Merge tag 's390-5.15-1' of git://git.kernel.org/pub/scm/linux/kernel/git/s390/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / i915_active.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6
7 #include <linux/debugobjects.h>
8
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_heartbeat.h"
11 #include "gt/intel_engine_pm.h"
12 #include "gt/intel_ring.h"
13
14 #include "i915_drv.h"
15 #include "i915_active.h"
16 #include "i915_globals.h"
17
18 /*
19  * Active refs memory management
20  *
21  * To be more economical with memory, we reap all the i915_active trees as
22  * they idle (when we know the active requests are inactive) and allocate the
23  * nodes from a local slab cache to hopefully reduce the fragmentation.
24  */
25 static struct i915_global_active {
26         struct i915_global base;
27         struct kmem_cache *slab_cache;
28 } global;
29
30 struct active_node {
31         struct rb_node node;
32         struct i915_active_fence base;
33         struct i915_active *ref;
34         u64 timeline;
35 };
36
37 #define fetch_node(x) rb_entry(READ_ONCE(x), typeof(struct active_node), node)
38
39 static inline struct active_node *
40 node_from_active(struct i915_active_fence *active)
41 {
42         return container_of(active, struct active_node, base);
43 }
44
45 #define take_preallocated_barriers(x) llist_del_all(&(x)->preallocated_barriers)
46
47 static inline bool is_barrier(const struct i915_active_fence *active)
48 {
49         return IS_ERR(rcu_access_pointer(active->fence));
50 }
51
52 static inline struct llist_node *barrier_to_ll(struct active_node *node)
53 {
54         GEM_BUG_ON(!is_barrier(&node->base));
55         return (struct llist_node *)&node->base.cb.node;
56 }
57
58 static inline struct intel_engine_cs *
59 __barrier_to_engine(struct active_node *node)
60 {
61         return (struct intel_engine_cs *)READ_ONCE(node->base.cb.node.prev);
62 }
63
64 static inline struct intel_engine_cs *
65 barrier_to_engine(struct active_node *node)
66 {
67         GEM_BUG_ON(!is_barrier(&node->base));
68         return __barrier_to_engine(node);
69 }
70
71 static inline struct active_node *barrier_from_ll(struct llist_node *x)
72 {
73         return container_of((struct list_head *)x,
74                             struct active_node, base.cb.node);
75 }
76
77 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM) && IS_ENABLED(CONFIG_DEBUG_OBJECTS)
78
79 static void *active_debug_hint(void *addr)
80 {
81         struct i915_active *ref = addr;
82
83         return (void *)ref->active ?: (void *)ref->retire ?: (void *)ref;
84 }
85
86 static const struct debug_obj_descr active_debug_desc = {
87         .name = "i915_active",
88         .debug_hint = active_debug_hint,
89 };
90
91 static void debug_active_init(struct i915_active *ref)
92 {
93         debug_object_init(ref, &active_debug_desc);
94 }
95
96 static void debug_active_activate(struct i915_active *ref)
97 {
98         lockdep_assert_held(&ref->tree_lock);
99         if (!atomic_read(&ref->count)) /* before the first inc */
100                 debug_object_activate(ref, &active_debug_desc);
101 }
102
103 static void debug_active_deactivate(struct i915_active *ref)
104 {
105         lockdep_assert_held(&ref->tree_lock);
106         if (!atomic_read(&ref->count)) /* after the last dec */
107                 debug_object_deactivate(ref, &active_debug_desc);
108 }
109
110 static void debug_active_fini(struct i915_active *ref)
111 {
112         debug_object_free(ref, &active_debug_desc);
113 }
114
115 static void debug_active_assert(struct i915_active *ref)
116 {
117         debug_object_assert_init(ref, &active_debug_desc);
118 }
119
120 #else
121
122 static inline void debug_active_init(struct i915_active *ref) { }
123 static inline void debug_active_activate(struct i915_active *ref) { }
124 static inline void debug_active_deactivate(struct i915_active *ref) { }
125 static inline void debug_active_fini(struct i915_active *ref) { }
126 static inline void debug_active_assert(struct i915_active *ref) { }
127
128 #endif
129
130 static void
131 __active_retire(struct i915_active *ref)
132 {
133         struct rb_root root = RB_ROOT;
134         struct active_node *it, *n;
135         unsigned long flags;
136
137         GEM_BUG_ON(i915_active_is_idle(ref));
138
139         /* return the unused nodes to our slabcache -- flushing the allocator */
140         if (!atomic_dec_and_lock_irqsave(&ref->count, &ref->tree_lock, flags))
141                 return;
142
143         GEM_BUG_ON(rcu_access_pointer(ref->excl.fence));
144         debug_active_deactivate(ref);
