2 * SPDX-License-Identifier: MIT
4 * Copyright © 2019 Intel Corporation
7 #include <linux/debugobjects.h>
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
19 * Active refs memory management
21 * To be more economical with memory, we reap all the i915_active trees as
22 * they idle (when we know the active requests are inactive) and allocate the
23 * nodes from a local slab cache to hopefully reduce the fragmentation.
25 static struct i915_global_active {
26 struct i915_global base;
27 struct kmem_cache *slab_cache;
31 struct i915_active_fence base;
32 struct i915_active *ref;
37 static inline struct active_node *
38 node_from_active(struct i915_active_fence *active)
40 return container_of(active, struct active_node, base);
43 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
45 static inline bool is_barrier(const struct i915_active_fence *active)
47 return IS_ERR(rcu_access_pointer(active->fence));
50 static inline struct llist_node *barrier_to_ll(struct active_node *node)
52 GEM_BUG_ON(!is_barrier(&node->base));
53 return (struct llist_node *)&node->base.cb.node;
56 static inline struct intel_engine_cs *
57 __barrier_to_engine(struct active_node *node)
59 return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 static inline struct intel_engine_cs *
63 barrier_to_engine(struct active_node *node)
65 GEM_BUG_ON(!is_barrier(&node->base));
66 return __barrier_to_engine(node);
69 static inline struct active_node *barrier_from_ll(struct llist_node *x)
71 return container_of((struct list_head *)x,
72 struct active_node, base.cb.node);
75 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
77 static void *active_debug_hint(void *addr)
79 struct i915_active *ref = addr;
81 return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 static struct debug_obj_descr active_debug_desc = {
85 .name = "i915_active",
86 .debug_hint = active_debug_hint,
89 static void debug_active_init(struct i915_active *ref)
91 debug_object_init(ref, &active_debug_desc);
94 static void debug_active_activate(struct i915_active *ref)
96 lockdep_assert_held(&ref->tree_lock);
97 if (!atomic_read(&ref->count)) /* before the first inc */
98 debug_object_activate(ref, &active_debug_desc);
101 static void debug_active_deactivate(struct i915_active *ref)
103 lockdep_assert_held(&ref->tree_lock);
104 if (!atomic_read(&ref->count)) /* after the last dec */
105 debug_object_deactivate(ref, &active_debug_desc);
108 static void debug_active_fini(struct i915_active *ref)
110 debug_object_free(ref, &active_debug_desc);
113 static void debug_active_assert(struct i915_active *ref)
115 debug_object_assert_init(ref, &active_debug_desc);
120 static inline void debug_active_init(struct i915_active *ref) { }
121 static inline void debug_active_activate(struct i915_active *ref) { }
122 static inline void debug_active_deactivate(struct i915_active *ref) { }
123 static inline void debug_active_fini(struct i915_active *ref) { }
124 static inline void debug_active_assert(struct i915_active *ref) { }
129 __active_retire(struct i915_active *ref)
131 struct active_node *it, *n;
135 GEM_BUG_ON(i915_active_is_idle(ref));
137 /* return the unused nodes to our slabcache -- flushing the allocator */
138 if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141 GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
142 debug_active_deactivate(ref);
148 spin_unlock_irqrestore(&ref->tree_lock, flags);
150 /* After the final retire, the entire struct may be freed */
154 /* ... except if you wait on it, you must manage your own references! */
157 rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
158 GEM_BUG_ON(i915_active_fence_isset(&it->base));
159 kmem_cache_free(global.slab_cache, it);
164 active_work(struct work_struct *wrk)
166 struct i915_active *ref = container_of(wrk, typeof(*ref), work);
168 GEM_BUG_ON(!atomic_read(&ref->count));
169 if (atomic_add_unless(&ref->count, -1, 1))
172 __active_retire(ref);
176 active_retire(struct i915_active *ref)
178 GEM_BUG_ON(!atomic_read(&ref->count));
179 if (atomic_add_unless(&ref->count, -1, 1))
182 if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
183 queue_work(system_unbound_wq, &ref->work);
187 __active_retire(ref);
190 static inline struct dma_fence **
191 __active_fence_slot(struct i915_active_fence *active)
193 return (struct dma_fence ** __force)&active->fence;
197 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
