Merge v5.14-rc3 into usb-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drm_vma_manager.h>
29 #include <linux/dma-fence-array.h>
30 #include <linux/kthread.h>
31 #include <linux/dma-resv.h>
32 #include <linux/shmem_fs.h>
33 #include <linux/slab.h>
34 #include <linux/stop_machine.h>
35 #include <linux/swap.h>
36 #include <linux/pci.h>
37 #include <linux/dma-buf.h>
38 #include <linux/mman.h>
39
40 #include "display/intel_display.h"
41 #include "display/intel_frontbuffer.h"
42
43 #include "gem/i915_gem_clflush.h"
44 #include "gem/i915_gem_context.h"
45 #include "gem/i915_gem_ioctls.h"
46 #include "gem/i915_gem_mman.h"
47 #include "gem/i915_gem_region.h"
48 #include "gt/intel_engine_user.h"
49 #include "gt/intel_gt.h"
50 #include "gt/intel_gt_pm.h"
51 #include "gt/intel_workarounds.h"
52
53 #include "i915_drv.h"
54 #include "i915_trace.h"
55 #include "i915_vgpu.h"
56
57 #include "intel_pm.h"
58
59 static int
60 insert_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node, u32 size)
61 {
62         int err;
63
64         err = mutex_lock_interruptible(&ggtt->vm.mutex);
65         if (err)
66                 return err;
67
68         memset(node, 0, sizeof(*node));
69         err = drm_mm_insert_node_in_range(&ggtt->vm.mm, node,
70                                           size, 0, I915_COLOR_UNEVICTABLE,
71                                           0, ggtt->mappable_end,
72                                           DRM_MM_INSERT_LOW);
73
74         mutex_unlock(&ggtt->vm.mutex);
75
76         return err;
77 }
78
79 static void
80 remove_mappable_node(struct i915_ggtt *ggtt, struct drm_mm_node *node)
81 {
82         mutex_lock(&ggtt->vm.mutex);
83         drm_mm_remove_node(node);
84         mutex_unlock(&ggtt->vm.mutex);
85 }
86
87 int
88 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
89                             struct drm_file *file)
90 {
91         struct i915_ggtt *ggtt = &to_i915(dev)->ggtt;
92         struct drm_i915_gem_get_aperture *args = data;
93         struct i915_vma *vma;
94         u64 pinned;
95
96         if (mutex_lock_interruptible(&ggtt->vm.mutex))
97                 return -EINTR;
98
99         pinned = ggtt->vm.reserved;
100         list_for_each_entry(vma, &ggtt->vm.bound_list, vm_link)
101                 if (i915_vma_is_pinned(vma))
102                         pinned += vma->node.size;
103
104         mutex_unlock(&ggtt->vm.mutex);
105
106         args->aper_size = ggtt->vm.total;
107         args->aper_available_size = args->aper_size - pinned;
108
109         return 0;
110 }
111
112 int i915_gem_object_unbind(struct drm_i915_gem_object *obj,
113                            unsigned long flags)
114 {
115         struct intel_runtime_pm *rpm = &to_i915(obj->base.dev)->runtime_pm;
116         LIST_HEAD(still_in_list);
117         intel_wakeref_t wakeref;
118         struct i915_vma *vma;
119         int ret;
120
121         if (list_empty(&obj->vma.list))
122                 return 0;
123
124         /*
125          * As some machines use ACPI to handle runtime-resume callbacks, and
126          * ACPI is quite kmalloc happy, we cannot resume beneath the vm->mutex
127          * as they are required by the shrinker. Ergo, we wake the device up
128          * first just in case.
129          */
130         wakeref = intel_runtime_pm_get(rpm);
131
132 try_again:
133         ret = 0;
134         spin_lock(&obj->vma.lock);
135         while (!ret && (vma = list_first_entry_or_null(&obj->vma.list,
136                                                        struct i915_vma,
137                                                        obj_link))) {
138                 struct i915_address_space *vm = vma->vm;
139
140                 list_move_tail(&vma->obj_link, &still_in_list);
141                 if (!i915_vma_is_bound(vma, I915_VMA_BIND_MASK))
142                         continue;
143
144                 if (flags & I915_GEM_OBJECT_UNBIND_TEST) {
145                         ret = -EBUSY;
146                         break;
147                 }
148
149                 ret = -EAGAIN;
150                 if (!i915_vm_tryopen(vm))
151                         break;
152
153                 /* Prevent vma being freed by i915_vma_parked as we unbind */
154                 vma = __i915_vma_get(vma);
155                 spin_unlock(&obj->vma.lock);
156
157                 if (vma) {
158                         ret = -EBUSY;
159                         if (flags & I915_GEM_OBJECT_UNBIND_ACTIVE ||
160                             !i915_vma_is_active(vma)) {
161                                 if (flags & I915_GEM_OBJECT_UNBIND_VM_TRYLOCK) {
162                                         if (mutex_trylock(&vma->vm->mutex)) {
163                                                 ret = __i915_vma_unbind(vma);
164                                                 mutex_unlock(&vma->vm->mutex);
165                                         } else {
166                                                 ret = -EBUSY;
167                                         }
168                                 } else {
169                                         ret = i915_vma_unbind(vma);
170                                 }
171                         }
172
173                         __i915_vma_put(vma);
174                 }
175
176                 i915_vm_close(vm);
177                 spin_lock(&obj->vma.lock);
178         }
179         list_splice_init(&still_in_list, &obj->vma.list);
180         spin_unlock(&obj->vma.lock);
181
182         if (ret == -EAGAIN && flags & I915_GEM_OBJECT_UNBIND_BARRIER) {
183                 rcu_barrier(); /* flush the i915_vm_release() */
184                 goto try_again;
185         }
186
187         intel_runtime_pm_put(rpm, wakeref);
188
189         return ret;
190 }
191
192 static int
