drm: Nuke fb->bits_per_pixel
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
44 {
45         return to_i915(node->minor->dev);
46 }
47
48 /* As the drm_debugfs_init() routines are called before dev->dev_private is
49  * allocated we need to hook into the minor for release. */
50 static int
51 drm_add_fake_info_node(struct drm_minor *minor,
52                        struct dentry *ent,
53                        const void *key)
54 {
55         struct drm_info_node *node;
56
57         node = kmalloc(sizeof(*node), GFP_KERNEL);
58         if (node == NULL) {
59                 debugfs_remove(ent);
60                 return -ENOMEM;
61         }
62
63         node->minor = minor;
64         node->dent = ent;
65         node->info_ent = (void *)key;
66
67         mutex_lock(&minor->debugfs_lock);
68         list_add(&node->list, &minor->debugfs_list);
69         mutex_unlock(&minor->debugfs_lock);
70
71         return 0;
72 }
73
74 static int i915_capabilities(struct seq_file *m, void *data)
75 {
76         struct drm_i915_private *dev_priv = node_to_i915(m->private);
77         const struct intel_device_info *info = INTEL_INFO(dev_priv);
78
79         seq_printf(m, "gen: %d\n", INTEL_GEN(dev_priv));
80         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev_priv));
81 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
82         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG);
83 #undef PRINT_FLAG
84
85         return 0;
86 }
87
88 static char get_active_flag(struct drm_i915_gem_object *obj)
89 {
90         return i915_gem_object_is_active(obj) ? '*' : ' ';
91 }
92
93 static char get_pin_flag(struct drm_i915_gem_object *obj)
94 {
95         return obj->pin_display ? 'p' : ' ';
96 }
97
98 static char get_tiling_flag(struct drm_i915_gem_object *obj)
99 {
100         switch (i915_gem_object_get_tiling(obj)) {
101         default:
102         case I915_TILING_NONE: return ' ';
103         case I915_TILING_X: return 'X';
104         case I915_TILING_Y: return 'Y';
105         }
106 }
107
108 static char get_global_flag(struct drm_i915_gem_object *obj)
109 {
110         return !list_empty(&obj->userfault_link) ? 'g' : ' ';
111 }
112
113 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
114 {
115         return obj->mm.mapping ? 'M' : ' ';
116 }
117
118 static u64 i915_gem_obj_total_ggtt_size(struct drm_i915_gem_object *obj)
119 {
120         u64 size = 0;
121         struct i915_vma *vma;
122
123         list_for_each_entry(vma, &obj->vma_list, obj_link) {
124                 if (i915_vma_is_ggtt(vma) && drm_mm_node_allocated(&vma->node))
125                         size += vma->node.size;
126         }
127
128         return size;
129 }
130
131 static void
132 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
133 {
134         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
135         struct intel_engine_cs *engine;
136         struct i915_vma *vma;
137         unsigned int frontbuffer_bits;
138         int pin_count = 0;
139
140         lockdep_assert_held(&obj->base.dev->struct_mutex);
141
142         seq_printf(m, "%pK: %c%c%c%c%c %8zdKiB %02x %02x %s%s%s",
143                    &obj->base,
144                    get_active_flag(obj),
145                    get_pin_flag(obj),
146                    get_tiling_flag(obj),
147                    get_global_flag(obj),
148                    get_pin_mapped_flag(obj),
149                    obj->base.size / 1024,
150                    obj->base.read_domains,
151                    obj->base.write_domain,
152                    i915_cache_level_str(dev_priv, obj->cache_level),
153                    obj->mm.dirty ? " dirty" : "",
154                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
155         if (obj->base.name)
156                 seq_printf(m, " (name: %d)", obj->base.name);
157         list_for_each_entry(vma, &obj->vma_list, obj_link) {
158                 if (i915_vma_is_pinned(vma))
159                         pin_count++;
160         }
161         seq_printf(m, " (pinned x %d)", pin_count);
162         if (obj->pin_display)
163                 seq_printf(m, " (display)");
164         list_for_each_entry(vma, &obj->vma_list, obj_link) {
165                 if (!drm_mm_node_allocated(&vma->node))
166                         continue;
167
168                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx",
169                            i915_vma_is_ggtt(vma) ? "g" : "pp",
170                            vma->node.start, vma->node.size);
171                 if (i915_vma_is_ggtt(vma))
172                         seq_printf(m, ", type: %u", vma->ggtt_view.type);
173                 if (vma->fence)
174                         seq_printf(m, " , fence: %d%s",
175                                    vma->fence->id,
176                                    i915_gem_active_isset(&vma->last_fence) ? "*" : "");
177                 seq_puts(m, ")");
178         }
179         if (obj->stolen)
180                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
181
182         engine = i915_gem_object_last_write_engine(obj);
183         if (engine)
184                 seq_printf(m, " (%s)", engine->name);
185
186         frontbuffer_bits = atomic_read(&obj->frontbuffer_bits);
187         if (frontbuffer_bits)
188                 seq_printf(m, " (frontbuffer: 0x%03x)", frontbuffer_bits);
189 }
190
191 static int obj_rank_by_stolen(void *priv,
192                               struct list_head *A, struct list_head *B)
193 {
194         struct drm_i915_gem_object *a =
195                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
196         struct drm_i915_gem_object *b =
197                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
198
199         if (a->stolen->start < b->stolen->start)
200                 return -1;
201         if (a->stolen->start > b->stolen->start)
202                 return 1;
203         return 0;
204 }
205
206 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
207 {
208         struct drm_i915_private *dev_priv = node_to_i915(m->private);
209         struct drm_device *dev = &dev_priv->drm;
210         struct drm_i915_gem_object *obj;
211         u64 total_obj_size, total_gtt_size;
212         LIST_HEAD(stolen);
213         int count, ret;
214
215         ret = mutex_lock_interruptible(&dev->struct_mutex);
216         if (ret)
217                 return ret;
218
219         total_obj_size = total_gtt_size = count = 0;
220         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
221                 if (obj->stolen == NULL)
222                         continue;
223
224                 list_add(&obj->obj_exec_link, &stolen);
225
226                 total_obj_size += obj->base.size;
227                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
228                 count++;
229         }
230         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
231                 if (obj->stolen == NULL)
232                         continue;
233
234                 list_add(&obj->obj_exec_link, &stolen);
235
236                 total_obj_size += obj->base.size;
237                 count++;
238         }
239         list_sort(NULL, &stolen, obj_rank_by_stolen);
240         seq_puts(m, "Stolen:\n");
241         while (!list_empty(&stolen)) {
242                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
243                 seq_puts(m, "   ");
244                 describe_obj(m, obj);
245                 seq_putc(m, '\n');
246                 list_del_init(&obj->obj_exec_link);
247         }
248         mutex_unlock(&dev->struct_mutex);
249
250         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
251                    count, total_obj_size, total_gtt_size);
252         return 0;
253 }
254
255 struct file_stats {
256         struct drm_i915_file_private *file_priv;
257         unsigned long count;
258         u64 total, unbound;
259         u64 global, shared;
260         u64 active, inactive;
261 };
262
263 static int per_file_stats(int id, void *ptr, void *data)
264 {
265         struct drm_i915_gem_object *obj = ptr;
266         struct file_stats *stats = data;
267         struct i915_vma *vma;
268
269         stats->count++;
270         stats->total += obj->base.size;
271         if (!obj->bind_count)
272                 stats->unbound += obj->base.size;
273         if (obj->base.name || obj->base.dma_buf)
274                 stats->shared += obj->base.size;
275
276         list_for_each_entry(vma, &obj->vma_list, obj_link) {
277                 if (!drm_mm_node_allocated(&vma->node))
278                         continue;
279
280                 if (i915_vma_is_ggtt(vma)) {
281                         stats->global += vma->node.size;
282                 } else {
283                         struct i915_hw_ppgtt *ppgtt = i915_vm_to_ppgtt(vma->vm);
284
285                         if (ppgtt->base.file != stats->file_priv)
286                                 continue;
287                 }
288
289                 if (i915_vma_is_active(vma))
290                         stats->active += vma->node.size;
291                 else
292                         stats->inactive += vma->node.size;
293         }
294
295         return 0;
296 }
297
298 #define print_file_stats(m, name, stats) do { \
299         if (stats.count) \
300                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu global, %llu shared, %llu unbound)\n", \
301                            name, \
302                            stats.count, \
303                            stats.total, \
304                            stats.active, \
305                            stats.inactive, \
306                            stats.global, \
307                            stats.shared, \
308                            stats.unbound); \
309 } while (0)
310
311 static void print_batch_pool_stats(struct seq_file *m,
312                                    struct drm_i915_private *dev_priv)
313 {
314         struct drm_i915_gem_object *obj;
315         struct file_stats stats;
316         struct intel_engine_cs *engine;
317         enum intel_engine_id id;
318         int j;
319
320         memset(&stats, 0, sizeof(stats));
321
322         for_each_engine(engine, dev_priv, id) {
323                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
324                         list_for_each_entry(obj,
325                                             &engine->batch_pool.cache_list[j],
326                                             batch_pool_link)
327                                 per_file_stats(0, obj, &stats);
328                 }
329         }
330
331         print_file_stats(m, "[k]batch pool", stats);
332 }
333
334 static int per_file_ctx_stats(int id, void *ptr, void *data)
335 {
336         struct i915_gem_context *ctx = ptr;
337         int n;
338
339         for (n = 0; n < ARRAY_SIZE(ctx->engine); n++) {
340                 if (ctx->engine[n].state)
341                         per_file_stats(0, ctx->engine[n].state->obj, data);
342                 if (ctx->engine[n].ring)
343                         per_file_stats(0, ctx->engine[n].ring->vma->obj, data);
344         }
345
346         return 0;
347 }
348
349 static void print_context_stats(struct seq_file *m,
350                                 struct drm_i915_private *dev_priv)
351 {
352         struct drm_device *dev = &dev_priv->drm;
353         struct file_stats stats;
354         struct drm_file *file;
355
356         memset(&stats, 0, sizeof(stats));
357
358         mutex_lock(&dev->struct_mutex);
359         if (dev_priv->kernel_context)
360                 per_file_ctx_stats(0, dev_priv->kernel_context, &stats);
361
362         list_for_each_entry(file, &dev->filelist, lhead) {
363                 struct drm_i915_file_private *fpriv = file->driver_priv;
364                 idr_for_each(&fpriv->context_idr, per_file_ctx_stats, &stats);
365         }
366         mutex_unlock(&dev->struct_mutex);
367
368         print_file_stats(m, "[k]contexts", stats);
369 }
370
371 static int i915_gem_object_info(struct seq_file *m, void *data)
372 {
373         struct drm_i915_private *dev_priv = node_to_i915(m->private);
374         struct drm_device *dev = &dev_priv->drm;
375         struct i915_ggtt *ggtt = &dev_priv->ggtt;
376         u32 count, mapped_count, purgeable_count, dpy_count;
377         u64 size, mapped_size, purgeable_size, dpy_size;
378         struct drm_i915_gem_object *obj;
379         struct drm_file *file;
380         int ret;
381
382         ret = mutex_lock_interruptible(&dev->struct_mutex);
383         if (ret)
384                 return ret;
385
386         seq_printf(m, "%u objects, %llu bytes\n",
387                    dev_priv->mm.object_count,
388                    dev_priv->mm.object_memory);
389
390         size = count = 0;
391         mapped_size = mapped_count = 0;
392         purgeable_size = purgeable_count = 0;
393         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_link) {
394                 size += obj->base.size;
395                 ++count;
396
397                 if (obj->mm.madv == I915_MADV_DONTNEED) {
398                         purgeable_size += obj->base.size;
399                         ++purgeable_count;
400                 }
401
402                 if (obj->mm.mapping) {
403                         mapped_count++;
404                         mapped_size += obj->base.size;
405                 }
406         }
407         seq_printf(m, "%u unbound objects, %llu bytes\n", count, size);
408
409         size = count = dpy_size = dpy_count = 0;
410         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
411                 size += obj->base.size;
412                 ++count;
413
414                 if (obj->pin_display) {
415                         dpy_size += obj->base.size;
416                         ++dpy_count;
417                 }
418
419                 if (obj->mm.madv == I915_MADV_DONTNEED) {
420                         purgeable_size += obj->base.size;
421                         ++purgeable_count;
422                 }
423
424                 if (obj->mm.mapping) {
425                         mapped_count++;
426                         mapped_size += obj->base.size;
427                 }
428         }
429         seq_printf(m, "%u bound objects, %llu bytes\n",
430                    count, size);
431         seq_printf(m, "%u purgeable objects, %llu bytes\n",
432                    purgeable_count, purgeable_size);
433         seq_printf(m, "%u mapped objects, %llu bytes\n",
434                    mapped_count, mapped_size);
435         seq_printf(m, "%u display objects (pinned), %llu bytes\n",
436                    dpy_count, dpy_size);
437
438         seq_printf(m, "%llu [%llu] gtt total\n",
439                    ggtt->base.total, ggtt->mappable_end - ggtt->base.start);
440
441         seq_putc(m, '\n');
442         print_batch_pool_stats(m, dev_priv);
443         mutex_unlock(&dev->struct_mutex);
444
445         mutex_lock(&dev->filelist_mutex);
446         print_context_stats(m, dev_priv);
447         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
448                 struct file_stats stats;
449                 struct drm_i915_file_private *file_priv = file->driver_priv;
450                 struct drm_i915_gem_request *request;
451                 struct task_struct *task;
452
453                 memset(&stats, 0, sizeof(stats));
454                 stats.file_priv = file->driver_priv;
455                 spin_lock(&file->table_lock);
456                 idr_for_each(&file->object_idr, per_file_stats, &stats);
457                 spin_unlock(&file->table_lock);
458                 /*
459                  * Although we have a valid reference on file->pid, that does
460                  * not guarantee that the task_struct who called get_pid() is
461                  * still alive (e.g. get_pid(current) => fork() => exit()).
462                  * Therefore, we need to protect this ->comm access using RCU.
463                  */
464                 mutex_lock(&dev->struct_mutex);
465                 request = list_first_entry_or_null(&file_priv->mm.request_list,
466                                                    struct drm_i915_gem_request,
467                                                    client_list);
468                 rcu_read_lock();
469                 task = pid_task(request && request->ctx->pid ?
470                                 request->ctx->pid : file->pid,
471                                 PIDTYPE_PID);
472                 print_file_stats(m, task ? task->comm : "<unknown>", stats);
473                 rcu_read_unlock();
474                 mutex_unlock(&dev->struct_mutex);
475         }
476         mutex_unlock(&dev->filelist_mutex);
477
478         return 0;
479 }
480
481 static int i915_gem_gtt_info(struct seq_file *m, void *data)
482 {
483         struct drm_info_node *node = m->private;
484         struct drm_i915_private *dev_priv = node_to_i915(node);
485         struct drm_device *dev = &dev_priv->drm;
486         bool show_pin_display_only = !!node->info_ent->data;
487         struct drm_i915_gem_object *obj;
488         u64 total_obj_size, total_gtt_size;
489         int count, ret;
490
491         ret = mutex_lock_interruptible(&dev->struct_mutex);
492         if (ret)
493                 return ret;
494
495         total_obj_size = total_gtt_size = count = 0;
496         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_link) {
497                 if (show_pin_display_only && !obj->pin_display)
498                         continue;
499
500                 seq_puts(m, "   ");
501                 describe_obj(m, obj);
502                 seq_putc(m, '\n');
503                 total_obj_size += obj->base.size;
504                 total_gtt_size += i915_gem_obj_total_ggtt_size(obj);
505                 count++;
506         }
507
508         mutex_unlock(&dev->struct_mutex);
509
510         seq_printf(m, "Total %d objects, %llu bytes, %llu GTT size\n",
511                    count, total_obj_size, total_gtt_size);
512
513         return 0;
514 }
515
516 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
517 {
518         struct drm_i915_private *dev_priv = node_to_i915(m->private);
519         struct drm_device *dev = &dev_priv->drm;
520         struct intel_crtc *crtc;
521         int ret;
522
523         ret = mutex_lock_interruptible(&dev->struct_mutex);
524         if (ret)
525                 return ret;
526
527         for_each_intel_crtc(dev, crtc) {
528                 const char pipe = pipe_name(crtc->pipe);
529                 const char plane = plane_name(crtc->plane);
530                 struct intel_flip_work *work;
531
532                 spin_lock_irq(&dev->event_lock);
533                 work = crtc->flip_work;
534                 if (work == NULL) {
535                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
536                                    pipe, plane);
537                 } else {
538                         u32 pending;
539                         u32 addr;
540
541                         pending = atomic_read(&work->pending);
542                         if (pending) {
543                                 seq_printf(m, "Flip ioctl preparing on pipe %c (plane %c)\n",
544                                            pipe, plane);
545                         } else {
546                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
547                                            pipe, plane);
548                         }
549                         if (work->flip_queued_req) {
550                                 struct intel_engine_cs *engine = work->flip_queued_req->engine;
551
552                                 seq_printf(m, "Flip queued on %s at seqno %x, next seqno %x [current breadcrumb %x], completed? %d\n",
553                                            engine->name,
554                                            work->flip_queued_req->global_seqno,
555                                            atomic_read(&dev_priv->gt.global_timeline.next_seqno),
556                                            intel_engine_get_seqno(engine),
557                                            i915_gem_request_completed(work->flip_queued_req));
558                         } else
559                                 seq_printf(m, "Flip not associated with any ring\n");
560                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
561                                    work->flip_queued_vblank,
562                                    work->flip_ready_vblank,
563                                    intel_crtc_get_vblank_counter(crtc));
564                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
565
566                         if (INTEL_GEN(dev_priv) >= 4)
567                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
568                         else
569                                 addr = I915_READ(DSPADDR(crtc->plane));
570                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
571
572                         if (work->pending_flip_obj) {
573                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
574                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
575                         }
576                 }
577                 spin_unlock_irq(&dev->event_lock);
578         }
579
580         mutex_unlock(&dev->struct_mutex);
581
582         return 0;
583 }
584
585 static int i915_gem_batch_pool_info(struct seq_file *m, void *data)
586 {
587         struct drm_i915_private *dev_priv = node_to_i915(m->private);
588         struct drm_device *dev = &dev_priv->drm;
589         struct drm_i915_gem_object *obj;
590         struct intel_engine_cs *engine;
591         enum intel_engine_id id;
592         int total = 0;
593         int ret, j;
594
595         ret = mutex_lock_interruptible(&dev->struct_mutex);
596         if (ret)
597                 return ret;
598
599         for_each_engine(engine, dev_priv, id) {
600                 for (j = 0; j < ARRAY_SIZE(engine->batch_pool.cache_list); j++) {
601                         int count;
602
603                         count = 0;
604                         list_for_each_entry(obj,
605                                             &engine->batch_pool.cache_list[j],
606                                             batch_pool_link)
607                                 count++;
608                         seq_printf(m, "%s cache[%d]: %d objects\n",
609                                    engine->name, j, count);
610
611                         list_for_each_entry(obj,
612                                             &engine->batch_pool.cache_list[j],
613                                             batch_pool_link) {
614                                 seq_puts(m, "   ");
615                                 describe_obj(m, obj);
616                                 seq_putc(m, '\n');
617                         }
618
619                         total += count;
620                 }
621         }
622
623         seq_printf(m, "total: %d\n", total);
624
625         mutex_unlock(&dev->struct_mutex);
626
627         return 0;
628 }
629
630 static void print_request(struct seq_file *m,
631                           struct drm_i915_gem_request *rq,
632                           const char *prefix)
633 {
634         seq_printf(m, "%s%x [%x:%x] prio=%d @ %dms: %s\n", prefix,
635                    rq->global_seqno, rq->ctx->hw_id, rq->fence.seqno,
636                    rq->priotree.priority,
637                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
638                    rq->timeline->common->name);
639 }
640
641 static int i915_gem_request_info(struct seq_file *m, void *data)
642 {
643         struct drm_i915_private *dev_priv = node_to_i915(m->private);
644         struct drm_device *dev = &dev_priv->drm;
645         struct drm_i915_gem_request *req;
646         struct intel_engine_cs *engine;
647         enum intel_engine_id id;
648         int ret, any;
649
650         ret = mutex_lock_interruptible(&dev->struct_mutex);
651         if (ret)
652                 return ret;
653
654         any = 0;
655         for_each_engine(engine, dev_priv, id) {
656                 int count;
657
658                 count = 0;
659                 list_for_each_entry(req, &engine->timeline->requests, link)
660                         count++;
661                 if (count == 0)
662                         continue;
663
664                 seq_printf(m, "%s requests: %d\n", engine->name, count);
665                 list_for_each_entry(req, &engine->timeline->requests, link)
666                         print_request(m, req, "    ");
667
668                 any++;
669         }
670         mutex_unlock(&dev->struct_mutex);
671
672         if (any == 0)
673                 seq_puts(m, "No requests\n");
674
675         return 0;
676 }
677
678 static void i915_ring_seqno_info(struct seq_file *m,
679                                  struct intel_engine_cs *engine)
680 {
681         struct intel_breadcrumbs *b = &engine->breadcrumbs;
682         struct rb_node *rb;
683
684         seq_printf(m, "Current sequence (%s): %x\n",
685                    engine->name, intel_engine_get_seqno(engine));
686
687         spin_lock_irq(&b->lock);
688         for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
689                 struct intel_wait *w = container_of(rb, typeof(*w), node);
690
691                 seq_printf(m, "Waiting (%s): %s [%d] on %x\n",
692                            engine->name, w->tsk->comm, w->tsk->pid, w->seqno);
693         }
694         spin_unlock_irq(&b->lock);
695 }
696
697 static int i915_gem_seqno_info(struct seq_file *m, void *data)
698 {
699         struct drm_i915_private *dev_priv = node_to_i915(m->private);
700         struct intel_engine_cs *engine;
701         enum intel_engine_id id;
702
703         for_each_engine(engine, dev_priv, id)
704                 i915_ring_seqno_info(m, engine);
705
706         return 0;
707 }
708
709
710 static int i915_interrupt_info(struct seq_file *m, void *data)
711 {
712         struct drm_i915_private *dev_priv = node_to_i915(m->private);
713         struct intel_engine_cs *engine;
714         enum intel_engine_id id;
715         int i, pipe;
716
717         intel_runtime_pm_get(dev_priv);
718
719         if (IS_CHERRYVIEW(dev_priv)) {
720                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
721                            I915_READ(GEN8_MASTER_IRQ));
722
723                 seq_printf(m, "Display IER:\t%08x\n",
724                            I915_READ(VLV_IER));
725                 seq_printf(m, "Display IIR:\t%08x\n",
726                            I915_READ(VLV_IIR));
727                 seq_printf(m, "Display IIR_RW:\t%08x\n",
728                            I915_READ(VLV_IIR_RW));
729                 seq_printf(m, "Display IMR:\t%08x\n",
730                            I915_READ(VLV_IMR));
731                 for_each_pipe(dev_priv, pipe) {
732                         enum intel_display_power_domain power_domain;
733
734                         power_domain = POWER_DOMAIN_PIPE(pipe);
735                         if (!intel_display_power_get_if_enabled(dev_priv,
736                                                                 power_domain)) {
737                                 seq_printf(m, "Pipe %c power disabled\n",
738                                            pipe_name(pipe));
739                                 continue;
740                         }
741
742                         seq_printf(m, "Pipe %c stat:\t%08x\n",
743                                    pipe_name(pipe),
744                                    I915_READ(PIPESTAT(pipe)));
745
746                         intel_display_power_put(dev_priv, power_domain);
747                 }
748
749                 intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
750                 seq_printf(m, "Port hotplug:\t%08x\n",
751                            I915_READ(PORT_HOTPLUG_EN));
752                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
753                            I915_READ(VLV_DPFLIPSTAT));
754                 seq_printf(m, "DPINVGTT:\t%08x\n",
755                            I915_READ(DPINVGTT));
756                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
757
758                 for (i = 0; i < 4; i++) {
759                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
760                                    i, I915_READ(GEN8_GT_IMR(i)));
761                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
762                                    i, I915_READ(GEN8_GT_IIR(i)));
763                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
764                                    i, I915_READ(GEN8_GT_IER(i)));
765                 }
766
767                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
768                            I915_READ(GEN8_PCU_IMR));
769                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
770                            I915_READ(GEN8_PCU_IIR));
771                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
772                            I915_READ(GEN8_PCU_IER));
773         } else if (INTEL_GEN(dev_priv) >= 8) {
774                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
775                            I915_READ(GEN8_MASTER_IRQ));
776
777                 for (i = 0; i < 4; i++) {
778                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
779                                    i, I915_READ(GEN8_GT_IMR(i)));
780                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
781                                    i, I915_READ(GEN8_GT_IIR(i)));
782                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
783                                    i, I915_READ(GEN8_GT_IER(i)));
784                 }
785
786                 for_each_pipe(dev_priv, pipe) {
787                         enum intel_display_power_domain power_domain;
788
789                         power_domain = POWER_DOMAIN_PIPE(pipe);
790                         if (!intel_display_power_get_if_enabled(dev_priv,
791                                                                 power_domain)) {
792                                 seq_printf(m, "Pipe %c power disabled\n",
793                                            pipe_name(pipe));
794                                 continue;
795                         }
796                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
797                                    pipe_name(pipe),
798                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
799                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
800                                    pipe_name(pipe),
801                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
802                         seq_printf(m, "Pipe %c IER:\t%08x\n",
803                                    pipe_name(pipe),
804                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
805
806                         intel_display_power_put(dev_priv, power_domain);
807                 }
808
809                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
810                            I915_READ(GEN8_DE_PORT_IMR));
811                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
812                            I915_READ(GEN8_DE_PORT_IIR));
813                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
814                            I915_READ(GEN8_DE_PORT_IER));
815
816                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
817                            I915_READ(GEN8_DE_MISC_IMR));
818                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
819                            I915_READ(GEN8_DE_MISC_IIR));
820                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
821                            I915_READ(GEN8_DE_MISC_IER));
822
823                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
824                            I915_READ(GEN8_PCU_IMR));
825                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
826                            I915_READ(GEN8_PCU_IIR));
827                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
828                            I915_READ(GEN8_PCU_IER));
829         } else if (IS_VALLEYVIEW(dev_priv)) {
830                 seq_printf(m, "Display IER:\t%08x\n",
831                            I915_READ(VLV_IER));
832                 seq_printf(m, "Display IIR:\t%08x\n",
833                            I915_READ(VLV_IIR));
834                 seq_printf(m, "Display IIR_RW:\t%08x\n",
835                            I915_READ(VLV_IIR_RW));
836                 seq_printf(m, "Display IMR:\t%08x\n",
837                            I915_READ(VLV_IMR));
838                 for_each_pipe(dev_priv, pipe)
839                         seq_printf(m, "Pipe %c stat:\t%08x\n",
840                                    pipe_name(pipe),
841                                    I915_READ(PIPESTAT(pipe)));
842
843                 seq_printf(m, "Master IER:\t%08x\n",
844                            I915_READ(VLV_MASTER_IER));
845
846                 seq_printf(m, "Render IER:\t%08x\n",
847                            I915_READ(GTIER));
848                 seq_printf(m, "Render IIR:\t%08x\n",
849                            I915_READ(GTIIR));
850                 seq_printf(m, "Render IMR:\t%08x\n",
851                            I915_READ(GTIMR));
852
853                 seq_printf(m, "PM IER:\t\t%08x\n",
854                            I915_READ(GEN6_PMIER));
855                 seq_printf(m, "PM IIR:\t\t%08x\n",
856                            I915_READ(GEN6_PMIIR));
857                 seq_printf(m, "PM IMR:\t\t%08x\n",
858                            I915_READ(GEN6_PMIMR));
859
860                 seq_printf(m, "Port hotplug:\t%08x\n",
861                            I915_READ(PORT_HOTPLUG_EN));
862                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
863                            I915_READ(VLV_DPFLIPSTAT));
864                 seq_printf(m, "DPINVGTT:\t%08x\n",
865                            I915_READ(DPINVGTT));
866
867         } else if (!HAS_PCH_SPLIT(dev_priv)) {
868                 seq_printf(m, "Interrupt enable:    %08x\n",
869                            I915_READ(IER));
870                 seq_printf(m, "Interrupt identity:  %08x\n",
871                            I915_READ(IIR));
872                 seq_printf(m, "Interrupt mask:      %08x\n",
873                            I915_READ(IMR));
874                 for_each_pipe(dev_priv, pipe)
