Merge tag 'imx-fixes-5.13' of git://git.kernel.org/pub/scm/linux/kernel/git/shawnguo...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_active.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26         struct i915_global base;
27         struct kmem_cache *slab_cache;
28 } global;
29
30 struct active_node {
31         struct rb_node node;
32         struct i915_active_fence base;
33         struct i915_active *ref;
34         u64 timeline;
35 };
36
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38
39 static inline struct active_node *
40 node_from_active(struct i915_active_fence *active)
41 {
42         return container_of(active, struct active_node, base);
43 }
44
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46
47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49         return IS_ERR(rcu_access_pointer(active->fence));
50 }
51
52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54         GEM_BUG_ON(!is_barrier(&node->base));
55         return (struct llist_node *)&node->base.cb.node;
56 }
57
58 static inline struct intel_engine_cs *
59 __barrier_to_engine(struct active_node *node)
60 {
61         return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63
64 static inline struct intel_engine_cs *
65 barrier_to_engine(struct active_node *node)
66 {
67         GEM_BUG_ON(!is_barrier(&node->base));
68         return __barrier_to_engine(node);
69 }
70
71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73         return container_of((struct list_head *)x,
74                             struct active_node, base.cb.node);
75 }
76
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78
79 static void *active_debug_hint(void *addr)
80 {
81         struct i915_active *ref = addr;
82
83         return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85
86 static const struct debug_obj_descr active_debug_desc = {
87         .name = "i915_active",
88         .debug_hint = active_debug_hint,
89 };
90
91 static void debug_active_init(struct i915_active *ref)
92 {
93         debug_object_init(ref, &active_debug_desc);
94 }
95
96 static void debug_active_activate(struct i915_active *ref)
97 {
98         lockdep_assert_held(&ref->tree_lock);
99         if (!atomic_read(&ref->count)) /* before the first inc */
100                 debug_object_activate(ref, &active_debug_desc);
101 }
102
103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105         lockdep_assert_held(&ref->tree_lock);
106         if (!atomic_read(&ref->count)) /* after the last dec */
107                 debug_object_deactivate(ref, &active_debug_desc);
108 }
109
110 static void debug_active_fini(struct i915_active *ref)
111 {
112         debug_object_free(ref, &active_debug_desc);
113 }
114
115 static void debug_active_assert(struct i915_active *ref)
116 {
117         debug_object_assert_init(ref, &active_debug_desc);
118 }
119
120 #else
121
122 static inline void debug_active_init(struct i915_active *ref) { }
123 static inline void debug_active_activate(struct i915_active *ref) { }
124 static inline void debug_active_deactivate(struct i915_active *ref) { }
125 static inline void debug_active_fini(struct i915_active *ref) { }
126 static inline void debug_active_assert(struct i915_active *ref) { }
127
128 #endif
129
130 static void
131 __active_retire(struct i915_active *ref)
132 {
133         struct rb_root root = RB_ROOT;
134         struct active_node *it, *n;
135         unsigned long flags;
136
137         GEM_BUG_ON(i915_active_is_idle(ref));
138
139         /* return the unused nodes to our slabcache -- flushing the allocator */
140         if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141                 return;
142
143         GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144         debug_active_deactivate(ref);
145
146         /* Even if we have not used the cache, we may still have a barrier */
147         if (!ref->cache)
148                 ref->cache = fetch_node(ref->tree.rb_node);
149
150         /* Keep the MRU cached node for reuse */
151         if (ref->cache) {
152                 /* Discard all other nodes in the tree */
153                 rb_erase(&ref->cache->node, &ref->tree);
154                 root = ref->tree;
155
156                 /* Rebuild the tree with only the cached node */
157                 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158                 rb_insert_color(&ref->cache->node, &ref->tree);
159                 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160
161                 /* Make the cached node available for reuse with any timeline */
162                 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
163         }
164
165         spin_unlock_irqrestore(&ref->tree_lock, flags);
166
