Merge tag 'f2fs-for-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/jaegeuk...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "i915_drv.h"
39 #include "gvt.h"
40
41 #define RING_CTX_OFF(x) \
42         offsetof(struct execlist_ring_context, x)
43
44 static void set_context_pdp_root_pointer(
45                 struct execlist_ring_context *ring_context,
46                 u32 pdp[8])
47 {
48         int i;
49
50         for (i = 0; i < 8; i++)
51                 ring_context->pdps[i].val = pdp[7 - i];
52 }
53
54 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
55 {
56         struct drm_i915_gem_object *ctx_obj =
57                 workload->req->hw_context->state->obj;
58         struct execlist_ring_context *shadow_ring_context;
59         struct page *page;
60
61         if (WARN_ON(!workload->shadow_mm))
62                 return;
63
64         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
65                 return;
66
67         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
68         shadow_ring_context = kmap(page);
69         set_context_pdp_root_pointer(shadow_ring_context,
70                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
71         kunmap(page);
72 }
73
74 /*
75  * when populating shadow ctx from guest, we should not overrride oa related
76  * registers, so that they will not be overlapped by guest oa configs. Thus
77  * made it possible to capture oa data from host for both host and guests.
78  */
79 static void sr_oa_regs(struct intel_vgpu_workload *workload,
80                 u32 *reg_state, bool save)
81 {
82         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
83         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
84         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
85         int i = 0;
86         u32 flex_mmio[] = {
87                 i915_mmio_reg_offset(EU_PERF_CNTL0),
88                 i915_mmio_reg_offset(EU_PERF_CNTL1),
89                 i915_mmio_reg_offset(EU_PERF_CNTL2),
90                 i915_mmio_reg_offset(EU_PERF_CNTL3),
91                 i915_mmio_reg_offset(EU_PERF_CNTL4),
92                 i915_mmio_reg_offset(EU_PERF_CNTL5),
93                 i915_mmio_reg_offset(EU_PERF_CNTL6),
94         };
95
96         if (workload->ring_id != RCS0)
97                 return;
98
99         if (save) {
100                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
101
102                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
103                         u32 state_offset = ctx_flexeu0 + i * 2;
104
105                         workload->flex_mmio[i] = reg_state[state_offset + 1];
106                 }
107         } else {
108                 reg_state[ctx_oactxctrl] =
109                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
110                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
111
112                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
113                         u32 state_offset = ctx_flexeu0 + i * 2;
114                         u32 mmio = flex_mmio[i];
115
116                         reg_state[state_offset] = mmio;
117                         reg_state[state_offset + 1] = workload->flex_mmio[i];
118                 }
119         }
120 }
121
122 static int populate_shadow_context(struct intel_vgpu_workload *workload)
123 {
124         struct intel_vgpu *vgpu = workload->vgpu;
125         struct intel_gvt *gvt = vgpu->gvt;
126         int ring_id = workload->ring_id;
127         struct drm_i915_gem_object *ctx_obj =
128                 workload->req->hw_context->state->obj;
129         struct execlist_ring_context *shadow_ring_context;
130         struct page *page;
131         void *dst;
132         unsigned long context_gpa, context_page_num;
133         int i;
134
135         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
136         shadow_ring_context = kmap(page);
137
138         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
139 #define COPY_REG(name) \
140         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
141                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
142 #define COPY_REG_MASKED(name) {\
143                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
144                                               + RING_CTX_OFF(name.val),\
145                                               &shadow_ring_context->name.val, 4);\
146                 shadow_ring_context->name.val |= 0xffff << 16;\
147         }
148
149         COPY_REG_MASKED(ctx_ctrl);
150         COPY_REG(ctx_timestamp);
151
152         if (ring_id == RCS0) {
153                 COPY_REG(bb_per_ctx_ptr);
154                 COPY_REG(rcs_indirect_ctx);
155                 COPY_REG(rcs_indirect_ctx_offset);
156         }
157 #undef COPY_REG
158 #undef COPY_REG_MASKED
159
160         intel_gvt_hypervisor_read_gpa(vgpu,
161                         workload->ring_context_gpa +
162                         sizeof(*shadow_ring_context),
163                         (void *)shadow_ring_context +
164                         sizeof(*shadow_ring_context),
165                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
166
167         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
168         kunmap(page);
169
170         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
171                 return 0;
172
173         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
174                         workload->ctx_desc.lrca);
175
176         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
177
178         context_page_num = context_page_num >> PAGE_SHIFT;
179
180         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
181                 context_page_num = 19;
182
183         i = 2;
184         while (i < context_page_num) {
185                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
186                                 (u32)((workload->ctx_desc.lrca + i) <<
187                                 I915_GTT_PAGE_SHIFT));
188                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
189                         gvt_vgpu_err("Invalid guest context descriptor\n");
190                         return -EFAULT;
191                 }
192
193                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
194                 dst = kmap(page);
195                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
196                                 I915_GTT_PAGE_SIZE);
197                 kunmap(page);
198                 i++;
199         }
200         return 0;
201 }
202
203 static inline bool is_gvt_request(struct i915_request *req)
204 {
205         return i915_gem_context_force_single_submission(req->gem_context);
206 }
207
208 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
209 {
210         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
211         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
212         i915_reg_t reg;
213
214         reg = RING_INSTDONE(ring_base);
215         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
216         reg = RING_ACTHD(ring_base);
217         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
218         reg = RING_ACTHD_UDW(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220 }
221
222 static int shadow_context_status_change(struct notifier_block *nb,
223                 unsigned long action, void *data)
224 {
225         struct i915_request *req = data;