875                         seq_printf(m, "Pipe %c stat:         %08x\n",
876                                    pipe_name(pipe),
877                                    I915_READ(PIPESTAT(pipe)));
878         } else {
879                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
880                            I915_READ(DEIER));
881                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
882                            I915_READ(DEIIR));
883                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
884                            I915_READ(DEIMR));
885                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
886                            I915_READ(SDEIER));
887                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
888                            I915_READ(SDEIIR));
889                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
890                            I915_READ(SDEIMR));
891                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
892                            I915_READ(GTIER));
893                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
894                            I915_READ(GTIIR));
895                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
896                            I915_READ(GTIMR));
897         }
898         for_each_engine(engine, dev_priv, id) {
899                 if (INTEL_GEN(dev_priv) >= 6) {
900                         seq_printf(m,
901                                    "Graphics Interrupt mask (%s):       %08x\n",
902                                    engine->name, I915_READ_IMR(engine));
903                 }
904                 i915_ring_seqno_info(m, engine);
905         }
906         intel_runtime_pm_put(dev_priv);
907
908         return 0;
909 }
910
911 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
912 {
913         struct drm_i915_private *dev_priv = node_to_i915(m->private);
914         struct drm_device *dev = &dev_priv->drm;
915         int i, ret;
916
917         ret = mutex_lock_interruptible(&dev->struct_mutex);
918         if (ret)
919                 return ret;
920
921         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
922         for (i = 0; i < dev_priv->num_fence_regs; i++) {
923                 struct i915_vma *vma = dev_priv->fence_regs[i].vma;
924
925                 seq_printf(m, "Fence %d, pin count = %d, object = ",
926                            i, dev_priv->fence_regs[i].pin_count);
927                 if (!vma)
928                         seq_puts(m, "unused");
929                 else
930                         describe_obj(m, vma->obj);
931                 seq_putc(m, '\n');
932         }
933
934         mutex_unlock(&dev->struct_mutex);
935         return 0;
936 }
937
938 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
939
940 static ssize_t
941 i915_error_state_write(struct file *filp,
942                        const char __user *ubuf,
943                        size_t cnt,
944                        loff_t *ppos)
945 {
946         struct i915_error_state_file_priv *error_priv = filp->private_data;
947
948         DRM_DEBUG_DRIVER("Resetting error state\n");
949         i915_destroy_error_state(error_priv->dev);
950
951         return cnt;
952 }
953
954 static int i915_error_state_open(struct inode *inode, struct file *file)
955 {
956         struct drm_i915_private *dev_priv = inode->i_private;
957         struct i915_error_state_file_priv *error_priv;
958
959         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
960         if (!error_priv)
961                 return -ENOMEM;
962
963         error_priv->dev = &dev_priv->drm;
964
965         i915_error_state_get(&dev_priv->drm, error_priv);
966
967         file->private_data = error_priv;
968
969         return 0;
970 }
971
972 static int i915_error_state_release(struct inode *inode, struct file *file)
973 {
974         struct i915_error_state_file_priv *error_priv = file->private_data;
975
976         i915_error_state_put(error_priv);
977         kfree(error_priv);
978
979         return 0;
980 }
981
982 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
983                                      size_t count, loff_t *pos)
984 {
985         struct i915_error_state_file_priv *error_priv = file->private_data;
986         struct drm_i915_error_state_buf error_str;
987         loff_t tmp_pos = 0;
988         ssize_t ret_count = 0;
989         int ret;
990
991         ret = i915_error_state_buf_init(&error_str,
992                                         to_i915(error_priv->dev), count, *pos);
993         if (ret)
994                 return ret;
995
996         ret = i915_error_state_to_str(&error_str, error_priv);
997         if (ret)
998                 goto out;
999
1000         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
1001                                             error_str.buf,
1002                                             error_str.bytes);
1003
1004         if (ret_count < 0)
1005                 ret = ret_count;
1006         else
1007                 *pos = error_str.start + ret_count;
1008 out:
1009         i915_error_state_buf_release(&error_str);
1010         return ret ?: ret_count;
1011 }
1012
1013 static const struct file_operations i915_error_state_fops = {
1014         .owner = THIS_MODULE,
1015         .open = i915_error_state_open,
1016         .read = i915_error_state_read,
1017         .write = i915_error_state_write,
1018         .llseek = default_llseek,
1019         .release = i915_error_state_release,
1020 };
1021
1022 #endif
1023
1024 static int
1025 i915_next_seqno_get(void *data, u64 *val)
1026 {
1027         struct drm_i915_private *dev_priv = data;
1028
1029         *val = 1 + atomic_read(&dev_priv->gt.global_timeline.next_seqno);
1030         return 0;
1031 }
1032
1033 static int
1034 i915_next_seqno_set(void *data, u64 val)
1035 {
1036         struct drm_i915_private *dev_priv = data;
1037         struct drm_device *dev = &dev_priv->drm;
1038         int ret;
1039
1040         ret = mutex_lock_interruptible(&dev->struct_mutex);
1041         if (ret)
1042                 return ret;
1043
1044         ret = i915_gem_set_global_seqno(dev, val);
1045         mutex_unlock(&dev->struct_mutex);
1046
1047         return ret;
1048 }
1049
1050 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1051                         i915_next_seqno_get, i915_next_seqno_set,
1052                         "0x%llx\n");
1053
1054 static int i915_frequency_info(struct seq_file *m, void *unused)
1055 {
1056         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1057         struct drm_device *dev = &dev_priv->drm;
1058         int ret = 0;
1059
1060         intel_runtime_pm_get(dev_priv);
1061
1062         if (IS_GEN5(dev_priv)) {
1063                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1064                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1065
1066                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1067                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1068                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1069                            MEMSTAT_VID_SHIFT);
1070                 seq_printf(m, "Current P-state: %d\n",
1071                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1072         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1073                 u32 freq_sts;
1074
1075                 mutex_lock(&dev_priv->rps.hw_lock);
1076                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1077                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1078                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1079
1080                 seq_printf(m, "actual GPU freq: %d MHz\n",
1081                            intel_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1082
1083                 seq_printf(m, "current GPU freq: %d MHz\n",
1084                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1085
1086                 seq_printf(m, "max GPU freq: %d MHz\n",
1087                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1088
1089                 seq_printf(m, "min GPU freq: %d MHz\n",
1090                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1091
1092                 seq_printf(m, "idle GPU freq: %d MHz\n",
1093                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1094
1095                 seq_printf(m,
1096                            "efficient (RPe) frequency: %d MHz\n",
1097                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1098                 mutex_unlock(&dev_priv->rps.hw_lock);
1099         } else if (INTEL_GEN(dev_priv) >= 6) {
1100                 u32 rp_state_limits;
1101                 u32 gt_perf_status;
1102                 u32 rp_state_cap;
1103                 u32 rpmodectl, rpinclimit, rpdeclimit;
1104                 u32 rpstat, cagf, reqf;
1105                 u32 rpupei, rpcurup, rpprevup;
1106                 u32 rpdownei, rpcurdown, rpprevdown;
1107                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1108                 int max_freq;
1109
1110                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1111                 if (IS_BROXTON(dev_priv)) {
1112                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
1113                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
1114                 } else {
1115                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1116                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1117                 }
1118
1119                 /* RPSTAT1 is in the GT power well */
1120                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1121                 if (ret)
1122                         goto out;
1123
1124                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
1125
1126                 reqf = I915_READ(GEN6_RPNSWREQ);
1127                 if (IS_GEN9(dev_priv))
1128                         reqf >>= 23;
1129                 else {
1130                         reqf &= ~GEN6_TURBO_DISABLE;
1131                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1132                                 reqf >>= 24;
1133                         else
1134                                 reqf >>= 25;
1135                 }
1136                 reqf = intel_gpu_freq(dev_priv, reqf);
1137
1138                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1139                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1140                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1141
1142                 rpstat = I915_READ(GEN6_RPSTAT1);
1143                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
1144                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
1145                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
1146                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
1147                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
1148                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
1149                 if (IS_GEN9(dev_priv))
1150                         cagf = (rpstat & GEN9_CAGF_MASK) >> GEN9_CAGF_SHIFT;
1151                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1152                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1153                 else
1154                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1155                 cagf = intel_gpu_freq(dev_priv, cagf);
1156
1157                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
1158                 mutex_unlock(&dev->struct_mutex);
1159
1160                 if (IS_GEN6(dev_priv) || IS_GEN7(dev_priv)) {
1161                         pm_ier = I915_READ(GEN6_PMIER);
1162                         pm_imr = I915_READ(GEN6_PMIMR);
1163                         pm_isr = I915_READ(GEN6_PMISR);
1164                         pm_iir = I915_READ(GEN6_PMIIR);
1165                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1166                 } else {
1167                         pm_ier = I915_READ(GEN8_GT_IER(2));
1168                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1169                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1170                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1171                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1172                 }
1173                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1174                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1175                 seq_printf(m, "pm_intr_keep: 0x%08x\n", dev_priv->rps.pm_intr_keep);
1176                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1177                 seq_printf(m, "Render p-state ratio: %d\n",
1178                            (gt_perf_status & (IS_GEN9(dev_priv) ? 0x1ff00 : 0xff00)) >> 8);
1179                 seq_printf(m, "Render p-state VID: %d\n",
1180                            gt_perf_status & 0xff);
1181                 seq_printf(m, "Render p-state limit: %d\n",
1182                            rp_state_limits & 0xff);
1183                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1184                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1185                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1186                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1187                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1188                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1189                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
1190                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
1191                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
1192                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
1193                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
1194                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
1195                 seq_printf(m, "Up threshold: %d%%\n",
1196                            dev_priv->rps.up_threshold);
1197
1198                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
1199                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
1200                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
1201                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
1202                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
1203                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
1204                 seq_printf(m, "Down threshold: %d%%\n",
1205                            dev_priv->rps.down_threshold);
1206
1207                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 0 :
1208                             rp_state_cap >> 16) & 0xff;
1209                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1210                              GEN9_FREQ_SCALER : 1);
1211                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1212                            intel_gpu_freq(dev_priv, max_freq));
1213
1214                 max_freq = (rp_state_cap & 0xff00) >> 8;
1215                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1216                              GEN9_FREQ_SCALER : 1);
1217                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1218                            intel_gpu_freq(dev_priv, max_freq));
1219
1220                 max_freq = (IS_BROXTON(dev_priv) ? rp_state_cap >> 16 :
1221                             rp_state_cap >> 0) & 0xff;
1222                 max_freq *= (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1223                              GEN9_FREQ_SCALER : 1);
1224                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1225                            intel_gpu_freq(dev_priv, max_freq));
1226                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1227                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1228
1229                 seq_printf(m, "Current freq: %d MHz\n",
1230                            intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
1231                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
1232                 seq_printf(m, "Idle freq: %d MHz\n",
1233                            intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq));
1234                 seq_printf(m, "Min freq: %d MHz\n",
1235                            intel_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1236                 seq_printf(m, "Boost freq: %d MHz\n",
1237                            intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
1238                 seq_printf(m, "Max freq: %d MHz\n",
1239                            intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1240                 seq_printf(m,
1241                            "efficient (RPe) frequency: %d MHz\n",
1242                            intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1243         } else {
1244                 seq_puts(m, "no P-state info available\n");
1245         }
1246
1247         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk_freq);
1248         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
1249         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
1250
1251 out:
1252         intel_runtime_pm_put(dev_priv);
1253         return ret;
1254 }
1255
1256 static void i915_instdone_info(struct drm_i915_private *dev_priv,
1257                                struct seq_file *m,
1258                                struct intel_instdone *instdone)
1259 {
1260         int slice;
1261         int subslice;
1262
1263         seq_printf(m, "\t\tINSTDONE: 0x%08x\n",
1264                    instdone->instdone);
1265
1266         if (INTEL_GEN(dev_priv) <= 3)
1267                 return;
1268
1269         seq_printf(m, "\t\tSC_INSTDONE: 0x%08x\n",
1270                    instdone->slice_common);
1271
1272         if (INTEL_GEN(dev_priv) <= 6)
1273                 return;
1274
1275         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1276                 seq_printf(m, "\t\tSAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
1277                            slice, subslice, instdone->sampler[slice][subslice]);
1278
1279         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
1280                 seq_printf(m, "\t\tROW_INSTDONE[%d][%d]: 0x%08x\n",
1281                            slice, subslice, instdone->row[slice][subslice]);
1282 }
1283
1284 static int i915_hangcheck_info(struct seq_file *m, void *unused)
1285 {
1286         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1287         struct intel_engine_cs *engine;
1288         u64 acthd[I915_NUM_ENGINES];
1289         u32 seqno[I915_NUM_ENGINES];
1290         struct intel_instdone instdone;
1291         enum intel_engine_id id;
1292
1293         if (test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
1294                 seq_printf(m, "Wedged\n");
1295         if (test_bit(I915_RESET_IN_PROGRESS, &dev_priv->gpu_error.flags))
1296                 seq_printf(m, "Reset in progress\n");
1297         if (waitqueue_active(&dev_priv->gpu_error.wait_queue))
1298                 seq_printf(m, "Waiter holding struct mutex\n");
1299         if (waitqueue_active(&dev_priv->gpu_error.reset_queue))
1300                 seq_printf(m, "struct_mutex blocked for reset\n");
1301
1302         if (!i915.enable_hangcheck) {
1303                 seq_printf(m, "Hangcheck disabled\n");
1304                 return 0;
1305         }
1306
1307         intel_runtime_pm_get(dev_priv);
1308
1309         for_each_engine(engine, dev_priv, id) {
1310                 acthd[id] = intel_engine_get_active_head(engine);
1311                 seqno[id] = intel_engine_get_seqno(engine);
1312         }
1313
1314         intel_engine_get_instdone(dev_priv->engine[RCS], &instdone);
1315
1316         intel_runtime_pm_put(dev_priv);
1317
1318         if (delayed_work_pending(&dev_priv->gpu_error.hangcheck_work)) {
1319                 seq_printf(m, "Hangcheck active, fires in %dms\n",
1320                            jiffies_to_msecs(dev_priv->gpu_error.hangcheck_work.timer.expires -
1321                                             jiffies));
1322         } else
1323                 seq_printf(m, "Hangcheck inactive\n");
1324
1325         for_each_engine(engine, dev_priv, id) {
1326                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
1327                 struct rb_node *rb;
1328
1329                 seq_printf(m, "%s:\n", engine->name);
1330                 seq_printf(m, "\tseqno = %x [current %x, last %x]\n",
1331                            engine->hangcheck.seqno, seqno[id],
1332                            intel_engine_last_submit(engine));
1333                 seq_printf(m, "\twaiters? %s, fake irq active? %s\n",
1334                            yesno(intel_engine_has_waiter(engine)),
1335                            yesno(test_bit(engine->id,
1336                                           &dev_priv->gpu_error.missed_irq_rings)));
1337                 spin_lock_irq(&b->lock);
1338                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
1339                         struct intel_wait *w = container_of(rb, typeof(*w), node);
1340
1341                         seq_printf(m, "\t%s [%d] waiting for %x\n",
1342                                    w->tsk->comm, w->tsk->pid, w->seqno);
1343                 }
1344                 spin_unlock_irq(&b->lock);
1345
1346                 seq_printf(m, "\tACTHD = 0x%08llx [current 0x%08llx]\n",
1347                            (long long)engine->hangcheck.acthd,
1348                            (long long)acthd[id]);
1349                 seq_printf(m, "\tscore = %d\n", engine->hangcheck.score);
1350                 seq_printf(m, "\taction = %d\n", engine->hangcheck.action);
1351
1352                 if (engine->id == RCS) {
1353                         seq_puts(m, "\tinstdone read =\n");
1354
1355                         i915_instdone_info(dev_priv, m, &instdone);
1356
1357                         seq_puts(m, "\tinstdone accu =\n");
1358
1359                         i915_instdone_info(dev_priv, m,
1360                                            &engine->hangcheck.instdone);
1361                 }
1362         }
1363
1364         return 0;
1365 }
1366
1367 static int ironlake_drpc_info(struct seq_file *m)
1368 {
1369         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1370         u32 rgvmodectl, rstdbyctl;
1371         u16 crstandvid;
1372
1373         intel_runtime_pm_get(dev_priv);
1374
1375         rgvmodectl = I915_READ(MEMMODECTL);
1376         rstdbyctl = I915_READ(RSTDBYCTL);
1377         crstandvid = I915_READ16(CRSTANDVID);
1378
1379         intel_runtime_pm_put(dev_priv);
1380
1381         seq_printf(m, "HD boost: %s\n", yesno(rgvmodectl & MEMMODE_BOOST_EN));
1382         seq_printf(m, "Boost freq: %d\n",
1383                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1384                    MEMMODE_BOOST_FREQ_SHIFT);
1385         seq_printf(m, "HW control enabled: %s\n",
1386                    yesno(rgvmodectl & MEMMODE_HWIDLE_EN));
1387         seq_printf(m, "SW control enabled: %s\n",
1388                    yesno(rgvmodectl & MEMMODE_SWMODE_EN));
1389         seq_printf(m, "Gated voltage change: %s\n",
1390                    yesno(rgvmodectl & MEMMODE_RCLK_GATE));
1391         seq_printf(m, "Starting frequency: P%d\n",
1392                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1393         seq_printf(m, "Max P-state: P%d\n",
1394                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1395         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1396         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1397         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1398         seq_printf(m, "Render standby enabled: %s\n",
1399                    yesno(!(rstdbyctl & RCX_SW_EXIT)));
1400         seq_puts(m, "Current RS state: ");
1401         switch (rstdbyctl & RSX_STATUS_MASK) {
1402         case RSX_STATUS_ON:
1403                 seq_puts(m, "on\n");
1404                 break;
1405         case RSX_STATUS_RC1:
1406                 seq_puts(m, "RC1\n");
1407                 break;
1408         case RSX_STATUS_RC1E:
1409                 seq_puts(m, "RC1E\n");
1410                 break;
1411         case RSX_STATUS_RS1:
1412                 seq_puts(m, "RS1\n");
1413                 break;
1414         case RSX_STATUS_RS2:
1415                 seq_puts(m, "RS2 (RC6)\n");
1416                 break;
1417         case RSX_STATUS_RS3:
1418                 seq_puts(m, "RC3 (RC6+)\n");
1419                 break;
1420         default:
1421                 seq_puts(m, "unknown\n");
1422                 break;
1423         }
1424
1425         return 0;
1426 }
1427
1428 static int i915_forcewake_domains(struct seq_file *m, void *data)
1429 {
1430         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1431         struct intel_uncore_forcewake_domain *fw_domain;
1432
1433         spin_lock_irq(&dev_priv->uncore.lock);
1434         for_each_fw_domain(fw_domain, dev_priv) {
1435                 seq_printf(m, "%s.wake_count = %u\n",
1436                            intel_uncore_forcewake_domain_to_str(fw_domain->id),
1437                            fw_domain->wake_count);
1438         }
1439         spin_unlock_irq(&dev_priv->uncore.lock);
1440
1441         return 0;
1442 }
1443
1444 static int vlv_drpc_info(struct seq_file *m)
1445 {
1446         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1447         u32 rpmodectl1, rcctl1, pw_status;
1448
1449         intel_runtime_pm_get(dev_priv);
1450
1451         pw_status = I915_READ(VLV_GTLC_PW_STATUS);
1452         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1453         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1454
1455         intel_runtime_pm_put(dev_priv);
1456
1457         seq_printf(m, "Video Turbo Mode: %s\n",
1458                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1459         seq_printf(m, "Turbo enabled: %s\n",
1460                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1461         seq_printf(m, "HW control enabled: %s\n",
1462                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1463         seq_printf(m, "SW control enabled: %s\n",
1464                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1465                           GEN6_RP_MEDIA_SW_MODE));
1466         seq_printf(m, "RC6 Enabled: %s\n",
1467                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1468                                         GEN6_RC_CTL_EI_MODE(1))));
1469         seq_printf(m, "Render Power Well: %s\n",
1470                    (pw_status & VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1471         seq_printf(m, "Media Power Well: %s\n",
1472                    (pw_status & VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1473
1474         seq_printf(m, "Render RC6 residency since boot: %u\n",
1475                    I915_READ(VLV_GT_RENDER_RC6));
1476         seq_printf(m, "Media RC6 residency since boot: %u\n",
1477                    I915_READ(VLV_GT_MEDIA_RC6));
1478
1479         return i915_forcewake_domains(m, NULL);
1480 }
1481
1482 static int gen6_drpc_info(struct seq_file *m)
1483 {
1484         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1485         struct drm_device *dev = &dev_priv->drm;
1486         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1487         u32 gen9_powergate_enable = 0, gen9_powergate_status = 0;
1488         unsigned forcewake_count;
1489         int count = 0, ret;
1490
1491         ret = mutex_lock_interruptible(&dev->struct_mutex);
1492         if (ret)
1493                 return ret;
1494         intel_runtime_pm_get(dev_priv);
1495
1496         spin_lock_irq(&dev_priv->uncore.lock);
1497         forcewake_count = dev_priv->uncore.fw_domain[FW_DOMAIN_ID_RENDER].wake_count;
1498         spin_unlock_irq(&dev_priv->uncore.lock);
1499
1500         if (forcewake_count) {
1501                 seq_puts(m, "RC information inaccurate because somebody "
1502                             "holds a forcewake reference \n");
1503         } else {
1504                 /* NB: we cannot use forcewake, else we read the wrong values */
1505                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1506                         udelay(10);
1507                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1508         }
1509
1510         gt_core_status = I915_READ_FW(GEN6_GT_CORE_STATUS);
1511         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1512
1513         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1514         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1515         if (INTEL_GEN(dev_priv) >= 9) {
1516                 gen9_powergate_enable = I915_READ(GEN9_PG_ENABLE);
1517                 gen9_powergate_status = I915_READ(GEN9_PWRGT_DOMAIN_STATUS);
1518         }
1519         mutex_unlock(&dev->struct_mutex);
1520         mutex_lock(&dev_priv->rps.hw_lock);
1521         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1522         mutex_unlock(&dev_priv->rps.hw_lock);
1523
1524         intel_runtime_pm_put(dev_priv);
1525
1526         seq_printf(m, "Video Turbo Mode: %s\n",
1527                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1528         seq_printf(m, "HW control enabled: %s\n",
1529                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1530         seq_printf(m, "SW control enabled: %s\n",
1531                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1532                           GEN6_RP_MEDIA_SW_MODE));
1533         seq_printf(m, "RC1e Enabled: %s\n",
1534                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1535         seq_printf(m, "RC6 Enabled: %s\n",
1536                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1537         if (INTEL_GEN(dev_priv) >= 9) {
1538                 seq_printf(m, "Render Well Gating Enabled: %s\n",
1539                         yesno(gen9_powergate_enable & GEN9_RENDER_PG_ENABLE));
1540                 seq_printf(m, "Media Well Gating Enabled: %s\n",
1541                         yesno(gen9_powergate_enable & GEN9_MEDIA_PG_ENABLE));
1542         }
1543         seq_printf(m, "Deep RC6 Enabled: %s\n",
1544                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1545         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1546                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1547         seq_puts(m, "Current RC state: ");
1548         switch (gt_core_status & GEN6_RCn_MASK) {
1549         case GEN6_RC0:
1550                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1551                         seq_puts(m, "Core Power Down\n");
1552                 else
1553                         seq_puts(m, "on\n");
1554                 break;
1555         case GEN6_RC3:
1556                 seq_puts(m, "RC3\n");
1557                 break;
1558         case GEN6_RC6:
1559                 seq_puts(m, "RC6\n");
1560                 break;
1561         case GEN6_RC7:
1562                 seq_puts(m, "RC7\n");
1563                 break;
1564         default:
1565                 seq_puts(m, "Unknown\n");
1566                 break;
1567         }
1568
1569         seq_printf(m, "Core Power Down: %s\n",
1570                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1571         if (INTEL_GEN(dev_priv) >= 9) {
1572                 seq_printf(m, "Render Power Well: %s\n",
1573                         (gen9_powergate_status &
1574                          GEN9_PWRGT_RENDER_STATUS_MASK) ? "Up" : "Down");
1575                 seq_printf(m, "Media Power Well: %s\n",
1576                         (gen9_powergate_status &
1577                          GEN9_PWRGT_MEDIA_STATUS_MASK) ? "Up" : "Down");
1578         }
1579
1580         /* Not exactly sure what this is */
1581         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1582                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1583         seq_printf(m, "RC6 residency since boot: %u\n",
1584                    I915_READ(GEN6_GT_GFX_RC6));
1585         seq_printf(m, "RC6+ residency since boot: %u\n",
1586                    I915_READ(GEN6_GT_GFX_RC6p));
1587         seq_printf(m, "RC6++ residency since boot: %u\n",
1588                    I915_READ(GEN6_GT_GFX_RC6pp));
1589
1590         seq_printf(m, "RC6   voltage: %dmV\n",
1591                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1592         seq_printf(m, "RC6+  voltage: %dmV\n",
1593                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1594         seq_printf(m, "RC6++ voltage: %dmV\n",
1595                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1596         return i915_forcewake_domains(m, NULL);
1597 }
1598
1599 static int i915_drpc_info(struct seq_file *m, void *unused)
1600 {
1601         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1602
1603         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1604                 return vlv_drpc_info(m);
1605         else if (INTEL_GEN(dev_priv) >= 6)
1606                 return gen6_drpc_info(m);
1607         else
1608                 return ironlake_drpc_info(m);
1609 }
1610
1611 static int i915_frontbuffer_tracking(struct seq_file *m, void *unused)
1612 {
1613         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1614
1615         seq_printf(m, "FB tracking busy bits: 0x%08x\n",
1616                    dev_priv->fb_tracking.busy_bits);
1617
1618         seq_printf(m, "FB tracking flip bits: 0x%08x\n",
1619                    dev_priv->fb_tracking.flip_bits);
1620
1621         return 0;
1622 }
1623
1624 static int i915_fbc_status(struct seq_file *m, void *unused)
1625 {
1626         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1627
1628         if (!HAS_FBC(dev_priv)) {
1629                 seq_puts(m, "FBC unsupported on this chipset\n");
1630                 return 0;
1631         }
1632
1633         intel_runtime_pm_get(dev_priv);
1634         mutex_lock(&dev_priv->fbc.lock);
1635
1636         if (intel_fbc_is_active(dev_priv))
1637                 seq_puts(m, "FBC enabled\n");
1638         else
1639                 seq_printf(m, "FBC disabled: %s\n",
1640                            dev_priv->fbc.no_fbc_reason);
1641
1642         if (intel_fbc_is_active(dev_priv) && INTEL_GEN(dev_priv) >= 7) {
1643                 uint32_t mask = INTEL_GEN(dev_priv) >= 8 ?
