2905bcff79cf69a87542980be04a29cd3f2bb4f5
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/sched/mm.h>
30 #include <linux/sort.h>
31
32 #include <drm/drm_debugfs.h>
33
34 #include "gem/i915_gem_context.h"
35 #include "gt/intel_gt_pm.h"
36 #include "gt/intel_gt_requests.h"
37 #include "gt/intel_reset.h"
38 #include "gt/intel_rc6.h"
39 #include "gt/intel_rps.h"
40
41 #include "i915_debugfs.h"
42 #include "i915_debugfs_params.h"
43 #include "i915_irq.h"
44 #include "i915_trace.h"
45 #include "intel_pm.h"
46 #include "intel_sideband.h"
47
48 static inline struct drm_i915_private *node_to_i915(struct drm_info_node *node)
49 {
50         return to_i915(node->minor->dev);
51 }
52
53 static int i915_capabilities(struct seq_file *m, void *data)
54 {
55         struct drm_i915_private *i915 = node_to_i915(m->private);
56         struct drm_printer p = drm_seq_file_printer(m);
57
58         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(i915));
59
60         intel_device_info_print_static(INTEL_INFO(i915), &p);
61         intel_device_info_print_runtime(RUNTIME_INFO(i915), &p);
62         intel_driver_caps_print(&i915->caps, &p);
63
64         kernel_param_lock(THIS_MODULE);
65         i915_params_dump(&i915_modparams, &p);
66         kernel_param_unlock(THIS_MODULE);
67
68         return 0;
69 }
70
71 static char get_tiling_flag(struct drm_i915_gem_object *obj)
72 {
73         switch (i915_gem_object_get_tiling(obj)) {
74         default:
75         case I915_TILING_NONE: return ' ';
76         case I915_TILING_X: return 'X';
77         case I915_TILING_Y: return 'Y';
78         }
79 }
80
81 static char get_global_flag(struct drm_i915_gem_object *obj)
82 {
83         return READ_ONCE(obj->userfault_count) ? 'g' : ' ';
84 }
85
86 static char get_pin_mapped_flag(struct drm_i915_gem_object *obj)
87 {
88         return obj->mm.mapping ? 'M' : ' ';
89 }
90
91 static const char *
92 stringify_page_sizes(unsigned int page_sizes, char *buf, size_t len)
93 {
94         size_t x = 0;
95
96         switch (page_sizes) {
97         case 0:
98                 return "";
99         case I915_GTT_PAGE_SIZE_4K:
100                 return "4K";
101         case I915_GTT_PAGE_SIZE_64K:
102                 return "64K";
103         case I915_GTT_PAGE_SIZE_2M:
104                 return "2M";
105         default:
106                 if (!buf)
107                         return "M";
108
109                 if (page_sizes & I915_GTT_PAGE_SIZE_2M)
110                         x += snprintf(buf + x, len - x, "2M, ");
111                 if (page_sizes & I915_GTT_PAGE_SIZE_64K)
112                         x += snprintf(buf + x, len - x, "64K, ");
113                 if (page_sizes & I915_GTT_PAGE_SIZE_4K)
114                         x += snprintf(buf + x, len - x, "4K, ");
115                 buf[x-2] = '\0';
116
117                 return buf;
118         }
119 }
120
121 void
122 i915_debugfs_describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
123 {
124         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
125         struct intel_engine_cs *engine;
126         struct i915_vma *vma;
127         int pin_count = 0;
128
129         seq_printf(m, "%pK: %c%c%c %8zdKiB %02x %02x %s%s%s",
130                    &obj->base,
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    get_pin_mapped_flag(obj),
134                    obj->base.size / 1024,
135                    obj->read_domains,
136                    obj->write_domain,
137                    i915_cache_level_str(dev_priv, obj->cache_level),
138                    obj->mm.dirty ? " dirty" : "",
139                    obj->mm.madv == I915_MADV_DONTNEED ? " purgeable" : "");
140         if (obj->base.name)
141                 seq_printf(m, " (name: %d)", obj->base.name);
142
143         spin_lock(&obj->vma.lock);
144         list_for_each_entry(vma, &obj->vma.list, obj_link) {
145                 if (!drm_mm_node_allocated(&vma->node))
146                         continue;
147
148                 spin_unlock(&obj->vma.lock);
149
150                 if (i915_vma_is_pinned(vma))
151                         pin_count++;
152
153                 seq_printf(m, " (%sgtt offset: %08llx, size: %08llx, pages: %s",
154                            i915_vma_is_ggtt(vma) ? "g" : "pp",
155                            vma->node.start, vma->node.size,
156                            stringify_page_sizes(vma->page_sizes.gtt, NULL, 0));
157                 if (i915_vma_is_ggtt(vma)) {
158                         switch (vma->ggtt_view.type) {
159                         case I915_GGTT_VIEW_NORMAL:
160                                 seq_puts(m, ", normal");
161                                 break;
162
163                         case I915_GGTT_VIEW_PARTIAL:
164                                 seq_printf(m, ", partial [%08llx+%x]",
165                                            vma->ggtt_view.partial.offset << PAGE_SHIFT,
166                                            vma->ggtt_view.partial.size << PAGE_SHIFT);
167                                 break;
168
169                         case I915_GGTT_VIEW_ROTATED:
170                                 seq_printf(m, ", rotated [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
171                                            vma->ggtt_view.rotated.plane[0].width,
172                                            vma->ggtt_view.rotated.plane[0].height,
173                                            vma->ggtt_view.rotated.plane[0].stride,
174                                            vma->ggtt_view.rotated.plane[0].offset,
175                                            vma->ggtt_view.rotated.plane[1].width,
176                                            vma->ggtt_view.rotated.plane[1].height,
177                                            vma->ggtt_view.rotated.plane[1].stride,
178                                            vma->ggtt_view.rotated.plane[1].offset);
179                                 break;
180
181                         case I915_GGTT_VIEW_REMAPPED:
182                                 seq_printf(m, ", remapped [(%ux%u, stride=%u, offset=%u), (%ux%u, stride=%u, offset=%u)]",
183                                            vma->ggtt_view.remapped.plane[0].width,
184                                            vma->ggtt_view.remapped.plane[0].height,
185                                            vma->ggtt_view.remapped.plane[0].stride,
186                                            vma->ggtt_view.remapped.plane[0].offset,
187                                            vma->ggtt_view.remapped.plane[1].width,
188                                            vma->ggtt_view.remapped.plane[1].height,
189                                            vma->ggtt_view.remapped.plane[1].stride,
190                                            vma->ggtt_view.remapped.plane[1].offset);
191                                 break;
192
193                         default:
194                                 MISSING_CASE(vma->ggtt_view.type);
195                                 break;
196                         }
197                 }
198                 if (vma->fence)
199                         seq_printf(m, " , fence: %d", vma->fence->id);
200                 seq_puts(m, ")");
201
202                 spin_lock(&obj->vma.lock);
203         }
204         spin_unlock(&obj->vma.lock);
205
206         seq_printf(m, " (pinned x %d)", pin_count);
207         if (obj->stolen)
208                 seq_printf(m, " (stolen: %08llx)", obj->stolen->start);
209         if (i915_gem_object_is_framebuffer(obj))
210                 seq_printf(m, " (fb)");
211
212         engine = i915_gem_object_last_write_engine(obj);
213         if (engine)
214                 seq_printf(m, " (%s)", engine->name);
215 }
216
217 struct file_stats {
218         struct i915_address_space *vm;
219         unsigned long count;
220         u64 total;
221         u64 active, inactive;
222         u64 closed;
223 };
224
225 static int per_file_stats(int id, void *ptr, void *data)
226 {
227         struct drm_i915_gem_object *obj = ptr;
228         struct file_stats *stats = data;
229         struct i915_vma *vma;
230
231         if (!kref_get_unless_zero(&obj->base.refcount))
232                 return 0;
233
234         stats->count++;
235         stats->total += obj->base.size;
236
237         spin_lock(&obj->vma.lock);
238         if (!stats->vm) {
239                 for_each_ggtt_vma(vma, obj) {
240                         if (!drm_mm_node_allocated(&vma->node))
241                                 continue;
242
243                         if (i915_vma_is_active(vma))
244                                 stats->active += vma->node.size;
245                         else
246                                 stats->inactive += vma->node.size;
247
248                         if (i915_vma_is_closed(vma))
249                                 stats->closed += vma->node.size;
250                 }
251         } else {
252                 struct rb_node *p = obj->vma.tree.rb_node;
253
254                 while (p) {
255                         long cmp;
256
257                         vma = rb_entry(p, typeof(*vma), obj_node);
258                         cmp = i915_vma_compare(vma, stats->vm, NULL);
259                         if (cmp == 0) {
260                                 if (drm_mm_node_allocated(&vma->node)) {
261                                         if (i915_vma_is_active(vma))
262                                                 stats->active += vma->node.size;
263                                         else
264                                                 stats->inactive += vma->node.size;
265
266                                         if (i915_vma_is_closed(vma))
267                                                 stats->closed += vma->node.size;
268                                 }
269                                 break;
270                         }
271                         if (cmp < 0)
272                                 p = p->rb_right;
273                         else
274                                 p = p->rb_left;
275                 }
276         }
277         spin_unlock(&obj->vma.lock);
278
279         i915_gem_object_put(obj);
280         return 0;
281 }
282
283 #define print_file_stats(m, name, stats) do { \
284         if (stats.count) \
285                 seq_printf(m, "%s: %lu objects, %llu bytes (%llu active, %llu inactive, %llu closed)\n", \
286                            name, \
287                            stats.count, \
288                            stats.total, \
289                            stats.active, \
290                            stats.inactive, \
291                            stats.closed); \
292 } while (0)
293
294 static void print_context_stats(struct seq_file *m,
295                                 struct drm_i915_private *i915)
296 {
297         struct file_stats kstats = {};
298         struct i915_gem_context *ctx, *cn;
299
300         spin_lock(&i915->gem.contexts.lock);
301         list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
302                 struct i915_gem_engines_iter it;
303                 struct intel_context *ce;
304
305                 if (!kref_get_unless_zero(&ctx->ref))
306                         continue;
307
308                 spin_unlock(&i915->gem.contexts.lock);
309
310                 for_each_gem_engine(ce,