145
146         /* Even if we have not used the cache, we may still have a barrier */
147         if (!ref->cache)
148                 ref->cache = fetch_node(ref->tree.rb_node);
149
150         /* Keep the MRU cached node for reuse */
151         if (ref->cache) {
152                 /* Discard all other nodes in the tree */
153                 rb_erase(&ref->cache->node, &ref->tree);
154                 root = ref->tree;
155
156                 /* Rebuild the tree with only the cached node */
157                 rb_link_node(&ref->cache->node, NULL, &ref->tree.rb_node);
158                 rb_insert_color(&ref->cache->node, &ref->tree);
159                 GEM_BUG_ON(ref->tree.rb_node != &ref->cache->node);
160
161                 /* Make the cached node available for reuse with any timeline */
162                 ref->cache->timeline = 0; /* needs cmpxchg(u64) */
163         }
164
165         spin_unlock_irqrestore(&ref->tree_lock, flags);
166
167         /* After the final retire, the entire struct may be freed */
168         if (ref->retire)
169                 ref->retire(ref);
170
171         /* ... except if you wait on it, you must manage your own references! */
172         wake_up_var(ref);
173
174         /* Finally free the discarded timeline tree  */
175         rbtree_postorder_for_each_entry_safe(it, n, &root, node) {
176                 GEM_BUG_ON(i915_active_fence_isset(&it->base));
177                 kmem_cache_free(global.slab_cache, it);
178         }
179 }
180
181 static void
182 active_work(struct work_struct *wrk)
183 {
184         struct i915_active *ref = container_of(wrk, typeof(*ref), work);
185
186         GEM_BUG_ON(!atomic_read(&ref->count));
187         if (atomic_add_unless(&ref->count, -1, 1))
188                 return;
189
190         __active_retire(ref);
191 }
192
193 static void
194 active_retire(struct i915_active *ref)
195 {
196         GEM_BUG_ON(!atomic_read(&ref->count));
197         if (atomic_add_unless(&ref->count, -1, 1))
198                 return;
199
200         if (ref->flags & I915_ACTIVE_RETIRE_SLEEPS) {
201                 queue_work(system_unbound_wq, &ref->work);
202                 return;
203         }
204
205         __active_retire(ref);
206 }
207
208 static inline struct dma_fence **
209 __active_fence_slot(struct i915_active_fence *active)
210 {
211         return (struct dma_fence ** __force)&active->fence;
212 }
213
214 static inline bool
215 active_fence_cb(struct dma_fence *fence, struct dma_fence_cb *cb)
216 {
217         struct i915_active_fence *active =
218                 container_of(cb, typeof(*active), cb);
219
220         return cmpxchg(__active_fence_slot(active), fence, NULL) == fence;
221 }
222
223 static void
224 node_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
225 {
226         if (active_fence_cb(fence, cb))
227                 active_retire(container_of(cb, struct active_node, base.cb)->ref);
228 }
229
230 static void
231 excl_retire(struct dma_fence *fence, struct dma_fence_cb *cb)
232 {
233         if (active_fence_cb(fence, cb))
234                 active_retire(container_of(cb, struct i915_active, excl.cb));
235 }
236
237 static struct active_node *__active_lookup(struct i915_active *ref, u64 idx)
238 {
239         struct active_node *it;
240
241         GEM_BUG_ON(idx == 0); /* 0 is the unordered timeline, rsvd for cache */
242
243         /*
244          * We track the most recently used timeline to skip a rbtree search
245          * for the common case, under typical loads we never need the rbtree
246          * at all. We can reuse the last slot if it is empty, that is
247          * after the previous activity has been retired, or if it matches the
248          * current timeline.
249          */
250         it = READ_ONCE(ref->cache);
251         if (it) {
252                 u64 cached = READ_ONCE(it->timeline);
253
254                 /* Once claimed, this slot will only belong to this idx */
255                 if (cached == idx)
256                         return it;
257
258                 /*
259                  * An unclaimed cache [.timeline=0] can only be claimed once.
260                  *
261                  * If the value is already non-zero, some other thread has
262                  * claimed the cache and we know that is does not match our
263                  * idx. If, and only if, the timeline is currently zero is it
264                  * worth competing to claim it atomically for ourselves (for
265                  * only the winner of that race will cmpxchg return the old
266                  * value of 0).