167         /* After the final retire, the entire struct may be freed */
168         if (ref->retire)
169                 ref->retire(ref);
170
171         /* ... except if you wait on it, you must manage your own references! */
172         wake_up_var(ref);
173
174         /* Finally free the discarded timeline tree  */
175         rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176                 GEM_BUG_ON(i915_active_fence_isset(&it->base));
177                 kmem_cache_free(global.slab_cache, it);
178         }
179 }
180
181 static void
182 active_work(struct work_struct *wrk)
183 {
184         struct i915_active *ref = container_of(wrk, typeof(*ref), work);
185
186         GEM_BUG_ON(!atomic_read(&ref->count));
187         if (atomic_add_unless(&ref->count, -1, 1))
188                 return;
189
190         __active_retire(ref);
191 }
192
193 static void
194 active_retire(struct i915_active *ref)
195 {
196         GEM_BUG_ON(!atomic_read(&ref->count));
197         if (atomic_add_unless(&ref->count, -1, 1))
198                 return;
199
200         if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201                 queue_work(system_unbound_wq, &ref->work);
202                 return;
203         }
204
205         __active_retire(ref);
206 }
207
208 static inline struct dma_fence **
209 __active_fence_slot(struct i915_active_fence *active)
210 {
211         return (struct dma_fence ** __force)&active->fence;
212 }
213
214 static inline bool
215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
216 {
217         struct i915_active_fence *active =
218                 container_of(cb, typeof(*active), cb);
219
220         return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
221 }
222
223 static void
224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
225 {
226         if (active_fence_cb(fence, cb))
227                 active_retire(container_of(cb, struct active_node, base.cb)->ref);
228 }
229
230 static void
231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
232 {
233         if (active_fence_cb(fence, cb))
234                 active_retire(container_of(cb, struct i915_active, excl.cb));
235 }
236
237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
238 {
239         struct active_node *it;
240
241         GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
242
243         /*
244          * We track the most recently used timeline to skip a rbtree search
245          * for the common case, under typical loads we never need the rbtree
246          * at all. We can reuse the last slot if it is empty, that is
247          * after the previous activity has been retired, or if it matches the
248          * current timeline.
249          */
250         it = READ_ONCE(ref->cache);
251         if (it) {
252                 u64 cached = READ_ONCE(it->timeline);
253
254                 /* Once claimed, this slot will only belong to this idx */
255                 if (cached == idx)
256                         return it;
257
258                 /*
259                  * An unclaimed cache [.timeline=0] can only be claimed once.
260                  *
261                  * If the value is already non-zero, some other thread has
262                  * claimed the cache and we know that is does not match our
263                  * idx. If, and only if, the timeline is currently zero is it
264                  * worth competing to claim it atomically for ourselves (for
265                  * only the winner of that race will cmpxchg return the old
266                  * value of 0).
267                  */
268                 if (!cached && !cmpxchg64(&it->timeline, 0, idx))
269                         return it;
270         }
271
272         BUILD_BUG_ON(offsetof(typeof(*it), node));
273
274         /* While active, the tree can only be built; not destroyed */
275         GEM_BUG_ON(i915_active_is_idle(ref));
276
277         it = fetch_node(ref->tree.rb_node);
278         while (it) {
279                 if (it->timeline < idx) {
280                         it = fetch_node(it->node.rb_right);
281                 } else if (it->timeline > idx) {
282                         it = fetch_node(it->node.rb_left);
283                 } else {
284                         WRITE_ONCE(ref->cache, it);
285                         break;
286                 }
287         }
288
289         /* NB: If the tree rotated beneath us, we may miss our target. */
290         return it;
291 }
292
293 static struct i915_active_fence *
294 active_instance(struct i915_active *ref, u64 idx)
295 {
296         struct active_node *node;
297         struct rb_node **p, *parent;
298
299         node = __active_lookup(ref, idx);
300         if (likely(node))
301                 return &node->base;
