Merge tag 'selinux-pr-20200210' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_active.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_ring.h"
12
13 #include "i915_drv.h"
14 #include "i915_active.h"
15 #include "i915_globals.h"
16
17 /*
18  * Active refs memory management
19  *
20  * To be more economical with memory, we reap all the i915_active trees as
21  * they idle (when we know the active requests are inactive) and allocate the
22  * nodes from a local slab cache to hopefully reduce the fragmentation.
23  */
24 static struct i915_global_active {
25         struct i915_global base;
26         struct kmem_cache *slab_cache;
27 } global;
28
29 struct active_node {
30         struct i915_active_fence base;
31         struct i915_active *ref;
32         struct rb_node node;
33         u64 timeline;
34 };
35
36 static inline struct active_node *
37 node_from_active(struct i915_active_fence *active)
38 {
39         return container_of(active, struct active_node, base);
40 }
41
42 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
43
44 static inline bool is_barrier(const struct i915_active_fence *active)
45 {
46         return IS_ERR(rcu_access_pointer(active->fence));
47 }
48
49 static inline struct llist_node *barrier_to_ll(struct active_node *node)
50 {
51         GEM_BUG_ON(!is_barrier(&node->base));
52         return (struct llist_node *)&node->base.cb.node;
53 }
54
55 static inline struct intel_engine_cs *
56 __barrier_to_engine(struct active_node *node)
57 {
58         return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
59 }
60
61 static inline struct intel_engine_cs *
62 barrier_to_engine(struct active_node *node)
63 {
64         GEM_BUG_ON(!is_barrier(&node->base));
65         return __barrier_to_engine(node);
66 }
67
68 static inline struct active_node *barrier_from_ll(struct llist_node *x)
69 {
70         return container_of((struct list_head *)x,
71                             struct active_node, base.cb.node);
72 }
73
74 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
75
76 static void *active_debug_hint(void *addr)
77 {
78         struct i915_active *ref = addr;
79
80         return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
81 }
82
83 static struct debug_obj_descr active_debug_desc = {
84         .name = "i915_active",
85         .debug_hint = active_debug_hint,
86 };
87
88 static void debug_active_init(struct i915_active *ref)
89 {
90         debug_object_init(ref, &active_debug_desc);
91 }
92
93 static void debug_active_activate(struct i915_active *ref)
94 {
95         lockdep_assert_held(&ref->tree_lock);
96         if (!atomic_read(&ref->count)) /* before the first inc */
97                 debug_object_activate(ref, &active_debug_desc);
98 }
99
100 static void debug_active_deactivate(struct i915_active *ref)
101 {
102         lockdep_assert_held(&ref->tree_lock);
103         if (!atomic_read(&ref->count)) /* after the last dec */
104                 debug_object_deactivate(ref, &active_debug_desc);
105 }
106
107 static void debug_active_fini(struct i915_active *ref)
108 {
109         debug_object_free(ref, &active_debug_desc);
110 }
111
112 static void debug_active_assert(struct i915_active *ref)
113 {
114         debug_object_assert_init(ref, &active_debug_desc);
115 }
116
117 #else
118
119 static inline void debug_active_init(struct i915_active *ref) { }
120 static inline void debug_active_activate(struct i915_active *ref) { }
121 static inline void debug_active_deactivate(struct i915_active *ref) { }
122 static inline void debug_active_fini(struct i915_active *ref) { }
123 static inline void debug_active_assert(struct i915_active *ref) { }
124
125 #endif
126
127 static void
128 __active_retire(struct i915_active *ref)
129 {
130         struct active_node *it, *n;
131         struct rb_root root;
132         unsigned long flags;
133
134         GEM_BUG_ON(i915_active_is_idle(ref));
135
136         /* return the unused nodes to our slabcache -- flushing the allocator */
137         if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
138                 return;
139
140         GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
141         debug_active_deactivate(ref);
142
143         root = ref->tree;
144         ref->tree = RB_ROOT;
145         ref->cache = NULL;
146
147         spin_unlock_irqrestore(&ref->tree_lock, flags);
148
149         /* After the final retire, the entire struct may be freed */
150         if (ref->retire)
151                 ref->retire(ref);
152
153         /* ... except if you wait on it, you must manage your own references! */
154         wake_up_var(ref);
155
156         rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
157                 GEM_BUG_ON(i915_active_fence_isset(&it->base));
158                 kmem_cache_free(global.slab_cache, it);
159         }
160 }
161
162 static void
163 active_work(struct work_struct *wrk)
164 {
165         struct i915_active *ref = container_of(wrk, typeof(*ref), work);
166
167         GEM_BUG_ON(!atomic_read(&ref->count));
168         if (atomic_add_unless(&ref->count, -1, 1))
169                 return;
170
171         __active_retire(ref);
172 }
173
174 static void
175 active_retire(struct i915_active *ref)
176 {
177         GEM_BUG_ON(!atomic_read(&ref->count));