311                                     i915_gem_context_lock_engines(ctx), it) {
312                         if (intel_context_pin_if_active(ce)) {
313                                 rcu_read_lock();
314                                 if (ce->state)
315                                         per_file_stats(0,
316                                                        ce->state->obj, &kstats);
317                                 per_file_stats(0, ce->ring->vma->obj, &kstats);
318                                 rcu_read_unlock();
319                                 intel_context_unpin(ce);
320                         }
321                 }
322                 i915_gem_context_unlock_engines(ctx);
323
324                 if (!IS_ERR_OR_NULL(ctx->file_priv)) {
325                         struct file_stats stats = {
326                                 .vm = rcu_access_pointer(ctx->vm),
327                         };
328                         struct drm_file *file = ctx->file_priv->file;
329                         struct task_struct *task;
330                         char name[80];
331
332                         rcu_read_lock();
333                         idr_for_each(&file->object_idr, per_file_stats, &stats);
334                         rcu_read_unlock();
335
336                         rcu_read_lock();
337                         task = pid_task(ctx->pid ?: file->pid, PIDTYPE_PID);
338                         snprintf(name, sizeof(name), "%s",
339                                  task ? task->comm : "<unknown>");
340                         rcu_read_unlock();
341
342                         print_file_stats(m, name, stats);
343                 }
344
345                 spin_lock(&i915->gem.contexts.lock);
346                 list_safe_reset_next(ctx, cn, link);
347                 i915_gem_context_put(ctx);
348         }
349         spin_unlock(&i915->gem.contexts.lock);
350
351         print_file_stats(m, "[k]contexts", kstats);
352 }
353
354 static int i915_gem_object_info(struct seq_file *m, void *data)
355 {
356         struct drm_i915_private *i915 = node_to_i915(m->private);
357         struct intel_memory_region *mr;
358         enum intel_region_id id;
359
360         seq_printf(m, "%u shrinkable [%u free] objects, %llu bytes\n",
361                    i915->mm.shrink_count,
362                    atomic_read(&i915->mm.free_count),
363                    i915->mm.shrink_memory);
364         for_each_memory_region(mr, i915, id)
365                 seq_printf(m, "%s: total:%pa, available:%pa bytes\n",
366                            mr->name, &mr->total, &mr->avail);
367         seq_putc(m, '\n');
368
369         print_context_stats(m, i915);
370
371         return 0;
372 }
373
374 static void gen8_display_interrupt_info(struct seq_file *m)
375 {
376         struct drm_i915_private *dev_priv = node_to_i915(m->private);
377         enum pipe pipe;
378
379         for_each_pipe(dev_priv, pipe) {
380                 enum intel_display_power_domain power_domain;
381                 intel_wakeref_t wakeref;
382
383                 power_domain = POWER_DOMAIN_PIPE(pipe);
384                 wakeref = intel_display_power_get_if_enabled(dev_priv,
385                                                              power_domain);
386                 if (!wakeref) {
387                         seq_printf(m, "Pipe %c power disabled\n",
388                                    pipe_name(pipe));
389                         continue;
390                 }
391                 seq_printf(m, "Pipe %c IMR:\t%08x\n",
392                            pipe_name(pipe),
393                            I915_READ(GEN8_DE_PIPE_IMR(pipe)));
394                 seq_printf(m, "Pipe %c IIR:\t%08x\n",
395                            pipe_name(pipe),
396                            I915_READ(GEN8_DE_PIPE_IIR(pipe)));
397                 seq_printf(m, "Pipe %c IER:\t%08x\n",
398                            pipe_name(pipe),
399                            I915_READ(GEN8_DE_PIPE_IER(pipe)));
400
401                 intel_display_power_put(dev_priv, power_domain, wakeref);
402         }
403
404         seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
405                    I915_READ(GEN8_DE_PORT_IMR));
406         seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
407                    I915_READ(GEN8_DE_PORT_IIR));
408         seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
409                    I915_READ(GEN8_DE_PORT_IER));
410
411         seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
412                    I915_READ(GEN8_DE_MISC_IMR));
413         seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
414                    I915_READ(GEN8_DE_MISC_IIR));
415         seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
416                    I915_READ(GEN8_DE_MISC_IER));
417
418         seq_printf(m, "PCU interrupt mask:\t%08x\n",
419                    I915_READ(GEN8_PCU_IMR));
420         seq_printf(m, "PCU interrupt identity:\t%08x\n",
421                    I915_READ(GEN8_PCU_IIR));
422         seq_printf(m, "PCU interrupt enable:\t%08x\n",
423                    I915_READ(GEN8_PCU_IER));
424 }
425
426 static int i915_interrupt_info(struct seq_file *m, void *data)
427 {
428         struct drm_i915_private *dev_priv = node_to_i915(m->private);
429         struct intel_engine_cs *engine;
430         intel_wakeref_t wakeref;
431         int i, pipe;
432
433         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
434
435         if (IS_CHERRYVIEW(dev_priv)) {
436                 intel_wakeref_t pref;
437
438                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
439                            I915_READ(GEN8_MASTER_IRQ));
440
441                 seq_printf(m, "Display IER:\t%08x\n",
442                            I915_READ(VLV_IER));
443                 seq_printf(m, "Display IIR:\t%08x\n",
444                            I915_READ(VLV_IIR));
445                 seq_printf(m, "Display IIR_RW:\t%08x\n",
446                            I915_READ(VLV_IIR_RW));
447                 seq_printf(m, "Display IMR:\t%08x\n",
448                            I915_READ(VLV_IMR));
449                 for_each_pipe(dev_priv, pipe) {
450                         enum intel_display_power_domain power_domain;
451
452                         power_domain = POWER_DOMAIN_PIPE(pipe);
453                         pref = intel_display_power_get_if_enabled(dev_priv,
454                                                                   power_domain);
455                         if (!pref) {
456                                 seq_printf(m, "Pipe %c power disabled\n",
457                                            pipe_name(pipe));
458                                 continue;
459                         }
460
461                         seq_printf(m, "Pipe %c stat:\t%08x\n",
462                                    pipe_name(pipe),
463                                    I915_READ(PIPESTAT(pipe)));
464
465                         intel_display_power_put(dev_priv, power_domain, pref);
466                 }
467
468                 pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
469                 seq_printf(m, "Port hotplug:\t%08x\n",
470                            I915_READ(PORT_HOTPLUG_EN));
471                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
472                            I915_READ(VLV_DPFLIPSTAT));
473                 seq_printf(m, "DPINVGTT:\t%08x\n",
474                            I915_READ(DPINVGTT));
475                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
476
477                 for (i = 0; i < 4; i++) {
478                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
479                                    i, I915_READ(GEN8_GT_IMR(i)));
480                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
481                                    i, I915_READ(GEN8_GT_IIR(i)));
482                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
483                                    i, I915_READ(GEN8_GT_IER(i)));
484                 }
485
486                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
487                            I915_READ(GEN8_PCU_IMR));
488                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
489                            I915_READ(GEN8_PCU_IIR));
490                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
491                            I915_READ(GEN8_PCU_IER));
492         } else if (INTEL_GEN(dev_priv) >= 11) {
493                 seq_printf(m, "Master Interrupt Control:  %08x\n",
494                            I915_READ(GEN11_GFX_MSTR_IRQ));
495
496                 seq_printf(m, "Render/Copy Intr Enable:   %08x\n",
497                            I915_READ(GEN11_RENDER_COPY_INTR_ENABLE));
498                 seq_printf(m, "VCS/VECS Intr Enable:      %08x\n",
499                            I915_READ(GEN11_VCS_VECS_INTR_ENABLE));
500                 seq_printf(m, "GUC/SG Intr Enable:\t   %08x\n",
501                            I915_READ(GEN11_GUC_SG_INTR_ENABLE));
502                 seq_printf(m, "GPM/WGBOXPERF Intr Enable: %08x\n",
503                            I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE));
504                 seq_printf(m, "Crypto Intr Enable:\t   %08x\n",
505                            I915_READ(GEN11_CRYPTO_RSVD_INTR_ENABLE));
506                 seq_printf(m, "GUnit/CSME Intr Enable:\t   %08x\n",
507                            I915_READ(GEN11_GUNIT_CSME_INTR_ENABLE));
508
509                 seq_printf(m, "Display Interrupt Control:\t%08x\n",
510                            I915_READ(GEN11_DISPLAY_INT_CTL));
511
512                 gen8_display_interrupt_info(m);
513         } else if (INTEL_GEN(dev_priv) >= 8) {
514                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
515                            I915_READ(GEN8_MASTER_IRQ));
516
517                 for (i = 0; i < 4; i++) {
518                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
519                                    i, I915_READ(GEN8_GT_IMR(i)));
520                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
521                                    i, I915_READ(GEN8_GT_IIR(i)));
522                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
523                                    i, I915_READ(GEN8_GT_IER(i)));
524                 }
525
526                 gen8_display_interrupt_info(m);
527         } else if (IS_VALLEYVIEW(dev_priv)) {
528                 intel_wakeref_t pref;
529
530                 seq_printf(m, "Display IER:\t%08x\n",
531                            I915_READ(VLV_IER));
532                 seq_printf(m, "Display IIR:\t%08x\n",
533                            I915_READ(VLV_IIR));
534                 seq_printf(m, "Display IIR_RW:\t%08x\n",
535                            I915_READ(VLV_IIR_RW));
536                 seq_printf(m, "Display IMR:\t%08x\n",
537                            I915_READ(VLV_IMR));
538                 for_each_pipe(dev_priv, pipe) {
539                         enum intel_display_power_domain power_domain;
540
541                         power_domain = POWER_DOMAIN_PIPE(pipe);
542                         pref = intel_display_power_get_if_enabled(dev_priv,
543                                                                   power_domain);
544                         if (!pref) {