302
303         spin_lock_irq(&ref->tree_lock);
304         GEM_BUG_ON(i915_active_is_idle(ref));
305
306         parent = NULL;
307         p = &ref->tree.rb_node;
308         while (*p) {
309                 parent = *p;
310
311                 node = rb_entry(parent, struct active_node, node);
312                 if (node->timeline == idx)
313                         goto out;
314
315                 if (node->timeline < idx)
316                         p = &parent->rb_right;
317                 else
318                         p = &parent->rb_left;
319         }
320
321         /*
322          * XXX: We should preallocate this before i915_active_ref() is ever
323          *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
324          */
325         node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC);
326         if (!node)
327                 goto out;
328
329         __i915_active_fence_init(&node->base, NULL, node_retire);
330         node->ref = ref;
331         node->timeline = idx;
332
333         rb_link_node(&node->node, parent, p);
334         rb_insert_color(&node->node, &ref->tree);
335
336 out:
337         WRITE_ONCE(ref->cache, node);
338         spin_unlock_irq(&ref->tree_lock);
339
340         return &node->base;
341 }
342
343 void __i915_active_init(struct i915_active *ref,
344                         int (*active)(struct i915_active *ref),
345                         void (*retire)(struct i915_active *ref),
346                         struct lock_class_key *mkey,
347                         struct lock_class_key *wkey)
348 {
349         unsigned long bits;
350
351         debug_active_init(ref);
352
353         ref->flags = 0;
354         ref->active = active;
355         ref->retire = ptr_unpack_bits(retire, &bits, 2);
356         if (bits & I915_ACTIVE_MAY_SLEEP)
357                 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
358
359         spin_lock_init(&ref->tree_lock);
360         ref->tree = RB_ROOT;
361         ref->cache = NULL;
362
363         init_llist_head(&ref->preallocated_barriers);
364         atomic_set(&ref->count, 0);
365         __mutex_init(&ref->mutex, "i915_active", mkey);
366         __i915_active_fence_init(&ref->excl, NULL, excl_retire);
367         INIT_WORK(&ref->work, active_work);
368 #if IS_ENABLED(CONFIG_LOCKDEP)
369         lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
370 #endif
371 }
372
373 static bool ____active_del_barrier(struct i915_active *ref,
374                                    struct active_node *node,
375                                    struct intel_engine_cs *engine)
376
377 {
378         struct llist_node *head = NULL, *tail = NULL;
379         struct llist_node *pos, *next;
380
381         GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
382
383         /*
384          * Rebuild the llist excluding our node. We may perform this
385          * outside of the kernel_context timeline mutex and so someone
386          * else may be manipulating the engine->barrier_tasks, in
387          * which case either we or they will be upset :)
388          *
389          * A second __active_del_barrier() will report failure to claim
390          * the active_node and the caller will just shrug and know not to
391          * claim ownership of its node.
392          *
393          * A concurrent i915_request_add_active_barriers() will miss adding
394          * any of the tasks, but we will try again on the next -- and since
395          * we are actively using the barrier, we know that there will be
396          * at least another opportunity when we idle.
397          */
398         llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
399                 if (node == barrier_from_ll(pos)) {
400                         node = NULL;
401                         continue;
402                 }
403
404                 pos->next = head;
405                 head = pos;
406                 if (!tail)
407                         tail = pos;
408         }
409         if (head)
410                 llist_add_batch(head, tail, &engine->barrier_tasks);
411
412         return !node;
413 }
414
415 static bool
416 __active_del_barrier(struct i915_active *ref, struct active_node *node)
417 {
418         return ____active_del_barrier(ref, node, barrier_to_engine(node));
419 }
420
421 static bool
422 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
423 {
424         if (!is_barrier(active)) /* proto-node used by our idle barrier? */
425                 return false;
426
427         /*
428          * This request is on the kernel_context timeline, and so
429          * we can use it to substitute for the pending idle-barrer
430          * request that we want to emit on the kernel_context.