178         if (atomic_add_unless(&ref->count, -1, 1))
179                 return;
180
181         if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
182                 queue_work(system_unbound_wq, &ref->work);
183                 return;
184         }
185
186         __active_retire(ref);
187 }
188
189 static inline struct dma_fence **
190 __active_fence_slot(struct i915_active_fence *active)
191 {
192         return (struct dma_fence ** __force)&active->fence;
193 }
194
195 static inline bool
196 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
197 {
198         struct i915_active_fence *active =
199                 container_of(cb, typeof(*active), cb);
200
201         return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
202 }
203
204 static void
205 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
206 {
207         if (active_fence_cb(fence, cb))
208                 active_retire(container_of(cb, struct active_node, base.cb)->ref);
209 }
210
211 static void
212 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
213 {
214         if (active_fence_cb(fence, cb))
215                 active_retire(container_of(cb, struct i915_active, excl.cb));
216 }
217
218 static struct i915_active_fence *
219 active_instance(struct i915_active *ref, struct intel_timeline *tl)
220 {
221         struct active_node *node, *prealloc;
222         struct rb_node **p, *parent;
223         u64 idx = tl->fence_context;
224
225         /*
226          * We track the most recently used timeline to skip a rbtree search
227          * for the common case, under typical loads we never need the rbtree
228          * at all. We can reuse the last slot if it is empty, that is
229          * after the previous activity has been retired, or if it matches the
230          * current timeline.
231          */
232         node = READ_ONCE(ref->cache);
233         if (node && node->timeline == idx)
234                 return &node->base;
235
236         /* Preallocate a replacement, just in case */
237         prealloc = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
238         if (!prealloc)
239                 return NULL;
240
241         spin_lock_irq(&ref->tree_lock);
242         GEM_BUG_ON(i915_active_is_idle(ref));
243
244         parent = NULL;
245         p = &ref->tree.rb_node;
246         while (*p) {
247                 parent = *p;
248
249                 node = rb_entry(parent, struct active_node, node);
250                 if (node->timeline == idx) {
251                         kmem_cache_free(global.slab_cache, prealloc);
252                         goto out;
253                 }
254
255                 if (node->timeline < idx)
256                         p = &parent->rb_right;
257                 else
258                         p = &parent->rb_left;
259         }
260
261         node = prealloc;
262         __i915_active_fence_init(&node->base, NULL, node_retire);
263         node->ref = ref;
264         node->timeline = idx;
265
266         rb_link_node(&node->node, parent, p);
267         rb_insert_color(&node->node, &ref->tree);
268
269 out:
270         ref->cache = node;
271         spin_unlock_irq(&ref->tree_lock);
272
273         BUILD_BUG_ON(offsetof(typeof(*node), base));
274         return &node->base;
275 }
276
277 void __i915_active_init(struct i915_active *ref,
278                         int (*active)(struct i915_active *ref),
279                         void (*retire)(struct i915_active *ref),
280                         struct lock_class_key *mkey,
281                         struct lock_class_key *wkey)
282 {
283         unsigned long bits;
284
285         debug_active_init(ref);
286
287         ref->flags = 0;
288         ref->active = active;
289         ref->retire = ptr_unpack_bits(retire, &bits, 2);
290         if (bits & I915_ACTIVE_MAY_SLEEP)
291                 ref->flags |= I915_ACTIVE_RETIRE_SLEEPS;
292
293         spin_lock_init(&ref->tree_lock);
294         ref->tree = RB_ROOT;
295         ref->cache = NULL;
296
297         init_llist_head(&ref->preallocated_barriers);
298         atomic_set(&ref->count, 0);
299         __mutex_init(&ref->mutex, "i915_active", mkey);
300         __i915_active_fence_init(&ref->excl, NULL, excl_retire);
301         INIT_WORK(&ref->work, active_work);
302 #if IS_ENABLED(CONFIG_LOCKDEP)
303         lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
304 #endif
305 }
306
307 static bool ____active_del_barrier(struct i915_active *ref,
308                                    struct active_node *node,
309                                    struct intel_engine_cs *engine)
310
311 {
312         struct llist_node *head = NULL, *tail = NULL;
313         struct llist_node *pos, *next;
314
315         GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
316
317         /*
318          * Rebuild the llist excluding our node. We may perform this
319          * outside of the kernel_context timeline mutex and so someone
320          * else may be manipulating the engine->barrier_tasks, in
321          * which case either we or they will be upset :)
322          *
323          * A second __active_del_barrier() will report failure to claim
324          * the active_node and the caller will just shrug and know not to
325          * claim ownership of its node.