267                  */
268                 if (!cached && !cmpxchg64(&it->timeline, 0, idx))
269                         return it;
270         }
271
272         BUILD_BUG_ON(offsetof(typeof(*it), node));
273
274         /* While active, the tree can only be built; not destroyed */
275         GEM_BUG_ON(i915_active_is_idle(ref));
276
277         it = fetch_node(ref->tree.rb_node);
278         while (it) {
279                 if (it->timeline < idx) {
280                         it = fetch_node(it->node.rb_right);
281                 } else if (it->timeline > idx) {
282                         it = fetch_node(it->node.rb_left);
283                 } else {
284                         WRITE_ONCE(ref->cache, it);
285                         break;
286                 }
287         }
288
289         /* NB: If the tree rotated beneath us, we may miss our target. */
290         return it;
291 }
292
293 static struct i915_active_fence *
294 active_instance(struct i915_active *ref, u64 idx)
295 {
296         struct active_node *node;
297         struct rb_node **p, *parent;
298
299         node = __active_lookup(ref, idx);
300         if (likely(node))
301                 return &node->base;
302
303         spin_lock_irq(&ref->tree_lock);
304         GEM_BUG_ON(i915_active_is_idle(ref));
305
306         parent = NULL;
307         p = &ref->tree.rb_node;
308         while (*p) {
309                 parent = *p;
310
311                 node = rb_entry(parent, struct active_node, node);
312                 if (node->timeline == idx)
313                         goto out;
314
315                 if (node->timeline < idx)
316                         p = &parent->rb_right;
317                 else
318                         p = &parent->rb_left;
319         }
320
321         /*
322          * XXX: We should preallocate this before i915_active_ref() is ever
323          *  called, but we cannot call into fs_reclaim() anyway, so use GFP_ATOMIC.
324          */
325         node = kmem_cache_alloc(global.slab_cache, GFP_ATOMIC);
326         if (!node)
327                 goto out;
328
329         __i915_active_fence_init(&node->base, NULL, node_retire);
330         node->ref = ref;
331         node->timeline = idx;
332
333         rb_link_node(&node->node, parent, p);
334         rb_insert_color(&node->node, &ref->tree);
335
336 out:
337         WRITE_ONCE(ref->cache, node);
338         spin_unlock_irq(&ref->tree_lock);
339
340         return &node->base;
341 }
342
343 void __i915_active_init(struct i915_active *ref,
344                         int (*active)(struct i915_active *ref),
345                         void (*retire)(struct i915_active *ref),
346                         unsigned long flags,
347                         struct lock_class_key *mkey,
348                         struct lock_class_key *wkey)
349 {
350         debug_active_init(ref);
351
352         ref->flags = flags;
353         ref->active = active;
354         ref->retire = retire;
355
356         spin_lock_init(&ref->tree_lock);
357         ref->tree = RB_ROOT;
358         ref->cache = NULL;
359
360         init_llist_head(&ref->preallocated_barriers);
361         atomic_set(&ref->count, 0);
362         __mutex_init(&ref->mutex, "i915_active", mkey);
363         __i915_active_fence_init(&ref->excl, NULL, excl_retire);
364         INIT_WORK(&ref->work, active_work);
365 #if IS_ENABLED(CONFIG_LOCKDEP)
366         lockdep_init_map(&ref->work.lockdep_map, "i915_active.work", wkey, 0);
367 #endif
368 }
369
370 static bool ____active_del_barrier(struct i915_active *ref,
371                                    struct active_node *node,
372                                    struct intel_engine_cs *engine)
373
374 {
375         struct llist_node *head = NULL, *tail = NULL;
376         struct llist_node *pos, *next;
377
378         GEM_BUG_ON(node->timeline != engine->kernel_context->timeline->fence_context);
379
380         /*
381          * Rebuild the llist excluding our node. We may perform this
382          * outside of the kernel_context timeline mutex and so someone
383          * else may be manipulating the engine->barrier_tasks, in
384          * which case either we or they will be upset :)
385          *
386          * A second __active_del_barrier() will report failure to claim
387          * the active_node and the caller will just shrug and know not to
388          * claim ownership of its node.
389          *
390          * A concurrent i915_request_add_active_barriers() will miss adding
391          * any of the tasks, but we will try again on the next -- and since
392          * we are actively using the barrier, we know that there will be
393          * at least another opportunity when we idle.
394          */
395         llist_for_each_safe(pos, next, llist_del_all(&engine->barrier_tasks)) {
396                 if (node == barrier_from_ll(pos)) {
397                         node = NULL;
398                         continue;
399                 }
400
401                 pos->next = head;
402                 head = pos;
403                 if (!tail)
404                         tail = pos;
405         }
406         if (head)
407                 llist_add_batch(head, tail, &engine->barrier_tasks);
408
409         return !node;
410 }
411
412 static bool
413 __active_del_barrier(struct i915_active *ref, struct active_node *node)
414 {
415         return ____active_del_barrier(ref, node, barrier_to_engine(node));
416 }
417
418 static bool
419 replace_barrier(struct i915_active *ref, struct i915_active_fence *active)
420 {
421         if (!is_barrier(active)) /* proto-node used by our idle barrier? */
422                 return false;
423
424         /*
425          * This request is on the kernel_context timeline, and so
426          * we can use it to substitute for the pending idle-barrer
427          * request that we want to emit on the kernel_context.