431          */
432         __active_del_barrier(ref, node_from_active(active));
433         return true;
434 }
435
436 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
437 {
438         struct i915_active_fence *active;
439         int err;
440
441         /* Prevent reaping in case we malloc/wait while building the tree */
442         err = i915_active_acquire(ref);
443         if (err)
444                 return err;
445
446         active = active_instance(ref, idx);
447         if (!active) {
448                 err = -ENOMEM;
449                 goto out;
450         }
451
452         if (replace_barrier(ref, active)) {
453                 RCU_INIT_POINTER(active->fence, NULL);
454                 atomic_dec(&ref->count);
455         }
456         if (!__i915_active_fence_set(active, fence))
457                 __i915_active_acquire(ref);
458
459 out:
460         i915_active_release(ref);
461         return err;
462 }
463
464 static struct dma_fence *
465 __i915_active_set_fence(struct i915_active *ref,
466                         struct i915_active_fence *active,
467                         struct dma_fence *fence)
468 {
469         struct dma_fence *prev;
470
471         if (replace_barrier(ref, active)) {
472                 RCU_INIT_POINTER(active->fence, fence);
473                 return NULL;
474         }
475
476         rcu_read_lock();
477         prev = __i915_active_fence_set(active, fence);
478         if (prev)
479                 prev = dma_fence_get_rcu(prev);
480         else
481                 __i915_active_acquire(ref);
482         rcu_read_unlock();
483
484         return prev;
485 }
486
487 static struct i915_active_fence *
488 __active_fence(struct i915_active *ref, u64 idx)
489 {
490         struct active_node *it;
491
492         it = __active_lookup(ref, idx);
493         if (unlikely(!it)) { /* Contention with parallel tree builders! */
494                 spin_lock_irq(&ref->tree_lock);
495                 it = __active_lookup(ref, idx);
496                 spin_unlock_irq(&ref->tree_lock);
497         }
498         GEM_BUG_ON(!it); /* slot must be preallocated */
499
500         return &it->base;
501 }
502
503 struct dma_fence *
504 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
505 {
506         /* Only valid while active, see i915_active_acquire_for_context() */
507         return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
508 }
509
510 struct dma_fence *
511 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
512 {
513         /* We expect the caller to manage the exclusive timeline ordering */
514         return __i915_active_set_fence(ref, &ref->excl, f);
515 }
516
517 bool i915_active_acquire_if_busy(struct i915_active *ref)
518 {
519         debug_active_assert(ref);
520         return atomic_add_unless(&ref->count, 1, 0);
521 }
522
523 static void __i915_active_activate(struct i915_active *ref)
524 {
525         spin_lock_irq(&ref->tree_lock); /* __active_retire() */
526         if (!atomic_fetch_inc(&ref->count))
527                 debug_active_activate(ref);
528         spin_unlock_irq(&ref->tree_lock);
529 }
530
531 int i915_active_acquire(struct i915_active *ref)
532 {
533         int err;
534
535         if (i915_active_acquire_if_busy(ref))
536                 return 0;
537
538         if (!ref->active) {
539                 __i915_active_activate(ref);
540                 return 0;
541         }
542
543         err = mutex_lock_interruptible(&ref->mutex);
544         if (err)
545                 return err;
546
547         if (likely(!i915_active_acquire_if_busy(ref))) {
548                 err = ref->active(ref);
549                 if (!err)
550                         __i915_active_activate(ref);
551         }
552
553         mutex_unlock(&ref->mutex);
554
555         return err;
556 }
557
558 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
559 {
560         struct i915_active_fence *active;
561         int err;
562
563         err = i915_active_acquire(ref);
564         if (err)
565                 return err;
566
567         active = active_instance(ref, idx);
568         if (!active) {
569                 i915_active_release(ref);
570                 return -ENOMEM;
571         }
572
573         return 0; /* return with active ref */
574 }
575
576 void i915_active_release(struct i915_active *ref)
577 {
578         debug_active_assert(ref);
579         active_retire(ref);
580 }
581
582 static void enable_signaling(struct i915_active_fence *active)
583 {
584         struct dma_fence *fence;
585
586         if (unlikely(is_barrier(active)))
587                 return;
588
589         fence = i915_active_fence_get(active);
590         if (!fence)
591                 return;
592
593         dma_fence_enable_sw_signaling(fence);
594         dma_fence_put(fence);
595 }
596
597 static int flush_barrier(struct active_node *it)
598 {
599         struct intel_engine_cs *engine;
600
601         if (likely(!is_barrier(&it->base)))
602                 return 0;
603
604         engine = __barrier_to_engine(it);
605         smp_rmb(); /* serialise with add_active_barriers */
606         if (!is_barrier(&it->base))
607                 return 0;
608
609         return intel_engine_flush_barriers(engine);
610 }
611
612 static int flush_lazy_signals(struct i915_active *ref)
613 {
614         struct active_node *it, *n;
615         int err = 0;
616
617         enable_signaling(&ref->excl);
618         rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
619                 err = flush_barrier(it); /* unconnected idle barrier? */
620                 if (err)
621                         break;
622
623                 enable_signaling(&it->base);
624         }
625
626         return err;
627 }
628
629 int __i915_active_wait(struct i915_active *ref, int state)
630 {
631         might_sleep();
632
633         /* Any fence added after the wait begins will not be auto-signaled */
634         if (i915_active_acquire_if_busy(ref)) {
635                 int err;
636
637                 err = flush_lazy_signals(ref);
638                 i915_active_release(ref);
639                 if (err)
640                         return err;
641
642                 if (___wait_var_event(ref, i915_active_is_idle(ref),
643                                       state, 0, 0, schedule()))
644                         return -EINTR;
645         }
646
647         /*
648          * After the wait is complete, the caller may free the active.