545                                 seq_printf(m, "Pipe %c power disabled\n",
546                                            pipe_name(pipe));
547                                 continue;
548                         }
549
550                         seq_printf(m, "Pipe %c stat:\t%08x\n",
551                                    pipe_name(pipe),
552                                    I915_READ(PIPESTAT(pipe)));
553                         intel_display_power_put(dev_priv, power_domain, pref);
554                 }
555
556                 seq_printf(m, "Master IER:\t%08x\n",
557                            I915_READ(VLV_MASTER_IER));
558
559                 seq_printf(m, "Render IER:\t%08x\n",
560                            I915_READ(GTIER));
561                 seq_printf(m, "Render IIR:\t%08x\n",
562                            I915_READ(GTIIR));
563                 seq_printf(m, "Render IMR:\t%08x\n",
564                            I915_READ(GTIMR));
565
566                 seq_printf(m, "PM IER:\t\t%08x\n",
567                            I915_READ(GEN6_PMIER));
568                 seq_printf(m, "PM IIR:\t\t%08x\n",
569                            I915_READ(GEN6_PMIIR));
570                 seq_printf(m, "PM IMR:\t\t%08x\n",
571                            I915_READ(GEN6_PMIMR));
572
573                 pref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
574                 seq_printf(m, "Port hotplug:\t%08x\n",
575                            I915_READ(PORT_HOTPLUG_EN));
576                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
577                            I915_READ(VLV_DPFLIPSTAT));
578                 seq_printf(m, "DPINVGTT:\t%08x\n",
579                            I915_READ(DPINVGTT));
580                 intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, pref);
581
582         } else if (!HAS_PCH_SPLIT(dev_priv)) {
583                 seq_printf(m, "Interrupt enable:    %08x\n",
584                            I915_READ(GEN2_IER));
585                 seq_printf(m, "Interrupt identity:  %08x\n",
586                            I915_READ(GEN2_IIR));
587                 seq_printf(m, "Interrupt mask:      %08x\n",
588                            I915_READ(GEN2_IMR));
589                 for_each_pipe(dev_priv, pipe)
590                         seq_printf(m, "Pipe %c stat:         %08x\n",
591                                    pipe_name(pipe),
592                                    I915_READ(PIPESTAT(pipe)));
593         } else {
594                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
595                            I915_READ(DEIER));
596                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
597                            I915_READ(DEIIR));
598                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
599                            I915_READ(DEIMR));
600                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
601                            I915_READ(SDEIER));
602                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
603                            I915_READ(SDEIIR));
604                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
605                            I915_READ(SDEIMR));
606                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
607                            I915_READ(GTIER));
608                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
609                            I915_READ(GTIIR));
610                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
611                            I915_READ(GTIMR));
612         }
613
614         if (INTEL_GEN(dev_priv) >= 11) {
615                 seq_printf(m, "RCS Intr Mask:\t %08x\n",
616                            I915_READ(GEN11_RCS0_RSVD_INTR_MASK));
617                 seq_printf(m, "BCS Intr Mask:\t %08x\n",
618                            I915_READ(GEN11_BCS_RSVD_INTR_MASK));
619                 seq_printf(m, "VCS0/VCS1 Intr Mask:\t %08x\n",
620                            I915_READ(GEN11_VCS0_VCS1_INTR_MASK));
621                 seq_printf(m, "VCS2/VCS3 Intr Mask:\t %08x\n",
622                            I915_READ(GEN11_VCS2_VCS3_INTR_MASK));
623                 seq_printf(m, "VECS0/VECS1 Intr Mask:\t %08x\n",
624                            I915_READ(GEN11_VECS0_VECS1_INTR_MASK));
625                 seq_printf(m, "GUC/SG Intr Mask:\t %08x\n",
626                            I915_READ(GEN11_GUC_SG_INTR_MASK));
627                 seq_printf(m, "GPM/WGBOXPERF Intr Mask: %08x\n",
628                            I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK));
629                 seq_printf(m, "Crypto Intr Mask:\t %08x\n",
630                            I915_READ(GEN11_CRYPTO_RSVD_INTR_MASK));
631                 seq_printf(m, "Gunit/CSME Intr Mask:\t %08x\n",
632                            I915_READ(GEN11_GUNIT_CSME_INTR_MASK));
633
634         } else if (INTEL_GEN(dev_priv) >= 6) {
635                 for_each_uabi_engine(engine, dev_priv) {
636                         seq_printf(m,
637                                    "Graphics Interrupt mask (%s):       %08x\n",
638                                    engine->name, ENGINE_READ(engine, RING_IMR));
639                 }
640         }
641
642         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
643
644         return 0;
645 }
646
647 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
648 {
649         struct drm_i915_private *i915 = node_to_i915(m->private);
650         unsigned int i;
651
652         seq_printf(m, "Total fences = %d\n", i915->ggtt.num_fences);
653
654         rcu_read_lock();
655         for (i = 0; i < i915->ggtt.num_fences; i++) {
656                 struct i915_fence_reg *reg = &i915->ggtt.fence_regs[i];
657                 struct i915_vma *vma = reg->vma;
658
659                 seq_printf(m, "Fence %d, pin count = %d, object = ",
660                            i, atomic_read(&reg->pin_count));
661                 if (!vma)
662                         seq_puts(m, "unused");
663                 else
664                         i915_debugfs_describe_obj(m, vma->obj);
665                 seq_putc(m, '\n');
666         }
667         rcu_read_unlock();
668
669         return 0;
670 }
671
672 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
673 static ssize_t gpu_state_read(struct file *file, char __user *ubuf,
674                               size_t count, loff_t *pos)
675 {
676         struct i915_gpu_coredump *error;
677         ssize_t ret;
678         void *buf;
679
680         error = file->private_data;
681         if (!error)
682                 return 0;
683
684         /* Bounce buffer required because of kernfs __user API convenience. */
685         buf = kmalloc(count, GFP_KERNEL);
686         if (!buf)
687                 return -ENOMEM;
688
689         ret = i915_gpu_coredump_copy_to_buffer(error, buf, *pos, count);
690         if (ret <= 0)
691                 goto out;
692
693         if (!copy_to_user(ubuf, buf, ret))
694                 *pos += ret;
695         else
696                 ret = -EFAULT;
697
698 out:
699         kfree(buf);
700         return ret;
701 }
702
703 static int gpu_state_release(struct inode *inode, struct file *file)
704 {
705         i915_gpu_coredump_put(file->private_data);
706         return 0;
707 }
708
709 static int i915_gpu_info_open(struct inode *inode, struct file *file)
710 {
711         struct drm_i915_private *i915 = inode->i_private;
712         struct i915_gpu_coredump *gpu;
713         intel_wakeref_t wakeref;
714
715         gpu = NULL;
716         with_intel_runtime_pm(&i915->runtime_pm, wakeref)
717                 gpu = i915_gpu_coredump(i915);
718         if (IS_ERR(gpu))
719                 return PTR_ERR(gpu);
720
721         file->private_data = gpu;
722         return 0;
723 }
724
725 static const struct file_operations i915_gpu_info_fops = {
726         .owner = THIS_MODULE,
727         .open = i915_gpu_info_open,
728         .read = gpu_state_read,
729         .llseek = default_llseek,
730         .release = gpu_state_release,
731 };
732
733 static ssize_t
734 i915_error_state_write(struct file *filp,
735                        const char __user *ubuf,
736                        size_t cnt,
737                        loff_t *ppos)
738 {
739         struct i915_gpu_coredump *error = filp->private_data;
740
741         if (!error)
742                 return 0;
743
744         drm_dbg(&error->i915->drm, "Resetting error state\n");
745         i915_reset_error_state(error->i915);
746
747         return cnt;
748 }
749
750 static int i915_error_state_open(struct inode *inode, struct file *file)
751 {
752         struct i915_gpu_coredump *error;
753
754         error = i915_first_error_state(inode->i_private);
755         if (IS_ERR(error))
756                 return PTR_ERR(error);
757
758         file->private_data  = error;
759         return 0;
760 }
761
762 static const struct file_operations i915_error_state_fops = {
763         .owner = THIS_MODULE,
764         .open = i915_error_state_open,
765         .read = gpu_state_read,
766         .write = i915_error_state_write,
767         .llseek = default_llseek,
768         .release = gpu_state_release,
769 };
770 #endif
771
772 static int i915_frequency_info(struct seq_file *m, void *unused)
773 {
774         struct drm_i915_private *dev_priv = node_to_i915(m->private);
775         struct intel_uncore *uncore = &dev_priv->uncore;
776         struct intel_rps *rps = &dev_priv->gt.rps;
777         intel_wakeref_t wakeref;
778         int ret = 0;
779
780         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
781
782         if (IS_GEN(dev_priv, 5)) {
783                 u16 rgvswctl = intel_uncore_read16(uncore, MEMSWCTL);
784                 u16 rgvstat = intel_uncore_read16(uncore, MEMSTAT_ILK);
785
786                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
787                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
788                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
789                            MEMSTAT_VID_SHIFT);
790                 seq_printf(m, "Current P-state: %d\n",
791                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
792         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
793                 u32 rpmodectl, freq_sts;
794
795                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
796                 seq_printf(m, "Video Turbo Mode: %s\n",
797                            yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
798                 seq_printf(m, "HW control enabled: %s\n",
799                            yesno(rpmodectl & GEN6_RP_ENABLE));
800                 seq_printf(m, "SW control enabled: %s\n",
801                            yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
802                                   GEN6_RP_MEDIA_SW_MODE));
803
804                 vlv_punit_get(dev_priv);
805                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
806                 vlv_punit_put(dev_priv);
807
808                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
809                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
810
811                 seq_printf(m, "actual GPU freq: %d MHz\n",
812                            intel_gpu_freq(rps, (freq_sts >> 8) & 0xff));
813