326          *
327          * A concurrent i915_request_add_active_barriers() will miss adding
328          * any of the tasks, but we will try again on the next -- and since
329          * we are actively using the barrier, we know that there will be
330          * at least another opportunity when we idle.
331          */
332         llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
333                 if (node == barrier_from_ll(pos)) {
334                         node = NULL;
335                         continue;
336                 }
337
338                 pos->next = head;
339                 head = pos;
340                 if (!tail)
341                         tail = pos;
342         }
343         if (head)
344                 llist_add_batch(head, tail, &engine->barrier_tasks);
345
346         return !node;
347 }
348
349 static bool
350 __active_del_barrier(struct i915_active *ref, struct active_node *node)
351 {
352         return ____active_del_barrier(ref, node, barrier_to_engine(node));
353 }
354
355 int i915_active_ref(struct i915_active *ref,
356                     struct intel_timeline *tl,
357                     struct dma_fence *fence)
358 {
359         struct i915_active_fence *active;
360         int err;
361
362         lockdep_assert_held(&tl->mutex);
363
364         /* Prevent reaping in case we malloc/wait while building the tree */
365         err = i915_active_acquire(ref);
366         if (err)
367                 return err;
368
369         active = active_instance(ref, tl);
370         if (!active) {
371                 err = -ENOMEM;
372                 goto out;
373         }
374
375         if (is_barrier(active)) { /* proto-node used by our idle barrier */
376                 /*
377                  * This request is on the kernel_context timeline, and so
378                  * we can use it to substitute for the pending idle-barrer
379                  * request that we want to emit on the kernel_context.
380                  */
381                 __active_del_barrier(ref, node_from_active(active));
382                 RCU_INIT_POINTER(active->fence, NULL);
383                 atomic_dec(&ref->count);
384         }
385         if (!__i915_active_fence_set(active, fence))
386                 atomic_inc(&ref->count);
387
388 out:
389         i915_active_release(ref);
390         return err;
391 }
392
393 void i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
394 {
395         /* We expect the caller to manage the exclusive timeline ordering */
396         GEM_BUG_ON(i915_active_is_idle(ref));
397
398         if (!__i915_active_fence_set(&ref->excl, f))
399                 atomic_inc(&ref->count);
400 }
401
402 bool i915_active_acquire_if_busy(struct i915_active *ref)
403 {
404         debug_active_assert(ref);
405         return atomic_add_unless(&ref->count, 1, 0);
406 }
407
408 int i915_active_acquire(struct i915_active *ref)
409 {
410         int err;
411
412         if (i915_active_acquire_if_busy(ref))
413                 return 0;
414
415         err = mutex_lock_interruptible(&ref->mutex);
416         if (err)
417                 return err;
418
419         if (!atomic_read(&ref->count) && ref->active)
420                 err = ref->active(ref);
421         if (!err) {
422                 spin_lock_irq(&ref->tree_lock); /* vs __active_retire() */
423                 debug_active_activate(ref);
424                 atomic_inc(&ref->count);
425                 spin_unlock_irq(&ref->tree_lock);
426         }
427
428         mutex_unlock(&ref->mutex);
429
430         return err;
431 }
432
433 void i915_active_release(struct i915_active *ref)
434 {
435         debug_active_assert(ref);
436         active_retire(ref);
437 }
438
439 static void enable_signaling(struct i915_active_fence *active)
440 {
441         struct dma_fence *fence;
442
443         fence = i915_active_fence_get(active);
444         if (!fence)
445                 return;
446
447         dma_fence_enable_sw_signaling(fence);
448         dma_fence_put(fence);
449 }
450
451 int i915_active_wait(struct i915_active *ref)
452 {
453         struct active_node *it, *n;
454         int err = 0;
455
456         might_sleep();
457
458         if (!i915_active_acquire_if_busy(ref))
459                 return 0;
460
461         /* Flush lazy signals */