226         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
227                                 shadow_ctx_notifier_block[req->engine->id]);
228         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
229         enum intel_engine_id ring_id = req->engine->id;
230         struct intel_vgpu_workload *workload;
231         unsigned long flags;
232
233         if (!is_gvt_request(req)) {
234                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
235                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
236                     scheduler->engine_owner[ring_id]) {
237                         /* Switch ring from vGPU to host. */
238                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
239                                               NULL, ring_id);
240                         scheduler->engine_owner[ring_id] = NULL;
241                 }
242                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
243
244                 return NOTIFY_OK;
245         }
246
247         workload = scheduler->current_workload[ring_id];
248         if (unlikely(!workload))
249                 return NOTIFY_OK;
250
251         switch (action) {
252         case INTEL_CONTEXT_SCHEDULE_IN:
253                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
254                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
255                         /* Switch ring from host to vGPU or vGPU to vGPU. */
256                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
257                                               workload->vgpu, ring_id);
258                         scheduler->engine_owner[ring_id] = workload->vgpu;
259                 } else
260                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
261                                       ring_id, workload->vgpu->id);
262                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
263                 atomic_set(&workload->shadow_ctx_active, 1);
264                 break;
265         case INTEL_CONTEXT_SCHEDULE_OUT:
266                 save_ring_hw_state(workload->vgpu, ring_id);
267                 atomic_set(&workload->shadow_ctx_active, 0);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 break;
272         default:
273                 WARN_ON(1);
274                 return NOTIFY_OK;
275         }
276         wake_up(&workload->shadow_ctx_status_wq);
277         return NOTIFY_OK;
278 }
279
280 static void shadow_context_descriptor_update(struct intel_context *ce)
281 {
282         u64 desc = 0;
283
284         desc = ce->lrc_desc;
285
286         /* Update bits 0-11 of the context descriptor which includes flags
287          * like GEN8_CTX_* cached in desc_template
288          */
289         desc &= U64_MAX << 12;
290         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
291
292         ce->lrc_desc = desc;
293 }
294
295 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
296 {
297         struct intel_vgpu *vgpu = workload->vgpu;
298         struct i915_request *req = workload->req;
299         void *shadow_ring_buffer_va;
300         u32 *cs;
301         int err;
302
303         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
304                 intel_vgpu_restore_inhibit_context(vgpu, req);
305
306         /*
307          * To track whether a request has started on HW, we can emit a
308          * breadcrumb at the beginning of the request and check its
309          * timeline's HWSP to see if the breadcrumb has advanced past the
310          * start of this request. Actually, the request must have the
311          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
312          * scheduler might get a wrong state of it during reset. Since the
313          * requests from gvt always set the has_init_breadcrumb flag, here
314          * need to do the emit_init_breadcrumb for all the requests.
315          */
316         if (req->engine->emit_init_breadcrumb) {
317                 err = req->engine->emit_init_breadcrumb(req);
318                 if (err) {
319                         gvt_vgpu_err("fail to emit init breadcrumb\n");
320                         return err;
321                 }
322         }
323
324         /* allocate shadow ring buffer */
325         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
326         if (IS_ERR(cs)) {
327                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
328                         workload->rb_len);
329                 return PTR_ERR(cs);
330         }
331
332         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
333
334         /* get shadow ring buffer va */
335         workload->shadow_ring_buffer_va = cs;
336
337         memcpy(cs, shadow_ring_buffer_va,
338                         workload->rb_len);
339
340         cs += workload->rb_len / sizeof(u32);
341         intel_ring_advance(workload->req, cs);
342
343         return 0;
344 }
345
346 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
347 {
348         if (!wa_ctx->indirect_ctx.obj)
349                 return;
350
351         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
352         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
353
354         wa_ctx->indirect_ctx.obj = NULL;
355         wa_ctx->indirect_ctx.shadow_va = NULL;
356 }
357
358 static int set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
359                                          struct i915_gem_context *ctx)
360 {
361         struct intel_vgpu_mm *mm = workload->shadow_mm;
362         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
363         int i = 0;
364
365         if (mm->type != INTEL_GVT_MM_PPGTT || !mm->ppgtt_mm.shadowed)
366                 return -EINVAL;
367
368         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
369                 px_dma(&ppgtt->pml4) = mm->ppgtt_mm.shadow_pdps[0];
370         } else {
371                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
372                         px_dma(ppgtt->pdp.page_directory[i]) =
373                                 mm->ppgtt_mm.shadow_pdps[i];
374                 }
375         }
376
377         return 0;
378 }
379
380 static int
381 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
382 {
383         struct intel_vgpu *vgpu = workload->vgpu;
384         struct intel_vgpu_submission *s = &vgpu->submission;
385         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
386         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
387         struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
388         struct i915_request *rq;
389         int ret = 0;
390
391         lockdep_assert_held(&dev_priv->drm.struct_mutex);
392
393         if (workload->req)
394                 goto out;
395
396         rq = i915_request_alloc(engine, shadow_ctx);
397         if (IS_ERR(rq)) {
398                 gvt_vgpu_err("fail to allocate gem request\n");
399                 ret = PTR_ERR(rq);
400                 goto out;
401         }
402         workload->req = i915_request_get(rq);
403 out:
404         return ret;
405 }
406
407 /**
408  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
409  * shadow it as well, include ringbuffer,wa_ctx and ctx.
410  * @workload: an abstract entity for each execlist submission.
411  *
412  * This function is called before the workload submitting to i915, to make
413  * sure the content of the workload is valid.