1644                                 BDW_FBC_COMPRESSION_MASK :
1645                                 IVB_FBC_COMPRESSION_MASK;
1646                 seq_printf(m, "Compressing: %s\n",
1647                            yesno(I915_READ(FBC_STATUS2) & mask));
1648         }
1649
1650         mutex_unlock(&dev_priv->fbc.lock);
1651         intel_runtime_pm_put(dev_priv);
1652
1653         return 0;
1654 }
1655
1656 static int i915_fbc_fc_get(void *data, u64 *val)
1657 {
1658         struct drm_i915_private *dev_priv = data;
1659
1660         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1661                 return -ENODEV;
1662
1663         *val = dev_priv->fbc.false_color;
1664
1665         return 0;
1666 }
1667
1668 static int i915_fbc_fc_set(void *data, u64 val)
1669 {
1670         struct drm_i915_private *dev_priv = data;
1671         u32 reg;
1672
1673         if (INTEL_GEN(dev_priv) < 7 || !HAS_FBC(dev_priv))
1674                 return -ENODEV;
1675
1676         mutex_lock(&dev_priv->fbc.lock);
1677
1678         reg = I915_READ(ILK_DPFC_CONTROL);
1679         dev_priv->fbc.false_color = val;
1680
1681         I915_WRITE(ILK_DPFC_CONTROL, val ?
1682                    (reg | FBC_CTL_FALSE_COLOR) :
1683                    (reg & ~FBC_CTL_FALSE_COLOR));
1684
1685         mutex_unlock(&dev_priv->fbc.lock);
1686         return 0;
1687 }
1688
1689 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1690                         i915_fbc_fc_get, i915_fbc_fc_set,
1691                         "%llu\n");
1692
1693 static int i915_ips_status(struct seq_file *m, void *unused)
1694 {
1695         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1696
1697         if (!HAS_IPS(dev_priv)) {
1698                 seq_puts(m, "not supported\n");
1699                 return 0;
1700         }
1701
1702         intel_runtime_pm_get(dev_priv);
1703
1704         seq_printf(m, "Enabled by kernel parameter: %s\n",
1705                    yesno(i915.enable_ips));
1706
1707         if (INTEL_GEN(dev_priv) >= 8) {
1708                 seq_puts(m, "Currently: unknown\n");
1709         } else {
1710                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1711                         seq_puts(m, "Currently: enabled\n");
1712                 else
1713                         seq_puts(m, "Currently: disabled\n");
1714         }
1715
1716         intel_runtime_pm_put(dev_priv);
1717
1718         return 0;
1719 }
1720
1721 static int i915_sr_status(struct seq_file *m, void *unused)
1722 {
1723         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1724         bool sr_enabled = false;
1725
1726         intel_runtime_pm_get(dev_priv);
1727         intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
1728
1729         if (HAS_PCH_SPLIT(dev_priv))
1730                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1731         else if (IS_CRESTLINE(dev_priv) || IS_G4X(dev_priv) ||
1732                  IS_I945G(dev_priv) || IS_I945GM(dev_priv))
1733                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1734         else if (IS_I915GM(dev_priv))
1735                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1736         else if (IS_PINEVIEW(dev_priv))
1737                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1738         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1739                 sr_enabled = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
1740
1741         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT);
1742         intel_runtime_pm_put(dev_priv);
1743
1744         seq_printf(m, "self-refresh: %s\n", enableddisabled(sr_enabled));
1745
1746         return 0;
1747 }
1748
1749 static int i915_emon_status(struct seq_file *m, void *unused)
1750 {
1751         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1752         struct drm_device *dev = &dev_priv->drm;
1753         unsigned long temp, chipset, gfx;
1754         int ret;
1755
1756         if (!IS_GEN5(dev_priv))
1757                 return -ENODEV;
1758
1759         ret = mutex_lock_interruptible(&dev->struct_mutex);
1760         if (ret)
1761                 return ret;
1762
1763         temp = i915_mch_val(dev_priv);
1764         chipset = i915_chipset_val(dev_priv);
1765         gfx = i915_gfx_val(dev_priv);
1766         mutex_unlock(&dev->struct_mutex);
1767
1768         seq_printf(m, "GMCH temp: %ld\n", temp);
1769         seq_printf(m, "Chipset power: %ld\n", chipset);
1770         seq_printf(m, "GFX power: %ld\n", gfx);
1771         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1772
1773         return 0;
1774 }
1775
1776 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1777 {
1778         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1779         int ret = 0;
1780         int gpu_freq, ia_freq;
1781         unsigned int max_gpu_freq, min_gpu_freq;
1782
1783         if (!HAS_LLC(dev_priv)) {
1784                 seq_puts(m, "unsupported on this chipset\n");
1785                 return 0;
1786         }
1787
1788         intel_runtime_pm_get(dev_priv);
1789
1790         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1791         if (ret)
1792                 goto out;
1793
1794         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
1795                 /* Convert GT frequency to 50 HZ units */
1796                 min_gpu_freq =
1797                         dev_priv->rps.min_freq_softlimit / GEN9_FREQ_SCALER;
1798                 max_gpu_freq =
1799                         dev_priv->rps.max_freq_softlimit / GEN9_FREQ_SCALER;
1800         } else {
1801                 min_gpu_freq = dev_priv->rps.min_freq_softlimit;
1802                 max_gpu_freq = dev_priv->rps.max_freq_softlimit;
1803         }
1804
1805         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1806
1807         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1808                 ia_freq = gpu_freq;
1809                 sandybridge_pcode_read(dev_priv,
1810                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1811                                        &ia_freq);
1812                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1813                            intel_gpu_freq(dev_priv, (gpu_freq *
1814                                 (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv) ?
1815                                  GEN9_FREQ_SCALER : 1))),
1816                            ((ia_freq >> 0) & 0xff) * 100,
1817                            ((ia_freq >> 8) & 0xff) * 100);
1818         }
1819
1820         mutex_unlock(&dev_priv->rps.hw_lock);
1821
1822 out:
1823         intel_runtime_pm_put(dev_priv);
1824         return ret;
1825 }
1826
1827 static int i915_opregion(struct seq_file *m, void *unused)
1828 {
1829         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1830         struct drm_device *dev = &dev_priv->drm;
1831         struct intel_opregion *opregion = &dev_priv->opregion;
1832         int ret;
1833
1834         ret = mutex_lock_interruptible(&dev->struct_mutex);
1835         if (ret)
1836                 goto out;
1837
1838         if (opregion->header)
1839                 seq_write(m, opregion->header, OPREGION_SIZE);
1840
1841         mutex_unlock(&dev->struct_mutex);
1842
1843 out:
1844         return 0;
1845 }
1846
1847 static int i915_vbt(struct seq_file *m, void *unused)
1848 {
1849         struct intel_opregion *opregion = &node_to_i915(m->private)->opregion;
1850
1851         if (opregion->vbt)
1852                 seq_write(m, opregion->vbt, opregion->vbt_size);
1853
1854         return 0;
1855 }
1856
1857 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1858 {
1859         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1860         struct drm_device *dev = &dev_priv->drm;
1861         struct intel_framebuffer *fbdev_fb = NULL;
1862         struct drm_framebuffer *drm_fb;
1863         int ret;
1864
1865         ret = mutex_lock_interruptible(&dev->struct_mutex);
1866         if (ret)
1867                 return ret;
1868
1869 #ifdef CONFIG_DRM_FBDEV_EMULATION
1870         if (dev_priv->fbdev) {
1871                 fbdev_fb = to_intel_framebuffer(dev_priv->fbdev->helper.fb);
1872
1873                 seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1874                            fbdev_fb->base.width,
1875                            fbdev_fb->base.height,
1876                            fbdev_fb->base.format->depth,
1877                            fbdev_fb->base.format->cpp[0] * 8,
1878                            fbdev_fb->base.modifier,
1879                            drm_framebuffer_read_refcount(&fbdev_fb->base));
1880                 describe_obj(m, fbdev_fb->obj);
1881                 seq_putc(m, '\n');
1882         }
1883 #endif
1884
1885         mutex_lock(&dev->mode_config.fb_lock);
1886         drm_for_each_fb(drm_fb, dev) {
1887                 struct intel_framebuffer *fb = to_intel_framebuffer(drm_fb);
1888                 if (fb == fbdev_fb)
1889                         continue;
1890
1891                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, modifier 0x%llx, refcount %d, obj ",
1892                            fb->base.width,
1893                            fb->base.height,
1894                            fb->base.format->depth,
1895                            fb->base.format->cpp[0] * 8,
1896                            fb->base.modifier,
1897                            drm_framebuffer_read_refcount(&fb->base));
1898                 describe_obj(m, fb->obj);
1899                 seq_putc(m, '\n');
1900         }
1901         mutex_unlock(&dev->mode_config.fb_lock);
1902         mutex_unlock(&dev->struct_mutex);
1903
1904         return 0;
1905 }
1906
1907 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1908 {
1909         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1910                    ring->space, ring->head, ring->tail,
1911                    ring->last_retired_head);
1912 }
1913
1914 static int i915_context_status(struct seq_file *m, void *unused)
1915 {
1916         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1917         struct drm_device *dev = &dev_priv->drm;
1918         struct intel_engine_cs *engine;
1919         struct i915_gem_context *ctx;
1920         enum intel_engine_id id;
1921         int ret;
1922
1923         ret = mutex_lock_interruptible(&dev->struct_mutex);
1924         if (ret)
1925                 return ret;
1926
1927         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1928                 seq_printf(m, "HW context %u ", ctx->hw_id);
1929                 if (ctx->pid) {
1930                         struct task_struct *task;
1931
1932                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1933                         if (task) {
1934                                 seq_printf(m, "(%s [%d]) ",
1935                                            task->comm, task->pid);
1936                                 put_task_struct(task);
1937                         }
1938                 } else if (IS_ERR(ctx->file_priv)) {
1939                         seq_puts(m, "(deleted) ");
1940                 } else {
1941                         seq_puts(m, "(kernel) ");
1942                 }
1943
1944                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1945                 seq_putc(m, '\n');
1946
1947                 for_each_engine(engine, dev_priv, id) {
1948                         struct intel_context *ce = &ctx->engine[engine->id];
1949
1950                         seq_printf(m, "%s: ", engine->name);
1951                         seq_putc(m, ce->initialised ? 'I' : 'i');
1952                         if (ce->state)
1953                                 describe_obj(m, ce->state->obj);
1954                         if (ce->ring)
1955                                 describe_ctx_ring(m, ce->ring);
1956                         seq_putc(m, '\n');
1957                 }
1958
1959                 seq_putc(m, '\n');
1960         }
1961
1962         mutex_unlock(&dev->struct_mutex);
1963
1964         return 0;
1965 }
1966
1967 static void i915_dump_lrc_obj(struct seq_file *m,
1968                               struct i915_gem_context *ctx,
1969                               struct intel_engine_cs *engine)
1970 {
1971         struct i915_vma *vma = ctx->engine[engine->id].state;
1972         struct page *page;
1973         int j;
1974
1975         seq_printf(m, "CONTEXT: %s %u\n", engine->name, ctx->hw_id);
1976
1977         if (!vma) {
1978                 seq_puts(m, "\tFake context\n");
1979                 return;
1980         }
1981
1982         if (vma->flags & I915_VMA_GLOBAL_BIND)
1983                 seq_printf(m, "\tBound in GGTT at 0x%08x\n",
1984                            i915_ggtt_offset(vma));
1985
1986         if (i915_gem_object_pin_pages(vma->obj)) {
1987                 seq_puts(m, "\tFailed to get pages for context object\n\n");
1988                 return;
1989         }
1990
1991         page = i915_gem_object_get_page(vma->obj, LRC_STATE_PN);
1992         if (page) {
1993                 u32 *reg_state = kmap_atomic(page);
1994
1995                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1996                         seq_printf(m,
1997                                    "\t[0x%04x] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1998                                    j * 4,
1999                                    reg_state[j], reg_state[j + 1],
2000                                    reg_state[j + 2], reg_state[j + 3]);
2001                 }
2002                 kunmap_atomic(reg_state);
2003         }
2004
2005         i915_gem_object_unpin_pages(vma->obj);
2006         seq_putc(m, '\n');
2007 }
2008
2009 static int i915_dump_lrc(struct seq_file *m, void *unused)
2010 {
2011         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2012         struct drm_device *dev = &dev_priv->drm;
2013         struct intel_engine_cs *engine;
2014         struct i915_gem_context *ctx;
2015         enum intel_engine_id id;
2016         int ret;
2017
2018         if (!i915.enable_execlists) {
2019                 seq_printf(m, "Logical Ring Contexts are disabled\n");
2020                 return 0;
2021         }
2022
2023         ret = mutex_lock_interruptible(&dev->struct_mutex);
2024         if (ret)
2025                 return ret;
2026
2027         list_for_each_entry(ctx, &dev_priv->context_list, link)
2028                 for_each_engine(engine, dev_priv, id)
2029                         i915_dump_lrc_obj(m, ctx, engine);
2030
2031         mutex_unlock(&dev->struct_mutex);
2032
2033         return 0;
2034 }
2035
2036 static const char *swizzle_string(unsigned swizzle)
2037 {
2038         switch (swizzle) {
2039         case I915_BIT_6_SWIZZLE_NONE:
2040                 return "none";
2041         case I915_BIT_6_SWIZZLE_9:
2042                 return "bit9";
2043         case I915_BIT_6_SWIZZLE_9_10:
2044                 return "bit9/bit10";
2045         case I915_BIT_6_SWIZZLE_9_11:
2046                 return "bit9/bit11";
2047         case I915_BIT_6_SWIZZLE_9_10_11:
2048                 return "bit9/bit10/bit11";
2049         case I915_BIT_6_SWIZZLE_9_17:
2050                 return "bit9/bit17";
2051         case I915_BIT_6_SWIZZLE_9_10_17:
2052                 return "bit9/bit10/bit17";
2053         case I915_BIT_6_SWIZZLE_UNKNOWN:
2054                 return "unknown";
2055         }
2056
2057         return "bug";
2058 }
2059
2060 static int i915_swizzle_info(struct seq_file *m, void *data)
2061 {
2062         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2063
2064         intel_runtime_pm_get(dev_priv);
2065
2066         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
2067                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
2068         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
2069                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
2070
2071         if (IS_GEN3(dev_priv) || IS_GEN4(dev_priv)) {
2072                 seq_printf(m, "DDC = 0x%08x\n",
2073                            I915_READ(DCC));
2074                 seq_printf(m, "DDC2 = 0x%08x\n",
2075                            I915_READ(DCC2));
2076                 seq_printf(m, "C0DRB3 = 0x%04x\n",
2077                            I915_READ16(C0DRB3));
2078                 seq_printf(m, "C1DRB3 = 0x%04x\n",
2079                            I915_READ16(C1DRB3));
2080         } else if (INTEL_GEN(dev_priv) >= 6) {
2081                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
2082                            I915_READ(MAD_DIMM_C0));
2083                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
2084                            I915_READ(MAD_DIMM_C1));
2085                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
2086                            I915_READ(MAD_DIMM_C2));
2087                 seq_printf(m, "TILECTL = 0x%08x\n",
2088                            I915_READ(TILECTL));
2089                 if (INTEL_GEN(dev_priv) >= 8)
2090                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
2091                                    I915_READ(GAMTARBMODE));
2092                 else
2093                         seq_printf(m, "ARB_MODE = 0x%08x\n",
2094                                    I915_READ(ARB_MODE));
2095                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
2096                            I915_READ(DISP_ARB_CTL));
2097         }
2098
2099         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
2100                 seq_puts(m, "L-shaped memory detected\n");
2101
2102         intel_runtime_pm_put(dev_priv);
2103
2104         return 0;
2105 }
2106
2107 static int per_file_ctx(int id, void *ptr, void *data)
2108 {
2109         struct i915_gem_context *ctx = ptr;
2110         struct seq_file *m = data;
2111         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2112
2113         if (!ppgtt) {
2114                 seq_printf(m, "  no ppgtt for context %d\n",
2115                            ctx->user_handle);
2116                 return 0;
2117         }
2118
2119         if (i915_gem_context_is_default(ctx))
2120                 seq_puts(m, "  default context:\n");
2121         else
2122                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2123         ppgtt->debug_dump(ppgtt, m);
2124
2125         return 0;
2126 }
2127
2128 static void gen8_ppgtt_info(struct seq_file *m,
2129                             struct drm_i915_private *dev_priv)
2130 {
2131         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2132         struct intel_engine_cs *engine;
2133         enum intel_engine_id id;
2134         int i;
2135
2136         if (!ppgtt)
2137                 return;
2138
2139         for_each_engine(engine, dev_priv, id) {
2140                 seq_printf(m, "%s\n", engine->name);
2141                 for (i = 0; i < 4; i++) {
2142                         u64 pdp = I915_READ(GEN8_RING_PDP_UDW(engine, i));
2143                         pdp <<= 32;
2144                         pdp |= I915_READ(GEN8_RING_PDP_LDW(engine, i));
2145                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2146                 }
2147         }
2148 }
2149
2150 static void gen6_ppgtt_info(struct seq_file *m,
2151                             struct drm_i915_private *dev_priv)
2152 {
2153         struct intel_engine_cs *engine;
2154         enum intel_engine_id id;
2155
2156         if (IS_GEN6(dev_priv))
2157                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2158
2159         for_each_engine(engine, dev_priv, id) {
2160                 seq_printf(m, "%s\n", engine->name);
2161                 if (IS_GEN7(dev_priv))
2162                         seq_printf(m, "GFX_MODE: 0x%08x\n",
2163                                    I915_READ(RING_MODE_GEN7(engine)));
2164                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n",
2165                            I915_READ(RING_PP_DIR_BASE(engine)));
2166                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n",
2167                            I915_READ(RING_PP_DIR_BASE_READ(engine)));
2168                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n",
2169                            I915_READ(RING_PP_DIR_DCLV(engine)));
2170         }
2171         if (dev_priv->mm.aliasing_ppgtt) {
2172                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2173
2174                 seq_puts(m, "aliasing PPGTT:\n");
2175                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd.base.ggtt_offset);
2176
2177                 ppgtt->debug_dump(ppgtt, m);
2178         }
2179
2180         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2181 }
2182
2183 static int i915_ppgtt_info(struct seq_file *m, void *data)
2184 {
2185         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2186         struct drm_device *dev = &dev_priv->drm;
2187         struct drm_file *file;
2188         int ret;
2189
2190         mutex_lock(&dev->filelist_mutex);
2191         ret = mutex_lock_interruptible(&dev->struct_mutex);
2192         if (ret)
2193                 goto out_unlock;
2194
2195         intel_runtime_pm_get(dev_priv);
2196
2197         if (INTEL_GEN(dev_priv) >= 8)
2198                 gen8_ppgtt_info(m, dev_priv);
2199         else if (INTEL_GEN(dev_priv) >= 6)
2200                 gen6_ppgtt_info(m, dev_priv);
2201
2202         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2203                 struct drm_i915_file_private *file_priv = file->driver_priv;
2204                 struct task_struct *task;
2205
2206                 task = get_pid_task(file->pid, PIDTYPE_PID);
2207                 if (!task) {
2208                         ret = -ESRCH;
2209                         goto out_rpm;
2210                 }
2211                 seq_printf(m, "\nproc: %s\n", task->comm);
2212                 put_task_struct(task);
2213                 idr_for_each(&file_priv->context_idr, per_file_ctx,
2214                              (void *)(unsigned long)m);
2215         }
2216
2217 out_rpm:
2218         intel_runtime_pm_put(dev_priv);
2219         mutex_unlock(&dev->struct_mutex);
2220 out_unlock:
2221         mutex_unlock(&dev->filelist_mutex);
2222         return ret;
2223 }
2224
2225 static int count_irq_waiters(struct drm_i915_private *i915)
2226 {
2227         struct intel_engine_cs *engine;
2228         enum intel_engine_id id;
2229         int count = 0;
2230
2231         for_each_engine(engine, i915, id)
2232                 count += intel_engine_has_waiter(engine);
2233
2234         return count;
2235 }
2236
2237 static const char *rps_power_to_str(unsigned int power)
2238 {
2239         static const char * const strings[] = {
2240                 [LOW_POWER] = "low power",
2241                 [BETWEEN] = "mixed",
2242                 [HIGH_POWER] = "high power",
2243         };
2244
2245         if (power >= ARRAY_SIZE(strings) || !strings[power])
2246                 return "unknown";
2247
2248         return strings[power];
2249 }
2250
2251 static int i915_rps_boost_info(struct seq_file *m, void *data)
2252 {
2253         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2254         struct drm_device *dev = &dev_priv->drm;
2255         struct drm_file *file;
2256
2257         seq_printf(m, "RPS enabled? %d\n", dev_priv->rps.enabled);
2258         seq_printf(m, "GPU busy? %s [%d requests]\n",
2259                    yesno(dev_priv->gt.awake), dev_priv->gt.active_requests);
2260         seq_printf(m, "CPU waiting? %d\n", count_irq_waiters(dev_priv));
2261         seq_printf(m, "Frequency requested %d\n",
2262                    intel_gpu_freq(dev_priv, dev_priv->rps.cur_freq));
2263         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
2264                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
2265                    intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit),
2266                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit),
2267                    intel_gpu_freq(dev_priv, dev_priv->rps.max_freq));
2268         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
2269                    intel_gpu_freq(dev_priv, dev_priv->rps.idle_freq),
2270                    intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
2271                    intel_gpu_freq(dev_priv, dev_priv->rps.boost_freq));
2272
2273         mutex_lock(&dev->filelist_mutex);
2274         spin_lock(&dev_priv->rps.client_lock);
2275         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2276                 struct drm_i915_file_private *file_priv = file->driver_priv;
2277                 struct task_struct *task;
2278
2279                 rcu_read_lock();
2280                 task = pid_task(file->pid, PIDTYPE_PID);
2281                 seq_printf(m, "%s [%d]: %d boosts%s\n",
2282                            task ? task->comm : "<unknown>",
2283                            task ? task->pid : -1,
2284                            file_priv->rps.boosts,
2285                            list_empty(&file_priv->rps.link) ? "" : ", active");
2286                 rcu_read_unlock();
2287         }
2288         seq_printf(m, "Kernel (anonymous) boosts: %d\n", dev_priv->rps.boosts);
2289         spin_unlock(&dev_priv->rps.client_lock);
2290         mutex_unlock(&dev->filelist_mutex);
2291
2292         if (INTEL_GEN(dev_priv) >= 6 &&
2293             dev_priv->rps.enabled &&
2294             dev_priv->gt.active_requests) {
2295                 u32 rpup, rpupei;
2296                 u32 rpdown, rpdownei;
2297
2298                 intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
2299                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
2300                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
2301                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
2302                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
2303                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
2304
2305                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
2306                            rps_power_to_str(dev_priv->rps.power));
2307                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
2308                            100 * rpup / rpupei,
2309                            dev_priv->rps.up_threshold);
2310                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
2311                            100 * rpdown / rpdownei,
2312                            dev_priv->rps.down_threshold);
2313         } else {
2314                 seq_puts(m, "\nRPS Autotuning inactive\n");
2315         }
2316
2317         return 0;
2318 }
2319
2320 static int i915_llc(struct seq_file *m, void *data)
2321 {
2322         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2323         const bool edram = INTEL_GEN(dev_priv) > 8;