462         enable_signaling(&ref->excl);
463         rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
464                 if (is_barrier(&it->base)) /* unconnected idle barrier */
465                         continue;
466
467                 enable_signaling(&it->base);
468         }
469         /* Any fence added after the wait begins will not be auto-signaled */
470
471         i915_active_release(ref);
472         if (err)
473                 return err;
474
475         if (wait_var_event_interruptible(ref, i915_active_is_idle(ref)))
476                 return -EINTR;
477
478         flush_work(&ref->work);
479         return 0;
480 }
481
482 int i915_request_await_active(struct i915_request *rq, struct i915_active *ref)
483 {
484         int err = 0;
485
486         if (rcu_access_pointer(ref->excl.fence)) {
487                 struct dma_fence *fence;
488
489                 rcu_read_lock();
490                 fence = dma_fence_get_rcu_safe(&ref->excl.fence);
491                 rcu_read_unlock();
492                 if (fence) {
493                         err = i915_request_await_dma_fence(rq, fence);
494                         dma_fence_put(fence);
495                 }
496         }
497
498         /* In the future we may choose to await on all fences */
499
500         return err;
501 }
502
503 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
504 void i915_active_fini(struct i915_active *ref)
505 {
506         debug_active_fini(ref);
507         GEM_BUG_ON(atomic_read(&ref->count));
508         GEM_BUG_ON(work_pending(&ref->work));
509         GEM_BUG_ON(!RB_EMPTY_ROOT(&ref->tree));
510         mutex_destroy(&ref->mutex);
511 }
512 #endif
513
514 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
515 {
516         return node->timeline == idx && !i915_active_fence_isset(&node->base);
517 }
518
519 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
520 {
521         struct rb_node *prev, *p;
522
523         if (RB_EMPTY_ROOT(&ref->tree))
524                 return NULL;
525
526         spin_lock_irq(&ref->tree_lock);
527         GEM_BUG_ON(i915_active_is_idle(ref));
528
529         /*
530          * Try to reuse any existing barrier nodes already allocated for this
531          * i915_active, due to overlapping active phases there is likely a
532          * node kept alive (as we reuse before parking). We prefer to reuse
533          * completely idle barriers (less hassle in manipulating the llists),
534          * but otherwise any will do.
535          */
536         if (ref->cache && is_idle_barrier(ref->cache, idx)) {
537                 p = &ref->cache->node;
538                 goto match;
539         }
540
541         prev = NULL;
542         p = ref->tree.rb_node;
543         while (p) {
544                 struct active_node *node =
545                         rb_entry(p, struct active_node, node);
546
547                 if (is_idle_barrier(node, idx))
548                         goto match;
549
550                 prev = p;
551                 if (node->timeline < idx)
552                         p = p->rb_right;
553                 else
554                         p = p->rb_left;
555         }
556
557         /*
558          * No quick match, but we did find the leftmost rb_node for the
559          * kernel_context. Walk the rb_tree in-order to see if there were
560          * any idle-barriers on this timeline that we missed, or just use
561          * the first pending barrier.
562          */
563         for (p = prev; p; p = rb_next(p)) {
564                 struct active_node *node =
565                         rb_entry(p, struct active_node, node);
566                 struct intel_engine_cs *engine;
567
568                 if (node->timeline > idx)
569                         break;
570
571                 if (node->timeline < idx)
572                         continue;
573
574                 if (is_idle_barrier(node, idx))
575                         goto match;
576
577                 /*
578                  * The list of pending barriers is protected by the
579                  * kernel_context timeline, which notably we do not hold
580                  * here. i915_request_add_active_barriers() may consume
581                  * the barrier before we claim it, so we have to check
582                  * for success.