199 struct i915_active_fence *active =
200 container_of(cb, typeof(*active), cb);
202 return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
206 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
208 if (active_fence_cb(fence, cb))
209 active_retire(container_of(cb, struct active_node, base.cb)->ref);
213 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
215 if (active_fence_cb(fence, cb))
216 active_retire(container_of(cb, struct i915_active, excl.cb));
219 static struct i915_active_fence *
220 active_instance(struct i915_active *ref, struct intel_timeline *tl)
222 struct active_node *node, *prealloc;
223 struct rb_node **p, *parent;
224 u64 idx = tl->fence_context;
227 * We track the most recently used timeline to skip a rbtree search
228 * for the common case, under typical loads we never need the rbtree
229 * at all. We can reuse the last slot if it is empty, that is
230 * after the previous activity has been retired, or if it matches the
233 node = READ_ONCE(ref->cache);
234 if (node && node->timeline == idx)
237 /* Preallocate a replacement, just in case */
238 prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
242 spin_lock_irq(&ref->tree_lock);
243 GEM_BUG_ON(i915_active_is_idle(ref));
246 p = &ref->tree.rb_node;
250 node = rb_entry(parent, struct active_node, node);
251 if (node->timeline == idx) {
252 kmem_cache_free(global.slab_cache, prealloc);
256 if (node->timeline < idx)
257 p = &parent->rb_right;
259 p = &parent->rb_left;
263 __i915_active_fence_init(&node->base, NULL, node_retire);
265 node->timeline = idx;
267 rb_link_node(&node->node, parent, p);
268 rb_insert_color(&node->node, &ref->tree);
272 spin_unlock_irq(&ref->tree_lock);
274 BUILD_BUG_ON(offsetof(typeof(*node), base));
278 void __i915_active_init(struct i915_active *ref,
279 int (*active)(struct i915_active *ref),
280 void (*retire)(struct i915_active *ref),
281 struct lock_class_key *mkey,
282 struct lock_class_key *wkey)
286 debug_active_init(ref);
289 ref->active = active;
290 ref->retire = ptr_unpack_bits(retire, &bits, 2);
291 if (bits & I915_ACTIVE_MAY_SLEEP)
292 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
294 spin_lock_init(&ref->tree_lock);
298 init_llist_head(&ref->preallocated_barriers);
299 atomic_set(&ref->count, 0);
300 __mutex_init(&ref->mutex, "i915_active", mkey);
301 __i915_active_fence_init(&ref->excl, NULL, excl_retire);
302 INIT_WORK(&ref->work, active_work);
303 #if IS_ENABLED(CONFIG_LOCKDEP)
304 lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
308 static bool ____active_del_barrier(struct i915_active *ref,
309 struct active_node *node,
310 struct intel_engine_cs *engine)
313 struct llist_node *head = NULL, *tail = NULL;
314 struct llist_node *pos, *next;
316 GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
319 * Rebuild the llist excluding our node. We may perform this
320 * outside of the kernel_context timeline mutex and so someone
321 * else may be manipulating the engine->barrier_tasks, in
322 * which case either we or they will be upset :)
324 * A second __active_del_barrier() will report failure to claim
325 * the active_node and the caller will just shrug and know not to
326 * claim ownership of its node.
328 * A concurrent i915_request_add_active_barriers() will miss adding
329 * any of the tasks, but we will try again on the next -- and since
330 * we are actively using the barrier, we know that there will be
331 * at least another opportunity when we idle.
333 llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
334 if (node == barrier_from_ll(pos)) {
345 llist_add_batch(head, tail, &engine->barrier_tasks);
351 __active_del_barrier(struct i915_active *ref, struct active_node *node)
353 return ____active_del_barrier(ref, node, barrier_to_engine(node));
356 int i915_active_ref(struct i915_active *ref,
357 struct intel_timeline *tl,
358 struct dma_fence *fence)
360 struct i915_active_fence *active;
363 lockdep_assert_held(&tl->mutex);
365 /* Prevent reaping in case we malloc/wait while building the tree */
366 err = i915_active_acquire(ref);
370 active = active_instance(ref, tl);
376 if (is_barrier(active)) { /* proto-node used by our idle barrier */
378 * This request is on the kernel_context timeline, and so
379 * we can use it to substitute for the pending idle-barrer
380 * request that we want to emit on the kernel_context.