2324
2325         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
2326         seq_printf(m, "%s: %lluMB\n", edram ? "eDRAM" : "eLLC",
2327                    intel_uncore_edram_size(dev_priv)/1024/1024);
2328
2329         return 0;
2330 }
2331
2332 static int i915_guc_load_status_info(struct seq_file *m, void *data)
2333 {
2334         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2335         struct intel_guc_fw *guc_fw = &dev_priv->guc.guc_fw;
2336         u32 tmp, i;
2337
2338         if (!HAS_GUC_UCODE(dev_priv))
2339                 return 0;
2340
2341         seq_printf(m, "GuC firmware status:\n");
2342         seq_printf(m, "\tpath: %s\n",
2343                 guc_fw->guc_fw_path);
2344         seq_printf(m, "\tfetch: %s\n",
2345                 intel_guc_fw_status_repr(guc_fw->guc_fw_fetch_status));
2346         seq_printf(m, "\tload: %s\n",
2347                 intel_guc_fw_status_repr(guc_fw->guc_fw_load_status));
2348         seq_printf(m, "\tversion wanted: %d.%d\n",
2349                 guc_fw->guc_fw_major_wanted, guc_fw->guc_fw_minor_wanted);
2350         seq_printf(m, "\tversion found: %d.%d\n",
2351                 guc_fw->guc_fw_major_found, guc_fw->guc_fw_minor_found);
2352         seq_printf(m, "\theader: offset is %d; size = %d\n",
2353                 guc_fw->header_offset, guc_fw->header_size);
2354         seq_printf(m, "\tuCode: offset is %d; size = %d\n",
2355                 guc_fw->ucode_offset, guc_fw->ucode_size);
2356         seq_printf(m, "\tRSA: offset is %d; size = %d\n",
2357                 guc_fw->rsa_offset, guc_fw->rsa_size);
2358
2359         tmp = I915_READ(GUC_STATUS);
2360
2361         seq_printf(m, "\nGuC status 0x%08x:\n", tmp);
2362         seq_printf(m, "\tBootrom status = 0x%x\n",
2363                 (tmp & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
2364         seq_printf(m, "\tuKernel status = 0x%x\n",
2365                 (tmp & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
2366         seq_printf(m, "\tMIA Core status = 0x%x\n",
2367                 (tmp & GS_MIA_MASK) >> GS_MIA_SHIFT);
2368         seq_puts(m, "\nScratch registers:\n");
2369         for (i = 0; i < 16; i++)
2370                 seq_printf(m, "\t%2d: \t0x%x\n", i, I915_READ(SOFT_SCRATCH(i)));
2371
2372         return 0;
2373 }
2374
2375 static void i915_guc_log_info(struct seq_file *m,
2376                               struct drm_i915_private *dev_priv)
2377 {
2378         struct intel_guc *guc = &dev_priv->guc;
2379
2380         seq_puts(m, "\nGuC logging stats:\n");
2381
2382         seq_printf(m, "\tISR:   flush count %10u, overflow count %10u\n",
2383                    guc->log.flush_count[GUC_ISR_LOG_BUFFER],
2384                    guc->log.total_overflow_count[GUC_ISR_LOG_BUFFER]);
2385
2386         seq_printf(m, "\tDPC:   flush count %10u, overflow count %10u\n",
2387                    guc->log.flush_count[GUC_DPC_LOG_BUFFER],
2388                    guc->log.total_overflow_count[GUC_DPC_LOG_BUFFER]);
2389
2390         seq_printf(m, "\tCRASH: flush count %10u, overflow count %10u\n",
2391                    guc->log.flush_count[GUC_CRASH_DUMP_LOG_BUFFER],
2392                    guc->log.total_overflow_count[GUC_CRASH_DUMP_LOG_BUFFER]);
2393
2394         seq_printf(m, "\tTotal flush interrupt count: %u\n",
2395                    guc->log.flush_interrupt_count);
2396
2397         seq_printf(m, "\tCapture miss count: %u\n",
2398                    guc->log.capture_miss_count);
2399 }
2400
2401 static void i915_guc_client_info(struct seq_file *m,
2402                                  struct drm_i915_private *dev_priv,
2403                                  struct i915_guc_client *client)
2404 {
2405         struct intel_engine_cs *engine;
2406         enum intel_engine_id id;
2407         uint64_t tot = 0;
2408
2409         seq_printf(m, "\tPriority %d, GuC ctx index: %u, PD offset 0x%x\n",
2410                 client->priority, client->ctx_index, client->proc_desc_offset);
2411         seq_printf(m, "\tDoorbell id %d, offset: 0x%x, cookie 0x%x\n",
2412                 client->doorbell_id, client->doorbell_offset, client->cookie);
2413         seq_printf(m, "\tWQ size %d, offset: 0x%x, tail %d\n",
2414                 client->wq_size, client->wq_offset, client->wq_tail);
2415
2416         seq_printf(m, "\tWork queue full: %u\n", client->no_wq_space);
2417         seq_printf(m, "\tFailed doorbell: %u\n", client->b_fail);
2418         seq_printf(m, "\tLast submission result: %d\n", client->retcode);
2419
2420         for_each_engine(engine, dev_priv, id) {
2421                 u64 submissions = client->submissions[id];
2422                 tot += submissions;
2423                 seq_printf(m, "\tSubmissions: %llu %s\n",
2424                                 submissions, engine->name);
2425         }
2426         seq_printf(m, "\tTotal: %llu\n", tot);
2427 }
2428
2429 static int i915_guc_info(struct seq_file *m, void *data)
2430 {
2431         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2432         struct drm_device *dev = &dev_priv->drm;
2433         struct intel_guc guc;
2434         struct i915_guc_client client = {};
2435         struct intel_engine_cs *engine;
2436         enum intel_engine_id id;
2437         u64 total = 0;
2438
2439         if (!HAS_GUC_SCHED(dev_priv))
2440                 return 0;
2441
2442         if (mutex_lock_interruptible(&dev->struct_mutex))
2443                 return 0;
2444
2445         /* Take a local copy of the GuC data, so we can dump it at leisure */
2446         guc = dev_priv->guc;
2447         if (guc.execbuf_client)
2448                 client = *guc.execbuf_client;
2449
2450         mutex_unlock(&dev->struct_mutex);
2451
2452         seq_printf(m, "Doorbell map:\n");
2453         seq_printf(m, "\t%*pb\n", GUC_MAX_DOORBELLS, guc.doorbell_bitmap);
2454         seq_printf(m, "Doorbell next cacheline: 0x%x\n\n", guc.db_cacheline);
2455
2456         seq_printf(m, "GuC total action count: %llu\n", guc.action_count);
2457         seq_printf(m, "GuC action failure count: %u\n", guc.action_fail);
2458         seq_printf(m, "GuC last action command: 0x%x\n", guc.action_cmd);
2459         seq_printf(m, "GuC last action status: 0x%x\n", guc.action_status);
2460         seq_printf(m, "GuC last action error code: %d\n", guc.action_err);
2461
2462         seq_printf(m, "\nGuC submissions:\n");
2463         for_each_engine(engine, dev_priv, id) {
2464                 u64 submissions = guc.submissions[id];
2465                 total += submissions;
2466                 seq_printf(m, "\t%-24s: %10llu, last seqno 0x%08x\n",
2467                         engine->name, submissions, guc.last_seqno[id]);
2468         }
2469         seq_printf(m, "\t%s: %llu\n", "Total", total);
2470
2471         seq_printf(m, "\nGuC execbuf client @ %p:\n", guc.execbuf_client);
2472         i915_guc_client_info(m, dev_priv, &client);
2473
2474         i915_guc_log_info(m, dev_priv);
2475
2476         /* Add more as required ... */
2477
2478         return 0;
2479 }
2480
2481 static int i915_guc_log_dump(struct seq_file *m, void *data)
2482 {
2483         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2484         struct drm_i915_gem_object *obj;
2485         int i = 0, pg;
2486
2487         if (!dev_priv->guc.log.vma)
2488                 return 0;
2489
2490         obj = dev_priv->guc.log.vma->obj;
2491         for (pg = 0; pg < obj->base.size / PAGE_SIZE; pg++) {
2492                 u32 *log = kmap_atomic(i915_gem_object_get_page(obj, pg));
2493
2494                 for (i = 0; i < PAGE_SIZE / sizeof(u32); i += 4)
2495                         seq_printf(m, "0x%08x 0x%08x 0x%08x 0x%08x\n",
2496                                    *(log + i), *(log + i + 1),
2497                                    *(log + i + 2), *(log + i + 3));
2498
2499                 kunmap_atomic(log);
2500         }
2501
2502         seq_putc(m, '\n');
2503
2504         return 0;
2505 }
2506
2507 static int i915_guc_log_control_get(void *data, u64 *val)
2508 {
2509         struct drm_device *dev = data;
2510         struct drm_i915_private *dev_priv = to_i915(dev);
2511
2512         if (!dev_priv->guc.log.vma)
2513                 return -EINVAL;
2514
2515         *val = i915.guc_log_level;
2516
2517         return 0;
2518 }
2519
2520 static int i915_guc_log_control_set(void *data, u64 val)
2521 {
2522         struct drm_device *dev = data;
2523         struct drm_i915_private *dev_priv = to_i915(dev);
2524         int ret;
2525
2526         if (!dev_priv->guc.log.vma)
2527                 return -EINVAL;
2528
2529         ret = mutex_lock_interruptible(&dev->struct_mutex);
2530         if (ret)
2531                 return ret;
2532
2533         intel_runtime_pm_get(dev_priv);
2534         ret = i915_guc_log_control(dev_priv, val);
2535         intel_runtime_pm_put(dev_priv);
2536
2537         mutex_unlock(&dev->struct_mutex);
2538         return ret;
2539 }
2540
2541 DEFINE_SIMPLE_ATTRIBUTE(i915_guc_log_control_fops,
2542                         i915_guc_log_control_get, i915_guc_log_control_set,
2543                         "%lld\n");
2544
2545 static int i915_edp_psr_status(struct seq_file *m, void *data)
2546 {
2547         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2548         u32 psrperf = 0;
2549         u32 stat[3];
2550         enum pipe pipe;
2551         bool enabled = false;
2552
2553         if (!HAS_PSR(dev_priv)) {
2554                 seq_puts(m, "PSR not supported\n");
2555                 return 0;
2556         }
2557
2558         intel_runtime_pm_get(dev_priv);
2559
2560         mutex_lock(&dev_priv->psr.lock);
2561         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2562         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2563         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2564         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2565         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2566                    dev_priv->psr.busy_frontbuffer_bits);
2567         seq_printf(m, "Re-enable work scheduled: %s\n",
2568                    yesno(work_busy(&dev_priv->psr.work.work)));
2569
2570         if (HAS_DDI(dev_priv))
2571                 enabled = I915_READ(EDP_PSR_CTL) & EDP_PSR_ENABLE;
2572         else {
2573                 for_each_pipe(dev_priv, pipe) {
2574                         enum transcoder cpu_transcoder =
2575                                 intel_pipe_to_cpu_transcoder(dev_priv, pipe);
2576                         enum intel_display_power_domain power_domain;
2577
2578                         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
2579                         if (!intel_display_power_get_if_enabled(dev_priv,
2580                                                                 power_domain))
2581                                 continue;
2582
2583                         stat[pipe] = I915_READ(VLV_PSRSTAT(pipe)) &
2584                                 VLV_EDP_PSR_CURR_STATE_MASK;
2585                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2586                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2587                                 enabled = true;
2588
2589                         intel_display_power_put(dev_priv, power_domain);
2590                 }
2591         }
2592
2593         seq_printf(m, "Main link in standby mode: %s\n",
2594                    yesno(dev_priv->psr.link_standby));
2595
2596         seq_printf(m, "HW Enabled & Active bit: %s", yesno(enabled));
2597
2598         if (!HAS_DDI(dev_priv))
2599                 for_each_pipe(dev_priv, pipe) {
2600                         if ((stat[pipe] == VLV_EDP_PSR_ACTIVE_NORFB_UP) ||
2601                             (stat[pipe] == VLV_EDP_PSR_ACTIVE_SF_UPDATE))
2602                                 seq_printf(m, " pipe %c", pipe_name(pipe));
2603                 }
2604         seq_puts(m, "\n");
2605
2606         /*
2607          * VLV/CHV PSR has no kind of performance counter
2608          * SKL+ Perf counter is reset to 0 everytime DC state is entered
2609          */
2610         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
2611                 psrperf = I915_READ(EDP_PSR_PERF_CNT) &
2612                         EDP_PSR_PERF_CNT_MASK;
2613
2614                 seq_printf(m, "Performance_Counter: %u\n", psrperf);
2615         }
2616         mutex_unlock(&dev_priv->psr.lock);
2617
2618         intel_runtime_pm_put(dev_priv);
2619         return 0;
2620 }
2621
2622 static int i915_sink_crc(struct seq_file *m, void *data)
2623 {
2624         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2625         struct drm_device *dev = &dev_priv->drm;
2626         struct intel_connector *connector;
2627         struct intel_dp *intel_dp = NULL;
2628         int ret;
2629         u8 crc[6];
2630
2631         drm_modeset_lock_all(dev);
2632         for_each_intel_connector(dev, connector) {
2633                 struct drm_crtc *crtc;
2634
2635                 if (!connector->base.state->best_encoder)
2636                         continue;
2637
2638                 crtc = connector->base.state->crtc;
2639                 if (!crtc->state->active)
2640                         continue;
2641
2642                 if (connector->base.connector_type != DRM_MODE_CONNECTOR_eDP)
2643                         continue;
2644
2645                 intel_dp = enc_to_intel_dp(connector->base.state->best_encoder);
2646
2647                 ret = intel_dp_sink_crc(intel_dp, crc);
2648                 if (ret)
2649                         goto out;
2650
2651                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2652                            crc[0], crc[1], crc[2],
2653                            crc[3], crc[4], crc[5]);
2654                 goto out;
2655         }
2656         ret = -ENODEV;
2657 out:
2658         drm_modeset_unlock_all(dev);
2659         return ret;
2660 }
2661
2662 static int i915_energy_uJ(struct seq_file *m, void *data)
2663 {
2664         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2665         u64 power;
2666         u32 units;
2667
2668         if (INTEL_GEN(dev_priv) < 6)
2669                 return -ENODEV;
2670
2671         intel_runtime_pm_get(dev_priv);
2672
2673         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2674         power = (power & 0x1f00) >> 8;
2675         units = 1000000 / (1 << power); /* convert to uJ */
2676         power = I915_READ(MCH_SECP_NRG_STTS);
2677         power *= units;
2678
2679         intel_runtime_pm_put(dev_priv);
2680
2681         seq_printf(m, "%llu", (long long unsigned)power);
2682
2683         return 0;
2684 }
2685
2686 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
2687 {
2688         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2689         struct pci_dev *pdev = dev_priv->drm.pdev;
2690
2691         if (!HAS_RUNTIME_PM(dev_priv))
2692                 seq_puts(m, "Runtime power management not supported\n");
2693
2694         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
2695         seq_printf(m, "IRQs disabled: %s\n",
2696                    yesno(!intel_irqs_enabled(dev_priv)));
2697 #ifdef CONFIG_PM
2698         seq_printf(m, "Usage count: %d\n",
2699                    atomic_read(&dev_priv->drm.dev->power.usage_count));
2700 #else
2701         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
2702 #endif
2703         seq_printf(m, "PCI device power state: %s [%d]\n",
2704                    pci_power_name(pdev->current_state),
2705                    pdev->current_state);
2706
2707         return 0;
2708 }
2709
2710 static int i915_power_domain_info(struct seq_file *m, void *unused)
2711 {
2712         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2713         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2714         int i;
2715
2716         mutex_lock(&power_domains->lock);
2717
2718         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2719         for (i = 0; i < power_domains->power_well_count; i++) {
2720                 struct i915_power_well *power_well;
2721                 enum intel_display_power_domain power_domain;
2722
2723                 power_well = &power_domains->power_wells[i];
2724                 seq_printf(m, "%-25s %d\n", power_well->name,
2725                            power_well->count);
2726
2727                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2728                      power_domain++) {
2729                         if (!(BIT(power_domain) & power_well->domains))
2730                                 continue;
2731
2732                         seq_printf(m, "  %-23s %d\n",
2733                                  intel_display_power_domain_str(power_domain),
2734                                  power_domains->domain_use_count[power_domain]);
2735                 }
2736         }
2737
2738         mutex_unlock(&power_domains->lock);
2739
2740         return 0;
2741 }
2742
2743 static int i915_dmc_info(struct seq_file *m, void *unused)
2744 {
2745         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2746         struct intel_csr *csr;
2747
2748         if (!HAS_CSR(dev_priv)) {
2749                 seq_puts(m, "not supported\n");
2750                 return 0;
2751         }
2752
2753         csr = &dev_priv->csr;
2754
2755         intel_runtime_pm_get(dev_priv);
2756
2757         seq_printf(m, "fw loaded: %s\n", yesno(csr->dmc_payload != NULL));
2758         seq_printf(m, "path: %s\n", csr->fw_path);
2759
2760         if (!csr->dmc_payload)
2761                 goto out;
2762
2763         seq_printf(m, "version: %d.%d\n", CSR_VERSION_MAJOR(csr->version),
2764                    CSR_VERSION_MINOR(csr->version));
2765
2766         if (IS_SKYLAKE(dev_priv) && csr->version >= CSR_VERSION(1, 6)) {
2767                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2768                            I915_READ(SKL_CSR_DC3_DC5_COUNT));
2769                 seq_printf(m, "DC5 -> DC6 count: %d\n",
2770                            I915_READ(SKL_CSR_DC5_DC6_COUNT));
2771         } else if (IS_BROXTON(dev_priv) && csr->version >= CSR_VERSION(1, 4)) {
2772                 seq_printf(m, "DC3 -> DC5 count: %d\n",
2773                            I915_READ(BXT_CSR_DC3_DC5_COUNT));
2774         }
2775
2776 out:
2777         seq_printf(m, "program base: 0x%08x\n", I915_READ(CSR_PROGRAM(0)));
2778         seq_printf(m, "ssp base: 0x%08x\n", I915_READ(CSR_SSP_BASE));
2779         seq_printf(m, "htp: 0x%08x\n", I915_READ(CSR_HTP_SKL));
2780
2781         intel_runtime_pm_put(dev_priv);
2782
2783         return 0;
2784 }
2785
2786 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2787                                  struct drm_display_mode *mode)
2788 {
2789         int i;
2790
2791         for (i = 0; i < tabs; i++)
2792                 seq_putc(m, '\t');
2793
2794         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2795                    mode->base.id, mode->name,
2796                    mode->vrefresh, mode->clock,
2797                    mode->hdisplay, mode->hsync_start,
2798                    mode->hsync_end, mode->htotal,
2799                    mode->vdisplay, mode->vsync_start,
2800                    mode->vsync_end, mode->vtotal,
2801                    mode->type, mode->flags);
2802 }
2803
2804 static void intel_encoder_info(struct seq_file *m,
2805                                struct intel_crtc *intel_crtc,
2806                                struct intel_encoder *intel_encoder)
2807 {
2808         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2809         struct drm_device *dev = &dev_priv->drm;
2810         struct drm_crtc *crtc = &intel_crtc->base;
2811         struct intel_connector *intel_connector;
2812         struct drm_encoder *encoder;
2813
2814         encoder = &intel_encoder->base;
2815         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2816                    encoder->base.id, encoder->name);
2817         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2818                 struct drm_connector *connector = &intel_connector->base;
2819                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2820                            connector->base.id,
2821                            connector->name,
2822                            drm_get_connector_status_name(connector->status));
2823                 if (connector->status == connector_status_connected) {
2824                         struct drm_display_mode *mode = &crtc->mode;
2825                         seq_printf(m, ", mode:\n");
2826                         intel_seq_print_mode(m, 2, mode);
2827                 } else {
2828                         seq_putc(m, '\n');
2829                 }
2830         }
2831 }
2832
2833 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2834 {
2835         struct drm_i915_private *dev_priv = node_to_i915(m->private);
2836         struct drm_device *dev = &dev_priv->drm;
2837         struct drm_crtc *crtc = &intel_crtc->base;
2838         struct intel_encoder *intel_encoder;
2839         struct drm_plane_state *plane_state = crtc->primary->state;
2840         struct drm_framebuffer *fb = plane_state->fb;
2841
2842         if (fb)
2843                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2844                            fb->base.id, plane_state->src_x >> 16,
2845                            plane_state->src_y >> 16, fb->width, fb->height);
2846         else
2847                 seq_puts(m, "\tprimary plane disabled\n");
2848         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2849                 intel_encoder_info(m, intel_crtc, intel_encoder);
2850 }
2851
2852 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2853 {
2854         struct drm_display_mode *mode = panel->fixed_mode;
2855
2856         seq_printf(m, "\tfixed mode:\n");
2857         intel_seq_print_mode(m, 2, mode);
2858 }
2859
2860 static void intel_dp_info(struct seq_file *m,
2861                           struct intel_connector *intel_connector)
2862 {
2863         struct intel_encoder *intel_encoder = intel_connector->encoder;
2864         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2865
2866         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2867         seq_printf(m, "\taudio support: %s\n", yesno(intel_dp->has_audio));
2868         if (intel_connector->base.connector_type == DRM_MODE_CONNECTOR_eDP)
2869                 intel_panel_info(m, &intel_connector->panel);
2870
2871         drm_dp_downstream_debug(m, intel_dp->dpcd, intel_dp->downstream_ports,
2872                                 &intel_dp->aux);
2873 }
2874
2875 static void intel_hdmi_info(struct seq_file *m,
2876                             struct intel_connector *intel_connector)
2877 {
2878         struct intel_encoder *intel_encoder = intel_connector->encoder;
2879         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2880
2881         seq_printf(m, "\taudio support: %s\n", yesno(intel_hdmi->has_audio));
2882 }
2883
2884 static void intel_lvds_info(struct seq_file *m,
2885                             struct intel_connector *intel_connector)
2886 {
2887         intel_panel_info(m, &intel_connector->panel);
2888 }
2889
2890 static void intel_connector_info(struct seq_file *m,
2891                                  struct drm_connector *connector)
2892 {
2893         struct intel_connector *intel_connector = to_intel_connector(connector);
2894         struct intel_encoder *intel_encoder = intel_connector->encoder;
2895         struct drm_display_mode *mode;
2896
2897         seq_printf(m, "connector %d: type %s, status: %s\n",
2898                    connector->base.id, connector->name,
2899                    drm_get_connector_status_name(connector->status));
2900         if (connector->status == connector_status_connected) {
2901                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2902                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2903                            connector->display_info.width_mm,
2904                            connector->display_info.height_mm);
2905                 seq_printf(m, "\tsubpixel order: %s\n",
2906                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2907                 seq_printf(m, "\tCEA rev: %d\n",
2908                            connector->display_info.cea_rev);
2909         }
2910
2911         if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
2912                 return;
2913
2914         switch (connector->connector_type) {
2915         case DRM_MODE_CONNECTOR_DisplayPort:
2916         case DRM_MODE_CONNECTOR_eDP:
2917                 intel_dp_info(m, intel_connector);
2918                 break;
2919         case DRM_MODE_CONNECTOR_LVDS:
2920                 if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2921                         intel_lvds_info(m, intel_connector);
2922                 break;
2923         case DRM_MODE_CONNECTOR_HDMIA:
2924                 if (intel_encoder->type == INTEL_OUTPUT_HDMI ||
2925                     intel_encoder->type == INTEL_OUTPUT_UNKNOWN)
2926                         intel_hdmi_info(m, intel_connector);
2927                 break;
2928         default:
2929                 break;
2930         }
2931
2932         seq_printf(m, "\tmodes:\n");
2933         list_for_each_entry(mode, &connector->modes, head)
2934                 intel_seq_print_mode(m, 2, mode);
2935 }
2936
2937 static bool cursor_active(struct drm_i915_private *dev_priv, int pipe)
2938 {
2939         u32 state;
2940
2941         if (IS_845G(dev_priv) || IS_I865G(dev_priv))
2942                 state = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
2943         else
2944                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2945
2946         return state;
2947 }
2948
2949 static bool cursor_position(struct drm_i915_private *dev_priv,
2950                             int pipe, int *x, int *y)
2951 {
2952         u32 pos;
2953
2954         pos = I915_READ(CURPOS(pipe));
2955
2956         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2957         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2958                 *x = -*x;
2959
2960         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2961         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2962                 *y = -*y;
2963
2964         return cursor_active(dev_priv, pipe);
2965 }
2966
2967 static const char *plane_type(enum drm_plane_type type)
2968 {
2969         switch (type) {
2970         case DRM_PLANE_TYPE_OVERLAY:
2971                 return "OVL";
2972         case DRM_PLANE_TYPE_PRIMARY:
2973                 return "PRI";
2974         case DRM_PLANE_TYPE_CURSOR:
2975                 return "CUR";
2976         /*
2977          * Deliberately omitting default: to generate compiler warnings
2978          * when a new drm_plane_type gets added.
