS_GMCH_DISPLAY(i915))
3840                         flags = PIN_MAPPABLE;
3841                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3842         }
3843         if (IS_ERR(vma))
3844                 goto err_unpin_display;
3845
3846         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3847
3848         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3849         __i915_gem_object_flush_for_display(obj);
3850         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3851
3852         /* It should now be out of any other write domains, and we can update
3853          * the domain values for our changes.
3854          */
3855         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3856
3857         return vma;
3858
3859 err_unpin_display:
3860         obj->pin_display--;
3861         return vma;
3862 }
3863
3864 void
3865 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3866 {
3867         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3868
3869         if (WARN_ON(vma->obj->pin_display == 0))
3870                 return;
3871
3872         if (--vma->obj->pin_display == 0)
3873                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3874
3875         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3876         i915_gem_object_bump_inactive_ggtt(vma->obj);
3877
3878         i915_vma_unpin(vma);
3879 }
3880
3881 /**
3882  * Moves a single object to the CPU read, and possibly write domain.
3883  * @obj: object to act on
3884  * @write: requesting write or read-only access
3885  *
3886  * This function returns when the move is complete, including waiting on
3887  * flushes to occur.
3888  */
3889 int
3890 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3891 {
3892         int ret;
3893
3894         lockdep_assert_held(&obj->base.dev->struct_mutex);
3895
3896         ret = i915_gem_object_wait(obj,
3897                                    I915_WAIT_INTERRUPTIBLE |
3898                                    I915_WAIT_LOCKED |
3899                                    (write ? I915_WAIT_ALL : 0),
3900                                    MAX_SCHEDULE_TIMEOUT,
3901                                    NULL);
3902         if (ret)
3903                 return ret;
3904
3905         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3906
3907         /* Flush the CPU cache if it's still invalid. */
3908         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3909                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
3910                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3911         }
3912
3913         /* It should now be out of any other write domains, and we can update
3914          * the domain values for our changes.
3915          */
3916         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3917
3918         /* If we're writing through the CPU, then the GPU read domains will
3919          * need to be invalidated at next use.
3920          */
3921         if (write)
3922                 __start_cpu_write(obj);
3923
3924         return 0;
3925 }
3926
3927 /* Throttle our rendering by waiting until the ring has completed our requests
3928  * emitted over 20 msec ago.
3929  *
3930  * Note that if we were to use the current jiffies each time around the loop,
3931  * we wouldn't escape the function with any frames outstanding if the time to
3932  * render a frame was over 20ms.
3933  *
3934  * This should get us reasonable parallelism between CPU and GPU but also
3935  * relatively low latency when blocking on a particular request to finish.
3936  */
3937 static int
3938 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3939 {
3940         struct drm_i915_private *dev_priv = to_i915(dev);
3941         struct drm_i915_file_private *file_priv = file->driver_priv;
3942         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
3943         struct drm_i915_gem_request *request, *target = NULL;
3944         long ret;
3945
3946         /* ABI: return -EIO if already wedged */
3947         if (i915_terminally_wedged(&dev_priv->gpu_error))
3948                 return -EIO;
3949
3950         spin_lock(&file_priv->mm.lock);
3951         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
3952                 if (time_after_eq(request->emitted_jiffies, recent_enough))
3953                         break;
3954
3955                 if (target) {
3956                         list_del(&target->client_link);
3957                         target->file_priv = NULL;
3958                 }
3959
3960                 target = request;
3961         }
3962         if (target)
3963                 i915_gem_request_get(target);
3964         spin_unlock(&file_priv->mm.lock);
3965
3966         if (target == NULL)
3967                 return 0;
3968
3969         ret = i915_wait_request(target,
3970                                 I915_WAIT_INTERRUPTIBLE,
3971                                 MAX_SCHEDULE_TIMEOUT);
3972         i915_gem_request_put(target);
3973
3974         return ret < 0 ? ret : 0;
3975 }
3976
3977 struct i915_vma *
3978 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
3979                          const struct i915_ggtt_view *view,
3980                          u64 size,
3981                          u64 alignment,
3982                          u64 flags)
3983 {
3984         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
3985         struct i915_address_space *vm = &dev_priv->ggtt.base;
3986         struct i915_vma *vma;
3987         int ret;
3988
3989         lockdep_assert_held(&obj->base.dev->struct_mutex);
3990
3991         vma = i915_vma_instance(obj, vm, view);
3992         if (unlikely(IS_ERR(vma)))
3993                 return vma;
3994
3995         if (i915_vma_misplaced(vma, size, alignment, flags)) {
3996                 if (flags & PIN_NONBLOCK &&
3997                     (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)))
3998                         return ERR_PTR(-ENOSPC);
3999
4000                 if (flags & PIN_MAPPABLE) {
4001                         /* If the required space is larger than the available
4002                          * aperture, we will not able to find a slot for the
4003                          * object and unbinding the object now will be in
4004                          * vain. Worse, doing so may cause us to ping-pong
4005                          * the object in and out of the Global GTT and
4006                          * waste a lot of cycles under the mutex.
4007                          */
4008                         if (vma->fence_size > dev_priv->ggtt.mappable_end)
4009                                 return ERR_PTR(-E2BIG);
4010
4011                         /* If NONBLOCK is set the caller is optimistically
4012                          * trying to cache the full object within the mappable
4013                          * aperture, and *must* have a fallback in place for
4014                          * situations where we cannot bind the object. We
4015                          * can be a little more lax here and use the fallback
4016                          * more often to avoid costly migrations of ourselves
4017                          * and other objects within the aperture.
4018                          *
4019                          * Half-the-aperture is used as a simple heuristic.
4020                          * More interesting would to do search for a free
4021                          * block prior to making the commitment to unbind.
4022                          * That caters for the self-harm case, and with a
4023                          * little more heuristics (e.g. NOFAULT, NOEVICT)
4024                          * we could try to minimise harm to others.