382 __active_del_barrier(ref, node_from_active(active));
383 RCU_INIT_POINTER(active->fence, NULL);
384 atomic_dec(&ref->count);
386 if (!__i915_active_fence_set(active, fence))
387 atomic_inc(&ref->count);
390 i915_active_release(ref);
395 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
397 struct dma_fence *prev;
399 /* We expect the caller to manage the exclusive timeline ordering */
400 GEM_BUG_ON(i915_active_is_idle(ref));
403 prev = __i915_active_fence_set(&ref->excl, f);
405 prev = dma_fence_get_rcu(prev);
407 atomic_inc(&ref->count);
413 bool i915_active_acquire_if_busy(struct i915_active *ref)
415 debug_active_assert(ref);
416 return atomic_add_unless(&ref->count, 1, 0);
419 int i915_active_acquire(struct i915_active *ref)
423 if (i915_active_acquire_if_busy(ref))
426 err = mutex_lock_interruptible(&ref->mutex);
430 if (likely(!i915_active_acquire_if_busy(ref))) {
432 err = ref->active(ref);
434 spin_lock_irq(&ref->tree_lock); /* __active_retire() */
435 debug_active_activate(ref);
436 atomic_inc(&ref->count);
437 spin_unlock_irq(&ref->tree_lock);
441 mutex_unlock(&ref->mutex);
446 void i915_active_release(struct i915_active *ref)
448 debug_active_assert(ref);
452 static void enable_signaling(struct i915_active_fence *active)
454 struct dma_fence *fence;
456 if (unlikely(is_barrier(active)))
459 fence = i915_active_fence_get(active);
463 dma_fence_enable_sw_signaling(fence);
464 dma_fence_put(fence);
467 static int flush_barrier(struct active_node *it)
469 struct intel_engine_cs *engine;
471 if (likely(!is_barrier(&it->base)))
474 engine = __barrier_to_engine(it);
475 smp_rmb(); /* serialise with add_active_barriers */
476 if (!is_barrier(&it->base))
479 return intel_engine_flush_barriers(engine);
482 static int flush_lazy_signals(struct i915_active *ref)
484 struct active_node *it, *n;
487 enable_signaling(&ref->excl);
488 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
489 err = flush_barrier(it); /* unconnected idle barrier? */
493 enable_signaling(&it->base);
499 int i915_active_wait(struct i915_active *ref)
505 if (!i915_active_acquire_if_busy(ref))
508 /* Any fence added after the wait begins will not be auto-signaled */
509 err = flush_lazy_signals(ref);
510 i915_active_release(ref);
514 if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
517 flush_work(&ref->work);
521 static int __await_active(struct i915_active_fence *active,
522 int (*fn)(void *arg, struct dma_fence *fence),
525 struct dma_fence *fence;
527 if (is_barrier(active)) /* XXX flush the barrier? */
530 fence = i915_active_fence_get(active);
534 err = fn(arg, fence);
535 dma_fence_put(fence);
543 static int await_active(struct i915_active *ref,
545 int (*fn)(void *arg, struct dma_fence *fence),
550 /* We must always wait for the exclusive fence! */
551 if (rcu_access_pointer(ref->excl.fence)) {
552 err = __await_active(&ref->excl, fn, arg);
557 if (flags & I915_ACTIVE_AWAIT_ALL && i915_active_acquire_if_busy(ref)) {
558 struct active_node *it, *n;
560 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
561 err = __await_active(&it->base, fn, arg);
565 i915_active_release(ref);
573 static int rq_await_fence(void *arg, struct dma_fence *fence)
575 return i915_request_await_dma_fence(arg, fence);
578 int i915_request_await_active(struct i915_request *rq,
579 struct i915_active *ref,
582 return await_active(ref, flags, rq_await_fence, rq);
585 static int sw_await_fence(void *arg, struct dma_fence *fence)
587 return i915_sw_fence_await_dma_fence(arg, fence, 0,
588 GFP_NOWAIT | __GFP_NOWARN);
591 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
592 struct i915_active *ref,
595 return await_active(ref, flags, sw_await_fence, fence);
598 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
599 void i915_active_fini(struct i915_active *ref)
601 debug_active_fini(ref);
602 GEM_BUG_ON(atomic_read(&ref->count));
603 GEM_BUG_ON(work_pending(&ref->work));
604 GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
605 mutex_destroy(&ref->mutex);
609 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
611 return node->timeline == idx && !i915_active_fence_isset(&node->base);
614 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
616 struct rb_node *prev, *p;
618 if (RB_EMPTY_ROOT(&ref->tree))
621 spin_lock_irq(&ref->tree_lock);
622 GEM_BUG_ON(i915_active_is_idle(ref));
625 * Try to reuse any existing barrier nodes already allocated for this
626 * i915_active, due to overlapping active phases there is likely a
627 * node kept alive (as we reuse before parking). We prefer to reuse
628 * completely idle barriers (less hassle in manipulating the llists),
629 * but otherwise any will do.