2979          */
2980         }
2981
2982         return "unknown";
2983 }
2984
2985 static const char *plane_rotation(unsigned int rotation)
2986 {
2987         static char buf[48];
2988         /*
2989          * According to doc only one DRM_ROTATE_ is allowed but this
2990          * will print them all to visualize if the values are misused
2991          */
2992         snprintf(buf, sizeof(buf),
2993                  "%s%s%s%s%s%s(0x%08x)",
2994                  (rotation & DRM_ROTATE_0) ? "0 " : "",
2995                  (rotation & DRM_ROTATE_90) ? "90 " : "",
2996                  (rotation & DRM_ROTATE_180) ? "180 " : "",
2997                  (rotation & DRM_ROTATE_270) ? "270 " : "",
2998                  (rotation & DRM_REFLECT_X) ? "FLIPX " : "",
2999                  (rotation & DRM_REFLECT_Y) ? "FLIPY " : "",
3000                  rotation);
3001
3002         return buf;
3003 }
3004
3005 static void intel_plane_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3006 {
3007         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3008         struct drm_device *dev = &dev_priv->drm;
3009         struct intel_plane *intel_plane;
3010
3011         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3012                 struct drm_plane_state *state;
3013                 struct drm_plane *plane = &intel_plane->base;
3014                 struct drm_format_name_buf format_name;
3015
3016                 if (!plane->state) {
3017                         seq_puts(m, "plane->state is NULL!\n");
3018                         continue;
3019                 }
3020
3021                 state = plane->state;
3022
3023                 if (state->fb) {
3024                         drm_get_format_name(state->fb->pixel_format, &format_name);
3025                 } else {
3026                         sprintf(format_name.str, "N/A");
3027                 }
3028
3029                 seq_printf(m, "\t--Plane id %d: type=%s, crtc_pos=%4dx%4d, crtc_size=%4dx%4d, src_pos=%d.%04ux%d.%04u, src_size=%d.%04ux%d.%04u, format=%s, rotation=%s\n",
3030                            plane->base.id,
3031                            plane_type(intel_plane->base.type),
3032                            state->crtc_x, state->crtc_y,
3033                            state->crtc_w, state->crtc_h,
3034                            (state->src_x >> 16),
3035                            ((state->src_x & 0xffff) * 15625) >> 10,
3036                            (state->src_y >> 16),
3037                            ((state->src_y & 0xffff) * 15625) >> 10,
3038                            (state->src_w >> 16),
3039                            ((state->src_w & 0xffff) * 15625) >> 10,
3040                            (state->src_h >> 16),
3041                            ((state->src_h & 0xffff) * 15625) >> 10,
3042                            format_name.str,
3043                            plane_rotation(state->rotation));
3044         }
3045 }
3046
3047 static void intel_scaler_info(struct seq_file *m, struct intel_crtc *intel_crtc)
3048 {
3049         struct intel_crtc_state *pipe_config;
3050         int num_scalers = intel_crtc->num_scalers;
3051         int i;
3052
3053         pipe_config = to_intel_crtc_state(intel_crtc->base.state);
3054
3055         /* Not all platformas have a scaler */
3056         if (num_scalers) {
3057                 seq_printf(m, "\tnum_scalers=%d, scaler_users=%x scaler_id=%d",
3058                            num_scalers,
3059                            pipe_config->scaler_state.scaler_users,
3060                            pipe_config->scaler_state.scaler_id);
3061
3062                 for (i = 0; i < SKL_NUM_SCALERS; i++) {
3063                         struct intel_scaler *sc =
3064                                         &pipe_config->scaler_state.scalers[i];
3065
3066                         seq_printf(m, ", scalers[%d]: use=%s, mode=%x",
3067                                    i, yesno(sc->in_use), sc->mode);
3068                 }
3069                 seq_puts(m, "\n");
3070         } else {
3071                 seq_puts(m, "\tNo scalers available on this platform\n");
3072         }
3073 }
3074
3075 static int i915_display_info(struct seq_file *m, void *unused)
3076 {
3077         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3078         struct drm_device *dev = &dev_priv->drm;
3079         struct intel_crtc *crtc;
3080         struct drm_connector *connector;
3081
3082         intel_runtime_pm_get(dev_priv);
3083         drm_modeset_lock_all(dev);
3084         seq_printf(m, "CRTC info\n");
3085         seq_printf(m, "---------\n");
3086         for_each_intel_crtc(dev, crtc) {
3087                 bool active;
3088                 struct intel_crtc_state *pipe_config;
3089                 int x, y;
3090
3091                 pipe_config = to_intel_crtc_state(crtc->base.state);
3092
3093                 seq_printf(m, "CRTC %d: pipe: %c, active=%s, (size=%dx%d), dither=%s, bpp=%d\n",
3094                            crtc->base.base.id, pipe_name(crtc->pipe),
3095                            yesno(pipe_config->base.active),
3096                            pipe_config->pipe_src_w, pipe_config->pipe_src_h,
3097                            yesno(pipe_config->dither), pipe_config->pipe_bpp);
3098
3099                 if (pipe_config->base.active) {
3100                         intel_crtc_info(m, crtc);
3101
3102                         active = cursor_position(dev_priv, crtc->pipe, &x, &y);
3103                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
3104                                    yesno(crtc->cursor_base),
3105                                    x, y, crtc->base.cursor->state->crtc_w,
3106                                    crtc->base.cursor->state->crtc_h,
3107                                    crtc->cursor_addr, yesno(active));
3108                         intel_scaler_info(m, crtc);
3109                         intel_plane_info(m, crtc);
3110                 }
3111
3112                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
3113                            yesno(!crtc->cpu_fifo_underrun_disabled),
3114                            yesno(!crtc->pch_fifo_underrun_disabled));
3115         }
3116
3117         seq_printf(m, "\n");
3118         seq_printf(m, "Connector info\n");
3119         seq_printf(m, "--------------\n");
3120         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
3121                 intel_connector_info(m, connector);
3122         }
3123         drm_modeset_unlock_all(dev);
3124         intel_runtime_pm_put(dev_priv);
3125
3126         return 0;
3127 }
3128
3129 static int i915_engine_info(struct seq_file *m, void *unused)
3130 {
3131         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3132         struct intel_engine_cs *engine;
3133         enum intel_engine_id id;
3134
3135         intel_runtime_pm_get(dev_priv);
3136
3137         for_each_engine(engine, dev_priv, id) {
3138                 struct intel_breadcrumbs *b = &engine->breadcrumbs;
3139                 struct drm_i915_gem_request *rq;
3140                 struct rb_node *rb;
3141                 u64 addr;
3142
3143                 seq_printf(m, "%s\n", engine->name);
3144                 seq_printf(m, "\tcurrent seqno %x, last %x, hangcheck %x [score %d]\n",
3145                            intel_engine_get_seqno(engine),
3146                            intel_engine_last_submit(engine),
3147                            engine->hangcheck.seqno,
3148                            engine->hangcheck.score);
3149
3150                 rcu_read_lock();
3151
3152                 seq_printf(m, "\tRequests:\n");
3153
3154                 rq = list_first_entry(&engine->timeline->requests,
3155                                       struct drm_i915_gem_request, link);
3156                 if (&rq->link != &engine->timeline->requests)
3157                         print_request(m, rq, "\t\tfirst  ");
3158
3159                 rq = list_last_entry(&engine->timeline->requests,
3160                                      struct drm_i915_gem_request, link);
3161                 if (&rq->link != &engine->timeline->requests)
3162                         print_request(m, rq, "\t\tlast   ");
3163
3164                 rq = i915_gem_find_active_request(engine);
3165                 if (rq) {
3166                         print_request(m, rq, "\t\tactive ");
3167                         seq_printf(m,
3168                                    "\t\t[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]\n",
3169                                    rq->head, rq->postfix, rq->tail,
3170                                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
3171                                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
3172                 }
3173
3174                 seq_printf(m, "\tRING_START: 0x%08x [0x%08x]\n",
3175                            I915_READ(RING_START(engine->mmio_base)),
3176                            rq ? i915_ggtt_offset(rq->ring->vma) : 0);
3177                 seq_printf(m, "\tRING_HEAD:  0x%08x [0x%08x]\n",
3178                            I915_READ(RING_HEAD(engine->mmio_base)) & HEAD_ADDR,
3179                            rq ? rq->ring->head : 0);
3180                 seq_printf(m, "\tRING_TAIL:  0x%08x [0x%08x]\n",
3181                            I915_READ(RING_TAIL(engine->mmio_base)) & TAIL_ADDR,
3182                            rq ? rq->ring->tail : 0);
3183                 seq_printf(m, "\tRING_CTL:   0x%08x [%s]\n",
3184                            I915_READ(RING_CTL(engine->mmio_base)),
3185                            I915_READ(RING_CTL(engine->mmio_base)) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? "waiting" : "");
3186
3187                 rcu_read_unlock();
3188
3189                 addr = intel_engine_get_active_head(engine);
3190                 seq_printf(m, "\tACTHD:  0x%08x_%08x\n",
3191                            upper_32_bits(addr), lower_32_bits(addr));
3192                 addr = intel_engine_get_last_batch_head(engine);
3193                 seq_printf(m, "\tBBADDR: 0x%08x_%08x\n",
3194                            upper_32_bits(addr), lower_32_bits(addr));
3195
3196                 if (i915.enable_execlists) {
3197                         u32 ptr, read, write;
3198                         struct rb_node *rb;
3199
3200                         seq_printf(m, "\tExeclist status: 0x%08x %08x\n",
3201                                    I915_READ(RING_EXECLIST_STATUS_LO(engine)),
3202                                    I915_READ(RING_EXECLIST_STATUS_HI(engine)));
3203
3204                         ptr = I915_READ(RING_CONTEXT_STATUS_PTR(engine));
3205                         read = GEN8_CSB_READ_PTR(ptr);
3206                         write = GEN8_CSB_WRITE_PTR(ptr);
3207                         seq_printf(m, "\tExeclist CSB read %d, write %d\n",
3208                                    read, write);
3209                         if (read >= GEN8_CSB_ENTRIES)
3210                                 read = 0;
3211                         if (write >= GEN8_CSB_ENTRIES)
3212                                 write = 0;
3213                         if (read > write)
3214                                 write += GEN8_CSB_ENTRIES;
3215                         while (read < write) {
3216                                 unsigned int idx = ++read % GEN8_CSB_ENTRIES;
3217
3218                                 seq_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
3219                                            idx,
3220                                            I915_READ(RING_CONTEXT_STATUS_BUF_LO(engine, idx)),
3221                                            I915_READ(RING_CONTEXT_STATUS_BUF_HI(engine, idx)));
3222                         }
3223
3224                         rcu_read_lock();
3225                         rq = READ_ONCE(engine->execlist_port[0].request);
3226                         if (rq)
3227                                 print_request(m, rq, "\t\tELSP[0] ");
3228                         else
3229                                 seq_printf(m, "\t\tELSP[0] idle\n");
3230                         rq = READ_ONCE(engine->execlist_port[1].request);
3231                         if (rq)
3232                                 print_request(m, rq, "\t\tELSP[1] ");
3233                         else
3234                                 seq_printf(m, "\t\tELSP[1] idle\n");
3235                         rcu_read_unlock();
3236
3237                         spin_lock_irq(&engine->timeline->lock);
3238                         for (rb = engine->execlist_first; rb; rb = rb_next(rb)) {
3239                                 rq = rb_entry(rb, typeof(*rq), priotree.node);
3240                                 print_request(m, rq, "\t\tQ ");
3241                         }
3242                         spin_unlock_irq(&engine->timeline->lock);
3243                 } else if (INTEL_GEN(dev_priv) > 6) {
3244                         seq_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
3245                                    I915_READ(RING_PP_DIR_BASE(engine)));
3246                         seq_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
3247                                    I915_READ(RING_PP_DIR_BASE_READ(engine)));
3248                         seq_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
3249                                    I915_READ(RING_PP_DIR_DCLV(engine)));
3250                 }
3251
3252                 spin_lock_irq(&b->lock);
3253                 for (rb = rb_first(&b->waiters); rb; rb = rb_next(rb)) {
3254                         struct intel_wait *w = container_of(rb, typeof(*w), node);
3255
3256                         seq_printf(m, "\t%s [%d] waiting for %x\n",
3257                                    w->tsk->comm, w->tsk->pid, w->seqno);
3258                 }
3259                 spin_unlock_irq(&b->lock);
3260
3261                 seq_puts(m, "\n");
3262         }
3263
3264         intel_runtime_pm_put(dev_priv);
3265
3266         return 0;
3267 }
3268
3269 static int i915_semaphore_status(struct seq_file *m, void *unused)
3270 {
3271         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3272         struct drm_device *dev = &dev_priv->drm;
3273         struct intel_engine_cs *engine;
3274         int num_rings = INTEL_INFO(dev_priv)->num_rings;
3275         enum intel_engine_id id;
3276         int j, ret;
3277
3278         if (!i915.semaphores) {
3279                 seq_puts(m, "Semaphores are disabled\n");
3280                 return 0;
3281         }
3282
3283         ret = mutex_lock_interruptible(&dev->struct_mutex);
3284         if (ret)
3285                 return ret;
3286         intel_runtime_pm_get(dev_priv);
3287
3288         if (IS_BROADWELL(dev_priv)) {
3289                 struct page *page;
3290                 uint64_t *seqno;
3291
3292                 page = i915_gem_object_get_page(dev_priv->semaphore->obj, 0);
3293
3294                 seqno = (uint64_t *)kmap_atomic(page);
3295                 for_each_engine(engine, dev_priv, id) {
3296                         uint64_t offset;
3297
3298                         seq_printf(m, "%s\n", engine->name);
3299
3300                         seq_puts(m, "  Last signal:");
3301                         for (j = 0; j < num_rings; j++) {
3302                                 offset = id * I915_NUM_ENGINES + j;
3303                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3304                                            seqno[offset], offset * 8);
3305                         }
3306                         seq_putc(m, '\n');
3307
3308                         seq_puts(m, "  Last wait:  ");
3309                         for (j = 0; j < num_rings; j++) {
3310                                 offset = id + (j * I915_NUM_ENGINES);
3311                                 seq_printf(m, "0x%08llx (0x%02llx) ",
3312                                            seqno[offset], offset * 8);
3313                         }
3314                         seq_putc(m, '\n');
3315
3316                 }
3317                 kunmap_atomic(seqno);
3318         } else {
3319                 seq_puts(m, "  Last signal:");
3320                 for_each_engine(engine, dev_priv, id)
3321                         for (j = 0; j < num_rings; j++)
3322                                 seq_printf(m, "0x%08x\n",
3323                                            I915_READ(engine->semaphore.mbox.signal[j]));
3324                 seq_putc(m, '\n');
3325         }
3326
3327         intel_runtime_pm_put(dev_priv);
3328         mutex_unlock(&dev->struct_mutex);
3329         return 0;
3330 }
3331
3332 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
3333 {
3334         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3335         struct drm_device *dev = &dev_priv->drm;
3336         int i;
3337
3338         drm_modeset_lock_all(dev);
3339         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
3340                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
3341
3342                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
3343                 seq_printf(m, " crtc_mask: 0x%08x, active: 0x%x, on: %s\n",
3344                            pll->config.crtc_mask, pll->active_mask, yesno(pll->on));
3345                 seq_printf(m, " tracked hardware state:\n");
3346                 seq_printf(m, " dpll:    0x%08x\n", pll->config.hw_state.dpll);
3347                 seq_printf(m, " dpll_md: 0x%08x\n",
3348                            pll->config.hw_state.dpll_md);
3349                 seq_printf(m, " fp0:     0x%08x\n", pll->config.hw_state.fp0);
3350                 seq_printf(m, " fp1:     0x%08x\n", pll->config.hw_state.fp1);
3351                 seq_printf(m, " wrpll:   0x%08x\n", pll->config.hw_state.wrpll);
3352         }
3353         drm_modeset_unlock_all(dev);
3354
3355         return 0;
3356 }
3357
3358 static int i915_wa_registers(struct seq_file *m, void *unused)
3359 {
3360         int i;
3361         int ret;
3362         struct intel_engine_cs *engine;
3363         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3364         struct drm_device *dev = &dev_priv->drm;
3365         struct i915_workarounds *workarounds = &dev_priv->workarounds;
3366         enum intel_engine_id id;
3367
3368         ret = mutex_lock_interruptible(&dev->struct_mutex);
3369         if (ret)
3370                 return ret;
3371
3372         intel_runtime_pm_get(dev_priv);
3373
3374         seq_printf(m, "Workarounds applied: %d\n", workarounds->count);
3375         for_each_engine(engine, dev_priv, id)
3376                 seq_printf(m, "HW whitelist count for %s: %d\n",
3377                            engine->name, workarounds->hw_whitelist_count[id]);
3378         for (i = 0; i < workarounds->count; ++i) {
3379                 i915_reg_t addr;
3380                 u32 mask, value, read;
3381                 bool ok;
3382
3383                 addr = workarounds->reg[i].addr;
3384                 mask = workarounds->reg[i].mask;
3385                 value = workarounds->reg[i].value;
3386                 read = I915_READ(addr);
3387                 ok = (value & mask) == (read & mask);
3388                 seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X, read: 0x%08x, status: %s\n",
3389                            i915_mmio_reg_offset(addr), value, mask, read, ok ? "OK" : "FAIL");
3390         }
3391
3392         intel_runtime_pm_put(dev_priv);
3393         mutex_unlock(&dev->struct_mutex);
3394
3395         return 0;
3396 }
3397
3398 static int i915_ddb_info(struct seq_file *m, void *unused)
3399 {
3400         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3401         struct drm_device *dev = &dev_priv->drm;
3402         struct skl_ddb_allocation *ddb;
3403         struct skl_ddb_entry *entry;
3404         enum pipe pipe;
3405         int plane;
3406
3407         if (INTEL_GEN(dev_priv) < 9)
3408                 return 0;
3409
3410         drm_modeset_lock_all(dev);
3411
3412         ddb = &dev_priv->wm.skl_hw.ddb;
3413
3414         seq_printf(m, "%-15s%8s%8s%8s\n", "", "Start", "End", "Size");
3415
3416         for_each_pipe(dev_priv, pipe) {
3417                 seq_printf(m, "Pipe %c\n", pipe_name(pipe));
3418
3419                 for_each_universal_plane(dev_priv, pipe, plane) {
3420                         entry = &ddb->plane[pipe][plane];
3421                         seq_printf(m, "  Plane%-8d%8u%8u%8u\n", plane + 1,
3422                                    entry->start, entry->end,
3423                                    skl_ddb_entry_size(entry));
3424                 }
3425
3426                 entry = &ddb->plane[pipe][PLANE_CURSOR];
3427                 seq_printf(m, "  %-13s%8u%8u%8u\n", "Cursor", entry->start,
3428                            entry->end, skl_ddb_entry_size(entry));
3429         }
3430
3431         drm_modeset_unlock_all(dev);
3432
3433         return 0;
3434 }
3435
3436 static void drrs_status_per_crtc(struct seq_file *m,
3437                                  struct drm_device *dev,
3438                                  struct intel_crtc *intel_crtc)
3439 {
3440         struct drm_i915_private *dev_priv = to_i915(dev);
3441         struct i915_drrs *drrs = &dev_priv->drrs;
3442         int vrefresh = 0;
3443         struct drm_connector *connector;
3444
3445         drm_for_each_connector(connector, dev) {
3446                 if (connector->state->crtc != &intel_crtc->base)
3447                         continue;
3448
3449                 seq_printf(m, "%s:\n", connector->name);
3450         }
3451
3452         if (dev_priv->vbt.drrs_type == STATIC_DRRS_SUPPORT)
3453                 seq_puts(m, "\tVBT: DRRS_type: Static");
3454         else if (dev_priv->vbt.drrs_type == SEAMLESS_DRRS_SUPPORT)
3455                 seq_puts(m, "\tVBT: DRRS_type: Seamless");
3456         else if (dev_priv->vbt.drrs_type == DRRS_NOT_SUPPORTED)
3457                 seq_puts(m, "\tVBT: DRRS_type: None");
3458         else
3459                 seq_puts(m, "\tVBT: DRRS_type: FIXME: Unrecognized Value");
3460
3461         seq_puts(m, "\n\n");
3462
3463         if (to_intel_crtc_state(intel_crtc->base.state)->has_drrs) {
3464                 struct intel_panel *panel;
3465
3466                 mutex_lock(&drrs->mutex);
3467                 /* DRRS Supported */
3468                 seq_puts(m, "\tDRRS Supported: Yes\n");
3469
3470                 /* disable_drrs() will make drrs->dp NULL */
3471                 if (!drrs->dp) {
3472                         seq_puts(m, "Idleness DRRS: Disabled");
3473                         mutex_unlock(&drrs->mutex);
3474                         return;
3475                 }
3476
3477                 panel = &drrs->dp->attached_connector->panel;
3478                 seq_printf(m, "\t\tBusy_frontbuffer_bits: 0x%X",
3479                                         drrs->busy_frontbuffer_bits);
3480
3481                 seq_puts(m, "\n\t\t");
3482                 if (drrs->refresh_rate_type == DRRS_HIGH_RR) {
3483                         seq_puts(m, "DRRS_State: DRRS_HIGH_RR\n");
3484                         vrefresh = panel->fixed_mode->vrefresh;
3485                 } else if (drrs->refresh_rate_type == DRRS_LOW_RR) {
3486                         seq_puts(m, "DRRS_State: DRRS_LOW_RR\n");
3487                         vrefresh = panel->downclock_mode->vrefresh;
3488                 } else {
3489                         seq_printf(m, "DRRS_State: Unknown(%d)\n",
3490                                                 drrs->refresh_rate_type);
3491                         mutex_unlock(&drrs->mutex);
3492                         return;
3493                 }
3494                 seq_printf(m, "\t\tVrefresh: %d", vrefresh);
3495
3496                 seq_puts(m, "\n\t\t");
3497                 mutex_unlock(&drrs->mutex);
3498         } else {
3499                 /* DRRS not supported. Print the VBT parameter*/
3500                 seq_puts(m, "\tDRRS Supported : No");
3501         }
3502         seq_puts(m, "\n");
3503 }
3504
3505 static int i915_drrs_status(struct seq_file *m, void *unused)
3506 {
3507         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3508         struct drm_device *dev = &dev_priv->drm;
3509         struct intel_crtc *intel_crtc;
3510         int active_crtc_cnt = 0;
3511
3512         drm_modeset_lock_all(dev);
3513         for_each_intel_crtc(dev, intel_crtc) {
3514                 if (intel_crtc->base.state->active) {
3515                         active_crtc_cnt++;
3516                         seq_printf(m, "\nCRTC %d:  ", active_crtc_cnt);
3517
3518                         drrs_status_per_crtc(m, dev, intel_crtc);
3519                 }
3520         }
3521         drm_modeset_unlock_all(dev);
3522
3523         if (!active_crtc_cnt)
3524                 seq_puts(m, "No active crtc found\n");
3525
3526         return 0;
3527 }
3528
3529 struct pipe_crc_info {
3530         const char *name;
3531         struct drm_i915_private *dev_priv;
3532         enum pipe pipe;
3533 };
3534
3535 static int i915_dp_mst_info(struct seq_file *m, void *unused)
3536 {
3537         struct drm_i915_private *dev_priv = node_to_i915(m->private);
3538         struct drm_device *dev = &dev_priv->drm;
3539         struct intel_encoder *intel_encoder;
3540         struct intel_digital_port *intel_dig_port;
3541         struct drm_connector *connector;
3542
3543         drm_modeset_lock_all(dev);
3544         drm_for_each_connector(connector, dev) {
3545                 if (connector->connector_type != DRM_MODE_CONNECTOR_DisplayPort)
3546                         continue;
3547
3548                 intel_encoder = intel_attached_encoder(connector);
3549                 if (!intel_encoder || intel_encoder->type == INTEL_OUTPUT_DP_MST)
3550                         continue;
3551
3552                 intel_dig_port = enc_to_dig_port(&intel_encoder->base);
3553                 if (!intel_dig_port->dp.can_mst)
3554                         continue;
3555
3556                 seq_printf(m, "MST Source Port %c\n",
3557                            port_name(intel_dig_port->port));
3558                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
3559         }
3560         drm_modeset_unlock_all(dev);
3561         return 0;
3562 }
3563
3564 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
3565 {
3566         struct pipe_crc_info *info = inode->i_private;
3567         struct drm_i915_private *dev_priv = info->dev_priv;
3568         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3569
3570         if (info->pipe >= INTEL_INFO(dev_priv)->num_pipes)
3571                 return -ENODEV;
3572
3573         spin_lock_irq(&pipe_crc->lock);
3574
3575         if (pipe_crc->opened) {
3576                 spin_unlock_irq(&pipe_crc->lock);
3577                 return -EBUSY; /* already open */
3578         }
3579
3580         pipe_crc->opened = true;
3581         filep->private_data = inode->i_private;
3582
3583         spin_unlock_irq(&pipe_crc->lock);
3584
3585         return 0;
3586 }
3587
3588 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
3589 {
3590         struct pipe_crc_info *info = inode->i_private;
3591         struct drm_i915_private *dev_priv = info->dev_priv;
3592         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3593
3594         spin_lock_irq(&pipe_crc->lock);
3595         pipe_crc->opened = false;
3596         spin_unlock_irq(&pipe_crc->lock);
3597
3598         return 0;
3599 }
3600
3601 /* (6 fields, 8 chars each, space separated (5) + '\n') */
3602 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
3603 /* account for \'0' */
3604 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
3605
3606 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
3607 {
3608         assert_spin_locked(&pipe_crc->lock);
3609         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3610                         INTEL_PIPE_CRC_ENTRIES_NR);
3611 }
3612
3613 static ssize_t
3614 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
3615                    loff_t *pos)
3616 {
3617         struct pipe_crc_info *info = filep->private_data;
3618         struct drm_i915_private *dev_priv = info->dev_priv;
3619         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
3620         char buf[PIPE_CRC_BUFFER_LEN];
3621         int n_entries;
3622         ssize_t bytes_read;
3623
3624         /*
3625          * Don't allow user space to provide buffers not big enough to hold
3626          * a line of data.