814                 seq_printf(m, "current GPU freq: %d MHz\n",
815                            intel_gpu_freq(rps, rps->cur_freq));
816
817                 seq_printf(m, "max GPU freq: %d MHz\n",
818                            intel_gpu_freq(rps, rps->max_freq));
819
820                 seq_printf(m, "min GPU freq: %d MHz\n",
821                            intel_gpu_freq(rps, rps->min_freq));
822
823                 seq_printf(m, "idle GPU freq: %d MHz\n",
824                            intel_gpu_freq(rps, rps->idle_freq));
825
826                 seq_printf(m,
827                            "efficient (RPe) frequency: %d MHz\n",
828                            intel_gpu_freq(rps, rps->efficient_freq));
829         } else if (INTEL_GEN(dev_priv) >= 6) {
830                 u32 rp_state_limits;
831                 u32 gt_perf_status;
832                 u32 rp_state_cap;
833                 u32 rpmodectl, rpinclimit, rpdeclimit;
834                 u32 rpstat, cagf, reqf;
835                 u32 rpupei, rpcurup, rpprevup;
836                 u32 rpdownei, rpcurdown, rpprevdown;
837                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
838                 int max_freq;
839
840                 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
841                 if (IS_GEN9_LP(dev_priv)) {
842                         rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
843                         gt_perf_status = I915_READ(BXT_GT_PERF_STATUS);
844                 } else {
845                         rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
846                         gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
847                 }
848
849                 /* RPSTAT1 is in the GT power well */
850                 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
851
852                 reqf = I915_READ(GEN6_RPNSWREQ);
853                 if (INTEL_GEN(dev_priv) >= 9)
854                         reqf >>= 23;
855                 else {
856                         reqf &= ~GEN6_TURBO_DISABLE;
857                         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
858                                 reqf >>= 24;
859                         else
860                                 reqf >>= 25;
861                 }
862                 reqf = intel_gpu_freq(rps, reqf);
863
864                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
865                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
866                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
867
868                 rpstat = I915_READ(GEN6_RPSTAT1);
869                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI) & GEN6_CURICONT_MASK;
870                 rpcurup = I915_READ(GEN6_RP_CUR_UP) & GEN6_CURBSYTAVG_MASK;
871                 rpprevup = I915_READ(GEN6_RP_PREV_UP) & GEN6_CURBSYTAVG_MASK;
872                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI) & GEN6_CURIAVG_MASK;
873                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN) & GEN6_CURBSYTAVG_MASK;
874                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN) & GEN6_CURBSYTAVG_MASK;
875                 cagf = intel_rps_read_actual_frequency(rps);
876
877                 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
878
879                 if (INTEL_GEN(dev_priv) >= 11) {
880                         pm_ier = I915_READ(GEN11_GPM_WGBOXPERF_INTR_ENABLE);
881                         pm_imr = I915_READ(GEN11_GPM_WGBOXPERF_INTR_MASK);
882                         /*
883                          * The equivalent to the PM ISR & IIR cannot be read
884                          * without affecting the current state of the system
885                          */
886                         pm_isr = 0;
887                         pm_iir = 0;
888                 } else if (INTEL_GEN(dev_priv) >= 8) {
889                         pm_ier = I915_READ(GEN8_GT_IER(2));
890                         pm_imr = I915_READ(GEN8_GT_IMR(2));
891                         pm_isr = I915_READ(GEN8_GT_ISR(2));
892                         pm_iir = I915_READ(GEN8_GT_IIR(2));
893                 } else {
894                         pm_ier = I915_READ(GEN6_PMIER);
895                         pm_imr = I915_READ(GEN6_PMIMR);
896                         pm_isr = I915_READ(GEN6_PMISR);
897                         pm_iir = I915_READ(GEN6_PMIIR);
898                 }
899                 pm_mask = I915_READ(GEN6_PMINTRMSK);
900
901                 seq_printf(m, "Video Turbo Mode: %s\n",
902                            yesno(rpmodectl & GEN6_RP_MEDIA_TURBO));
903                 seq_printf(m, "HW control enabled: %s\n",
904                            yesno(rpmodectl & GEN6_RP_ENABLE));
905                 seq_printf(m, "SW control enabled: %s\n",
906                            yesno((rpmodectl & GEN6_RP_MEDIA_MODE_MASK) ==
907                                   GEN6_RP_MEDIA_SW_MODE));
908
909                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x, MASK=0x%08x\n",
910                            pm_ier, pm_imr, pm_mask);
911                 if (INTEL_GEN(dev_priv) <= 10)
912                         seq_printf(m, "PM ISR=0x%08x IIR=0x%08x\n",
913                                    pm_isr, pm_iir);
914                 seq_printf(m, "pm_intrmsk_mbz: 0x%08x\n",
915                            rps->pm_intrmsk_mbz);
916                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
917                 seq_printf(m, "Render p-state ratio: %d\n",
918                            (gt_perf_status & (INTEL_GEN(dev_priv) >= 9 ? 0x1ff00 : 0xff00)) >> 8);
919                 seq_printf(m, "Render p-state VID: %d\n",
920                            gt_perf_status & 0xff);
921                 seq_printf(m, "Render p-state limit: %d\n",
922                            rp_state_limits & 0xff);
923                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
924                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
925                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
926                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
927                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
928                 seq_printf(m, "CAGF: %dMHz\n", cagf);
929                 seq_printf(m, "RP CUR UP EI: %d (%dus)\n",
930                            rpupei, GT_PM_INTERVAL_TO_US(dev_priv, rpupei));
931                 seq_printf(m, "RP CUR UP: %d (%dus)\n",
932                            rpcurup, GT_PM_INTERVAL_TO_US(dev_priv, rpcurup));
933                 seq_printf(m, "RP PREV UP: %d (%dus)\n",
934                            rpprevup, GT_PM_INTERVAL_TO_US(dev_priv, rpprevup));
935                 seq_printf(m, "Up threshold: %d%%\n",
936                            rps->power.up_threshold);
937
938                 seq_printf(m, "RP CUR DOWN EI: %d (%dus)\n",
939                            rpdownei, GT_PM_INTERVAL_TO_US(dev_priv, rpdownei));
940                 seq_printf(m, "RP CUR DOWN: %d (%dus)\n",
941                            rpcurdown, GT_PM_INTERVAL_TO_US(dev_priv, rpcurdown));
942                 seq_printf(m, "RP PREV DOWN: %d (%dus)\n",
943                            rpprevdown, GT_PM_INTERVAL_TO_US(dev_priv, rpprevdown));
944                 seq_printf(m, "Down threshold: %d%%\n",
945                            rps->power.down_threshold);
946
947                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 0 :
948                             rp_state_cap >> 16) & 0xff;
949                 max_freq *= (IS_GEN9_BC(dev_priv) ||
950                              INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
951                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
952                            intel_gpu_freq(rps, max_freq));
953
954                 max_freq = (rp_state_cap & 0xff00) >> 8;
955                 max_freq *= (IS_GEN9_BC(dev_priv) ||
956                              INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
957                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
958                            intel_gpu_freq(rps, max_freq));
959
960                 max_freq = (IS_GEN9_LP(dev_priv) ? rp_state_cap >> 16 :
961                             rp_state_cap >> 0) & 0xff;
962                 max_freq *= (IS_GEN9_BC(dev_priv) ||
963                              INTEL_GEN(dev_priv) >= 10 ? GEN9_FREQ_SCALER : 1);
964                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
965                            intel_gpu_freq(rps, max_freq));
966                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
967                            intel_gpu_freq(rps, rps->max_freq));
968
969                 seq_printf(m, "Current freq: %d MHz\n",
970                            intel_gpu_freq(rps, rps->cur_freq));
971                 seq_printf(m, "Actual freq: %d MHz\n", cagf);
972                 seq_printf(m, "Idle freq: %d MHz\n",
973                            intel_gpu_freq(rps, rps->idle_freq));
974                 seq_printf(m, "Min freq: %d MHz\n",
975                            intel_gpu_freq(rps, rps->min_freq));
976                 seq_printf(m, "Boost freq: %d MHz\n",
977                            intel_gpu_freq(rps, rps->boost_freq));
978                 seq_printf(m, "Max freq: %d MHz\n",
979                            intel_gpu_freq(rps, rps->max_freq));
980                 seq_printf(m,
981                            "efficient (RPe) frequency: %d MHz\n",
982                            intel_gpu_freq(rps, rps->efficient_freq));
983         } else {
984                 seq_puts(m, "no P-state info available\n");
985         }
986
987         seq_printf(m, "Current CD clock frequency: %d kHz\n", dev_priv->cdclk.hw.cdclk);
988         seq_printf(m, "Max CD clock frequency: %d kHz\n", dev_priv->max_cdclk_freq);
989         seq_printf(m, "Max pixel clock frequency: %d kHz\n", dev_priv->max_dotclk_freq);
990
991         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
992         return ret;
993 }
994
995 static int i915_ring_freq_table(struct seq_file *m, void *unused)
996 {
997         struct drm_i915_private *dev_priv = node_to_i915(m->private);
998         struct intel_rps *rps = &dev_priv->gt.rps;
999         unsigned int max_gpu_freq, min_gpu_freq;
1000         intel_wakeref_t wakeref;
1001         int gpu_freq, ia_freq;
1002
1003         if (!HAS_LLC(dev_priv))
1004                 return -ENODEV;
1005
1006         min_gpu_freq = rps->min_freq;
1007         max_gpu_freq = rps->max_freq;
1008         if (IS_GEN9_BC(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
1009                 /* Convert GT frequency to 50 HZ units */
1010                 min_gpu_freq /= GEN9_FREQ_SCALER;
1011                 max_gpu_freq /= GEN9_FREQ_SCALER;
1012         }
1013
1014         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1015
1016         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1017         for (gpu_freq = min_gpu_freq; gpu_freq <= max_gpu_freq; gpu_freq++) {
1018                 ia_freq = gpu_freq;
1019                 sandybridge_pcode_read(dev_priv,
1020                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1021                                        &ia_freq, NULL);
1022                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1023                            intel_gpu_freq(rps,
