Merge branch 'x86-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41
42 #include "i915_drv.h"
43 #include "gvt.h"
44
45 #define RING_CTX_OFF(x) \
46         offsetof(struct execlist_ring_context, x)
47
48 static void set_context_pdp_root_pointer(
49                 struct execlist_ring_context *ring_context,
50                 u32 pdp[8])
51 {
52         int i;
53
54         for (i = 0; i < 8; i++)
55                 ring_context->pdps[i].val = pdp[7 - i];
56 }
57
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60         struct drm_i915_gem_object *ctx_obj =
61                 workload->req->hw_context->state->obj;
62         struct execlist_ring_context *shadow_ring_context;
63         struct page *page;
64
65         if (WARN_ON(!workload->shadow_mm))
66                 return;
67
68         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69                 return;
70
71         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72         shadow_ring_context = kmap(page);
73         set_context_pdp_root_pointer(shadow_ring_context,
74                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75         kunmap(page);
76 }
77
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84                 u32 *reg_state, bool save)
85 {
86         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89         int i = 0;
90         u32 flex_mmio[] = {
91                 i915_mmio_reg_offset(EU_PERF_CNTL0),
92                 i915_mmio_reg_offset(EU_PERF_CNTL1),
93                 i915_mmio_reg_offset(EU_PERF_CNTL2),
94                 i915_mmio_reg_offset(EU_PERF_CNTL3),
95                 i915_mmio_reg_offset(EU_PERF_CNTL4),
96                 i915_mmio_reg_offset(EU_PERF_CNTL5),
97                 i915_mmio_reg_offset(EU_PERF_CNTL6),
98         };
99
100         if (workload->ring_id != RCS0)
101                 return;
102
103         if (save) {
104                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107                         u32 state_offset = ctx_flexeu0 + i * 2;
108
109                         workload->flex_mmio[i] = reg_state[state_offset + 1];
110                 }
111         } else {
112                 reg_state[ctx_oactxctrl] =
113                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117                         u32 state_offset = ctx_flexeu0 + i * 2;
118                         u32 mmio = flex_mmio[i];
119
120                         reg_state[state_offset] = mmio;
121                         reg_state[state_offset + 1] = workload->flex_mmio[i];
122                 }
123         }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128         struct intel_vgpu *vgpu = workload->vgpu;
129         struct intel_gvt *gvt = vgpu->gvt;
130         int ring_id = workload->ring_id;
131         struct drm_i915_gem_object *ctx_obj =
132                 workload->req->hw_context->state->obj;
133         struct execlist_ring_context *shadow_ring_context;
134         struct page *page;
135         void *dst;
136         unsigned long context_gpa, context_page_num;
137         int i;
138
139         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140         shadow_ring_context = kmap(page);
141
142         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148                                               + RING_CTX_OFF(name.val),\
149                                               &shadow_ring_context->name.val, 4);\
150                 shadow_ring_context->name.val |= 0xffff << 16;\
151         }
152
153         COPY_REG_MASKED(ctx_ctrl);
154         COPY_REG(ctx_timestamp);
155
156         if (ring_id == RCS0) {
157                 COPY_REG(bb_per_ctx_ptr);
158                 COPY_REG(rcs_indirect_ctx);
159                 COPY_REG(rcs_indirect_ctx_offset);
160         }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164         intel_gvt_hypervisor_read_gpa(vgpu,
165                         workload->ring_context_gpa +
166                         sizeof(*shadow_ring_context),
167                         (void *)shadow_ring_context +
168                         sizeof(*shadow_ring_context),
169                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172         kunmap(page);
173
174         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175                 return 0;
176
177         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178                         workload->ctx_desc.lrca);
179
180         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182         context_page_num = context_page_num >> PAGE_SHIFT;
183
184         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185                 context_page_num = 19;
186
187         i = 2;
188         while (i < context_page_num) {
189                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190                                 (u32)((workload->ctx_desc.lrca + i) <<
191                                 I915_GTT_PAGE_SHIFT));
192                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193                         gvt_vgpu_err("Invalid guest context descriptor\n");
194                         return -EFAULT;
195                 }
196
197                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198                 dst = kmap(page);
199                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200                                 I915_GTT_PAGE_SIZE);
201                 kunmap(page);
202                 i++;
203         }
204         return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209         return i915_gem_context_force_single_submission(req->gem_context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216         i915_reg_t reg;
217
218         reg = RING_INSTDONE(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220         reg = RING_ACTHD(ring_base);
221         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222         reg = RING_ACTHD_UDW(ring_base);
223         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225
226 static int shadow_context_status_change(struct notifier_block *nb,
227                 unsigned long action, void *data)
228 {
229         struct i915_request *req = data;
230         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231                                 shadow_ctx_notifier_block[req->engine->id]);
232         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233         enum intel_engine_id ring_id = req->engine->id;
234         struct intel_vgpu_workload *workload;
235         unsigned long flags;
236
237         if (!is_gvt_request(req)) {
238                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240                     scheduler->engine_owner[ring_id]) {
241                         /* Switch ring from vGPU to host. */
242                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243                                               NULL, ring_id);
244                         scheduler->engine_owner[ring_id] = NULL;
245                 }
246                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248                 return NOTIFY_OK;
249         }
250
251         workload = scheduler->current_workload[ring_id];
252         if (unlikely(!workload))
253                 return NOTIFY_OK;
254
255         switch (action) {
256         case INTEL_CONTEXT_SCHEDULE_IN:
257                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259                         /* Switch ring from host to vGPU or vGPU to vGPU. */
260                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261                                               workload->vgpu, ring_id);
262                         scheduler->engine_owner[ring_id] = workload->vgpu;
263                 } else
