Merge tag 'drm-for-v4.15' of git://people.freedesktop.org/~airlied/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_gem_clflush.h"
33 #include "i915_vgpu.h"
34 #include "i915_trace.h"
35 #include "intel_drv.h"
36 #include "intel_frontbuffer.h"
37 #include "intel_mocs.h"
38 #include "i915_gemfs.h"
39 #include <linux/dma-fence-array.h>
40 #include <linux/kthread.h>
41 #include <linux/reservation.h>
42 #include <linux/shmem_fs.h>
43 #include <linux/slab.h>
44 #include <linux/stop_machine.h>
45 #include <linux/swap.h>
46 #include <linux/pci.h>
47 #include <linux/dma-buf.h>
48
49 static void i915_gem_flush_free_objects(struct drm_i915_private *i915);
50
51 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
52 {
53         if (obj->cache_dirty)
54                 return false;
55
56         if (!(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE))
57                 return true;
58
59         return obj->pin_global; /* currently in use by HW, keep flushed */
60 }
61
62 static int
63 insert_mappable_node(struct i915_ggtt *ggtt,
64                      struct drm_mm_node *node, u32 size)
65 {
66         memset(node, 0, sizeof(*node));
67         return drm_mm_insert_node_in_range(&ggtt->base.mm, node,
68                                            size, 0, I915_COLOR_UNEVICTABLE,
69                                            0, ggtt->mappable_end,
70                                            DRM_MM_INSERT_LOW);
71 }
72
73 static void
74 remove_mappable_node(struct drm_mm_node *node)
75 {
76         drm_mm_remove_node(node);
77 }
78
79 /* some bookkeeping */
80 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
81                                   u64 size)
82 {
83         spin_lock(&dev_priv->mm.object_stat_lock);
84         dev_priv->mm.object_count++;
85         dev_priv->mm.object_memory += size;
86         spin_unlock(&dev_priv->mm.object_stat_lock);
87 }
88
89 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
90                                      u64 size)
91 {
92         spin_lock(&dev_priv->mm.object_stat_lock);
93         dev_priv->mm.object_count--;
94         dev_priv->mm.object_memory -= size;
95         spin_unlock(&dev_priv->mm.object_stat_lock);
96 }
97
98 static int
99 i915_gem_wait_for_error(struct i915_gpu_error *error)
100 {
101         int ret;
102
103         might_sleep();
104
105         /*
106          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
107          * userspace. If it takes that long something really bad is going on and
108          * we should simply try to bail out and fail as gracefully as possible.
109          */
110         ret = wait_event_interruptible_timeout(error->reset_queue,
111                                                !i915_reset_backoff(error),
112                                                I915_RESET_TIMEOUT);
113         if (ret == 0) {
114                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
115                 return -EIO;
116         } else if (ret < 0) {
117                 return ret;
118         } else {
119                 return 0;
120         }
121 }
122
123 int i915_mutex_lock_interruptible(struct drm_device *dev)
124 {
125         struct drm_i915_private *dev_priv = to_i915(dev);
126         int ret;
127
128         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
129         if (ret)
130                 return ret;
131
132         ret = mutex_lock_interruptible(&dev->struct_mutex);
133         if (ret)
134                 return ret;
135
136         return 0;
137 }
138
139 int
140 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
141                             struct drm_file *file)
142 {
143         struct drm_i915_private *dev_priv = to_i915(dev);
144         struct i915_ggtt *ggtt = &dev_priv->ggtt;
145         struct drm_i915_gem_get_aperture *args = data;
146         struct i915_vma *vma;
147         u64 pinned;
148
149         pinned = ggtt->base.reserved;
150         mutex_lock(&dev->struct_mutex);
151         list_for_each_entry(vma, &ggtt->base.active_list, vm_link)
152                 if (i915_vma_is_pinned(vma))
153                         pinned += vma->node.size;
154         list_for_each_entry(vma, &ggtt->base.inactive_list, vm_link)
155                 if (i915_vma_is_pinned(vma))
156                         pinned += vma->node.size;
157         mutex_unlock(&dev->struct_mutex);
158
159         args->aper_size = ggtt->base.total;
160         args->aper_available_size = args->aper_size - pinned;
161
162         return 0;
163 }
164
165 static int i915_gem_object_get_pages_phys(struct drm_i915_gem_object *obj)
166 {
167         struct address_space *mapping = obj->base.filp->f_mapping;
168         drm_dma_handle_t *phys;
169         struct sg_table *st;
170         struct scatterlist *sg;
171         char *vaddr;
172         int i;
173         int err;
174
175         if (WARN_ON(i915_gem_object_needs_bit17_swizzle(obj)))
176                 return -EINVAL;
177
178         /* Always aligning to the object size, allows a single allocation
179          * to handle all possible callers, and given typical object sizes,
180          * the alignment of the buddy allocation will naturally match.
181          */
182         phys = drm_pci_alloc(obj->base.dev,
183                              roundup_pow_of_two(obj->base.size),
184                              roundup_pow_of_two(obj->base.size));
185         if (!phys)
186                 return -ENOMEM;
187
188         vaddr = phys->vaddr;
189         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
190                 struct page *page;
191                 char *src;
192
193                 page = shmem_read_mapping_page(mapping, i);
194                 if (IS_ERR(page)) {
195                         err = PTR_ERR(page);
196                         goto err_phys;
197                 }
198
199                 src = kmap_atomic(page);
200                 memcpy(vaddr, src, PAGE_SIZE);
201                 drm_clflush_virt_range(vaddr, PAGE_SIZE);
202                 kunmap_atomic(src);
203
204                 put_page(page);
205                 vaddr += PAGE_SIZE;
206         }
207
208         i915_gem_chipset_flush(to_i915(obj->base.dev));
209
210         st = kmalloc(sizeof(*st), GFP_KERNEL);
211         if (!st) {
212                 err = -ENOMEM;
213                 goto err_phys;
214         }
215
216         if (sg_alloc_table(st, 1, GFP_KERNEL)) {
217                 kfree(st);
218                 err = -ENOMEM;
219                 goto err_phys;
220         }
221
222         sg = st->sgl;
223         sg->offset = 0;
224         sg->length = obj->base.size;
225
226         sg_dma_address(sg) = phys->busaddr;
227         sg_dma_len(sg) = obj->base.size;
228
229         obj->phys_handle = phys;
230
231         __i915_gem_object_set_pages(obj, st, sg->length);
232
233         return 0;
234
235 err_phys:
236         drm_pci_free(obj->base.dev, phys);
237
238         return err;
239 }
240
241 static void __start_cpu_write(struct drm_i915_gem_object *obj)
242 {
243         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
244         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
245         if (cpu_write_needs_clflush(obj))
246                 obj->cache_dirty = true;
247 }
248
249 static void
250 __i915_gem_object_release_shmem(struct drm_i915_gem_object *obj,
251                                 struct sg_table *pages,
252                                 bool needs_clflush)
253 {
254         GEM_BUG_ON(obj->mm.madv == __I915_MADV_PURGED);
255
256         if (obj->mm.madv == I915_MADV_DONTNEED)
257                 obj->mm.dirty = false;
258
259         if (needs_clflush &&
260             (obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0 &&
261             !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ))
262                 drm_clflush_sg(pages);
263
264         __start_cpu_write(obj);
265 }
266
267 static void
268 i915_gem_object_put_pages_phys(struct drm_i915_gem_object *obj,
269                                struct sg_table *pages)
270 {
271         __i915_gem_object_release_shmem(obj, pages, false);
272
273         if (obj->mm.dirty) {
274                 struct address_space *mapping = obj->base.filp->f_mapping;
275                 char *vaddr = obj->phys_handle->vaddr;
276                 int i;
277
278                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
279                         struct page *page;
280                         char *dst;
281
282                         page = shmem_read_mapping_page(mapping, i);
283                         if (IS_ERR(page))
284                                 continue;
285
286                         dst = kmap_atomic(page);
287                         drm_clflush_virt_range(vaddr, PAGE_SIZE);
288                         memcpy(dst, vaddr, PAGE_SIZE);
289                         kunmap_atomic(dst);
290
291                         set_page_dirty(page);
292                         if (obj->mm.madv == I915_MADV_WILLNEED)
293                                 mark_page_accessed(page);
294                         put_page(page);
295                         vaddr += PAGE_SIZE;
296                 }
297                 obj->mm.dirty = false;
298         }
299
300         sg_free_table(pages);
301         kfree(pages);
302
303         drm_pci_free(obj->base.dev, obj->phys_handle);
304 }
305
306 static void
307 i915_gem_object_release_phys(struct drm_i915_gem_object *obj)
308 {
309         i915_gem_object_unpin_pages(obj);
310 }
311
312 static const struct drm_i915_gem_object_ops i915_gem_phys_ops = {
313         .get_pages = i915_gem_object_get_pages_phys,
314         .put_pages = i915_gem_object_put_pages_phys,
315         .release = i915_gem_object_release_phys,
316 };
317
318 static const struct drm_i915_gem_object_ops i915_gem_object_ops;
319
320 int i915_gem_object_unbind(struct drm_i915_gem_object *obj)
321 {
322         struct i915_vma *vma;
323         LIST_HEAD(still_in_list);
324         int ret;
325
326         lockdep_assert_held(&obj->base.dev->struct_mutex);
327
328         /* Closed vma are removed from the obj->vma_list - but they may
329          * still have an active binding on the object. To remove those we
330          * must wait for all rendering to complete to the object (as unbinding
331          * must anyway), and retire the requests.
332          */
333         ret = i915_gem_object_wait(obj,
334                                    I915_WAIT_INTERRUPTIBLE |
335                                    I915_WAIT_LOCKED |
336                                    I915_WAIT_ALL,
337                                    MAX_SCHEDULE_TIMEOUT,
338                                    NULL);
339         if (ret)
340                 return ret;
341
342         i915_gem_retire_requests(to_i915(obj->base.dev));
343
344         while ((vma = list_first_entry_or_null(&obj->vma_list,
345                                                struct i915_vma,
346                                                obj_link))) {
347                 list_move_tail(&vma->obj_link, &still_in_list);
348                 ret = i915_vma_unbind(vma);
349                 if (ret)
350                         break;
351         }
352         list_splice(&still_in_list, &obj->vma_list);
353
354         return ret;
355 }
356
357 static long
358 i915_gem_object_wait_fence(struct dma_fence *fence,
359                            unsigned int flags,
360                            long timeout,
361                            struct intel_rps_client *rps_client)
362 {
363         struct drm_i915_gem_request *rq;
364
365         BUILD_BUG_ON(I915_WAIT_INTERRUPTIBLE != 0x1);
366
367         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
368                 return timeout;
369
370         if (!dma_fence_is_i915(fence))
371                 return dma_fence_wait_timeout(fence,
372                                               flags & I915_WAIT_INTERRUPTIBLE,
373                                               timeout);
374
375         rq = to_request(fence);
376         if (i915_gem_request_completed(rq))
377                 goto out;
378
379         /* This client is about to stall waiting for the GPU. In many cases
380          * this is undesirable and limits the throughput of the system, as
381          * many clients cannot continue processing user input/output whilst
382          * blocked. RPS autotuning may take tens of milliseconds to respond
383          * to the GPU load and thus incurs additional latency for the client.
384          * We can circumvent that by promoting the GPU frequency to maximum
385          * before we wait. This makes the GPU throttle up much more quickly
386          * (good for benchmarks and user experience, e.g. window animations),
387          * but at a cost of spending more power processing the workload
388          * (bad for battery). Not all clients even want their results
389          * immediately and for them we should just let the GPU select its own
390          * frequency to maximise efficiency. To prevent a single client from
391          * forcing the clocks too high for the whole system, we only allow
392          * each client to waitboost once in a busy period.
393          */
394         if (rps_client) {
395                 if (INTEL_GEN(rq->i915) >= 6)
396                         gen6_rps_boost(rq, rps_client);
397                 else
398                         rps_client = NULL;
399         }
400
401         timeout = i915_wait_request(rq, flags, timeout);
402
403 out:
404         if (flags & I915_WAIT_LOCKED && i915_gem_request_completed(rq))
405                 i915_gem_request_retire_upto(rq);
406
407         return timeout;
408 }
409
410 static long
411 i915_gem_object_wait_reservation(struct reservation_object *resv,
412                                  unsigned int flags,
413                                  long timeout,
414                                  struct intel_rps_client *rps_client)
415 {
416         unsigned int seq = __read_seqcount_begin(&resv->seq);
417         struct dma_fence *excl;
418         bool prune_fences = false;
419
420         if (flags & I915_WAIT_ALL) {
421                 struct dma_fence **shared;
422                 unsigned int count, i;
423                 int ret;
424
425                 ret = reservation_object_get_fences_rcu(resv,
426                                                         &excl, &count, &shared);
427                 if (ret)
428                         return ret;
429
430                 for (i = 0; i < count; i++) {
431                         timeout = i915_gem_object_wait_fence(shared[i],
432                                                              flags, timeout,
433                                                              rps_client);
434                         if (timeout < 0)
435                                 break;
436
437                         dma_fence_put(shared[i]);
438                 }
439
440                 for (; i < count; i++)
441                         dma_fence_put(shared[i]);
442                 kfree(shared);
443
444                 prune_fences = count && timeout >= 0;
445         } else {
446                 excl = reservation_object_get_excl_rcu(resv);
447         }
448
449         if (excl && timeout >= 0) {
450                 timeout = i915_gem_object_wait_fence(excl, flags, timeout,
451                                                      rps_client);
452                 prune_fences = timeout >= 0;
453         }
454
455         dma_fence_put(excl);
456
457         /* Oportunistically prune the fences iff we know they have *all* been
458          * signaled and that the reservation object has not been changed (i.e.
459          * no new fences have been added).
460          */
461         if (prune_fences && !__read_seqcount_retry(&resv->seq, seq)) {
462                 if (reservation_object_trylock(resv)) {
463                         if (!__read_seqcount_retry(&resv->seq, seq))
464                                 reservation_object_add_excl_fence(resv, NULL);
465                         reservation_object_unlock(resv);
466                 }
467         }
468
469         return timeout;
470 }
471
472 static void __fence_set_priority(struct dma_fence *fence, int prio)
473 {
474         struct drm_i915_gem_request *rq;
475         struct intel_engine_cs *engine;
476
477         if (!dma_fence_is_i915(fence))
478                 return;
479
480         rq = to_request(fence);
481         engine = rq->engine;
482         if (!engine->schedule)
483                 return;
484
485         engine->schedule(rq, prio);
486 }
487
488 static void fence_set_priority(struct dma_fence *fence, int prio)
489 {
490         /* Recurse once into a fence-array */
491         if (dma_fence_is_array(fence)) {
492                 struct dma_fence_array *array = to_dma_fence_array(fence);
493                 int i;
494
495                 for (i = 0; i < array->num_fences; i++)
496                         __fence_set_priority(array->fences[i], prio);
497         } else {
498                 __fence_set_priority(fence, prio);
499         }
500 }
501
502 int
503 i915_gem_object_wait_priority(struct drm_i915_gem_object *obj,
504                               unsigned int flags,
505                               int prio)
506 {
507         struct dma_fence *excl;
508
509         if (flags & I915_WAIT_ALL) {
510                 struct dma_fence **shared;
511                 unsigned int count, i;
512                 int ret;
513
514                 ret = reservation_object_get_fences_rcu(obj->resv,
515                                                         &excl, &count, &shared);
516                 if (ret)
517                         return ret;
518
519                 for (i = 0; i < count; i++) {
520                         fence_set_priority(shared[i], prio);
521                         dma_fence_put(shared[i]);
522                 }
523
524                 kfree(shared);
525         } else {
526                 excl = reservation_object_get_excl_rcu(obj->resv);
527         }
528
529         if (excl) {
530                 fence_set_priority(excl, prio);
531                 dma_fence_put(excl);
532         }
533         return 0;
534 }
535
536 /**
537  * Waits for rendering to the object to be completed
538  * @obj: i915 gem object
539  * @flags: how to wait (under a lock, for all rendering or just for writes etc)
540  * @timeout: how long to wait
541  * @rps: client (user process) to charge for any waitboosting
542  */
543 int
544 i915_gem_object_wait(struct drm_i915_gem_object *obj,
545                      unsigned int flags,
546                      long timeout,
547                      struct intel_rps_client *rps_client)
548 {
549         might_sleep();
550 #if IS_ENABLED(CONFIG_LOCKDEP)
551         GEM_BUG_ON(debug_locks &&
552                    !!lockdep_is_held(&obj->base.dev->struct_mutex) !=
553                    !!(flags & I915_WAIT_LOCKED));
554 #endif
555         GEM_BUG_ON(timeout < 0);
556
557         timeout = i915_gem_object_wait_reservation(obj->resv,
558                                                    flags, timeout,
559                                                    rps_client);
560         return timeout < 0 ? timeout : 0;
561 }
562
563 static struct intel_rps_client *to_rps_client(struct drm_file *file)
564 {
565         struct drm_i915_file_private *fpriv = file->driver_priv;
566
567         return &fpriv->rps_client;
568 }
569
570 static int
571 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
572                      struct drm_i915_gem_pwrite *args,
573                      struct drm_file *file)
574 {
575         void *vaddr = obj->phys_handle->vaddr + args->offset;
576         char __user *user_data = u64_to_user_ptr(args->data_ptr);
577
578         /* We manually control the domain here and pretend that it
579          * remains coherent i.e. in the GTT domain, like shmem_pwrite.
580          */
581         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
582         if (copy_from_user(vaddr, user_data, args->size))
583                 return -EFAULT;
584
585         drm_clflush_virt_range(vaddr, args->size);
586         i915_gem_chipset_flush(to_i915(obj->base.dev));
587
588         intel_fb_obj_flush(obj, ORIGIN_CPU);
589         return 0;
590 }
591
592 void *i915_gem_object_alloc(struct drm_i915_private *dev_priv)
593 {
594         return kmem_cache_zalloc(dev_priv->objects, GFP_KERNEL);
595 }
596
597 void i915_gem_object_free(struct drm_i915_gem_object *obj)
598 {
599         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
600         kmem_cache_free(dev_priv->objects, obj);
601 }
602
603 static int
604 i915_gem_create(struct drm_file *file,
605                 struct drm_i915_private *dev_priv,
606                 uint64_t size,
607                 uint32_t *handle_p)
608 {
609         struct drm_i915_gem_object *obj;
610         int ret;
611         u32 handle;
612
613         size = roundup(size, PAGE_SIZE);
614         if (size == 0)
615                 return -EINVAL;
616
617         /* Allocate the new object */
618         obj = i915_gem_object_create(dev_priv, size);
619         if (IS_ERR(obj))
620                 return PTR_ERR(obj);
621
622         ret = drm_gem_handle_create(file, &obj->base, &handle);
623         /* drop reference from allocate - handle holds it now */
624         i915_gem_object_put(obj);
625         if (ret)
626                 return ret;
627
628         *handle_p = handle;
629         return 0;
630 }
631
632 int
633 i915_gem_dumb_create(struct drm_file *file,
634                      struct drm_device *dev,
635                      struct drm_mode_create_dumb *args)
636 {
637         /* have to work out size/pitch and return them */
638         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
639         args->size = args->pitch * args->height;
640         return i915_gem_create(file, to_i915(dev),
641                                args->size, &args->handle);
642 }
643
644 static bool gpu_write_needs_clflush(struct drm_i915_gem_object *obj)
645 {
646         return !(obj->cache_level == I915_CACHE_NONE ||
647                  obj->cache_level == I915_CACHE_WT);
648 }
649
650 /**
651  * Creates a new mm object and returns a handle to it.
652  * @dev: drm device pointer
653  * @data: ioctl data blob
654  * @file: drm file pointer
655  */
656 int
657 i915_gem_create_ioctl(struct drm_device *dev, void *data,
658                       struct drm_file *file)
659 {
660         struct drm_i915_private *dev_priv = to_i915(dev);
661         struct drm_i915_gem_create *args = data;
662
663         i915_gem_flush_free_objects(dev_priv);
664
665         return i915_gem_create(file, dev_priv,
666                                args->size, &args->handle);
667 }
668
669 static inline enum fb_op_origin
670 fb_write_origin(struct drm_i915_gem_object *obj, unsigned int domain)
671 {
672         return (domain == I915_GEM_DOMAIN_GTT ?
673                 obj->frontbuffer_ggtt_origin : ORIGIN_CPU);
674 }
675
676 static void
677 flush_write_domain(struct drm_i915_gem_object *obj, unsigned int flush_domains)
678 {
679         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
680
681         if (!(obj->base.write_domain & flush_domains))
682                 return;
683
684         /* No actual flushing is required for the GTT write domain.  Writes
685          * to it "immediately" go to main memory as far as we know, so there's
686          * no chipset flush.  It also doesn't land in render cache.
687          *
688          * However, we do have to enforce the order so that all writes through
689          * the GTT land before any writes to the device, such as updates to
690          * the GATT itself.
691          *
692          * We also have to wait a bit for the writes to land from the GTT.
693          * An uncached read (i.e. mmio) seems to be ideal for the round-trip
694          * timing. This issue has only been observed when switching quickly
695          * between GTT writes and CPU reads from inside the kernel on recent hw,
696          * and it appears to only affect discrete GTT blocks (i.e. on LLC
697          * system agents we cannot reproduce this behaviour).
698          */
699         wmb();
700
701         switch (obj->base.write_domain) {
702         case I915_GEM_DOMAIN_GTT:
703                 if (!HAS_LLC(dev_priv)) {
704                         intel_runtime_pm_get(dev_priv);
705                         spin_lock_irq(&dev_priv->uncore.lock);
706                         POSTING_READ_FW(RING_HEAD(dev_priv->engine[RCS]->mmio_base));
707                         spin_unlock_irq(&dev_priv->uncore.lock);
708                         intel_runtime_pm_put(dev_priv);
709                 }
710
711                 intel_fb_obj_flush(obj,
712                                    fb_write_origin(obj, I915_GEM_DOMAIN_GTT));
713                 break;
714
715         case I915_GEM_DOMAIN_CPU:
716                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
717                 break;
718
719         case I915_GEM_DOMAIN_RENDER:
720                 if (gpu_write_needs_clflush(obj))
721                         obj->cache_dirty = true;
722                 break;
723         }
724
725         obj->base.write_domain = 0;
726 }
727
728 static inline int
729 __copy_to_user_swizzled(char __user *cpu_vaddr,
730                         const char *gpu_vaddr, int gpu_offset,
731                         int length)
732 {
733         int ret, cpu_offset = 0;
734
735         while (length > 0) {
736                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
737                 int this_length = min(cacheline_end - gpu_offset, length);
738                 int swizzled_gpu_offset = gpu_offset ^ 64;
739
740                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
741                                      gpu_vaddr + swizzled_gpu_offset,
742                                      this_length);
743                 if (ret)
744                         return ret + length;
745
746                 cpu_offset += this_length;
747                 gpu_offset += this_length;
748                 length -= this_length;
749         }
750
751         return 0;
752 }
753
754 static inline int
755 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
756                           const char __user *cpu_vaddr,
757                           int length)
758 {
759         int ret, cpu_offset = 0;
760
761         while (length > 0) {
762                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
763                 int this_length = min(cacheline_end - gpu_offset, length);
764                 int swizzled_gpu_offset = gpu_offset ^ 64;
765
766                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
767                                        cpu_vaddr + cpu_offset,
768                                        this_length);
769                 if (ret)
770                         return ret + length;
771
772                 cpu_offset += this_length;
773                 gpu_offset += this_length;
774                 length -= this_length;
775         }
776
777         return 0;
778 }
779
780 /*
781  * Pins the specified object's pages and synchronizes the object with
782  * GPU accesses. Sets needs_clflush to non-zero if the caller should
783  * flush the object from the CPU cache.
784  */
785 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
786                                     unsigned int *needs_clflush)
787 {
788         int ret;
789
790         lockdep_assert_held(&obj->base.dev->struct_mutex);
791
792         *needs_clflush = 0;
793         if (!i915_gem_object_has_struct_page(obj))
794                 return -ENODEV;
795
796         ret = i915_gem_object_wait(obj,
797                                    I915_WAIT_INTERRUPTIBLE |
798                                    I915_WAIT_LOCKED,
799                                    MAX_SCHEDULE_TIMEOUT,
800                                    NULL);
801         if (ret)
802                 return ret;
803
804         ret = i915_gem_object_pin_pages(obj);
805         if (ret)
806                 return ret;
807
808         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ ||
809             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
810                 ret = i915_gem_object_set_to_cpu_domain(obj, false);
811                 if (ret)
812                         goto err_unpin;
813                 else
814                         goto out;
815         }
816
817         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
818
819         /* If we're not in the cpu read domain, set ourself into the gtt
820          * read domain and manually flush cachelines (if required). This
821          * optimizes for the case when the gpu will dirty the data
822          * anyway again before the next pread happens.