428          */
429         __active_del_barrier(ref, node_from_active(active));
430         return true;
431 }
432
433 int i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
434 {
435         struct i915_active_fence *active;
436         int err;
437
438         /* Prevent reaping in case we malloc/wait while building the tree */
439         err = i915_active_acquire(ref);
440         if (err)
441                 return err;
442
443         active = active_instance(ref, idx);
444         if (!active) {
445                 err = -ENOMEM;
446                 goto out;
447         }
448
449         if (replace_barrier(ref, active)) {
450                 RCU_INIT_POINTER(active->fence, NULL);
451                 atomic_dec(&ref->count);
452         }
453         if (!__i915_active_fence_set(active, fence))
454                 __i915_active_acquire(ref);
455
456 out:
457         i915_active_release(ref);
458         return err;
459 }
460
461 static struct dma_fence *
462 __i915_active_set_fence(struct i915_active *ref,
463                         struct i915_active_fence *active,
464                         struct dma_fence *fence)
465 {
466         struct dma_fence *prev;
467
468         if (replace_barrier(ref, active)) {
469                 RCU_INIT_POINTER(active->fence, fence);
470                 return NULL;
471         }
472
473         rcu_read_lock();
474         prev = __i915_active_fence_set(active, fence);
475         if (prev)
476                 prev = dma_fence_get_rcu(prev);
477         else
478                 __i915_active_acquire(ref);
479         rcu_read_unlock();
480
481         return prev;
482 }
483
484 static struct i915_active_fence *
485 __active_fence(struct i915_active *ref, u64 idx)
486 {
487         struct active_node *it;
488
489         it = __active_lookup(ref, idx);
490         if (unlikely(!it)) { /* Contention with parallel tree builders! */
491                 spin_lock_irq(&ref->tree_lock);
492                 it = __active_lookup(ref, idx);
493                 spin_unlock_irq(&ref->tree_lock);
494         }
495         GEM_BUG_ON(!it); /* slot must be preallocated */
496
497         return &it->base;
498 }
499
500 struct dma_fence *
501 __i915_active_ref(struct i915_active *ref, u64 idx, struct dma_fence *fence)
502 {
503         /* Only valid while active, see i915_active_acquire_for_context() */
504         return __i915_active_set_fence(ref, __active_fence(ref, idx), fence);
505 }
506
507 struct dma_fence *
508 i915_active_set_exclusive(struct i915_active *ref, struct dma_fence *f)
509 {
510         /* We expect the caller to manage the exclusive timeline ordering */
511         return __i915_active_set_fence(ref, &ref->excl, f);
512 }
513
514 bool i915_active_acquire_if_busy(struct i915_active *ref)
515 {
516         debug_active_assert(ref);
517         return atomic_add_unless(&ref->count, 1, 0);
518 }
519
520 static void __i915_active_activate(struct i915_active *ref)
521 {
522         spin_lock_irq(&ref->tree_lock); /* __active_retire() */
523         if (!atomic_fetch_inc(&ref->count))
524                 debug_active_activate(ref);
525         spin_unlock_irq(&ref->tree_lock);
526 }
527
528 int i915_active_acquire(struct i915_active *ref)
529 {
530         int err;
531
532         if (i915_active_acquire_if_busy(ref))
533                 return 0;
534
535         if (!ref->active) {
536                 __i915_active_activate(ref);
537                 return 0;
538         }
539
540         err = mutex_lock_interruptible(&ref->mutex);
541         if (err)
542                 return err;
543
544         if (likely(!i915_active_acquire_if_busy(ref))) {
545                 err = ref->active(ref);
546                 if (!err)
547                         __i915_active_activate(ref);
548         }
549
550         mutex_unlock(&ref->mutex);
551
552         return err;
553 }
554
555 int i915_active_acquire_for_context(struct i915_active *ref, u64 idx)
556 {
557         struct i915_active_fence *active;
558         int err;
559
560         err = i915_active_acquire(ref);
561         if (err)
562                 return err;
563
564         active = active_instance(ref, idx);
565         if (!active) {
566                 i915_active_release(ref);
567                 return -ENOMEM;
568         }
569
570         return 0; /* return with active ref */
571 }
572
573 void i915_active_release(struct i915_active *ref)
574 {
575         debug_active_assert(ref);
576         active_retire(ref);
577 }
578
579 static void enable_signaling(struct i915_active_fence *active)
580 {
581         struct dma_fence *fence;
582
583         if (unlikely(is_barrier(active)))
584                 return;
585
586         fence = i915_active_fence_get(active);
587         if (!fence)
588                 return;
589
590         dma_fence_enable_sw_signaling(fence);
591         dma_fence_put(fence);
592 }
593
594 static int flush_barrier(struct active_node *it)
595 {
596         struct intel_engine_cs *engine;
597
598         if (likely(!is_barrier(&it->base)))
599                 return 0;
600
601         engine = __barrier_to_engine(it);
602         smp_rmb(); /* serialise with add_active_barriers */
603         if (!is_barrier(&it->base))
604                 return 0;
605
606         return intel_engine_flush_barriers(engine);
607 }
608
609 static int flush_lazy_signals(struct i915_active *ref)
610 {
611         struct active_node *it, *n;
612         int err = 0;
613
614         enable_signaling(&ref->excl);
615         rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
616                 err = flush_barrier(it); /* unconnected idle barrier? */
617                 if (err)
618                         break;
619
620                 enable_signaling(&it->base);
621         }
622
623         return err;
624 }
625
626 int __i915_active_wait(struct i915_active *ref, int state)
627 {
628         might_sleep();
629
630         /* Any fence added after the wait begins will not be auto-signaled */
631         if (i915_active_acquire_if_busy(ref)) {
632                 int err;
633
634                 err = flush_lazy_signals(ref);
635                 i915_active_release(ref);
636                 if (err)
637                         return err;
638
639                 if (___wait_var_event(ref, i915_active_is_idle(ref),
640                                       state, 0, 0, schedule()))
641                         return -EINTR;
642         }
643
644         /*
645          * After the wait is complete, the caller may free the active.