1024                                           (gpu_freq *
1025                                            (IS_GEN9_BC(dev_priv) ||
1026                                             INTEL_GEN(dev_priv) >= 10 ?
1027                                             GEN9_FREQ_SCALER : 1))),
1028                            ((ia_freq >> 0) & 0xff) * 100,
1029                            ((ia_freq >> 8) & 0xff) * 100);
1030         }
1031         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1032
1033         return 0;
1034 }
1035
1036 static void describe_ctx_ring(struct seq_file *m, struct intel_ring *ring)
1037 {
1038         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, emit: %u)",
1039                    ring->space, ring->head, ring->tail, ring->emit);
1040 }
1041
1042 static int i915_context_status(struct seq_file *m, void *unused)
1043 {
1044         struct drm_i915_private *i915 = node_to_i915(m->private);
1045         struct i915_gem_context *ctx, *cn;
1046
1047         spin_lock(&i915->gem.contexts.lock);
1048         list_for_each_entry_safe(ctx, cn, &i915->gem.contexts.list, link) {
1049                 struct i915_gem_engines_iter it;
1050                 struct intel_context *ce;
1051
1052                 if (!kref_get_unless_zero(&ctx->ref))
1053                         continue;
1054
1055                 spin_unlock(&i915->gem.contexts.lock);
1056
1057                 seq_puts(m, "HW context ");
1058                 if (ctx->pid) {
1059                         struct task_struct *task;
1060
1061                         task = get_pid_task(ctx->pid, PIDTYPE_PID);
1062                         if (task) {
1063                                 seq_printf(m, "(%s [%d]) ",
1064                                            task->comm, task->pid);
1065                                 put_task_struct(task);
1066                         }
1067                 } else if (IS_ERR(ctx->file_priv)) {
1068                         seq_puts(m, "(deleted) ");
1069                 } else {
1070                         seq_puts(m, "(kernel) ");
1071                 }
1072
1073                 seq_putc(m, ctx->remap_slice ? 'R' : 'r');
1074                 seq_putc(m, '\n');
1075
1076                 for_each_gem_engine(ce,
1077                                     i915_gem_context_lock_engines(ctx), it) {
1078                         if (intel_context_pin_if_active(ce)) {
1079                                 seq_printf(m, "%s: ", ce->engine->name);
1080                                 if (ce->state)
1081                                         i915_debugfs_describe_obj(m, ce->state->obj);
1082                                 describe_ctx_ring(m, ce->ring);
1083                                 seq_putc(m, '\n');
1084                                 intel_context_unpin(ce);
1085                         }
1086                 }
1087                 i915_gem_context_unlock_engines(ctx);
1088
1089                 seq_putc(m, '\n');
1090
1091                 spin_lock(&i915->gem.contexts.lock);
1092                 list_safe_reset_next(ctx, cn, link);
1093                 i915_gem_context_put(ctx);
1094         }
1095         spin_unlock(&i915->gem.contexts.lock);
1096
1097         return 0;
1098 }
1099
1100 static const char *swizzle_string(unsigned swizzle)
1101 {
1102         switch (swizzle) {
1103         case I915_BIT_6_SWIZZLE_NONE:
1104                 return "none";
1105         case I915_BIT_6_SWIZZLE_9:
1106                 return "bit9";
1107         case I915_BIT_6_SWIZZLE_9_10:
1108                 return "bit9/bit10";
1109         case I915_BIT_6_SWIZZLE_9_11:
1110                 return "bit9/bit11";
1111         case I915_BIT_6_SWIZZLE_9_10_11:
1112                 return "bit9/bit10/bit11";
1113         case I915_BIT_6_SWIZZLE_9_17:
1114                 return "bit9/bit17";
1115         case I915_BIT_6_SWIZZLE_9_10_17:
1116                 return "bit9/bit10/bit17";
1117         case I915_BIT_6_SWIZZLE_UNKNOWN:
1118                 return "unknown";
1119         }
1120
1121         return "bug";
1122 }
1123
1124 static int i915_swizzle_info(struct seq_file *m, void *data)
1125 {
1126         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1127         struct intel_uncore *uncore = &dev_priv->uncore;
1128         intel_wakeref_t wakeref;
1129
1130         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1131
1132         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1133                    swizzle_string(dev_priv->ggtt.bit_6_swizzle_x));
1134         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1135                    swizzle_string(dev_priv->ggtt.bit_6_swizzle_y));
1136
1137         if (IS_GEN_RANGE(dev_priv, 3, 4)) {
1138                 seq_printf(m, "DDC = 0x%08x\n",
1139                            intel_uncore_read(uncore, DCC));
1140                 seq_printf(m, "DDC2 = 0x%08x\n",
1141                            intel_uncore_read(uncore, DCC2));
1142                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1143                            intel_uncore_read16(uncore, C0DRB3));
1144                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1145                            intel_uncore_read16(uncore, C1DRB3));
1146         } else if (INTEL_GEN(dev_priv) >= 6) {
1147                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1148                            intel_uncore_read(uncore, MAD_DIMM_C0));
1149                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1150                            intel_uncore_read(uncore, MAD_DIMM_C1));
1151                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1152                            intel_uncore_read(uncore, MAD_DIMM_C2));
1153                 seq_printf(m, "TILECTL = 0x%08x\n",
1154                            intel_uncore_read(uncore, TILECTL));
1155                 if (INTEL_GEN(dev_priv) >= 8)
1156                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1157                                    intel_uncore_read(uncore, GAMTARBMODE));
1158                 else
1159                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1160                                    intel_uncore_read(uncore, ARB_MODE));
1161                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1162                            intel_uncore_read(uncore, DISP_ARB_CTL));
1163         }
1164
1165         if (dev_priv->quirks & QUIRK_PIN_SWIZZLED_PAGES)
1166                 seq_puts(m, "L-shaped memory detected\n");
1167
1168         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1169
1170         return 0;
1171 }
1172
1173 static const char *rps_power_to_str(unsigned int power)
1174 {
1175         static const char * const strings[] = {
1176                 [LOW_POWER] = "low power",
1177                 [BETWEEN] = "mixed",
1178                 [HIGH_POWER] = "high power",
1179         };
1180
1181         if (power >= ARRAY_SIZE(strings) || !strings[power])
1182                 return "unknown";
1183
1184         return strings[power];
1185 }
1186
1187 static int i915_rps_boost_info(struct seq_file *m, void *data)
1188 {
1189         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1190         struct intel_rps *rps = &dev_priv->gt.rps;
1191
1192         seq_printf(m, "RPS enabled? %d\n", rps->enabled);
1193         seq_printf(m, "GPU busy? %s\n", yesno(dev_priv->gt.awake));
1194         seq_printf(m, "Boosts outstanding? %d\n",
1195                    atomic_read(&rps->num_waiters));
1196         seq_printf(m, "Interactive? %d\n", READ_ONCE(rps->power.interactive));
1197         seq_printf(m, "Frequency requested %d, actual %d\n",
1198                    intel_gpu_freq(rps, rps->cur_freq),
1199                    intel_rps_read_actual_frequency(rps));
1200         seq_printf(m, "  min hard:%d, soft:%d; max soft:%d, hard:%d\n",