631 if (ref->cache && is_idle_barrier(ref->cache, idx)) {
632 p = &ref->cache->node;
637 p = ref->tree.rb_node;
639 struct active_node *node =
640 rb_entry(p, struct active_node, node);
642 if (is_idle_barrier(node, idx))
646 if (node->timeline < idx)
653 * No quick match, but we did find the leftmost rb_node for the
654 * kernel_context. Walk the rb_tree in-order to see if there were
655 * any idle-barriers on this timeline that we missed, or just use
656 * the first pending barrier.
658 for (p = prev; p; p = rb_next(p)) {
659 struct active_node *node =
660 rb_entry(p, struct active_node, node);
661 struct intel_engine_cs *engine;
663 if (node->timeline > idx)
666 if (node->timeline < idx)
669 if (is_idle_barrier(node, idx))
673 * The list of pending barriers is protected by the
674 * kernel_context timeline, which notably we do not hold
675 * here. i915_request_add_active_barriers() may consume
676 * the barrier before we claim it, so we have to check
679 engine = __barrier_to_engine(node);
680 smp_rmb(); /* serialise with add_active_barriers */
681 if (is_barrier(&node->base) &&
682 ____active_del_barrier(ref, node, engine))
686 spin_unlock_irq(&ref->tree_lock);
691 rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
692 if (p == &ref->cache->node)
694 spin_unlock_irq(&ref->tree_lock);
696 return rb_entry(p, struct active_node, node);
699 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
700 struct intel_engine_cs *engine)
702 intel_engine_mask_t tmp, mask = engine->mask;
703 struct llist_node *first = NULL, *last = NULL;
704 struct intel_gt *gt = engine->gt;
707 GEM_BUG_ON(i915_active_is_idle(ref));
709 /* Wait until the previous preallocation is completed */
710 while (!llist_empty(&ref->preallocated_barriers))
714 * Preallocate a node for each physical engine supporting the target
715 * engine (remember virtual engines have more than one sibling).
716 * We can then use the preallocated nodes in
717 * i915_active_acquire_barrier()
720 for_each_engine_masked(engine, gt, mask, tmp) {
721 u64 idx = engine->kernel_context->timeline->fence_context;
722 struct llist_node *prev = first;
723 struct active_node *node;
725 node = reuse_idle_barrier(ref, idx);
727 node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
733 RCU_INIT_POINTER(node->base.fence, NULL);
734 node->base.cb.func = node_retire;
735 node->timeline = idx;
739 if (!i915_active_fence_isset(&node->base)) {
741 * Mark this as being *our* unconnected proto-node.
743 * Since this node is not in any list, and we have
744 * decoupled it from the rbtree, we can reuse the
745 * request to indicate this is an idle-barrier node
746 * and then we can use the rb_node and list pointers
747 * for our tracking of the pending barrier.
749 RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
750 node->base.cb.node.prev = (void *)engine;
751 atomic_inc(&ref->count);
753 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
755 GEM_BUG_ON(barrier_to_engine(node) != engine);
756 first = barrier_to_ll(node);
760 intel_engine_pm_get(engine);
763 GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
764 llist_add_batch(first, last, &ref->preallocated_barriers);
770 struct active_node *node = barrier_from_ll(first);
774 atomic_dec(&ref->count);
775 intel_engine_pm_put(barrier_to_engine(node));
777 kmem_cache_free(global.slab_cache, node);
782 void i915_active_acquire_barrier(struct i915_active *ref)
784 struct llist_node *pos, *next;
787 GEM_BUG_ON(i915_active_is_idle(ref));
790 * Transfer the list of preallocated barriers into the
791 * i915_active rbtree, but only as proto-nodes. They will be
792 * populated by i915_request_add_active_barriers() to point to the
793 * request that will eventually release them.