414  */
415 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
416 {
417         struct intel_vgpu *vgpu = workload->vgpu;
418         struct intel_vgpu_submission *s = &vgpu->submission;
419         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
420         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
421         struct intel_engine_cs *engine = dev_priv->engine[workload->ring_id];
422         struct intel_context *ce;
423         int ret;
424
425         lockdep_assert_held(&dev_priv->drm.struct_mutex);
426
427         if (workload->shadow)
428                 return 0;
429
430         /* pin shadow context by gvt even the shadow context will be pinned
431          * when i915 alloc request. That is because gvt will update the guest
432          * context from shadow context when workload is completed, and at that
433          * moment, i915 may already unpined the shadow context to make the
434          * shadow_ctx pages invalid. So gvt need to pin itself. After update
435          * the guest context, gvt can unpin the shadow_ctx safely.
436          */
437         ce = intel_context_pin(shadow_ctx, engine);
438         if (IS_ERR(ce)) {
439                 gvt_vgpu_err("fail to pin shadow context\n");
440                 return PTR_ERR(ce);
441         }
442
443         shadow_ctx->desc_template &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
444         shadow_ctx->desc_template |= workload->ctx_desc.addressing_mode <<
445                                     GEN8_CTX_ADDRESSING_MODE_SHIFT;
446
447         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
448                 shadow_context_descriptor_update(ce);
449
450         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
451         if (ret)
452                 goto err_unpin;
453
454         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
455                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
456                 if (ret)
457                         goto err_shadow;
458         }
459
460         workload->shadow = true;
461         return 0;
462 err_shadow:
463         release_shadow_wa_ctx(&workload->wa_ctx);
464 err_unpin:
465         intel_context_unpin(ce);
466         return ret;
467 }
468
469 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
470
471 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
472 {
473         struct intel_gvt *gvt = workload->vgpu->gvt;
474         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
475         struct intel_vgpu_shadow_bb *bb;
476         int ret;
477
478         list_for_each_entry(bb, &workload->shadow_bb, list) {
479                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
480                  * is only updated into ring_scan_buffer, not real ring address
481                  * allocated in later copy_workload_to_ring_buffer. pls be noted
482                  * shadow_ring_buffer_va is now pointed to real ring buffer va
483                  * in copy_workload_to_ring_buffer.
484                  */
485
486                 if (bb->bb_offset)
487                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
488                                 + bb->bb_offset;
489
490                 if (bb->ppgtt) {
491                         /* for non-priv bb, scan&shadow is only for
492                          * debugging purpose, so the content of shadow bb
493                          * is the same as original bb. Therefore,
494                          * here, rather than switch to shadow bb's gma
495                          * address, we directly use original batch buffer's
496                          * gma address, and send original bb to hardware
497                          * directly
498                          */
499                         if (bb->clflush & CLFLUSH_AFTER) {
500                                 drm_clflush_virt_range(bb->va,
501                                                 bb->obj->base.size);
502                                 bb->clflush &= ~CLFLUSH_AFTER;
503                         }
504                         i915_gem_obj_finish_shmem_access(bb->obj);
505                         bb->accessing = false;
506
507                 } else {
508                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
509                                         NULL, 0, 0, 0);
510                         if (IS_ERR(bb->vma)) {
511                                 ret = PTR_ERR(bb->vma);
512                                 goto err;
513                         }
514
515                         /* relocate shadow batch buffer */
516                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
517                         if (gmadr_bytes == 8)
518                                 bb->bb_start_cmd_va[2] = 0;
519
520                         /* No one is going to touch shadow bb from now on. */
521                         if (bb->clflush & CLFLUSH_AFTER) {
522                                 drm_clflush_virt_range(bb->va,
523                                                 bb->obj->base.size);
524                                 bb->clflush &= ~CLFLUSH_AFTER;
525                         }
526
527                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
528                                         false);
529                         if (ret)
530                                 goto err;
531
532                         i915_gem_obj_finish_shmem_access(bb->obj);
533                         bb->accessing = false;
534
535                         ret = i915_vma_move_to_active(bb->vma,
536                                                       workload->req,
537                                                       0);
538                         if (ret)
539                                 goto err;
540                 }
541         }
542         return 0;
543 err:
544         release_shadow_batch_buffer(workload);
545         return ret;
546 }
547
548 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
549 {
550         struct intel_vgpu_workload *workload =
551                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
552         struct i915_request *rq = workload->req;
553         struct execlist_ring_context *shadow_ring_context =
554                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
555
556         shadow_ring_context->bb_per_ctx_ptr.val =
557                 (shadow_ring_context->bb_per_ctx_ptr.val &
558                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
559         shadow_ring_context->rcs_indirect_ctx.val =
560                 (shadow_ring_context->rcs_indirect_ctx.val &
561                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
562 }
563
564 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
565 {
566         struct i915_vma *vma;
567         unsigned char *per_ctx_va =
568                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
569                 wa_ctx->indirect_ctx.size;
570
571         if (wa_ctx->indirect_ctx.size == 0)
572                 return 0;
573
574         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
575                                        0, CACHELINE_BYTES, 0);
576         if (IS_ERR(vma))
577                 return PTR_ERR(vma);
578
579         /* FIXME: we are not tracking our pinned VMA leaving it
580          * up to the core to fix up the stray pin_count upon
581          * free.