264                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265                                       ring_id, workload->vgpu->id);
266                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267                 atomic_set(&workload->shadow_ctx_active, 1);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_OUT:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 atomic_set(&workload->shadow_ctx_active, 0);
272                 break;
273         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274                 save_ring_hw_state(workload->vgpu, ring_id);
275                 break;
276         default:
277                 WARN_ON(1);
278                 return NOTIFY_OK;
279         }
280         wake_up(&workload->shadow_ctx_status_wq);
281         return NOTIFY_OK;
282 }
283
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286                                  struct intel_vgpu_workload *workload)
287 {
288         u64 desc = ce->lrc_desc;
289
290         /*
291          * Update bits 0-11 of the context descriptor which includes flags
292          * like GEN8_CTX_* cached in desc_template
293          */
294         desc &= U64_MAX << 12;
295         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
296
297         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
298         desc |= workload->ctx_desc.addressing_mode <<
299                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
300
301         ce->lrc_desc = desc;
302 }
303
304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
305 {
306         struct intel_vgpu *vgpu = workload->vgpu;
307         struct i915_request *req = workload->req;
308         void *shadow_ring_buffer_va;
309         u32 *cs;
310         int err;
311
312         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
313                 intel_vgpu_restore_inhibit_context(vgpu, req);
314
315         /*
316          * To track whether a request has started on HW, we can emit a
317          * breadcrumb at the beginning of the request and check its
318          * timeline's HWSP to see if the breadcrumb has advanced past the
319          * start of this request. Actually, the request must have the
320          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
321          * scheduler might get a wrong state of it during reset. Since the
322          * requests from gvt always set the has_init_breadcrumb flag, here
323          * need to do the emit_init_breadcrumb for all the requests.
324          */
325         if (req->engine->emit_init_breadcrumb) {
326                 err = req->engine->emit_init_breadcrumb(req);
327                 if (err) {
328                         gvt_vgpu_err("fail to emit init breadcrumb\n");
329                         return err;
330                 }
331         }
332
333         /* allocate shadow ring buffer */
334         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
335         if (IS_ERR(cs)) {
336                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
337                         workload->rb_len);
338                 return PTR_ERR(cs);
339         }
340
341         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
342
343         /* get shadow ring buffer va */
344         workload->shadow_ring_buffer_va = cs;
345
346         memcpy(cs, shadow_ring_buffer_va,
347                         workload->rb_len);
348
349         cs += workload->rb_len / sizeof(u32);
350         intel_ring_advance(workload->req, cs);
351
352         return 0;
353 }
354
355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357         if (!wa_ctx->indirect_ctx.obj)
358                 return;
359
360         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
361         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
362
363         wa_ctx->indirect_ctx.obj = NULL;
364         wa_ctx->indirect_ctx.shadow_va = NULL;
365 }
366
367 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
368                                          struct i915_gem_context *ctx)
369 {
370         struct intel_vgpu_mm *mm = workload->shadow_mm;
371         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
372         int i = 0;
373
374         if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
375                 return -EINVAL;
376
377         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
378                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
379         } else {
380                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
381                         struct i915_page_directory * const pd =
382                                 i915_pd_entry(ppgtt->pd, i);
383
384                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
385                 }
386         }
387
388         return 0;
389 }
390
391 static int
392 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
393 {
394         struct intel_vgpu *vgpu = workload->vgpu;
395         struct intel_vgpu_submission *s = &vgpu->submission;
396         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
397         struct i915_request *rq;
398
399         lockdep_assert_held(&dev_priv->drm.struct_mutex);
400
401         if (workload->req)
402                 return 0;
403
404         rq = i915_request_create(s->shadow[workload->ring_id]);
405         if (IS_ERR(rq)) {
406                 gvt_vgpu_err("fail to allocate gem request\n");
407                 return PTR_ERR(rq);
408         }
409
410         workload->req = i915_request_get(rq);
411         return 0;
412 }
413
414 /**
415  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
416  * shadow it as well, include ringbuffer,wa_ctx and ctx.
417  * @workload: an abstract entity for each execlist submission.
418  *
419  * This function is called before the workload submitting to i915, to make
420  * sure the content of the workload is valid.
421  */
422 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
423 {
424         struct intel_vgpu *vgpu = workload->vgpu;
425         struct intel_vgpu_submission *s = &vgpu->submission;
426         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
427         int ret;
428
429         lockdep_assert_held(&dev_priv->drm.struct_mutex);
430
431         if (workload->shadow)
432                 return 0;
433
434         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
435                 shadow_context_descriptor_update(s->shadow[workload->ring_id],
436                                                  workload);
437
438         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
439         if (ret)
440                 return ret;
441
442         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
443                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
444                 if (ret)
445                         goto err_shadow;
446         }
447
448         workload->shadow = true;
449         return 0;
450 err_shadow:
451         release_shadow_wa_ctx(&workload->wa_ctx);
452         return ret;
453 }
454
455 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
456
457 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
458 {
459         struct intel_gvt *gvt = workload->vgpu->gvt;
460         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
461         struct intel_vgpu_shadow_bb *bb;
462         int ret;
463
464         list_for_each_entry(bb, &workload->shadow_bb, list) {
465                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
466                  * is only updated into ring_scan_buffer, not real ring address
467                  * allocated in later copy_workload_to_ring_buffer. pls be noted
468                  * shadow_ring_buffer_va is now pointed to real ring buffer va
469                  * in copy_workload_to_ring_buffer.