823          */
824         if (!obj->cache_dirty &&
825             !(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
826                 *needs_clflush = CLFLUSH_BEFORE;
827
828 out:
829         /* return with the pages pinned */
830         return 0;
831
832 err_unpin:
833         i915_gem_object_unpin_pages(obj);
834         return ret;
835 }
836
837 int i915_gem_obj_prepare_shmem_write(struct drm_i915_gem_object *obj,
838                                      unsigned int *needs_clflush)
839 {
840         int ret;
841
842         lockdep_assert_held(&obj->base.dev->struct_mutex);
843
844         *needs_clflush = 0;
845         if (!i915_gem_object_has_struct_page(obj))
846                 return -ENODEV;
847
848         ret = i915_gem_object_wait(obj,
849                                    I915_WAIT_INTERRUPTIBLE |
850                                    I915_WAIT_LOCKED |
851                                    I915_WAIT_ALL,
852                                    MAX_SCHEDULE_TIMEOUT,
853                                    NULL);
854         if (ret)
855                 return ret;
856
857         ret = i915_gem_object_pin_pages(obj);
858         if (ret)
859                 return ret;
860
861         if (obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_WRITE ||
862             !static_cpu_has(X86_FEATURE_CLFLUSH)) {
863                 ret = i915_gem_object_set_to_cpu_domain(obj, true);
864                 if (ret)
865                         goto err_unpin;
866                 else
867                         goto out;
868         }
869
870         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
871
872         /* If we're not in the cpu write domain, set ourself into the
873          * gtt write domain and manually flush cachelines (as required).
874          * This optimizes for the case when the gpu will use the data
875          * right away and we therefore have to clflush anyway.
876          */
877         if (!obj->cache_dirty) {
878                 *needs_clflush |= CLFLUSH_AFTER;
879
880                 /*
881                  * Same trick applies to invalidate partially written
882                  * cachelines read before writing.
883                  */
884                 if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU))
885                         *needs_clflush |= CLFLUSH_BEFORE;
886         }
887
888 out:
889         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
890         obj->mm.dirty = true;
891         /* return with the pages pinned */
892         return 0;
893
894 err_unpin:
895         i915_gem_object_unpin_pages(obj);
896         return ret;
897 }
898
899 static void
900 shmem_clflush_swizzled_range(char *addr, unsigned long length,
901                              bool swizzled)
902 {
903         if (unlikely(swizzled)) {
904                 unsigned long start = (unsigned long) addr;
905                 unsigned long end = (unsigned long) addr + length;
906
907                 /* For swizzling simply ensure that we always flush both
908                  * channels. Lame, but simple and it works. Swizzled
909                  * pwrite/pread is far from a hotpath - current userspace
910                  * doesn't use it at all. */
911                 start = round_down(start, 128);
912                 end = round_up(end, 128);
913
914                 drm_clflush_virt_range((void *)start, end - start);
915         } else {
916                 drm_clflush_virt_range(addr, length);
917         }
918
919 }
920
921 /* Only difference to the fast-path function is that this can handle bit17
922  * and uses non-atomic copy and kmap functions. */
923 static int
924 shmem_pread_slow(struct page *page, int offset, int length,
925                  char __user *user_data,
926                  bool page_do_bit17_swizzling, bool needs_clflush)
927 {
928         char *vaddr;
929         int ret;
930
931         vaddr = kmap(page);
932         if (needs_clflush)
933                 shmem_clflush_swizzled_range(vaddr + offset, length,
934                                              page_do_bit17_swizzling);
935
936         if (page_do_bit17_swizzling)
937                 ret = __copy_to_user_swizzled(user_data, vaddr, offset, length);
938         else
939                 ret = __copy_to_user(user_data, vaddr + offset, length);
940         kunmap(page);
941
942         return ret ? - EFAULT : 0;
943 }
944
945 static int
946 shmem_pread(struct page *page, int offset, int length, char __user *user_data,
947             bool page_do_bit17_swizzling, bool needs_clflush)
948 {
949         int ret;
950
951         ret = -ENODEV;
952         if (!page_do_bit17_swizzling) {
953                 char *vaddr = kmap_atomic(page);
954
955                 if (needs_clflush)
956                         drm_clflush_virt_range(vaddr + offset, length);
957                 ret = __copy_to_user_inatomic(user_data, vaddr + offset, length);
958                 kunmap_atomic(vaddr);
959         }
960         if (ret == 0)
961                 return 0;
962
963         return shmem_pread_slow(page, offset, length, user_data,
964                                 page_do_bit17_swizzling, needs_clflush);
965 }
966
967 static int
968 i915_gem_shmem_pread(struct drm_i915_gem_object *obj,
969                      struct drm_i915_gem_pread *args)
970 {
971         char __user *user_data;
972         u64 remain;
973         unsigned int obj_do_bit17_swizzling;
974         unsigned int needs_clflush;
975         unsigned int idx, offset;
976         int ret;
977
978         obj_do_bit17_swizzling = 0;
979         if (i915_gem_object_needs_bit17_swizzle(obj))
980                 obj_do_bit17_swizzling = BIT(17);
981
982         ret = mutex_lock_interruptible(&obj->base.dev->struct_mutex);
983         if (ret)
984                 return ret;
985
986         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
987         mutex_unlock(&obj->base.dev->struct_mutex);
988         if (ret)
989                 return ret;
990
991         remain = args->size;
992         user_data = u64_to_user_ptr(args->data_ptr);
993         offset = offset_in_page(args->offset);
994         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
995                 struct page *page = i915_gem_object_get_page(obj, idx);
996                 int length;
997
998                 length = remain;
999                 if (offset + length > PAGE_SIZE)
1000                         length = PAGE_SIZE - offset;
1001
1002                 ret = shmem_pread(page, offset, length, user_data,
1003                                   page_to_phys(page) & obj_do_bit17_swizzling,
1004                                   needs_clflush);
1005                 if (ret)
1006                         break;
1007
1008                 remain -= length;
1009                 user_data += length;
1010                 offset = 0;
1011         }
1012
1013         i915_gem_obj_finish_shmem_access(obj);
1014         return ret;
1015 }
1016
1017 static inline bool
1018 gtt_user_read(struct io_mapping *mapping,
1019               loff_t base, int offset,
1020               char __user *user_data, int length)
1021 {
1022         void __iomem *vaddr;
1023         unsigned long unwritten;
1024
1025         /* We can use the cpu mem copy function because this is X86. */
1026         vaddr = io_mapping_map_atomic_wc(mapping, base);
1027         unwritten = __copy_to_user_inatomic(user_data,
1028                                             (void __force *)vaddr + offset,
1029                                             length);
1030         io_mapping_unmap_atomic(vaddr);
1031         if (unwritten) {
1032                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1033                 unwritten = copy_to_user(user_data,
1034                                          (void __force *)vaddr + offset,
1035                                          length);
1036                 io_mapping_unmap(vaddr);
1037         }
1038         return unwritten;
1039 }
1040
1041 static int
1042 i915_gem_gtt_pread(struct drm_i915_gem_object *obj,
1043                    const struct drm_i915_gem_pread *args)
1044 {
1045         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1046         struct i915_ggtt *ggtt = &i915->ggtt;
1047         struct drm_mm_node node;
1048         struct i915_vma *vma;
1049         void __user *user_data;
1050         u64 remain, offset;
1051         int ret;
1052
1053         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1054         if (ret)
1055                 return ret;
1056
1057         intel_runtime_pm_get(i915);
1058         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1059                                        PIN_MAPPABLE |
1060                                        PIN_NONFAULT |
1061                                        PIN_NONBLOCK);
1062         if (!IS_ERR(vma)) {
1063                 node.start = i915_ggtt_offset(vma);
1064                 node.allocated = false;
1065                 ret = i915_vma_put_fence(vma);
1066                 if (ret) {
1067                         i915_vma_unpin(vma);
1068                         vma = ERR_PTR(ret);
1069                 }
1070         }
1071         if (IS_ERR(vma)) {
1072                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1073                 if (ret)
1074                         goto out_unlock;
1075                 GEM_BUG_ON(!node.allocated);
1076         }
1077
1078         ret = i915_gem_object_set_to_gtt_domain(obj, false);
1079         if (ret)
1080                 goto out_unpin;
1081
1082         mutex_unlock(&i915->drm.struct_mutex);
1083
1084         user_data = u64_to_user_ptr(args->data_ptr);
1085         remain = args->size;
1086         offset = args->offset;
1087
1088         while (remain > 0) {
1089                 /* Operation in this page
1090                  *
1091                  * page_base = page offset within aperture
1092                  * page_offset = offset within page
1093                  * page_length = bytes to copy for this page
1094                  */
1095                 u32 page_base = node.start;
1096                 unsigned page_offset = offset_in_page(offset);
1097                 unsigned page_length = PAGE_SIZE - page_offset;
1098                 page_length = remain < page_length ? remain : page_length;
1099                 if (node.allocated) {
1100                         wmb();
1101                         ggtt->base.insert_page(&ggtt->base,
1102                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1103                                                node.start, I915_CACHE_NONE, 0);
1104                         wmb();
1105                 } else {
1106                         page_base += offset & PAGE_MASK;
1107                 }
1108
1109                 if (gtt_user_read(&ggtt->mappable, page_base, page_offset,
1110                                   user_data, page_length)) {
1111                         ret = -EFAULT;
1112                         break;
1113                 }
1114
1115                 remain -= page_length;
1116                 user_data += page_length;
1117                 offset += page_length;
1118         }
1119
1120         mutex_lock(&i915->drm.struct_mutex);
1121 out_unpin:
1122         if (node.allocated) {
1123                 wmb();
1124                 ggtt->base.clear_range(&ggtt->base,
1125                                        node.start, node.size);
1126                 remove_mappable_node(&node);
1127         } else {
1128                 i915_vma_unpin(vma);
1129         }
1130 out_unlock:
1131         intel_runtime_pm_put(i915);
1132         mutex_unlock(&i915->drm.struct_mutex);
1133
1134         return ret;
1135 }
1136
1137 /**
1138  * Reads data from the object referenced by handle.
1139  * @dev: drm device pointer
1140  * @data: ioctl data blob
1141  * @file: drm file pointer
1142  *
1143  * On error, the contents of *data are undefined.
1144  */
1145 int
1146 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
1147                      struct drm_file *file)
1148 {
1149         struct drm_i915_gem_pread *args = data;
1150         struct drm_i915_gem_object *obj;
1151         int ret;
1152
1153         if (args->size == 0)
1154                 return 0;
1155
1156         if (!access_ok(VERIFY_WRITE,
1157                        u64_to_user_ptr(args->data_ptr),
1158                        args->size))
1159                 return -EFAULT;
1160
1161         obj = i915_gem_object_lookup(file, args->handle);
1162         if (!obj)
1163                 return -ENOENT;
1164
1165         /* Bounds check source.  */
1166         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1167                 ret = -EINVAL;
1168                 goto out;
1169         }
1170
1171         trace_i915_gem_object_pread(obj, args->offset, args->size);
1172
1173         ret = i915_gem_object_wait(obj,
1174                                    I915_WAIT_INTERRUPTIBLE,
1175                                    MAX_SCHEDULE_TIMEOUT,
1176                                    to_rps_client(file));
1177         if (ret)
1178                 goto out;
1179
1180         ret = i915_gem_object_pin_pages(obj);
1181         if (ret)
1182                 goto out;
1183
1184         ret = i915_gem_shmem_pread(obj, args);
1185         if (ret == -EFAULT || ret == -ENODEV)
1186                 ret = i915_gem_gtt_pread(obj, args);
1187
1188         i915_gem_object_unpin_pages(obj);
1189 out:
1190         i915_gem_object_put(obj);
1191         return ret;
1192 }
1193
1194 /* This is the fast write path which cannot handle
1195  * page faults in the source data
1196  */
1197
1198 static inline bool
1199 ggtt_write(struct io_mapping *mapping,
1200            loff_t base, int offset,
1201            char __user *user_data, int length)
1202 {
1203         void __iomem *vaddr;
1204         unsigned long unwritten;
1205
1206         /* We can use the cpu mem copy function because this is X86. */
1207         vaddr = io_mapping_map_atomic_wc(mapping, base);
1208         unwritten = __copy_from_user_inatomic_nocache((void __force *)vaddr + offset,
1209                                                       user_data, length);
1210         io_mapping_unmap_atomic(vaddr);
1211         if (unwritten) {
1212                 vaddr = io_mapping_map_wc(mapping, base, PAGE_SIZE);
1213                 unwritten = copy_from_user((void __force *)vaddr + offset,
1214                                            user_data, length);
1215                 io_mapping_unmap(vaddr);
1216         }
1217
1218         return unwritten;
1219 }
1220
1221 /**
1222  * This is the fast pwrite path, where we copy the data directly from the
1223  * user into the GTT, uncached.
1224  * @obj: i915 GEM object
1225  * @args: pwrite arguments structure
1226  */
1227 static int
1228 i915_gem_gtt_pwrite_fast(struct drm_i915_gem_object *obj,
1229                          const struct drm_i915_gem_pwrite *args)
1230 {
1231         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1232         struct i915_ggtt *ggtt = &i915->ggtt;
1233         struct drm_mm_node node;
1234         struct i915_vma *vma;
1235         u64 remain, offset;
1236         void __user *user_data;
1237         int ret;
1238
1239         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1240         if (ret)
1241                 return ret;
1242
1243         if (i915_gem_object_has_struct_page(obj)) {
1244                 /*
1245                  * Avoid waking the device up if we can fallback, as
1246                  * waking/resuming is very slow (worst-case 10-100 ms
1247                  * depending on PCI sleeps and our own resume time).
1248                  * This easily dwarfs any performance advantage from
1249                  * using the cache bypass of indirect GGTT access.
1250                  */
1251                 if (!intel_runtime_pm_get_if_in_use(i915)) {
1252                         ret = -EFAULT;
1253                         goto out_unlock;
1254                 }
1255         } else {
1256                 /* No backing pages, no fallback, we must force GGTT access */
1257                 intel_runtime_pm_get(i915);
1258         }
1259
1260         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1261                                        PIN_MAPPABLE |
1262                                        PIN_NONFAULT |
1263                                        PIN_NONBLOCK);
1264         if (!IS_ERR(vma)) {
1265                 node.start = i915_ggtt_offset(vma);
1266                 node.allocated = false;
1267                 ret = i915_vma_put_fence(vma);
1268                 if (ret) {
1269                         i915_vma_unpin(vma);
1270                         vma = ERR_PTR(ret);
1271                 }
1272         }
1273         if (IS_ERR(vma)) {
1274                 ret = insert_mappable_node(ggtt, &node, PAGE_SIZE);
1275                 if (ret)
1276                         goto out_rpm;
1277                 GEM_BUG_ON(!node.allocated);
1278         }
1279
1280         ret = i915_gem_object_set_to_gtt_domain(obj, true);
1281         if (ret)
1282                 goto out_unpin;
1283
1284         mutex_unlock(&i915->drm.struct_mutex);
1285
1286         intel_fb_obj_invalidate(obj, ORIGIN_CPU);
1287
1288         user_data = u64_to_user_ptr(args->data_ptr);
1289         offset = args->offset;
1290         remain = args->size;
1291         while (remain) {
1292                 /* Operation in this page
1293                  *
1294                  * page_base = page offset within aperture
1295                  * page_offset = offset within page
1296                  * page_length = bytes to copy for this page
1297                  */
1298                 u32 page_base = node.start;
1299                 unsigned int page_offset = offset_in_page(offset);
1300                 unsigned int page_length = PAGE_SIZE - page_offset;
1301                 page_length = remain < page_length ? remain : page_length;
1302                 if (node.allocated) {
1303                         wmb(); /* flush the write before we modify the GGTT */
1304                         ggtt->base.insert_page(&ggtt->base,
1305                                                i915_gem_object_get_dma_address(obj, offset >> PAGE_SHIFT),
1306                                                node.start, I915_CACHE_NONE, 0);
1307                         wmb(); /* flush modifications to the GGTT (insert_page) */
1308                 } else {
1309                         page_base += offset & PAGE_MASK;
1310                 }
1311                 /* If we get a fault while copying data, then (presumably) our
1312                  * source page isn't available.  Return the error and we'll
1313                  * retry in the slow path.
1314                  * If the object is non-shmem backed, we retry again with the
1315                  * path that handles page fault.
1316                  */
1317                 if (ggtt_write(&ggtt->mappable, page_base, page_offset,
1318                                user_data, page_length)) {
1319                         ret = -EFAULT;
1320                         break;
1321                 }
1322
1323                 remain -= page_length;
1324                 user_data += page_length;
1325                 offset += page_length;
1326         }
1327         intel_fb_obj_flush(obj, ORIGIN_CPU);
1328
1329         mutex_lock(&i915->drm.struct_mutex);
1330 out_unpin:
1331         if (node.allocated) {
1332                 wmb();
1333                 ggtt->base.clear_range(&ggtt->base,
1334                                        node.start, node.size);
1335                 remove_mappable_node(&node);
1336         } else {
1337                 i915_vma_unpin(vma);
1338         }
1339 out_rpm:
1340         intel_runtime_pm_put(i915);
1341 out_unlock:
1342         mutex_unlock(&i915->drm.struct_mutex);
1343         return ret;
1344 }
1345
1346 static int
1347 shmem_pwrite_slow(struct page *page, int offset, int length,
1348                   char __user *user_data,
1349                   bool page_do_bit17_swizzling,
1350                   bool needs_clflush_before,
1351                   bool needs_clflush_after)
1352 {
1353         char *vaddr;
1354         int ret;
1355
1356         vaddr = kmap(page);
1357         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
1358                 shmem_clflush_swizzled_range(vaddr + offset, length,
1359                                              page_do_bit17_swizzling);
1360         if (page_do_bit17_swizzling)
1361                 ret = __copy_from_user_swizzled(vaddr, offset, user_data,
1362                                                 length);
1363         else
1364                 ret = __copy_from_user(vaddr + offset, user_data, length);
1365         if (needs_clflush_after)
1366                 shmem_clflush_swizzled_range(vaddr + offset, length,
1367                                              page_do_bit17_swizzling);
1368         kunmap(page);
1369
1370         return ret ? -EFAULT : 0;
1371 }
1372
1373 /* Per-page copy function for the shmem pwrite fastpath.
1374  * Flushes invalid cachelines before writing to the target if
1375  * needs_clflush_before is set and flushes out any written cachelines after
1376  * writing if needs_clflush is set.
1377  */
1378 static int
1379 shmem_pwrite(struct page *page, int offset, int len, char __user *user_data,
1380              bool page_do_bit17_swizzling,
1381              bool needs_clflush_before,
1382              bool needs_clflush_after)
1383 {
1384         int ret;
1385
1386         ret = -ENODEV;
1387         if (!page_do_bit17_swizzling) {
1388                 char *vaddr = kmap_atomic(page);
1389
1390                 if (needs_clflush_before)
1391                         drm_clflush_virt_range(vaddr + offset, len);
1392                 ret = __copy_from_user_inatomic(vaddr + offset, user_data, len);
1393                 if (needs_clflush_after)
1394                         drm_clflush_virt_range(vaddr + offset, len);
1395
1396                 kunmap_atomic(vaddr);
1397         }
1398         if (ret == 0)
1399                 return ret;
1400
1401         return shmem_pwrite_slow(page, offset, len, user_data,
1402                                  page_do_bit17_swizzling,
1403                                  needs_clflush_before,
1404                                  needs_clflush_after);
1405 }
1406
1407 static int
1408 i915_gem_shmem_pwrite(struct drm_i915_gem_object *obj,
1409                       const struct drm_i915_gem_pwrite *args)
1410 {
1411         struct drm_i915_private *i915 = to_i915(obj->base.dev);
1412         void __user *user_data;
1413         u64 remain;
1414         unsigned int obj_do_bit17_swizzling;
1415         unsigned int partial_cacheline_write;
1416         unsigned int needs_clflush;
1417         unsigned int offset, idx;
1418         int ret;
1419
1420         ret = mutex_lock_interruptible(&i915->drm.struct_mutex);
1421         if (ret)
1422                 return ret;
1423
1424         ret = i915_gem_obj_prepare_shmem_write(obj, &needs_clflush);
1425         mutex_unlock(&i915->drm.struct_mutex);
1426         if (ret)
1427                 return ret;
1428
1429         obj_do_bit17_swizzling = 0;
1430         if (i915_gem_object_needs_bit17_swizzle(obj))
1431                 obj_do_bit17_swizzling = BIT(17);
1432
1433         /* If we don't overwrite a cacheline completely we need to be
1434          * careful to have up-to-date data by first clflushing. Don't
1435          * overcomplicate things and flush the entire patch.
1436          */
1437         partial_cacheline_write = 0;
1438         if (needs_clflush & CLFLUSH_BEFORE)
1439                 partial_cacheline_write = boot_cpu_data.x86_clflush_size - 1;
1440
1441         user_data = u64_to_user_ptr(args->data_ptr);
1442         remain = args->size;
1443         offset = offset_in_page(args->offset);
1444         for (idx = args->offset >> PAGE_SHIFT; remain; idx++) {
1445                 struct page *page = i915_gem_object_get_page(obj, idx);
1446                 int length;
1447
1448                 length = remain;
1449                 if (offset + length > PAGE_SIZE)
1450                         length = PAGE_SIZE - offset;
1451
1452                 ret = shmem_pwrite(page, offset, length, user_data,
1453                                    page_to_phys(page) & obj_do_bit17_swizzling,
1454                                    (offset | length) & partial_cacheline_write,
1455                                    needs_clflush & CLFLUSH_AFTER);
1456                 if (ret)
1457                         break;
1458
1459                 remain -= length;
1460                 user_data += length;
1461                 offset = 0;
1462         }
1463
1464         intel_fb_obj_flush(obj, ORIGIN_CPU);
1465         i915_gem_obj_finish_shmem_access(obj);
1466         return ret;
1467 }
1468
1469 /**
1470  * Writes data to the object referenced by handle.
1471  * @dev: drm device
1472  * @data: ioctl data blob
1473  * @file: drm file
1474  *
1475  * On error, the contents of the buffer that were to be modified are undefined.
1476  */
1477 int
1478 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
1479                       struct drm_file *file)
1480 {
1481         struct drm_i915_gem_pwrite *args = data;
1482         struct drm_i915_gem_object *obj;
1483         int ret;
1484
1485         if (args->size == 0)
1486                 return 0;
1487
1488         if (!access_ok(VERIFY_READ,
1489                        u64_to_user_ptr(args->data_ptr),
1490                        args->size))
1491                 return -EFAULT;
1492
1493         obj = i915_gem_object_lookup(file, args->handle);
1494         if (!obj)
1495                 return -ENOENT;
1496
1497         /* Bounds check destination. */
1498         if (range_overflows_t(u64, args->offset, args->size, obj->base.size)) {
1499                 ret = -EINVAL;
1500                 goto err;
1501         }
1502
1503         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1504
1505         ret = -ENODEV;
1506         if (obj->ops->pwrite)
1507                 ret = obj->ops->pwrite(obj, args);
1508         if (ret != -ENODEV)
1509                 goto err;
1510
1511         ret = i915_gem_object_wait(obj,
1512                                    I915_WAIT_INTERRUPTIBLE |
1513                                    I915_WAIT_ALL,
1514                                    MAX_SCHEDULE_TIMEOUT,
1515                                    to_rps_client(file));
1516         if (ret)
1517                 goto err;
1518
1519         ret = i915_gem_object_pin_pages(obj);
1520         if (ret)
1521                 goto err;
1522
1523         ret = -EFAULT;
1524         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1525          * it would end up going through the fenced access, and we'll get
1526          * different detiling behavior between reading and writing.
1527          * pread/pwrite currently are reading and writing from the CPU
1528          * perspective, requiring manual detiling by the client.
1529          */
1530         if (!i915_gem_object_has_struct_page(obj) ||
1531             cpu_write_needs_clflush(obj))
1532                 /* Note that the gtt paths might fail with non-page-backed user
1533                  * pointers (e.g. gtt mappings when moving data between
1534                  * textures). Fallback to the shmem path in that case.