1201                    intel_gpu_freq(rps, rps->min_freq),
1202                    intel_gpu_freq(rps, rps->min_freq_softlimit),
1203                    intel_gpu_freq(rps, rps->max_freq_softlimit),
1204                    intel_gpu_freq(rps, rps->max_freq));
1205         seq_printf(m, "  idle:%d, efficient:%d, boost:%d\n",
1206                    intel_gpu_freq(rps, rps->idle_freq),
1207                    intel_gpu_freq(rps, rps->efficient_freq),
1208                    intel_gpu_freq(rps, rps->boost_freq));
1209
1210         seq_printf(m, "Wait boosts: %d\n", atomic_read(&rps->boosts));
1211
1212         if (INTEL_GEN(dev_priv) >= 6 && rps->enabled && dev_priv->gt.awake) {
1213                 u32 rpup, rpupei;
1214                 u32 rpdown, rpdownei;
1215
1216                 intel_uncore_forcewake_get(&dev_priv->uncore, FORCEWAKE_ALL);
1217                 rpup = I915_READ_FW(GEN6_RP_CUR_UP) & GEN6_RP_EI_MASK;
1218                 rpupei = I915_READ_FW(GEN6_RP_CUR_UP_EI) & GEN6_RP_EI_MASK;
1219                 rpdown = I915_READ_FW(GEN6_RP_CUR_DOWN) & GEN6_RP_EI_MASK;
1220                 rpdownei = I915_READ_FW(GEN6_RP_CUR_DOWN_EI) & GEN6_RP_EI_MASK;
1221                 intel_uncore_forcewake_put(&dev_priv->uncore, FORCEWAKE_ALL);
1222
1223                 seq_printf(m, "\nRPS Autotuning (current \"%s\" window):\n",
1224                            rps_power_to_str(rps->power.mode));
1225                 seq_printf(m, "  Avg. up: %d%% [above threshold? %d%%]\n",
1226                            rpup && rpupei ? 100 * rpup / rpupei : 0,
1227                            rps->power.up_threshold);
1228                 seq_printf(m, "  Avg. down: %d%% [below threshold? %d%%]\n",
1229                            rpdown && rpdownei ? 100 * rpdown / rpdownei : 0,
1230                            rps->power.down_threshold);
1231         } else {
1232                 seq_puts(m, "\nRPS Autotuning inactive\n");
1233         }
1234
1235         return 0;
1236 }
1237
1238 static int i915_llc(struct seq_file *m, void *data)
1239 {
1240         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1241         const bool edram = INTEL_GEN(dev_priv) > 8;
1242
1243         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev_priv)));
1244         seq_printf(m, "%s: %uMB\n", edram ? "eDRAM" : "eLLC",
1245                    dev_priv->edram_size_mb);
1246
1247         return 0;
1248 }
1249
1250 static int i915_runtime_pm_status(struct seq_file *m, void *unused)
1251 {
1252         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1253         struct pci_dev *pdev = dev_priv->drm.pdev;
1254
1255         if (!HAS_RUNTIME_PM(dev_priv))
1256                 seq_puts(m, "Runtime power management not supported\n");
1257
1258         seq_printf(m, "Runtime power status: %s\n",
1259                    enableddisabled(!dev_priv->power_domains.wakeref));
1260
1261         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->gt.awake));
1262         seq_printf(m, "IRQs disabled: %s\n",
1263                    yesno(!intel_irqs_enabled(dev_priv)));
1264 #ifdef CONFIG_PM
1265         seq_printf(m, "Usage count: %d\n",
1266                    atomic_read(&dev_priv->drm.dev->power.usage_count));
1267 #else
1268         seq_printf(m, "Device Power Management (CONFIG_PM) disabled\n");
1269 #endif
1270         seq_printf(m, "PCI device power state: %s [%d]\n",
1271                    pci_power_name(pdev->current_state),
1272                    pdev->current_state);
1273
1274         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_RUNTIME_PM)) {
1275                 struct drm_printer p = drm_seq_file_printer(m);
1276
1277                 print_intel_runtime_pm_wakeref(&dev_priv->runtime_pm, &p);
1278         }
1279
1280         return 0;
1281 }
1282
1283 static int i915_engine_info(struct seq_file *m, void *unused)
1284 {
1285         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1286         struct intel_engine_cs *engine;
1287         intel_wakeref_t wakeref;
1288         struct drm_printer p;
1289
1290         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
1291
1292         seq_printf(m, "GT awake? %s [%d]\n",
1293                    yesno(dev_priv->gt.awake),
1294                    atomic_read(&dev_priv->gt.wakeref.count));
1295         seq_printf(m, "CS timestamp frequency: %u kHz\n",
1296                    RUNTIME_INFO(dev_priv)->cs_timestamp_frequency_khz);
1297
1298         p = drm_seq_file_printer(m);
1299         for_each_uabi_engine(engine, dev_priv)
1300                 intel_engine_dump(engine, &p, "%s\n", engine->name);
1301
1302         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
1303
1304         return 0;
1305 }
1306
1307 static int i915_rcs_topology(struct seq_file *m, void *unused)
1308 {
1309         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1310         struct drm_printer p = drm_seq_file_printer(m);
1311
1312         intel_device_info_print_topology(&RUNTIME_INFO(dev_priv)->sseu, &p);
1313
1314         return 0;
1315 }
1316
1317 static int i915_shrinker_info(struct seq_file *m, void *unused)
1318 {
1319         struct drm_i915_private *i915 = node_to_i915(m->private);
1320
1321         seq_printf(m, "seeks = %d\n", i915->mm.shrinker.seeks);
1322         seq_printf(m, "batch = %lu\n", i915->mm.shrinker.batch);
1323
1324         return 0;
1325 }
1326
1327 static int i915_wa_registers(struct seq_file *m, void *unused)
1328 {
1329         struct drm_i915_private *i915 = node_to_i915(m->private);
1330         struct intel_engine_cs *engine;
1331
1332         for_each_uabi_engine(engine, i915) {
1333                 const struct i915_wa_list *wal = &engine->ctx_wa_list;
1334                 const struct i915_wa *wa;
1335                 unsigned int count;
1336
1337                 count = wal->count;
1338                 if (!count)
1339                         continue;
1340
1341                 seq_printf(m, "%s: Workarounds applied: %u\n",
1342                            engine->name, count);
1343
1344                 for (wa = wal->list; count--; wa++)
1345                         seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
1346                                    i915_mmio_reg_offset(wa->reg),
1347                                    wa->set, wa->clr);
1348
1349                 seq_printf(m, "\n");
1350         }
1351
1352         return 0;
1353 }
1354
1355 static int
1356 i915_wedged_get(void *data, u64 *val)
1357 {
1358         struct drm_i915_private *i915 = data;
1359         int ret = intel_gt_terminally_wedged(&i915->gt);
1360
1361         switch (ret) {
1362         case -EIO:
1363                 *val = 1;
1364                 return 0;
1365         case 0:
1366                 *val = 0;
1367                 return 0;
1368         default:
1369                 return ret;
1370         }
1371 }
1372
1373 static int
1374 i915_wedged_set(void *data, u64 val)
1375 {
1376         struct drm_i915_private *i915 = data;
1377
1378         /* Flush any previous reset before applying for a new one */
1379         wait_event(i915->gt.reset.queue,
1380                    !test_bit(I915_RESET_BACKOFF, &i915->gt.reset.flags));
1381
1382         intel_gt_handle_error(&i915->gt, val, I915_ERROR_CAPTURE,
1383                               "Manually set wedged engine mask = %llx", val);
1384         return 0;
1385 }
1386
1387 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
1388                         i915_wedged_get, i915_wedged_set,
1389                         "%llu\n");
1390
1391 static int
1392 i915_perf_noa_delay_set(void *data, u64 val)
1393 {
1394         struct drm_i915_private *i915 = data;
1395         const u32 clk = RUNTIME_INFO(i915)->cs_timestamp_frequency_khz;
1396
1397         /*
1398          * This would lead to infinite waits as we're doing timestamp
1399          * difference on the CS with only 32bits.