193 shmem_pread(struct page *page, int offset, int len, char __user *user_data,
194             bool needs_clflush)
195 {
196         char *vaddr;
197         int ret;
198
199         vaddr = kmap(page);
200
201         if (needs_clflush)
202                 drm_clflush_virt_range(vaddr + offset, len);
203
204         ret = __copy_to_user(user_data, vaddr + offset, len);
205
206         kunmap(page);
207
208         return ret ? -EFAULT : 0;
209 }
210
211 static int
212 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
213                      struct drm_i915_gem_pread *args)
214 {
215         unsigned int needs_clflush;
216         unsigned int idx, offset;
217         char __user *user_data;
218         u64 remain;
219         int ret;
220
221         ret = i915_gem_object_lock_interruptible(obj, NULL);
222         if (ret)
223                 return ret;
224
225         ret = i915_gem_object_pin_pages(obj);
226         if (ret)
227                 goto err_unlock;
228
229         ret = i915_gem_object_prepare_read(obj, &needs_clflush);
230         if (ret)
231                 goto err_unpin;
232
233         i915_gem_object_finish_access(obj);
234         i915_gem_object_unlock(obj);
235
236         remain = args->size;
237         user_data = u64_to_user_ptr(args->data_ptr);
238         offset = offset_in_page(args->offset);
239         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
240                 struct page *page = i915_gem_object_get_page(obj, idx);
241                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
242
243                 ret = shmem_pread(page, offset, length, user_data,
244                                   needs_clflush);
245                 if (ret)
246                         break;
247
248                 remain -= length;
249                 user_data += length;
250                 offset = 0;
251         }
252
253         i915_gem_object_unpin_pages(obj);
254         return ret;
255
256 err_unpin:
257         i915_gem_object_unpin_pages(obj);
258 err_unlock:
259         i915_gem_object_unlock(obj);
260         return ret;
261 }
262
263 static inline bool
264 gtt_user_read(struct io_mapping *mapping,
265               loff_t base, int offset,
266               char __user *user_data, int length)
267 {
268         void __iomem *vaddr;
269         unsigned long unwritten;
270
271         /* We can use the cpu mem copy function because this is X86. */
272         vaddr = io_mapping_map_atomic_wc(mapping, base);
273         unwritten = __copy_to_user_inatomic(user_data,
274                                             (void __force *)vaddr + offset,
275                                             length);
276         io_mapping_unmap_atomic(vaddr);
277         if (unwritten) {
278                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
279                 unwritten = copy_to_user(user_data,
280                                          (void __force *)vaddr + offset,
281                                          length);
282                 io_mapping_unmap(vaddr);
283         }
284         return unwritten;
285 }
286
287 static struct i915_vma *i915_gem_gtt_prepare(struct drm_i915_gem_object *obj,
288                                              struct drm_mm_node *node,
289                                              bool write)
290 {
291         struct drm_i915_private *i915 = to_i915(obj->base.dev);
292         struct i915_ggtt *ggtt = &i915->ggtt;
293         struct i915_vma *vma;
294         struct i915_gem_ww_ctx ww;
295         int ret;
296
297         i915_gem_ww_ctx_init(&ww, true);
298 retry:
299         vma = ERR_PTR(-ENODEV);
300         ret = i915_gem_object_lock(obj, &ww);
301         if (ret)
302                 goto err_ww;
303
304         ret = i915_gem_object_set_to_gtt_domain(obj, write);
305         if (ret)
306                 goto err_ww;
307
308         if (!i915_gem_object_is_tiled(obj))
309                 vma = i915_gem_object_ggtt_pin_ww(obj, &ww, NULL, 0, 0,
310                                                   PIN_MAPPABLE |
311                                                   PIN_NONBLOCK /* NOWARN */ |
312                                                   PIN_NOEVICT);
313         if (vma == ERR_PTR(-EDEADLK)) {
314                 ret = -EDEADLK;
315                 goto err_ww;
316         } else if (!IS_ERR(vma)) {
317                 node->start = i915_ggtt_offset(vma);
318                 node->flags = 0;
319         } else {
320                 ret = insert_mappable_node(ggtt, node, PAGE_SIZE);
321                 if (ret)
322                         goto err_ww;
323                 GEM_BUG_ON(!drm_mm_node_allocated(node));
324                 vma = NULL;
325         }
326
327         ret = i915_gem_object_pin_pages(obj);
328         if (ret) {
329                 if (drm_mm_node_allocated(node)) {
330                         ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
331                         remove_mappable_node(ggtt, node);
332                 } else {
333                         i915_vma_unpin(vma);
334                 }
335         }
336
337 err_ww:
338         if (ret == -EDEADLK) {
339                 ret = i915_gem_ww_ctx_backoff(&ww);
340                 if (!ret)
341                         goto retry;
342         }
343         i915_gem_ww_ctx_fini(&ww);
344
345         return ret ? ERR_PTR(ret) : vma;
346 }
347
348 static void i915_gem_gtt_cleanup(struct drm_i915_gem_object *obj,
349                                  struct drm_mm_node *node,
350                                  struct i915_vma *vma)
351 {
352         struct drm_i915_private *i915 = to_i915(obj->base.dev);
353         struct i915_ggtt *ggtt = &i915->ggtt;
354
355         i915_gem_object_unpin_pages(obj);
356         if (drm_mm_node_allocated(node)) {
357                 ggtt->vm.clear_range(&ggtt->vm, node->start, node->size);