1535                  */
1536                 ret = i915_gem_gtt_pwrite_fast(obj, args);
1537
1538         if (ret == -EFAULT || ret == -ENOSPC) {
1539                 if (obj->phys_handle)
1540                         ret = i915_gem_phys_pwrite(obj, args, file);
1541                 else
1542                         ret = i915_gem_shmem_pwrite(obj, args);
1543         }
1544
1545         i915_gem_object_unpin_pages(obj);
1546 err:
1547         i915_gem_object_put(obj);
1548         return ret;
1549 }
1550
1551 static void i915_gem_object_bump_inactive_ggtt(struct drm_i915_gem_object *obj)
1552 {
1553         struct drm_i915_private *i915;
1554         struct list_head *list;
1555         struct i915_vma *vma;
1556
1557         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
1558
1559         list_for_each_entry(vma, &obj->vma_list, obj_link) {
1560                 if (!i915_vma_is_ggtt(vma))
1561                         break;
1562
1563                 if (i915_vma_is_active(vma))
1564                         continue;
1565
1566                 if (!drm_mm_node_allocated(&vma->node))
1567                         continue;
1568
1569                 list_move_tail(&vma->vm_link, &vma->vm->inactive_list);
1570         }
1571
1572         i915 = to_i915(obj->base.dev);
1573         spin_lock(&i915->mm.obj_lock);
1574         list = obj->bind_count ? &i915->mm.bound_list : &i915->mm.unbound_list;
1575         list_move_tail(&obj->mm.link, list);
1576         spin_unlock(&i915->mm.obj_lock);
1577 }
1578
1579 /**
1580  * Called when user space prepares to use an object with the CPU, either
1581  * through the mmap ioctl's mapping or a GTT mapping.
1582  * @dev: drm device
1583  * @data: ioctl data blob
1584  * @file: drm file
1585  */
1586 int
1587 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1588                           struct drm_file *file)
1589 {
1590         struct drm_i915_gem_set_domain *args = data;
1591         struct drm_i915_gem_object *obj;
1592         uint32_t read_domains = args->read_domains;
1593         uint32_t write_domain = args->write_domain;
1594         int err;
1595
1596         /* Only handle setting domains to types used by the CPU. */
1597         if ((write_domain | read_domains) & I915_GEM_GPU_DOMAINS)
1598                 return -EINVAL;
1599
1600         /* Having something in the write domain implies it's in the read
1601          * domain, and only that read domain.  Enforce that in the request.
1602          */
1603         if (write_domain != 0 && read_domains != write_domain)
1604                 return -EINVAL;
1605
1606         obj = i915_gem_object_lookup(file, args->handle);
1607         if (!obj)
1608                 return -ENOENT;
1609
1610         /* Try to flush the object off the GPU without holding the lock.
1611          * We will repeat the flush holding the lock in the normal manner
1612          * to catch cases where we are gazumped.
1613          */
1614         err = i915_gem_object_wait(obj,
1615                                    I915_WAIT_INTERRUPTIBLE |
1616                                    (write_domain ? I915_WAIT_ALL : 0),
1617                                    MAX_SCHEDULE_TIMEOUT,
1618                                    to_rps_client(file));
1619         if (err)
1620                 goto out;
1621
1622         /* Flush and acquire obj->pages so that we are coherent through
1623          * direct access in memory with previous cached writes through
1624          * shmemfs and that our cache domain tracking remains valid.
1625          * For example, if the obj->filp was moved to swap without us
1626          * being notified and releasing the pages, we would mistakenly
1627          * continue to assume that the obj remained out of the CPU cached
1628          * domain.
1629          */
1630         err = i915_gem_object_pin_pages(obj);
1631         if (err)
1632                 goto out;
1633
1634         err = i915_mutex_lock_interruptible(dev);
1635         if (err)
1636                 goto out_unpin;
1637
1638         if (read_domains & I915_GEM_DOMAIN_WC)
1639                 err = i915_gem_object_set_to_wc_domain(obj, write_domain);
1640         else if (read_domains & I915_GEM_DOMAIN_GTT)
1641                 err = i915_gem_object_set_to_gtt_domain(obj, write_domain);
1642         else
1643                 err = i915_gem_object_set_to_cpu_domain(obj, write_domain);
1644
1645         /* And bump the LRU for this access */
1646         i915_gem_object_bump_inactive_ggtt(obj);
1647
1648         mutex_unlock(&dev->struct_mutex);
1649
1650         if (write_domain != 0)
1651                 intel_fb_obj_invalidate(obj,
1652                                         fb_write_origin(obj, write_domain));
1653
1654 out_unpin:
1655         i915_gem_object_unpin_pages(obj);
1656 out:
1657         i915_gem_object_put(obj);
1658         return err;
1659 }
1660
1661 /**
1662  * Called when user space has done writes to this buffer
1663  * @dev: drm device
1664  * @data: ioctl data blob
1665  * @file: drm file
1666  */
1667 int
1668 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1669                          struct drm_file *file)
1670 {
1671         struct drm_i915_gem_sw_finish *args = data;
1672         struct drm_i915_gem_object *obj;
1673
1674         obj = i915_gem_object_lookup(file, args->handle);
1675         if (!obj)
1676                 return -ENOENT;
1677
1678         /* Pinned buffers may be scanout, so flush the cache */
1679         i915_gem_object_flush_if_display(obj);
1680         i915_gem_object_put(obj);
1681
1682         return 0;
1683 }
1684
1685 /**
1686  * i915_gem_mmap_ioctl - Maps the contents of an object, returning the address
1687  *                       it is mapped to.
1688  * @dev: drm device
1689  * @data: ioctl data blob
1690  * @file: drm file
1691  *
1692  * While the mapping holds a reference on the contents of the object, it doesn't
1693  * imply a ref on the object itself.
1694  *
1695  * IMPORTANT:
1696  *
1697  * DRM driver writers who look a this function as an example for how to do GEM
1698  * mmap support, please don't implement mmap support like here. The modern way
1699  * to implement DRM mmap support is with an mmap offset ioctl (like
1700  * i915_gem_mmap_gtt) and then using the mmap syscall on the DRM fd directly.
1701  * That way debug tooling like valgrind will understand what's going on, hiding
1702  * the mmap call in a driver private ioctl will break that. The i915 driver only
1703  * does cpu mmaps this way because we didn't know better.
1704  */
1705 int
1706 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1707                     struct drm_file *file)
1708 {
1709         struct drm_i915_gem_mmap *args = data;
1710         struct drm_i915_gem_object *obj;
1711         unsigned long addr;
1712
1713         if (args->flags & ~(I915_MMAP_WC))
1714                 return -EINVAL;
1715
1716         if (args->flags & I915_MMAP_WC && !boot_cpu_has(X86_FEATURE_PAT))
1717                 return -ENODEV;
1718
1719         obj = i915_gem_object_lookup(file, args->handle);
1720         if (!obj)
1721                 return -ENOENT;
1722
1723         /* prime objects have no backing filp to GEM mmap
1724          * pages from.
1725          */
1726         if (!obj->base.filp) {
1727                 i915_gem_object_put(obj);
1728                 return -EINVAL;
1729         }
1730
1731         addr = vm_mmap(obj->base.filp, 0, args->size,
1732                        PROT_READ | PROT_WRITE, MAP_SHARED,
1733                        args->offset);
1734         if (args->flags & I915_MMAP_WC) {
1735                 struct mm_struct *mm = current->mm;
1736                 struct vm_area_struct *vma;
1737
1738                 if (down_write_killable(&mm->mmap_sem)) {
1739                         i915_gem_object_put(obj);
1740                         return -EINTR;
1741                 }
1742                 vma = find_vma(mm, addr);
1743                 if (vma)
1744                         vma->vm_page_prot =
1745                                 pgprot_writecombine(vm_get_page_prot(vma->vm_flags));
1746                 else
1747                         addr = -ENOMEM;
1748                 up_write(&mm->mmap_sem);
1749
1750                 /* This may race, but that's ok, it only gets set */
1751                 WRITE_ONCE(obj->frontbuffer_ggtt_origin, ORIGIN_CPU);
1752         }
1753         i915_gem_object_put(obj);
1754         if (IS_ERR((void *)addr))
1755                 return addr;
1756
1757         args->addr_ptr = (uint64_t) addr;
1758
1759         return 0;
1760 }
1761
1762 static unsigned int tile_row_pages(struct drm_i915_gem_object *obj)
1763 {
1764         return i915_gem_object_get_tile_row_size(obj) >> PAGE_SHIFT;
1765 }
1766
1767 /**
1768  * i915_gem_mmap_gtt_version - report the current feature set for GTT mmaps
1769  *
1770  * A history of the GTT mmap interface:
1771  *
1772  * 0 - Everything had to fit into the GTT. Both parties of a memcpy had to
1773  *     aligned and suitable for fencing, and still fit into the available
1774  *     mappable space left by the pinned display objects. A classic problem
1775  *     we called the page-fault-of-doom where we would ping-pong between
1776  *     two objects that could not fit inside the GTT and so the memcpy
1777  *     would page one object in at the expense of the other between every
1778  *     single byte.
1779  *
1780  * 1 - Objects can be any size, and have any compatible fencing (X Y, or none
1781  *     as set via i915_gem_set_tiling() [DRM_I915_GEM_SET_TILING]). If the
1782  *     object is too large for the available space (or simply too large
1783  *     for the mappable aperture!), a view is created instead and faulted
1784  *     into userspace. (This view is aligned and sized appropriately for
1785  *     fenced access.)
1786  *
1787  * 2 - Recognise WC as a separate cache domain so that we can flush the
1788  *     delayed writes via GTT before performing direct access via WC.
1789  *
1790  * Restrictions:
1791  *
1792  *  * snoopable objects cannot be accessed via the GTT. It can cause machine
1793  *    hangs on some architectures, corruption on others. An attempt to service
1794  *    a GTT page fault from a snoopable object will generate a SIGBUS.
1795  *
1796  *  * the object must be able to fit into RAM (physical memory, though no
1797  *    limited to the mappable aperture).
1798  *
1799  *
1800  * Caveats:
1801  *
1802  *  * a new GTT page fault will synchronize rendering from the GPU and flush
1803  *    all data to system memory. Subsequent access will not be synchronized.
1804  *
1805  *  * all mappings are revoked on runtime device suspend.
1806  *
1807  *  * there are only 8, 16 or 32 fence registers to share between all users
1808  *    (older machines require fence register for display and blitter access
1809  *    as well). Contention of the fence registers will cause the previous users
1810  *    to be unmapped and any new access will generate new page faults.
1811  *
1812  *  * running out of memory while servicing a fault may generate a SIGBUS,
1813  *    rather than the expected SIGSEGV.
1814  */
1815 int i915_gem_mmap_gtt_version(void)
1816 {
1817         return 2;
1818 }
1819
1820 static inline struct i915_ggtt_view
1821 compute_partial_view(struct drm_i915_gem_object *obj,
1822                      pgoff_t page_offset,
1823                      unsigned int chunk)
1824 {
1825         struct i915_ggtt_view view;
1826
1827         if (i915_gem_object_is_tiled(obj))
1828                 chunk = roundup(chunk, tile_row_pages(obj));
1829
1830         view.type = I915_GGTT_VIEW_PARTIAL;
1831         view.partial.offset = rounddown(page_offset, chunk);
1832         view.partial.size =
1833                 min_t(unsigned int, chunk,
1834                       (obj->base.size >> PAGE_SHIFT) - view.partial.offset);
1835
1836         /* If the partial covers the entire object, just create a normal VMA. */
1837         if (chunk >= obj->base.size >> PAGE_SHIFT)
1838                 view.type = I915_GGTT_VIEW_NORMAL;
1839
1840         return view;
1841 }
1842
1843 /**
1844  * i915_gem_fault - fault a page into the GTT
1845  * @vmf: fault info
1846  *
1847  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1848  * from userspace.  The fault handler takes care of binding the object to
1849  * the GTT (if needed), allocating and programming a fence register (again,
1850  * only if needed based on whether the old reg is still valid or the object
1851  * is tiled) and inserting a new PTE into the faulting process.
1852  *
1853  * Note that the faulting process may involve evicting existing objects
1854  * from the GTT and/or fence registers to make room.  So performance may
1855  * suffer if the GTT working set is large or there are few fence registers
1856  * left.
1857  *
1858  * The current feature set supported by i915_gem_fault() and thus GTT mmaps
1859  * is exposed via I915_PARAM_MMAP_GTT_VERSION (see i915_gem_mmap_gtt_version).
1860  */
1861 int i915_gem_fault(struct vm_fault *vmf)
1862 {
1863 #define MIN_CHUNK_PAGES ((1 << 20) >> PAGE_SHIFT) /* 1 MiB */
1864         struct vm_area_struct *area = vmf->vma;
1865         struct drm_i915_gem_object *obj = to_intel_bo(area->vm_private_data);
1866         struct drm_device *dev = obj->base.dev;
1867         struct drm_i915_private *dev_priv = to_i915(dev);
1868         struct i915_ggtt *ggtt = &dev_priv->ggtt;
1869         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1870         struct i915_vma *vma;
1871         pgoff_t page_offset;
1872         unsigned int flags;
1873         int ret;
1874
1875         /* We don't use vmf->pgoff since that has the fake offset */
1876         page_offset = (vmf->address - area->vm_start) >> PAGE_SHIFT;
1877
1878         trace_i915_gem_object_fault(obj, page_offset, true, write);
1879
1880         /* Try to flush the object off the GPU first without holding the lock.
1881          * Upon acquiring the lock, we will perform our sanity checks and then
1882          * repeat the flush holding the lock in the normal manner to catch cases
1883          * where we are gazumped.
1884          */
1885         ret = i915_gem_object_wait(obj,
1886                                    I915_WAIT_INTERRUPTIBLE,
1887                                    MAX_SCHEDULE_TIMEOUT,
1888                                    NULL);
1889         if (ret)
1890                 goto err;
1891
1892         ret = i915_gem_object_pin_pages(obj);
1893         if (ret)
1894                 goto err;
1895
1896         intel_runtime_pm_get(dev_priv);
1897
1898         ret = i915_mutex_lock_interruptible(dev);
1899         if (ret)
1900                 goto err_rpm;
1901
1902         /* Access to snoopable pages through the GTT is incoherent. */
1903         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev_priv)) {
1904                 ret = -EFAULT;
1905                 goto err_unlock;
1906         }
1907
1908         /* If the object is smaller than a couple of partial vma, it is
1909          * not worth only creating a single partial vma - we may as well
1910          * clear enough space for the full object.
1911          */
1912         flags = PIN_MAPPABLE;
1913         if (obj->base.size > 2 * MIN_CHUNK_PAGES << PAGE_SHIFT)
1914                 flags |= PIN_NONBLOCK | PIN_NONFAULT;
1915
1916         /* Now pin it into the GTT as needed */
1917         vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, flags);
1918         if (IS_ERR(vma)) {
1919                 /* Use a partial view if it is bigger than available space */
1920                 struct i915_ggtt_view view =
1921                         compute_partial_view(obj, page_offset, MIN_CHUNK_PAGES);
1922
1923                 /* Userspace is now writing through an untracked VMA, abandon
1924                  * all hope that the hardware is able to track future writes.
1925                  */
1926                 obj->frontbuffer_ggtt_origin = ORIGIN_CPU;
1927
1928                 vma = i915_gem_object_ggtt_pin(obj, &view, 0, 0, PIN_MAPPABLE);
1929         }
1930         if (IS_ERR(vma)) {
1931                 ret = PTR_ERR(vma);
1932                 goto err_unlock;
1933         }
1934
1935         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1936         if (ret)
1937                 goto err_unpin;
1938
1939         ret = i915_vma_pin_fence(vma);
1940         if (ret)
1941                 goto err_unpin;
1942
1943         /* Finally, remap it using the new GTT offset */
1944         ret = remap_io_mapping(area,
1945                                area->vm_start + (vma->ggtt_view.partial.offset << PAGE_SHIFT),
1946                                (ggtt->mappable_base + vma->node.start) >> PAGE_SHIFT,
1947                                min_t(u64, vma->size, area->vm_end - area->vm_start),
1948                                &ggtt->mappable);
1949         if (ret)
1950                 goto err_fence;
1951
1952         /* Mark as being mmapped into userspace for later revocation */
1953         assert_rpm_wakelock_held(dev_priv);
1954         if (!i915_vma_set_userfault(vma) && !obj->userfault_count++)
1955                 list_add(&obj->userfault_link, &dev_priv->mm.userfault_list);
1956         GEM_BUG_ON(!obj->userfault_count);
1957
1958 err_fence:
1959         i915_vma_unpin_fence(vma);
1960 err_unpin:
1961         __i915_vma_unpin(vma);
1962 err_unlock:
1963         mutex_unlock(&dev->struct_mutex);
1964 err_rpm:
1965         intel_runtime_pm_put(dev_priv);
1966         i915_gem_object_unpin_pages(obj);
1967 err:
1968         switch (ret) {
1969         case -EIO:
1970                 /*
1971                  * We eat errors when the gpu is terminally wedged to avoid
1972                  * userspace unduly crashing (gl has no provisions for mmaps to
1973                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1974                  * and so needs to be reported.
1975                  */
1976                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1977                         ret = VM_FAULT_SIGBUS;
1978                         break;
1979                 }
1980         case -EAGAIN:
1981                 /*
1982                  * EAGAIN means the gpu is hung and we'll wait for the error
1983                  * handler to reset everything when re-faulting in
1984                  * i915_mutex_lock_interruptible.
1985                  */
1986         case 0:
1987         case -ERESTARTSYS:
1988         case -EINTR:
1989         case -EBUSY:
1990                 /*
1991                  * EBUSY is ok: this just means that another thread
1992                  * already did the job.
1993                  */
1994                 ret = VM_FAULT_NOPAGE;
1995                 break;
1996         case -ENOMEM:
1997                 ret = VM_FAULT_OOM;
1998                 break;
1999         case -ENOSPC:
2000         case -EFAULT:
2001                 ret = VM_FAULT_SIGBUS;
2002                 break;
2003         default:
2004                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
2005                 ret = VM_FAULT_SIGBUS;
2006                 break;
2007         }
2008         return ret;
2009 }
2010
2011 static void __i915_gem_object_release_mmap(struct drm_i915_gem_object *obj)
2012 {
2013         struct i915_vma *vma;
2014
2015         GEM_BUG_ON(!obj->userfault_count);
2016
2017         obj->userfault_count = 0;
2018         list_del(&obj->userfault_link);
2019         drm_vma_node_unmap(&obj->base.vma_node,
2020                            obj->base.dev->anon_inode->i_mapping);
2021
2022         list_for_each_entry(vma, &obj->vma_list, obj_link) {
2023                 if (!i915_vma_is_ggtt(vma))
2024                         break;
2025
2026                 i915_vma_unset_userfault(vma);
2027         }
2028 }
2029
2030 /**
2031  * i915_gem_release_mmap - remove physical page mappings
2032  * @obj: obj in question
2033  *
2034  * Preserve the reservation of the mmapping with the DRM core code, but
2035  * relinquish ownership of the pages back to the system.
2036  *
2037  * It is vital that we remove the page mapping if we have mapped a tiled
2038  * object through the GTT and then lose the fence register due to
2039  * resource pressure. Similarly if the object has been moved out of the
2040  * aperture, than pages mapped into userspace must be revoked. Removing the
2041  * mapping will then trigger a page fault on the next user access, allowing
2042  * fixup by i915_gem_fault().
2043  */
2044 void
2045 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
2046 {
2047         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2048
2049         /* Serialisation between user GTT access and our code depends upon
2050          * revoking the CPU's PTE whilst the mutex is held. The next user
2051          * pagefault then has to wait until we release the mutex.
2052          *
2053          * Note that RPM complicates somewhat by adding an additional
2054          * requirement that operations to the GGTT be made holding the RPM
2055          * wakeref.
2056          */
2057         lockdep_assert_held(&i915->drm.struct_mutex);
2058         intel_runtime_pm_get(i915);
2059
2060         if (!obj->userfault_count)
2061                 goto out;
2062
2063         __i915_gem_object_release_mmap(obj);
2064
2065         /* Ensure that the CPU's PTE are revoked and there are not outstanding
2066          * memory transactions from userspace before we return. The TLB
2067          * flushing implied above by changing the PTE above *should* be
2068          * sufficient, an extra barrier here just provides us with a bit
2069          * of paranoid documentation about our requirement to serialise
2070          * memory writes before touching registers / GSM.
2071          */
2072         wmb();
2073
2074 out:
2075         intel_runtime_pm_put(i915);
2076 }
2077
2078 void i915_gem_runtime_suspend(struct drm_i915_private *dev_priv)
2079 {
2080         struct drm_i915_gem_object *obj, *on;
2081         int i;
2082
2083         /*
2084          * Only called during RPM suspend. All users of the userfault_list
2085          * must be holding an RPM wakeref to ensure that this can not
2086          * run concurrently with themselves (and use the struct_mutex for
2087          * protection between themselves).
2088          */
2089
2090         list_for_each_entry_safe(obj, on,
2091                                  &dev_priv->mm.userfault_list, userfault_link)
2092                 __i915_gem_object_release_mmap(obj);
2093
2094         /* The fence will be lost when the device powers down. If any were
2095          * in use by hardware (i.e. they are pinned), we should not be powering
2096          * down! All other fences will be reacquired by the user upon waking.
2097          */
2098         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2099                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2100
2101                 /* Ideally we want to assert that the fence register is not
2102                  * live at this point (i.e. that no piece of code will be
2103                  * trying to write through fence + GTT, as that both violates
2104                  * our tracking of activity and associated locking/barriers,
2105                  * but also is illegal given that the hw is powered down).
2106                  *
2107                  * Previously we used reg->pin_count as a "liveness" indicator.
2108                  * That is not sufficient, and we need a more fine-grained
2109                  * tool if we want to have a sanity check here.
2110                  */
2111
2112                 if (!reg->vma)
2113                         continue;
2114
2115                 GEM_BUG_ON(i915_vma_has_userfault(reg->vma));
2116                 reg->dirty = true;
2117         }
2118 }
2119
2120 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
2121 {
2122         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2123         int err;
2124
2125         err = drm_gem_create_mmap_offset(&obj->base);
2126         if (likely(!err))
2127                 return 0;
2128
2129         /* Attempt to reap some mmap space from dead objects */
2130         do {
2131                 err = i915_gem_wait_for_idle(dev_priv, I915_WAIT_INTERRUPTIBLE);
2132                 if (err)
2133                         break;
2134
2135                 i915_gem_drain_freed_objects(dev_priv);
2136                 err = drm_gem_create_mmap_offset(&obj->base);
2137                 if (!err)
2138                         break;
2139
2140         } while (flush_delayed_work(&dev_priv->gt.retire_work));
2141
2142         return err;
2143 }
2144
2145 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
2146 {
2147         drm_gem_free_mmap_offset(&obj->base);
2148 }
2149
2150 int
2151 i915_gem_mmap_gtt(struct drm_file *file,
2152                   struct drm_device *dev,
2153                   uint32_t handle,
2154                   uint64_t *offset)
2155 {
2156         struct drm_i915_gem_object *obj;
2157         int ret;
2158
2159         obj = i915_gem_object_lookup(file, handle);
2160         if (!obj)
2161                 return -ENOENT;
2162
2163         ret = i915_gem_object_create_mmap_offset(obj);
2164         if (ret == 0)
2165                 *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
2166
2167         i915_gem_object_put(obj);
2168         return ret;
2169 }
2170
2171 /**
2172  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
2173  * @dev: DRM device
2174  * @data: GTT mapping ioctl data
2175  * @file: GEM object info
2176  *
2177  * Simply returns the fake offset to userspace so it can mmap it.
2178  * The mmap call will end up in drm_gem_mmap(), which will set things
2179  * up so we can get faults in the handler above.
2180  *
2181  * The fault handler will take care of binding the object into the GTT
2182  * (since it may have been evicted to make room for something), allocating
2183  * a fence register, and mapping the appropriate aperture address into
2184  * userspace.
2185  */
2186 int
2187 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
2188                         struct drm_file *file)
2189 {
2190         struct drm_i915_gem_mmap_gtt *args = data;
2191
2192         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
2193 }
2194
2195 /* Immediately discard the backing storage */
2196 static void
2197 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
2198 {
2199         i915_gem_object_free_mmap_offset(obj);
2200
2201         if (obj->base.filp == NULL)
2202                 return;
2203
2204         /* Our goal here is to return as much of the memory as
2205          * is possible back to the system as we are called from OOM.
2206          * To do this we must instruct the shmfs to drop all of its
2207          * backing pages, *now*.