582          */
583
584         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
585
586         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
587         memset(per_ctx_va, 0, CACHELINE_BYTES);
588
589         update_wa_ctx_2_shadow_ctx(wa_ctx);
590         return 0;
591 }
592
593 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
594 {
595         struct intel_vgpu *vgpu = workload->vgpu;
596         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
597         struct intel_vgpu_shadow_bb *bb, *pos;
598
599         if (list_empty(&workload->shadow_bb))
600                 return;
601
602         bb = list_first_entry(&workload->shadow_bb,
603                         struct intel_vgpu_shadow_bb, list);
604
605         mutex_lock(&dev_priv->drm.struct_mutex);
606
607         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
608                 if (bb->obj) {
609                         if (bb->accessing)
610                                 i915_gem_obj_finish_shmem_access(bb->obj);
611
612                         if (bb->va && !IS_ERR(bb->va))
613                                 i915_gem_object_unpin_map(bb->obj);
614
615                         if (bb->vma && !IS_ERR(bb->vma)) {
616                                 i915_vma_unpin(bb->vma);
617                                 i915_vma_close(bb->vma);
618                         }
619                         __i915_gem_object_release_unless_active(bb->obj);
620                 }
621                 list_del(&bb->list);
622                 kfree(bb);
623         }
624
625         mutex_unlock(&dev_priv->drm.struct_mutex);
626 }
627
628 static int prepare_workload(struct intel_vgpu_workload *workload)
629 {
630         struct intel_vgpu *vgpu = workload->vgpu;
631         int ret = 0;
632
633         ret = intel_vgpu_pin_mm(workload->shadow_mm);
634         if (ret) {
635                 gvt_vgpu_err("fail to vgpu pin mm\n");
636                 return ret;
637         }
638
639         update_shadow_pdps(workload);
640
641         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
642         if (ret) {
643                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
644                 goto err_unpin_mm;
645         }
646
647         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
648         if (ret) {
649                 gvt_vgpu_err("fail to flush post shadow\n");
650                 goto err_unpin_mm;
651         }
652
653         ret = copy_workload_to_ring_buffer(workload);
654         if (ret) {
655                 gvt_vgpu_err("fail to generate request\n");
656                 goto err_unpin_mm;
657         }
658
659         ret = prepare_shadow_batch_buffer(workload);
660         if (ret) {
661                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
662                 goto err_unpin_mm;
663         }
664
665         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
666         if (ret) {
667                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
668                 goto err_shadow_batch;
669         }
670
671         if (workload->prepare) {
672                 ret = workload->prepare(workload);
673                 if (ret)
674                         goto err_shadow_wa_ctx;
675         }
676
677         return 0;
678 err_shadow_wa_ctx:
679         release_shadow_wa_ctx(&workload->wa_ctx);
680 err_shadow_batch:
681         release_shadow_batch_buffer(workload);
682 err_unpin_mm:
683         intel_vgpu_unpin_mm(workload->shadow_mm);
684         return ret;
685 }
686
687 static int dispatch_workload(struct intel_vgpu_workload *workload)
688 {
689         struct intel_vgpu *vgpu = workload->vgpu;
690         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
691         struct intel_vgpu_submission *s = &vgpu->submission;
692         struct i915_gem_context *shadow_ctx = s->shadow_ctx;
693         struct i915_request *rq;
694         int ring_id = workload->ring_id;
695         int ret;
696
697         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
698                 ring_id, workload);
699
700         mutex_lock(&vgpu->vgpu_lock);
701         mutex_lock(&dev_priv->drm.struct_mutex);
702
703         ret = set_context_ppgtt_from_shadow(workload, shadow_ctx);
704         if (ret < 0) {
705                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
706                 goto err_req;
707         }
708
709         ret = intel_gvt_workload_req_alloc(workload);
710         if (ret)
711                 goto err_req;
712
713         ret = intel_gvt_scan_and_shadow_workload(workload);
714         if (ret)
715                 goto out;
716
717         ret = populate_shadow_context(workload);
718         if (ret) {
719                 release_shadow_wa_ctx(&workload->wa_ctx);
720                 goto out;
721         }
722
723         ret = prepare_workload(workload);
724 out:
725         if (ret) {
726                 /* We might still need to add request with
727                  * clean ctx to retire it properly..
728                  */
729                 rq = fetch_and_zero(&workload->req);
730                 i915_request_put(rq);
731         }
732
733         if (!IS_ERR_OR_NULL(workload->req)) {
734                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
735                                 ring_id, workload->req);
736                 i915_request_add(workload->req);
737                 workload->dispatched = true;
738         }
739 err_req:
740         if (ret)
741                 workload->status = ret;
742         mutex_unlock(&dev_priv->drm.struct_mutex);
743         mutex_unlock(&vgpu->vgpu_lock);
744         return ret;
745 }
746
747 static struct intel_vgpu_workload *pick_next_workload(
748                 struct intel_gvt *gvt, int ring_id)
749 {
750         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
751         struct intel_vgpu_workload *workload = NULL;
752
753         mutex_lock(&gvt->sched_lock);
754
755         /*
756          * no current vgpu / will be scheduled out / no workload
757          * bail out
758          */
759         if (!scheduler->current_vgpu) {
760                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
761                 goto out;
762         }
763
764         if (scheduler->need_reschedule) {
765                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
766                 goto out;
767         }
768
769         if (!scheduler->current_vgpu->active ||
770             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
771                 goto out;
772
773         /*
774          * still have current workload, maybe the workload disptacher
775          * fail to submit it for some reason, resubmit it.
776          */
777         if (scheduler->current_workload[ring_id]) {
778                 workload = scheduler->current_workload[ring_id];
779                 gvt_dbg_sched("ring id %d still have current workload %p\n",
780                                 ring_id, workload);
781                 goto out;
782         }
783
784         /*
785          * pick a workload as current workload
786          * once current workload is set, schedule policy routines
787          * will wait the current workload is finished when trying to
788          * schedule out a vgpu.