583                  */
584                 engine = __barrier_to_engine(node);
585                 smp_rmb(); /* serialise with add_active_barriers */
586                 if (is_barrier(&node->base) &&
587                     ____active_del_barrier(ref, node, engine))
588                         goto match;
589         }
590
591         spin_unlock_irq(&ref->tree_lock);
592
593         return NULL;
594
595 match:
596         rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
597         if (p == &ref->cache->node)
598                 ref->cache = NULL;
599         spin_unlock_irq(&ref->tree_lock);
600
601         return rb_entry(p, struct active_node, node);
602 }
603
604 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
605                                             struct intel_engine_cs *engine)
606 {
607         intel_engine_mask_t tmp, mask = engine->mask;
608         struct llist_node *pos = NULL, *next;
609         struct intel_gt *gt = engine->gt;
610         int err;
611
612         GEM_BUG_ON(i915_active_is_idle(ref));
613
614         /* Wait until the previous preallocation is completed */
615         while (!llist_empty(&ref->preallocated_barriers))
616                 cond_resched();
617
618         /*
619          * Preallocate a node for each physical engine supporting the target
620          * engine (remember virtual engines have more than one sibling).
621          * We can then use the preallocated nodes in
622          * i915_active_acquire_barrier()
623          */
624         for_each_engine_masked(engine, gt, mask, tmp) {
625                 u64 idx = engine->kernel_context->timeline->fence_context;
626                 struct active_node *node;
627
628                 node = reuse_idle_barrier(ref, idx);
629                 if (!node) {
630                         node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
631                         if (!node) {
632                                 err = ENOMEM;
633                                 goto unwind;
634                         }
635
636                         RCU_INIT_POINTER(node->base.fence, NULL);
637                         node->base.cb.func = node_retire;
638                         node->timeline = idx;
639                         node->ref = ref;
640                 }
641
642                 if (!i915_active_fence_isset(&node->base)) {
643                         /*
644                          * Mark this as being *our* unconnected proto-node.
645                          *
646                          * Since this node is not in any list, and we have
647                          * decoupled it from the rbtree, we can reuse the
648                          * request to indicate this is an idle-barrier node
649                          * and then we can use the rb_node and list pointers
650                          * for our tracking of the pending barrier.
651                          */
652                         RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
653                         node->base.cb.node.prev = (void *)engine;
654                         atomic_inc(&ref->count);
655                 }
656                 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
657
658                 GEM_BUG_ON(barrier_to_engine(node) != engine);
659                 next = barrier_to_ll(node);
660                 next->next = pos;
661                 if (!pos)
662                         pos = next;
663                 intel_engine_pm_get(engine);
664         }
665
666         GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
667         llist_add_batch(next, pos, &ref->preallocated_barriers);
668
669         return 0;
670
671 unwind:
672         while (pos) {
673                 struct active_node *node = barrier_from_ll(pos);
674
675                 pos = pos->next;
676
677                 atomic_dec(&ref->count);
678                 intel_engine_pm_put(barrier_to_engine(node));
679
680                 kmem_cache_free(global.slab_cache, node);
681         }
682         return err;
683 }
684
685 void i915_active_acquire_barrier(struct i915_active *ref)
686 {
687         struct llist_node *pos, *next;
688         unsigned long flags;
689
690         GEM_BUG_ON(i915_active_is_idle(ref));
691
692         /*
693          * Transfer the list of preallocated barriers into the
694          * i915_active rbtree, but only as proto-nodes. They will be
695          * populated by i915_request_add_active_barriers() to point to the
696          * request that will eventually release them.
697          */
698         llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
699                 struct active_node *node = barrier_from_ll(pos);
700                 struct intel_engine_cs *engine = barrier_to_engine(node);
701                 struct rb_node **p, *parent;
702
703                 spin_lock_irqsave_nested(&ref->tree_lock, flags,
704                                          SINGLE_DEPTH_NESTING);
705                 parent = NULL;
706                 p = &ref->tree.rb_node;
707                 while (*p) {
708                         struct active_node *it;
709
710                         parent = *p;
711
712                         it = rb_entry(parent, struct active_node, node);
713                         if (it->timeline < node->timeline)
714                                 p = &parent->rb_right;
715                         else
716                                 p = &parent->rb_left;
717                 }
718                 rb_link_node(&node->node, parent, p);
719                 rb_insert_color(&node->node, &ref->tree);
720                 spin_unlock_irqrestore(&ref->tree_lock, flags);
721
722                 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
723                 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
724                 intel_engine_pm_put(engine);
725         }
726 }
727
728 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
729 {
730         return __active_fence_slot(&barrier_from_ll(node)->base);
731 }
732
733 void i915_request_add_active_barriers(struct i915_request *rq)
734 {
735         struct intel_engine_cs *engine = rq->engine;
736         struct llist_node *node, *next;
737         unsigned long flags;
738
739         GEM_BUG_ON(!intel_context_is_barrier(rq->context));
740         GEM_BUG_ON(intel_engine_is_virtual(engine));
741         GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
742
743         node = llist_del_all(&engine->barrier_tasks);
744         if (!node)
745                 return;
746         /*
747          * Attach the list of proto-fences to the in-flight request such
748          * that the parent i915_active will be released when this request
749          * is retired.