2208          */
2209         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
2210         obj->mm.madv = __I915_MADV_PURGED;
2211         obj->mm.pages = ERR_PTR(-EFAULT);
2212 }
2213
2214 /* Try to discard unwanted pages */
2215 void __i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
2216 {
2217         struct address_space *mapping;
2218
2219         lockdep_assert_held(&obj->mm.lock);
2220         GEM_BUG_ON(i915_gem_object_has_pages(obj));
2221
2222         switch (obj->mm.madv) {
2223         case I915_MADV_DONTNEED:
2224                 i915_gem_object_truncate(obj);
2225         case __I915_MADV_PURGED:
2226                 return;
2227         }
2228
2229         if (obj->base.filp == NULL)
2230                 return;
2231
2232         mapping = obj->base.filp->f_mapping,
2233         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
2234 }
2235
2236 static void
2237 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj,
2238                               struct sg_table *pages)
2239 {
2240         struct sgt_iter sgt_iter;
2241         struct page *page;
2242
2243         __i915_gem_object_release_shmem(obj, pages, true);
2244
2245         i915_gem_gtt_finish_pages(obj, pages);
2246
2247         if (i915_gem_object_needs_bit17_swizzle(obj))
2248                 i915_gem_object_save_bit_17_swizzle(obj, pages);
2249
2250         for_each_sgt_page(page, sgt_iter, pages) {
2251                 if (obj->mm.dirty)
2252                         set_page_dirty(page);
2253
2254                 if (obj->mm.madv == I915_MADV_WILLNEED)
2255                         mark_page_accessed(page);
2256
2257                 put_page(page);
2258         }
2259         obj->mm.dirty = false;
2260
2261         sg_free_table(pages);
2262         kfree(pages);
2263 }
2264
2265 static void __i915_gem_object_reset_page_iter(struct drm_i915_gem_object *obj)
2266 {
2267         struct radix_tree_iter iter;
2268         void __rcu **slot;
2269
2270         rcu_read_lock();
2271         radix_tree_for_each_slot(slot, &obj->mm.get_page.radix, &iter, 0)
2272                 radix_tree_delete(&obj->mm.get_page.radix, iter.index);
2273         rcu_read_unlock();
2274 }
2275
2276 void __i915_gem_object_put_pages(struct drm_i915_gem_object *obj,
2277                                  enum i915_mm_subclass subclass)
2278 {
2279         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2280         struct sg_table *pages;
2281
2282         if (i915_gem_object_has_pinned_pages(obj))
2283                 return;
2284
2285         GEM_BUG_ON(obj->bind_count);
2286         if (!i915_gem_object_has_pages(obj))
2287                 return;
2288
2289         /* May be called by shrinker from within get_pages() (on another bo) */
2290         mutex_lock_nested(&obj->mm.lock, subclass);
2291         if (unlikely(atomic_read(&obj->mm.pages_pin_count)))
2292                 goto unlock;
2293
2294         /* ->put_pages might need to allocate memory for the bit17 swizzle
2295          * array, hence protect them from being reaped by removing them from gtt
2296          * lists early. */
2297         pages = fetch_and_zero(&obj->mm.pages);
2298         GEM_BUG_ON(!pages);
2299
2300         spin_lock(&i915->mm.obj_lock);
2301         list_del(&obj->mm.link);
2302         spin_unlock(&i915->mm.obj_lock);
2303
2304         if (obj->mm.mapping) {
2305                 void *ptr;
2306
2307                 ptr = page_mask_bits(obj->mm.mapping);
2308                 if (is_vmalloc_addr(ptr))
2309                         vunmap(ptr);
2310                 else
2311                         kunmap(kmap_to_page(ptr));
2312
2313                 obj->mm.mapping = NULL;
2314         }
2315
2316         __i915_gem_object_reset_page_iter(obj);
2317
2318         if (!IS_ERR(pages))
2319                 obj->ops->put_pages(obj, pages);
2320
2321         obj->mm.page_sizes.phys = obj->mm.page_sizes.sg = 0;
2322
2323 unlock:
2324         mutex_unlock(&obj->mm.lock);
2325 }
2326
2327 static bool i915_sg_trim(struct sg_table *orig_st)
2328 {
2329         struct sg_table new_st;
2330         struct scatterlist *sg, *new_sg;
2331         unsigned int i;
2332
2333         if (orig_st->nents == orig_st->orig_nents)
2334                 return false;
2335
2336         if (sg_alloc_table(&new_st, orig_st->nents, GFP_KERNEL | __GFP_NOWARN))
2337                 return false;
2338
2339         new_sg = new_st.sgl;
2340         for_each_sg(orig_st->sgl, sg, orig_st->nents, i) {
2341                 sg_set_page(new_sg, sg_page(sg), sg->length, 0);
2342                 /* called before being DMA mapped, no need to copy sg->dma_* */
2343                 new_sg = sg_next(new_sg);
2344         }
2345         GEM_BUG_ON(new_sg); /* Should walk exactly nents and hit the end */
2346
2347         sg_free_table(orig_st);
2348
2349         *orig_st = new_st;
2350         return true;
2351 }
2352
2353 static int i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2354 {
2355         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
2356         const unsigned long page_count = obj->base.size / PAGE_SIZE;
2357         unsigned long i;
2358         struct address_space *mapping;
2359         struct sg_table *st;
2360         struct scatterlist *sg;
2361         struct sgt_iter sgt_iter;
2362         struct page *page;
2363         unsigned long last_pfn = 0;     /* suppress gcc warning */
2364         unsigned int max_segment = i915_sg_segment_size();
2365         unsigned int sg_page_sizes;
2366         gfp_t noreclaim;
2367         int ret;
2368
2369         /* Assert that the object is not currently in any GPU domain. As it
2370          * wasn't in the GTT, there shouldn't be any way it could have been in
2371          * a GPU cache
2372          */
2373         GEM_BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2374         GEM_BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2375
2376         st = kmalloc(sizeof(*st), GFP_KERNEL);
2377         if (st == NULL)
2378                 return -ENOMEM;
2379
2380 rebuild_st:
2381         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2382                 kfree(st);
2383                 return -ENOMEM;
2384         }
2385
2386         /* Get the list of pages out of our struct file.  They'll be pinned
2387          * at this point until we release them.
2388          *
2389          * Fail silently without starting the shrinker
2390          */
2391         mapping = obj->base.filp->f_mapping;
2392         noreclaim = mapping_gfp_constraint(mapping, ~__GFP_RECLAIM);
2393         noreclaim |= __GFP_NORETRY | __GFP_NOWARN;
2394
2395         sg = st->sgl;
2396         st->nents = 0;
2397         sg_page_sizes = 0;
2398         for (i = 0; i < page_count; i++) {
2399                 const unsigned int shrink[] = {
2400                         I915_SHRINK_BOUND | I915_SHRINK_UNBOUND | I915_SHRINK_PURGEABLE,
2401                         0,
2402                 }, *s = shrink;
2403                 gfp_t gfp = noreclaim;
2404
2405                 do {
2406                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2407                         if (likely(!IS_ERR(page)))
2408                                 break;
2409
2410                         if (!*s) {
2411                                 ret = PTR_ERR(page);
2412                                 goto err_sg;
2413                         }
2414
2415                         i915_gem_shrink(dev_priv, 2 * page_count, NULL, *s++);
2416                         cond_resched();
2417
2418                         /* We've tried hard to allocate the memory by reaping
2419                          * our own buffer, now let the real VM do its job and
2420                          * go down in flames if truly OOM.
2421                          *
2422                          * However, since graphics tend to be disposable,
2423                          * defer the oom here by reporting the ENOMEM back
2424                          * to userspace.
2425                          */
2426                         if (!*s) {
2427                                 /* reclaim and warn, but no oom */
2428                                 gfp = mapping_gfp_mask(mapping);
2429
2430                                 /* Our bo are always dirty and so we require
2431                                  * kswapd to reclaim our pages (direct reclaim
2432                                  * does not effectively begin pageout of our
2433                                  * buffers on its own). However, direct reclaim
2434                                  * only waits for kswapd when under allocation
2435                                  * congestion. So as a result __GFP_RECLAIM is
2436                                  * unreliable and fails to actually reclaim our
2437                                  * dirty pages -- unless you try over and over
2438                                  * again with !__GFP_NORETRY. However, we still
2439                                  * want to fail this allocation rather than
2440                                  * trigger the out-of-memory killer and for
2441                                  * this we want __GFP_RETRY_MAYFAIL.
2442                                  */
2443                                 gfp |= __GFP_RETRY_MAYFAIL;
2444                         }
2445                 } while (1);
2446
2447                 if (!i ||
2448                     sg->length >= max_segment ||
2449                     page_to_pfn(page) != last_pfn + 1) {
2450                         if (i) {
2451                                 sg_page_sizes |= sg->length;
2452                                 sg = sg_next(sg);
2453                         }
2454                         st->nents++;
2455                         sg_set_page(sg, page, PAGE_SIZE, 0);
2456                 } else {
2457                         sg->length += PAGE_SIZE;
2458                 }
2459                 last_pfn = page_to_pfn(page);
2460
2461                 /* Check that the i965g/gm workaround works. */
2462                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2463         }
2464         if (sg) { /* loop terminated early; short sg table */
2465                 sg_page_sizes |= sg->length;
2466                 sg_mark_end(sg);
2467         }
2468
2469         /* Trim unused sg entries to avoid wasting memory. */
2470         i915_sg_trim(st);
2471
2472         ret = i915_gem_gtt_prepare_pages(obj, st);
2473         if (ret) {
2474                 /* DMA remapping failed? One possible cause is that
2475                  * it could not reserve enough large entries, asking
2476                  * for PAGE_SIZE chunks instead may be helpful.
2477                  */
2478                 if (max_segment > PAGE_SIZE) {
2479                         for_each_sgt_page(page, sgt_iter, st)
2480                                 put_page(page);
2481                         sg_free_table(st);
2482
2483                         max_segment = PAGE_SIZE;
2484                         goto rebuild_st;
2485                 } else {
2486                         dev_warn(&dev_priv->drm.pdev->dev,
2487                                  "Failed to DMA remap %lu pages\n",
2488                                  page_count);
2489                         goto err_pages;
2490                 }
2491         }
2492
2493         if (i915_gem_object_needs_bit17_swizzle(obj))
2494                 i915_gem_object_do_bit_17_swizzle(obj, st);
2495
2496         __i915_gem_object_set_pages(obj, st, sg_page_sizes);
2497
2498         return 0;
2499
2500 err_sg:
2501         sg_mark_end(sg);
2502 err_pages:
2503         for_each_sgt_page(page, sgt_iter, st)
2504                 put_page(page);
2505         sg_free_table(st);
2506         kfree(st);
2507
2508         /* shmemfs first checks if there is enough memory to allocate the page
2509          * and reports ENOSPC should there be insufficient, along with the usual
2510          * ENOMEM for a genuine allocation failure.
2511          *
2512          * We use ENOSPC in our driver to mean that we have run out of aperture
2513          * space and so want to translate the error from shmemfs back to our
2514          * usual understanding of ENOMEM.
2515          */
2516         if (ret == -ENOSPC)
2517                 ret = -ENOMEM;
2518
2519         return ret;
2520 }
2521
2522 void __i915_gem_object_set_pages(struct drm_i915_gem_object *obj,
2523                                  struct sg_table *pages,
2524                                  unsigned int sg_page_sizes)
2525 {
2526         struct drm_i915_private *i915 = to_i915(obj->base.dev);
2527         unsigned long supported = INTEL_INFO(i915)->page_sizes;
2528         int i;
2529
2530         lockdep_assert_held(&obj->mm.lock);
2531
2532         obj->mm.get_page.sg_pos = pages->sgl;
2533         obj->mm.get_page.sg_idx = 0;
2534
2535         obj->mm.pages = pages;
2536
2537         if (i915_gem_object_is_tiled(obj) &&
2538             i915->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
2539                 GEM_BUG_ON(obj->mm.quirked);
2540                 __i915_gem_object_pin_pages(obj);
2541                 obj->mm.quirked = true;
2542         }
2543
2544         GEM_BUG_ON(!sg_page_sizes);
2545         obj->mm.page_sizes.phys = sg_page_sizes;
2546
2547         /*
2548          * Calculate the supported page-sizes which fit into the given
2549          * sg_page_sizes. This will give us the page-sizes which we may be able
2550          * to use opportunistically when later inserting into the GTT. For
2551          * example if phys=2G, then in theory we should be able to use 1G, 2M,
2552          * 64K or 4K pages, although in practice this will depend on a number of
2553          * other factors.
2554          */
2555         obj->mm.page_sizes.sg = 0;
2556         for_each_set_bit(i, &supported, ilog2(I915_GTT_MAX_PAGE_SIZE) + 1) {
2557                 if (obj->mm.page_sizes.phys & ~0u << i)
2558                         obj->mm.page_sizes.sg |= BIT(i);
2559         }
2560         GEM_BUG_ON(!HAS_PAGE_SIZES(i915, obj->mm.page_sizes.sg));
2561
2562         spin_lock(&i915->mm.obj_lock);
2563         list_add(&obj->mm.link, &i915->mm.unbound_list);
2564         spin_unlock(&i915->mm.obj_lock);
2565 }
2566
2567 static int ____i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2568 {
2569         int err;
2570
2571         if (unlikely(obj->mm.madv != I915_MADV_WILLNEED)) {
2572                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2573                 return -EFAULT;
2574         }
2575
2576         err = obj->ops->get_pages(obj);
2577         GEM_BUG_ON(!err && IS_ERR_OR_NULL(obj->mm.pages));
2578
2579         return err;
2580 }
2581
2582 /* Ensure that the associated pages are gathered from the backing storage
2583  * and pinned into our object. i915_gem_object_pin_pages() may be called
2584  * multiple times before they are released by a single call to
2585  * i915_gem_object_unpin_pages() - once the pages are no longer referenced
2586  * either as a result of memory pressure (reaping pages under the shrinker)
2587  * or as the object is itself released.
2588  */
2589 int __i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2590 {
2591         int err;
2592
2593         err = mutex_lock_interruptible(&obj->mm.lock);
2594         if (err)
2595                 return err;
2596
2597         if (unlikely(!i915_gem_object_has_pages(obj))) {
2598                 GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2599
2600                 err = ____i915_gem_object_get_pages(obj);
2601                 if (err)
2602                         goto unlock;
2603
2604                 smp_mb__before_atomic();
2605         }
2606         atomic_inc(&obj->mm.pages_pin_count);
2607
2608 unlock:
2609         mutex_unlock(&obj->mm.lock);
2610         return err;
2611 }
2612
2613 /* The 'mapping' part of i915_gem_object_pin_map() below */
2614 static void *i915_gem_object_map(const struct drm_i915_gem_object *obj,
2615                                  enum i915_map_type type)
2616 {
2617         unsigned long n_pages = obj->base.size >> PAGE_SHIFT;
2618         struct sg_table *sgt = obj->mm.pages;
2619         struct sgt_iter sgt_iter;
2620         struct page *page;
2621         struct page *stack_pages[32];
2622         struct page **pages = stack_pages;
2623         unsigned long i = 0;
2624         pgprot_t pgprot;
2625         void *addr;
2626
2627         /* A single page can always be kmapped */
2628         if (n_pages == 1 && type == I915_MAP_WB)
2629                 return kmap(sg_page(sgt->sgl));
2630
2631         if (n_pages > ARRAY_SIZE(stack_pages)) {
2632                 /* Too big for stack -- allocate temporary array instead */
2633                 pages = kvmalloc_array(n_pages, sizeof(*pages), GFP_KERNEL);
2634                 if (!pages)
2635                         return NULL;
2636         }
2637
2638         for_each_sgt_page(page, sgt_iter, sgt)
2639                 pages[i++] = page;
2640
2641         /* Check that we have the expected number of pages */
2642         GEM_BUG_ON(i != n_pages);
2643
2644         switch (type) {
2645         default:
2646                 MISSING_CASE(type);
2647                 /* fallthrough to use PAGE_KERNEL anyway */
2648         case I915_MAP_WB:
2649                 pgprot = PAGE_KERNEL;
2650                 break;
2651         case I915_MAP_WC:
2652                 pgprot = pgprot_writecombine(PAGE_KERNEL_IO);
2653                 break;
2654         }
2655         addr = vmap(pages, n_pages, 0, pgprot);
2656
2657         if (pages != stack_pages)
2658                 kvfree(pages);
2659
2660         return addr;
2661 }
2662
2663 /* get, pin, and map the pages of the object into kernel space */
2664 void *i915_gem_object_pin_map(struct drm_i915_gem_object *obj,
2665                               enum i915_map_type type)
2666 {
2667         enum i915_map_type has_type;
2668         bool pinned;
2669         void *ptr;
2670         int ret;
2671
2672         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
2673
2674         ret = mutex_lock_interruptible(&obj->mm.lock);
2675         if (ret)
2676                 return ERR_PTR(ret);
2677
2678         pinned = !(type & I915_MAP_OVERRIDE);
2679         type &= ~I915_MAP_OVERRIDE;
2680
2681         if (!atomic_inc_not_zero(&obj->mm.pages_pin_count)) {
2682                 if (unlikely(!i915_gem_object_has_pages(obj))) {
2683                         GEM_BUG_ON(i915_gem_object_has_pinned_pages(obj));
2684
2685                         ret = ____i915_gem_object_get_pages(obj);
2686                         if (ret)
2687                                 goto err_unlock;
2688
2689                         smp_mb__before_atomic();
2690                 }
2691                 atomic_inc(&obj->mm.pages_pin_count);
2692                 pinned = false;
2693         }
2694         GEM_BUG_ON(!i915_gem_object_has_pages(obj));
2695
2696         ptr = page_unpack_bits(obj->mm.mapping, &has_type);
2697         if (ptr && has_type != type) {
2698                 if (pinned) {
2699                         ret = -EBUSY;
2700                         goto err_unpin;
2701                 }
2702
2703                 if (is_vmalloc_addr(ptr))
2704                         vunmap(ptr);
2705                 else
2706                         kunmap(kmap_to_page(ptr));
2707
2708                 ptr = obj->mm.mapping = NULL;
2709         }
2710
2711         if (!ptr) {
2712                 ptr = i915_gem_object_map(obj, type);
2713                 if (!ptr) {
2714                         ret = -ENOMEM;
2715                         goto err_unpin;
2716                 }
2717
2718                 obj->mm.mapping = page_pack_bits(ptr, type);
2719         }
2720
2721 out_unlock:
2722         mutex_unlock(&obj->mm.lock);
2723         return ptr;
2724
2725 err_unpin:
2726         atomic_dec(&obj->mm.pages_pin_count);
2727 err_unlock:
2728         ptr = ERR_PTR(ret);
2729         goto out_unlock;
2730 }
2731
2732 static int
2733 i915_gem_object_pwrite_gtt(struct drm_i915_gem_object *obj,
2734                            const struct drm_i915_gem_pwrite *arg)
2735 {
2736         struct address_space *mapping = obj->base.filp->f_mapping;
2737         char __user *user_data = u64_to_user_ptr(arg->data_ptr);
2738         u64 remain, offset;
2739         unsigned int pg;
2740
2741         /* Before we instantiate/pin the backing store for our use, we
2742          * can prepopulate the shmemfs filp efficiently using a write into
2743          * the pagecache. We avoid the penalty of instantiating all the
2744          * pages, important if the user is just writing to a few and never
2745          * uses the object on the GPU, and using a direct write into shmemfs
2746          * allows it to avoid the cost of retrieving a page (either swapin
2747          * or clearing-before-use) before it is overwritten.
2748          */
2749         if (i915_gem_object_has_pages(obj))
2750                 return -ENODEV;
2751
2752         if (obj->mm.madv != I915_MADV_WILLNEED)
2753                 return -EFAULT;
2754
2755         /* Before the pages are instantiated the object is treated as being
2756          * in the CPU domain. The pages will be clflushed as required before
2757          * use, and we can freely write into the pages directly. If userspace
2758          * races pwrite with any other operation; corruption will ensue -
2759          * that is userspace's prerogative!
2760          */
2761
2762         remain = arg->size;
2763         offset = arg->offset;
2764         pg = offset_in_page(offset);
2765
2766         do {
2767                 unsigned int len, unwritten;
2768                 struct page *page;
2769                 void *data, *vaddr;
2770                 int err;
2771
2772                 len = PAGE_SIZE - pg;
2773                 if (len > remain)
2774                         len = remain;
2775
2776                 err = pagecache_write_begin(obj->base.filp, mapping,
2777                                             offset, len, 0,
2778                                             &page, &data);
2779                 if (err < 0)
2780                         return err;
2781
2782                 vaddr = kmap(page);
2783                 unwritten = copy_from_user(vaddr + pg, user_data, len);
2784                 kunmap(page);
2785
2786                 err = pagecache_write_end(obj->base.filp, mapping,
2787                                           offset, len, len - unwritten,
2788                                           page, data);
2789                 if (err < 0)
2790                         return err;
2791
2792                 if (unwritten)
2793                         return -EFAULT;
2794
2795                 remain -= len;
2796                 user_data += len;
2797                 offset += len;
2798                 pg = 0;
2799         } while (remain);
2800
2801         return 0;
2802 }
2803
2804 static bool ban_context(const struct i915_gem_context *ctx,
2805                         unsigned int score)
2806 {
2807         return (i915_gem_context_is_bannable(ctx) &&
2808                 score >= CONTEXT_SCORE_BAN_THRESHOLD);
2809 }
2810
2811 static void i915_gem_context_mark_guilty(struct i915_gem_context *ctx)
2812 {
2813         unsigned int score;
2814         bool banned;
2815
2816         atomic_inc(&ctx->guilty_count);
2817
2818         score = atomic_add_return(CONTEXT_SCORE_GUILTY, &ctx->ban_score);
2819         banned = ban_context(ctx, score);
2820         DRM_DEBUG_DRIVER("context %s marked guilty (score %d) banned? %s\n",
2821                          ctx->name, score, yesno(banned));
2822         if (!banned)
2823                 return;
2824
2825         i915_gem_context_set_banned(ctx);
2826         if (!IS_ERR_OR_NULL(ctx->file_priv)) {
2827                 atomic_inc(&ctx->file_priv->context_bans);
2828                 DRM_DEBUG_DRIVER("client %s has had %d context banned\n",
2829                                  ctx->name, atomic_read(&ctx->file_priv->context_bans));
2830         }
2831 }
2832
2833 static void i915_gem_context_mark_innocent(struct i915_gem_context *ctx)
2834 {
2835         atomic_inc(&ctx->active_count);
2836 }
2837
2838 struct drm_i915_gem_request *
2839 i915_gem_find_active_request(struct intel_engine_cs *engine)
2840 {
2841         struct drm_i915_gem_request *request, *active = NULL;
2842         unsigned long flags;
2843
2844         /* We are called by the error capture and reset at a random
2845          * point in time. In particular, note that neither is crucially
2846          * ordered with an interrupt. After a hang, the GPU is dead and we
2847          * assume that no more writes can happen (we waited long enough for
2848          * all writes that were in transaction to be flushed) - adding an
2849          * extra delay for a recent interrupt is pointless. Hence, we do
2850          * not need an engine->irq_seqno_barrier() before the seqno reads.
2851          */
2852         spin_lock_irqsave(&engine->timeline->lock, flags);
2853         list_for_each_entry(request, &engine->timeline->requests, link) {
2854                 if (__i915_gem_request_completed(request,
2855                                                  request->global_seqno))
2856                         continue;
2857
2858                 GEM_BUG_ON(request->engine != engine);
2859                 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
2860                                     &request->fence.flags));
2861
2862                 active = request;
2863                 break;
2864         }
2865         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2866
2867         return active;
2868 }
2869
2870 static bool engine_stalled(struct intel_engine_cs *engine)
2871 {
2872         if (!engine->hangcheck.stalled)
2873                 return false;
2874
2875         /* Check for possible seqno movement after hang declaration */
2876         if (engine->hangcheck.seqno != intel_engine_get_seqno(engine)) {
2877                 DRM_DEBUG_DRIVER("%s pardoned\n", engine->name);
2878                 return false;
2879         }
2880
2881         return true;
2882 }
2883
2884 /*
2885  * Ensure irq handler finishes, and not run again.
2886  * Also return the active request so that we only search for it once.
2887  */
2888 struct drm_i915_gem_request *
2889 i915_gem_reset_prepare_engine(struct intel_engine_cs *engine)
2890 {
2891         struct drm_i915_gem_request *request = NULL;
2892
2893         /*
2894          * During the reset sequence, we must prevent the engine from
2895          * entering RC6. As the context state is undefined until we restart
2896          * the engine, if it does enter RC6 during the reset, the state
2897          * written to the powercontext is undefined and so we may lose
2898          * GPU state upon resume, i.e. fail to restart after a reset.