646          * We have to flush any concurrent retirement before returning.
647          */
648         flush_work(&ref->work);
649         return 0;
650 }
651
652 static int __await_active(struct i915_active_fence *active,
653                           int (*fn)(void *arg, struct dma_fence *fence),
654                           void *arg)
655 {
656         struct dma_fence *fence;
657
658         if (is_barrier(active)) /* XXX flush the barrier? */
659                 return 0;
660
661         fence = i915_active_fence_get(active);
662         if (fence) {
663                 int err;
664
665                 err = fn(arg, fence);
666                 dma_fence_put(fence);
667                 if (err < 0)
668                         return err;
669         }
670
671         return 0;
672 }
673
674 struct wait_barrier {
675         struct wait_queue_entry base;
676         struct i915_active *ref;
677 };
678
679 static int
680 barrier_wake(wait_queue_entry_t *wq, unsigned int mode, int flags, void *key)
681 {
682         struct wait_barrier *wb = container_of(wq, typeof(*wb), base);
683
684         if (i915_active_is_idle(wb->ref)) {
685                 list_del(&wq->entry);
686                 i915_sw_fence_complete(wq->private);
687                 kfree(wq);
688         }
689
690         return 0;
691 }
692
693 static int __await_barrier(struct i915_active *ref, struct i915_sw_fence *fence)
694 {
695         struct wait_barrier *wb;
696
697         wb = kmalloc(sizeof(*wb), GFP_KERNEL);
698         if (unlikely(!wb))
699                 return -ENOMEM;
700
701         GEM_BUG_ON(i915_active_is_idle(ref));
702         if (!i915_sw_fence_await(fence)) {
703                 kfree(wb);
704                 return -EINVAL;
705         }
706
707         wb->base.flags = 0;
708         wb->base.func = barrier_wake;
709         wb->base.private = fence;
710         wb->ref = ref;
711
712         add_wait_queue(__var_waitqueue(ref), &wb->base);
713         return 0;
714 }
715
716 static int await_active(struct i915_active *ref,
717                         unsigned int flags,
718                         int (*fn)(void *arg, struct dma_fence *fence),
719                         void *arg, struct i915_sw_fence *barrier)
720 {
721         int err = 0;
722
723         if (!i915_active_acquire_if_busy(ref))
724                 return 0;
725
726         if (flags & I915_ACTIVE_AWAIT_EXCL &&
727             rcu_access_pointer(ref->excl.fence)) {
728                 err = __await_active(&ref->excl, fn, arg);
729                 if (err)
730                         goto out;
731         }
732
733         if (flags & I915_ACTIVE_AWAIT_ACTIVE) {
734                 struct active_node *it, *n;
735
736                 rbtree_postorder_for_each_entry_safe(it, n, &ref->tree, node) {
737                         err = __await_active(&it->base, fn, arg);
738                         if (err)
739                                 goto out;
740                 }
741         }
742
743         if (flags & I915_ACTIVE_AWAIT_BARRIER) {
744                 err = flush_lazy_signals(ref);
745                 if (err)
746                         goto out;
747
748                 err = __await_barrier(ref, barrier);
749                 if (err)
750                         goto out;
751         }
752
753 out:
754         i915_active_release(ref);
755         return err;
756 }
757
758 static int rq_await_fence(void *arg, struct dma_fence *fence)
759 {
760         return i915_request_await_dma_fence(arg, fence);
761 }
762
763 int i915_request_await_active(struct i915_request *rq,
764                               struct i915_active *ref,
765                               unsigned int flags)
766 {
767         return await_active(ref, flags, rq_await_fence, rq, &rq->submit);
768 }
769
770 static int sw_await_fence(void *arg, struct dma_fence *fence)
771 {
772         return i915_sw_fence_await_dma_fence(arg, fence, 0,
773                                              GFP_NOWAIT | __GFP_NOWARN);
774 }
775
776 int i915_sw_fence_await_active(struct i915_sw_fence *fence,
777                                struct i915_active *ref,
778                                unsigned int flags)
779 {
780         return await_active(ref, flags, sw_await_fence, fence, fence);
781 }
782
783 void i915_active_fini(struct i915_active *ref)
784 {
785         debug_active_fini(ref);
786         GEM_BUG_ON(atomic_read(&ref->count));
787         GEM_BUG_ON(work_pending(&ref->work));
788         mutex_destroy(&ref->mutex);
789
790         if (ref->cache)
791                 kmem_cache_free(global.slab_cache, ref->cache);
792 }
793
794 static inline bool is_idle_barrier(struct active_node *node, u64 idx)
795 {
796         return node->timeline == idx && !i915_active_fence_isset(&node->base);
797 }
798
799 static struct active_node *reuse_idle_barrier(struct i915_active *ref, u64 idx)
800 {
801         struct rb_node *prev, *p;
802
803         if (RB_EMPTY_ROOT(&ref->tree))
804                 return NULL;
805
806         GEM_BUG_ON(i915_active_is_idle(ref));
807
808         /*
809          * Try to reuse any existing barrier nodes already allocated for this
810          * i915_active, due to overlapping active phases there is likely a
811          * node kept alive (as we reuse before parking). We prefer to reuse
812          * completely idle barriers (less hassle in manipulating the llists),
813          * but otherwise any will do.