649          * We have to flush any concurrent retirement before returning.
650          */
651         flush_work(&ref->work);
652         return 0;
653 }
654
655 static int __await_active(struct i915_active_fence *active,
656                           int (*fn)(void *arg, struct dma_fence *fence),
657                           void *arg)
658 {
659         struct dma_fence *fence;
660
661         if (is_barrier(active)) /* XXX flush the barrier? */
662                 return 0;
663
664         fence = i915_active_fence_get(active);
665         if (fence) {
666                 int err;
667
668                 err = fn(arg, fence);
669                 dma_fence_put(fence);
670                 if (err < 0)
671                         return err;
672         }
673
674         return 0;
675 }
676
677 struct wait_barrier {
678         struct wait_queue_entry base;
679         struct i915_active *ref;
680 };
681
682 static int
683 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
684 {
685         struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
686
687         if (i915_active_is_idle(wb->ref)) {
688                 list_del(&wq->entry);
689                 i915_sw_fence_complete(wq->private);
690                 kfree(wq);
691         }
692
693         return 0;
694 }
695
696 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
697 {
698         struct wait_barrier *wb;
699
700         wb = kmalloc(sizeof(*wb), GFP_KERNEL);
701         if (unlikely(!wb))
702                 return -ENOMEM;
703
704         GEM_BUG_ON(i915_active_is_idle(ref));
705         if (!i915_sw_fence_await(fence)) {
706                 kfree(wb);
707                 return -EINVAL;
708         }
709
710         wb->base.flags = 0;
711         wb->base.func = barrier_wake;
712         wb->base.private = fence;
713         wb->ref = ref;
714
715         add_wait_queue(__var_waitqueue(ref), &wb->base);
716         return 0;
717 }
718
719 static int await_active(struct i915_active *ref,
720                         unsigned int flags,
721                         int (*fn)(void *arg, struct dma_fence *fence),
722                         void *arg, struct i915_sw_fence *barrier)
723 {
724         int err = 0;
725
726         if (!i915_active_acquire_if_busy(ref))
727                 return 0;
728
729         if (flags & I915_ACTIVE_AWAIT_EXCL &&
730             rcu_access_pointer(ref->excl.fence)) {
731                 err = __await_active(&ref->excl, fn, arg);
732                 if (err)
733                         goto out;
734         }
735
736         if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
737                 struct active_node *it, *n;
738
739                 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
740                         err = __await_active(&it->base, fn, arg);
741                         if (err)
742                                 goto out;
743                 }
744         }
745
746         if (flags & I915_ACTIVE_AWAIT_BARRIER) {
747                 err = flush_lazy_signals(ref);
748                 if (err)
749                         goto out;
750
751                 err = __await_barrier(ref, barrier);
752                 if (err)
753                         goto out;
754         }
755
756 out:
757         i915_active_release(ref);
758         return err;
759 }
760
761 static int rq_await_fence(void *arg, struct dma_fence *fence)
762 {
763         return i915_request_await_dma_fence(arg, fence);
764 }
765
766 int i915_request_await_active(struct i915_request *rq,
767                               struct i915_active *ref,
768                               unsigned int flags)
769 {
770         return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
771 }
772
773 static int sw_await_fence(void *arg, struct dma_fence *fence)
774 {
775         return i915_sw_fence_await_dma_fence(arg, fence, 0,
776                                              GFP_NOWAIT | __GFP_NOWARN);
777 }
778
779 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
780                                struct i915_active *ref,
781                                unsigned int flags)
782 {
783         return await_active(ref, flags, sw_await_fence, fence, fence);
784 }
785
786 void i915_active_fini(struct i915_active *ref)
787 {
788         debug_active_fini(ref);
789         GEM_BUG_ON(atomic_read(&ref->count));
790         GEM_BUG_ON(work_pending(&ref->work));
791         mutex_destroy(&ref->mutex);
792
793         if (ref->cache)
794                 kmem_cache_free(global.slab_cache, ref->cache);
795 }
796
797 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
798 {
799         return node->timeline == idx && !i915_active_fence_isset(&node->base);
800 }
801
802 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
803 {
804         struct rb_node *prev, *p;
805
806         if (RB_EMPTY_ROOT(&ref->tree))
807                 return NULL;
808
809         GEM_BUG_ON(i915_active_is_idle(ref));
810
811         /*
812          * Try to reuse any existing barrier nodes already allocated for this
813          * i915_active, due to overlapping active phases there is likely a
814          * node kept alive (as we reuse before parking). We prefer to reuse
815          * completely idle barriers (less hassle in manipulating the llists),
816          * but otherwise any will do.