2899          */
2900         intel_uncore_forcewake_get(engine->i915, FORCEWAKE_ALL);
2901
2902         /*
2903          * Prevent the signaler thread from updating the request
2904          * state (by calling dma_fence_signal) as we are processing
2905          * the reset. The write from the GPU of the seqno is
2906          * asynchronous and the signaler thread may see a different
2907          * value to us and declare the request complete, even though
2908          * the reset routine have picked that request as the active
2909          * (incomplete) request. This conflict is not handled
2910          * gracefully!
2911          */
2912         kthread_park(engine->breadcrumbs.signaler);
2913
2914         /*
2915          * Prevent request submission to the hardware until we have
2916          * completed the reset in i915_gem_reset_finish(). If a request
2917          * is completed by one engine, it may then queue a request
2918          * to a second via its engine->irq_tasklet *just* as we are
2919          * calling engine->init_hw() and also writing the ELSP.
2920          * Turning off the engine->irq_tasklet until the reset is over
2921          * prevents the race.
2922          */
2923         tasklet_kill(&engine->execlists.irq_tasklet);
2924         tasklet_disable(&engine->execlists.irq_tasklet);
2925
2926         if (engine->irq_seqno_barrier)
2927                 engine->irq_seqno_barrier(engine);
2928
2929         request = i915_gem_find_active_request(engine);
2930         if (request && request->fence.error == -EIO)
2931                 request = ERR_PTR(-EIO); /* Previous reset failed! */
2932
2933         return request;
2934 }
2935
2936 int i915_gem_reset_prepare(struct drm_i915_private *dev_priv)
2937 {
2938         struct intel_engine_cs *engine;
2939         struct drm_i915_gem_request *request;
2940         enum intel_engine_id id;
2941         int err = 0;
2942
2943         for_each_engine(engine, dev_priv, id) {
2944                 request = i915_gem_reset_prepare_engine(engine);
2945                 if (IS_ERR(request)) {
2946                         err = PTR_ERR(request);
2947                         continue;
2948                 }
2949
2950                 engine->hangcheck.active_request = request;
2951         }
2952
2953         i915_gem_revoke_fences(dev_priv);
2954
2955         return err;
2956 }
2957
2958 static void skip_request(struct drm_i915_gem_request *request)
2959 {
2960         void *vaddr = request->ring->vaddr;
2961         u32 head;
2962
2963         /* As this request likely depends on state from the lost
2964          * context, clear out all the user operations leaving the
2965          * breadcrumb at the end (so we get the fence notifications).
2966          */
2967         head = request->head;
2968         if (request->postfix < head) {
2969                 memset(vaddr + head, 0, request->ring->size - head);
2970                 head = 0;
2971         }
2972         memset(vaddr + head, 0, request->postfix - head);
2973
2974         dma_fence_set_error(&request->fence, -EIO);
2975 }
2976
2977 static void engine_skip_context(struct drm_i915_gem_request *request)
2978 {
2979         struct intel_engine_cs *engine = request->engine;
2980         struct i915_gem_context *hung_ctx = request->ctx;
2981         struct intel_timeline *timeline;
2982         unsigned long flags;
2983
2984         timeline = i915_gem_context_lookup_timeline(hung_ctx, engine);
2985
2986         spin_lock_irqsave(&engine->timeline->lock, flags);
2987         spin_lock(&timeline->lock);
2988
2989         list_for_each_entry_continue(request, &engine->timeline->requests, link)
2990                 if (request->ctx == hung_ctx)
2991                         skip_request(request);
2992
2993         list_for_each_entry(request, &timeline->requests, link)
2994                 skip_request(request);
2995
2996         spin_unlock(&timeline->lock);
2997         spin_unlock_irqrestore(&engine->timeline->lock, flags);
2998 }
2999
3000 /* Returns the request if it was guilty of the hang */
3001 static struct drm_i915_gem_request *
3002 i915_gem_reset_request(struct intel_engine_cs *engine,
3003                        struct drm_i915_gem_request *request)
3004 {
3005         /* The guilty request will get skipped on a hung engine.
3006          *
3007          * Users of client default contexts do not rely on logical
3008          * state preserved between batches so it is safe to execute
3009          * queued requests following the hang. Non default contexts
3010          * rely on preserved state, so skipping a batch loses the
3011          * evolution of the state and it needs to be considered corrupted.
3012          * Executing more queued batches on top of corrupted state is
3013          * risky. But we take the risk by trying to advance through
3014          * the queued requests in order to make the client behaviour
3015          * more predictable around resets, by not throwing away random
3016          * amount of batches it has prepared for execution. Sophisticated
3017          * clients can use gem_reset_stats_ioctl and dma fence status
3018          * (exported via sync_file info ioctl on explicit fences) to observe
3019          * when it loses the context state and should rebuild accordingly.
3020          *
3021          * The context ban, and ultimately the client ban, mechanism are safety
3022          * valves if client submission ends up resulting in nothing more than
3023          * subsequent hangs.
3024          */
3025
3026         if (engine_stalled(engine)) {
3027                 i915_gem_context_mark_guilty(request->ctx);
3028                 skip_request(request);
3029
3030                 /* If this context is now banned, skip all pending requests. */
3031                 if (i915_gem_context_is_banned(request->ctx))
3032                         engine_skip_context(request);
3033         } else {
3034                 /*
3035                  * Since this is not the hung engine, it may have advanced
3036                  * since the hang declaration. Double check by refinding
3037                  * the active request at the time of the reset.
3038                  */
3039                 request = i915_gem_find_active_request(engine);
3040                 if (request) {
3041                         i915_gem_context_mark_innocent(request->ctx);
3042                         dma_fence_set_error(&request->fence, -EAGAIN);
3043
3044                         /* Rewind the engine to replay the incomplete rq */
3045                         spin_lock_irq(&engine->timeline->lock);
3046                         request = list_prev_entry(request, link);
3047                         if (&request->link == &engine->timeline->requests)
3048                                 request = NULL;
3049                         spin_unlock_irq(&engine->timeline->lock);
3050                 }
3051         }
3052
3053         return request;
3054 }
3055
3056 void i915_gem_reset_engine(struct intel_engine_cs *engine,
3057                            struct drm_i915_gem_request *request)
3058 {
3059         engine->irq_posted = 0;
3060
3061         if (request)
3062                 request = i915_gem_reset_request(engine, request);
3063
3064         if (request) {
3065                 DRM_DEBUG_DRIVER("resetting %s to restart from tail of request 0x%x\n",
3066                                  engine->name, request->global_seqno);
3067         }
3068
3069         /* Setup the CS to resume from the breadcrumb of the hung request */
3070         engine->reset_hw(engine, request);
3071 }
3072
3073 void i915_gem_reset(struct drm_i915_private *dev_priv)
3074 {
3075         struct intel_engine_cs *engine;
3076         enum intel_engine_id id;
3077
3078         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3079
3080         i915_gem_retire_requests(dev_priv);
3081
3082         for_each_engine(engine, dev_priv, id) {
3083                 struct i915_gem_context *ctx;
3084
3085                 i915_gem_reset_engine(engine, engine->hangcheck.active_request);
3086                 ctx = fetch_and_zero(&engine->last_retired_context);
3087                 if (ctx)
3088                         engine->context_unpin(engine, ctx);
3089         }
3090
3091         i915_gem_restore_fences(dev_priv);
3092
3093         if (dev_priv->gt.awake) {
3094                 intel_sanitize_gt_powersave(dev_priv);
3095                 intel_enable_gt_powersave(dev_priv);
3096                 if (INTEL_GEN(dev_priv) >= 6)
3097                         gen6_rps_busy(dev_priv);
3098         }
3099 }
3100
3101 void i915_gem_reset_finish_engine(struct intel_engine_cs *engine)
3102 {
3103         tasklet_enable(&engine->execlists.irq_tasklet);
3104         kthread_unpark(engine->breadcrumbs.signaler);
3105
3106         intel_uncore_forcewake_put(engine->i915, FORCEWAKE_ALL);
3107 }
3108
3109 void i915_gem_reset_finish(struct drm_i915_private *dev_priv)
3110 {
3111         struct intel_engine_cs *engine;
3112         enum intel_engine_id id;
3113
3114         lockdep_assert_held(&dev_priv->drm.struct_mutex);
3115
3116         for_each_engine(engine, dev_priv, id) {
3117                 engine->hangcheck.active_request = NULL;
3118                 i915_gem_reset_finish_engine(engine);
3119         }
3120 }
3121
3122 static void nop_submit_request(struct drm_i915_gem_request *request)
3123 {
3124         dma_fence_set_error(&request->fence, -EIO);
3125
3126         i915_gem_request_submit(request);
3127 }
3128
3129 static void nop_complete_submit_request(struct drm_i915_gem_request *request)
3130 {
3131         unsigned long flags;
3132
3133         dma_fence_set_error(&request->fence, -EIO);
3134
3135         spin_lock_irqsave(&request->engine->timeline->lock, flags);
3136         __i915_gem_request_submit(request);
3137         intel_engine_init_global_seqno(request->engine, request->global_seqno);
3138         spin_unlock_irqrestore(&request->engine->timeline->lock, flags);
3139 }
3140
3141 void i915_gem_set_wedged(struct drm_i915_private *i915)
3142 {
3143         struct intel_engine_cs *engine;
3144         enum intel_engine_id id;
3145
3146         /*
3147          * First, stop submission to hw, but do not yet complete requests by
3148          * rolling the global seqno forward (since this would complete requests
3149          * for which we haven't set the fence error to EIO yet).
3150          */
3151         for_each_engine(engine, i915, id)
3152                 engine->submit_request = nop_submit_request;
3153
3154         /*
3155          * Make sure no one is running the old callback before we proceed with
3156          * cancelling requests and resetting the completion tracking. Otherwise
3157          * we might submit a request to the hardware which never completes.
3158          */
3159         synchronize_rcu();
3160
3161         for_each_engine(engine, i915, id) {
3162                 /* Mark all executing requests as skipped */
3163                 engine->cancel_requests(engine);
3164
3165                 /*
3166                  * Only once we've force-cancelled all in-flight requests can we
3167                  * start to complete all requests.
3168                  */
3169                 engine->submit_request = nop_complete_submit_request;
3170         }
3171
3172         /*
3173          * Make sure no request can slip through without getting completed by
3174          * either this call here to intel_engine_init_global_seqno, or the one
3175          * in nop_complete_submit_request.
3176          */
3177         synchronize_rcu();
3178
3179         for_each_engine(engine, i915, id) {
3180                 unsigned long flags;
3181
3182                 /* Mark all pending requests as complete so that any concurrent
3183                  * (lockless) lookup doesn't try and wait upon the request as we
3184                  * reset it.
3185                  */
3186                 spin_lock_irqsave(&engine->timeline->lock, flags);
3187                 intel_engine_init_global_seqno(engine,
3188                                                intel_engine_last_submit(engine));
3189                 spin_unlock_irqrestore(&engine->timeline->lock, flags);
3190         }
3191
3192         set_bit(I915_WEDGED, &i915->gpu_error.flags);
3193         wake_up_all(&i915->gpu_error.reset_queue);
3194 }
3195
3196 bool i915_gem_unset_wedged(struct drm_i915_private *i915)
3197 {
3198         struct i915_gem_timeline *tl;
3199         int i;
3200
3201         lockdep_assert_held(&i915->drm.struct_mutex);
3202         if (!test_bit(I915_WEDGED, &i915->gpu_error.flags))
3203                 return true;
3204
3205         /* Before unwedging, make sure that all pending operations
3206          * are flushed and errored out - we may have requests waiting upon
3207          * third party fences. We marked all inflight requests as EIO, and
3208          * every execbuf since returned EIO, for consistency we want all
3209          * the currently pending requests to also be marked as EIO, which
3210          * is done inside our nop_submit_request - and so we must wait.
3211          *
3212          * No more can be submitted until we reset the wedged bit.
3213          */
3214         list_for_each_entry(tl, &i915->gt.timelines, link) {
3215                 for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3216                         struct drm_i915_gem_request *rq;
3217
3218                         rq = i915_gem_active_peek(&tl->engine[i].last_request,
3219                                                   &i915->drm.struct_mutex);
3220                         if (!rq)
3221                                 continue;
3222
3223                         /* We can't use our normal waiter as we want to
3224                          * avoid recursively trying to handle the current
3225                          * reset. The basic dma_fence_default_wait() installs
3226                          * a callback for dma_fence_signal(), which is
3227                          * triggered by our nop handler (indirectly, the
3228                          * callback enables the signaler thread which is
3229                          * woken by the nop_submit_request() advancing the seqno
3230                          * and when the seqno passes the fence, the signaler
3231                          * then signals the fence waking us up).
3232                          */
3233                         if (dma_fence_default_wait(&rq->fence, true,
3234                                                    MAX_SCHEDULE_TIMEOUT) < 0)
3235                                 return false;
3236                 }
3237         }
3238
3239         /* Undo nop_submit_request. We prevent all new i915 requests from
3240          * being queued (by disallowing execbuf whilst wedged) so having
3241          * waited for all active requests above, we know the system is idle
3242          * and do not have to worry about a thread being inside
3243          * engine->submit_request() as we swap over. So unlike installing
3244          * the nop_submit_request on reset, we can do this from normal
3245          * context and do not require stop_machine().
3246          */
3247         intel_engines_reset_default_submission(i915);
3248         i915_gem_contexts_lost(i915);
3249
3250         smp_mb__before_atomic(); /* complete takeover before enabling execbuf */
3251         clear_bit(I915_WEDGED, &i915->gpu_error.flags);
3252
3253         return true;
3254 }
3255
3256 static void
3257 i915_gem_retire_work_handler(struct work_struct *work)
3258 {
3259         struct drm_i915_private *dev_priv =
3260                 container_of(work, typeof(*dev_priv), gt.retire_work.work);
3261         struct drm_device *dev = &dev_priv->drm;
3262
3263         /* Come back later if the device is busy... */
3264         if (mutex_trylock(&dev->struct_mutex)) {
3265                 i915_gem_retire_requests(dev_priv);
3266                 mutex_unlock(&dev->struct_mutex);
3267         }
3268
3269         /* Keep the retire handler running until we are finally idle.
3270          * We do not need to do this test under locking as in the worst-case
3271          * we queue the retire worker once too often.
3272          */
3273         if (READ_ONCE(dev_priv->gt.awake)) {
3274                 i915_queue_hangcheck(dev_priv);
3275                 queue_delayed_work(dev_priv->wq,
3276                                    &dev_priv->gt.retire_work,
3277                                    round_jiffies_up_relative(HZ));
3278         }
3279 }
3280
3281 static void
3282 i915_gem_idle_work_handler(struct work_struct *work)
3283 {
3284         struct drm_i915_private *dev_priv =
3285                 container_of(work, typeof(*dev_priv), gt.idle_work.work);
3286         struct drm_device *dev = &dev_priv->drm;
3287         bool rearm_hangcheck;
3288
3289         if (!READ_ONCE(dev_priv->gt.awake))
3290                 return;
3291
3292         /*
3293          * Wait for last execlists context complete, but bail out in case a
3294          * new request is submitted.
3295          */
3296         wait_for(intel_engines_are_idle(dev_priv), 10);
3297         if (READ_ONCE(dev_priv->gt.active_requests))
3298                 return;
3299
3300         rearm_hangcheck =
3301                 cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
3302
3303         if (!mutex_trylock(&dev->struct_mutex)) {
3304                 /* Currently busy, come back later */
3305                 mod_delayed_work(dev_priv->wq,
3306                                  &dev_priv->gt.idle_work,
3307                                  msecs_to_jiffies(50));
3308                 goto out_rearm;
3309         }
3310
3311         /*
3312          * New request retired after this work handler started, extend active
3313          * period until next instance of the work.
3314          */
3315         if (work_pending(work))
3316                 goto out_unlock;
3317
3318         if (dev_priv->gt.active_requests)
3319                 goto out_unlock;
3320
3321         if (wait_for(intel_engines_are_idle(dev_priv), 10))
3322                 DRM_ERROR("Timeout waiting for engines to idle\n");
3323
3324         intel_engines_mark_idle(dev_priv);
3325         i915_gem_timelines_mark_idle(dev_priv);
3326
3327         GEM_BUG_ON(!dev_priv->gt.awake);
3328         dev_priv->gt.awake = false;
3329         rearm_hangcheck = false;
3330
3331         if (INTEL_GEN(dev_priv) >= 6)
3332                 gen6_rps_idle(dev_priv);
3333         intel_runtime_pm_put(dev_priv);
3334 out_unlock:
3335         mutex_unlock(&dev->struct_mutex);
3336
3337 out_rearm:
3338         if (rearm_hangcheck) {
3339                 GEM_BUG_ON(!dev_priv->gt.awake);
3340                 i915_queue_hangcheck(dev_priv);
3341         }
3342 }
3343
3344 void i915_gem_close_object(struct drm_gem_object *gem, struct drm_file *file)
3345 {
3346         struct drm_i915_private *i915 = to_i915(gem->dev);
3347         struct drm_i915_gem_object *obj = to_intel_bo(gem);
3348         struct drm_i915_file_private *fpriv = file->driver_priv;
3349         struct i915_lut_handle *lut, *ln;
3350
3351         mutex_lock(&i915->drm.struct_mutex);
3352
3353         list_for_each_entry_safe(lut, ln, &obj->lut_list, obj_link) {
3354                 struct i915_gem_context *ctx = lut->ctx;
3355                 struct i915_vma *vma;
3356
3357                 GEM_BUG_ON(ctx->file_priv == ERR_PTR(-EBADF));
3358                 if (ctx->file_priv != fpriv)
3359                         continue;
3360
3361                 vma = radix_tree_delete(&ctx->handles_vma, lut->handle);
3362                 GEM_BUG_ON(vma->obj != obj);
3363
3364                 /* We allow the process to have multiple handles to the same
3365                  * vma, in the same fd namespace, by virtue of flink/open.
3366                  */
3367                 GEM_BUG_ON(!vma->open_count);
3368                 if (!--vma->open_count && !i915_vma_is_ggtt(vma))
3369                         i915_vma_close(vma);
3370
3371                 list_del(&lut->obj_link);
3372                 list_del(&lut->ctx_link);
3373
3374                 kmem_cache_free(i915->luts, lut);
3375                 __i915_gem_object_release_unless_active(obj);
3376         }
3377
3378         mutex_unlock(&i915->drm.struct_mutex);
3379 }
3380
3381 static unsigned long to_wait_timeout(s64 timeout_ns)
3382 {
3383         if (timeout_ns < 0)
3384                 return MAX_SCHEDULE_TIMEOUT;
3385
3386         if (timeout_ns == 0)
3387                 return 0;
3388
3389         return nsecs_to_jiffies_timeout(timeout_ns);
3390 }
3391
3392 /**
3393  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
3394  * @dev: drm device pointer
3395  * @data: ioctl data blob
3396  * @file: drm file pointer
3397  *
3398  * Returns 0 if successful, else an error is returned with the remaining time in
3399  * the timeout parameter.
3400  *  -ETIME: object is still busy after timeout
3401  *  -ERESTARTSYS: signal interrupted the wait
3402  *  -ENONENT: object doesn't exist
3403  * Also possible, but rare:
3404  *  -EAGAIN: incomplete, restart syscall
3405  *  -ENOMEM: damn
3406  *  -ENODEV: Internal IRQ fail
3407  *  -E?: The add request failed
3408  *
3409  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
3410  * non-zero timeout parameter the wait ioctl will wait for the given number of
3411  * nanoseconds on an object becoming unbusy. Since the wait itself does so
3412  * without holding struct_mutex the object may become re-busied before this
3413  * function completes. A similar but shorter * race condition exists in the busy
3414  * ioctl
3415  */
3416 int
3417 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
3418 {
3419         struct drm_i915_gem_wait *args = data;
3420         struct drm_i915_gem_object *obj;
3421         ktime_t start;
3422         long ret;
3423
3424         if (args->flags != 0)
3425                 return -EINVAL;
3426
3427         obj = i915_gem_object_lookup(file, args->bo_handle);
3428         if (!obj)
3429                 return -ENOENT;
3430
3431         start = ktime_get();
3432
3433         ret = i915_gem_object_wait(obj,
3434                                    I915_WAIT_INTERRUPTIBLE | I915_WAIT_ALL,
3435                                    to_wait_timeout(args->timeout_ns),
3436                                    to_rps_client(file));
3437
3438         if (args->timeout_ns > 0) {
3439                 args->timeout_ns -= ktime_to_ns(ktime_sub(ktime_get(), start));
3440                 if (args->timeout_ns < 0)
3441                         args->timeout_ns = 0;
3442
3443                 /*
3444                  * Apparently ktime isn't accurate enough and occasionally has a
3445                  * bit of mismatch in the jiffies<->nsecs<->ktime loop. So patch
3446                  * things up to make the test happy. We allow up to 1 jiffy.
3447                  *
3448                  * This is a regression from the timespec->ktime conversion.
3449                  */
3450                 if (ret == -ETIME && !nsecs_to_jiffies(args->timeout_ns))
3451                         args->timeout_ns = 0;
3452
3453                 /* Asked to wait beyond the jiffie/scheduler precision? */
3454                 if (ret == -ETIME && args->timeout_ns)
3455                         ret = -EAGAIN;
3456         }
3457
3458         i915_gem_object_put(obj);
3459         return ret;
3460 }
3461
3462 static int wait_for_timeline(struct i915_gem_timeline *tl, unsigned int flags)
3463 {
3464         int ret, i;
3465
3466         for (i = 0; i < ARRAY_SIZE(tl->engine); i++) {
3467                 ret = i915_gem_active_wait(&tl->engine[i].last_request, flags);
3468                 if (ret)
3469                         return ret;
3470         }
3471
3472         return 0;
3473 }
3474
3475 static int wait_for_engines(struct drm_i915_private *i915)
3476 {
3477         if (wait_for(intel_engines_are_idle(i915), 50)) {
3478                 DRM_ERROR("Failed to idle engines, declaring wedged!\n");
3479                 i915_gem_set_wedged(i915);
3480                 return -EIO;
3481         }
3482
3483         return 0;
3484 }
3485
3486 int i915_gem_wait_for_idle(struct drm_i915_private *i915, unsigned int flags)
3487 {
3488         int ret;
3489
3490         /* If the device is asleep, we have no requests outstanding */
3491         if (!READ_ONCE(i915->gt.awake))
3492                 return 0;
3493
3494         if (flags & I915_WAIT_LOCKED) {
3495                 struct i915_gem_timeline *tl;
3496
3497                 lockdep_assert_held(&i915->drm.struct_mutex);
3498
3499                 list_for_each_entry(tl, &i915->gt.timelines, link) {
3500                         ret = wait_for_timeline(tl, flags);
3501                         if (ret)
3502                                 return ret;
3503                 }
3504
3505                 i915_gem_retire_requests(i915);
3506                 GEM_BUG_ON(i915->gt.active_requests);
3507
3508                 ret = wait_for_engines(i915);
3509         } else {
3510                 ret = wait_for_timeline(&i915->gt.global_timeline, flags);
3511         }
3512
3513         return ret;
3514 }
3515
3516 static void __i915_gem_object_flush_for_display(struct drm_i915_gem_object *obj)
3517 {
3518         /*
3519          * We manually flush the CPU domain so that we can override and
3520          * force the flush for the display, and perform it asyncrhonously.
3521          */
3522         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
3523         if (obj->cache_dirty)
3524                 i915_gem_clflush_object(obj, I915_CLFLUSH_FORCE);
3525         obj->base.write_domain = 0;
3526 }
3527
3528 void i915_gem_object_flush_if_display(struct drm_i915_gem_object *obj)
3529 {
3530         if (!READ_ONCE(obj->pin_global))
3531                 return;
3532
3533         mutex_lock(&obj->base.dev->struct_mutex);
3534         __i915_gem_object_flush_for_display(obj);
3535         mutex_unlock(&obj->base.dev->struct_mutex);
3536 }
3537
3538 /**
3539  * Moves a single object to the WC read, and possibly write domain.
3540  * @obj: object to act on
3541  * @write: ask for write access or read only
3542  *
3543  * This function returns when the move is complete, including waiting on
3544  * flushes to occur.