4025                          */
4026                         if (flags & PIN_NONBLOCK &&
4027                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4028                                 return ERR_PTR(-ENOSPC);
4029                 }
4030
4031                 WARN(i915_vma_is_pinned(vma),
4032                      "bo is already pinned in ggtt with incorrect alignment:"
4033                      " offset=%08x, req.alignment=%llx,"
4034                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4035                      i915_ggtt_offset(vma), alignment,
4036                      !!(flags & PIN_MAPPABLE),
4037                      i915_vma_is_map_and_fenceable(vma));
4038                 ret = i915_vma_unbind(vma);
4039                 if (ret)
4040                         return ERR_PTR(ret);
4041         }
4042
4043         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4044         if (ret)
4045                 return ERR_PTR(ret);
4046
4047         return vma;
4048 }
4049
4050 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4051 {
4052         /* Note that we could alias engines in the execbuf API, but
4053          * that would be very unwise as it prevents userspace from
4054          * fine control over engine selection. Ahem.
4055          *
4056          * This should be something like EXEC_MAX_ENGINE instead of
4057          * I915_NUM_ENGINES.
4058          */
4059         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4060         return 0x10000 << id;
4061 }
4062
4063 static __always_inline unsigned int __busy_write_id(unsigned int id)
4064 {
4065         /* The uABI guarantees an active writer is also amongst the read
4066          * engines. This would be true if we accessed the activity tracking
4067          * under the lock, but as we perform the lookup of the object and
4068          * its activity locklessly we can not guarantee that the last_write
4069          * being active implies that we have set the same engine flag from
4070          * last_read - hence we always set both read and write busy for
4071          * last_write.
4072          */
4073         return id | __busy_read_flag(id);
4074 }
4075
4076 static __always_inline unsigned int
4077 __busy_set_if_active(const struct dma_fence *fence,
4078                      unsigned int (*flag)(unsigned int id))
4079 {
4080         struct drm_i915_gem_request *rq;
4081
4082         /* We have to check the current hw status of the fence as the uABI
4083          * guarantees forward progress. We could rely on the idle worker
4084          * to eventually flush us, but to minimise latency just ask the
4085          * hardware.
4086          *
4087          * Note we only report on the status of native fences.
4088          */
4089         if (!dma_fence_is_i915(fence))
4090                 return 0;
4091
4092         /* opencode to_request() in order to avoid const warnings */
4093         rq = container_of(fence, struct drm_i915_gem_request, fence);
4094         if (i915_gem_request_completed(rq))
4095                 return 0;
4096
4097         return flag(rq->engine->uabi_id);
4098 }
4099
4100 static __always_inline unsigned int
4101 busy_check_reader(const struct dma_fence *fence)
4102 {
4103         return __busy_set_if_active(fence, __busy_read_flag);
4104 }
4105
4106 static __always_inline unsigned int
4107 busy_check_writer(const struct dma_fence *fence)
4108 {
4109         if (!fence)
4110                 return 0;
4111
4112         return __busy_set_if_active(fence, __busy_write_id);
4113 }
4114
4115 int
4116 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4117                     struct drm_file *file)
4118 {
4119         struct drm_i915_gem_busy *args = data;
4120         struct drm_i915_gem_object *obj;
4121         struct reservation_object_list *list;
4122         unsigned int seq;
4123         int err;
4124
4125         err = -ENOENT;
4126         rcu_read_lock();
4127         obj = i915_gem_object_lookup_rcu(file, args->handle);
4128         if (!obj)
4129                 goto out;
4130
4131         /* A discrepancy here is that we do not report the status of
4132          * non-i915 fences, i.e. even though we may report the object as idle,
4133          * a call to set-domain may still stall waiting for foreign rendering.
4134          * This also means that wait-ioctl may report an object as busy,
4135          * where busy-ioctl considers it idle.
4136          *
4137          * We trade the ability to warn of foreign fences to report on which
4138          * i915 engines are active for the object.
4139          *
4140          * Alternatively, we can trade that extra information on read/write
4141          * activity with
4142          *      args->busy =
4143          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4144          * to report the overall busyness. This is what the wait-ioctl does.
4145          *
4146          */
4147 retry:
4148         seq = raw_read_seqcount(&obj->resv->seq);
4149
4150         /* Translate the exclusive fence to the READ *and* WRITE engine */
4151         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4152
4153         /* Translate shared fences to READ set of engines */
4154         list = rcu_dereference(obj->resv->fence);
4155         if (list) {
4156                 unsigned int shared_count = list->shared_count, i;
4157
4158                 for (i = 0; i < shared_count; ++i) {
4159                         struct dma_fence *fence =
4160                                 rcu_dereference(list->shared[i]);
4161
4162                         args->busy |= busy_check_reader(fence);
4163                 }
4164         }
4165
4166         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4167                 goto retry;
4168
4169         err = 0;
4170 out:
4171         rcu_read_unlock();
4172         return err;
4173 }
4174
4175 int
4176 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4177                         struct drm_file *file_priv)
4178 {
4179         return i915_gem_ring_throttle(dev, file_priv);
4180 }
4181
4182 int
4183 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4184                        struct drm_file *file_priv)
4185 {
4186         struct drm_i915_private *dev_priv = to_i915(dev);
4187         struct drm_i915_gem_madvise *args = data;
4188         struct drm_i915_gem_object *obj;
4189         int err;
4190
4191         switch (args->madv) {
4192         case I915_MADV_DONTNEED:
4193         case I915_MADV_WILLNEED:
4194             break;
4195         default:
4196             return -EINVAL;
4197         }
4198
4199         obj = i915_gem_object_lookup(file_priv, args->handle);
4200         if (!obj)
4201                 return -ENOENT;
4202
4203         err = mutex_lock_interruptible(&obj->mm.lock);