817          */
818         if (ref->cache && is_idle_barrier(ref->cache, idx)) {
819                 p = &ref->cache->node;
820                 goto match;
821         }
822
823         prev = NULL;
824         p = ref->tree.rb_node;
825         while (p) {
826                 struct active_node *node =
827                         rb_entry(p, struct active_node, node);
828
829                 if (is_idle_barrier(node, idx))
830                         goto match;
831
832                 prev = p;
833                 if (node->timeline < idx)
834                         p = READ_ONCE(p->rb_right);
835                 else
836                         p = READ_ONCE(p->rb_left);
837         }
838
839         /*
840          * No quick match, but we did find the leftmost rb_node for the
841          * kernel_context. Walk the rb_tree in-order to see if there were
842          * any idle-barriers on this timeline that we missed, or just use
843          * the first pending barrier.
844          */
845         for (p = prev; p; p = rb_next(p)) {
846                 struct active_node *node =
847                         rb_entry(p, struct active_node, node);
848                 struct intel_engine_cs *engine;
849
850                 if (node->timeline > idx)
851                         break;
852
853                 if (node->timeline < idx)
854                         continue;
855
856                 if (is_idle_barrier(node, idx))
857                         goto match;
858
859                 /*
860                  * The list of pending barriers is protected by the
861                  * kernel_context timeline, which notably we do not hold
862                  * here. i915_request_add_active_barriers() may consume
863                  * the barrier before we claim it, so we have to check
864                  * for success.
865                  */
866                 engine = __barrier_to_engine(node);
867                 smp_rmb(); /* serialise with add_active_barriers */
868                 if (is_barrier(&node->base) &&
869                     ____active_del_barrier(ref, node, engine))
870                         goto match;
871         }
872
873         return NULL;
874
875 match:
876         spin_lock_irq(&ref->tree_lock);
877         rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
878         if (p == &ref->cache->node)
879                 WRITE_ONCE(ref->cache, NULL);
880         spin_unlock_irq(&ref->tree_lock);
881
882         return rb_entry(p, struct active_node, node);
883 }
884
885 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
886                                             struct intel_engine_cs *engine)
887 {
888         intel_engine_mask_t tmp, mask = engine->mask;
889         struct llist_node *first = NULL, *last = NULL;
890         struct intel_gt *gt = engine->gt;
891
892         GEM_BUG_ON(i915_active_is_idle(ref));
893
894         /* Wait until the previous preallocation is completed */
895         while (!llist_empty(&ref->preallocated_barriers))
896                 cond_resched();
897
898         /*
899          * Preallocate a node for each physical engine supporting the target
900          * engine (remember virtual engines have more than one sibling).
901          * We can then use the preallocated nodes in
902          * i915_active_acquire_barrier()
903          */
904         GEM_BUG_ON(!mask);
905         for_each_engine_masked(engine, gt, mask, tmp) {
906                 u64 idx = engine->kernel_context->timeline->fence_context;
907                 struct llist_node *prev = first;
908                 struct active_node *node;
909
910                 rcu_read_lock();
911                 node = reuse_idle_barrier(ref, idx);
912                 rcu_read_unlock();
913                 if (!node) {
914                         node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
915                         if (!node)
916                                 goto unwind;
917
918                         RCU_INIT_POINTER(node->base.fence, NULL);
919                         node->base.cb.func = node_retire;
920                         node->timeline = idx;
921                         node->ref = ref;
922                 }
923
924                 if (!i915_active_fence_isset(&node->base)) {
925                         /*
926                          * Mark this as being *our* unconnected proto-node.