814          */
815         if (ref->cache && is_idle_barrier(ref->cache, idx)) {
816                 p = &ref->cache->node;
817                 goto match;
818         }
819
820         prev = NULL;
821         p = ref->tree.rb_node;
822         while (p) {
823                 struct active_node *node =
824                         rb_entry(p, struct active_node, node);
825
826                 if (is_idle_barrier(node, idx))
827                         goto match;
828
829                 prev = p;
830                 if (node->timeline < idx)
831                         p = READ_ONCE(p->rb_right);
832                 else
833                         p = READ_ONCE(p->rb_left);
834         }
835
836         /*
837          * No quick match, but we did find the leftmost rb_node for the
838          * kernel_context. Walk the rb_tree in-order to see if there were
839          * any idle-barriers on this timeline that we missed, or just use
840          * the first pending barrier.
841          */
842         for (p = prev; p; p = rb_next(p)) {
843                 struct active_node *node =
844                         rb_entry(p, struct active_node, node);
845                 struct intel_engine_cs *engine;
846
847                 if (node->timeline > idx)
848                         break;
849
850                 if (node->timeline < idx)
851                         continue;
852
853                 if (is_idle_barrier(node, idx))
854                         goto match;
855
856                 /*
857                  * The list of pending barriers is protected by the
858                  * kernel_context timeline, which notably we do not hold
859                  * here. i915_request_add_active_barriers() may consume
860                  * the barrier before we claim it, so we have to check
861                  * for success.
862                  */
863                 engine = __barrier_to_engine(node);
864                 smp_rmb(); /* serialise with add_active_barriers */
865                 if (is_barrier(&node->base) &&
866                     ____active_del_barrier(ref, node, engine))
867                         goto match;
868         }
869
870         return NULL;
871
872 match:
873         spin_lock_irq(&ref->tree_lock);
874         rb_erase(p, &ref->tree); /* Hide from waits and sibling allocations */
875         if (p == &ref->cache->node)
876                 WRITE_ONCE(ref->cache, NULL);
877         spin_unlock_irq(&ref->tree_lock);
878
879         return rb_entry(p, struct active_node, node);
880 }
881
882 int i915_active_acquire_preallocate_barrier(struct i915_active *ref,
883                                             struct intel_engine_cs *engine)
884 {
885         intel_engine_mask_t tmp, mask = engine->mask;
886         struct llist_node *first = NULL, *last = NULL;
887         struct intel_gt *gt = engine->gt;
888
889         GEM_BUG_ON(i915_active_is_idle(ref));
890
891         /* Wait until the previous preallocation is completed */
892         while (!llist_empty(&ref->preallocated_barriers))
893                 cond_resched();
894
895         /*
896          * Preallocate a node for each physical engine supporting the target
897          * engine (remember virtual engines have more than one sibling).
898          * We can then use the preallocated nodes in
899          * i915_active_acquire_barrier()
900          */
901         GEM_BUG_ON(!mask);
902         for_each_engine_masked(engine, gt, mask, tmp) {
903                 u64 idx = engine->kernel_context->timeline->fence_context;
904                 struct llist_node *prev = first;
905                 struct active_node *node;
906
907                 rcu_read_lock();
908                 node = reuse_idle_barrier(ref, idx);
909                 rcu_read_unlock();
910                 if (!node) {
911                         node = kmem_cache_alloc(global.slab_cache, GFP_KERNEL);
912                         if (!node)
913                                 goto unwind;
914
915                         RCU_INIT_POINTER(node->base.fence, NULL);
916                         node->base.cb.func = node_retire;
917                         node->timeline = idx;
918                         node->ref = ref;
919                 }
920
921                 if (!i915_active_fence_isset(&node->base)) {
922                         /*
923                          * Mark this as being *our* unconnected proto-node.