4204         if (err)
4205                 goto out;
4206
4207         if (obj->mm.pages &&
4208             i915_gem_object_is_tiled(obj) &&
4209             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4210                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4211                         GEM_BUG_ON(!obj->mm.quirked);
4212                         __i915_gem_object_unpin_pages(obj);
4213                         obj->mm.quirked = false;
4214                 }
4215                 if (args->madv == I915_MADV_WILLNEED) {
4216                         GEM_BUG_ON(obj->mm.quirked);
4217                         __i915_gem_object_pin_pages(obj);
4218                         obj->mm.quirked = true;
4219                 }
4220         }
4221
4222         if (obj->mm.madv != __I915_MADV_PURGED)
4223                 obj->mm.madv = args->madv;
4224
4225         /* if the object is no longer attached, discard its backing storage */
4226         if (obj->mm.madv == I915_MADV_DONTNEED && !obj->mm.pages)
4227                 i915_gem_object_truncate(obj);
4228
4229         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4230         mutex_unlock(&obj->mm.lock);
4231
4232 out:
4233         i915_gem_object_put(obj);
4234         return err;
4235 }
4236
4237 static void
4238 frontbuffer_retire(struct i915_gem_active *active,
4239                    struct drm_i915_gem_request *request)
4240 {
4241         struct drm_i915_gem_object *obj =
4242                 container_of(active, typeof(*obj), frontbuffer_write);
4243
4244         intel_fb_obj_flush(obj, ORIGIN_CS);
4245 }
4246
4247 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4248                           const struct drm_i915_gem_object_ops *ops)
4249 {
4250         mutex_init(&obj->mm.lock);
4251
4252         INIT_LIST_HEAD(&obj->global_link);
4253         INIT_LIST_HEAD(&obj->userfault_link);
4254         INIT_LIST_HEAD(&obj->vma_list);
4255         INIT_LIST_HEAD(&obj->batch_pool_link);
4256
4257         obj->ops = ops;
4258
4259         reservation_object_init(&obj->__builtin_resv);
4260         obj->resv = &obj->__builtin_resv;
4261
4262         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4263         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4264
4265         obj->mm.madv = I915_MADV_WILLNEED;
4266         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4267         mutex_init(&obj->mm.get_page.lock);
4268
4269         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4270 }
4271
4272 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4273         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4274                  I915_GEM_OBJECT_IS_SHRINKABLE,
4275
4276         .get_pages = i915_gem_object_get_pages_gtt,
4277         .put_pages = i915_gem_object_put_pages_gtt,
4278
4279         .pwrite = i915_gem_object_pwrite_gtt,
4280 };
4281
4282 struct drm_i915_gem_object *
4283 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4284 {
4285         struct drm_i915_gem_object *obj;
4286         struct address_space *mapping;
4287         unsigned int cache_level;
4288         gfp_t mask;
4289         int ret;
4290
4291         /* There is a prevalence of the assumption that we fit the object's
4292          * page count inside a 32bit _signed_ variable. Let's document this and
4293          * catch if we ever need to fix it. In the meantime, if you do spot
4294          * such a local variable, please consider fixing!
4295          */
4296         if (size >> PAGE_SHIFT > INT_MAX)
4297                 return ERR_PTR(-E2BIG);
4298
4299         if (overflows_type(size, obj->base.size))
4300                 return ERR_PTR(-E2BIG);
4301
4302         obj = i915_gem_object_alloc(dev_priv);
4303         if (obj == NULL)
4304                 return ERR_PTR(-ENOMEM);
4305
4306         ret = drm_gem_object_init(&dev_priv->drm, &obj->base, size);
4307         if (ret)
4308                 goto fail;
4309
4310         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4311         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4312                 /* 965gm cannot relocate objects above 4GiB. */
4313                 mask &= ~__GFP_HIGHMEM;
4314                 mask |= __GFP_DMA32;
4315         }
4316
4317         mapping = obj->base.filp->f_mapping;
4318         mapping_set_gfp_mask(mapping, mask);
4319         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4320
4321         i915_gem_object_init(obj, &i915_gem_object_ops);
4322
4323         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4324         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4325
4326         if (HAS_LLC(dev_priv))
4327                 /* On some devices, we can have the GPU use the LLC (the CPU
4328                  * cache) for about a 10% performance improvement
4329                  * compared to uncached.  Graphics requests other than
4330                  * display scanout are coherent with the CPU in
4331                  * accessing this cache.  This means in this mode we
4332                  * don't need to clflush on the CPU side, and on the
4333                  * GPU side we only need to flush internal caches to
4334                  * get data visible to the CPU.
4335                  *
4336                  * However, we maintain the display planes as UC, and so
4337                  * need to rebind when first used as such.
4338                  */
4339                 cache_level = I915_CACHE_LLC;
4340         else
4341                 cache_level = I915_CACHE_NONE;
4342
4343         i915_gem_object_set_cache_coherency(obj, cache_level);
4344
4345         trace_i915_gem_object_create(obj);
4346
4347         return obj;
4348
4349 fail:
4350         i915_gem_object_free(obj);
4351         return ERR_PTR(ret);
4352 }
4353
4354 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4355 {
4356         /* If we are the last user of the backing storage (be it shmemfs
4357          * pages or stolen etc), we know that the pages are going to be
4358          * immediately released. In this case, we can then skip copying
4359          * back the contents from the GPU.
4360          */
4361
4362         if (obj->mm.madv != I915_MADV_WILLNEED)
4363                 return false;
4364
4365         if (obj->base.filp == NULL)
4366                 return true;
4367
4368         /* At first glance, this looks racy, but then again so would be
4369          * userspace racing mmap against close. However, the first external
4370          * reference to the filp can only be obtained through the
4371          * i915_gem_mmap_ioctl() which safeguards us against the user
4372          * acquiring such a reference whilst we are in the middle of
4373          * freeing the object.