789          */
790         scheduler->current_workload[ring_id] = container_of(
791                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
792                         struct intel_vgpu_workload, list);
793
794         workload = scheduler->current_workload[ring_id];
795
796         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
797
798         atomic_inc(&workload->vgpu->submission.running_workload_num);
799 out:
800         mutex_unlock(&gvt->sched_lock);
801         return workload;
802 }
803
804 static void update_guest_context(struct intel_vgpu_workload *workload)
805 {
806         struct i915_request *rq = workload->req;
807         struct intel_vgpu *vgpu = workload->vgpu;
808         struct intel_gvt *gvt = vgpu->gvt;
809         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
810         struct execlist_ring_context *shadow_ring_context;
811         struct page *page;
812         void *src;
813         unsigned long context_gpa, context_page_num;
814         int i;
815         struct drm_i915_private *dev_priv = gvt->dev_priv;
816         u32 ring_base;
817         u32 head, tail;
818         u16 wrap_count;
819
820         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
821                       workload->ctx_desc.lrca);
822
823         head = workload->rb_head;
824         tail = workload->rb_tail;
825         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
826
827         if (tail < head) {
828                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
829                         wrap_count = 0;
830                 else
831                         wrap_count += 1;
832         }
833
834         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
835
836         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
837         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
838         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
839
840         context_page_num = rq->engine->context_size;
841         context_page_num = context_page_num >> PAGE_SHIFT;
842
843         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
844                 context_page_num = 19;
845
846         i = 2;
847
848         while (i < context_page_num) {
849                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
850                                 (u32)((workload->ctx_desc.lrca + i) <<
851                                         I915_GTT_PAGE_SHIFT));
852                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
853                         gvt_vgpu_err("invalid guest context descriptor\n");
854                         return;
855                 }
856
857                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
858                 src = kmap(page);
859                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
860                                 I915_GTT_PAGE_SIZE);
861                 kunmap(page);
862                 i++;
863         }
864
865         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
866                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
867
868         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
869         shadow_ring_context = kmap(page);
870
871 #define COPY_REG(name) \
872         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
873                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
874
875         COPY_REG(ctx_ctrl);
876         COPY_REG(ctx_timestamp);
877
878 #undef COPY_REG
879
880         intel_gvt_hypervisor_write_gpa(vgpu,
881                         workload->ring_context_gpa +
882                         sizeof(*shadow_ring_context),
883                         (void *)shadow_ring_context +
884                         sizeof(*shadow_ring_context),
885                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
886
887         kunmap(page);
888 }
889
890 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
891                                 intel_engine_mask_t engine_mask)
892 {
893         struct intel_vgpu_submission *s = &vgpu->submission;
894         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
895         struct intel_engine_cs *engine;
896         struct intel_vgpu_workload *pos, *n;
897         intel_engine_mask_t tmp;
898
899         /* free the unsubmited workloads in the queues. */
900         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
901                 list_for_each_entry_safe(pos, n,
902                         &s->workload_q_head[engine->id], list) {
903                         list_del_init(&pos->list);
904                         intel_vgpu_destroy_workload(pos);
905                 }
906                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
907         }
908 }
909
910 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
911 {
912         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
913         struct intel_vgpu_workload *workload =
914                 scheduler->current_workload[ring_id];
915         struct intel_vgpu *vgpu = workload->vgpu;
916         struct intel_vgpu_submission *s = &vgpu->submission;
917         struct i915_request *rq = workload->req;
918         int event;
919
920         mutex_lock(&vgpu->vgpu_lock);
921         mutex_lock(&gvt->sched_lock);
922
923         /* For the workload w/ request, needs to wait for the context
924          * switch to make sure request is completed.
925          * For the workload w/o request, directly complete the workload.
926          */
927         if (rq) {
928                 wait_event(workload->shadow_ctx_status_wq,
929                            !atomic_read(&workload->shadow_ctx_active));
930
931                 /* If this request caused GPU hang, req->fence.error will
932                  * be set to -EIO. Use -EIO to set workload status so
933                  * that when this request caused GPU hang, didn't trigger
934                  * context switch interrupt to guest.
935                  */
936                 if (likely(workload->status == -EINPROGRESS)) {
937                         if (workload->req->fence.error == -EIO)
938                                 workload->status = -EIO;
939                         else
940                                 workload->status = 0;
941                 }
942
943                 if (!workload->status &&
944                     !(vgpu->resetting_eng & BIT(ring_id))) {
945                         update_guest_context(workload);
946
947                         for_each_set_bit(event, workload->pending_events,
948                                          INTEL_GVT_EVENT_MAX)
949                                 intel_vgpu_trigger_virtual_event(vgpu, event);
950                 }
951
952                 /* unpin shadow ctx as the shadow_ctx update is done */
953                 mutex_lock(&rq->i915->drm.struct_mutex);
954                 intel_context_unpin(rq->hw_context);
955                 mutex_unlock(&rq->i915->drm.struct_mutex);
956
957                 i915_request_put(fetch_and_zero(&workload->req));
958         }
959
960         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
961                         ring_id, workload, workload->status);
962
963         scheduler->current_workload[ring_id] = NULL;
964
965         list_del_init(&workload->list);
966
967         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
968                 /* if workload->status is not successful means HW GPU
969                  * has occurred GPU hang or something wrong with i915/GVT,
970                  * and GVT won't inject context switch interrupt to guest.
971                  * So this error is a vGPU hang actually to the guest.
972                  * According to this we should emunlate a vGPU hang. If
973                  * there are pending workloads which are already submitted
974                  * from guest, we should clean them up like HW GPU does.
975                  *
976                  * if it is in middle of engine resetting, the pending
977                  * workloads won't be submitted to HW GPU and will be
978                  * cleaned up during the resetting process later, so doing
979                  * the workload clean up here doesn't have any impact.