750          */
751         spin_lock_irqsave(&rq->lock, flags);
752         llist_for_each_safe(node, next, node) {
753                 /* serialise with reuse_idle_barrier */
754                 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
755                 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
756         }
757         spin_unlock_irqrestore(&rq->lock, flags);
758 }
759
760 /*
761  * __i915_active_fence_set: Update the last active fence along its timeline
762  * @active: the active tracker
763  * @fence: the new fence (under construction)
764  *
765  * Records the new @fence as the last active fence along its timeline in
766  * this active tracker, moving the tracking callbacks from the previous
767  * fence onto this one. Returns the previous fence (if not already completed),
768  * which the caller must ensure is executed before the new fence. To ensure
769  * that the order of fences within the timeline of the i915_active_fence is
770  * understood, it should be locked by the caller.
771  */
772 struct dma_fence *
773 __i915_active_fence_set(struct i915_active_fence *active,
774                         struct dma_fence *fence)
775 {
776         struct dma_fence *prev;
777         unsigned long flags;
778
779         if (fence == rcu_access_pointer(active->fence))
780                 return fence;
781
782         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
783
784         /*
785          * Consider that we have two threads arriving (A and B), with
786          * C already resident as the active->fence.
787          *
788          * A does the xchg first, and so it sees C or NULL depending
789          * on the timing of the interrupt handler. If it is NULL, the
790          * previous fence must have been signaled and we know that
791          * we are first on the timeline. If it is still present,
792          * we acquire the lock on that fence and serialise with the interrupt
793          * handler, in the process removing it from any future interrupt
794          * callback. A will then wait on C before executing (if present).
795          *
796          * As B is second, it sees A as the previous fence and so waits for
797          * it to complete its transition and takes over the occupancy for
798          * itself -- remembering that it needs to wait on A before executing.
799          *
800          * Note the strong ordering of the timeline also provides consistent
801          * nesting rules for the fence->lock; the inner lock is always the
802          * older lock.
803          */
804         spin_lock_irqsave(fence->lock, flags);
805         prev = xchg(__active_fence_slot(active), fence);
806         if (prev) {
807                 GEM_BUG_ON(prev == fence);
808                 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
809                 __list_del_entry(&active->cb.node);
810                 spin_unlock(prev->lock); /* serialise with prev->cb_list */
811         }
812         GEM_BUG_ON(rcu_access_pointer(active->fence) != fence);
813         list_add_tail(&active->cb.node, &fence->cb_list);
814         spin_unlock_irqrestore(fence->lock, flags);
815
816         return prev;
817 }
818
819 int i915_active_fence_set(struct i915_active_fence *active,
820                           struct i915_request *rq)
821 {
822         struct dma_fence *fence;
823         int err = 0;
824
825         /* Must maintain timeline ordering wrt previous active requests */
826         rcu_read_lock();
827         fence = __i915_active_fence_set(active, &rq->fence);
828         if (fence) /* but the previous fence may not belong to that timeline! */
829                 fence = dma_fence_get_rcu(fence);
830         rcu_read_unlock();
831         if (fence) {
832                 err = i915_request_await_dma_fence(rq, fence);
833                 dma_fence_put(fence);
834         }
835
836         return err;
837 }
838
839 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
840 {
841         active_fence_cb(fence, cb);
842 }
843
844 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
845 #include "selftests/i915_active.c"
846 #endif
847
848 static void i915_global_active_shrink(void)
849 {
850         kmem_cache_shrink(global.slab_cache);
851 }
852
853 static void i915_global_active_exit(void)
854 {
855         kmem_cache_destroy(global.slab_cache);
856 }
857
858 static struct i915_global_active global = { {
859         .shrink = i915_global_active_shrink,
860         .exit = i915_global_active_exit,
861 } };
862
863 int __init i915_global_active_init(void)
864 {
865         global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
866         if (!global.slab_cache)
867                 return -ENOMEM;
868
869         i915_global_register(&global.base);
870         return 0;
871 }