358                 remove_mappable_node(ggtt, node);
359         } else {
360                 i915_vma_unpin(vma);
361         }
362 }
363
364 static int
365 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
366                    const struct drm_i915_gem_pread *args)
367 {
368         struct drm_i915_private *i915 = to_i915(obj->base.dev);
369         struct i915_ggtt *ggtt = &i915->ggtt;
370         intel_wakeref_t wakeref;
371         struct drm_mm_node node;
372         void __user *user_data;
373         struct i915_vma *vma;
374         u64 remain, offset;
375         int ret = 0;
376
377         wakeref = intel_runtime_pm_get(&i915->runtime_pm);
378
379         vma = i915_gem_gtt_prepare(obj, &node, false);
380         if (IS_ERR(vma)) {
381                 ret = PTR_ERR(vma);
382                 goto out_rpm;
383         }
384
385         user_data = u64_to_user_ptr(args->data_ptr);
386         remain = args->size;
387         offset = args->offset;
388
389         while (remain > 0) {
390                 /* Operation in this page
391                  *
392                  * page_base = page offset within aperture
393                  * page_offset = offset within page
394                  * page_length = bytes to copy for this page
395                  */
396                 u32 page_base = node.start;
397                 unsigned page_offset = offset_in_page(offset);
398                 unsigned page_length = PAGE_SIZE - page_offset;
399                 page_length = remain < page_length ? remain : page_length;
400                 if (drm_mm_node_allocated(&node)) {
401                         ggtt->vm.insert_page(&ggtt->vm,
402                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
403                                              node.start, I915_CACHE_NONE, 0);
404                 } else {
405                         page_base += offset & PAGE_MASK;
406                 }
407
408                 if (gtt_user_read(&ggtt->iomap, page_base, page_offset,
409                                   user_data, page_length)) {
410                         ret = -EFAULT;
411                         break;
412                 }
413
414                 remain -= page_length;
415                 user_data += page_length;
416                 offset += page_length;
417         }
418
419         i915_gem_gtt_cleanup(obj, &node, vma);
420 out_rpm:
421         intel_runtime_pm_put(&i915->runtime_pm, wakeref);
422         return ret;
423 }
424
425 /**
426  * Reads data from the object referenced by handle.
427  * @dev: drm device pointer
428  * @data: ioctl data blob
429  * @file: drm file pointer
430  *
431  * On error, the contents of *data are undefined.
432  */
433 int
434 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
435                      struct drm_file *file)
436 {
437         struct drm_i915_private *i915 = to_i915(dev);
438         struct drm_i915_gem_pread *args = data;
439         struct drm_i915_gem_object *obj;
440         int ret;
441
442         /* PREAD is disallowed for all platforms after TGL-LP.  This also
443          * covers all platforms with local memory.
444          */
445         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
446                 return -EOPNOTSUPP;
447
448         if (args->size == 0)
449                 return 0;
450
451         if (!access_ok(u64_to_user_ptr(args->data_ptr),
452                        args->size))
453                 return -EFAULT;
454
455         obj = i915_gem_object_lookup(file, args->handle);
456         if (!obj)
457                 return -ENOENT;
458
459         /* Bounds check source.  */
460         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
461                 ret = -EINVAL;
462                 goto out;
463         }
464
465         trace_i915_gem_object_pread(obj, args->offset, args->size);
466         ret = -ENODEV;
467         if (obj->ops->pread)
468                 ret = obj->ops->pread(obj, args);
469         if (ret != -ENODEV)
470                 goto out;
471
472         ret = -ENODEV;
473         if (obj->ops->pread)
474                 ret = obj->ops->pread(obj, args);
475         if (ret != -ENODEV)
476                 goto out;
477
478         ret = i915_gem_object_wait(obj,
479                                    I915_WAIT_INTERRUPTIBLE,
480                                    MAX_SCHEDULE_TIMEOUT);
481         if (ret)
482                 goto out;
483
484         ret = i915_gem_shmem_pread(obj, args);
485         if (ret == -EFAULT || ret == -ENODEV)
486                 ret = i915_gem_gtt_pread(obj, args);
487
488 out:
489         i915_gem_object_put(obj);
490         return ret;
491 }
492
493 /* This is the fast write path which cannot handle
494  * page faults in the source data
495  */
496
497 static inline bool
498 ggtt_write(struct io_mapping *mapping,
499            loff_t base, int offset,
500            char __user *user_data, int length)
501 {
502         void __iomem *vaddr;
503         unsigned long unwritten;
504
505         /* We can use the cpu mem copy function because this is X86. */
506         vaddr = io_mapping_map_atomic_wc(mapping, base);
507         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
508                                                       user_data, length);
509         io_mapping_unmap_atomic(vaddr);
510         if (unwritten) {
511                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
512                 unwritten = copy_from_user((void __force *)vaddr + offset,
513                                            user_data, length);
514                 io_mapping_unmap(vaddr);
515         }
516
517         return unwritten;
518 }
519
520 /**
521  * This is the fast pwrite path, where we copy the data directly from the
522  * user into the GTT, uncached.