3627          */
3628         if (count < PIPE_CRC_LINE_LEN)
3629                 return -EINVAL;
3630
3631         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
3632                 return 0;
3633
3634         /* nothing to read */
3635         spin_lock_irq(&pipe_crc->lock);
3636         while (pipe_crc_data_count(pipe_crc) == 0) {
3637                 int ret;
3638
3639                 if (filep->f_flags & O_NONBLOCK) {
3640                         spin_unlock_irq(&pipe_crc->lock);
3641                         return -EAGAIN;
3642                 }
3643
3644                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
3645                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
3646                 if (ret) {
3647                         spin_unlock_irq(&pipe_crc->lock);
3648                         return ret;
3649                 }
3650         }
3651
3652         /* We now have one or more entries to read */
3653         n_entries = count / PIPE_CRC_LINE_LEN;
3654
3655         bytes_read = 0;
3656         while (n_entries > 0) {
3657                 struct intel_pipe_crc_entry *entry =
3658                         &pipe_crc->entries[pipe_crc->tail];
3659
3660                 if (CIRC_CNT(pipe_crc->head, pipe_crc->tail,
3661                              INTEL_PIPE_CRC_ENTRIES_NR) < 1)
3662                         break;
3663
3664                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
3665                 pipe_crc->tail = (pipe_crc->tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
3666
3667                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
3668                                        "%8u %8x %8x %8x %8x %8x\n",
3669                                        entry->frame, entry->crc[0],
3670                                        entry->crc[1], entry->crc[2],
3671                                        entry->crc[3], entry->crc[4]);
3672
3673                 spin_unlock_irq(&pipe_crc->lock);
3674
3675                 if (copy_to_user(user_buf, buf, PIPE_CRC_LINE_LEN))
3676                         return -EFAULT;
3677
3678                 user_buf += PIPE_CRC_LINE_LEN;
3679                 n_entries--;
3680
3681                 spin_lock_irq(&pipe_crc->lock);
3682         }
3683
3684         spin_unlock_irq(&pipe_crc->lock);
3685
3686         return bytes_read;
3687 }
3688
3689 static const struct file_operations i915_pipe_crc_fops = {
3690         .owner = THIS_MODULE,
3691         .open = i915_pipe_crc_open,
3692         .read = i915_pipe_crc_read,
3693         .release = i915_pipe_crc_release,
3694 };
3695
3696 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
3697         {
3698                 .name = "i915_pipe_A_crc",
3699                 .pipe = PIPE_A,
3700         },
3701         {
3702                 .name = "i915_pipe_B_crc",
3703                 .pipe = PIPE_B,
3704         },
3705         {
3706                 .name = "i915_pipe_C_crc",
3707                 .pipe = PIPE_C,
3708         },
3709 };
3710
3711 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
3712                                 enum pipe pipe)
3713 {
3714         struct drm_i915_private *dev_priv = to_i915(minor->dev);
3715         struct dentry *ent;
3716         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
3717
3718         info->dev_priv = dev_priv;
3719         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
3720                                   &i915_pipe_crc_fops);
3721         if (!ent)
3722                 return -ENOMEM;
3723
3724         return drm_add_fake_info_node(minor, ent, info);
3725 }
3726
3727 static const char * const pipe_crc_sources[] = {
3728         "none",
3729         "plane1",
3730         "plane2",
3731         "pf",
3732         "pipe",
3733         "TV",
3734         "DP-B",
3735         "DP-C",
3736         "DP-D",
3737         "auto",
3738 };
3739
3740 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
3741 {
3742         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
3743         return pipe_crc_sources[source];
3744 }
3745
3746 static int display_crc_ctl_show(struct seq_file *m, void *data)
3747 {
3748         struct drm_i915_private *dev_priv = m->private;
3749         int i;
3750
3751         for (i = 0; i < I915_MAX_PIPES; i++)
3752                 seq_printf(m, "%c %s\n", pipe_name(i),
3753                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
3754
3755         return 0;
3756 }
3757
3758 static int display_crc_ctl_open(struct inode *inode, struct file *file)
3759 {
3760         return single_open(file, display_crc_ctl_show, inode->i_private);
3761 }
3762
3763 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3764                                  uint32_t *val)
3765 {
3766         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3767                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3768
3769         switch (*source) {
3770         case INTEL_PIPE_CRC_SOURCE_PIPE:
3771                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
3772                 break;
3773         case INTEL_PIPE_CRC_SOURCE_NONE:
3774                 *val = 0;
3775                 break;
3776         default:
3777                 return -EINVAL;
3778         }
3779
3780         return 0;
3781 }
3782
3783 static int i9xx_pipe_crc_auto_source(struct drm_i915_private *dev_priv,
3784                                      enum pipe pipe,
3785                                      enum intel_pipe_crc_source *source)
3786 {
3787         struct drm_device *dev = &dev_priv->drm;
3788         struct intel_encoder *encoder;
3789         struct intel_crtc *crtc;
3790         struct intel_digital_port *dig_port;
3791         int ret = 0;
3792
3793         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3794
3795         drm_modeset_lock_all(dev);
3796         for_each_intel_encoder(dev, encoder) {
3797                 if (!encoder->base.crtc)
3798                         continue;
3799
3800                 crtc = to_intel_crtc(encoder->base.crtc);
3801
3802                 if (crtc->pipe != pipe)
3803                         continue;
3804
3805                 switch (encoder->type) {
3806                 case INTEL_OUTPUT_TVOUT:
3807                         *source = INTEL_PIPE_CRC_SOURCE_TV;
3808                         break;
3809                 case INTEL_OUTPUT_DP:
3810                 case INTEL_OUTPUT_EDP:
3811                         dig_port = enc_to_dig_port(&encoder->base);
3812                         switch (dig_port->port) {
3813                         case PORT_B:
3814                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
3815                                 break;
3816                         case PORT_C:
3817                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
3818                                 break;
3819                         case PORT_D:
3820                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
3821                                 break;
3822                         default:
3823                                 WARN(1, "nonexisting DP port %c\n",
3824                                      port_name(dig_port->port));
3825                                 break;
3826                         }
3827                         break;
3828                 default:
3829                         break;
3830                 }
3831         }
3832         drm_modeset_unlock_all(dev);
3833
3834         return ret;
3835 }
3836
3837 static int vlv_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3838                                 enum pipe pipe,
3839                                 enum intel_pipe_crc_source *source,
3840                                 uint32_t *val)
3841 {
3842         bool need_stable_symbols = false;
3843
3844         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3845                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3846                 if (ret)
3847                         return ret;
3848         }
3849
3850         switch (*source) {
3851         case INTEL_PIPE_CRC_SOURCE_PIPE:
3852                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
3853                 break;
3854         case INTEL_PIPE_CRC_SOURCE_DP_B:
3855                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3856                 need_stable_symbols = true;
3857                 break;
3858         case INTEL_PIPE_CRC_SOURCE_DP_C:
3859                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3860                 need_stable_symbols = true;
3861                 break;
3862         case INTEL_PIPE_CRC_SOURCE_DP_D:
3863                 if (!IS_CHERRYVIEW(dev_priv))
3864                         return -EINVAL;
3865                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_VLV;
3866                 need_stable_symbols = true;
3867                 break;
3868         case INTEL_PIPE_CRC_SOURCE_NONE:
3869                 *val = 0;
3870                 break;
3871         default:
3872                 return -EINVAL;
3873         }
3874
3875         /*
3876          * When the pipe CRC tap point is after the transcoders we need
3877          * to tweak symbol-level features to produce a deterministic series of
3878          * symbols for a given frame. We need to reset those features only once
3879          * a frame (instead of every nth symbol):
3880          *   - DC-balance: used to ensure a better clock recovery from the data
3881          *     link (SDVO)
3882          *   - DisplayPort scrambling: used for EMI reduction
3883          */
3884         if (need_stable_symbols) {
3885                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3886
3887                 tmp |= DC_BALANCE_RESET_VLV;
3888                 switch (pipe) {
3889                 case PIPE_A:
3890                         tmp |= PIPE_A_SCRAMBLE_RESET;
3891                         break;
3892                 case PIPE_B:
3893                         tmp |= PIPE_B_SCRAMBLE_RESET;
3894                         break;
3895                 case PIPE_C:
3896                         tmp |= PIPE_C_SCRAMBLE_RESET;
3897                         break;
3898                 default:
3899                         return -EINVAL;
3900                 }
3901                 I915_WRITE(PORT_DFT2_G4X, tmp);
3902         }
3903
3904         return 0;
3905 }
3906
3907 static int i9xx_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
3908                                  enum pipe pipe,
3909                                  enum intel_pipe_crc_source *source,
3910                                  uint32_t *val)
3911 {
3912         bool need_stable_symbols = false;
3913
3914         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3915                 int ret = i9xx_pipe_crc_auto_source(dev_priv, pipe, source);
3916                 if (ret)
3917                         return ret;
3918         }
3919
3920         switch (*source) {
3921         case INTEL_PIPE_CRC_SOURCE_PIPE:
3922                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3923                 break;
3924         case INTEL_PIPE_CRC_SOURCE_TV:
3925                 if (!SUPPORTS_TV(dev_priv))
3926                         return -EINVAL;
3927                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3928                 break;
3929         case INTEL_PIPE_CRC_SOURCE_DP_B:
3930                 if (!IS_G4X(dev_priv))
3931                         return -EINVAL;
3932                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3933                 need_stable_symbols = true;
3934                 break;
3935         case INTEL_PIPE_CRC_SOURCE_DP_C:
3936                 if (!IS_G4X(dev_priv))
3937                         return -EINVAL;
3938                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3939                 need_stable_symbols = true;
3940                 break;
3941         case INTEL_PIPE_CRC_SOURCE_DP_D:
3942                 if (!IS_G4X(dev_priv))
3943                         return -EINVAL;
3944                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3945                 need_stable_symbols = true;
3946                 break;
3947         case INTEL_PIPE_CRC_SOURCE_NONE:
3948                 *val = 0;
3949                 break;
3950         default:
3951                 return -EINVAL;
3952         }
3953
3954         /*
3955          * When the pipe CRC tap point is after the transcoders we need
3956          * to tweak symbol-level features to produce a deterministic series of
3957          * symbols for a given frame. We need to reset those features only once
3958          * a frame (instead of every nth symbol):
3959          *   - DC-balance: used to ensure a better clock recovery from the data
3960          *     link (SDVO)
3961          *   - DisplayPort scrambling: used for EMI reduction
3962          */
3963         if (need_stable_symbols) {
3964                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3965
3966                 WARN_ON(!IS_G4X(dev_priv));
3967
3968                 I915_WRITE(PORT_DFT_I9XX,
3969                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3970
3971                 if (pipe == PIPE_A)
3972                         tmp |= PIPE_A_SCRAMBLE_RESET;
3973                 else
3974                         tmp |= PIPE_B_SCRAMBLE_RESET;
3975
3976                 I915_WRITE(PORT_DFT2_G4X, tmp);
3977         }
3978
3979         return 0;
3980 }
3981
3982 static void vlv_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
3983                                          enum pipe pipe)
3984 {
3985         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3986
3987         switch (pipe) {
3988         case PIPE_A:
3989                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3990                 break;
3991         case PIPE_B:
3992                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3993                 break;
3994         case PIPE_C:
3995                 tmp &= ~PIPE_C_SCRAMBLE_RESET;
3996                 break;
3997         default:
3998                 return;
3999         }
4000         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
4001                 tmp &= ~DC_BALANCE_RESET_VLV;
4002         I915_WRITE(PORT_DFT2_G4X, tmp);
4003
4004 }
4005
4006 static void g4x_undo_pipe_scramble_reset(struct drm_i915_private *dev_priv,
4007                                          enum pipe pipe)
4008 {
4009         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
4010
4011         if (pipe == PIPE_A)
4012                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
4013         else
4014                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
4015         I915_WRITE(PORT_DFT2_G4X, tmp);
4016
4017         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
4018                 I915_WRITE(PORT_DFT_I9XX,
4019                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
4020         }
4021 }
4022
4023 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
4024                                 uint32_t *val)
4025 {
4026         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4027                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
4028
4029         switch (*source) {
4030         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4031                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
4032                 break;
4033         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4034                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
4035                 break;
4036         case INTEL_PIPE_CRC_SOURCE_PIPE:
4037                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
4038                 break;
4039         case INTEL_PIPE_CRC_SOURCE_NONE:
4040                 *val = 0;
4041                 break;
4042         default:
4043                 return -EINVAL;
4044         }
4045
4046         return 0;
4047 }
4048
4049 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_i915_private *dev_priv,
4050                                         bool enable)
4051 {
4052         struct drm_device *dev = &dev_priv->drm;
4053         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
4054         struct intel_crtc_state *pipe_config;
4055         struct drm_atomic_state *state;
4056         int ret = 0;
4057
4058         drm_modeset_lock_all(dev);
4059         state = drm_atomic_state_alloc(dev);
4060         if (!state) {
4061                 ret = -ENOMEM;
4062                 goto out;
4063         }
4064
4065         state->acquire_ctx = drm_modeset_legacy_acquire_ctx(&crtc->base);
4066         pipe_config = intel_atomic_get_crtc_state(state, crtc);
4067         if (IS_ERR(pipe_config)) {
4068                 ret = PTR_ERR(pipe_config);
4069                 goto out;
4070         }
4071
4072         pipe_config->pch_pfit.force_thru = enable;
4073         if (pipe_config->cpu_transcoder == TRANSCODER_EDP &&
4074             pipe_config->pch_pfit.enabled != enable)
4075                 pipe_config->base.connectors_changed = true;
4076
4077         ret = drm_atomic_commit(state);
4078 out:
4079         WARN(ret, "Toggling workaround to %i returns %i\n", enable, ret);
4080         drm_modeset_unlock_all(dev);
4081         drm_atomic_state_put(state);
4082 }
4083
4084 static int ivb_pipe_crc_ctl_reg(struct drm_i915_private *dev_priv,
4085                                 enum pipe pipe,
4086                                 enum intel_pipe_crc_source *source,
4087                                 uint32_t *val)
4088 {
4089         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
4090                 *source = INTEL_PIPE_CRC_SOURCE_PF;
4091
4092         switch (*source) {
4093         case INTEL_PIPE_CRC_SOURCE_PLANE1:
4094                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
4095                 break;
4096         case INTEL_PIPE_CRC_SOURCE_PLANE2:
4097                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
4098                 break;
4099         case INTEL_PIPE_CRC_SOURCE_PF:
4100                 if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4101                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, true);
4102
4103                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
4104                 break;
4105         case INTEL_PIPE_CRC_SOURCE_NONE:
4106                 *val = 0;
4107                 break;
4108         default:
4109                 return -EINVAL;
4110         }
4111
4112         return 0;
4113 }
4114
4115 static int pipe_crc_set_source(struct drm_i915_private *dev_priv,
4116                                enum pipe pipe,
4117                                enum intel_pipe_crc_source source)
4118 {
4119         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4120         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
4121         enum intel_display_power_domain power_domain;
4122         u32 val = 0; /* shut up gcc */
4123         int ret;
4124
4125         if (pipe_crc->source == source)
4126                 return 0;
4127
4128         /* forbid changing the source without going back to 'none' */
4129         if (pipe_crc->source && source)
4130                 return -EINVAL;
4131
4132         power_domain = POWER_DOMAIN_PIPE(pipe);
4133         if (!intel_display_power_get_if_enabled(dev_priv, power_domain)) {
4134                 DRM_DEBUG_KMS("Trying to capture CRC while pipe is off\n");
4135                 return -EIO;
4136         }
4137
4138         if (IS_GEN2(dev_priv))
4139                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
4140         else if (INTEL_GEN(dev_priv) < 5)
4141                 ret = i9xx_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4142         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4143                 ret = vlv_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4144         else if (IS_GEN5(dev_priv) || IS_GEN6(dev_priv))
4145                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
4146         else
4147                 ret = ivb_pipe_crc_ctl_reg(dev_priv, pipe, &source, &val);
4148
4149         if (ret != 0)
4150                 goto out;
4151
4152         /* none -> real source transition */
4153         if (source) {
4154                 struct intel_pipe_crc_entry *entries;
4155
4156                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
4157                                  pipe_name(pipe), pipe_crc_source_name(source));
4158
4159                 entries = kcalloc(INTEL_PIPE_CRC_ENTRIES_NR,
4160                                   sizeof(pipe_crc->entries[0]),
4161                                   GFP_KERNEL);
4162                 if (!entries) {
4163                         ret = -ENOMEM;
4164                         goto out;
4165                 }
4166
4167                 /*
4168                  * When IPS gets enabled, the pipe CRC changes. Since IPS gets
4169                  * enabled and disabled dynamically based on package C states,
4170                  * user space can't make reliable use of the CRCs, so let's just
4171                  * completely disable it.