4374          */
4375         return atomic_long_read(&obj->base.filp->f_count) == 1;
4376 }
4377
4378 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4379                                     struct llist_node *freed)
4380 {
4381         struct drm_i915_gem_object *obj, *on;
4382
4383         mutex_lock(&i915->drm.struct_mutex);
4384         intel_runtime_pm_get(i915);
4385         llist_for_each_entry(obj, freed, freed) {
4386                 struct i915_vma *vma, *vn;
4387
4388                 trace_i915_gem_object_destroy(obj);
4389
4390                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4391                 list_for_each_entry_safe(vma, vn,
4392                                          &obj->vma_list, obj_link) {
4393                         GEM_BUG_ON(i915_vma_is_active(vma));
4394                         vma->flags &= ~I915_VMA_PIN_MASK;
4395                         i915_vma_close(vma);
4396                 }
4397                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4398                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4399
4400                 list_del(&obj->global_link);
4401         }
4402         intel_runtime_pm_put(i915);
4403         mutex_unlock(&i915->drm.struct_mutex);
4404
4405         cond_resched();
4406
4407         llist_for_each_entry_safe(obj, on, freed, freed) {
4408                 GEM_BUG_ON(obj->bind_count);
4409                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4410
4411                 if (obj->ops->release)
4412                         obj->ops->release(obj);
4413
4414                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4415                         atomic_set(&obj->mm.pages_pin_count, 0);
4416                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4417                 GEM_BUG_ON(obj->mm.pages);
4418
4419                 if (obj->base.import_attach)
4420                         drm_prime_gem_destroy(&obj->base, NULL);
4421
4422                 reservation_object_fini(&obj->__builtin_resv);
4423                 drm_gem_object_release(&obj->base);
4424                 i915_gem_info_remove_obj(i915, obj->base.size);
4425
4426                 kfree(obj->bit_17);
4427                 i915_gem_object_free(obj);
4428         }
4429 }
4430
4431 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4432 {
4433         struct llist_node *freed;
4434
4435         freed = llist_del_all(&i915->mm.free_list);
4436         if (unlikely(freed))
4437                 __i915_gem_free_objects(i915, freed);
4438 }
4439
4440 static void __i915_gem_free_work(struct work_struct *work)
4441 {
4442         struct drm_i915_private *i915 =
4443                 container_of(work, struct drm_i915_private, mm.free_work);
4444         struct llist_node *freed;
4445
4446         /* All file-owned VMA should have been released by this point through
4447          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4448          * However, the object may also be bound into the global GTT (e.g.
4449          * older GPUs without per-process support, or for direct access through
4450          * the GTT either for the user or for scanout). Those VMA still need to
4451          * unbound now.
4452          */
4453
4454         while ((freed = llist_del_all(&i915->mm.free_list))) {
4455                 __i915_gem_free_objects(i915, freed);
4456                 if (need_resched())
4457                         break;
4458         }
4459 }
4460
4461 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4462 {
4463         struct drm_i915_gem_object *obj =
4464                 container_of(head, typeof(*obj), rcu);
4465         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4466
4467         /* We can't simply use call_rcu() from i915_gem_free_object()
4468          * as we need to block whilst unbinding, and the call_rcu
4469          * task may be called from softirq context. So we take a
4470          * detour through a worker.
4471          */
4472         if (llist_add(&obj->freed, &i915->mm.free_list))
4473                 schedule_work(&i915->mm.free_work);
4474 }
4475
4476 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4477 {
4478         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4479
4480         if (obj->mm.quirked)
4481                 __i915_gem_object_unpin_pages(obj);
4482
4483         if (discard_backing_storage(obj))
4484                 obj->mm.madv = I915_MADV_DONTNEED;
4485
4486         /* Before we free the object, make sure any pure RCU-only
4487          * read-side critical sections are complete, e.g.
4488          * i915_gem_busy_ioctl(). For the corresponding synchronized
4489          * lookup see i915_gem_object_lookup_rcu().
4490          */
4491         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4492 }
4493
4494 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4495 {
4496         lockdep_assert_held(&obj->base.dev->struct_mutex);
4497
4498         GEM_BUG_ON(i915_gem_object_has_active_reference(obj));
4499         if (i915_gem_object_is_active(obj))
4500                 i915_gem_object_set_active_reference(obj);
4501         else
4502                 i915_gem_object_put(obj);
4503 }
4504
4505 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4506 {
4507         struct intel_engine_cs *engine;
4508         enum intel_engine_id id;
4509
4510         for_each_engine(engine, dev_priv, id)
4511                 GEM_BUG_ON(engine->last_retired_context &&
4512                            !i915_gem_context_is_kernel(engine->last_retired_context));
4513 }
4514
4515 void i915_gem_sanitize(struct drm_i915_private *i915)
4516 {
4517         /*
4518          * If we inherit context state from the BIOS or earlier occupants
4519          * of the GPU, the GPU may be in an inconsistent state when we
4520          * try to take over. The only way to remove the earlier state
4521          * is by resetting. However, resetting on earlier gen is tricky as
4522          * it may impact the display and we are uncertain about the stability
4523          * of the reset, so this could be applied to even earlier gen.
4524          */
4525         if (INTEL_GEN(i915) >= 5) {
4526                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4527                 WARN_ON(reset && reset != -ENODEV);
4528         }
4529 }
4530
4531 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4532 {
4533         struct drm_device *dev = &dev_priv->drm;
4534         int ret;
4535
4536         intel_runtime_pm_get(dev_priv);
4537         intel_suspend_gt_powersave(dev_priv);
4538
4539         mutex_lock(&dev->struct_mutex);
4540
4541         /* We have to flush all the executing contexts to main memory so
4542          * that they can saved in the hibernation image. To ensure the last
4543          * context image is coherent, we have to switch away from it. That
4544          * leaves the dev_priv->kernel_context still active when
4545          * we actually suspend, and its image in memory may not match the GPU
4546          * state. Fortunately, the kernel_context is disposable and we do
4547          * not rely on its state.
4548          */
4549         ret = i915_gem_switch_to_kernel_context(dev_priv);
4550         if (ret)
4551                 goto err_unlock;
4552
4553         ret = i915_gem_wait_for_idle(dev_priv,
4554                                      I915_WAIT_INTERRUPTIBLE |
4555                                      I915_WAIT_LOCKED);
4556         if (ret)
4557                 goto err_unlock;
4558
4559         assert_kernel_context_is_current(dev_priv);
4560         i915_gem_contexts_lost(dev_priv);
4561         mutex_unlock(&dev->struct_mutex);
4562
4563         intel_guc_suspend(dev_priv);
4564
4565         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4566         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4567
4568         /* As the idle_work is rearming if it detects a race, play safe and
4569          * repeat the flush until it is definitely idle.