523  * @obj: i915 GEM object
524  * @args: pwrite arguments structure
525  */
526 static int
527 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
528                          const struct drm_i915_gem_pwrite *args)
529 {
530         struct drm_i915_private *i915 = to_i915(obj->base.dev);
531         struct i915_ggtt *ggtt = &i915->ggtt;
532         struct intel_runtime_pm *rpm = &i915->runtime_pm;
533         intel_wakeref_t wakeref;
534         struct drm_mm_node node;
535         struct i915_vma *vma;
536         u64 remain, offset;
537         void __user *user_data;
538         int ret = 0;
539
540         if (i915_gem_object_has_struct_page(obj)) {
541                 /*
542                  * Avoid waking the device up if we can fallback, as
543                  * waking/resuming is very slow (worst-case 10-100 ms
544                  * depending on PCI sleeps and our own resume time).
545                  * This easily dwarfs any performance advantage from
546                  * using the cache bypass of indirect GGTT access.
547                  */
548                 wakeref = intel_runtime_pm_get_if_in_use(rpm);
549                 if (!wakeref)
550                         return -EFAULT;
551         } else {
552                 /* No backing pages, no fallback, we must force GGTT access */
553                 wakeref = intel_runtime_pm_get(rpm);
554         }
555
556         vma = i915_gem_gtt_prepare(obj, &node, true);
557         if (IS_ERR(vma)) {
558                 ret = PTR_ERR(vma);
559                 goto out_rpm;
560         }
561
562         i915_gem_object_invalidate_frontbuffer(obj, ORIGIN_CPU);
563
564         user_data = u64_to_user_ptr(args->data_ptr);
565         offset = args->offset;
566         remain = args->size;
567         while (remain) {
568                 /* Operation in this page
569                  *
570                  * page_base = page offset within aperture
571                  * page_offset = offset within page
572                  * page_length = bytes to copy for this page
573                  */
574                 u32 page_base = node.start;
575                 unsigned int page_offset = offset_in_page(offset);
576                 unsigned int page_length = PAGE_SIZE - page_offset;
577                 page_length = remain < page_length ? remain : page_length;
578                 if (drm_mm_node_allocated(&node)) {
579                         /* flush the write before we modify the GGTT */
580                         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
581                         ggtt->vm.insert_page(&ggtt->vm,
582                                              i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
583                                              node.start, I915_CACHE_NONE, 0);
584                         wmb(); /* flush modifications to the GGTT (insert_page) */
585                 } else {
586                         page_base += offset & PAGE_MASK;
587                 }
588                 /* If we get a fault while copying data, then (presumably) our
589                  * source page isn't available.  Return the error and we'll
590                  * retry in the slow path.
591                  * If the object is non-shmem backed, we retry again with the
592                  * path that handles page fault.
593                  */
594                 if (ggtt_write(&ggtt->iomap, page_base, page_offset,
595                                user_data, page_length)) {
596                         ret = -EFAULT;
597                         break;
598                 }
599
600                 remain -= page_length;
601                 user_data += page_length;
602                 offset += page_length;
603         }
604
605         intel_gt_flush_ggtt_writes(ggtt->vm.gt);
606         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
607
608         i915_gem_gtt_cleanup(obj, &node, vma);
609 out_rpm:
610         intel_runtime_pm_put(rpm, wakeref);
611         return ret;
612 }
613
614 /* Per-page copy function for the shmem pwrite fastpath.
615  * Flushes invalid cachelines before writing to the target if
616  * needs_clflush_before is set and flushes out any written cachelines after
617  * writing if needs_clflush is set.
618  */
619 static int
620 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
621              bool needs_clflush_before,
622              bool needs_clflush_after)
623 {
624         char *vaddr;
625         int ret;
626
627         vaddr = kmap(page);
628
629         if (needs_clflush_before)
630                 drm_clflush_virt_range(vaddr + offset, len);
631
632         ret = __copy_from_user(vaddr + offset, user_data, len);
633         if (!ret && needs_clflush_after)
634                 drm_clflush_virt_range(vaddr + offset, len);
635
636         kunmap(page);
637
638         return ret ? -EFAULT : 0;
639 }
640
641 static int
642 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
643                       const struct drm_i915_gem_pwrite *args)
644 {
645         unsigned int partial_cacheline_write;
646         unsigned int needs_clflush;
647         unsigned int offset, idx;
648         void __user *user_data;
649         u64 remain;
650         int ret;
651
652         ret = i915_gem_object_lock_interruptible(obj, NULL);
653         if (ret)
654                 return ret;
655
656         ret = i915_gem_object_pin_pages(obj);
657         if (ret)
658                 goto err_unlock;
659
660         ret = i915_gem_object_prepare_write(obj, &needs_clflush);
661         if (ret)
662                 goto err_unpin;
663
664         i915_gem_object_finish_access(obj);
665         i915_gem_object_unlock(obj);
666
667         /* If we don't overwrite a cacheline completely we need to be
668          * careful to have up-to-date data by first clflushing. Don't
669          * overcomplicate things and flush the entire patch.