924                          *
925                          * Since this node is not in any list, and we have
926                          * decoupled it from the rbtree, we can reuse the
927                          * request to indicate this is an idle-barrier node
928                          * and then we can use the rb_node and list pointers
929                          * for our tracking of the pending barrier.
930                          */
931                         RCU_INIT_POINTER(node->base.fence, ERR_PTR(-EAGAIN));
932                         node->base.cb.node.prev = (void *)engine;
933                         __i915_active_acquire(ref);
934                 }
935                 GEM_BUG_ON(rcu_access_pointer(node->base.fence) != ERR_PTR(-EAGAIN));
936
937                 GEM_BUG_ON(barrier_to_engine(node) != engine);
938                 first = barrier_to_ll(node);
939                 first->next = prev;
940                 if (!last)
941                         last = first;
942                 intel_engine_pm_get(engine);
943         }
944
945         GEM_BUG_ON(!llist_empty(&ref->preallocated_barriers));
946         llist_add_batch(first, last, &ref->preallocated_barriers);
947
948         return 0;
949
950 unwind:
951         while (first) {
952                 struct active_node *node = barrier_from_ll(first);
953
954                 first = first->next;
955
956                 atomic_dec(&ref->count);
957                 intel_engine_pm_put(barrier_to_engine(node));
958
959                 kmem_cache_free(global.slab_cache, node);
960         }
961         return -ENOMEM;
962 }
963
964 void i915_active_acquire_barrier(struct i915_active *ref)
965 {
966         struct llist_node *pos, *next;
967         unsigned long flags;
968
969         GEM_BUG_ON(i915_active_is_idle(ref));
970
971         /*
972          * Transfer the list of preallocated barriers into the
973          * i915_active rbtree, but only as proto-nodes. They will be
974          * populated by i915_request_add_active_barriers() to point to the
975          * request that will eventually release them.
976          */
977         llist_for_each_safe(pos, next, take_preallocated_barriers(ref)) {
978                 struct active_node *node = barrier_from_ll(pos);
979                 struct intel_engine_cs *engine = barrier_to_engine(node);
980                 struct rb_node **p, *parent;
981
982                 spin_lock_irqsave_nested(&ref->tree_lock, flags,
983                                          SINGLE_DEPTH_NESTING);
984                 parent = NULL;
985                 p = &ref->tree.rb_node;
986                 while (*p) {
987                         struct active_node *it;
988
989                         parent = *p;
990
991                         it = rb_entry(parent, struct active_node, node);
992                         if (it->timeline < node->timeline)
993                                 p = &parent->rb_right;
994                         else
995                                 p = &parent->rb_left;
996                 }
997                 rb_link_node(&node->node, parent, p);
998                 rb_insert_color(&node->node, &ref->tree);
999                 spin_unlock_irqrestore(&ref->tree_lock, flags);
1000
1001                 GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
1002                 llist_add(barrier_to_ll(node), &engine->barrier_tasks);
1003                 intel_engine_pm_put_delay(engine, 1);
1004         }
1005 }
1006
1007 static struct dma_fence **ll_to_fence_slot(struct llist_node *node)
1008 {
1009         return __active_fence_slot(&barrier_from_ll(node)->base);
1010 }
1011
1012 void i915_request_add_active_barriers(struct i915_request *rq)
1013 {
1014         struct intel_engine_cs *engine = rq->engine;
1015         struct llist_node *node, *next;
1016         unsigned long flags;
1017
1018         GEM_BUG_ON(!intel_context_is_barrier(rq->context));
1019         GEM_BUG_ON(intel_engine_is_virtual(engine));
1020         GEM_BUG_ON(i915_request_timeline(rq) != engine->kernel_context->timeline);
1021
1022         node = llist_del_all(&engine->barrier_tasks);
1023         if (!node)
1024                 return;
1025         /*
1026          * Attach the list of proto-fences to the in-flight request such
1027          * that the parent i915_active will be released when this request
1028          * is retired.
1029          */
1030         spin_lock_irqsave(&rq->lock, flags);
1031         llist_for_each_safe(node, next, node) {
1032                 /* serialise with reuse_idle_barrier */
1033                 smp_store_mb(*ll_to_fence_slot(node), &rq->fence);
1034                 list_add_tail((struct list_head *)node, &rq->fence.cb_list);
1035         }
1036         spin_unlock_irqrestore(&rq->lock, flags);
1037 }
1038
1039 /*
1040  * __i915_active_fence_set: Update the last active fence along its timeline
1041  * @active: the active tracker
1042  * @fence: the new fence (under construction)
1043  *
1044  * Records the new @fence as the last active fence along its timeline in
1045  * this active tracker, moving the tracking callbacks from the previous
1046  * fence onto this one. Returns the previous fence (if not already completed),
1047  * which the caller must ensure is executed before the new fence. To ensure
1048  * that the order of fences within the timeline of the i915_active_fence is
1049  * understood, it should be locked by the caller.