4570          */
4571         while (flush_delayed_work(&dev_priv->gt.idle_work))
4572                 ;
4573
4574         /* Assert that we sucessfully flushed all the work and
4575          * reset the GPU back to its idle, low power state.
4576          */
4577         WARN_ON(dev_priv->gt.awake);
4578         WARN_ON(!intel_engines_are_idle(dev_priv));
4579
4580         /*
4581          * Neither the BIOS, ourselves or any other kernel
4582          * expects the system to be in execlists mode on startup,
4583          * so we need to reset the GPU back to legacy mode. And the only
4584          * known way to disable logical contexts is through a GPU reset.
4585          *
4586          * So in order to leave the system in a known default configuration,
4587          * always reset the GPU upon unload and suspend. Afterwards we then
4588          * clean up the GEM state tracking, flushing off the requests and
4589          * leaving the system in a known idle state.
4590          *
4591          * Note that is of the upmost importance that the GPU is idle and
4592          * all stray writes are flushed *before* we dismantle the backing
4593          * storage for the pinned objects.
4594          *
4595          * However, since we are uncertain that resetting the GPU on older
4596          * machines is a good idea, we don't - just in case it leaves the
4597          * machine in an unusable condition.
4598          */
4599         i915_gem_sanitize(dev_priv);
4600         goto out_rpm_put;
4601
4602 err_unlock:
4603         mutex_unlock(&dev->struct_mutex);
4604 out_rpm_put:
4605         intel_runtime_pm_put(dev_priv);
4606         return ret;
4607 }
4608
4609 void i915_gem_resume(struct drm_i915_private *dev_priv)
4610 {
4611         struct drm_device *dev = &dev_priv->drm;
4612
4613         WARN_ON(dev_priv->gt.awake);
4614
4615         mutex_lock(&dev->struct_mutex);
4616         i915_gem_restore_gtt_mappings(dev_priv);
4617
4618         /* As we didn't flush the kernel context before suspend, we cannot
4619          * guarantee that the context image is complete. So let's just reset
4620          * it and start again.
4621          */
4622         dev_priv->gt.resume(dev_priv);
4623
4624         mutex_unlock(&dev->struct_mutex);
4625 }
4626
4627 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4628 {
4629         if (INTEL_GEN(dev_priv) < 5 ||
4630             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4631                 return;
4632
4633         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4634                                  DISP_TILE_SURFACE_SWIZZLING);
4635
4636         if (IS_GEN5(dev_priv))
4637                 return;
4638
4639         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4640         if (IS_GEN6(dev_priv))
4641                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4642         else if (IS_GEN7(dev_priv))
4643                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4644         else if (IS_GEN8(dev_priv))
4645                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4646         else
4647                 BUG();
4648 }
4649
4650 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4651 {
4652         I915_WRITE(RING_CTL(base), 0);
4653         I915_WRITE(RING_HEAD(base), 0);
4654         I915_WRITE(RING_TAIL(base), 0);
4655         I915_WRITE(RING_START(base), 0);
4656 }
4657
4658 static void init_unused_rings(struct drm_i915_private *dev_priv)
4659 {
4660         if (IS_I830(dev_priv)) {
4661                 init_unused_ring(dev_priv, PRB1_BASE);
4662                 init_unused_ring(dev_priv, SRB0_BASE);
4663                 init_unused_ring(dev_priv, SRB1_BASE);
4664                 init_unused_ring(dev_priv, SRB2_BASE);
4665                 init_unused_ring(dev_priv, SRB3_BASE);
4666         } else if (IS_GEN2(dev_priv)) {
4667                 init_unused_ring(dev_priv, SRB0_BASE);
4668                 init_unused_ring(dev_priv, SRB1_BASE);
4669         } else if (IS_GEN3(dev_priv)) {
4670                 init_unused_ring(dev_priv, PRB1_BASE);
4671                 init_unused_ring(dev_priv, PRB2_BASE);
4672         }
4673 }
4674
4675 static int __i915_gem_restart_engines(void *data)
4676 {
4677         struct drm_i915_private *i915 = data;
4678         struct intel_engine_cs *engine;
4679         enum intel_engine_id id;
4680         int err;
4681
4682         for_each_engine(engine, i915, id) {
4683                 err = engine->init_hw(engine);
4684                 if (err)
4685                         return err;
4686         }
4687
4688         return 0;
4689 }
4690
4691 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4692 {
4693         int ret;
4694
4695         dev_priv->gt.last_init_time = ktime_get();
4696
4697         /* Double layer security blanket, see i915_gem_init() */
4698         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4699
4700         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4701                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4702
4703         if (IS_HASWELL(dev_priv))
4704                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4705                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4706
4707         if (HAS_PCH_NOP(dev_priv)) {
4708                 if (IS_IVYBRIDGE(dev_priv)) {
4709                         u32 temp = I915_READ(GEN7_MSG_CTL);
4710                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4711                         I915_WRITE(GEN7_MSG_CTL, temp);
4712                 } else if (INTEL_GEN(dev_priv) >= 7) {
4713                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4714                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4715                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4716                 }
4717         }
4718
4719         i915_gem_init_swizzling(dev_priv);
4720
4721         /*
4722          * At least 830 can leave some of the unused rings
4723          * "active" (ie. head != tail) after resume which
4724          * will prevent c3 entry. Makes sure all unused rings
4725          * are totally idle.