980                  **/
981                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
982         }
983
984         workload->complete(workload);
985
986         atomic_dec(&s->running_workload_num);
987         wake_up(&scheduler->workload_complete_wq);
988
989         if (gvt->scheduler.need_reschedule)
990                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
991
992         mutex_unlock(&gvt->sched_lock);
993         mutex_unlock(&vgpu->vgpu_lock);
994 }
995
996 struct workload_thread_param {
997         struct intel_gvt *gvt;
998         int ring_id;
999 };
1000
1001 static int workload_thread(void *priv)
1002 {
1003         struct workload_thread_param *p = (struct workload_thread_param *)priv;
1004         struct intel_gvt *gvt = p->gvt;
1005         int ring_id = p->ring_id;
1006         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1007         struct intel_vgpu_workload *workload = NULL;
1008         struct intel_vgpu *vgpu = NULL;
1009         int ret;
1010         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
1011         DEFINE_WAIT_FUNC(wait, woken_wake_function);
1012
1013         kfree(p);
1014
1015         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
1016
1017         while (!kthread_should_stop()) {
1018                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
1019                 do {
1020                         workload = pick_next_workload(gvt, ring_id);
1021                         if (workload)
1022                                 break;
1023                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1024                                    MAX_SCHEDULE_TIMEOUT);
1025                 } while (!kthread_should_stop());
1026                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1027
1028                 if (!workload)
1029                         break;
1030
1031                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1032                                 workload->ring_id, workload,
1033                                 workload->vgpu->id);
1034
1035                 intel_runtime_pm_get(gvt->dev_priv);
1036
1037                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1038                                 workload->ring_id, workload);
1039
1040                 if (need_force_wake)
1041                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1042                                         FORCEWAKE_ALL);
1043
1044                 ret = dispatch_workload(workload);
1045
1046                 if (ret) {
1047                         vgpu = workload->vgpu;
1048                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1049                         goto complete;
1050                 }
1051
1052                 gvt_dbg_sched("ring id %d wait workload %p\n",
1053                                 workload->ring_id, workload);
1054                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1055
1056 complete:
1057                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1058                                 workload, workload->status);
1059
1060                 complete_current_workload(gvt, ring_id);
1061
1062                 if (need_force_wake)
1063                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1064                                         FORCEWAKE_ALL);
1065
1066                 intel_runtime_pm_put_unchecked(gvt->dev_priv);
1067                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1068                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1069         }
1070         return 0;
1071 }
1072
1073 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1074 {
1075         struct intel_vgpu_submission *s = &vgpu->submission;
1076         struct intel_gvt *gvt = vgpu->gvt;
1077         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1078
1079         if (atomic_read(&s->running_workload_num)) {
1080                 gvt_dbg_sched("wait vgpu idle\n");
1081
1082                 wait_event(scheduler->workload_complete_wq,
1083                                 !atomic_read(&s->running_workload_num));
1084         }
1085 }
1086
1087 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1088 {
1089         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1090         struct intel_engine_cs *engine;
1091         enum intel_engine_id i;
1092
1093         gvt_dbg_core("clean workload scheduler\n");
1094
1095         for_each_engine(engine, gvt->dev_priv, i) {
1096                 atomic_notifier_chain_unregister(
1097                                         &engine->context_status_notifier,
1098                                         &gvt->shadow_ctx_notifier_block[i]);
1099                 kthread_stop(scheduler->thread[i]);
1100         }
1101 }
1102
1103 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1104 {
1105         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1106         struct workload_thread_param *param = NULL;
1107         struct intel_engine_cs *engine;
1108         enum intel_engine_id i;
1109         int ret;
1110
1111         gvt_dbg_core("init workload scheduler\n");
1112
1113         init_waitqueue_head(&scheduler->workload_complete_wq);
1114
1115         for_each_engine(engine, gvt->dev_priv, i) {
1116                 init_waitqueue_head(&scheduler->waitq[i]);
1117
1118                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1119                 if (!param) {
1120                         ret = -ENOMEM;
1121                         goto err;
1122                 }
1123
1124                 param->gvt = gvt;
1125                 param->ring_id = i;
1126
1127                 scheduler->thread[i] = kthread_run(workload_thread, param,
1128                         "gvt workload %d", i);
1129                 if (IS_ERR(scheduler->thread[i])) {
1130                         gvt_err("fail to create workload thread\n");
1131                         ret = PTR_ERR(scheduler->thread[i]);
1132                         goto err;
1133                 }
1134
1135                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1136                                         shadow_context_status_change;
1137                 atomic_notifier_chain_register(&engine->context_status_notifier,
1138                                         &gvt->shadow_ctx_notifier_block[i]);
1139         }
1140         return 0;
1141 err:
1142         intel_gvt_clean_workload_scheduler(gvt);
1143         kfree(param);
1144         param = NULL;
1145         return ret;
1146 }
1147
1148 static void
1149 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s)
1150 {
1151         struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1152         int i;
1153
1154         if (i915_vm_is_4lvl(&i915_ppgtt->vm)) {
1155                 px_dma(&i915_ppgtt->pml4) = s->i915_context_pml4;
1156         } else {
1157                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1158                         px_dma(i915_ppgtt->pdp.page_directory[i]) =
1159                                                 s->i915_context_pdps[i];
1160         }
1161 }
1162
1163 /**
1164  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1165  * @vgpu: a vGPU
1166  *
1167  * This function is called when a vGPU is being destroyed.