1050  */
1051 struct dma_fence *
1052 __i915_active_fence_set(struct i915_active_fence *active,
1053                         struct dma_fence *fence)
1054 {
1055         struct dma_fence *prev;
1056         unsigned long flags;
1057
1058         if (fence == rcu_access_pointer(active->fence))
1059                 return fence;
1060
1061         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags));
1062
1063         /*
1064          * Consider that we have two threads arriving (A and B), with
1065          * C already resident as the active->fence.
1066          *
1067          * A does the xchg first, and so it sees C or NULL depending
1068          * on the timing of the interrupt handler. If it is NULL, the
1069          * previous fence must have been signaled and we know that
1070          * we are first on the timeline. If it is still present,
1071          * we acquire the lock on that fence and serialise with the interrupt
1072          * handler, in the process removing it from any future interrupt
1073          * callback. A will then wait on C before executing (if present).
1074          *
1075          * As B is second, it sees A as the previous fence and so waits for
1076          * it to complete its transition and takes over the occupancy for
1077          * itself -- remembering that it needs to wait on A before executing.
1078          *
1079          * Note the strong ordering of the timeline also provides consistent
1080          * nesting rules for the fence->lock; the inner lock is always the
1081          * older lock.
1082          */
1083         spin_lock_irqsave(fence->lock, flags);
1084         prev = xchg(__active_fence_slot(active), fence);
1085         if (prev) {
1086                 GEM_BUG_ON(prev == fence);
1087                 spin_lock_nested(prev->lock, SINGLE_DEPTH_NESTING);
1088                 __list_del_entry(&active->cb.node);
1089                 spin_unlock(prev->lock); /* serialise with prev->cb_list */
1090         }
1091         list_add_tail(&active->cb.node, &fence->cb_list);
1092         spin_unlock_irqrestore(fence->lock, flags);
1093
1094         return prev;
1095 }
1096
1097 int i915_active_fence_set(struct i915_active_fence *active,
1098                           struct i915_request *rq)
1099 {
1100         struct dma_fence *fence;
1101         int err = 0;
1102
1103         /* Must maintain timeline ordering wrt previous active requests */
1104         rcu_read_lock();
1105         fence = __i915_active_fence_set(active, &rq->fence);
1106         if (fence) /* but the previous fence may not belong to that timeline! */
1107                 fence = dma_fence_get_rcu(fence);
1108         rcu_read_unlock();
1109         if (fence) {
1110                 err = i915_request_await_dma_fence(rq, fence);
1111                 dma_fence_put(fence);
1112         }
1113
1114         return err;
1115 }
1116
1117 void i915_active_noop(struct dma_fence *fence, struct dma_fence_cb *cb)
1118 {
1119         active_fence_cb(fence, cb);
1120 }
1121
1122 struct auto_active {
1123         struct i915_active base;
1124         struct kref ref;
1125 };
1126
1127 struct i915_active *i915_active_get(struct i915_active *ref)
1128 {
1129         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1130
1131         kref_get(&aa->ref);
1132         return &aa->base;
1133 }
1134
1135 static void auto_release(struct kref *ref)
1136 {
1137         struct auto_active *aa = container_of(ref, typeof(*aa), ref);
1138
1139         i915_active_fini(&aa->base);
1140         kfree(aa);
1141 }
1142
1143 void i915_active_put(struct i915_active *ref)
1144 {
1145         struct auto_active *aa = container_of(ref, typeof(*aa), base);
1146
1147         kref_put(&aa->ref, auto_release);
1148 }
1149
1150 static int auto_active(struct i915_active *ref)
1151 {
1152         i915_active_get(ref);
1153         return 0;
1154 }
1155
1156 static void auto_retire(struct i915_active *ref)
1157 {
1158         i915_active_put(ref);
1159 }
1160
1161 struct i915_active *i915_active_create(void)
1162 {
1163         struct auto_active *aa;
1164
1165         aa = kmalloc(sizeof(*aa), GFP_KERNEL);
1166         if (!aa)
1167                 return NULL;
1168
1169         kref_init(&aa->ref);
1170         i915_active_init(&aa->base, auto_active, auto_retire, 0);
1171
1172         return &aa->base;
1173 }
1174
1175 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1176 #include "selftests/i915_active.c"
1177 #endif
1178
1179 static void i915_global_active_shrink(void)
1180 {
1181         kmem_cache_shrink(global.slab_cache);
1182 }
1183
1184 static void i915_global_active_exit(void)
1185 {
1186         kmem_cache_destroy(global.slab_cache);
1187 }
1188
1189 static struct i915_global_active global = { {
1190         .shrink = i915_global_active_shrink,
1191         .exit = i915_global_active_exit,
1192 } };
1193
1194 int __init i915_global_active_init(void)
1195 {
1196         global.slab_cache = KMEM_CACHE(active_node, SLAB_HWCACHE_ALIGN);
1197         if (!global.slab_cache)
1198                 return -ENOMEM;
1199
1200         i915_global_register(&global.base);
1201         return 0;
1202 }