927                          *
928                          * Since this node is not in any list, and we have
929                          * decoupled it from the rbtree, we can reuse the
930                          * request to indicate this is an idle-barrier node
931                          * and then we can use the rb_node and list pointers
932                          * for our tracking of the pending barrier.
933                          */
934                         RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
935                         node->base.cb.node.prev = (void *)engine;
936                         __i915_active_acquire(ref);
937                 }
938                 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
939
940                 GEM_BUG_ON(barrier_to_engine(node) != engine);
941                 first = barrier_to_ll(node);
942                 first->next = prev;
943                 if (!last)
944                         last = first;
945                 intel_engine_pm_get(engine);
946         }
947
948         GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
949         llist_add_batch(first, last, &ref->preallocated_barriers);
950
951         return 0;
952
953 unwind:
954         while (first) {
955                 struct active_node *node = barrier_from_ll(first);
956
957                 first = first->next;
958
959                 atomic_dec(&ref->count);
960                 intel_engine_pm_put(barrier_to_engine(node));
961
962                 kmem_cache_free(global.slab_cache, node);
963         }
964         return -ENOMEM;
965 }
966
967 void i915_active_acquire_barrier(struct i915_active *ref)
968 {
969         struct llist_node *pos, *next;
970         unsigned long flags;
971
972         GEM_BUG_ON(i915_active_is_idle(ref));
973
974         /*
975          * Transfer the list of preallocated barriers into the
976          * i915_active rbtree, but only as proto-nodes. They will be
977          * populated by i915_request_add_active_barriers() to point to the
978          * request that will eventually release them.
979          */
980         llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
981                 struct active_node *node = barrier_from_ll(pos);
982                 struct intel_engine_cs *engine = barrier_to_engine(node);
983                 struct rb_node **p, *parent;
984
985                 spin_lock_irqsave_nested(&ref->tree_lock, flags,
986                                          SINGLE_DEPTH_NESTING);
987                 parent = NULL;
988                 p = &ref->tree.rb_node;
989                 while (*p) {
990                         struct active_node *it;
991
992                         parent = *p;
993
994                         it = rb_entry(parent, struct active_node, node);
995                         if (it->timeline < node->timeline)
996                                 p = &parent->rb_right;
997                         else
998                                 p = &parent->rb_left;
999                 }
1000                 rb_link_node(&node->node, parent, p);
1001                 rb_insert_color(&node->node, &ref->tree);
1002                 spin_unlock_irqrestore(&ref->tree_lock, flags);
1003
1004                 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1005                 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1006                 intel_engine_pm_put_delay(engine, 1);
1007         }
1008 }
1009
1010 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1011 {
1012         return __active_fence_slot(&barrier_from_ll(node)->base);
1013 }
1014
1015 void i915_request_add_active_barriers(struct i915_request *rq)
1016 {
1017         struct intel_engine_cs *engine = rq->engine;
1018         struct llist_node *node, *next;
1019         unsigned long flags;
1020
1021         GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1022         GEM_BUG_ON(intel_engine_is_virtual(engine));
1023         GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1024
1025         node = llist_del_all(&engine->barrier_tasks);
1026         if (!node)
1027                 return;
1028         /*
1029          * Attach the list of proto-fences to the in-flight request such
1030          * that the parent i915_active will be released when this request
1031          * is retired.
1032          */
1033         spin_lock_irqsave(&rq->lock, flags);
1034         llist_for_each_safe(node, next, node) {
1035                 /* serialise with reuse_idle_barrier */
1036                 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1037                 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1038         }
1039         spin_unlock_irqrestore(&rq->lock, flags);
1040 }
1041
1042 /*
1043  * __i915_active_fence_set: Update the last active fence along its timeline
1044  * @active: the active tracker
1045  * @fence: the new fence (under construction)
1046  *
1047  * Records the new @fence as the last active fence along its timeline in
1048  * this active tracker, moving the tracking callbacks from the previous
1049  * fence onto this one. Returns the previous fence (if not already completed),
1050  * which the caller must ensure is executed before the new fence. To ensure
1051  * that the order of fences within the timeline of the i915_active_fence is
1052  * understood, it should be locked by the caller.