3545  */
3546 int
3547 i915_gem_object_set_to_wc_domain(struct drm_i915_gem_object *obj, bool write)
3548 {
3549         int ret;
3550
3551         lockdep_assert_held(&obj->base.dev->struct_mutex);
3552
3553         ret = i915_gem_object_wait(obj,
3554                                    I915_WAIT_INTERRUPTIBLE |
3555                                    I915_WAIT_LOCKED |
3556                                    (write ? I915_WAIT_ALL : 0),
3557                                    MAX_SCHEDULE_TIMEOUT,
3558                                    NULL);
3559         if (ret)
3560                 return ret;
3561
3562         if (obj->base.write_domain == I915_GEM_DOMAIN_WC)
3563                 return 0;
3564
3565         /* Flush and acquire obj->pages so that we are coherent through
3566          * direct access in memory with previous cached writes through
3567          * shmemfs and that our cache domain tracking remains valid.
3568          * For example, if the obj->filp was moved to swap without us
3569          * being notified and releasing the pages, we would mistakenly
3570          * continue to assume that the obj remained out of the CPU cached
3571          * domain.
3572          */
3573         ret = i915_gem_object_pin_pages(obj);
3574         if (ret)
3575                 return ret;
3576
3577         flush_write_domain(obj, ~I915_GEM_DOMAIN_WC);
3578
3579         /* Serialise direct access to this object with the barriers for
3580          * coherent writes from the GPU, by effectively invalidating the
3581          * WC domain upon first access.
3582          */
3583         if ((obj->base.read_domains & I915_GEM_DOMAIN_WC) == 0)
3584                 mb();
3585
3586         /* It should now be out of any other write domains, and we can update
3587          * the domain values for our changes.
3588          */
3589         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_WC) != 0);
3590         obj->base.read_domains |= I915_GEM_DOMAIN_WC;
3591         if (write) {
3592                 obj->base.read_domains = I915_GEM_DOMAIN_WC;
3593                 obj->base.write_domain = I915_GEM_DOMAIN_WC;
3594                 obj->mm.dirty = true;
3595         }
3596
3597         i915_gem_object_unpin_pages(obj);
3598         return 0;
3599 }
3600
3601 /**
3602  * Moves a single object to the GTT read, and possibly write domain.
3603  * @obj: object to act on
3604  * @write: ask for write access or read only
3605  *
3606  * This function returns when the move is complete, including waiting on
3607  * flushes to occur.
3608  */
3609 int
3610 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3611 {
3612         int ret;
3613
3614         lockdep_assert_held(&obj->base.dev->struct_mutex);
3615
3616         ret = i915_gem_object_wait(obj,
3617                                    I915_WAIT_INTERRUPTIBLE |
3618                                    I915_WAIT_LOCKED |
3619                                    (write ? I915_WAIT_ALL : 0),
3620                                    MAX_SCHEDULE_TIMEOUT,
3621                                    NULL);
3622         if (ret)
3623                 return ret;
3624
3625         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3626                 return 0;
3627
3628         /* Flush and acquire obj->pages so that we are coherent through
3629          * direct access in memory with previous cached writes through
3630          * shmemfs and that our cache domain tracking remains valid.
3631          * For example, if the obj->filp was moved to swap without us
3632          * being notified and releasing the pages, we would mistakenly
3633          * continue to assume that the obj remained out of the CPU cached
3634          * domain.
3635          */
3636         ret = i915_gem_object_pin_pages(obj);
3637         if (ret)
3638                 return ret;
3639
3640         flush_write_domain(obj, ~I915_GEM_DOMAIN_GTT);
3641
3642         /* Serialise direct access to this object with the barriers for
3643          * coherent writes from the GPU, by effectively invalidating the
3644          * GTT domain upon first access.
3645          */
3646         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3647                 mb();
3648
3649         /* It should now be out of any other write domains, and we can update
3650          * the domain values for our changes.
3651          */
3652         GEM_BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3653         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3654         if (write) {
3655                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3656                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3657                 obj->mm.dirty = true;
3658         }
3659
3660         i915_gem_object_unpin_pages(obj);
3661         return 0;
3662 }
3663
3664 /**
3665  * Changes the cache-level of an object across all VMA.
3666  * @obj: object to act on
3667  * @cache_level: new cache level to set for the object
3668  *
3669  * After this function returns, the object will be in the new cache-level
3670  * across all GTT and the contents of the backing storage will be coherent,
3671  * with respect to the new cache-level. In order to keep the backing storage
3672  * coherent for all users, we only allow a single cache level to be set
3673  * globally on the object and prevent it from being changed whilst the
3674  * hardware is reading from the object. That is if the object is currently
3675  * on the scanout it will be set to uncached (or equivalent display
3676  * cache coherency) and all non-MOCS GPU access will also be uncached so
3677  * that all direct access to the scanout remains coherent.
3678  */
3679 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3680                                     enum i915_cache_level cache_level)
3681 {
3682         struct i915_vma *vma;
3683         int ret;
3684
3685         lockdep_assert_held(&obj->base.dev->struct_mutex);
3686
3687         if (obj->cache_level == cache_level)
3688                 return 0;
3689
3690         /* Inspect the list of currently bound VMA and unbind any that would
3691          * be invalid given the new cache-level. This is principally to
3692          * catch the issue of the CS prefetch crossing page boundaries and
3693          * reading an invalid PTE on older architectures.
3694          */
3695 restart:
3696         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3697                 if (!drm_mm_node_allocated(&vma->node))
3698                         continue;
3699
3700                 if (i915_vma_is_pinned(vma)) {
3701                         DRM_DEBUG("can not change the cache level of pinned objects\n");
3702                         return -EBUSY;
3703                 }
3704
3705                 if (i915_gem_valid_gtt_space(vma, cache_level))
3706                         continue;
3707
3708                 ret = i915_vma_unbind(vma);
3709                 if (ret)
3710                         return ret;
3711
3712                 /* As unbinding may affect other elements in the
3713                  * obj->vma_list (due to side-effects from retiring
3714                  * an active vma), play safe and restart the iterator.
3715                  */
3716                 goto restart;
3717         }
3718
3719         /* We can reuse the existing drm_mm nodes but need to change the
3720          * cache-level on the PTE. We could simply unbind them all and
3721          * rebind with the correct cache-level on next use. However since
3722          * we already have a valid slot, dma mapping, pages etc, we may as
3723          * rewrite the PTE in the belief that doing so tramples upon less
3724          * state and so involves less work.
3725          */
3726         if (obj->bind_count) {
3727                 /* Before we change the PTE, the GPU must not be accessing it.
3728                  * If we wait upon the object, we know that all the bound
3729                  * VMA are no longer active.
3730                  */
3731                 ret = i915_gem_object_wait(obj,
3732                                            I915_WAIT_INTERRUPTIBLE |
3733                                            I915_WAIT_LOCKED |
3734                                            I915_WAIT_ALL,
3735                                            MAX_SCHEDULE_TIMEOUT,
3736                                            NULL);
3737                 if (ret)
3738                         return ret;
3739
3740                 if (!HAS_LLC(to_i915(obj->base.dev)) &&
3741                     cache_level != I915_CACHE_NONE) {
3742                         /* Access to snoopable pages through the GTT is
3743                          * incoherent and on some machines causes a hard
3744                          * lockup. Relinquish the CPU mmaping to force
3745                          * userspace to refault in the pages and we can
3746                          * then double check if the GTT mapping is still
3747                          * valid for that pointer access.
3748                          */
3749                         i915_gem_release_mmap(obj);
3750
3751                         /* As we no longer need a fence for GTT access,
3752                          * we can relinquish it now (and so prevent having
3753                          * to steal a fence from someone else on the next
3754                          * fence request). Note GPU activity would have
3755                          * dropped the fence as all snoopable access is
3756                          * supposed to be linear.
3757                          */
3758                         list_for_each_entry(vma, &obj->vma_list, obj_link) {
3759                                 ret = i915_vma_put_fence(vma);
3760                                 if (ret)
3761                                         return ret;
3762                         }
3763                 } else {
3764                         /* We either have incoherent backing store and
3765                          * so no GTT access or the architecture is fully
3766                          * coherent. In such cases, existing GTT mmaps
3767                          * ignore the cache bit in the PTE and we can
3768                          * rewrite it without confusing the GPU or having
3769                          * to force userspace to fault back in its mmaps.
3770                          */
3771                 }
3772
3773                 list_for_each_entry(vma, &obj->vma_list, obj_link) {
3774                         if (!drm_mm_node_allocated(&vma->node))
3775                                 continue;
3776
3777                         ret = i915_vma_bind(vma, cache_level, PIN_UPDATE);
3778                         if (ret)
3779                                 return ret;
3780                 }
3781         }
3782
3783         list_for_each_entry(vma, &obj->vma_list, obj_link)
3784                 vma->node.color = cache_level;
3785         i915_gem_object_set_cache_coherency(obj, cache_level);
3786         obj->cache_dirty = true; /* Always invalidate stale cachelines */
3787
3788         return 0;
3789 }
3790
3791 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3792                                struct drm_file *file)
3793 {
3794         struct drm_i915_gem_caching *args = data;
3795         struct drm_i915_gem_object *obj;
3796         int err = 0;
3797
3798         rcu_read_lock();
3799         obj = i915_gem_object_lookup_rcu(file, args->handle);
3800         if (!obj) {
3801                 err = -ENOENT;
3802                 goto out;
3803         }
3804
3805         switch (obj->cache_level) {
3806         case I915_CACHE_LLC:
3807         case I915_CACHE_L3_LLC:
3808                 args->caching = I915_CACHING_CACHED;
3809                 break;
3810
3811         case I915_CACHE_WT:
3812                 args->caching = I915_CACHING_DISPLAY;
3813                 break;
3814
3815         default:
3816                 args->caching = I915_CACHING_NONE;
3817                 break;
3818         }
3819 out:
3820         rcu_read_unlock();
3821         return err;
3822 }
3823
3824 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3825                                struct drm_file *file)
3826 {
3827         struct drm_i915_private *i915 = to_i915(dev);
3828         struct drm_i915_gem_caching *args = data;
3829         struct drm_i915_gem_object *obj;
3830         enum i915_cache_level level;
3831         int ret = 0;
3832
3833         switch (args->caching) {
3834         case I915_CACHING_NONE:
3835                 level = I915_CACHE_NONE;
3836                 break;
3837         case I915_CACHING_CACHED:
3838                 /*
3839                  * Due to a HW issue on BXT A stepping, GPU stores via a
3840                  * snooped mapping may leave stale data in a corresponding CPU
3841                  * cacheline, whereas normally such cachelines would get
3842                  * invalidated.
3843                  */
3844                 if (!HAS_LLC(i915) && !HAS_SNOOP(i915))
3845                         return -ENODEV;
3846
3847                 level = I915_CACHE_LLC;
3848                 break;
3849         case I915_CACHING_DISPLAY:
3850                 level = HAS_WT(i915) ? I915_CACHE_WT : I915_CACHE_NONE;
3851                 break;
3852         default:
3853                 return -EINVAL;
3854         }
3855
3856         obj = i915_gem_object_lookup(file, args->handle);
3857         if (!obj)
3858                 return -ENOENT;
3859
3860         if (obj->cache_level == level)
3861                 goto out;
3862
3863         ret = i915_gem_object_wait(obj,
3864                                    I915_WAIT_INTERRUPTIBLE,
3865                                    MAX_SCHEDULE_TIMEOUT,
3866                                    to_rps_client(file));
3867         if (ret)
3868                 goto out;
3869
3870         ret = i915_mutex_lock_interruptible(dev);
3871         if (ret)
3872                 goto out;
3873
3874         ret = i915_gem_object_set_cache_level(obj, level);
3875         mutex_unlock(&dev->struct_mutex);
3876
3877 out:
3878         i915_gem_object_put(obj);
3879         return ret;
3880 }
3881
3882 /*
3883  * Prepare buffer for display plane (scanout, cursors, etc).
3884  * Can be called from an uninterruptible phase (modesetting) and allows
3885  * any flushes to be pipelined (for pageflips).
3886  */
3887 struct i915_vma *
3888 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3889                                      u32 alignment,
3890                                      const struct i915_ggtt_view *view)
3891 {
3892         struct i915_vma *vma;
3893         int ret;
3894
3895         lockdep_assert_held(&obj->base.dev->struct_mutex);
3896
3897         /* Mark the global pin early so that we account for the
3898          * display coherency whilst setting up the cache domains.
3899          */
3900         obj->pin_global++;
3901
3902         /* The display engine is not coherent with the LLC cache on gen6.  As
3903          * a result, we make sure that the pinning that is about to occur is
3904          * done with uncached PTEs. This is lowest common denominator for all
3905          * chipsets.
3906          *
3907          * However for gen6+, we could do better by using the GFDT bit instead
3908          * of uncaching, which would allow us to flush all the LLC-cached data
3909          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3910          */
3911         ret = i915_gem_object_set_cache_level(obj,
3912                                               HAS_WT(to_i915(obj->base.dev)) ?
3913                                               I915_CACHE_WT : I915_CACHE_NONE);
3914         if (ret) {
3915                 vma = ERR_PTR(ret);
3916                 goto err_unpin_global;
3917         }
3918
3919         /* As the user may map the buffer once pinned in the display plane
3920          * (e.g. libkms for the bootup splash), we have to ensure that we
3921          * always use map_and_fenceable for all scanout buffers. However,
3922          * it may simply be too big to fit into mappable, in which case
3923          * put it anyway and hope that userspace can cope (but always first
3924          * try to preserve the existing ABI).
3925          */
3926         vma = ERR_PTR(-ENOSPC);
3927         if (!view || view->type == I915_GGTT_VIEW_NORMAL)
3928                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment,
3929                                                PIN_MAPPABLE | PIN_NONBLOCK);
3930         if (IS_ERR(vma)) {
3931                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
3932                 unsigned int flags;
3933
3934                 /* Valleyview is definitely limited to scanning out the first
3935                  * 512MiB. Lets presume this behaviour was inherited from the
3936                  * g4x display engine and that all earlier gen are similarly
3937                  * limited. Testing suggests that it is a little more
3938                  * complicated than this. For example, Cherryview appears quite
3939                  * happy to scanout from anywhere within its global aperture.
3940                  */
3941                 flags = 0;
3942                 if (HAS_GMCH_DISPLAY(i915))
3943                         flags = PIN_MAPPABLE;
3944                 vma = i915_gem_object_ggtt_pin(obj, view, 0, alignment, flags);
3945         }
3946         if (IS_ERR(vma))
3947                 goto err_unpin_global;
3948
3949         vma->display_alignment = max_t(u64, vma->display_alignment, alignment);
3950
3951         /* Treat this as an end-of-frame, like intel_user_framebuffer_dirty() */
3952         __i915_gem_object_flush_for_display(obj);
3953         intel_fb_obj_flush(obj, ORIGIN_DIRTYFB);
3954
3955         /* It should now be out of any other write domains, and we can update
3956          * the domain values for our changes.
3957          */
3958         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3959
3960         return vma;
3961
3962 err_unpin_global:
3963         obj->pin_global--;
3964         return vma;
3965 }
3966
3967 void
3968 i915_gem_object_unpin_from_display_plane(struct i915_vma *vma)
3969 {
3970         lockdep_assert_held(&vma->vm->i915->drm.struct_mutex);
3971
3972         if (WARN_ON(vma->obj->pin_global == 0))
3973                 return;
3974
3975         if (--vma->obj->pin_global == 0)
3976                 vma->display_alignment = I915_GTT_MIN_ALIGNMENT;
3977
3978         /* Bump the LRU to try and avoid premature eviction whilst flipping  */
3979         i915_gem_object_bump_inactive_ggtt(vma->obj);
3980
3981         i915_vma_unpin(vma);
3982 }
3983
3984 /**
3985  * Moves a single object to the CPU read, and possibly write domain.
3986  * @obj: object to act on
3987  * @write: requesting write or read-only access
3988  *
3989  * This function returns when the move is complete, including waiting on
3990  * flushes to occur.
3991  */
3992 int
3993 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3994 {
3995         int ret;
3996
3997         lockdep_assert_held(&obj->base.dev->struct_mutex);
3998
3999         ret = i915_gem_object_wait(obj,
4000                                    I915_WAIT_INTERRUPTIBLE |
4001                                    I915_WAIT_LOCKED |
4002                                    (write ? I915_WAIT_ALL : 0),
4003                                    MAX_SCHEDULE_TIMEOUT,
4004                                    NULL);
4005         if (ret)
4006                 return ret;
4007
4008         flush_write_domain(obj, ~I915_GEM_DOMAIN_CPU);
4009
4010         /* Flush the CPU cache if it's still invalid. */
4011         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
4012                 i915_gem_clflush_object(obj, I915_CLFLUSH_SYNC);
4013                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
4014         }
4015
4016         /* It should now be out of any other write domains, and we can update
4017          * the domain values for our changes.
4018          */
4019         GEM_BUG_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
4020
4021         /* If we're writing through the CPU, then the GPU read domains will
4022          * need to be invalidated at next use.
4023          */
4024         if (write)
4025                 __start_cpu_write(obj);
4026
4027         return 0;
4028 }
4029
4030 /* Throttle our rendering by waiting until the ring has completed our requests
4031  * emitted over 20 msec ago.
4032  *
4033  * Note that if we were to use the current jiffies each time around the loop,
4034  * we wouldn't escape the function with any frames outstanding if the time to
4035  * render a frame was over 20ms.
4036  *
4037  * This should get us reasonable parallelism between CPU and GPU but also
4038  * relatively low latency when blocking on a particular request to finish.
4039  */
4040 static int
4041 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
4042 {
4043         struct drm_i915_private *dev_priv = to_i915(dev);
4044         struct drm_i915_file_private *file_priv = file->driver_priv;
4045         unsigned long recent_enough = jiffies - DRM_I915_THROTTLE_JIFFIES;
4046         struct drm_i915_gem_request *request, *target = NULL;
4047         long ret;
4048
4049         /* ABI: return -EIO if already wedged */
4050         if (i915_terminally_wedged(&dev_priv->gpu_error))
4051                 return -EIO;
4052
4053         spin_lock(&file_priv->mm.lock);
4054         list_for_each_entry(request, &file_priv->mm.request_list, client_link) {
4055                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4056                         break;
4057
4058                 if (target) {
4059                         list_del(&target->client_link);
4060                         target->file_priv = NULL;
4061                 }
4062
4063                 target = request;
4064         }
4065         if (target)
4066                 i915_gem_request_get(target);
4067         spin_unlock(&file_priv->mm.lock);
4068
4069         if (target == NULL)
4070                 return 0;
4071
4072         ret = i915_wait_request(target,
4073                                 I915_WAIT_INTERRUPTIBLE,
4074                                 MAX_SCHEDULE_TIMEOUT);
4075         i915_gem_request_put(target);
4076
4077         return ret < 0 ? ret : 0;
4078 }
4079
4080 struct i915_vma *
4081 i915_gem_object_ggtt_pin(struct drm_i915_gem_object *obj,
4082                          const struct i915_ggtt_view *view,
4083                          u64 size,
4084                          u64 alignment,
4085                          u64 flags)
4086 {
4087         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
4088         struct i915_address_space *vm = &dev_priv->ggtt.base;
4089         struct i915_vma *vma;
4090         int ret;
4091
4092         lockdep_assert_held(&obj->base.dev->struct_mutex);
4093
4094         if (!view && flags & PIN_MAPPABLE) {
4095                 /* If the required space is larger than the available
4096                  * aperture, we will not able to find a slot for the
4097                  * object and unbinding the object now will be in
4098                  * vain. Worse, doing so may cause us to ping-pong
4099                  * the object in and out of the Global GTT and
4100                  * waste a lot of cycles under the mutex.
4101                  */
4102                 if (obj->base.size > dev_priv->ggtt.mappable_end)
4103                         return ERR_PTR(-E2BIG);
4104
4105                 /* If NONBLOCK is set the caller is optimistically
4106                  * trying to cache the full object within the mappable
4107                  * aperture, and *must* have a fallback in place for
4108                  * situations where we cannot bind the object. We
4109                  * can be a little more lax here and use the fallback
4110                  * more often to avoid costly migrations of ourselves
4111                  * and other objects within the aperture.
4112                  *
4113                  * Half-the-aperture is used as a simple heuristic.
4114                  * More interesting would to do search for a free
4115                  * block prior to making the commitment to unbind.
4116                  * That caters for the self-harm case, and with a
4117                  * little more heuristics (e.g. NOFAULT, NOEVICT)
4118                  * we could try to minimise harm to others.
4119                  */
4120                 if (flags & PIN_NONBLOCK &&
4121                     obj->base.size > dev_priv->ggtt.mappable_end / 2)
4122                         return ERR_PTR(-ENOSPC);
4123         }
4124
4125         vma = i915_vma_instance(obj, vm, view);
4126         if (unlikely(IS_ERR(vma)))
4127                 return vma;
4128
4129         if (i915_vma_misplaced(vma, size, alignment, flags)) {
4130                 if (flags & PIN_NONBLOCK) {
4131                         if (i915_vma_is_pinned(vma) || i915_vma_is_active(vma))
4132                                 return ERR_PTR(-ENOSPC);
4133
4134                         if (flags & PIN_MAPPABLE &&
4135                             vma->fence_size > dev_priv->ggtt.mappable_end / 2)
4136                                 return ERR_PTR(-ENOSPC);
4137                 }
4138
4139                 WARN(i915_vma_is_pinned(vma),
4140                      "bo is already pinned in ggtt with incorrect alignment:"
4141                      " offset=%08x, req.alignment=%llx,"
4142                      " req.map_and_fenceable=%d, vma->map_and_fenceable=%d\n",
4143                      i915_ggtt_offset(vma), alignment,
4144                      !!(flags & PIN_MAPPABLE),
4145                      i915_vma_is_map_and_fenceable(vma));
4146                 ret = i915_vma_unbind(vma);
4147                 if (ret)
4148                         return ERR_PTR(ret);
4149         }
4150
4151         ret = i915_vma_pin(vma, size, alignment, flags | PIN_GLOBAL);
4152         if (ret)
4153                 return ERR_PTR(ret);
4154
4155         return vma;
4156 }
4157
4158 static __always_inline unsigned int __busy_read_flag(unsigned int id)
4159 {
4160         /* Note that we could alias engines in the execbuf API, but
4161          * that would be very unwise as it prevents userspace from
4162          * fine control over engine selection. Ahem.
4163          *
4164          * This should be something like EXEC_MAX_ENGINE instead of
4165          * I915_NUM_ENGINES.
4166          */
4167         BUILD_BUG_ON(I915_NUM_ENGINES > 16);
4168         return 0x10000 << id;
4169 }
4170
4171 static __always_inline unsigned int __busy_write_id(unsigned int id)
4172 {
4173         /* The uABI guarantees an active writer is also amongst the read
4174          * engines. This would be true if we accessed the activity tracking
4175          * under the lock, but as we perform the lookup of the object and
4176          * its activity locklessly we can not guarantee that the last_write
4177          * being active implies that we have set the same engine flag from
4178          * last_read - hence we always set both read and write busy for
4179          * last_write.
4180          */
4181         return id | __busy_read_flag(id);
4182 }
4183
4184 static __always_inline unsigned int
4185 __busy_set_if_active(const struct dma_fence *fence,
4186                      unsigned int (*flag)(unsigned int id))
4187 {
4188         struct drm_i915_gem_request *rq;
4189
4190         /* We have to check the current hw status of the fence as the uABI
4191          * guarantees forward progress. We could rely on the idle worker
4192          * to eventually flush us, but to minimise latency just ask the
4193          * hardware.
4194          *
4195          * Note we only report on the status of native fences.
4196          */
4197         if (!dma_fence_is_i915(fence))
4198                 return 0;
4199
4200         /* opencode to_request() in order to avoid const warnings */
4201         rq = container_of(fence, struct drm_i915_gem_request, fence);
4202         if (i915_gem_request_completed(rq))
4203                 return 0;
4204
4205         return flag(rq->engine->uabi_id);
4206 }
4207
4208 static __always_inline unsigned int
4209 busy_check_reader(const struct dma_fence *fence)
4210 {
4211         return __busy_set_if_active(fence, __busy_read_flag);
4212 }
4213
4214 static __always_inline unsigned int
4215 busy_check_writer(const struct dma_fence *fence)
4216 {
4217         if (!fence)
4218                 return 0;
4219
4220         return __busy_set_if_active(fence, __busy_write_id);
4221 }
4222
4223 int
4224 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4225                     struct drm_file *file)
4226 {
4227         struct drm_i915_gem_busy *args = data;
4228         struct drm_i915_gem_object *obj;
4229         struct reservation_object_list *list;
4230         unsigned int seq;
4231         int err;
4232
4233         err = -ENOENT;
4234         rcu_read_lock();
4235         obj = i915_gem_object_lookup_rcu(file, args->handle);
4236         if (!obj)
4237                 goto out;
4238
4239         /* A discrepancy here is that we do not report the status of
4240          * non-i915 fences, i.e. even though we may report the object as idle,
4241          * a call to set-domain may still stall waiting for foreign rendering.