470                  */
471
472                 if (bb->bb_offset)
473                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
474                                 + bb->bb_offset;
475
476                 if (bb->ppgtt) {
477                         /* for non-priv bb, scan&shadow is only for
478                          * debugging purpose, so the content of shadow bb
479                          * is the same as original bb. Therefore,
480                          * here, rather than switch to shadow bb's gma
481                          * address, we directly use original batch buffer's
482                          * gma address, and send original bb to hardware
483                          * directly
484                          */
485                         if (bb->clflush & CLFLUSH_AFTER) {
486                                 drm_clflush_virt_range(bb->va,
487                                                 bb->obj->base.size);
488                                 bb->clflush &= ~CLFLUSH_AFTER;
489                         }
490                         i915_gem_object_finish_access(bb->obj);
491                         bb->accessing = false;
492
493                 } else {
494                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
495                                         NULL, 0, 0, 0);
496                         if (IS_ERR(bb->vma)) {
497                                 ret = PTR_ERR(bb->vma);
498                                 goto err;
499                         }
500
501                         /* relocate shadow batch buffer */
502                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
503                         if (gmadr_bytes == 8)
504                                 bb->bb_start_cmd_va[2] = 0;
505
506                         /* No one is going to touch shadow bb from now on. */
507                         if (bb->clflush & CLFLUSH_AFTER) {
508                                 drm_clflush_virt_range(bb->va,
509                                                 bb->obj->base.size);
510                                 bb->clflush &= ~CLFLUSH_AFTER;
511                         }
512
513                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
514                                                                 false);
515                         if (ret)
516                                 goto err;
517
518                         ret = i915_vma_move_to_active(bb->vma,
519                                                       workload->req,
520                                                       0);
521                         if (ret)
522                                 goto err;
523
524                         i915_gem_object_finish_access(bb->obj);
525                         bb->accessing = false;
526                 }
527         }
528         return 0;
529 err:
530         release_shadow_batch_buffer(workload);
531         return ret;
532 }
533
534 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
535 {
536         struct intel_vgpu_workload *workload =
537                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
538         struct i915_request *rq = workload->req;
539         struct execlist_ring_context *shadow_ring_context =
540                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
541
542         shadow_ring_context->bb_per_ctx_ptr.val =
543                 (shadow_ring_context->bb_per_ctx_ptr.val &
544                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
545         shadow_ring_context->rcs_indirect_ctx.val =
546                 (shadow_ring_context->rcs_indirect_ctx.val &
547                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
548 }
549
550 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
551 {
552         struct i915_vma *vma;
553         unsigned char *per_ctx_va =
554                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
555                 wa_ctx->indirect_ctx.size;
556
557         if (wa_ctx->indirect_ctx.size == 0)
558                 return 0;
559
560         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
561                                        0, CACHELINE_BYTES, 0);
562         if (IS_ERR(vma))
563                 return PTR_ERR(vma);
564
565         /* FIXME: we are not tracking our pinned VMA leaving it
566          * up to the core to fix up the stray pin_count upon
567          * free.
568          */
569
570         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
571
572         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
573         memset(per_ctx_va, 0, CACHELINE_BYTES);
574
575         update_wa_ctx_2_shadow_ctx(wa_ctx);
576         return 0;
577 }
578
579 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
580 {
581         struct intel_vgpu *vgpu = workload->vgpu;
582         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
583         struct intel_vgpu_shadow_bb *bb, *pos;
584
585         if (list_empty(&workload->shadow_bb))
586                 return;
587
588         bb = list_first_entry(&workload->shadow_bb,
589                         struct intel_vgpu_shadow_bb, list);
590
591         mutex_lock(&dev_priv->drm.struct_mutex);
592
593         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
594                 if (bb->obj) {
595                         if (bb->accessing)
596                                 i915_gem_object_finish_access(bb->obj);
597
598                         if (bb->va && !IS_ERR(bb->va))
599                                 i915_gem_object_unpin_map(bb->obj);
600
601                         if (bb->vma && !IS_ERR(bb->vma)) {
602                                 i915_vma_unpin(bb->vma);
603                                 i915_vma_close(bb->vma);
604                         }
605                         i915_gem_object_put(bb->obj);