1400          */
1401         if (val > mul_u32_u32(U32_MAX, clk))
1402                 return -EINVAL;
1403
1404         atomic64_set(&i915->perf.noa_programming_delay, val);
1405         return 0;
1406 }
1407
1408 static int
1409 i915_perf_noa_delay_get(void *data, u64 *val)
1410 {
1411         struct drm_i915_private *i915 = data;
1412
1413         *val = atomic64_read(&i915->perf.noa_programming_delay);
1414         return 0;
1415 }
1416
1417 DEFINE_SIMPLE_ATTRIBUTE(i915_perf_noa_delay_fops,
1418                         i915_perf_noa_delay_get,
1419                         i915_perf_noa_delay_set,
1420                         "%llu\n");
1421
1422 #define DROP_UNBOUND    BIT(0)
1423 #define DROP_BOUND      BIT(1)
1424 #define DROP_RETIRE     BIT(2)
1425 #define DROP_ACTIVE     BIT(3)
1426 #define DROP_FREED      BIT(4)
1427 #define DROP_SHRINK_ALL BIT(5)
1428 #define DROP_IDLE       BIT(6)
1429 #define DROP_RESET_ACTIVE       BIT(7)
1430 #define DROP_RESET_SEQNO        BIT(8)
1431 #define DROP_RCU        BIT(9)
1432 #define DROP_ALL (DROP_UNBOUND  | \
1433                   DROP_BOUND    | \
1434                   DROP_RETIRE   | \
1435                   DROP_ACTIVE   | \
1436                   DROP_FREED    | \
1437                   DROP_SHRINK_ALL |\
1438                   DROP_IDLE     | \
1439                   DROP_RESET_ACTIVE | \
1440                   DROP_RESET_SEQNO | \
1441                   DROP_RCU)
1442 static int
1443 i915_drop_caches_get(void *data, u64 *val)
1444 {
1445         *val = DROP_ALL;
1446
1447         return 0;
1448 }
1449 static int
1450 gt_drop_caches(struct intel_gt *gt, u64 val)
1451 {
1452         int ret;
1453
1454         if (val & DROP_RESET_ACTIVE &&
1455             wait_for(intel_engines_are_idle(gt), I915_IDLE_ENGINES_TIMEOUT))
1456                 intel_gt_set_wedged(gt);
1457
1458         if (val & DROP_RETIRE)
1459                 intel_gt_retire_requests(gt);
1460
1461         if (val & (DROP_IDLE | DROP_ACTIVE)) {
1462                 ret = intel_gt_wait_for_idle(gt, MAX_SCHEDULE_TIMEOUT);
1463                 if (ret)
1464                         return ret;
1465         }
1466
1467         if (val & DROP_IDLE) {
1468                 ret = intel_gt_pm_wait_for_idle(gt);
1469                 if (ret)
1470                         return ret;
1471         }
1472
1473         if (val & DROP_RESET_ACTIVE && intel_gt_terminally_wedged(gt))
1474                 intel_gt_handle_error(gt, ALL_ENGINES, 0, NULL);
1475
1476         return 0;
1477 }
1478
1479 static int
1480 i915_drop_caches_set(void *data, u64 val)
1481 {
1482         struct drm_i915_private *i915 = data;
1483         int ret;
1484
1485         DRM_DEBUG("Dropping caches: 0x%08llx [0x%08llx]\n",
1486                   val, val & DROP_ALL);
1487
1488         ret = gt_drop_caches(&i915->gt, val);
1489         if (ret)
1490                 return ret;
1491
1492         fs_reclaim_acquire(GFP_KERNEL);
1493         if (val & DROP_BOUND)
1494                 i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_BOUND);
1495
1496         if (val & DROP_UNBOUND)
1497                 i915_gem_shrink(i915, LONG_MAX, NULL, I915_SHRINK_UNBOUND);
1498
1499         if (val & DROP_SHRINK_ALL)
1500                 i915_gem_shrink_all(i915);
1501         fs_reclaim_release(GFP_KERNEL);
1502
1503         if (val & DROP_RCU)
1504                 rcu_barrier();
1505
1506         if (val & DROP_FREED)
1507                 i915_gem_drain_freed_objects(i915);
1508
1509         return 0;
1510 }
1511
1512 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
1513                         i915_drop_caches_get, i915_drop_caches_set,
1514                         "0x%08llx\n");
1515
1516 static int
1517 i915_cache_sharing_get(void *data, u64 *val)
1518 {
1519         struct drm_i915_private *dev_priv = data;
1520         intel_wakeref_t wakeref;
1521         u32 snpcr = 0;
1522
1523         if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
1524                 return -ENODEV;
1525
1526         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
1527                 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1528
1529         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
1530
1531         return 0;
1532 }
1533
1534 static int
1535 i915_cache_sharing_set(void *data, u64 val)
1536 {
1537         struct drm_i915_private *dev_priv = data;
1538         intel_wakeref_t wakeref;
1539
1540         if (!(IS_GEN_RANGE(dev_priv, 6, 7)))
1541                 return -ENODEV;
1542
1543         if (val > 3)
1544                 return -EINVAL;
1545
1546         drm_dbg(&dev_priv->drm,
1547                 "Manually setting uncore sharing to %llu\n", val);
1548         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
1549                 u32 snpcr;
1550
1551                 /* Update the cache sharing policy here as well */
1552                 snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
1553                 snpcr &= ~GEN6_MBC_SNPCR_MASK;
1554                 snpcr |= val << GEN6_MBC_SNPCR_SHIFT;
1555                 I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
1556         }
1557
1558         return 0;
1559 }
1560
1561 static void
1562 intel_sseu_copy_subslices(const struct sseu_dev_info *sseu, int slice,
1563                           u8 *to_mask)
1564 {
1565         int offset = slice * sseu->ss_stride;
1566
1567         memcpy(&to_mask[offset], &sseu->subslice_mask[offset], sseu->ss_stride);
1568 }
1569
1570 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
1571                         i915_cache_sharing_get, i915_cache_sharing_set,
1572                         "%llu\n");
1573
1574 static void cherryview_sseu_device_status(struct drm_i915_private *dev_priv,
1575                                           struct sseu_dev_info *sseu)
1576 {
1577 #define SS_MAX 2
1578         const int ss_max = SS_MAX;
1579         u32 sig1[SS_MAX], sig2[SS_MAX];
1580         int ss;
1581
1582         sig1[0] = I915_READ(CHV_POWER_SS0_SIG1);
1583         sig1[1] = I915_READ(CHV_POWER_SS1_SIG1);
1584         sig2[0] = I915_READ(CHV_POWER_SS0_SIG2);
1585         sig2[1] = I915_READ(CHV_POWER_SS1_SIG2);
1586
1587         for (ss = 0; ss < ss_max; ss++) {
1588                 unsigned int eu_cnt;
1589
1590                 if (sig1[ss] & CHV_SS_PG_ENABLE)
1591                         /* skip disabled subslice */
1592                         continue;
1593
1594                 sseu->slice_mask = BIT(0);
1595                 sseu->subslice_mask[0] |= BIT(ss);
1596                 eu_cnt = ((sig1[ss] & CHV_EU08_PG_ENABLE) ? 0 : 2) +
1597                          ((sig1[ss] & CHV_EU19_PG_ENABLE) ? 0 : 2) +
1598                          ((sig1[ss] & CHV_EU210_PG_ENABLE) ? 0 : 2) +
1599                          ((sig2[ss] & CHV_EU311_PG_ENABLE) ? 0 : 2);
1600                 sseu->eu_total += eu_cnt;
1601                 sseu->eu_per_subslice = max_t(unsigned int,
1602                                               sseu->eu_per_subslice, eu_cnt);
1603         }
1604 #undef SS_MAX
1605 }
1606
1607 static void gen10_sseu_device_status(struct drm_i915_private *dev_priv,
1608                                      struct sseu_dev_info *sseu)
1609 {
1610 #define SS_MAX 6
1611         const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1612         u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
1613         int s, ss;
1614
1615         for (s = 0; s < info->sseu.max_slices; s++) {
1616                 /*
1617                  * FIXME: Valid SS Mask respects the spec and read
1618                  * only valid bits for those registers, excluding reserved
1619                  * although this seems wrong because it would leave many
1620                  * subslices without ACK.
1621                  */
1622                 s_reg[s] = I915_READ(GEN10_SLICE_PGCTL_ACK(s)) &
1623                         GEN10_PGCTL_VALID_SS_MASK(s);
1624                 eu_reg[2 * s] = I915_READ(GEN10_SS01_EU_PGCTL_ACK(s));
1625                 eu_reg[2 * s + 1] = I915_READ(GEN10_SS23_EU_PGCTL_ACK(s));
1626         }
1627
1628         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
1629                      GEN9_PGCTL_SSA_EU19_ACK |
1630                      GEN9_PGCTL_SSA_EU210_ACK |
1631                      GEN9_PGCTL_SSA_EU311_ACK;
1632         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
1633                      GEN9_PGCTL_SSB_EU19_ACK |
1634                      GEN9_PGCTL_SSB_EU210_ACK |
1635                      GEN9_PGCTL_SSB_EU311_ACK;
1636
1637         for (s = 0; s < info->sseu.max_slices; s++) {
1638                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
1639                         /* skip disabled slice */
1640                         continue;
1641
1642                 sseu->slice_mask |= BIT(s);
1643                 intel_sseu_copy_subslices(&info->sseu, s, sseu->subslice_mask);
1644
1645                 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
1646                         unsigned int eu_cnt;
1647
1648                         if (info->sseu.has_subslice_pg &&
1649                             !(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
1650                                 /* skip disabled subslice */
1651                                 continue;
1652
1653                         eu_cnt = 2 * hweight32(eu_reg[2 * s + ss / 2] &
1654                                                eu_mask[ss % 2]);
1655                         sseu->eu_total += eu_cnt;
1656                         sseu->eu_per_subslice = max_t(unsigned int,
1657                                                       sseu->eu_per_subslice,
1658                                                       eu_cnt);
1659                 }
1660         }
1661 #undef SS_MAX
1662 }
1663
1664 static void gen9_sseu_device_status(struct drm_i915_private *dev_priv,
1665                                     struct sseu_dev_info *sseu)
1666 {
1667 #define SS_MAX 3
1668         const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1669         u32 s_reg[SS_MAX], eu_reg[2 * SS_MAX], eu_mask[2];
1670         int s, ss;
1671
1672         for (s = 0; s < info->sseu.max_slices; s++) {
1673                 s_reg[s] = I915_READ(GEN9_SLICE_PGCTL_ACK(s));