795 llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
796 struct active_node *node = barrier_from_ll(pos);
797 struct intel_engine_cs *engine = barrier_to_engine(node);
798 struct rb_node **p, *parent;
800 spin_lock_irqsave_nested(&ref->tree_lock, flags,
801 SINGLE_DEPTH_NESTING);
803 p = &ref->tree.rb_node;
805 struct active_node *it;
809 it = rb_entry(parent, struct active_node, node);
810 if (it->timeline < node->timeline)
811 p = &parent->rb_right;
813 p = &parent->rb_left;
815 rb_link_node(&node->node, parent, p);
816 rb_insert_color(&node->node, &ref->tree);
817 spin_unlock_irqrestore(&ref->tree_lock, flags);
819 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
820 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
821 intel_engine_pm_put(engine);
825 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
827 return __active_fence_slot(&barrier_from_ll(node)->base);
830 void i915_request_add_active_barriers(struct i915_request *rq)
832 struct intel_engine_cs *engine = rq->engine;
833 struct llist_node *node, *next;
836 GEM_BUG_ON(!intel_context_is_barrier(rq->context));
837 GEM_BUG_ON(intel_engine_is_virtual(engine));
838 GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
840 node = llist_del_all(&engine->barrier_tasks);
844 * Attach the list of proto-fences to the in-flight request such
845 * that the parent i915_active will be released when this request
848 spin_lock_irqsave(&rq->lock, flags);
849 llist_for_each_safe(node, next, node) {
850 /* serialise with reuse_idle_barrier */
851 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
852 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
854 spin_unlock_irqrestore(&rq->lock, flags);
858 * __i915_active_fence_set: Update the last active fence along its timeline
859 * @active: the active tracker
860 * @fence: the new fence (under construction)
862 * Records the new @fence as the last active fence along its timeline in
863 * this active tracker, moving the tracking callbacks from the previous
864 * fence onto this one. Returns the previous fence (if not already completed),
865 * which the caller must ensure is executed before the new fence. To ensure
866 * that the order of fences within the timeline of the i915_active_fence is
867 * understood, it should be locked by the caller.
870 __i915_active_fence_set(struct i915_active_fence *active,
871 struct dma_fence *fence)
873 struct dma_fence *prev;
876 if (fence == rcu_access_pointer(active->fence))
879 GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
882 * Consider that we have two threads arriving (A and B), with
883 * C already resident as the active->fence.
885 * A does the xchg first, and so it sees C or NULL depending
886 * on the timing of the interrupt handler. If it is NULL, the
887 * previous fence must have been signaled and we know that
888 * we are first on the timeline. If it is still present,
889 * we acquire the lock on that fence and serialise with the interrupt
890 * handler, in the process removing it from any future interrupt
891 * callback. A will then wait on C before executing (if present).
893 * As B is second, it sees A as the previous fence and so waits for
894 * it to complete its transition and takes over the occupancy for
895 * itself -- remembering that it needs to wait on A before executing.
897 * Note the strong ordering of the timeline also provides consistent
898 * nesting rules for the fence->lock; the inner lock is always the
901 spin_lock_irqsave(fence->lock, flags);
902 prev = xchg(__active_fence_slot(active), fence);
904 GEM_BUG_ON(prev == fence);
905 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
906 __list_del_entry(&active->cb.node);
907 spin_unlock(prev->lock); /* serialise with prev->cb_list */
909 list_add_tail(&active->cb.node, &fence->cb_list);
910 spin_unlock_irqrestore(fence->lock, flags);
915 int i915_active_fence_set(struct i915_active_fence *active,
916 struct i915_request *rq)
918 struct dma_fence *fence;
921 /* Must maintain timeline ordering wrt previous active requests */
923 fence = __i915_active_fence_set(active, &rq->fence);
924 if (fence) /* but the previous fence may not belong to that timeline! */
925 fence = dma_fence_get_rcu(fence);
928 err = i915_request_await_dma_fence(rq, fence);
929 dma_fence_put(fence);
935 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
937 active_fence_cb(fence, cb);
940 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
941 #include "selftests/i915_active.c"
944 static void i915_global_active_shrink(void)
946 kmem_cache_shrink(global.slab_cache);
949 static void i915_global_active_exit(void)
951 kmem_cache_destroy(global.slab_cache);
954 static struct i915_global_active global = { {
955 .shrink = i915_global_active_shrink,
956 .exit = i915_global_active_exit,
959 int __init i915_global_active_init(void)
961 global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
962 if (!global.slab_cache)
965 i915_global_register(&global.base);