606                 }
607                 list_del(&bb->list);
608                 kfree(bb);
609         }
610
611         mutex_unlock(&dev_priv->drm.struct_mutex);
612 }
613
614 static int prepare_workload(struct intel_vgpu_workload *workload)
615 {
616         struct intel_vgpu *vgpu = workload->vgpu;
617         int ret = 0;
618
619         ret = intel_vgpu_pin_mm(workload->shadow_mm);
620         if (ret) {
621                 gvt_vgpu_err("fail to vgpu pin mm\n");
622                 return ret;
623         }
624
625         update_shadow_pdps(workload);
626
627         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
628         if (ret) {
629                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
630                 goto err_unpin_mm;
631         }
632
633         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
634         if (ret) {
635                 gvt_vgpu_err("fail to flush post shadow\n");
636                 goto err_unpin_mm;
637         }
638
639         ret = copy_workload_to_ring_buffer(workload);
640         if (ret) {
641                 gvt_vgpu_err("fail to generate request\n");
642                 goto err_unpin_mm;
643         }
644
645         ret = prepare_shadow_batch_buffer(workload);
646         if (ret) {
647                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
648                 goto err_unpin_mm;
649         }
650
651         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
652         if (ret) {
653                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
654                 goto err_shadow_batch;
655         }
656
657         if (workload->prepare) {
658                 ret = workload->prepare(workload);
659                 if (ret)
660                         goto err_shadow_wa_ctx;
661         }
662
663         return 0;
664 err_shadow_wa_ctx:
665         release_shadow_wa_ctx(&workload->wa_ctx);
666 err_shadow_batch:
667         release_shadow_batch_buffer(workload);
668 err_unpin_mm:
669         intel_vgpu_unpin_mm(workload->shadow_mm);
670         return ret;
671 }
672
673 static int dispatch_workload(struct intel_vgpu_workload *workload)
674 {
675         struct intel_vgpu *vgpu = workload->vgpu;
676         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
677         struct intel_vgpu_submission *s = &vgpu->submission;
678         struct i915_request *rq;
679         int ring_id = workload->ring_id;
680         int ret;
681
682         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
683                 ring_id, workload);
684
685         mutex_lock(&vgpu->vgpu_lock);
686         mutex_lock(&dev_priv->drm.struct_mutex);
687
688         ret = set_context_ppgtt_from_shadow(workload,
689                                             s->shadow[ring_id]->gem_context);
690         if (ret < 0) {
691                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
692                 goto err_req;
693         }
694
695         ret = intel_gvt_workload_req_alloc(workload);
696         if (ret)
697                 goto err_req;
698
699         ret = intel_gvt_scan_and_shadow_workload(workload);
700         if (ret)
701                 goto out;
702
703         ret = populate_shadow_context(workload);
704         if (ret) {
705                 release_shadow_wa_ctx(&workload->wa_ctx);
706                 goto out;
707         }
708
709         ret = prepare_workload(workload);
710 out:
711         if (ret) {
712                 /* We might still need to add request with
713                  * clean ctx to retire it properly..
714                  */
715                 rq = fetch_and_zero(&workload->req);
716                 i915_request_put(rq);
717         }
718
719         if (!IS_ERR_OR_NULL(workload->req)) {
720                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
721                                 ring_id, workload->req);
722                 i915_request_add(workload->req);
723                 workload->dispatched = true;
724         }
725 err_req:
726         if (ret)
727                 workload->status = ret;
728         mutex_unlock(&dev_priv->drm.struct_mutex);
729         mutex_unlock(&vgpu->vgpu_lock);
730         return ret;
731 }
732
733 static struct intel_vgpu_workload *pick_next_workload(
734                 struct intel_gvt *gvt, int ring_id)
735 {
736         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
737         struct intel_vgpu_workload *workload = NULL;
738
739         mutex_lock(&gvt->sched_lock);
740
741         /*
742          * no current vgpu / will be scheduled out / no workload
743          * bail out
744          */
745         if (!scheduler->current_vgpu) {
746                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
747                 goto out;
748         }
749
750         if (scheduler->need_reschedule) {
751                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
752                 goto out;
753         }
754
755         if (!scheduler->current_vgpu->active ||
756             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
757                 goto out;
758
759         /*
760          * still have current workload, maybe the workload disptacher
761          * fail to submit it for some reason, resubmit it.
762          */
763         if (scheduler->current_workload[ring_id]) {
764                 workload = scheduler->current_workload[ring_id];
765                 gvt_dbg_sched("ring id %d still have current workload %p\n",
766                                 ring_id, workload);
767                 goto out;
768         }
769
770         /*
771          * pick a workload as current workload
772          * once current workload is set, schedule policy routines
773          * will wait the current workload is finished when trying to
774          * schedule out a vgpu.