1674                 eu_reg[2*s] = I915_READ(GEN9_SS01_EU_PGCTL_ACK(s));
1675                 eu_reg[2*s + 1] = I915_READ(GEN9_SS23_EU_PGCTL_ACK(s));
1676         }
1677
1678         eu_mask[0] = GEN9_PGCTL_SSA_EU08_ACK |
1679                      GEN9_PGCTL_SSA_EU19_ACK |
1680                      GEN9_PGCTL_SSA_EU210_ACK |
1681                      GEN9_PGCTL_SSA_EU311_ACK;
1682         eu_mask[1] = GEN9_PGCTL_SSB_EU08_ACK |
1683                      GEN9_PGCTL_SSB_EU19_ACK |
1684                      GEN9_PGCTL_SSB_EU210_ACK |
1685                      GEN9_PGCTL_SSB_EU311_ACK;
1686
1687         for (s = 0; s < info->sseu.max_slices; s++) {
1688                 if ((s_reg[s] & GEN9_PGCTL_SLICE_ACK) == 0)
1689                         /* skip disabled slice */
1690                         continue;
1691
1692                 sseu->slice_mask |= BIT(s);
1693
1694                 if (IS_GEN9_BC(dev_priv))
1695                         intel_sseu_copy_subslices(&info->sseu, s,
1696                                                   sseu->subslice_mask);
1697
1698                 for (ss = 0; ss < info->sseu.max_subslices; ss++) {
1699                         unsigned int eu_cnt;
1700                         u8 ss_idx = s * info->sseu.ss_stride +
1701                                     ss / BITS_PER_BYTE;
1702
1703                         if (IS_GEN9_LP(dev_priv)) {
1704                                 if (!(s_reg[s] & (GEN9_PGCTL_SS_ACK(ss))))
1705                                         /* skip disabled subslice */
1706                                         continue;
1707
1708                                 sseu->subslice_mask[ss_idx] |=
1709                                         BIT(ss % BITS_PER_BYTE);
1710                         }
1711
1712                         eu_cnt = 2 * hweight32(eu_reg[2*s + ss/2] &
1713                                                eu_mask[ss%2]);
1714                         sseu->eu_total += eu_cnt;
1715                         sseu->eu_per_subslice = max_t(unsigned int,
1716                                                       sseu->eu_per_subslice,
1717                                                       eu_cnt);
1718                 }
1719         }
1720 #undef SS_MAX
1721 }
1722
1723 static void bdw_sseu_device_status(struct drm_i915_private *dev_priv,
1724                                    struct sseu_dev_info *sseu)
1725 {
1726         const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1727         u32 slice_info = I915_READ(GEN8_GT_SLICE_INFO);
1728         int s;
1729
1730         sseu->slice_mask = slice_info & GEN8_LSLICESTAT_MASK;
1731
1732         if (sseu->slice_mask) {
1733                 sseu->eu_per_subslice = info->sseu.eu_per_subslice;
1734                 for (s = 0; s < fls(sseu->slice_mask); s++)
1735                         intel_sseu_copy_subslices(&info->sseu, s,
1736                                                   sseu->subslice_mask);
1737                 sseu->eu_total = sseu->eu_per_subslice *
1738                                  intel_sseu_subslice_total(sseu);
1739
1740                 /* subtract fused off EU(s) from enabled slice(s) */
1741                 for (s = 0; s < fls(sseu->slice_mask); s++) {
1742                         u8 subslice_7eu = info->sseu.subslice_7eu[s];
1743
1744                         sseu->eu_total -= hweight8(subslice_7eu);
1745                 }
1746         }
1747 }
1748
1749 static void i915_print_sseu_info(struct seq_file *m, bool is_available_info,
1750                                  const struct sseu_dev_info *sseu)
1751 {
1752         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1753         const char *type = is_available_info ? "Available" : "Enabled";
1754         int s;
1755
1756         seq_printf(m, "  %s Slice Mask: %04x\n", type,
1757                    sseu->slice_mask);
1758         seq_printf(m, "  %s Slice Total: %u\n", type,
1759                    hweight8(sseu->slice_mask));
1760         seq_printf(m, "  %s Subslice Total: %u\n", type,
1761                    intel_sseu_subslice_total(sseu));
1762         for (s = 0; s < fls(sseu->slice_mask); s++) {
1763                 seq_printf(m, "  %s Slice%i subslices: %u\n", type,
1764                            s, intel_sseu_subslices_per_slice(sseu, s));
1765         }
1766         seq_printf(m, "  %s EU Total: %u\n", type,
1767                    sseu->eu_total);
1768         seq_printf(m, "  %s EU Per Subslice: %u\n", type,
1769                    sseu->eu_per_subslice);
1770
1771         if (!is_available_info)
1772                 return;
1773
1774         seq_printf(m, "  Has Pooled EU: %s\n", yesno(HAS_POOLED_EU(dev_priv)));
1775         if (HAS_POOLED_EU(dev_priv))
1776                 seq_printf(m, "  Min EU in pool: %u\n", sseu->min_eu_in_pool);
1777
1778         seq_printf(m, "  Has Slice Power Gating: %s\n",
1779                    yesno(sseu->has_slice_pg));
1780         seq_printf(m, "  Has Subslice Power Gating: %s\n",
1781                    yesno(sseu->has_subslice_pg));
1782         seq_printf(m, "  Has EU Power Gating: %s\n",
1783                    yesno(sseu->has_eu_pg));
1784 }
1785
1786 static int i915_sseu_status(struct seq_file *m, void *unused)
1787 {
1788         struct drm_i915_private *dev_priv = node_to_i915(m->private);
1789         const struct intel_runtime_info *info = RUNTIME_INFO(dev_priv);
1790         struct sseu_dev_info sseu;
1791         intel_wakeref_t wakeref;
1792
1793         if (INTEL_GEN(dev_priv) < 8)
1794                 return -ENODEV;
1795
1796         seq_puts(m, "SSEU Device Info\n");
1797         i915_print_sseu_info(m, true, &info->sseu);
1798
1799         seq_puts(m, "SSEU Device Status\n");
1800         memset(&sseu, 0, sizeof(sseu));
1801         intel_sseu_set_info(&sseu, info->sseu.max_slices,
1802                             info->sseu.max_subslices,
1803                             info->sseu.max_eus_per_subslice);
1804
1805         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) {
1806                 if (IS_CHERRYVIEW(dev_priv))
1807                         cherryview_sseu_device_status(dev_priv, &sseu);
1808                 else if (IS_BROADWELL(dev_priv))
1809                         bdw_sseu_device_status(dev_priv, &sseu);
1810                 else if (IS_GEN(dev_priv, 9))
1811                         gen9_sseu_device_status(dev_priv, &sseu);
1812                 else if (INTEL_GEN(dev_priv) >= 10)
1813                         gen10_sseu_device_status(dev_priv, &sseu);
1814         }
1815
1816         i915_print_sseu_info(m, false, &sseu);
1817
1818         return 0;
1819 }
1820
1821 static int i915_forcewake_open(struct inode *inode, struct file *file)
1822 {
1823         struct drm_i915_private *i915 = inode->i_private;
1824         struct intel_gt *gt = &i915->gt;
1825
1826         atomic_inc(&gt->user_wakeref);
1827         intel_gt_pm_get(gt);
1828         if (INTEL_GEN(i915) >= 6)
1829                 intel_uncore_forcewake_user_get(gt->uncore);
1830
1831         return 0;
1832 }
1833
1834 static int i915_forcewake_release(struct inode *inode, struct file *file)
1835 {
1836         struct drm_i915_private *i915 = inode->i_private;
1837         struct intel_gt *gt = &i915->gt;
1838
1839         if (INTEL_GEN(i915) >= 6)
1840                 intel_uncore_forcewake_user_put(&i915->uncore);
1841         intel_gt_pm_put(gt);
1842         atomic_dec(&gt->user_wakeref);
1843
1844         return 0;
1845 }
1846
1847 static const struct file_operations i915_forcewake_fops = {
1848         .owner = THIS_MODULE,
1849         .open = i915_forcewake_open,
1850         .release = i915_forcewake_release,
1851 };
1852
1853 static const struct drm_info_list i915_debugfs_list[] = {
1854         {"i915_capabilities", i915_capabilities, 0},
1855         {"i915_gem_objects", i915_gem_object_info, 0},
1856         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
1857         {"i915_gem_interrupt", i915_interrupt_info, 0},
1858         {"i915_frequency_info", i915_frequency_info, 0},
1859         {"i915_ring_freq_table", i915_ring_freq_table, 0},
1860         {"i915_context_status", i915_context_status, 0},
1861         {"i915_swizzle_info", i915_swizzle_info, 0},
1862         {"i915_llc", i915_llc, 0},
1863         {"i915_runtime_pm_status", i915_runtime_pm_status, 0},
1864         {"i915_engine_info", i915_engine_info, 0},
1865         {"i915_rcs_topology", i915_rcs_topology, 0},
1866         {"i915_shrinker_info", i915_shrinker_info, 0},
1867         {"i915_wa_registers", i915_wa_registers, 0},
1868         {"i915_sseu_status", i915_sseu_status, 0},
1869         {"i915_rps_boost_info", i915_rps_boost_info, 0},
1870 };
1871 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
1872
1873 static const struct i915_debugfs_files {
1874         const char *name;
1875         const struct file_operations *fops;
1876 } i915_debugfs_files[] = {
1877         {"i915_perf_noa_delay", &i915_perf_noa_delay_fops},
1878         {"i915_wedged", &i915_wedged_fops},
1879         {"i915_cache_sharing", &i915_cache_sharing_fops},
1880         {"i915_gem_drop_caches", &i915_drop_caches_fops},
1881 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
1882         {"i915_error_state", &i915_error_state_fops},
1883         {"i915_gpu_info", &i915_gpu_info_fops},
1884 #endif
1885 };
1886
1887 int i915_debugfs_register(struct drm_i915_private *dev_priv)
1888 {
1889         struct drm_minor *minor = dev_priv->drm.primary;
1890         int i;
1891
1892         i915_debugfs_params(dev_priv);
1893
1894         debugfs_create_file("i915_forcewake_user", S_IRUSR, minor->debugfs_root,
1895                             to_i915(minor->dev), &i915_forcewake_fops);
1896         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
1897                 debugfs_create_file(i915_debugfs_files[i].name,
1898                                     S_IRUGO | S_IWUSR,
1899                                     minor->debugfs_root,
1900                                     to_i915(minor->dev),
1901                                     i915_debugfs_files[i].fops);
1902         }
1903
1904         return drm_debugfs_create_files(i915_debugfs_list,
1905                                         I915_DEBUGFS_ENTRIES,
1906                                         minor->debugfs_root, minor);
1907 }