4242          * This also means that wait-ioctl may report an object as busy,
4243          * where busy-ioctl considers it idle.
4244          *
4245          * We trade the ability to warn of foreign fences to report on which
4246          * i915 engines are active for the object.
4247          *
4248          * Alternatively, we can trade that extra information on read/write
4249          * activity with
4250          *      args->busy =
4251          *              !reservation_object_test_signaled_rcu(obj->resv, true);
4252          * to report the overall busyness. This is what the wait-ioctl does.
4253          *
4254          */
4255 retry:
4256         seq = raw_read_seqcount(&obj->resv->seq);
4257
4258         /* Translate the exclusive fence to the READ *and* WRITE engine */
4259         args->busy = busy_check_writer(rcu_dereference(obj->resv->fence_excl));
4260
4261         /* Translate shared fences to READ set of engines */
4262         list = rcu_dereference(obj->resv->fence);
4263         if (list) {
4264                 unsigned int shared_count = list->shared_count, i;
4265
4266                 for (i = 0; i < shared_count; ++i) {
4267                         struct dma_fence *fence =
4268                                 rcu_dereference(list->shared[i]);
4269
4270                         args->busy |= busy_check_reader(fence);
4271                 }
4272         }
4273
4274         if (args->busy && read_seqcount_retry(&obj->resv->seq, seq))
4275                 goto retry;
4276
4277         err = 0;
4278 out:
4279         rcu_read_unlock();
4280         return err;
4281 }
4282
4283 int
4284 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4285                         struct drm_file *file_priv)
4286 {
4287         return i915_gem_ring_throttle(dev, file_priv);
4288 }
4289
4290 int
4291 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4292                        struct drm_file *file_priv)
4293 {
4294         struct drm_i915_private *dev_priv = to_i915(dev);
4295         struct drm_i915_gem_madvise *args = data;
4296         struct drm_i915_gem_object *obj;
4297         int err;
4298
4299         switch (args->madv) {
4300         case I915_MADV_DONTNEED:
4301         case I915_MADV_WILLNEED:
4302             break;
4303         default:
4304             return -EINVAL;
4305         }
4306
4307         obj = i915_gem_object_lookup(file_priv, args->handle);
4308         if (!obj)
4309                 return -ENOENT;
4310
4311         err = mutex_lock_interruptible(&obj->mm.lock);
4312         if (err)
4313                 goto out;
4314
4315         if (i915_gem_object_has_pages(obj) &&
4316             i915_gem_object_is_tiled(obj) &&
4317             dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES) {
4318                 if (obj->mm.madv == I915_MADV_WILLNEED) {
4319                         GEM_BUG_ON(!obj->mm.quirked);
4320                         __i915_gem_object_unpin_pages(obj);
4321                         obj->mm.quirked = false;
4322                 }
4323                 if (args->madv == I915_MADV_WILLNEED) {
4324                         GEM_BUG_ON(obj->mm.quirked);
4325                         __i915_gem_object_pin_pages(obj);
4326                         obj->mm.quirked = true;
4327                 }
4328         }
4329
4330         if (obj->mm.madv != __I915_MADV_PURGED)
4331                 obj->mm.madv = args->madv;
4332
4333         /* if the object is no longer attached, discard its backing storage */
4334         if (obj->mm.madv == I915_MADV_DONTNEED &&
4335             !i915_gem_object_has_pages(obj))
4336                 i915_gem_object_truncate(obj);
4337
4338         args->retained = obj->mm.madv != __I915_MADV_PURGED;
4339         mutex_unlock(&obj->mm.lock);
4340
4341 out:
4342         i915_gem_object_put(obj);
4343         return err;
4344 }
4345
4346 static void
4347 frontbuffer_retire(struct i915_gem_active *active,
4348                    struct drm_i915_gem_request *request)
4349 {
4350         struct drm_i915_gem_object *obj =
4351                 container_of(active, typeof(*obj), frontbuffer_write);
4352
4353         intel_fb_obj_flush(obj, ORIGIN_CS);
4354 }
4355
4356 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4357                           const struct drm_i915_gem_object_ops *ops)
4358 {
4359         mutex_init(&obj->mm.lock);
4360
4361         INIT_LIST_HEAD(&obj->vma_list);
4362         INIT_LIST_HEAD(&obj->lut_list);
4363         INIT_LIST_HEAD(&obj->batch_pool_link);
4364
4365         obj->ops = ops;
4366
4367         reservation_object_init(&obj->__builtin_resv);
4368         obj->resv = &obj->__builtin_resv;
4369
4370         obj->frontbuffer_ggtt_origin = ORIGIN_GTT;
4371         init_request_active(&obj->frontbuffer_write, frontbuffer_retire);
4372
4373         obj->mm.madv = I915_MADV_WILLNEED;
4374         INIT_RADIX_TREE(&obj->mm.get_page.radix, GFP_KERNEL | __GFP_NOWARN);
4375         mutex_init(&obj->mm.get_page.lock);
4376
4377         i915_gem_info_add_obj(to_i915(obj->base.dev), obj->base.size);
4378 }
4379
4380 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4381         .flags = I915_GEM_OBJECT_HAS_STRUCT_PAGE |
4382                  I915_GEM_OBJECT_IS_SHRINKABLE,
4383
4384         .get_pages = i915_gem_object_get_pages_gtt,
4385         .put_pages = i915_gem_object_put_pages_gtt,
4386
4387         .pwrite = i915_gem_object_pwrite_gtt,
4388 };
4389
4390 static int i915_gem_object_create_shmem(struct drm_device *dev,
4391                                         struct drm_gem_object *obj,
4392                                         size_t size)
4393 {
4394         struct drm_i915_private *i915 = to_i915(dev);
4395         unsigned long flags = VM_NORESERVE;
4396         struct file *filp;
4397
4398         drm_gem_private_object_init(dev, obj, size);
4399
4400         if (i915->mm.gemfs)
4401                 filp = shmem_file_setup_with_mnt(i915->mm.gemfs, "i915", size,
4402                                                  flags);
4403         else
4404                 filp = shmem_file_setup("i915", size, flags);
4405
4406         if (IS_ERR(filp))
4407                 return PTR_ERR(filp);
4408
4409         obj->filp = filp;
4410
4411         return 0;
4412 }
4413
4414 struct drm_i915_gem_object *
4415 i915_gem_object_create(struct drm_i915_private *dev_priv, u64 size)
4416 {
4417         struct drm_i915_gem_object *obj;
4418         struct address_space *mapping;
4419         unsigned int cache_level;
4420         gfp_t mask;
4421         int ret;
4422
4423         /* There is a prevalence of the assumption that we fit the object's
4424          * page count inside a 32bit _signed_ variable. Let's document this and
4425          * catch if we ever need to fix it. In the meantime, if you do spot
4426          * such a local variable, please consider fixing!
4427          */
4428         if (size >> PAGE_SHIFT > INT_MAX)
4429                 return ERR_PTR(-E2BIG);
4430
4431         if (overflows_type(size, obj->base.size))
4432                 return ERR_PTR(-E2BIG);
4433
4434         obj = i915_gem_object_alloc(dev_priv);
4435         if (obj == NULL)
4436                 return ERR_PTR(-ENOMEM);
4437
4438         ret = i915_gem_object_create_shmem(&dev_priv->drm, &obj->base, size);
4439         if (ret)
4440                 goto fail;
4441
4442         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4443         if (IS_I965GM(dev_priv) || IS_I965G(dev_priv)) {
4444                 /* 965gm cannot relocate objects above 4GiB. */
4445                 mask &= ~__GFP_HIGHMEM;
4446                 mask |= __GFP_DMA32;
4447         }
4448
4449         mapping = obj->base.filp->f_mapping;
4450         mapping_set_gfp_mask(mapping, mask);
4451         GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
4452
4453         i915_gem_object_init(obj, &i915_gem_object_ops);
4454
4455         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4456         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4457
4458         if (HAS_LLC(dev_priv))
4459                 /* On some devices, we can have the GPU use the LLC (the CPU
4460                  * cache) for about a 10% performance improvement
4461                  * compared to uncached.  Graphics requests other than
4462                  * display scanout are coherent with the CPU in
4463                  * accessing this cache.  This means in this mode we
4464                  * don't need to clflush on the CPU side, and on the
4465                  * GPU side we only need to flush internal caches to
4466                  * get data visible to the CPU.
4467                  *
4468                  * However, we maintain the display planes as UC, and so
4469                  * need to rebind when first used as such.
4470                  */
4471                 cache_level = I915_CACHE_LLC;
4472         else
4473                 cache_level = I915_CACHE_NONE;
4474
4475         i915_gem_object_set_cache_coherency(obj, cache_level);
4476
4477         trace_i915_gem_object_create(obj);
4478
4479         return obj;
4480
4481 fail:
4482         i915_gem_object_free(obj);
4483         return ERR_PTR(ret);
4484 }
4485
4486 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4487 {
4488         /* If we are the last user of the backing storage (be it shmemfs
4489          * pages or stolen etc), we know that the pages are going to be
4490          * immediately released. In this case, we can then skip copying
4491          * back the contents from the GPU.
4492          */
4493
4494         if (obj->mm.madv != I915_MADV_WILLNEED)
4495                 return false;
4496
4497         if (obj->base.filp == NULL)
4498                 return true;
4499
4500         /* At first glance, this looks racy, but then again so would be
4501          * userspace racing mmap against close. However, the first external
4502          * reference to the filp can only be obtained through the
4503          * i915_gem_mmap_ioctl() which safeguards us against the user
4504          * acquiring such a reference whilst we are in the middle of
4505          * freeing the object.
4506          */
4507         return atomic_long_read(&obj->base.filp->f_count) == 1;
4508 }
4509
4510 static void __i915_gem_free_objects(struct drm_i915_private *i915,
4511                                     struct llist_node *freed)
4512 {
4513         struct drm_i915_gem_object *obj, *on;
4514
4515         intel_runtime_pm_get(i915);
4516         llist_for_each_entry_safe(obj, on, freed, freed) {
4517                 struct i915_vma *vma, *vn;
4518
4519                 trace_i915_gem_object_destroy(obj);
4520
4521                 mutex_lock(&i915->drm.struct_mutex);
4522
4523                 GEM_BUG_ON(i915_gem_object_is_active(obj));
4524                 list_for_each_entry_safe(vma, vn,
4525                                          &obj->vma_list, obj_link) {
4526                         GEM_BUG_ON(i915_vma_is_active(vma));
4527                         vma->flags &= ~I915_VMA_PIN_MASK;
4528                         i915_vma_close(vma);
4529                 }
4530                 GEM_BUG_ON(!list_empty(&obj->vma_list));
4531                 GEM_BUG_ON(!RB_EMPTY_ROOT(&obj->vma_tree));
4532
4533                 /* This serializes freeing with the shrinker. Since the free
4534                  * is delayed, first by RCU then by the workqueue, we want the
4535                  * shrinker to be able to free pages of unreferenced objects,
4536                  * or else we may oom whilst there are plenty of deferred
4537                  * freed objects.
4538                  */
4539                 if (i915_gem_object_has_pages(obj)) {
4540                         spin_lock(&i915->mm.obj_lock);
4541                         list_del_init(&obj->mm.link);
4542                         spin_unlock(&i915->mm.obj_lock);
4543                 }
4544
4545                 mutex_unlock(&i915->drm.struct_mutex);
4546
4547                 GEM_BUG_ON(obj->bind_count);
4548                 GEM_BUG_ON(obj->userfault_count);
4549                 GEM_BUG_ON(atomic_read(&obj->frontbuffer_bits));
4550                 GEM_BUG_ON(!list_empty(&obj->lut_list));
4551
4552                 if (obj->ops->release)
4553                         obj->ops->release(obj);
4554
4555                 if (WARN_ON(i915_gem_object_has_pinned_pages(obj)))
4556                         atomic_set(&obj->mm.pages_pin_count, 0);
4557                 __i915_gem_object_put_pages(obj, I915_MM_NORMAL);
4558                 GEM_BUG_ON(i915_gem_object_has_pages(obj));
4559
4560                 if (obj->base.import_attach)
4561                         drm_prime_gem_destroy(&obj->base, NULL);
4562
4563                 reservation_object_fini(&obj->__builtin_resv);
4564                 drm_gem_object_release(&obj->base);
4565                 i915_gem_info_remove_obj(i915, obj->base.size);
4566
4567                 kfree(obj->bit_17);
4568                 i915_gem_object_free(obj);
4569
4570                 if (on)
4571                         cond_resched();
4572         }
4573         intel_runtime_pm_put(i915);
4574 }
4575
4576 static void i915_gem_flush_free_objects(struct drm_i915_private *i915)
4577 {
4578         struct llist_node *freed;
4579
4580         /* Free the oldest, most stale object to keep the free_list short */
4581         freed = NULL;
4582         if (!llist_empty(&i915->mm.free_list)) { /* quick test for hotpath */
4583                 /* Only one consumer of llist_del_first() allowed */
4584                 spin_lock(&i915->mm.free_lock);
4585                 freed = llist_del_first(&i915->mm.free_list);
4586                 spin_unlock(&i915->mm.free_lock);
4587         }
4588         if (unlikely(freed)) {
4589                 freed->next = NULL;
4590                 __i915_gem_free_objects(i915, freed);
4591         }
4592 }
4593
4594 static void __i915_gem_free_work(struct work_struct *work)
4595 {
4596         struct drm_i915_private *i915 =
4597                 container_of(work, struct drm_i915_private, mm.free_work);
4598         struct llist_node *freed;
4599
4600         /* All file-owned VMA should have been released by this point through
4601          * i915_gem_close_object(), or earlier by i915_gem_context_close().
4602          * However, the object may also be bound into the global GTT (e.g.
4603          * older GPUs without per-process support, or for direct access through
4604          * the GTT either for the user or for scanout). Those VMA still need to
4605          * unbound now.
4606          */
4607
4608         spin_lock(&i915->mm.free_lock);
4609         while ((freed = llist_del_all(&i915->mm.free_list))) {
4610                 spin_unlock(&i915->mm.free_lock);
4611
4612                 __i915_gem_free_objects(i915, freed);
4613                 if (need_resched())
4614                         return;
4615
4616                 spin_lock(&i915->mm.free_lock);
4617         }
4618         spin_unlock(&i915->mm.free_lock);
4619 }
4620
4621 static void __i915_gem_free_object_rcu(struct rcu_head *head)
4622 {
4623         struct drm_i915_gem_object *obj =
4624                 container_of(head, typeof(*obj), rcu);
4625         struct drm_i915_private *i915 = to_i915(obj->base.dev);
4626
4627         /* We can't simply use call_rcu() from i915_gem_free_object()
4628          * as we need to block whilst unbinding, and the call_rcu
4629          * task may be called from softirq context. So we take a
4630          * detour through a worker.
4631          */
4632         if (llist_add(&obj->freed, &i915->mm.free_list))
4633                 schedule_work(&i915->mm.free_work);
4634 }
4635
4636 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4637 {
4638         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4639
4640         if (obj->mm.quirked)
4641                 __i915_gem_object_unpin_pages(obj);
4642
4643         if (discard_backing_storage(obj))
4644                 obj->mm.madv = I915_MADV_DONTNEED;
4645
4646         /* Before we free the object, make sure any pure RCU-only
4647          * read-side critical sections are complete, e.g.
4648          * i915_gem_busy_ioctl(). For the corresponding synchronized
4649          * lookup see i915_gem_object_lookup_rcu().
4650          */
4651         call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
4652 }
4653
4654 void __i915_gem_object_release_unless_active(struct drm_i915_gem_object *obj)
4655 {
4656         lockdep_assert_held(&obj->base.dev->struct_mutex);
4657
4658         if (!i915_gem_object_has_active_reference(obj) &&
4659             i915_gem_object_is_active(obj))
4660                 i915_gem_object_set_active_reference(obj);
4661         else
4662                 i915_gem_object_put(obj);
4663 }
4664
4665 static void assert_kernel_context_is_current(struct drm_i915_private *dev_priv)
4666 {
4667         struct intel_engine_cs *engine;
4668         enum intel_engine_id id;
4669
4670         for_each_engine(engine, dev_priv, id)
4671                 GEM_BUG_ON(engine->last_retired_context &&
4672                            !i915_gem_context_is_kernel(engine->last_retired_context));
4673 }
4674
4675 void i915_gem_sanitize(struct drm_i915_private *i915)
4676 {
4677         if (i915_terminally_wedged(&i915->gpu_error)) {
4678                 mutex_lock(&i915->drm.struct_mutex);
4679                 i915_gem_unset_wedged(i915);
4680                 mutex_unlock(&i915->drm.struct_mutex);
4681         }
4682
4683         /*
4684          * If we inherit context state from the BIOS or earlier occupants
4685          * of the GPU, the GPU may be in an inconsistent state when we
4686          * try to take over. The only way to remove the earlier state
4687          * is by resetting. However, resetting on earlier gen is tricky as
4688          * it may impact the display and we are uncertain about the stability
4689          * of the reset, so this could be applied to even earlier gen.
4690          */
4691         if (INTEL_GEN(i915) >= 5) {
4692                 int reset = intel_gpu_reset(i915, ALL_ENGINES);
4693                 WARN_ON(reset && reset != -ENODEV);
4694         }
4695 }
4696
4697 int i915_gem_suspend(struct drm_i915_private *dev_priv)
4698 {
4699         struct drm_device *dev = &dev_priv->drm;
4700         int ret;
4701
4702         intel_runtime_pm_get(dev_priv);
4703         intel_suspend_gt_powersave(dev_priv);
4704
4705         mutex_lock(&dev->struct_mutex);
4706
4707         /* We have to flush all the executing contexts to main memory so
4708          * that they can saved in the hibernation image. To ensure the last
4709          * context image is coherent, we have to switch away from it. That
4710          * leaves the dev_priv->kernel_context still active when
4711          * we actually suspend, and its image in memory may not match the GPU
4712          * state. Fortunately, the kernel_context is disposable and we do
4713          * not rely on its state.
4714          */
4715         ret = i915_gem_switch_to_kernel_context(dev_priv);
4716         if (ret)
4717                 goto err_unlock;
4718
4719         ret = i915_gem_wait_for_idle(dev_priv,
4720                                      I915_WAIT_INTERRUPTIBLE |
4721                                      I915_WAIT_LOCKED);
4722         if (ret && ret != -EIO)
4723                 goto err_unlock;
4724
4725         assert_kernel_context_is_current(dev_priv);
4726         i915_gem_contexts_lost(dev_priv);
4727         mutex_unlock(&dev->struct_mutex);
4728
4729         intel_guc_suspend(dev_priv);
4730
4731         cancel_delayed_work_sync(&dev_priv->gpu_error.hangcheck_work);
4732         cancel_delayed_work_sync(&dev_priv->gt.retire_work);
4733
4734         /* As the idle_work is rearming if it detects a race, play safe and
4735          * repeat the flush until it is definitely idle.
4736          */
4737         drain_delayed_work(&dev_priv->gt.idle_work);
4738
4739         /* Assert that we sucessfully flushed all the work and
4740          * reset the GPU back to its idle, low power state.
4741          */
4742         WARN_ON(dev_priv->gt.awake);
4743         if (WARN_ON(!intel_engines_are_idle(dev_priv)))
4744                 i915_gem_set_wedged(dev_priv); /* no hope, discard everything */
4745
4746         /*
4747          * Neither the BIOS, ourselves or any other kernel
4748          * expects the system to be in execlists mode on startup,
4749          * so we need to reset the GPU back to legacy mode. And the only
4750          * known way to disable logical contexts is through a GPU reset.
4751          *
4752          * So in order to leave the system in a known default configuration,
4753          * always reset the GPU upon unload and suspend. Afterwards we then
4754          * clean up the GEM state tracking, flushing off the requests and
4755          * leaving the system in a known idle state.
4756          *
4757          * Note that is of the upmost importance that the GPU is idle and
4758          * all stray writes are flushed *before* we dismantle the backing
4759          * storage for the pinned objects.
4760          *
4761          * However, since we are uncertain that resetting the GPU on older
4762          * machines is a good idea, we don't - just in case it leaves the
4763          * machine in an unusable condition.
4764          */
4765         i915_gem_sanitize(dev_priv);
4766
4767         intel_runtime_pm_put(dev_priv);
4768         return 0;
4769
4770 err_unlock:
4771         mutex_unlock(&dev->struct_mutex);
4772         intel_runtime_pm_put(dev_priv);
4773         return ret;
4774 }
4775
4776 void i915_gem_resume(struct drm_i915_private *dev_priv)
4777 {
4778         struct drm_device *dev = &dev_priv->drm;
4779
4780         WARN_ON(dev_priv->gt.awake);
4781
4782         mutex_lock(&dev->struct_mutex);
4783         i915_gem_restore_gtt_mappings(dev_priv);
4784         i915_gem_restore_fences(dev_priv);
4785
4786         /* As we didn't flush the kernel context before suspend, we cannot
4787          * guarantee that the context image is complete. So let's just reset
4788          * it and start again.
4789          */
4790         dev_priv->gt.resume(dev_priv);
4791
4792         mutex_unlock(&dev->struct_mutex);
4793 }
4794
4795 void i915_gem_init_swizzling(struct drm_i915_private *dev_priv)
4796 {
4797         if (INTEL_GEN(dev_priv) < 5 ||
4798             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4799                 return;
4800
4801         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4802                                  DISP_TILE_SURFACE_SWIZZLING);
4803
4804         if (IS_GEN5(dev_priv))
4805                 return;
4806
4807         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4808         if (IS_GEN6(dev_priv))
4809                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4810         else if (IS_GEN7(dev_priv))
4811                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4812         else if (IS_GEN8(dev_priv))
4813                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4814         else
4815                 BUG();
4816 }
4817
4818 static void init_unused_ring(struct drm_i915_private *dev_priv, u32 base)
4819 {
4820         I915_WRITE(RING_CTL(base), 0);
4821         I915_WRITE(RING_HEAD(base), 0);
4822         I915_WRITE(RING_TAIL(base), 0);
4823         I915_WRITE(RING_START(base), 0);
4824 }
4825
4826 static void init_unused_rings(struct drm_i915_private *dev_priv)
4827 {
4828         if (IS_I830(dev_priv)) {
4829                 init_unused_ring(dev_priv, PRB1_BASE);
4830                 init_unused_ring(dev_priv, SRB0_BASE);
4831                 init_unused_ring(dev_priv, SRB1_BASE);
4832                 init_unused_ring(dev_priv, SRB2_BASE);
4833                 init_unused_ring(dev_priv, SRB3_BASE);
4834         } else if (IS_GEN2(dev_priv)) {
4835                 init_unused_ring(dev_priv, SRB0_BASE);
4836                 init_unused_ring(dev_priv, SRB1_BASE);
4837         } else if (IS_GEN3(dev_priv)) {
4838                 init_unused_ring(dev_priv, PRB1_BASE);
4839                 init_unused_ring(dev_priv, PRB2_BASE);
4840         }
4841 }
4842
4843 static int __i915_gem_restart_engines(void *data)
4844 {
4845         struct drm_i915_private *i915 = data;
4846         struct intel_engine_cs *engine;
4847         enum intel_engine_id id;
4848         int err;
4849
4850         for_each_engine(engine, i915, id) {
4851                 err = engine->init_hw(engine);
4852                 if (err)
4853                         return err;
4854         }
4855
4856         return 0;
4857 }
4858
4859 int i915_gem_init_hw(struct drm_i915_private *dev_priv)
4860 {
4861         int ret;
4862
4863         dev_priv->gt.last_init_time = ktime_get();
4864
4865         /* Double layer security blanket, see i915_gem_init() */
4866         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4867
4868         if (HAS_EDRAM(dev_priv) && INTEL_GEN(dev_priv) < 9)
4869                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4870
4871         if (IS_HASWELL(dev_priv))
4872                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev_priv) ?
4873                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4874
4875         if (HAS_PCH_NOP(dev_priv)) {
4876                 if (IS_IVYBRIDGE(dev_priv)) {
4877                         u32 temp = I915_READ(GEN7_MSG_CTL);
4878                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4879                         I915_WRITE(GEN7_MSG_CTL, temp);
4880                 } else if (INTEL_GEN(dev_priv) >= 7) {
4881                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4882                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4883                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4884                 }
4885         }
4886
4887         i915_gem_init_swizzling(dev_priv);
4888
4889         /*
4890          * At least 830 can leave some of the unused rings
4891          * "active" (ie. head != tail) after resume which
4892          * will prevent c3 entry. Makes sure all unused rings
4893          * are totally idle.