4172                  */
4173                 hsw_disable_ips(crtc);
4174
4175                 spin_lock_irq(&pipe_crc->lock);
4176                 kfree(pipe_crc->entries);
4177                 pipe_crc->entries = entries;
4178                 pipe_crc->head = 0;
4179                 pipe_crc->tail = 0;
4180                 spin_unlock_irq(&pipe_crc->lock);
4181         }
4182
4183         pipe_crc->source = source;
4184
4185         I915_WRITE(PIPE_CRC_CTL(pipe), val);
4186         POSTING_READ(PIPE_CRC_CTL(pipe));
4187
4188         /* real source -> none transition */
4189         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
4190                 struct intel_pipe_crc_entry *entries;
4191                 struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv,
4192                                                                   pipe);
4193
4194                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
4195                                  pipe_name(pipe));
4196
4197                 drm_modeset_lock(&crtc->base.mutex, NULL);
4198                 if (crtc->base.state->active)
4199                         intel_wait_for_vblank(dev_priv, pipe);
4200                 drm_modeset_unlock(&crtc->base.mutex);
4201
4202                 spin_lock_irq(&pipe_crc->lock);
4203                 entries = pipe_crc->entries;
4204                 pipe_crc->entries = NULL;
4205                 pipe_crc->head = 0;
4206                 pipe_crc->tail = 0;
4207                 spin_unlock_irq(&pipe_crc->lock);
4208
4209                 kfree(entries);
4210
4211                 if (IS_G4X(dev_priv))
4212                         g4x_undo_pipe_scramble_reset(dev_priv, pipe);
4213                 else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4214                         vlv_undo_pipe_scramble_reset(dev_priv, pipe);
4215                 else if (IS_HASWELL(dev_priv) && pipe == PIPE_A)
4216                         hsw_trans_edp_pipe_A_crc_wa(dev_priv, false);
4217
4218                 hsw_enable_ips(crtc);
4219         }
4220
4221         ret = 0;
4222
4223 out:
4224         intel_display_power_put(dev_priv, power_domain);
4225
4226         return ret;
4227 }
4228
4229 /*
4230  * Parse pipe CRC command strings:
4231  *   command: wsp* object wsp+ name wsp+ source wsp*
4232  *   object: 'pipe'
4233  *   name: (A | B | C)
4234  *   source: (none | plane1 | plane2 | pf)
4235  *   wsp: (#0x20 | #0x9 | #0xA)+
4236  *
4237  * eg.:
4238  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
4239  *  "pipe A none"    ->  Stop CRC
4240  */
4241 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
4242 {
4243         int n_words = 0;
4244
4245         while (*buf) {
4246                 char *end;
4247
4248                 /* skip leading white space */
4249                 buf = skip_spaces(buf);
4250                 if (!*buf)
4251                         break;  /* end of buffer */
4252
4253                 /* find end of word */
4254                 for (end = buf; *end && !isspace(*end); end++)
4255                         ;
4256
4257                 if (n_words == max_words) {
4258                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
4259                                          max_words);
4260                         return -EINVAL; /* ran out of words[] before bytes */
4261                 }
4262
4263                 if (*end)
4264                         *end++ = '\0';
4265                 words[n_words++] = buf;
4266                 buf = end;
4267         }
4268
4269         return n_words;
4270 }
4271
4272 enum intel_pipe_crc_object {
4273         PIPE_CRC_OBJECT_PIPE,
4274 };
4275
4276 static const char * const pipe_crc_objects[] = {
4277         "pipe",
4278 };
4279
4280 static int
4281 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
4282 {
4283         int i;
4284
4285         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
4286                 if (!strcmp(buf, pipe_crc_objects[i])) {
4287                         *o = i;
4288                         return 0;
4289                     }
4290
4291         return -EINVAL;
4292 }
4293
4294 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
4295 {
4296         const char name = buf[0];
4297
4298         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
4299                 return -EINVAL;
4300
4301         *pipe = name - 'A';
4302
4303         return 0;
4304 }
4305
4306 static int
4307 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
4308 {
4309         int i;
4310
4311         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
4312                 if (!strcmp(buf, pipe_crc_sources[i])) {
4313                         *s = i;
4314                         return 0;
4315                     }
4316
4317         return -EINVAL;
4318 }
4319
4320 static int display_crc_ctl_parse(struct drm_i915_private *dev_priv,
4321                                  char *buf, size_t len)
4322 {
4323 #define N_WORDS 3
4324         int n_words;
4325         char *words[N_WORDS];
4326         enum pipe pipe;
4327         enum intel_pipe_crc_object object;
4328         enum intel_pipe_crc_source source;
4329
4330         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
4331         if (n_words != N_WORDS) {
4332                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
4333                                  N_WORDS);
4334                 return -EINVAL;
4335         }
4336
4337         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
4338                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
4339                 return -EINVAL;
4340         }
4341
4342         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
4343                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
4344                 return -EINVAL;
4345         }
4346
4347         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
4348                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
4349                 return -EINVAL;
4350         }
4351
4352         return pipe_crc_set_source(dev_priv, pipe, source);
4353 }
4354
4355 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
4356                                      size_t len, loff_t *offp)
4357 {
4358         struct seq_file *m = file->private_data;
4359         struct drm_i915_private *dev_priv = m->private;
4360         char *tmpbuf;
4361         int ret;
4362
4363         if (len == 0)
4364                 return 0;
4365
4366         if (len > PAGE_SIZE - 1) {
4367                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
4368                                  PAGE_SIZE);
4369                 return -E2BIG;
4370         }
4371
4372         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
4373         if (!tmpbuf)
4374                 return -ENOMEM;
4375
4376         if (copy_from_user(tmpbuf, ubuf, len)) {
4377                 ret = -EFAULT;
4378                 goto out;
4379         }
4380         tmpbuf[len] = '\0';
4381
4382         ret = display_crc_ctl_parse(dev_priv, tmpbuf, len);
4383
4384 out:
4385         kfree(tmpbuf);
4386         if (ret < 0)
4387                 return ret;
4388
4389         *offp += len;
4390         return len;
4391 }
4392
4393 static const struct file_operations i915_display_crc_ctl_fops = {
4394         .owner = THIS_MODULE,
4395         .open = display_crc_ctl_open,
4396         .read = seq_read,
4397         .llseek = seq_lseek,
4398         .release = single_release,
4399         .write = display_crc_ctl_write
4400 };
4401
4402 static ssize_t i915_displayport_test_active_write(struct file *file,
4403                                                   const char __user *ubuf,
4404                                                   size_t len, loff_t *offp)
4405 {
4406         char *input_buffer;
4407         int status = 0;
4408         struct drm_device *dev;
4409         struct drm_connector *connector;
4410         struct list_head *connector_list;
4411         struct intel_dp *intel_dp;
4412         int val = 0;
4413
4414         dev = ((struct seq_file *)file->private_data)->private;
4415
4416         connector_list = &dev->mode_config.connector_list;
4417
4418         if (len == 0)
4419                 return 0;
4420
4421         input_buffer = kmalloc(len + 1, GFP_KERNEL);
4422         if (!input_buffer)
4423                 return -ENOMEM;
4424
4425         if (copy_from_user(input_buffer, ubuf, len)) {
4426                 status = -EFAULT;
4427                 goto out;
4428         }
4429
4430         input_buffer[len] = '\0';
4431         DRM_DEBUG_DRIVER("Copied %d bytes from user\n", (unsigned int)len);
4432
4433         list_for_each_entry(connector, connector_list, head) {
4434                 if (connector->connector_type !=
4435                     DRM_MODE_CONNECTOR_DisplayPort)
4436                         continue;
4437
4438                 if (connector->status == connector_status_connected &&
4439                     connector->encoder != NULL) {
4440                         intel_dp = enc_to_intel_dp(connector->encoder);
4441                         status = kstrtoint(input_buffer, 10, &val);
4442                         if (status < 0)
4443                                 goto out;
4444                         DRM_DEBUG_DRIVER("Got %d for test active\n", val);
4445                         /* To prevent erroneous activation of the compliance
4446                          * testing code, only accept an actual value of 1 here
4447                          */
4448                         if (val == 1)
4449                                 intel_dp->compliance_test_active = 1;
4450                         else
4451                                 intel_dp->compliance_test_active = 0;
4452                 }
4453         }
4454 out:
4455         kfree(input_buffer);
4456         if (status < 0)
4457                 return status;
4458
4459         *offp += len;
4460         return len;
4461 }
4462
4463 static int i915_displayport_test_active_show(struct seq_file *m, void *data)
4464 {
4465         struct drm_device *dev = m->private;
4466         struct drm_connector *connector;
4467         struct list_head *connector_list = &dev->mode_config.connector_list;
4468         struct intel_dp *intel_dp;
4469
4470         list_for_each_entry(connector, connector_list, head) {
4471                 if (connector->connector_type !=
4472                     DRM_MODE_CONNECTOR_DisplayPort)
4473                         continue;
4474
4475                 if (connector->status == connector_status_connected &&
4476                     connector->encoder != NULL) {
4477                         intel_dp = enc_to_intel_dp(connector->encoder);
4478                         if (intel_dp->compliance_test_active)
4479                                 seq_puts(m, "1");
4480                         else
4481                                 seq_puts(m, "0");
4482                 } else
4483                         seq_puts(m, "0");
4484         }
4485
4486         return 0;
4487 }
4488
4489 static int i915_displayport_test_active_open(struct inode *inode,
4490                                              struct file *file)
4491 {
4492         struct drm_i915_private *dev_priv = inode->i_private;
4493
4494         return single_open(file, i915_displayport_test_active_show,
4495                            &dev_priv->drm);
4496 }
4497
4498 static const struct file_operations i915_displayport_test_active_fops = {
4499         .owner = THIS_MODULE,
4500         .open = i915_displayport_test_active_open,
4501         .read = seq_read,
4502         .llseek = seq_lseek,
4503         .release = single_release,
4504         .write = i915_displayport_test_active_write
4505 };
4506
4507 static int i915_displayport_test_data_show(struct seq_file *m, void *data)
4508 {
4509         struct drm_device *dev = m->private;
4510         struct drm_connector *connector;
4511         struct list_head *connector_list = &dev->mode_config.connector_list;
4512         struct intel_dp *intel_dp;
4513
4514         list_for_each_entry(connector, connector_list, head) {
4515                 if (connector->connector_type !=
4516                     DRM_MODE_CONNECTOR_DisplayPort)
4517                         continue;
4518
4519                 if (connector->status == connector_status_connected &&
4520                     connector->encoder != NULL) {
4521                         intel_dp = enc_to_intel_dp(connector->encoder);
4522                         seq_printf(m, "%lx", intel_dp->compliance_test_data);
4523                 } else
4524                         seq_puts(m, "0");
4525         }
4526
4527         return 0;
4528 }
4529 static int i915_displayport_test_data_open(struct inode *inode,
4530                                            struct file *file)
4531 {
4532         struct drm_i915_private *dev_priv = inode->i_private;
4533
4534         return single_open(file, i915_displayport_test_data_show,
4535                            &dev_priv->drm);
4536 }
4537
4538 static const struct file_operations i915_displayport_test_data_fops = {
4539         .owner = THIS_MODULE,
4540         .open = i915_displayport_test_data_open,
4541         .read = seq_read,
4542         .llseek = seq_lseek,
4543         .release = single_release
4544 };
4545
4546 static int i915_displayport_test_type_show(struct seq_file *m, void *data)
4547 {
4548         struct drm_device *dev = m->private;
4549         struct drm_connector *connector;
4550         struct list_head *connector_list = &dev->mode_config.connector_list;
4551         struct intel_dp *intel_dp;
4552
4553         list_for_each_entry(connector, connector_list, head) {
4554                 if (connector->connector_type !=
4555                     DRM_MODE_CONNECTOR_DisplayPort)
4556                         continue;
4557
4558                 if (connector->status == connector_status_connected &&
4559                     connector->encoder != NULL) {
4560                         intel_dp = enc_to_intel_dp(connector->encoder);
4561                         seq_printf(m, "%02lx", intel_dp->compliance_test_type);
4562                 } else
4563                         seq_puts(m, "0");
4564         }
4565
4566         return 0;
4567 }
4568
4569 static int i915_displayport_test_type_open(struct inode *inode,
4570                                        struct file *file)
4571 {
4572         struct drm_i915_private *dev_priv = inode->i_private;
4573
4574         return single_open(file, i915_displayport_test_type_show,
4575                            &dev_priv->drm);
4576 }
4577
4578 static const struct file_operations i915_displayport_test_type_fops = {
4579         .owner = THIS_MODULE,
4580         .open = i915_displayport_test_type_open,
4581         .read = seq_read,
4582         .llseek = seq_lseek,
4583         .release = single_release
4584 };
4585
4586 static void wm_latency_show(struct seq_file *m, const uint16_t wm[8])
4587 {
4588         struct drm_i915_private *dev_priv = m->private;
4589         struct drm_device *dev = &dev_priv->drm;
4590         int level;
4591         int num_levels;
4592
4593         if (IS_CHERRYVIEW(dev_priv))
4594                 num_levels = 3;
4595         else if (IS_VALLEYVIEW(dev_priv))
4596                 num_levels = 1;
4597         else
4598                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4599
4600         drm_modeset_lock_all(dev);
4601
4602         for (level = 0; level < num_levels; level++) {
4603                 unsigned int latency = wm[level];
4604
4605                 /*
4606                  * - WM1+ latency values in 0.5us units
4607                  * - latencies are in us on gen9/vlv/chv
4608                  */
4609                 if (INTEL_GEN(dev_priv) >= 9 || IS_VALLEYVIEW(dev_priv) ||
4610                     IS_CHERRYVIEW(dev_priv))
4611                         latency *= 10;
4612                 else if (level > 0)
4613                         latency *= 5;
4614
4615                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
4616                            level, wm[level], latency / 10, latency % 10);
4617         }
4618
4619         drm_modeset_unlock_all(dev);
4620 }
4621
4622 static int pri_wm_latency_show(struct seq_file *m, void *data)
4623 {
4624         struct drm_i915_private *dev_priv = m->private;
4625         const uint16_t *latencies;
4626
4627         if (INTEL_GEN(dev_priv) >= 9)
4628                 latencies = dev_priv->wm.skl_latency;
4629         else
4630                 latencies = dev_priv->wm.pri_latency;
4631
4632         wm_latency_show(m, latencies);
4633
4634         return 0;
4635 }
4636
4637 static int spr_wm_latency_show(struct seq_file *m, void *data)
4638 {
4639         struct drm_i915_private *dev_priv = m->private;
4640         const uint16_t *latencies;
4641
4642         if (INTEL_GEN(dev_priv) >= 9)
4643                 latencies = dev_priv->wm.skl_latency;
4644         else
4645                 latencies = dev_priv->wm.spr_latency;
4646
4647         wm_latency_show(m, latencies);
4648
4649         return 0;
4650 }
4651
4652 static int cur_wm_latency_show(struct seq_file *m, void *data)
4653 {
4654         struct drm_i915_private *dev_priv = m->private;
4655         const uint16_t *latencies;
4656
4657         if (INTEL_GEN(dev_priv) >= 9)
4658                 latencies = dev_priv->wm.skl_latency;
4659         else
4660                 latencies = dev_priv->wm.cur_latency;
4661
4662         wm_latency_show(m, latencies);
4663
4664         return 0;
4665 }
4666
4667 static int pri_wm_latency_open(struct inode *inode, struct file *file)
4668 {
4669         struct drm_i915_private *dev_priv = inode->i_private;
4670
4671         if (INTEL_GEN(dev_priv) < 5)
4672                 return -ENODEV;
4673
4674         return single_open(file, pri_wm_latency_show, dev_priv);
4675 }
4676
4677 static int spr_wm_latency_open(struct inode *inode, struct file *file)
4678 {
4679         struct drm_i915_private *dev_priv = inode->i_private;
4680
4681         if (HAS_GMCH_DISPLAY(dev_priv))
4682                 return -ENODEV;
4683
4684         return single_open(file, spr_wm_latency_show, dev_priv);
4685 }
4686
4687 static int cur_wm_latency_open(struct inode *inode, struct file *file)
4688 {
4689         struct drm_i915_private *dev_priv = inode->i_private;
4690
4691         if (HAS_GMCH_DISPLAY(dev_priv))
4692                 return -ENODEV;
4693
4694         return single_open(file, cur_wm_latency_show, dev_priv);
4695 }
4696
4697 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
4698                                 size_t len, loff_t *offp, uint16_t wm[8])
4699 {
4700         struct seq_file *m = file->private_data;
4701         struct drm_i915_private *dev_priv = m->private;
4702         struct drm_device *dev = &dev_priv->drm;
4703         uint16_t new[8] = { 0 };
4704         int num_levels;
4705         int level;
4706         int ret;
4707         char tmp[32];
4708
4709         if (IS_CHERRYVIEW(dev_priv))
4710                 num_levels = 3;
4711         else if (IS_VALLEYVIEW(dev_priv))
4712                 num_levels = 1;
4713         else
4714                 num_levels = ilk_wm_max_level(dev_priv) + 1;
4715
4716         if (len >= sizeof(tmp))
4717                 return -EINVAL;
4718
4719         if (copy_from_user(tmp, ubuf, len))
4720                 return -EFAULT;
4721
4722         tmp[len] = '\0';
4723
4724         ret = sscanf(tmp, "%hu %hu %hu %hu %hu %hu %hu %hu",
4725                      &new[0], &new[1], &new[2], &new[3],
4726                      &new[4], &new[5], &new[6], &new[7]);
4727         if (ret != num_levels)
4728                 return -EINVAL;
4729
4730         drm_modeset_lock_all(dev);
4731
4732         for (level = 0; level < num_levels; level++)
4733                 wm[level] = new[level];
4734
4735         drm_modeset_unlock_all(dev);
4736
4737         return len;
4738 }
4739
4740
4741 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
4742                                     size_t len, loff_t *offp)
4743 {
4744         struct seq_file *m = file->private_data;
4745         struct drm_i915_private *dev_priv = m->private;
4746         uint16_t *latencies;
4747
4748         if (INTEL_GEN(dev_priv) >= 9)
4749                 latencies = dev_priv->wm.skl_latency;
4750         else
4751                 latencies = dev_priv->wm.pri_latency;
4752
4753         return wm_latency_write(file, ubuf, len, offp, latencies);
4754 }
4755
4756 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
4757                                     size_t len, loff_t *offp)
4758 {
4759         struct seq_file *m = file->private_data;
4760         struct drm_i915_private *dev_priv = m->private;
4761         uint16_t *latencies;
4762
4763         if (INTEL_GEN(dev_priv) >= 9)
4764                 latencies = dev_priv->wm.skl_latency;
4765         else
4766                 latencies = dev_priv->wm.spr_latency;
4767
4768         return wm_latency_write(file, ubuf, len, offp, latencies);
4769 }
4770
4771 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
4772                                     size_t len, loff_t *offp)
4773 {
4774         struct seq_file *m = file->private_data;
4775         struct drm_i915_private *dev_priv = m->private;
4776         uint16_t *latencies;
4777
4778         if (INTEL_GEN(dev_priv) >= 9)
4779                 latencies = dev_priv->wm.skl_latency;
4780         else
4781                 latencies = dev_priv->wm.cur_latency;
4782
4783         return wm_latency_write(file, ubuf, len, offp, latencies);
4784 }
4785
4786 static const struct file_operations i915_pri_wm_latency_fops = {
4787         .owner = THIS_MODULE,
4788         .open = pri_wm_latency_open,
4789         .read = seq_read,
4790         .llseek = seq_lseek,
4791         .release = single_release,
4792         .write = pri_wm_latency_write
4793 };
4794
4795 static const struct file_operations i915_spr_wm_latency_fops = {
4796         .owner = THIS_MODULE,
4797         .open = spr_wm_latency_open,
4798         .read = seq_read,
4799         .llseek = seq_lseek,
4800         .release = single_release,
4801         .write = spr_wm_latency_write
4802 };
4803
4804 static const struct file_operations i915_cur_wm_latency_fops = {
4805         .owner = THIS_MODULE,
4806         .open = cur_wm_latency_open,
4807         .read = seq_read,
4808         .llseek = seq_lseek,
4809         .release = single_release,
4810         .write = cur_wm_latency_write
4811 };
4812
4813 static int
4814 i915_wedged_get(void *data, u64 *val)
4815 {
4816         struct drm_i915_private *dev_priv = data;
4817
4818         *val = i915_terminally_wedged(&dev_priv->gpu_error);
4819
4820         return 0;
4821 }
4822
4823 static int
4824 i915_wedged_set(void *data, u64 val)
4825 {
4826         struct drm_i915_private *dev_priv = data;
4827
4828         /*
4829          * There is no safeguard against this debugfs entry colliding
4830          * with the hangcheck calling same i915_handle_error() in
4831          * parallel, causing an explosion. For now we assume that the
4832          * test harness is responsible enough not to inject gpu hangs
4833          * while it is writing to 'i915_wedged'
4834          */
4835
4836         if (i915_reset_in_progress(&dev_priv->gpu_error))
4837                 return -EAGAIN;
4838
4839         i915_handle_error(dev_priv, val,
4840                           "Manually setting wedged to %llu", val);
4841
4842         return 0;
4843 }
4844
4845 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
4846                         i915_wedged_get, i915_wedged_set,
4847                         "%llu\n");
4848
4849 static int
4850 i915_ring_missed_irq_get(void *data, u64 *val)
4851 {
4852         struct drm_i915_private *dev_priv = data;
4853
4854         *val = dev_priv->gpu_error.missed_irq_rings;
4855         return 0;
4856 }
4857
4858 static int
4859 i915_ring_missed_irq_set(void *data, u64 val)
4860 {
4861         struct drm_i915_private *dev_priv = data;
4862         struct drm_device *dev = &dev_priv->drm;
4863         int ret;
4864
4865         /* Lock against concurrent debugfs callers */
4866         ret = mutex_lock_interruptible(&dev->struct_mutex);
4867         if (ret)
4868                 return ret;
4869         dev_priv->gpu_error.missed_irq_rings = val;
4870         mutex_unlock(&dev->struct_mutex);
4871
4872         return 0;
4873 }
4874
4875 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
4876                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
4877                         "0x%08llx\n");
4878
4879 static int
4880 i915_ring_test_irq_get(void *data, u64 *val)
4881 {
4882         struct drm_i915_private *dev_priv = data;
4883
4884         *val = dev_priv->gpu_error.test_irq_rings;
4885
4886         return 0;
4887 }
4888
4889 static int
4890 i915_ring_test_irq_set(void *data, u64 val)
4891 {
4892         struct drm_i915_private *dev_priv = data;
4893
4894         val &= INTEL_INFO(dev_priv)->ring_mask;
4895         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
4896         dev_priv->gpu_error.test_irq_rings = val;
4897
4898         return 0;
4899 }
4900
4901 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
4902                         i915_ring_test_irq_get, i915_ring_test_irq_set,
4903                         "0x%08llx\n");
4904
4905 #define DROP_UNBOUND 0x1
4906 #define DROP_BOUND 0x2
4907 #define DROP_RETIRE 0x4
4908 #define DROP_ACTIVE 0x8
4909 #define DROP_FREED 0x10
4910 #define DROP_ALL (DROP_UNBOUND  | \
4911                   DROP_BOUND    | \
4912                   DROP_RETIRE   | \
4913                   DROP_ACTIVE   | \
4914                   DROP_FREED)
4915 static int
4916 i915_drop_caches_get(void *data, u64 *val)
4917 {
4918         *val = DROP_ALL;
4919
4920         return 0;
4921 }
4922
4923 static int
4924 i915_drop_caches_set(void *data, u64 val)
4925 {
4926         struct drm_i915_private *dev_priv = data;
4927         struct drm_device *dev = &dev_priv->drm;
4928         int ret;
4929
4930         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
4931
4932         /* No need to check and wait for gpu resets, only libdrm auto-restarts
4933          * on ioctls on -EAGAIN. */
4934         ret = mutex_lock_interruptible(&dev->struct_mutex);
4935         if (ret)
4936                 return ret;
4937
4938         if (val & DROP_ACTIVE) {
4939                 ret = i915_gem_wait_for_idle(dev_priv,
4940                                              I915_WAIT_INTERRUPTIBLE |
4941                                              I915_WAIT_LOCKED);
4942                 if (ret)
4943                         goto unlock;
4944         }
4945
4946         if (val & (DROP_RETIRE | DROP_ACTIVE))
4947                 i915_gem_retire_requests(dev_priv);
4948
4949         if (val & DROP_BOUND)
4950                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
4951
4952         if (val & DROP_UNBOUND)
4953                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
4954
4955 unlock:
4956         mutex_unlock(&dev->struct_mutex);
4957
4958         if (val & DROP_FREED) {
4959                 synchronize_rcu();
4960                 flush_work(&dev_priv->mm.free_work);
4961         }
4962
4963         return ret;
4964 }
4965
4966 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
4967                         i915_drop_caches_get, i915_drop_caches_set,
4968                         "0x%08llx\n");
4969
4970 static int
4971 i915_max_freq_get(void *data, u64 *val)
4972 {
4973         struct drm_i915_private *dev_priv = data;
4974
4975         if (INTEL_GEN(dev_priv) < 6)
4976                 return -ENODEV;
4977
4978         *val = intel_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
4979         return 0;
4980 }
4981
4982 static int
4983 i915_max_freq_set(void *data, u64 val)
4984 {
4985         struct drm_i915_private *dev_priv = data;
4986         u32 hw_max, hw_min;
4987         int ret;
4988
4989         if (INTEL_GEN(dev_priv) < 6)
4990                 return -ENODEV;
4991
4992         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
4993
4994         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
4995         if (ret)
4996                 return ret;
4997
4998         /*
4999          * Turbo will still be enabled, but won't go above the set value.