775          */
776         scheduler->current_workload[ring_id] = container_of(
777                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
778                         struct intel_vgpu_workload, list);
779
780         workload = scheduler->current_workload[ring_id];
781
782         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
783
784         atomic_inc(&workload->vgpu->submission.running_workload_num);
785 out:
786         mutex_unlock(&gvt->sched_lock);
787         return workload;
788 }
789
790 static void update_guest_context(struct intel_vgpu_workload *workload)
791 {
792         struct i915_request *rq = workload->req;
793         struct intel_vgpu *vgpu = workload->vgpu;
794         struct intel_gvt *gvt = vgpu->gvt;
795         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
796         struct execlist_ring_context *shadow_ring_context;
797         struct page *page;
798         void *src;
799         unsigned long context_gpa, context_page_num;
800         int i;
801         struct drm_i915_private *dev_priv = gvt->dev_priv;
802         u32 ring_base;
803         u32 head, tail;
804         u16 wrap_count;
805
806         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
807                       workload->ctx_desc.lrca);
808
809         head = workload->rb_head;
810         tail = workload->rb_tail;
811         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
812
813         if (tail < head) {
814                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
815                         wrap_count = 0;
816                 else
817                         wrap_count += 1;
818         }
819
820         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
821
822         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
823         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
824         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
825
826         context_page_num = rq->engine->context_size;
827         context_page_num = context_page_num >> PAGE_SHIFT;
828
829         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
830                 context_page_num = 19;
831
832         i = 2;
833
834         while (i < context_page_num) {
835                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
836                                 (u32)((workload->ctx_desc.lrca + i) <<
837                                         I915_GTT_PAGE_SHIFT));
838                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
839                         gvt_vgpu_err("invalid guest context descriptor\n");
840                         return;
841                 }
842
843                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
844                 src = kmap(page);
845                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
846                                 I915_GTT_PAGE_SIZE);
847                 kunmap(page);
848                 i++;
849         }
850
851         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
852                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
853
854         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
855         shadow_ring_context = kmap(page);
856
857 #define COPY_REG(name) \
858         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
859                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
860
861         COPY_REG(ctx_ctrl);
862         COPY_REG(ctx_timestamp);
863
864 #undef COPY_REG
865
866         intel_gvt_hypervisor_write_gpa(vgpu,
867                         workload->ring_context_gpa +
868                         sizeof(*shadow_ring_context),
869                         (void *)shadow_ring_context +
870                         sizeof(*shadow_ring_context),
871                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
872
873         kunmap(page);
874 }
875
876 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
877                                 intel_engine_mask_t engine_mask)
878 {
879         struct intel_vgpu_submission *s = &vgpu->submission;
880         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
881         struct intel_engine_cs *engine;
882         struct intel_vgpu_workload *pos, *n;
883         intel_engine_mask_t tmp;
884
885         /* free the unsubmited workloads in the queues. */
886         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
887                 list_for_each_entry_safe(pos, n,
888                         &s->workload_q_head[engine->id], list) {
889                         list_del_init(&pos->list);
890                         intel_vgpu_destroy_workload(pos);
891                 }
892                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
893         }
894 }
895
896 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
897 {
898         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
899         struct intel_vgpu_workload *workload =
900                 scheduler->current_workload[ring_id];
901         struct intel_vgpu *vgpu = workload->vgpu;
902         struct intel_vgpu_submission *s = &vgpu->submission;
903         struct i915_request *rq = workload->req;
904         int event;
905
906         mutex_lock(&vgpu->vgpu_lock);
907         mutex_lock(&gvt->sched_lock);
908
909         /* For the workload w/ request, needs to wait for the context
910          * switch to make sure request is completed.
911          * For the workload w/o request, directly complete the workload.
912          */
913         if (rq) {
914                 wait_event(workload->shadow_ctx_status_wq,
915                            !atomic_read(&workload->shadow_ctx_active));
916
917                 /* If this request caused GPU hang, req->fence.error will
918                  * be set to -EIO. Use -EIO to set workload status so
919                  * that when this request caused GPU hang, didn't trigger
920                  * context switch interrupt to guest.
921                  */
922                 if (likely(workload->status == -EINPROGRESS)) {
923                         if (workload->req->fence.error == -EIO)
924                                 workload->status = -EIO;
925                         else
926                                 workload->status = 0;
927                 }
928
929                 if (!workload->status &&
930                     !(vgpu->resetting_eng & BIT(ring_id))) {
931                         update_guest_context(workload);
932
933                         for_each_set_bit(event, workload->pending_events,
934                                          INTEL_GVT_EVENT_MAX)
935                                 intel_vgpu_trigger_virtual_event(vgpu, event);
936                 }
937
938                 i915_request_put(fetch_and_zero(&workload->req));
939         }
940
941         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
942                         ring_id, workload, workload->status);
943
944         scheduler->current_workload[ring_id] = NULL;
945
946         list_del_init(&workload->list);
947
948         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
949                 /* if workload->status is not successful means HW GPU
950                  * has occurred GPU hang or something wrong with i915/GVT,
951                  * and GVT won't inject context switch interrupt to guest.
952                  * So this error is a vGPU hang actually to the guest.
953                  * According to this we should emunlate a vGPU hang. If
954                  * there are pending workloads which are already submitted
955                  * from guest, we should clean them up like HW GPU does.
956                  *
957                  * if it is in middle of engine resetting, the pending
958                  * workloads won't be submitted to HW GPU and will be
959                  * cleaned up during the resetting process later, so doing
960                  * the workload clean up here doesn't have any impact.