4894          */
4895         init_unused_rings(dev_priv);
4896
4897         BUG_ON(!dev_priv->kernel_context);
4898         if (i915_terminally_wedged(&dev_priv->gpu_error)) {
4899                 ret = -EIO;
4900                 goto out;
4901         }
4902
4903         ret = i915_ppgtt_init_hw(dev_priv);
4904         if (ret) {
4905                 DRM_ERROR("PPGTT enable HW failed %d\n", ret);
4906                 goto out;
4907         }
4908
4909         /* Need to do basic initialisation of all rings first: */
4910         ret = __i915_gem_restart_engines(dev_priv);
4911         if (ret)
4912                 goto out;
4913
4914         intel_mocs_init_l3cc_table(dev_priv);
4915
4916         /* We can't enable contexts until all firmware is loaded */
4917         ret = intel_uc_init_hw(dev_priv);
4918         if (ret)
4919                 goto out;
4920
4921 out:
4922         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
4923         return ret;
4924 }
4925
4926 bool intel_sanitize_semaphores(struct drm_i915_private *dev_priv, int value)
4927 {
4928         if (INTEL_INFO(dev_priv)->gen < 6)
4929                 return false;
4930
4931         /* TODO: make semaphores and Execlists play nicely together */
4932         if (i915_modparams.enable_execlists)
4933                 return false;
4934
4935         if (value >= 0)
4936                 return value;
4937
4938         /* Enable semaphores on SNB when IO remapping is off */
4939         if (IS_GEN6(dev_priv) && intel_vtd_active())
4940                 return false;
4941
4942         return true;
4943 }
4944
4945 int i915_gem_init(struct drm_i915_private *dev_priv)
4946 {
4947         int ret;
4948
4949         mutex_lock(&dev_priv->drm.struct_mutex);
4950
4951         /*
4952          * We need to fallback to 4K pages since gvt gtt handling doesn't
4953          * support huge page entries - we will need to check either hypervisor
4954          * mm can support huge guest page or just do emulation in gvt.
4955          */
4956         if (intel_vgpu_active(dev_priv))
4957                 mkwrite_device_info(dev_priv)->page_sizes =
4958                         I915_GTT_PAGE_SIZE_4K;
4959
4960         dev_priv->mm.unordered_timeline = dma_fence_context_alloc(1);
4961
4962         if (!i915_modparams.enable_execlists) {
4963                 dev_priv->gt.resume = intel_legacy_submission_resume;
4964                 dev_priv->gt.cleanup_engine = intel_engine_cleanup;
4965         } else {
4966                 dev_priv->gt.resume = intel_lr_context_resume;
4967                 dev_priv->gt.cleanup_engine = intel_logical_ring_cleanup;
4968         }
4969
4970         /* This is just a security blanket to placate dragons.
4971          * On some systems, we very sporadically observe that the first TLBs
4972          * used by the CS may be stale, despite us poking the TLB reset. If
4973          * we hold the forcewake during initialisation these problems
4974          * just magically go away.
4975          */
4976         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
4977
4978         ret = i915_gem_init_userptr(dev_priv);
4979         if (ret)
4980                 goto out_unlock;
4981
4982         ret = i915_gem_init_ggtt(dev_priv);
4983         if (ret)
4984                 goto out_unlock;
4985
4986         ret = i915_gem_contexts_init(dev_priv);
4987         if (ret)
4988                 goto out_unlock;
4989
4990         ret = intel_engines_init(dev_priv);
4991         if (ret)
4992                 goto out_unlock;
4993
4994         ret = i915_gem_init_hw(dev_priv);
4995         if (ret == -EIO) {
4996                 /* Allow engine initialisation to fail by marking the GPU as
4997                  * wedged. But we only want to do this where the GPU is angry,
4998                  * for all other failure, such as an allocation failure, bail.
4999                  */
5000                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
5001                         DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
5002                         i915_gem_set_wedged(dev_priv);
5003                 }
5004                 ret = 0;
5005         }
5006
5007 out_unlock:
5008         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5009         mutex_unlock(&dev_priv->drm.struct_mutex);
5010
5011         return ret;
5012 }
5013
5014 void i915_gem_init_mmio(struct drm_i915_private *i915)
5015 {
5016         i915_gem_sanitize(i915);
5017 }
5018
5019 void
5020 i915_gem_cleanup_engines(struct drm_i915_private *dev_priv)
5021 {
5022         struct intel_engine_cs *engine;
5023         enum intel_engine_id id;
5024
5025         for_each_engine(engine, dev_priv, id)
5026                 dev_priv->gt.cleanup_engine(engine);
5027 }
5028
5029 void
5030 i915_gem_load_init_fences(struct drm_i915_private *dev_priv)
5031 {
5032         int i;
5033
5034         if (INTEL_INFO(dev_priv)->gen >= 7 && !IS_VALLEYVIEW(dev_priv) &&
5035             !IS_CHERRYVIEW(dev_priv))
5036                 dev_priv->num_fence_regs = 32;
5037         else if (INTEL_INFO(dev_priv)->gen >= 4 ||
5038                  IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
5039                  IS_G33(dev_priv) || IS_PINEVIEW(dev_priv))
5040                 dev_priv->num_fence_regs = 16;
5041         else
5042                 dev_priv->num_fence_regs = 8;
5043
5044         if (intel_vgpu_active(dev_priv))
5045                 dev_priv->num_fence_regs =
5046                                 I915_READ(vgtif_reg(avail_rs.fence_num));
5047
5048         /* Initialize fence registers to zero */
5049         for (i = 0; i < dev_priv->num_fence_regs; i++) {
5050                 struct drm_i915_fence_reg *fence = &dev_priv->fence_regs[i];
5051
5052                 fence->i915 = dev_priv;
5053                 fence->id = i;
5054                 list_add_tail(&fence->link, &dev_priv->mm.fence_list);
5055         }
5056         i915_gem_restore_fences(dev_priv);
5057
5058         i915_gem_detect_bit_6_swizzle(dev_priv);
5059 }
5060
5061 int
5062 i915_gem_load_init(struct drm_i915_private *dev_priv)
5063 {
5064         int err = -ENOMEM;
5065
5066         dev_priv->objects = KMEM_CACHE(drm_i915_gem_object, SLAB_HWCACHE_ALIGN);
5067         if (!dev_priv->objects)
5068                 goto err_out;
5069
5070         dev_priv->vmas = KMEM_CACHE(i915_vma, SLAB_HWCACHE_ALIGN);
5071         if (!dev_priv->vmas)
5072                 goto err_objects;
5073
5074         dev_priv->luts = KMEM_CACHE(i915_lut_handle, 0);
5075         if (!dev_priv->luts)
5076                 goto err_vmas;
5077
5078         dev_priv->requests = KMEM_CACHE(drm_i915_gem_request,
5079                                         SLAB_HWCACHE_ALIGN |
5080                                         SLAB_RECLAIM_ACCOUNT |
5081                                         SLAB_TYPESAFE_BY_RCU);
5082         if (!dev_priv->requests)
5083                 goto err_luts;
5084
5085         dev_priv->dependencies = KMEM_CACHE(i915_dependency,
5086                                             SLAB_HWCACHE_ALIGN |
5087                                             SLAB_RECLAIM_ACCOUNT);
5088         if (!dev_priv->dependencies)
5089                 goto err_requests;
5090
5091         dev_priv->priorities = KMEM_CACHE(i915_priolist, SLAB_HWCACHE_ALIGN);
5092         if (!dev_priv->priorities)
5093                 goto err_dependencies;
5094
5095         mutex_lock(&dev_priv->drm.struct_mutex);
5096         INIT_LIST_HEAD(&dev_priv->gt.timelines);
5097         err = i915_gem_timeline_init__global(dev_priv);
5098         mutex_unlock(&dev_priv->drm.struct_mutex);
5099         if (err)
5100                 goto err_priorities;
5101
5102         INIT_WORK(&dev_priv->mm.free_work, __i915_gem_free_work);
5103
5104         spin_lock_init(&dev_priv->mm.obj_lock);
5105         spin_lock_init(&dev_priv->mm.free_lock);
5106         init_llist_head(&dev_priv->mm.free_list);
5107         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
5108         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
5109         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
5110         INIT_LIST_HEAD(&dev_priv->mm.userfault_list);
5111
5112         INIT_DELAYED_WORK(&dev_priv->gt.retire_work,
5113                           i915_gem_retire_work_handler);
5114         INIT_DELAYED_WORK(&dev_priv->gt.idle_work,
5115                           i915_gem_idle_work_handler);
5116         init_waitqueue_head(&dev_priv->gpu_error.wait_queue);
5117         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
5118
5119         atomic_set(&dev_priv->mm.bsd_engine_dispatch_index, 0);
5120
5121         spin_lock_init(&dev_priv->fb_tracking.lock);
5122
5123         err = i915_gemfs_init(dev_priv);
5124         if (err)
5125                 DRM_NOTE("Unable to create a private tmpfs mount, hugepage support will be disabled(%d).\n", err);
5126
5127         return 0;
5128
5129 err_priorities:
5130         kmem_cache_destroy(dev_priv->priorities);
5131 err_dependencies:
5132         kmem_cache_destroy(dev_priv->dependencies);
5133 err_requests:
5134         kmem_cache_destroy(dev_priv->requests);
5135 err_luts:
5136         kmem_cache_destroy(dev_priv->luts);
5137 err_vmas:
5138         kmem_cache_destroy(dev_priv->vmas);
5139 err_objects:
5140         kmem_cache_destroy(dev_priv->objects);
5141 err_out:
5142         return err;
5143 }
5144
5145 void i915_gem_load_cleanup(struct drm_i915_private *dev_priv)
5146 {
5147         i915_gem_drain_freed_objects(dev_priv);
5148         WARN_ON(!llist_empty(&dev_priv->mm.free_list));
5149         WARN_ON(dev_priv->mm.object_count);
5150
5151         mutex_lock(&dev_priv->drm.struct_mutex);
5152         i915_gem_timeline_fini(&dev_priv->gt.global_timeline);
5153         WARN_ON(!list_empty(&dev_priv->gt.timelines));
5154         mutex_unlock(&dev_priv->drm.struct_mutex);
5155
5156         kmem_cache_destroy(dev_priv->priorities);
5157         kmem_cache_destroy(dev_priv->dependencies);
5158         kmem_cache_destroy(dev_priv->requests);
5159         kmem_cache_destroy(dev_priv->luts);
5160         kmem_cache_destroy(dev_priv->vmas);
5161         kmem_cache_destroy(dev_priv->objects);
5162
5163         /* And ensure that our DESTROY_BY_RCU slabs are truly destroyed */
5164         rcu_barrier();
5165
5166         i915_gemfs_fini(dev_priv);
5167 }
5168
5169 int i915_gem_freeze(struct drm_i915_private *dev_priv)
5170 {
5171         /* Discard all purgeable objects, let userspace recover those as
5172          * required after resuming.
5173          */
5174         i915_gem_shrink_all(dev_priv);
5175
5176         return 0;
5177 }
5178
5179 int i915_gem_freeze_late(struct drm_i915_private *dev_priv)
5180 {
5181         struct drm_i915_gem_object *obj;
5182         struct list_head *phases[] = {
5183                 &dev_priv->mm.unbound_list,
5184                 &dev_priv->mm.bound_list,
5185                 NULL
5186         }, **p;
5187
5188         /* Called just before we write the hibernation image.
5189          *
5190          * We need to update the domain tracking to reflect that the CPU
5191          * will be accessing all the pages to create and restore from the
5192          * hibernation, and so upon restoration those pages will be in the
5193          * CPU domain.
5194          *
5195          * To make sure the hibernation image contains the latest state,
5196          * we update that state just before writing out the image.
5197          *
5198          * To try and reduce the hibernation image, we manually shrink
5199          * the objects as well, see i915_gem_freeze()
5200          */
5201
5202         i915_gem_shrink(dev_priv, -1UL, NULL, I915_SHRINK_UNBOUND);
5203         i915_gem_drain_freed_objects(dev_priv);
5204
5205         spin_lock(&dev_priv->mm.obj_lock);
5206         for (p = phases; *p; p++) {
5207                 list_for_each_entry(obj, *p, mm.link)
5208                         __start_cpu_write(obj);
5209         }
5210         spin_unlock(&dev_priv->mm.obj_lock);
5211
5212         return 0;
5213 }
5214
5215 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
5216 {
5217         struct drm_i915_file_private *file_priv = file->driver_priv;
5218         struct drm_i915_gem_request *request;
5219
5220         /* Clean up our request list when the client is going away, so that
5221          * later retire_requests won't dereference our soon-to-be-gone
5222          * file_priv.
5223          */
5224         spin_lock(&file_priv->mm.lock);
5225         list_for_each_entry(request, &file_priv->mm.request_list, client_link)
5226                 request->file_priv = NULL;
5227         spin_unlock(&file_priv->mm.lock);
5228 }
5229
5230 int i915_gem_open(struct drm_i915_private *i915, struct drm_file *file)
5231 {
5232         struct drm_i915_file_private *file_priv;
5233         int ret;
5234
5235         DRM_DEBUG("\n");
5236
5237         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
5238         if (!file_priv)
5239                 return -ENOMEM;
5240
5241         file->driver_priv = file_priv;
5242         file_priv->dev_priv = i915;
5243         file_priv->file = file;
5244
5245         spin_lock_init(&file_priv->mm.lock);
5246         INIT_LIST_HEAD(&file_priv->mm.request_list);
5247
5248         file_priv->bsd_engine = -1;
5249
5250         ret = i915_gem_context_open(i915, file);
5251         if (ret)
5252                 kfree(file_priv);
5253
5254         return ret;
5255 }
5256
5257 /**
5258  * i915_gem_track_fb - update frontbuffer tracking
5259  * @old: current GEM buffer for the frontbuffer slots
5260  * @new: new GEM buffer for the frontbuffer slots
5261  * @frontbuffer_bits: bitmask of frontbuffer slots
5262  *
5263  * This updates the frontbuffer tracking bits @frontbuffer_bits by clearing them
5264  * from @old and setting them in @new. Both @old and @new can be NULL.
5265  */
5266 void i915_gem_track_fb(struct drm_i915_gem_object *old,
5267                        struct drm_i915_gem_object *new,
5268                        unsigned frontbuffer_bits)
5269 {
5270         /* Control of individual bits within the mask are guarded by
5271          * the owning plane->mutex, i.e. we can never see concurrent
5272          * manipulation of individual bits. But since the bitfield as a whole
5273          * is updated using RMW, we need to use atomics in order to update
5274          * the bits.
5275          */
5276         BUILD_BUG_ON(INTEL_FRONTBUFFER_BITS_PER_PIPE * I915_MAX_PIPES >
5277                      sizeof(atomic_t) * BITS_PER_BYTE);
5278
5279         if (old) {
5280                 WARN_ON(!(atomic_read(&old->frontbuffer_bits) & frontbuffer_bits));
5281                 atomic_andnot(frontbuffer_bits, &old->frontbuffer_bits);
5282         }
5283
5284         if (new) {
5285                 WARN_ON(atomic_read(&new->frontbuffer_bits) & frontbuffer_bits);
5286                 atomic_or(frontbuffer_bits, &new->frontbuffer_bits);
5287         }
5288 }
5289
5290 /* Allocate a new GEM object and fill it with the supplied data */
5291 struct drm_i915_gem_object *
5292 i915_gem_object_create_from_data(struct drm_i915_private *dev_priv,
5293                                  const void *data, size_t size)
5294 {
5295         struct drm_i915_gem_object *obj;
5296         struct file *file;
5297         size_t offset;
5298         int err;
5299
5300         obj = i915_gem_object_create(dev_priv, round_up(size, PAGE_SIZE));
5301         if (IS_ERR(obj))
5302                 return obj;
5303
5304         GEM_BUG_ON(obj->base.write_domain != I915_GEM_DOMAIN_CPU);
5305
5306         file = obj->base.filp;
5307         offset = 0;
5308         do {
5309                 unsigned int len = min_t(typeof(size), size, PAGE_SIZE);
5310                 struct page *page;
5311                 void *pgdata, *vaddr;
5312
5313                 err = pagecache_write_begin(file, file->f_mapping,
5314                                             offset, len, 0,
5315                                             &page, &pgdata);
5316                 if (err < 0)
5317                         goto fail;
5318
5319                 vaddr = kmap(page);
5320                 memcpy(vaddr, data, len);
5321                 kunmap(page);
5322
5323                 err = pagecache_write_end(file, file->f_mapping,
5324                                           offset, len, len,
5325                                           page, pgdata);
5326                 if (err < 0)
5327                         goto fail;
5328
5329                 size -= len;
5330                 data += len;
5331                 offset += len;
5332         } while (size);
5333
5334         return obj;
5335
5336 fail:
5337         i915_gem_object_put(obj);
5338         return ERR_PTR(err);
5339 }
5340
5341 struct scatterlist *
5342 i915_gem_object_get_sg(struct drm_i915_gem_object *obj,
5343                        unsigned int n,
5344                        unsigned int *offset)
5345 {
5346         struct i915_gem_object_page_iter *iter = &obj->mm.get_page;
5347         struct scatterlist *sg;
5348         unsigned int idx, count;
5349
5350         might_sleep();
5351         GEM_BUG_ON(n >= obj->base.size >> PAGE_SHIFT);
5352         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
5353
5354         /* As we iterate forward through the sg, we record each entry in a
5355          * radixtree for quick repeated (backwards) lookups. If we have seen
5356          * this index previously, we will have an entry for it.
5357          *
5358          * Initial lookup is O(N), but this is amortized to O(1) for
5359          * sequential page access (where each new request is consecutive
5360          * to the previous one). Repeated lookups are O(lg(obj->base.size)),
5361          * i.e. O(1) with a large constant!
5362          */
5363         if (n < READ_ONCE(iter->sg_idx))
5364                 goto lookup;
5365
5366         mutex_lock(&iter->lock);
5367
5368         /* We prefer to reuse the last sg so that repeated lookup of this
5369          * (or the subsequent) sg are fast - comparing against the last
5370          * sg is faster than going through the radixtree.
5371          */
5372
5373         sg = iter->sg_pos;
5374         idx = iter->sg_idx;
5375         count = __sg_page_count(sg);
5376
5377         while (idx + count <= n) {
5378                 unsigned long exception, i;
5379                 int ret;
5380
5381                 /* If we cannot allocate and insert this entry, or the
5382                  * individual pages from this range, cancel updating the
5383                  * sg_idx so that on this lookup we are forced to linearly
5384                  * scan onwards, but on future lookups we will try the
5385                  * insertion again (in which case we need to be careful of
5386                  * the error return reporting that we have already inserted
5387                  * this index).
5388                  */
5389                 ret = radix_tree_insert(&iter->radix, idx, sg);
5390                 if (ret && ret != -EEXIST)
5391                         goto scan;
5392
5393                 exception =
5394                         RADIX_TREE_EXCEPTIONAL_ENTRY |
5395                         idx << RADIX_TREE_EXCEPTIONAL_SHIFT;
5396                 for (i = 1; i < count; i++) {
5397                         ret = radix_tree_insert(&iter->radix, idx + i,
5398                                                 (void *)exception);
5399                         if (ret && ret != -EEXIST)
5400                                 goto scan;
5401                 }
5402
5403                 idx += count;
5404                 sg = ____sg_next(sg);
5405                 count = __sg_page_count(sg);
5406         }
5407
5408 scan:
5409         iter->sg_pos = sg;
5410         iter->sg_idx = idx;
5411
5412         mutex_unlock(&iter->lock);
5413
5414         if (unlikely(n < idx)) /* insertion completed by another thread */
5415                 goto lookup;
5416
5417         /* In case we failed to insert the entry into the radixtree, we need
5418          * to look beyond the current sg.
5419          */
5420         while (idx + count <= n) {
5421                 idx += count;
5422                 sg = ____sg_next(sg);
5423                 count = __sg_page_count(sg);
5424         }
5425
5426         *offset = n - idx;
5427         return sg;
5428
5429 lookup:
5430         rcu_read_lock();
5431
5432         sg = radix_tree_lookup(&iter->radix, n);
5433         GEM_BUG_ON(!sg);
5434
5435         /* If this index is in the middle of multi-page sg entry,
5436          * the radixtree will contain an exceptional entry that points
5437          * to the start of that range. We will return the pointer to
5438          * the base page and the offset of this page within the
5439          * sg entry's range.
5440          */
5441         *offset = 0;
5442         if (unlikely(radix_tree_exception(sg))) {
5443                 unsigned long base =
5444                         (unsigned long)sg >> RADIX_TREE_EXCEPTIONAL_SHIFT;
5445
5446                 sg = radix_tree_lookup(&iter->radix, base);
5447                 GEM_BUG_ON(!sg);
5448
5449                 *offset = n - base;
5450         }
5451
5452         rcu_read_unlock();
5453
5454         return sg;
5455 }
5456
5457 struct page *
5458 i915_gem_object_get_page(struct drm_i915_gem_object *obj, unsigned int n)
5459 {
5460         struct scatterlist *sg;
5461         unsigned int offset;
5462
5463         GEM_BUG_ON(!i915_gem_object_has_struct_page(obj));
5464
5465         sg = i915_gem_object_get_sg(obj, n, &offset);
5466         return nth_page(sg_page(sg), offset);
5467 }
5468
5469 /* Like i915_gem_object_get_page(), but mark the returned page dirty */
5470 struct page *
5471 i915_gem_object_get_dirty_page(struct drm_i915_gem_object *obj,
5472                                unsigned int n)
5473 {
5474         struct page *page;
5475
5476         page = i915_gem_object_get_page(obj, n);
5477         if (!obj->mm.dirty)
5478                 set_page_dirty(page);
5479
5480         return page;
5481 }
5482
5483 dma_addr_t
5484 i915_gem_object_get_dma_address(struct drm_i915_gem_object *obj,
5485                                 unsigned long n)
5486 {
5487         struct scatterlist *sg;
5488         unsigned int offset;
5489
5490         sg = i915_gem_object_get_sg(obj, n, &offset);
5491         return sg_dma_address(sg) + (offset << PAGE_SHIFT);
5492 }
5493
5494 int i915_gem_object_attach_phys(struct drm_i915_gem_object *obj, int align)
5495 {
5496         struct sg_table *pages;
5497         int err;
5498
5499         if (align > obj->base.size)
5500                 return -EINVAL;
5501
5502         if (obj->ops == &i915_gem_phys_ops)
5503                 return 0;
5504
5505         if (obj->ops != &i915_gem_object_ops)
5506                 return -EINVAL;
5507
5508         err = i915_gem_object_unbind(obj);
5509         if (err)
5510                 return err;
5511
5512         mutex_lock(&obj->mm.lock);
5513
5514         if (obj->mm.madv != I915_MADV_WILLNEED) {
5515                 err = -EFAULT;
5516                 goto err_unlock;
5517         }
5518
5519         if (obj->mm.quirked) {
5520                 err = -EFAULT;
5521                 goto err_unlock;
5522         }
5523
5524         if (obj->mm.mapping) {
5525                 err = -EBUSY;
5526                 goto err_unlock;
5527         }
5528
5529         pages = fetch_and_zero(&obj->mm.pages);
5530         if (pages) {
5531                 struct drm_i915_private *i915 = to_i915(obj->base.dev);
5532
5533                 __i915_gem_object_reset_page_iter(obj);
5534
5535                 spin_lock(&i915->mm.obj_lock);
5536                 list_del(&obj->mm.link);
5537                 spin_unlock(&i915->mm.obj_lock);
5538         }
5539
5540         obj->ops = &i915_gem_phys_ops;
5541
5542         err = ____i915_gem_object_get_pages(obj);
5543         if (err)
5544                 goto err_xfer;
5545
5546         /* Perma-pin (until release) the physical set of pages */
5547         __i915_gem_object_pin_pages(obj);
5548
5549         if (!IS_ERR_OR_NULL(pages))
5550                 i915_gem_object_ops.put_pages(obj, pages);
5551         mutex_unlock(&obj->mm.lock);
5552         return 0;
5553
5554 err_xfer:
5555         obj->ops = &i915_gem_object_ops;
5556         obj->mm.pages = pages;
5557 err_unlock:
5558         mutex_unlock(&obj->mm.lock);
5559         return err;
5560 }
5561
5562 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5563 #include "selftests/scatterlist.c"
5564 #include "selftests/mock_gem_device.c"
5565 #include "selftests/huge_gem_object.c"
5566 #include "selftests/huge_pages.c"
5567 #include "selftests/i915_gem_object.c"
5568 #include "selftests/i915_gem_coherency.c"
5569 #endif