4726          */
4727         init_unused_rings(dev_priv);
4728
4729         BUG_ON(!dev_priv->kernel_context);
4730
4731         ret = i915_ppgtt_init_hw(dev_priv);
4732         if (ret) {
4733                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4734                 goto out;
4735         }
4736
4737         /* Need to do basic initialisation of all rings first: */
4738         ret = __i915_gem_restart_engines(dev_priv);
4739         if (ret)
4740                 goto out;
4741
4742         intel_mocs_init_l3cc_table(dev_priv);
4743
4744         /* We can't enable contexts until all firmware is loaded */
4745         ret = intel_uc_init_hw(dev_priv);
4746         if (ret)
4747                 goto out;
4748
4749 out:
4750         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4751         return ret;
4752 }
4753
4754 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4755 {
4756         if (INTEL_INFO(dev_priv)->gen < 6)
4757                 return false;
4758
4759         /* TODO: make semaphores and Execlists play nicely together */
4760         if (i915.enable_execlists)
4761                 return false;
4762
4763         if (value >= 0)
4764                 return value;
4765
4766         /* Enable semaphores on SNB when IO remapping is off */
4767         if (IS_GEN6(dev_priv) && intel_vtd_active())
4768                 return false;
4769
4770         return true;
4771 }
4772
4773 int i915_gem_init(struct drm_i915_private *dev_priv)
4774 {
4775         int ret;
4776
4777         mutex_lock(&dev_priv->drm.struct_mutex);
4778
4779         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4780
4781         if (!i915.enable_execlists) {
4782                 dev_priv->gt.resume = intel_legacy_submission_resume;
4783                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4784         } else {
4785                 dev_priv->gt.resume = intel_lr_context_resume;
4786                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4787         }
4788
4789         /* This is just a security blanket to placate dragons.
4790          * On some systems, we very sporadically observe that the first TLBs
4791          * used by the CS may be stale, despite us poking the TLB reset. If
4792          * we hold the forcewake during initialisation these problems
4793          * just magically go away.
4794          */
4795         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4796
4797         ret = i915_gem_init_userptr(dev_priv);
4798         if (ret)
4799                 goto out_unlock;
4800
4801         ret = i915_gem_init_ggtt(dev_priv);
4802         if (ret)
4803                 goto out_unlock;
4804
4805         ret = i915_gem_contexts_init(dev_priv);
4806         if (ret)
4807                 goto out_unlock;
4808
4809         ret = intel_engines_init(dev_priv);
4810         if (ret)
4811                 goto out_unlock;
4812
4813         ret = i915_gem_init_hw(dev_priv);
4814         if (ret == -EIO) {
4815                 /* Allow engine initialisation to fail by marking the GPU as
4816                  * wedged. But we only want to do this where the GPU is angry,
4817                  * for all other failure, such as an allocation failure, bail.
4818                  */
4819                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4820                 i915_gem_set_wedged(dev_priv);
4821                 ret = 0;
4822         }
4823
4824 out_unlock:
4825         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4826         mutex_unlock(&dev_priv->drm.struct_mutex);
4827
4828         return ret;
4829 }
4830
4831 void i915_gem_init_mmio(struct drm_i915_private *i915)
4832 {
4833         i915_gem_sanitize(i915);
4834 }
4835
4836 void
4837 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
4838 {
4839         struct intel_engine_cs *engine;
4840         enum intel_engine_id id;
4841
4842         for_each_engine(engine, dev_priv, id)
4843                 dev_priv->gt.cleanup_engine(engine);
4844 }
4845
4846 void
4847 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
4848 {
4849         int i;
4850
4851         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
4852             !IS_CHERRYVIEW(dev_priv))
4853                 dev_priv->num_fence_regs = 32;
4854         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
4855                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
4856                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
4857                 dev_priv->num_fence_regs = 16;
4858         else
4859                 dev_priv->num_fence_regs = 8;
4860
4861         if (intel_vgpu_active(dev_priv))
4862                 dev_priv->num_fence_regs =
4863                                 I915_READ(vgtif_reg(avail_rs.fence_num));
4864
4865         /* Initialize fence registers to zero */
4866         for (i = 0; i < dev_priv->num_fence_regs; i++) {
4867                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
4868
4869                 fence->i915 = dev_priv;
4870                 fence->id = i;
4871                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
4872         }
4873         i915_gem_restore_fences(dev_priv);
4874
4875         i915_gem_detect_bit_6_swizzle(dev_priv);
4876 }
4877
4878 int
4879 i915_gem_load_init(struct drm_i915_private *dev_priv)
4880 {
4881         int err = -ENOMEM;
4882
4883         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
4884         if (!dev_priv->objects)
4885                 goto err_out;
4886
4887         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
4888         if (!dev_priv->vmas)
4889                 goto err_objects;
4890
4891         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
4892                                         SLAB_HWCACHE_ALIGN |
4893                                         SLAB_RECLAIM_ACCOUNT |
4894                                         SLAB_TYPESAFE_BY_RCU);
4895         if (!dev_priv->requests)
4896                 goto err_vmas;
4897
4898         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
4899                                             SLAB_HWCACHE_ALIGN |
4900                                             SLAB_RECLAIM_ACCOUNT);
4901         if (!dev_priv->dependencies)
4902                 goto err_requests;
4903
4904         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
4905         if (!dev_priv->priorities)
4906                 goto err_dependencies;
4907
4908         mutex_lock(&dev_priv->drm.struct_mutex);
4909         INIT_LIST_HEAD(&dev_priv->gt.timelines);
4910         err = i915_gem_timeline_init__global(dev_priv);
4911         mutex_unlock(&dev_priv->drm.struct_mutex);
4912         if (err)
4913                 goto err_priorities;
4914
4915         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
4916         init_llist_head(&dev_priv->mm.free_list);
4917         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4918         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4919         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4920         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
4921         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
4922                           i915_gem_retire_work_handler);
4923         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
4924                           i915_gem_idle_work_handler);
4925         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
4926         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4927
4928         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
4929
4930         spin_lock_init(&dev_priv->fb_tracking.lock);
4931
4932         return 0;
4933
4934 err_priorities:
4935         kmem_cache_destroy(dev_priv->priorities);
4936 err_dependencies:
4937         kmem_cache_destroy(dev_priv->dependencies);
4938 err_requests:
4939         kmem_cache_destroy(dev_priv->requests);
4940 err_vmas:
4941         kmem_cache_destroy(dev_priv->vmas);
4942 err_objects:
4943         kmem_cache_destroy(dev_priv->objects);
4944 err_out:
4945         return err;
4946 }
4947
4948 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
4949 {
4950         i915_gem_drain_freed_objects(dev_priv);
4951         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
4952         WARN_ON(dev_priv->mm.object_count);
4953
4954         mutex_lock(&dev_priv->drm.struct_mutex);
4955         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
4956         WARN_ON(!list_empty(&dev_priv->gt.timelines));
4957         mutex_unlock(&dev_priv->drm.struct_mutex);
4958
4959         kmem_cache_destroy(dev_priv->priorities);
4960         kmem_cache_destroy(dev_priv->dependencies);
4961         kmem_cache_destroy(dev_priv->requests);
4962         kmem_cache_destroy(dev_priv->vmas);
4963         kmem_cache_destroy(dev_priv->objects);
4964
4965         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
4966         rcu_barrier();
4967 }
4968
4969 int i915_gem_freeze(struct drm_i915_private *dev_priv)
4970 {
4971         /* Discard all purgeable objects, let userspace recover those as
4972          * required after resuming.