961                  **/
962                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
963         }
964
965         workload->complete(workload);
966
967         atomic_dec(&s->running_workload_num);
968         wake_up(&scheduler->workload_complete_wq);
969
970         if (gvt->scheduler.need_reschedule)
971                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
972
973         mutex_unlock(&gvt->sched_lock);
974         mutex_unlock(&vgpu->vgpu_lock);
975 }
976
977 struct workload_thread_param {
978         struct intel_gvt *gvt;
979         int ring_id;
980 };
981
982 static int workload_thread(void *priv)
983 {
984         struct workload_thread_param *p = (struct workload_thread_param *)priv;
985         struct intel_gvt *gvt = p->gvt;
986         int ring_id = p->ring_id;
987         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
988         struct intel_vgpu_workload *workload = NULL;
989         struct intel_vgpu *vgpu = NULL;
990         int ret;
991         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
992         DEFINE_WAIT_FUNC(wait, woken_wake_function);
993
994         kfree(p);
995
996         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
997
998         while (!kthread_should_stop()) {
999                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
1000                 do {
1001                         workload = pick_next_workload(gvt, ring_id);
1002                         if (workload)
1003                                 break;
1004                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1005                                    MAX_SCHEDULE_TIMEOUT);
1006                 } while (!kthread_should_stop());
1007                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1008
1009                 if (!workload)
1010                         break;
1011
1012                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1013                                 workload->ring_id, workload,
1014                                 workload->vgpu->id);
1015
1016                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017                                 workload->ring_id, workload);
1018
1019                 if (need_force_wake)
1020                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021                                         FORCEWAKE_ALL);
1022
1023                 ret = dispatch_workload(workload);
1024
1025                 if (ret) {
1026                         vgpu = workload->vgpu;
1027                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1028                         goto complete;
1029                 }
1030
1031                 gvt_dbg_sched("ring id %d wait workload %p\n",
1032                                 workload->ring_id, workload);
1033                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1034
1035 complete:
1036                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1037                                 workload, workload->status);
1038
1039                 complete_current_workload(gvt, ring_id);
1040
1041                 if (need_force_wake)
1042                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1043                                         FORCEWAKE_ALL);
1044
1045                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1046                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1047         }
1048         return 0;
1049 }
1050
1051 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1052 {
1053         struct intel_vgpu_submission *s = &vgpu->submission;
1054         struct intel_gvt *gvt = vgpu->gvt;
1055         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1056
1057         if (atomic_read(&s->running_workload_num)) {
1058                 gvt_dbg_sched("wait vgpu idle\n");
1059
1060                 wait_event(scheduler->workload_complete_wq,
1061                                 !atomic_read(&s->running_workload_num));
1062         }
1063 }
1064
1065 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1066 {
1067         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1068         struct intel_engine_cs *engine;
1069         enum intel_engine_id i;
1070
1071         gvt_dbg_core("clean workload scheduler\n");
1072
1073         for_each_engine(engine, gvt->dev_priv, i) {
1074                 atomic_notifier_chain_unregister(
1075                                         &engine->context_status_notifier,
1076                                         &gvt->shadow_ctx_notifier_block[i]);
1077                 kthread_stop(scheduler->thread[i]);
1078         }
1079 }
1080
1081 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1082 {
1083         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1084         struct workload_thread_param *param = NULL;
1085         struct intel_engine_cs *engine;
1086         enum intel_engine_id i;
1087         int ret;
1088
1089         gvt_dbg_core("init workload scheduler\n");
1090
1091         init_waitqueue_head(&scheduler->workload_complete_wq);
1092
1093         for_each_engine(engine, gvt->dev_priv, i) {
1094                 init_waitqueue_head(&scheduler->waitq[i]);
1095
1096                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1097                 if (!param) {
1098                         ret = -ENOMEM;
1099                         goto err;
1100                 }
1101
1102                 param->gvt = gvt;
1103                 param->ring_id = i;
1104
1105                 scheduler->thread[i] = kthread_run(workload_thread, param,
1106                         "gvt workload %d", i);
1107                 if (IS_ERR(scheduler->thread[i])) {
1108                         gvt_err("fail to create workload thread\n");
1109                         ret = PTR_ERR(scheduler->thread[i]);
1110                         goto err;
1111                 }
1112
1113                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1114                                         shadow_context_status_change;
1115                 atomic_notifier_chain_register(&engine->context_status_notifier,
1116                                         &gvt->shadow_ctx_notifier_block[i]);
1117         }
1118         return 0;
1119 err:
1120         intel_gvt_clean_workload_scheduler(gvt);
1121         kfree(param);
1122         param = NULL;
1123         return ret;
1124 }
1125
1126 static void
1127 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1128                                 struct i915_ppgtt *ppgtt)
1129 {
1130         int i;
1131
1132         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1133                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1134         } else {
1135                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1136                         struct i915_page_directory * const pd =
1137                                 i915_pd_entry(ppgtt->pd, i);
1138
1139                         px_dma(pd) = s->i915_context_pdps[i];
1140                 }
1141         }
1142 }
1143
1144 /**
1145  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1146  * @vgpu: a vGPU
1147  *
1148  * This function is called when a vGPU is being destroyed.
1149  *
1150  */
1151 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1152 {
1153         struct intel_vgpu_submission *s = &vgpu->submission;
1154         struct intel_engine_cs *engine;
1155         enum intel_engine_id id;
1156
1157         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1158
1159         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->gem_context->vm));
1160         for_each_engine(engine, vgpu->gvt->dev_priv, id)
1161                 intel_context_unpin(s->shadow[id]);
1162
1163         kmem_cache_destroy(s->workloads);
1164 }
1165
1166
1167 /**
1168  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1169  * @vgpu: a vGPU
1170  * @engine_mask: engines expected to be reset
1171  *
1172  * This function is called when a vGPU is being destroyed.
1173  *
1174  */
1175 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1176                                  intel_engine_mask_t engine_mask)
1177 {
1178         struct intel_vgpu_submission *s = &vgpu->submission;
1179
1180         if (!s->active)
1181                 return;
1182
1183         intel_vgpu_clean_workloads(vgpu, engine_mask);
1184         s->ops->reset(vgpu, engine_mask);
1185 }
1186
1187 static void
1188 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1189                              struct i915_ppgtt *ppgtt)
1190 {
1191         int i;
1192
1193         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1194                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1195         } else {
1196                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1197                         struct i915_page_directory * const pd =
1198                                 i915_pd_entry(ppgtt->pd, i);
1199
1200                         s->i915_context_pdps[i] = px_dma(pd);
1201                 }
1202         }
1203 }
1204
1205 /**
1206  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1207  * @vgpu: a vGPU
1208  *
1209  * This function is called when a vGPU is being created.