670          */
671         partial_cacheline_write = 0;
672         if (needs_clflush & CLFLUSH_BEFORE)
673                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
674
675         user_data = u64_to_user_ptr(args->data_ptr);
676         remain = args->size;
677         offset = offset_in_page(args->offset);
678         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
679                 struct page *page = i915_gem_object_get_page(obj, idx);
680                 unsigned int length = min_t(u64, remain, PAGE_SIZE - offset);
681
682                 ret = shmem_pwrite(page, offset, length, user_data,
683                                    (offset | length) & partial_cacheline_write,
684                                    needs_clflush & CLFLUSH_AFTER);
685                 if (ret)
686                         break;
687
688                 remain -= length;
689                 user_data += length;
690                 offset = 0;
691         }
692
693         i915_gem_object_flush_frontbuffer(obj, ORIGIN_CPU);
694
695         i915_gem_object_unpin_pages(obj);
696         return ret;
697
698 err_unpin:
699         i915_gem_object_unpin_pages(obj);
700 err_unlock:
701         i915_gem_object_unlock(obj);
702         return ret;
703 }
704
705 /**
706  * Writes data to the object referenced by handle.
707  * @dev: drm device
708  * @data: ioctl data blob
709  * @file: drm file
710  *
711  * On error, the contents of the buffer that were to be modified are undefined.
712  */
713 int
714 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
715                       struct drm_file *file)
716 {
717         struct drm_i915_private *i915 = to_i915(dev);
718         struct drm_i915_gem_pwrite *args = data;
719         struct drm_i915_gem_object *obj;
720         int ret;
721
722         /* PWRITE is disallowed for all platforms after TGL-LP.  This also
723          * covers all platforms with local memory.
724          */
725         if (GRAPHICS_VER(i915) >= 12 && !IS_TIGERLAKE(i915))
726                 return -EOPNOTSUPP;
727
728         if (args->size == 0)
729                 return 0;
730
731         if (!access_ok(u64_to_user_ptr(args->data_ptr), args->size))
732                 return -EFAULT;
733
734         obj = i915_gem_object_lookup(file, args->handle);
735         if (!obj)
736                 return -ENOENT;
737
738         /* Bounds check destination. */
739         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
740                 ret = -EINVAL;
741                 goto err;
742         }
743
744         /* Writes not allowed into this read-only object */
745         if (i915_gem_object_is_readonly(obj)) {
746                 ret = -EINVAL;
747                 goto err;
748         }
749
750         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
751
752         ret = -ENODEV;
753         if (obj->ops->pwrite)
754                 ret = obj->ops->pwrite(obj, args);
755         if (ret != -ENODEV)
756                 goto err;
757
758         ret = i915_gem_object_wait(obj,
759                                    I915_WAIT_INTERRUPTIBLE |
760                                    I915_WAIT_ALL,
761                                    MAX_SCHEDULE_TIMEOUT);
762         if (ret)
763                 goto err;
764
765         ret = -EFAULT;
766         /* We can only do the GTT pwrite on untiled buffers, as otherwise
767          * it would end up going through the fenced access, and we'll get
768          * different detiling behavior between reading and writing.
769          * pread/pwrite currently are reading and writing from the CPU
770          * perspective, requiring manual detiling by the client.
771          */
772         if (!i915_gem_object_has_struct_page(obj) ||
773             cpu_write_needs_clflush(obj))
774                 /* Note that the gtt paths might fail with non-page-backed user
775                  * pointers (e.g. gtt mappings when moving data between
776                  * textures). Fallback to the shmem path in that case.
777                  */
778                 ret = i915_gem_gtt_pwrite_fast(obj, args);
779
780         if (ret == -EFAULT || ret == -ENOSPC) {
781                 if (i915_gem_object_has_struct_page(obj))
782                         ret = i915_gem_shmem_pwrite(obj, args);
783         }
784
785 err:
786         i915_gem_object_put(obj);
787         return ret;
788 }
789
790 /**
791  * Called when user space has done writes to this buffer
792  * @dev: drm device
793  * @data: ioctl data blob
794  * @file: drm file
795  */
796 int
797 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
798                          struct drm_file *file)
799 {
800         struct drm_i915_gem_sw_finish *args = data;
801         struct drm_i915_gem_object *obj;
802
803         obj = i915_gem_object_lookup(file, args->handle);
804         if (!obj)
805                 return -ENOENT;
806
807         /*
808          * Proxy objects are barred from CPU access, so there is no
809          * need to ban sw_finish as it is a nop.
810          */
811
812         /* Pinned buffers may be scanout, so flush the cache */
813         i915_gem_object_flush_if_display(obj);
814         i915_gem_object_put(obj);
815
816         return 0;
817 }
818
819 void i915_gem_runtime_suspend(struct drm_i915_private *i915)
820 {
821         struct drm_i915_gem_object *obj, *on;
822         int i;
823
824         /*
825          * Only called during RPM suspend. All users of the userfault_list
826          * must be holding an RPM wakeref to ensure that this can not
827          * run concurrently with themselves (and use the struct_mutex for
828          * protection between themselves).