4973          */
4974         i915_gem_shrink_all(dev_priv);
4975
4976         return 0;
4977 }
4978
4979 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
4980 {
4981         struct drm_i915_gem_object *obj;
4982         struct list_head *phases[] = {
4983                 &dev_priv->mm.unbound_list,
4984                 &dev_priv->mm.bound_list,
4985                 NULL
4986         }, **p;
4987
4988         /* Called just before we write the hibernation image.
4989          *
4990          * We need to update the domain tracking to reflect that the CPU
4991          * will be accessing all the pages to create and restore from the
4992          * hibernation, and so upon restoration those pages will be in the
4993          * CPU domain.
4994          *
4995          * To make sure the hibernation image contains the latest state,
4996          * we update that state just before writing out the image.
4997          *
4998          * To try and reduce the hibernation image, we manually shrink
4999          * the objects as well, see i915_gem_freeze()
5000          */
5001
5002         i915_gem_shrink(dev_priv, -1UL, I915_SHRINK_UNBOUND);
5003         i915_gem_drain_freed_objects(dev_priv);
5004
5005         mutex_lock(&dev_priv->drm.struct_mutex);
5006         for (p = phases; *p; p++) {
5007                 list_for_each_entry(obj, *p, global_link)
5008                         __start_cpu_write(obj);
5009         }
5010         mutex_unlock(&dev_priv->drm.struct_mutex);
5011
5012         return 0;
5013 }
5014
5015 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5016 {
5017         struct drm_i915_file_private *file_priv = file->driver_priv;
5018         struct drm_i915_gem_request *request;
5019
5020         /* Clean up our request list when the client is going away, so that
5021          * later retire_requests won't dereference our soon-to-be-gone
5022          * file_priv.
5023          */
5024         spin_lock(&file_priv->mm.lock);
5025         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5026                 request->file_priv = NULL;
5027         spin_unlock(&file_priv->mm.lock);
5028 }
5029
5030 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5031 {
5032         struct drm_i915_file_private *file_priv;
5033         int ret;
5034
5035         DRM_DEBUG("\n");
5036
5037         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5038         if (!file_priv)
5039                 return -ENOMEM;
5040
5041         file->driver_priv = file_priv;
5042         file_priv->dev_priv = i915;
5043         file_priv->file = file;
5044
5045         spin_lock_init(&file_priv->mm.lock);
5046         INIT_LIST_HEAD(&file_priv->mm.request_list);
5047
5048         file_priv->bsd_engine = -1;
5049
5050         ret = i915_gem_context_open(i915, file);
5051         if (ret)
5052                 kfree(file_priv);
5053
5054         return ret;
5055 }
5056
5057 /**
5058  * i915_gem_track_fb - update frontbuffer tracking
5059  * @old: current GEM buffer for the frontbuffer slots
5060  * @new: new GEM buffer for the frontbuffer slots
5061  * @frontbuffer_bits: bitmask of frontbuffer slots
5062  *
5063  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5064  * from @old and setting them in @new. Both @old and @new can be NULL.
5065  */
5066 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5067                        struct drm_i915_gem_object *new,
5068                        unsigned frontbuffer_bits)
5069 {
5070         /* Control of individual bits within the mask are guarded by
5071          * the owning plane->mutex, i.e. we can never see concurrent
5072          * manipulation of individual bits. But since the bitfield as a whole
5073          * is updated using RMW, we need to use atomics in order to update
5074          * the bits.
5075          */
5076         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5077                      sizeof(atomic_t) * BITS_PER_BYTE);
5078
5079         if (old) {
5080                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5081                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5082         }
5083
5084         if (new) {
5085                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5086                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5087         }
5088 }
5089
5090 /* Allocate a new GEM object and fill it with the supplied data */
5091 struct drm_i915_gem_object *
5092 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5093                                  const void *data, size_t size)
5094 {
5095         struct drm_i915_gem_object *obj;
5096         struct file *file;
5097         size_t offset;
5098         int err;
5099
5100         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5101         if (IS_ERR(obj))
5102                 return obj;
5103
5104         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5105
5106         file = obj->base.filp;
5107         offset = 0;
5108         do {
5109                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5110                 struct page *page;
5111                 void *pgdata, *vaddr;
5112
5113                 err = pagecache_write_begin(file, file->f_mapping,
5114                                             offset, len, 0,
5115                                             &page, &pgdata);
5116                 if (err < 0)
5117                         goto fail;
5118
5119                 vaddr = kmap(page);
5120                 memcpy(vaddr, data, len);
5121                 kunmap(page);
5122
5123                 err = pagecache_write_end(file, file->f_mapping,
5124                                           offset, len, len,
5125                                           page, pgdata);
5126                 if (err < 0)
5127                         goto fail;
5128
5129                 size -= len;
5130                 data += len;
5131                 offset += len;
5132         } while (size);
5133
5134         return obj;
5135
5136 fail:
5137         i915_gem_object_put(obj);
5138         return ERR_PTR(err);
5139 }
5140
5141 struct scatterlist *
5142 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5143                        unsigned int n,
5144                        unsigned int *offset)
5145 {
5146         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5147         struct scatterlist *sg;
5148         unsigned int idx, count;
5149
5150         might_sleep();
5151         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5152         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5153
5154         /* As we iterate forward through the sg, we record each entry in a
5155          * radixtree for quick repeated (backwards) lookups. If we have seen
5156          * this index previously, we will have an entry for it.