1210  *
1211  * Returns:
1212  * Zero on success, negative error code if failed.
1213  *
1214  */
1215 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1216 {
1217         struct intel_vgpu_submission *s = &vgpu->submission;
1218         struct intel_engine_cs *engine;
1219         struct i915_gem_context *ctx;
1220         enum intel_engine_id i;
1221         int ret;
1222
1223         ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1224         if (IS_ERR(ctx))
1225                 return PTR_ERR(ctx);
1226
1227         i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1228
1229         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1230                 struct intel_context *ce;
1231
1232                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1233                 s->shadow[i] = ERR_PTR(-EINVAL);
1234
1235                 ce = i915_gem_context_get_engine(ctx, i);
1236                 if (IS_ERR(ce)) {
1237                         ret = PTR_ERR(ce);
1238                         goto out_shadow_ctx;
1239                 }
1240
1241                 ret = intel_context_pin(ce);
1242                 intel_context_put(ce);
1243                 if (ret)
1244                         goto out_shadow_ctx;
1245
1246                 s->shadow[i] = ce;
1247         }
1248
1249         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1250
1251         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1252                                                   sizeof(struct intel_vgpu_workload), 0,
1253                                                   SLAB_HWCACHE_ALIGN,
1254                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1255                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1256                                                   NULL);
1257
1258         if (!s->workloads) {
1259                 ret = -ENOMEM;
1260                 goto out_shadow_ctx;
1261         }
1262
1263         atomic_set(&s->running_workload_num, 0);
1264         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1265
1266         i915_gem_context_put(ctx);
1267         return 0;
1268
1269 out_shadow_ctx:
1270         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1271         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1272                 if (IS_ERR(s->shadow[i]))
1273                         break;
1274
1275                 intel_context_unpin(s->shadow[i]);
1276         }
1277         i915_gem_context_put(ctx);
1278         return ret;
1279 }
1280
1281 /**
1282  * intel_vgpu_select_submission_ops - select virtual submission interface
1283  * @vgpu: a vGPU
1284  * @engine_mask: either ALL_ENGINES or target engine mask
1285  * @interface: expected vGPU virtual submission interface
1286  *
1287  * This function is called when guest configures submission interface.
1288  *
1289  * Returns:
1290  * Zero on success, negative error code if failed.
1291  *
1292  */
1293 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1294                                      intel_engine_mask_t engine_mask,
1295                                      unsigned int interface)
1296 {
1297         struct intel_vgpu_submission *s = &vgpu->submission;
1298         const struct intel_vgpu_submission_ops *ops[] = {
1299                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1300                         &intel_vgpu_execlist_submission_ops,
1301         };
1302         int ret;
1303
1304         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1305                 return -EINVAL;
1306
1307         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1308                 return -EINVAL;
1309
1310         if (s->active)
1311                 s->ops->clean(vgpu, engine_mask);
1312
1313         if (interface == 0) {
1314                 s->ops = NULL;
1315                 s->virtual_submission_interface = 0;
1316                 s->active = false;
1317                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1318                 return 0;
1319         }
1320
1321         ret = ops[interface]->init(vgpu, engine_mask);
1322         if (ret)
1323                 return ret;
1324
1325         s->ops = ops[interface];
1326         s->virtual_submission_interface = interface;
1327         s->active = true;
1328
1329         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1330                         vgpu->id, s->ops->name);
1331
1332         return 0;
1333 }
1334
1335 /**
1336  * intel_vgpu_destroy_workload - destroy a vGPU workload
1337  * @workload: workload to destroy
1338  *
1339  * This function is called when destroy a vGPU workload.