829          */
830
831         list_for_each_entry_safe(obj, on,
832                                  &i915->ggtt.userfault_list, userfault_link)
833                 __i915_gem_object_release_mmap_gtt(obj);
834
835         /*
836          * The fence will be lost when the device powers down. If any were
837          * in use by hardware (i.e. they are pinned), we should not be powering
838          * down! All other fences will be reacquired by the user upon waking.
839          */
840         for (i = 0; i < i915->ggtt.num_fences; i++) {
841                 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
842
843                 /*
844                  * Ideally we want to assert that the fence register is not
845                  * live at this point (i.e. that no piece of code will be
846                  * trying to write through fence + GTT, as that both violates
847                  * our tracking of activity and associated locking/barriers,
848                  * but also is illegal given that the hw is powered down).
849                  *
850                  * Previously we used reg->pin_count as a "liveness" indicator.
851                  * That is not sufficient, and we need a more fine-grained
852                  * tool if we want to have a sanity check here.
853                  */
854
855                 if (!reg->vma)
856                         continue;
857
858                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
859                 reg->dirty = true;
860         }
861 }
862
863 static void discard_ggtt_vma(struct i915_vma *vma)
864 {
865         struct drm_i915_gem_object *obj = vma->obj;
866
867         spin_lock(&obj->vma.lock);
868         if (!RB_EMPTY_NODE(&vma->obj_node)) {
869                 rb_erase(&vma->obj_node, &obj->vma.tree);
870                 RB_CLEAR_NODE(&vma->obj_node);
871         }
872         spin_unlock(&obj->vma.lock);
873 }
874
875 struct i915_vma *
876 i915_gem_object_ggtt_pin_ww(struct drm_i915_gem_object *obj,
877                             struct i915_gem_ww_ctx *ww,
878                             const struct i915_ggtt_view *view,
879                             u64 size, u64 alignment, u64 flags)
880 {
881         struct drm_i915_private *i915 = to_i915(obj->base.dev);
882         struct i915_ggtt *ggtt = &i915->ggtt;
883         struct i915_vma *vma;
884         int ret;
885
886         if (flags & PIN_MAPPABLE &&
887             (!view || view->type == I915_GGTT_VIEW_NORMAL)) {
888                 /*
889                  * If the required space is larger than the available
890                  * aperture, we will not able to find a slot for the
891                  * object and unbinding the object now will be in
892                  * vain. Worse, doing so may cause us to ping-pong
893                  * the object in and out of the Global GTT and
894                  * waste a lot of cycles under the mutex.
895                  */
896                 if (obj->base.size > ggtt->mappable_end)
897                         return ERR_PTR(-E2BIG);
898
899                 /*
900                  * If NONBLOCK is set the caller is optimistically
901                  * trying to cache the full object within the mappable
902                  * aperture, and *must* have a fallback in place for
903                  * situations where we cannot bind the object. We
904                  * can be a little more lax here and use the fallback
905                  * more often to avoid costly migrations of ourselves
906                  * and other objects within the aperture.
907                  *
908                  * Half-the-aperture is used as a simple heuristic.
909                  * More interesting would to do search for a free
910                  * block prior to making the commitment to unbind.
911                  * That caters for the self-harm case, and with a
912                  * little more heuristics (e.g. NOFAULT, NOEVICT)
913                  * we could try to minimise harm to others.
914                  */
915                 if (flags & PIN_NONBLOCK &&
916                     obj->base.size > ggtt->mappable_end / 2)
917                         return ERR_PTR(-ENOSPC);
918         }
919
920 new_vma:
921         vma = i915_vma_instance(obj, &ggtt->vm, view);
922         if (IS_ERR(vma))
923                 return vma;
924
925         if (i915_vma_misplaced(vma, size, alignment, flags)) {
926                 if (flags & PIN_NONBLOCK) {
927                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
928                                 return ERR_PTR(-ENOSPC);
929
930                         if (flags & PIN_MAPPABLE &&
931                             vma->fence_size > ggtt->mappable_end / 2)
932                                 return ERR_PTR(-ENOSPC);
933                 }
934
935                 if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma)) {
936                         discard_ggtt_vma(vma);
937                         goto new_vma;
938                 }
939
940                 ret = i915_vma_unbind(vma);
941                 if (ret)
942                         return ERR_PTR(ret);
943         }
944
945         if (ww)
946                 ret = i915_vma_pin_ww(vma, ww, size, alignment, flags | PIN_GLOBAL);
947         else
948                 ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
949
950         if (ret)
951                 return ERR_PTR(ret);
952