1168  *
1169  */
1170 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1171 {
1172         struct intel_vgpu_submission *s = &vgpu->submission;
1173
1174         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1175         i915_context_ppgtt_root_restore(s);
1176         i915_gem_context_put(s->shadow_ctx);
1177         kmem_cache_destroy(s->workloads);
1178 }
1179
1180
1181 /**
1182  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1183  * @vgpu: a vGPU
1184  * @engine_mask: engines expected to be reset
1185  *
1186  * This function is called when a vGPU is being destroyed.
1187  *
1188  */
1189 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1190                                  intel_engine_mask_t engine_mask)
1191 {
1192         struct intel_vgpu_submission *s = &vgpu->submission;
1193
1194         if (!s->active)
1195                 return;
1196
1197         intel_vgpu_clean_workloads(vgpu, engine_mask);
1198         s->ops->reset(vgpu, engine_mask);
1199 }
1200
1201 static void
1202 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s)
1203 {
1204         struct i915_hw_ppgtt *i915_ppgtt = s->shadow_ctx->ppgtt;
1205         int i;
1206
1207         if (i915_vm_is_4lvl(&i915_ppgtt->vm))
1208                 s->i915_context_pml4 = px_dma(&i915_ppgtt->pml4);
1209         else {
1210                 for (i = 0; i < GEN8_3LVL_PDPES; i++)
1211                         s->i915_context_pdps[i] =
1212                                 px_dma(i915_ppgtt->pdp.page_directory[i]);
1213         }
1214 }
1215
1216 /**
1217  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1218  * @vgpu: a vGPU
1219  *
1220  * This function is called when a vGPU is being created.
1221  *
1222  * Returns:
1223  * Zero on success, negative error code if failed.
1224  *
1225  */
1226 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1227 {
1228         struct intel_vgpu_submission *s = &vgpu->submission;
1229         enum intel_engine_id i;
1230         struct intel_engine_cs *engine;
1231         int ret;
1232
1233         s->shadow_ctx = i915_gem_context_create_gvt(
1234                         &vgpu->gvt->dev_priv->drm);
1235         if (IS_ERR(s->shadow_ctx))
1236                 return PTR_ERR(s->shadow_ctx);
1237
1238         i915_context_ppgtt_root_save(s);
1239
1240         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1241
1242         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1243                                                   sizeof(struct intel_vgpu_workload), 0,
1244                                                   SLAB_HWCACHE_ALIGN,
1245                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1246                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1247                                                   NULL);
1248
1249         if (!s->workloads) {
1250                 ret = -ENOMEM;
1251                 goto out_shadow_ctx;
1252         }
1253
1254         for_each_engine(engine, vgpu->gvt->dev_priv, i)
1255                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1256
1257         atomic_set(&s->running_workload_num, 0);
1258         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1259
1260         return 0;
1261
1262 out_shadow_ctx:
1263         i915_gem_context_put(s->shadow_ctx);
1264         return ret;
1265 }
1266
1267 /**
1268  * intel_vgpu_select_submission_ops - select virtual submission interface
1269  * @vgpu: a vGPU
1270  * @engine_mask: either ALL_ENGINES or target engine mask
1271  * @interface: expected vGPU virtual submission interface
1272  *
1273  * This function is called when guest configures submission interface.
1274  *
1275  * Returns:
1276  * Zero on success, negative error code if failed.
1277  *
1278  */
1279 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1280                                      intel_engine_mask_t engine_mask,
1281                                      unsigned int interface)
1282 {
1283         struct intel_vgpu_submission *s = &vgpu->submission;
1284         const struct intel_vgpu_submission_ops *ops[] = {
1285                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1286                         &intel_vgpu_execlist_submission_ops,
1287         };
1288         int ret;
1289
1290         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1291                 return -EINVAL;
1292
1293         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1294                 return -EINVAL;
1295
1296         if (s->active)
1297                 s->ops->clean(vgpu, engine_mask);
1298
1299         if (interface == 0) {
1300                 s->ops = NULL;
1301                 s->virtual_submission_interface = 0;
1302                 s->active = false;
1303                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1304                 return 0;
1305         }
1306
1307         ret = ops[interface]->init(vgpu, engine_mask);
1308         if (ret)
1309                 return ret;
1310
1311         s->ops = ops[interface];
1312         s->virtual_submission_interface = interface;
1313         s->active = true;
1314
1315         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1316                         vgpu->id, s->ops->name);
1317
1318         return 0;
1319 }
1320
1321 /**
1322  * intel_vgpu_destroy_workload - destroy a vGPU workload
1323  * @workload: workload to destroy
1324  *
1325  * This function is called when destroy a vGPU workload.