5157          *
5158          * Initial lookup is O(N), but this is amortized to O(1) for
5159          * sequential page access (where each new request is consecutive
5160          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5161          * i.e. O(1) with a large constant!
5162          */
5163         if (n < READ_ONCE(iter->sg_idx))
5164                 goto lookup;
5165
5166         mutex_lock(&iter->lock);
5167
5168         /* We prefer to reuse the last sg so that repeated lookup of this
5169          * (or the subsequent) sg are fast - comparing against the last
5170          * sg is faster than going through the radixtree.
5171          */
5172
5173         sg = iter->sg_pos;
5174         idx = iter->sg_idx;
5175         count = __sg_page_count(sg);
5176
5177         while (idx + count <= n) {
5178                 unsigned long exception, i;
5179                 int ret;
5180
5181                 /* If we cannot allocate and insert this entry, or the
5182                  * individual pages from this range, cancel updating the
5183                  * sg_idx so that on this lookup we are forced to linearly
5184                  * scan onwards, but on future lookups we will try the
5185                  * insertion again (in which case we need to be careful of
5186                  * the error return reporting that we have already inserted
5187                  * this index).
5188                  */
5189                 ret = radix_tree_insert(&iter->radix, idx, sg);
5190                 if (ret && ret != -EEXIST)
5191                         goto scan;
5192
5193                 exception =
5194                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5195                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5196                 for (i = 1; i < count; i++) {
5197                         ret = radix_tree_insert(&iter->radix, idx + i,
5198                                                 (void *)exception);
5199                         if (ret && ret != -EEXIST)
5200                                 goto scan;
5201                 }
5202
5203                 idx += count;
5204                 sg = ____sg_next(sg);
5205                 count = __sg_page_count(sg);
5206         }
5207
5208 scan:
5209         iter->sg_pos = sg;
5210         iter->sg_idx = idx;
5211
5212         mutex_unlock(&iter->lock);
5213
5214         if (unlikely(n < idx)) /* insertion completed by another thread */
5215                 goto lookup;
5216
5217         /* In case we failed to insert the entry into the radixtree, we need
5218          * to look beyond the current sg.
5219          */
5220         while (idx + count <= n) {
5221                 idx += count;
5222                 sg = ____sg_next(sg);
5223                 count = __sg_page_count(sg);
5224         }
5225
5226         *offset = n - idx;
5227         return sg;
5228
5229 lookup:
5230         rcu_read_lock();
5231
5232         sg = radix_tree_lookup(&iter->radix, n);
5233         GEM_BUG_ON(!sg);
5234
5235         /* If this index is in the middle of multi-page sg entry,
5236          * the radixtree will contain an exceptional entry that points
5237          * to the start of that range. We will return the pointer to
5238          * the base page and the offset of this page within the
5239          * sg entry's range.
5240          */
5241         *offset = 0;
5242         if (unlikely(radix_tree_exception(sg))) {
5243                 unsigned long base =
5244                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5245
5246                 sg = radix_tree_lookup(&iter->radix, base);
5247                 GEM_BUG_ON(!sg);
5248
5249                 *offset = n - base;
5250         }
5251
5252         rcu_read_unlock();
5253
5254         return sg;
5255 }
5256
5257 struct page *
5258 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5259 {
5260         struct scatterlist *sg;
5261         unsigned int offset;
5262
5263         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5264
5265         sg = i915_gem_object_get_sg(obj, n, &offset);
5266         return nth_page(sg_page(sg), offset);
5267 }
5268
5269 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5270 struct page *
5271 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5272                                unsigned int n)
5273 {
5274         struct page *page;
5275
5276         page = i915_gem_object_get_page(obj, n);
5277         if (!obj->mm.dirty)
5278                 set_page_dirty(page);
5279
5280         return page;
5281 }
5282
5283 dma_addr_t
5284 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5285                                 unsigned long n)
5286 {
5287         struct scatterlist *sg;
5288         unsigned int offset;
5289
5290         sg = i915_gem_object_get_sg(obj, n, &offset);
5291         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5292 }
5293
5294 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5295 {
5296         struct sg_table *pages;
5297         int err;
5298
5299         if (align > obj->base.size)
5300                 return -EINVAL;
5301
5302         if (obj->ops == &i915_gem_phys_ops)
5303                 return 0;
5304
5305         if (obj->ops != &i915_gem_object_ops)
5306                 return -EINVAL;
5307
5308         err = i915_gem_object_unbind(obj);
5309         if (err)
5310                 return err;
5311
5312         mutex_lock(&obj->mm.lock);
5313
5314         if (obj->mm.madv != I915_MADV_WILLNEED) {
5315                 err = -EFAULT;
5316                 goto err_unlock;
5317         }
5318
5319         if (obj->mm.quirked) {
5320                 err = -EFAULT;
5321                 goto err_unlock;
5322         }
5323
5324         if (obj->mm.mapping) {
5325                 err = -EBUSY;
5326                 goto err_unlock;
5327         }
5328
5329         pages = obj->mm.pages;
5330         obj->ops = &i915_gem_phys_ops;
5331
5332         err = ____i915_gem_object_get_pages(obj);
5333         if (err)
5334                 goto err_xfer;
5335
5336         /* Perma-pin (until release) the physical set of pages */
5337         __i915_gem_object_pin_pages(obj);
5338
5339         if (!IS_ERR_OR_NULL(pages))
5340                 i915_gem_object_ops.put_pages(obj, pages);
5341         mutex_unlock(&obj->mm.lock);
5342         return 0;
5343
5344 err_xfer:
5345         obj->ops = &i915_gem_object_ops;
5346         obj->mm.pages = pages;
5347 err_unlock:
5348         mutex_unlock(&obj->mm.lock);
5349         return err;
5350 }
5351
5352 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5353 #include "selftests/scatterlist.c"
5354 #include "selftests/mock_gem_device.c"
5355 #include "selftests/huge_gem_object.c"
5356 #include "selftests/i915_gem_object.c"
5357 #include "selftests/i915_gem_coherency.c"
5358 #endif