5000          */
5001         val = intel_freq_opcode(dev_priv, val);
5002
5003         hw_max = dev_priv->rps.max_freq;
5004         hw_min = dev_priv->rps.min_freq;
5005
5006         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
5007                 mutex_unlock(&dev_priv->rps.hw_lock);
5008                 return -EINVAL;
5009         }
5010
5011         dev_priv->rps.max_freq_softlimit = val;
5012
5013         intel_set_rps(dev_priv, val);
5014
5015         mutex_unlock(&dev_priv->rps.hw_lock);
5016
5017         return 0;
5018 }
5019
5020 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
5021                         i915_max_freq_get, i915_max_freq_set,
5022                         "%llu\n");
5023
5024 static int
5025 i915_min_freq_get(void *data, u64 *val)
5026 {
5027         struct drm_i915_private *dev_priv = data;
5028
5029         if (INTEL_GEN(dev_priv) < 6)
5030                 return -ENODEV;
5031
5032         *val = intel_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
5033         return 0;
5034 }
5035
5036 static int
5037 i915_min_freq_set(void *data, u64 val)
5038 {
5039         struct drm_i915_private *dev_priv = data;
5040         u32 hw_max, hw_min;
5041         int ret;
5042
5043         if (INTEL_GEN(dev_priv) < 6)
5044                 return -ENODEV;
5045
5046         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
5047
5048         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
5049         if (ret)
5050                 return ret;
5051
5052         /*
5053          * Turbo will still be enabled, but won't go below the set value.
5054          */
5055         val = intel_freq_opcode(dev_priv, val);
5056
5057         hw_max = dev_priv->rps.max_freq;
5058         hw_min = dev_priv->rps.min_freq;
5059
5060         if (val < hw_min ||
5061             val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
5062                 mutex_unlock(&dev_priv->rps.hw_lock);
5063                 return -EINVAL;
5064         }
5065
5066         dev_priv->rps.min_freq_softlimit = val;
5067
5068         intel_set_rps(dev_priv, val);
5069
5070         mutex_unlock(&dev_priv->rps.hw_lock);
5071
5072         return 0;
5073 }
5074
5075 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
5076                         i915_min_freq_get, i915_min_freq_set,
5077                         "%llu\n");
5078
5079 static int
5080 i915_cache_sharing_get(void *data, u64 *val)
5081 {
5082         struct drm_i915_private *dev_priv = data;
5083         u32 snpcr;
5084
5085         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5086                 return -ENODEV;
5087
5088         intel_runtime_pm_get(dev_priv);
5089
5090         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5091
5092         intel_runtime_pm_put(dev_priv);
5093
5094         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
5095
5096         return 0;
5097 }
5098
5099 static int
5100 i915_cache_sharing_set(void *data, u64 val)
5101 {
5102         struct drm_i915_private *dev_priv = data;
5103         u32 snpcr;
5104
5105         if (!(IS_GEN6(dev_priv) || IS_GEN7(dev_priv)))
5106                 return -ENODEV;
5107
5108         if (val > 3)
5109                 return -EINVAL;
5110
5111         intel_runtime_pm_get(dev_priv);
5112         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
5113
5114         /* Update the cache sharing policy here as well */
5115         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
5116         snpcr &= ~GEN6_MBC_SNPCR_MASK;
5117         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
5118         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
5119
5120         intel_runtime_pm_put(dev_priv);
5121         return 0;
5122 }
5123
5124 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
5125                         i915_cache_sharing_get, i915_cache_sharing_set,
5126                         "%llu\n");
5127
5128 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
5129                                           struct sseu_dev_info *sseu)
5130 {
5131         int ss_max = 2;
5132         int ss;
5133         u32 sig1[ss_max], sig2[ss_max];
5134
5135         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
5136         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
5137         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
5138         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
5139
5140         for (ss = 0; ss < ss_max; ss++) {
5141                 unsigned int eu_cnt;
5142
5143                 if (sig1[ss] & CHV_SS_PG_ENABLE)
5144                         /* skip disabled subslice */
5145                         continue;
5146
5147                 sseu->slice_mask = BIT(0);
5148                 sseu->subslice_mask |= BIT(ss);
5149                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
5150                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
5151                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
5152                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
5153                 sseu->eu_total += eu_cnt;
5154                 sseu->eu_per_subslice = max_t(unsigned int,
5155                                               sseu->eu_per_subslice, eu_cnt);
5156         }
5157 }
5158
5159 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
5160                                     struct sseu_dev_info *sseu)
5161 {
5162         int s_max = 3, ss_max = 4;
5163         int s, ss;
5164         u32 s_reg[s_max], eu_reg[2*s_max], eu_mask[2];
5165
5166         /* BXT has a single slice and at most 3 subslices. */
5167         if (IS_BROXTON(dev_priv)) {
5168                 s_max = 1;
5169                 ss_max = 3;
5170         }
5171
5172         for (s = 0; s < s_max; s++) {
5173                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
5174                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
5175                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
5176         }
5177
5178         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
5179                      GEN9_PGCTL_SSA_EU19_ACK |
5180                      GEN9_PGCTL_SSA_EU210_ACK |
5181                      GEN9_PGCTL_SSA_EU311_ACK;
5182         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
5183                      GEN9_PGCTL_SSB_EU19_ACK |
5184                      GEN9_PGCTL_SSB_EU210_ACK |
5185                      GEN9_PGCTL_SSB_EU311_ACK;
5186
5187         for (s = 0; s < s_max; s++) {
5188                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
5189                         /* skip disabled slice */
5190                         continue;
5191
5192                 sseu->slice_mask |= BIT(s);
5193
5194                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
5195                         sseu->subslice_mask =
5196                                 INTEL_INFO(dev_priv)->sseu.subslice_mask;
5197
5198                 for (ss = 0; ss < ss_max; ss++) {
5199                         unsigned int eu_cnt;
5200
5201                         if (IS_BROXTON(dev_priv)) {
5202                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
5203                                         /* skip disabled subslice */
5204                                         continue;
5205
5206                                 sseu->subslice_mask |= BIT(ss);
5207                         }
5208
5209                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
5210                                                eu_mask[ss%2]);
5211                         sseu->eu_total += eu_cnt;
5212                         sseu->eu_per_subslice = max_t(unsigned int,
5213                                                       sseu->eu_per_subslice,
5214                                                       eu_cnt);
5215                 }
5216         }
5217 }
5218
5219 static void broadwell_sseu_device_status(struct drm_i915_private *dev_priv,
5220                                          struct sseu_dev_info *sseu)
5221 {
5222         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
5223         int s;
5224
5225         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
5226
5227         if (sseu->slice_mask) {
5228                 sseu->subslice_mask = INTEL_INFO(dev_priv)->sseu.subslice_mask;
5229                 sseu->eu_per_subslice =
5230                                 INTEL_INFO(dev_priv)->sseu.eu_per_subslice;
5231                 sseu->eu_total = sseu->eu_per_subslice *
5232                                  sseu_subslice_total(sseu);
5233
5234                 /* subtract fused off EU(s) from enabled slice(s) */
5235                 for (s = 0; s < fls(sseu->slice_mask); s++) {
5236                         u8 subslice_7eu =
5237                                 INTEL_INFO(dev_priv)->sseu.subslice_7eu[s];
5238
5239                         sseu->eu_total -= hweight8(subslice_7eu);
5240                 }
5241         }
5242 }
5243
5244 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
5245                                  const struct sseu_dev_info *sseu)
5246 {
5247         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5248         const char *type = is_available_info ? "Available" : "Enabled";
5249
5250         seq_printf(m, "  %s Slice Mask: %04x\n", type,
5251                    sseu->slice_mask);
5252         seq_printf(m, "  %s Slice Total: %u\n", type,
5253                    hweight8(sseu->slice_mask));
5254         seq_printf(m, "  %s Subslice Total: %u\n", type,
5255                    sseu_subslice_total(sseu));
5256         seq_printf(m, "  %s Subslice Mask: %04x\n", type,
5257                    sseu->subslice_mask);
5258         seq_printf(m, "  %s Subslice Per Slice: %u\n", type,
5259                    hweight8(sseu->subslice_mask));
5260         seq_printf(m, "  %s EU Total: %u\n", type,
5261                    sseu->eu_total);
5262         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
5263                    sseu->eu_per_subslice);
5264
5265         if (!is_available_info)
5266                 return;
5267
5268         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
5269         if (HAS_POOLED_EU(dev_priv))
5270                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
5271
5272         seq_printf(m, "  Has Slice Power Gating: %s\n",
5273                    yesno(sseu->has_slice_pg));
5274         seq_printf(m, "  Has Subslice Power Gating: %s\n",
5275                    yesno(sseu->has_subslice_pg));
5276         seq_printf(m, "  Has EU Power Gating: %s\n",
5277                    yesno(sseu->has_eu_pg));
5278 }
5279
5280 static int i915_sseu_status(struct seq_file *m, void *unused)
5281 {
5282         struct drm_i915_private *dev_priv = node_to_i915(m->private);
5283         struct sseu_dev_info sseu;
5284
5285         if (INTEL_GEN(dev_priv) < 8)
5286                 return -ENODEV;
5287
5288         seq_puts(m, "SSEU Device Info\n");
5289         i915_print_sseu_info(m, true, &INTEL_INFO(dev_priv)->sseu);
5290
5291         seq_puts(m, "SSEU Device Status\n");
5292         memset(&sseu, 0, sizeof(sseu));
5293
5294         intel_runtime_pm_get(dev_priv);
5295
5296         if (IS_CHERRYVIEW(dev_priv)) {
5297                 cherryview_sseu_device_status(dev_priv, &sseu);
5298         } else if (IS_BROADWELL(dev_priv)) {
5299                 broadwell_sseu_device_status(dev_priv, &sseu);
5300         } else if (INTEL_GEN(dev_priv) >= 9) {
5301                 gen9_sseu_device_status(dev_priv, &sseu);
5302         }
5303
5304         intel_runtime_pm_put(dev_priv);
5305
5306         i915_print_sseu_info(m, false, &sseu);
5307
5308         return 0;
5309 }
5310
5311 static int i915_forcewake_open(struct inode *inode, struct file *file)
5312 {
5313         struct drm_i915_private *dev_priv = inode->i_private;
5314
5315         if (INTEL_GEN(dev_priv) < 6)
5316                 return 0;
5317
5318         intel_runtime_pm_get(dev_priv);
5319         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5320
5321         return 0;
5322 }
5323
5324 static int i915_forcewake_release(struct inode *inode, struct file *file)
5325 {
5326         struct drm_i915_private *dev_priv = inode->i_private;
5327
5328         if (INTEL_GEN(dev_priv) < 6)
5329                 return 0;
5330
5331         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5332         intel_runtime_pm_put(dev_priv);
5333
5334         return 0;
5335 }
5336
5337 static const struct file_operations i915_forcewake_fops = {
5338         .owner = THIS_MODULE,
5339         .open = i915_forcewake_open,
5340         .release = i915_forcewake_release,
5341 };
5342
5343 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
5344 {
5345         struct dentry *ent;
5346
5347         ent = debugfs_create_file("i915_forcewake_user",
5348                                   S_IRUSR,
5349                                   root, to_i915(minor->dev),
5350                                   &i915_forcewake_fops);
5351         if (!ent)
5352                 return -ENOMEM;
5353
5354         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
5355 }
5356
5357 static int i915_debugfs_create(struct dentry *root,
5358                                struct drm_minor *minor,
5359                                const char *name,
5360                                const struct file_operations *fops)
5361 {
5362         struct dentry *ent;
5363
5364         ent = debugfs_create_file(name,
5365                                   S_IRUGO | S_IWUSR,
5366                                   root, to_i915(minor->dev),
5367                                   fops);
5368         if (!ent)
5369                 return -ENOMEM;
5370
5371         return drm_add_fake_info_node(minor, ent, fops);
5372 }
5373
5374 static const struct drm_info_list i915_debugfs_list[] = {
5375         {"i915_capabilities", i915_capabilities, 0},
5376         {"i915_gem_objects", i915_gem_object_info, 0},
5377         {"i915_gem_gtt", i915_gem_gtt_info, 0},
5378         {"i915_gem_pin_display", i915_gem_gtt_info, 0, (void *)1},
5379         {"i915_gem_stolen", i915_gem_stolen_list_info },
5380         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
5381         {"i915_gem_request", i915_gem_request_info, 0},
5382         {"i915_gem_seqno", i915_gem_seqno_info, 0},
5383         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
5384         {"i915_gem_interrupt", i915_interrupt_info, 0},
5385         {"i915_gem_batch_pool", i915_gem_batch_pool_info, 0},
5386         {"i915_guc_info", i915_guc_info, 0},
5387         {"i915_guc_load_status", i915_guc_load_status_info, 0},
5388         {"i915_guc_log_dump", i915_guc_log_dump, 0},
5389         {"i915_frequency_info", i915_frequency_info, 0},
5390         {"i915_hangcheck_info", i915_hangcheck_info, 0},
5391         {"i915_drpc_info", i915_drpc_info, 0},
5392         {"i915_emon_status", i915_emon_status, 0},
5393         {"i915_ring_freq_table", i915_ring_freq_table, 0},
5394         {"i915_frontbuffer_tracking", i915_frontbuffer_tracking, 0},
5395         {"i915_fbc_status", i915_fbc_status, 0},
5396         {"i915_ips_status", i915_ips_status, 0},
5397         {"i915_sr_status", i915_sr_status, 0},
5398         {"i915_opregion", i915_opregion, 0},
5399         {"i915_vbt", i915_vbt, 0},
5400         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
5401         {"i915_context_status", i915_context_status, 0},
5402         {"i915_dump_lrc", i915_dump_lrc, 0},
5403         {"i915_forcewake_domains", i915_forcewake_domains, 0},
5404         {"i915_swizzle_info", i915_swizzle_info, 0},
5405         {"i915_ppgtt_info", i915_ppgtt_info, 0},
5406         {"i915_llc", i915_llc, 0},
5407         {"i915_edp_psr_status", i915_edp_psr_status, 0},
5408         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
5409         {"i915_energy_uJ", i915_energy_uJ, 0},
5410         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
5411         {"i915_power_domain_info", i915_power_domain_info, 0},
5412         {"i915_dmc_info", i915_dmc_info, 0},
5413         {"i915_display_info", i915_display_info, 0},
5414         {"i915_engine_info", i915_engine_info, 0},
5415         {"i915_semaphore_status", i915_semaphore_status, 0},
5416         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
5417         {"i915_dp_mst_info", i915_dp_mst_info, 0},
5418         {"i915_wa_registers", i915_wa_registers, 0},
5419         {"i915_ddb_info", i915_ddb_info, 0},
5420         {"i915_sseu_status", i915_sseu_status, 0},
5421         {"i915_drrs_status", i915_drrs_status, 0},
5422         {"i915_rps_boost_info", i915_rps_boost_info, 0},
5423 };
5424 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
5425
5426 static const struct i915_debugfs_files {
5427         const char *name;
5428         const struct file_operations *fops;
5429 } i915_debugfs_files[] = {
5430         {"i915_wedged", &i915_wedged_fops},
5431         {"i915_max_freq", &i915_max_freq_fops},
5432         {"i915_min_freq", &i915_min_freq_fops},
5433         {"i915_cache_sharing", &i915_cache_sharing_fops},
5434         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
5435         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
5436         {"i915_gem_drop_caches", &i915_drop_caches_fops},
5437 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
5438         {"i915_error_state", &i915_error_state_fops},
5439 #endif
5440         {"i915_next_seqno", &i915_next_seqno_fops},
5441         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
5442         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
5443         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
5444         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
5445         {"i915_fbc_false_color", &i915_fbc_fc_fops},
5446         {"i915_dp_test_data", &i915_displayport_test_data_fops},
5447         {"i915_dp_test_type", &i915_displayport_test_type_fops},
5448         {"i915_dp_test_active", &i915_displayport_test_active_fops},
5449         {"i915_guc_log_control", &i915_guc_log_control_fops}
5450 };
5451
5452 void intel_display_crc_init(struct drm_i915_private *dev_priv)
5453 {
5454         enum pipe pipe;
5455
5456         for_each_pipe(dev_priv, pipe) {
5457                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
5458
5459                 pipe_crc->opened = false;
5460                 spin_lock_init(&pipe_crc->lock);
5461                 init_waitqueue_head(&pipe_crc->wq);
5462         }
5463 }
5464
5465 int i915_debugfs_register(struct drm_i915_private *dev_priv)
5466 {
5467         struct drm_minor *minor = dev_priv->drm.primary;
5468         int ret, i;
5469
5470         ret = i915_forcewake_create(minor->debugfs_root, minor);
5471         if (ret)
5472                 return ret;
5473
5474         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5475                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
5476                 if (ret)
5477                         return ret;
5478         }
5479
5480         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5481                 ret = i915_debugfs_create(minor->debugfs_root, minor,
5482                                           i915_debugfs_files[i].name,
5483                                           i915_debugfs_files[i].fops);
5484                 if (ret)
5485                         return ret;
5486         }
5487
5488         return drm_debugfs_create_files(i915_debugfs_list,
5489                                         I915_DEBUGFS_ENTRIES,
5490                                         minor->debugfs_root, minor);
5491 }
5492
5493 void i915_debugfs_unregister(struct drm_i915_private *dev_priv)
5494 {
5495         struct drm_minor *minor = dev_priv->drm.primary;
5496         int i;
5497
5498         drm_debugfs_remove_files(i915_debugfs_list,
5499                                  I915_DEBUGFS_ENTRIES, minor);
5500
5501         drm_debugfs_remove_files((struct drm_info_list *)&i915_forcewake_fops,
5502                                  1, minor);
5503
5504         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
5505                 struct drm_info_list *info_list =
5506                         (struct drm_info_list *)&i915_pipe_crc_data[i];
5507
5508                 drm_debugfs_remove_files(info_list, 1, minor);
5509         }
5510
5511         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
5512                 struct drm_info_list *info_list =
5513                         (struct drm_info_list *)i915_debugfs_files[i].fops;
5514
5515                 drm_debugfs_remove_files(info_list, 1, minor);
5516         }
5517 }
5518
5519 struct dpcd_block {
5520         /* DPCD dump start address. */
5521         unsigned int offset;
5522         /* DPCD dump end address, inclusive. If unset, .size will be used. */
5523         unsigned int end;
5524         /* DPCD dump size. Used if .end is unset. If unset, defaults to 1. */
5525         size_t size;
5526         /* Only valid for eDP. */
5527         bool edp;
5528 };
5529
5530 static const struct dpcd_block i915_dpcd_debug[] = {
5531         { .offset = DP_DPCD_REV, .size = DP_RECEIVER_CAP_SIZE },
5532         { .offset = DP_PSR_SUPPORT, .end = DP_PSR_CAPS },
5533         { .offset = DP_DOWNSTREAM_PORT_0, .size = 16 },
5534         { .offset = DP_LINK_BW_SET, .end = DP_EDP_CONFIGURATION_SET },
5535         { .offset = DP_SINK_COUNT, .end = DP_ADJUST_REQUEST_LANE2_3 },
5536         { .offset = DP_SET_POWER },
5537         { .offset = DP_EDP_DPCD_REV },
5538         { .offset = DP_EDP_GENERAL_CAP_1, .end = DP_EDP_GENERAL_CAP_3 },
5539         { .offset = DP_EDP_DISPLAY_CONTROL_REGISTER, .end = DP_EDP_BACKLIGHT_FREQ_CAP_MAX_LSB },
5540         { .offset = DP_EDP_DBC_MINIMUM_BRIGHTNESS_SET, .end = DP_EDP_DBC_MAXIMUM_BRIGHTNESS_SET },
5541 };
5542
5543 static int i915_dpcd_show(struct seq_file *m, void *data)
5544 {
5545         struct drm_connector *connector = m->private;
5546         struct intel_dp *intel_dp =
5547                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5548         uint8_t buf[16];
5549         ssize_t err;
5550         int i;
5551
5552         if (connector->status != connector_status_connected)
5553                 return -ENODEV;
5554
5555         for (i = 0; i < ARRAY_SIZE(i915_dpcd_debug); i++) {
5556                 const struct dpcd_block *b = &i915_dpcd_debug[i];
5557                 size_t size = b->end ? b->end - b->offset + 1 : (b->size ?: 1);
5558
5559                 if (b->edp &&
5560                     connector->connector_type != DRM_MODE_CONNECTOR_eDP)
5561                         continue;
5562
5563                 /* low tech for now */
5564                 if (WARN_ON(size > sizeof(buf)))
5565                         continue;
5566
5567                 err = drm_dp_dpcd_read(&intel_dp->aux, b->offset, buf, size);
5568                 if (err <= 0) {
5569                         DRM_ERROR("dpcd read (%zu bytes at %u) failed (%zd)\n",
5570                                   size, b->offset, err);
5571                         continue;
5572                 }
5573
5574                 seq_printf(m, "%04x: %*ph\n", b->offset, (int) size, buf);
5575         }
5576
5577         return 0;
5578 }
5579
5580 static int i915_dpcd_open(struct inode *inode, struct file *file)
5581 {
5582         return single_open(file, i915_dpcd_show, inode->i_private);
5583 }
5584
5585 static const struct file_operations i915_dpcd_fops = {
5586         .owner = THIS_MODULE,
5587         .open = i915_dpcd_open,
5588         .read = seq_read,
5589         .llseek = seq_lseek,
5590         .release = single_release,
5591 };
5592
5593 static int i915_panel_show(struct seq_file *m, void *data)
5594 {
5595         struct drm_connector *connector = m->private;
5596         struct intel_dp *intel_dp =
5597                 enc_to_intel_dp(&intel_attached_encoder(connector)->base);
5598
5599         if (connector->status != connector_status_connected)
5600                 return -ENODEV;
5601
5602         seq_printf(m, "Panel power up delay: %d\n",
5603                    intel_dp->panel_power_up_delay);
5604         seq_printf(m, "Panel power down delay: %d\n",
5605                    intel_dp->panel_power_down_delay);
5606         seq_printf(m, "Backlight on delay: %d\n",
5607                    intel_dp->backlight_on_delay);
5608         seq_printf(m, "Backlight off delay: %d\n",
5609                    intel_dp->backlight_off_delay);
5610
5611         return 0;
5612 }
5613
5614 static int i915_panel_open(struct inode *inode, struct file *file)
5615 {
5616         return single_open(file, i915_panel_show, inode->i_private);
5617 }
5618
5619 static const struct file_operations i915_panel_fops = {
5620         .owner = THIS_MODULE,
5621         .open = i915_panel_open,
5622         .read = seq_read,
5623         .llseek = seq_lseek,
5624         .release = single_release,
5625 };
5626
5627 /**
5628  * i915_debugfs_connector_add - add i915 specific connector debugfs files
5629  * @connector: pointer to a registered drm_connector
5630  *
5631  * Cleanup will be done by drm_connector_unregister() through a call to
5632  * drm_debugfs_connector_remove().
5633  *
5634  * Returns 0 on success, negative error codes on error.
5635  */
5636 int i915_debugfs_connector_add(struct drm_connector *connector)
5637 {
5638         struct dentry *root = connector->debugfs_entry;
5639
5640         /* The connector must have been registered beforehands. */
5641         if (!root)
5642                 return -ENODEV;
5643
5644         if (connector->connector_type == DRM_MODE_CONNECTOR_DisplayPort ||
5645             connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5646                 debugfs_create_file("i915_dpcd", S_IRUGO, root,
5647                                     connector, &i915_dpcd_fops);
5648
5649         if (connector->connector_type == DRM_MODE_CONNECTOR_eDP)
5650                 debugfs_create_file("i915_panel_timings", S_IRUGO, root,
5651                                     connector, &i915_panel_fops);
5652
5653         return 0;
5654 }