1053  */
1054 struct dma_fence *
1055 __i915_active_fence_set(struct i915_active_fence *active,
1056                         struct dma_fence *fence)
1057 {
1058         struct dma_fence *prev;
1059         unsigned long flags;
1060
1061         if (fence == rcu_access_pointer(active->fence))
1062                 return fence;
1063
1064         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1065
1066         /*
1067          * Consider that we have two threads arriving (A and B), with
1068          * C already resident as the active->fence.
1069          *
1070          * A does the xchg first, and so it sees C or NULL depending
1071          * on the timing of the interrupt handler. If it is NULL, the
1072          * previous fence must have been signaled and we know that
1073          * we are first on the timeline. If it is still present,
1074          * we acquire the lock on that fence and serialise with the interrupt
1075          * handler, in the process removing it from any future interrupt
1076          * callback. A will then wait on C before executing (if present).
1077          *
1078          * As B is second, it sees A as the previous fence and so waits for
1079          * it to complete its transition and takes over the occupancy for
1080          * itself -- remembering that it needs to wait on A before executing.
1081          *
1082          * Note the strong ordering of the timeline also provides consistent
1083          * nesting rules for the fence->lock; the inner lock is always the
1084          * older lock.
1085          */
1086         spin_lock_irqsave(fence->lock, flags);
1087         prev = xchg(__active_fence_slot(active), fence);
1088         if (prev) {
1089                 GEM_BUG_ON(prev == fence);
1090                 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1091                 __list_del_entry(&active->cb.node);
1092                 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1093         }
1094         list_add_tail(&active->cb.node, &fence->cb_list);
1095         spin_unlock_irqrestore(fence->lock, flags);
1096
1097         return prev;
1098 }
1099
1100 int i915_active_fence_set(struct i915_active_fence *active,
1101                           struct i915_request *rq)
1102 {
1103         struct dma_fence *fence;
1104         int err = 0;
1105
1106         /* Must maintain timeline ordering wrt previous active requests */
1107         rcu_read_lock();
1108         fence = __i915_active_fence_set(active, &rq->fence);
1109         if (fence) /* but the previous fence may not belong to that timeline! */
1110                 fence = dma_fence_get_rcu(fence);
1111         rcu_read_unlock();
1112         if (fence) {
1113                 err = i915_request_await_dma_fence(rq, fence);
1114                 dma_fence_put(fence);
1115         }
1116
1117         return err;
1118 }
1119
1120 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1121 {
1122         active_fence_cb(fence, cb);
1123 }
1124
1125 struct auto_active {
1126         struct i915_active base;
1127         struct kref ref;
1128 };
1129
1130 struct i915_active *i915_active_get(struct i915_active *ref)
1131 {
1132         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1133
1134         kref_get(&aa->ref);
1135         return &aa->base;
1136 }
1137
1138 static void auto_release(struct kref *ref)
1139 {
1140         struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1141
1142         i915_active_fini(&aa->base);
1143         kfree(aa);
1144 }
1145
1146 void i915_active_put(struct i915_active *ref)
1147 {
1148         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1149
1150         kref_put(&aa->ref, auto_release);
1151 }
1152
1153 static int auto_active(struct i915_active *ref)
1154 {
1155         i915_active_get(ref);
1156         return 0;
1157 }
1158
1159 __i915_active_call static void
1160 auto_retire(struct i915_active *ref)
1161 {
1162         i915_active_put(ref);
1163 }
1164
1165 struct i915_active *i915_active_create(void)
1166 {
1167         struct auto_active *aa;
1168
1169         aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1170         if (!aa)
1171                 return NULL;
1172
1173         kref_init(&aa->ref);
1174         i915_active_init(&aa->base, auto_active, auto_retire);
1175
1176         return &aa->base;
1177 }
1178
1179 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1180 #include "selftests/i915_active.c"
1181 #endif
1182
1183 static void i915_global_active_shrink(void)
1184 {
1185         kmem_cache_shrink(global.slab_cache);
1186 }
1187
1188 static void i915_global_active_exit(void)
1189 {
1190         kmem_cache_destroy(global.slab_cache);
1191 }
1192
1193 static struct i915_global_active global = { {
1194         .shrink = i915_global_active_shrink,
1195         .exit = i915_global_active_exit,
1196 } };
1197
1198 int __init i915_global_active_init(void)
1199 {
1200         global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1201         if (!global.slab_cache)
1202                 return -ENOMEM;
1203
1204         i915_global_register(&global.base);
1205         return 0;
1206 }