1326  *
1327  */
1328 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1329 {
1330         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1331
1332         release_shadow_batch_buffer(workload);
1333         release_shadow_wa_ctx(&workload->wa_ctx);
1334
1335         if (workload->shadow_mm)
1336                 intel_vgpu_mm_put(workload->shadow_mm);
1337
1338         kmem_cache_free(s->workloads, workload);
1339 }
1340
1341 static struct intel_vgpu_workload *
1342 alloc_workload(struct intel_vgpu *vgpu)
1343 {
1344         struct intel_vgpu_submission *s = &vgpu->submission;
1345         struct intel_vgpu_workload *workload;
1346
1347         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1348         if (!workload)
1349                 return ERR_PTR(-ENOMEM);
1350
1351         INIT_LIST_HEAD(&workload->list);
1352         INIT_LIST_HEAD(&workload->shadow_bb);
1353
1354         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1355         atomic_set(&workload->shadow_ctx_active, 0);
1356
1357         workload->status = -EINPROGRESS;
1358         workload->vgpu = vgpu;
1359
1360         return workload;
1361 }
1362
1363 #define RING_CTX_OFF(x) \
1364         offsetof(struct execlist_ring_context, x)
1365
1366 static void read_guest_pdps(struct intel_vgpu *vgpu,
1367                 u64 ring_context_gpa, u32 pdp[8])
1368 {
1369         u64 gpa;
1370         int i;
1371
1372         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1373
1374         for (i = 0; i < 8; i++)
1375                 intel_gvt_hypervisor_read_gpa(vgpu,
1376                                 gpa + i * 8, &pdp[7 - i], 4);
1377 }
1378
1379 static int prepare_mm(struct intel_vgpu_workload *workload)
1380 {
1381         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1382         struct intel_vgpu_mm *mm;
1383         struct intel_vgpu *vgpu = workload->vgpu;
1384         enum intel_gvt_gtt_type root_entry_type;
1385         u64 pdps[GVT_RING_CTX_NR_PDPS];
1386
1387         switch (desc->addressing_mode) {
1388         case 1: /* legacy 32-bit */
1389                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1390                 break;
1391         case 3: /* legacy 64-bit */
1392                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1393                 break;
1394         default:
1395                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1396                 return -EINVAL;
1397         }
1398
1399         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1400
1401         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1402         if (IS_ERR(mm))
1403                 return PTR_ERR(mm);
1404
1405         workload->shadow_mm = mm;
1406         return 0;
1407 }
1408
1409 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1410                 ((a)->lrca == (b)->lrca))
1411
1412 #define get_last_workload(q) \
1413         (list_empty(q) ? NULL : container_of(q->prev, \
1414         struct intel_vgpu_workload, list))
1415 /**
1416  * intel_vgpu_create_workload - create a vGPU workload
1417  * @vgpu: a vGPU
1418  * @ring_id: ring index
1419  * @desc: a guest context descriptor
1420  *
1421  * This function is called when creating a vGPU workload.
1422  *
1423  * Returns:
1424  * struct intel_vgpu_workload * on success, negative error code in
1425  * pointer if failed.
1426  *
1427  */
1428 struct intel_vgpu_workload *
1429 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1430                            struct execlist_ctx_descriptor_format *desc)
1431 {
1432         struct intel_vgpu_submission *s = &vgpu->submission;
1433         struct list_head *q = workload_q_head(vgpu, ring_id);
1434         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1435         struct intel_vgpu_workload *workload = NULL;
1436         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1437         u64 ring_context_gpa;
1438         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1439         u32 guest_head;
1440         int ret;
1441
1442         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1443                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1444         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1445                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1446                 return ERR_PTR(-EINVAL);
1447         }
1448
1449         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1450                         RING_CTX_OFF(ring_header.val), &head, 4);
1451
1452         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1453                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1454
1455         guest_head = head;
1456
1457         head &= RB_HEAD_OFF_MASK;
1458         tail &= RB_TAIL_OFF_MASK;
1459
1460         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1461                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1462                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1463                                 last_workload->rb_tail);
1464                 /*
1465                  * cannot use guest context head pointer here,
1466                  * as it might not be updated at this time
1467                  */
1468                 head = last_workload->rb_tail;
1469         }
1470
1471         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1472
1473         /* record some ring buffer register values for scan and shadow */
1474         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1475                         RING_CTX_OFF(rb_start.val), &start, 4);
1476         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1477                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1478         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1479                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1480
1481         workload = alloc_workload(vgpu);
1482         if (IS_ERR(workload))
1483                 return workload;
1484
1485         workload->ring_id = ring_id;
1486         workload->ctx_desc = *desc;
1487         workload->ring_context_gpa = ring_context_gpa;
1488         workload->rb_head = head;
1489         workload->guest_rb_head = guest_head;
1490         workload->rb_tail = tail;
1491         workload->rb_start = start;
1492         workload->rb_ctl = ctl;
1493
1494         if (ring_id == RCS0) {
1495                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1496                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1497                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1498                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1499
1500                 workload->wa_ctx.indirect_ctx.guest_gma =
1501                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1502                 workload->wa_ctx.indirect_ctx.size =
1503                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1504                         CACHELINE_BYTES;
1505                 workload->wa_ctx.per_ctx.guest_gma =
1506                         per_ctx & PER_CTX_ADDR_MASK;
1507                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1508         }
1509
1510         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1511                         workload, ring_id, head, tail, start, ctl);
1512
1513         ret = prepare_mm(workload);
1514         if (ret) {
1515                 kmem_cache_free(s->workloads, workload);
1516                 return ERR_PTR(ret);
1517         }
1518
1519         /* Only scan and shadow the first workload in the queue
1520          * as there is only one pre-allocated buf-obj for shadow.
1521          */
1522         if (list_empty(workload_q_head(vgpu, ring_id))) {
1523                 intel_runtime_pm_get(dev_priv);
1524                 mutex_lock(&dev_priv->drm.struct_mutex);
1525                 ret = intel_gvt_scan_and_shadow_workload(workload);
1526                 mutex_unlock(&dev_priv->drm.struct_mutex);
1527                 intel_runtime_pm_put_unchecked(dev_priv);
1528         }
1529
1530         if (ret) {
1531                 if (vgpu_is_vm_unhealthy(ret))
1532                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1533                 intel_vgpu_destroy_workload(workload);
1534                 return ERR_PTR(ret);
1535         }
1536
1537         return workload;
1538 }
1539
1540 /**
1541  * intel_vgpu_queue_workload - Qeue a vGPU workload
1542  * @workload: the workload to queue in
1543  */
1544 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1545 {
1546         list_add_tail(&workload->list,
1547                 workload_q_head(workload->vgpu, workload->ring_id));
1548         intel_gvt_kick_schedule(workload->vgpu->gvt);
1549         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1550 }