1340  *
1341  */
1342 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1343 {
1344         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1345
1346         release_shadow_batch_buffer(workload);
1347         release_shadow_wa_ctx(&workload->wa_ctx);
1348
1349         if (workload->shadow_mm)
1350                 intel_vgpu_mm_put(workload->shadow_mm);
1351
1352         kmem_cache_free(s->workloads, workload);
1353 }
1354
1355 static struct intel_vgpu_workload *
1356 alloc_workload(struct intel_vgpu *vgpu)
1357 {
1358         struct intel_vgpu_submission *s = &vgpu->submission;
1359         struct intel_vgpu_workload *workload;
1360
1361         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1362         if (!workload)
1363                 return ERR_PTR(-ENOMEM);
1364
1365         INIT_LIST_HEAD(&workload->list);
1366         INIT_LIST_HEAD(&workload->shadow_bb);
1367
1368         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1369         atomic_set(&workload->shadow_ctx_active, 0);
1370
1371         workload->status = -EINPROGRESS;
1372         workload->vgpu = vgpu;
1373
1374         return workload;
1375 }
1376
1377 #define RING_CTX_OFF(x) \
1378         offsetof(struct execlist_ring_context, x)
1379
1380 static void read_guest_pdps(struct intel_vgpu *vgpu,
1381                 u64 ring_context_gpa, u32 pdp[8])
1382 {
1383         u64 gpa;
1384         int i;
1385
1386         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1387
1388         for (i = 0; i < 8; i++)
1389                 intel_gvt_hypervisor_read_gpa(vgpu,
1390                                 gpa + i * 8, &pdp[7 - i], 4);
1391 }
1392
1393 static int prepare_mm(struct intel_vgpu_workload *workload)
1394 {
1395         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1396         struct intel_vgpu_mm *mm;
1397         struct intel_vgpu *vgpu = workload->vgpu;
1398         enum intel_gvt_gtt_type root_entry_type;
1399         u64 pdps[GVT_RING_CTX_NR_PDPS];
1400
1401         switch (desc->addressing_mode) {
1402         case 1: /* legacy 32-bit */
1403                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1404                 break;
1405         case 3: /* legacy 64-bit */
1406                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1407                 break;
1408         default:
1409                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1410                 return -EINVAL;
1411         }
1412
1413         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1414
1415         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1416         if (IS_ERR(mm))
1417                 return PTR_ERR(mm);
1418
1419         workload->shadow_mm = mm;
1420         return 0;
1421 }
1422
1423 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1424                 ((a)->lrca == (b)->lrca))
1425
1426 #define get_last_workload(q) \
1427         (list_empty(q) ? NULL : container_of(q->prev, \
1428         struct intel_vgpu_workload, list))
1429 /**
1430  * intel_vgpu_create_workload - create a vGPU workload
1431  * @vgpu: a vGPU
1432  * @ring_id: ring index
1433  * @desc: a guest context descriptor
1434  *
1435  * This function is called when creating a vGPU workload.
1436  *
1437  * Returns:
1438  * struct intel_vgpu_workload * on success, negative error code in
1439  * pointer if failed.
1440  *
1441  */
1442 struct intel_vgpu_workload *
1443 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1444                            struct execlist_ctx_descriptor_format *desc)
1445 {
1446         struct intel_vgpu_submission *s = &vgpu->submission;
1447         struct list_head *q = workload_q_head(vgpu, ring_id);
1448         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1449         struct intel_vgpu_workload *workload = NULL;
1450         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1451         u64 ring_context_gpa;
1452         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1453         u32 guest_head;
1454         int ret;
1455
1456         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1457                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1458         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1459                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1460                 return ERR_PTR(-EINVAL);
1461         }
1462
1463         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1464                         RING_CTX_OFF(ring_header.val), &head, 4);
1465
1466         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1467                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1468
1469         guest_head = head;
1470
1471         head &= RB_HEAD_OFF_MASK;
1472         tail &= RB_TAIL_OFF_MASK;
1473
1474         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1475                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1476                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1477                                 last_workload->rb_tail);
1478                 /*
1479                  * cannot use guest context head pointer here,
1480                  * as it might not be updated at this time
1481                  */
1482                 head = last_workload->rb_tail;
1483         }
1484
1485         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1486
1487         /* record some ring buffer register values for scan and shadow */
1488         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1489                         RING_CTX_OFF(rb_start.val), &start, 4);
1490         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1491                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1492         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1493                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1494
1495         workload = alloc_workload(vgpu);
1496         if (IS_ERR(workload))
1497                 return workload;
1498
1499         workload->ring_id = ring_id;
1500         workload->ctx_desc = *desc;
1501         workload->ring_context_gpa = ring_context_gpa;
1502         workload->rb_head = head;
1503         workload->guest_rb_head = guest_head;
1504         workload->rb_tail = tail;
1505         workload->rb_start = start;
1506         workload->rb_ctl = ctl;
1507
1508         if (ring_id == RCS0) {
1509                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1510                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1511                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1512                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1513
1514                 workload->wa_ctx.indirect_ctx.guest_gma =
1515                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1516                 workload->wa_ctx.indirect_ctx.size =
1517                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1518                         CACHELINE_BYTES;
1519                 workload->wa_ctx.per_ctx.guest_gma =
1520                         per_ctx & PER_CTX_ADDR_MASK;
1521                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1522         }
1523
1524         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1525                         workload, ring_id, head, tail, start, ctl);
1526
1527         ret = prepare_mm(workload);
1528         if (ret) {
1529                 kmem_cache_free(s->workloads, workload);
1530                 return ERR_PTR(ret);
1531         }
1532
1533         /* Only scan and shadow the first workload in the queue
1534          * as there is only one pre-allocated buf-obj for shadow.
1535          */
1536         if (list_empty(workload_q_head(vgpu, ring_id))) {
1537                 intel_runtime_pm_get(&dev_priv->runtime_pm);
1538                 mutex_lock(&dev_priv->drm.struct_mutex);
1539                 ret = intel_gvt_scan_and_shadow_workload(workload);
1540                 mutex_unlock(&dev_priv->drm.struct_mutex);
1541                 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1542         }
1543
1544         if (ret) {
1545                 if (vgpu_is_vm_unhealthy(ret))
1546                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1547                 intel_vgpu_destroy_workload(workload);
1548                 return ERR_PTR(ret);
1549         }
1550
1551         return workload;
1552 }
1553
1554 /**
1555  * intel_vgpu_queue_workload - Qeue a vGPU workload
1556  * @workload: the workload to queue in
1557  */
1558 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1559 {
1560         list_add_tail(&workload->list,
1561                 workload_q_head(workload->vgpu, workload->ring_id));
1562         intel_gvt_kick_schedule(workload->vgpu->gvt);
1563         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1564 }