953         if (vma->fence && !i915_gem_object_is_tiled(obj)) {
954                 mutex_lock(&ggtt->vm.mutex);
955                 i915_vma_revoke_fence(vma);
956                 mutex_unlock(&ggtt->vm.mutex);
957         }
958
959         ret = i915_vma_wait_for_bind(vma);
960         if (ret) {
961                 i915_vma_unpin(vma);
962                 return ERR_PTR(ret);
963         }
964
965         return vma;
966 }
967
968 int
969 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
970                        struct drm_file *file_priv)
971 {
972         struct drm_i915_private *i915 = to_i915(dev);
973         struct drm_i915_gem_madvise *args = data;
974         struct drm_i915_gem_object *obj;
975         int err;
976
977         switch (args->madv) {
978         case I915_MADV_DONTNEED:
979         case I915_MADV_WILLNEED:
980             break;
981         default:
982             return -EINVAL;
983         }
984
985         obj = i915_gem_object_lookup(file_priv, args->handle);
986         if (!obj)
987                 return -ENOENT;
988
989         err = i915_gem_object_lock_interruptible(obj, NULL);
990         if (err)
991                 goto out;
992
993         if (i915_gem_object_has_pages(obj) &&
994             i915_gem_object_is_tiled(obj) &&
995             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
996                 if (obj->mm.madv == I915_MADV_WILLNEED) {
997                         GEM_BUG_ON(!i915_gem_object_has_tiling_quirk(obj));
998                         i915_gem_object_clear_tiling_quirk(obj);
999                         i915_gem_object_make_shrinkable(obj);
1000                 }
1001                 if (args->madv == I915_MADV_WILLNEED) {
1002                         GEM_BUG_ON(i915_gem_object_has_tiling_quirk(obj));
1003                         i915_gem_object_make_unshrinkable(obj);
1004                         i915_gem_object_set_tiling_quirk(obj);
1005                 }
1006         }
1007
1008         if (obj->mm.madv != __I915_MADV_PURGED)
1009                 obj->mm.madv = args->madv;
1010
1011         if (i915_gem_object_has_pages(obj)) {
1012                 unsigned long flags;
1013
1014                 spin_lock_irqsave(&i915->mm.obj_lock, flags);
1015                 if (!list_empty(&obj->mm.link)) {
1016                         struct list_head *list;
1017
1018                         if (obj->mm.madv != I915_MADV_WILLNEED)
1019                                 list = &i915->mm.purge_list;
1020                         else
1021                                 list = &i915->mm.shrink_list;
1022                         list_move_tail(&obj->mm.link, list);
1023
1024                 }
1025                 spin_unlock_irqrestore(&i915->mm.obj_lock, flags);
1026         }
1027
1028         /* if the object is no longer attached, discard its backing storage */
1029         if (obj->mm.madv == I915_MADV_DONTNEED &&
1030             !i915_gem_object_has_pages(obj))
1031                 i915_gem_object_truncate(obj);
1032
1033         args->retained = obj->mm.madv != __I915_MADV_PURGED;
1034
1035         i915_gem_object_unlock(obj);
1036 out:
1037         i915_gem_object_put(obj);
1038         return err;
1039 }
1040
1041 int i915_gem_init(struct drm_i915_private *dev_priv)
1042 {
1043         int ret;
1044
1045         /* We need to fallback to 4K pages if host doesn't support huge gtt. */
1046         if (intel_vgpu_active(dev_priv) && !intel_vgpu_has_huge_gtt(dev_priv))
1047                 mkwrite_device_info(dev_priv)->page_sizes =
1048                         I915_GTT_PAGE_SIZE_4K;
1049
1050         ret = i915_gem_init_userptr(dev_priv);
1051         if (ret)
1052                 return ret;
1053
1054         intel_uc_fetch_firmwares(&dev_priv->gt.uc);
1055         intel_wopcm_init(&dev_priv->wopcm);
1056
1057         ret = i915_init_ggtt(dev_priv);
1058         if (ret) {
1059                 GEM_BUG_ON(ret == -EIO);
1060                 goto err_unlock;
1061         }
1062
1063         /*
1064          * Despite its name intel_init_clock_gating applies both display
1065          * clock gating workarounds; GT mmio workarounds and the occasional
1066          * GT power context workaround. Worse, sometimes it includes a context
1067          * register workaround which we need to apply before we record the
1068          * default HW state for all contexts.
1069          *
1070          * FIXME: break up the workarounds and apply them at the right time!
1071          */
1072         intel_init_clock_gating(dev_priv);
1073
1074         ret = intel_gt_init(&dev_priv->gt);
1075         if (ret)
1076                 goto err_unlock;
1077
1078         return 0;
1079
1080         /*
1081          * Unwinding is complicated by that we want to handle -EIO to mean
1082          * disable GPU submission but keep KMS alive. We want to mark the
1083          * HW as irrevisibly wedged, but keep enough state around that the
1084          * driver doesn't explode during runtime.
1085          */
1086 err_unlock:
1087         i915_gem_drain_workqueue(dev_priv);
1088
1089         if (ret != -EIO)
1090                 intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1091
1092         if (ret == -EIO) {
1093                 /*
1094                  * Allow engines or uC initialisation to fail by marking the GPU
1095                  * as wedged. But we only want to do this when the GPU is angry,
1096                  * for all other failure, such as an allocation failure, bail.
1097                  */
1098                 if (!intel_gt_is_wedged(&dev_priv->gt)) {
1099                         i915_probe_error(dev_priv,
1100                                          "Failed to initialize GPU, declaring it wedged!\n");
1101                         intel_gt_set_wedged(&dev_priv->gt);
1102                 }
1103
1104                 /* Minimal basic recovery for KMS */
1105                 ret = i915_ggtt_enable_hw(dev_priv);
1106                 i915_ggtt_resume(&dev_priv->ggtt);
1107                 intel_init_clock_gating(dev_priv);
1108         }
1109
1110         i915_gem_drain_freed_objects(dev_priv);
1111
1112         return ret;
1113 }
1114
1115 void i915_gem_driver_register(struct drm_i915_private *i915)
1116 {
1117         i915_gem_driver_register__shrinker(i915);
1118
1119         intel_engines_driver_register(i915);
1120 }
1121
1122 void i915_gem_driver_unregister(struct drm_i915_private *i915)
1123 {
1124         i915_gem_driver_unregister__shrinker(i915);
1125 }
1126
1127 void i915_gem_driver_remove(struct drm_i915_private *dev_priv)
1128 {
1129         intel_wakeref_auto_fini(&dev_priv->ggtt.userfault_wakeref);
1130
1131         i915_gem_suspend_late(dev_priv);
1132         intel_gt_driver_remove(&dev_priv->gt);
1133         dev_priv->uabi_engines = RB_ROOT;
1134
1135         /* Flush any outstanding unpin_work. */
1136         i915_gem_drain_workqueue(dev_priv);
1137
1138         i915_gem_drain_freed_objects(dev_priv);
1139 }
1140
1141 void i915_gem_driver_release(struct drm_i915_private *dev_priv)
1142 {
1143         intel_gt_driver_release(&dev_priv->gt);
1144
1145         intel_wa_list_free(&dev_priv->gt_wa_list);
1146
1147         intel_uc_cleanup_firmwares(&dev_priv->gt.uc);
1148
1149         i915_gem_drain_freed_objects(dev_priv);
1150
1151         drm_WARN_ON(&dev_priv->drm, !list_empty(&dev_priv->gem.contexts.list));
1152 }
1153
1154 static void i915_gem_init__mm(struct drm_i915_private *i915)
1155 {
1156         spin_lock_init(&i915->mm.obj_lock);
1157
1158         init_llist_head(&i915->mm.free_list);
1159
1160         INIT_LIST_HEAD(&i915->mm.purge_list);
1161         INIT_LIST_HEAD(&i915->mm.shrink_list);
1162
1163         i915_gem_init__objects(i915);
1164 }
1165
1166 void i915_gem_init_early(struct drm_i915_private *dev_priv)
1167 {
1168         i915_gem_init__mm(dev_priv);
1169         i915_gem_init__contexts(dev_priv);
1170
1171         spin_lock_init(&dev_priv->fb_tracking.lock);
1172 }
1173
1174 void i915_gem_cleanup_early(struct drm_i915_private *dev_priv)
1175 {
1176         i915_gem_drain_freed_objects(dev_priv);
1177         GEM_BUG_ON(!llist_empty(&dev_priv->mm.free_list));
1178         GEM_BUG_ON(atomic_read(&dev_priv->mm.free_count));
1179         drm_WARN_ON(&dev_priv->drm, dev_priv->mm.shrink_count);
1180 }
1181
1182 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
1183 {
1184         struct drm_i915_file_private *file_priv;
1185         int ret;
1186
1187         DRM_DEBUG("\n");
1188
1189         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
1190         if (!file_priv)
1191                 return -ENOMEM;
1192
1193         file->driver_priv = file_priv;
1194         file_priv->dev_priv = i915;
1195         file_priv->file = file;
1196
1197         file_priv->bsd_engine = -1;
1198         file_priv->hang_timestamp = jiffies;
1199
1200         ret = i915_gem_context_open(i915, file);
1201         if (ret)
1202                 kfree(file_priv);
1203
1204         return ret;
1205 }
1206
1207 void i915_gem_ww_ctx_init(struct i915_gem_ww_ctx *ww, bool intr)
1208 {
1209         ww_acquire_init(&ww->ctx, &reservation_ww_class);
1210         INIT_LIST_HEAD(&ww->obj_list);
1211         ww->intr = intr;
1212         ww->contended = NULL;
1213 }
1214
1215 static void i915_gem_ww_ctx_unlock_all(struct i915_gem_ww_ctx *ww)
1216 {
1217         struct drm_i915_gem_object *obj;
1218
1219         while ((obj = list_first_entry_or_null(&ww->obj_list, struct drm_i915_gem_object, obj_link))) {
1220                 list_del(&obj->obj_link);
1221                 i915_gem_object_unlock(obj);
1222         }
1223 }
1224
1225 void i915_gem_ww_unlock_single(struct drm_i915_gem_object *obj)
1226 {
1227         list_del(&obj->obj_link);
1228         i915_gem_object_unlock(obj);
1229 }
1230
1231 void i915_gem_ww_ctx_fini(struct i915_gem_ww_ctx *ww)
1232 {
1233         i915_gem_ww_ctx_unlock_all(ww);
1234         WARN_ON(ww->contended);
1235         ww_acquire_fini(&ww->ctx);
1236 }
1237
1238 int __must_check i915_gem_ww_ctx_backoff(struct i915_gem_ww_ctx *ww)
1239 {
1240         int ret = 0;
1241
1242         if (WARN_ON(!ww->contended))
1243                 return -EINVAL;
1244
1245         i915_gem_ww_ctx_unlock_all(ww);
1246         if (ww->intr)
1247                 ret = dma_resv_lock_slow_interruptible(ww->contended->base.resv, &ww->ctx);
1248         else
1249                 dma_resv_lock_slow(ww->contended->base.resv, &ww->ctx);
1250
1251         if (!ret)
1252                 list_add_tail(&ww->contended->obj_link, &ww->obj_list);
1253
1254         ww->contended = NULL;
1255
1256         return ret;
1257 }
1258
1259 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1260 #include "selftests/mock_gem_device.c"
1261 #include "selftests/i915_gem.c"
1262 #endif