Merge tag 'char-misc-5.4-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / scheduler.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Zhi Wang <zhi.a.wang@intel.com>
25  *
26  * Contributors:
27  *    Ping Gao <ping.a.gao@intel.com>
28  *    Tina Zhang <tina.zhang@intel.com>
29  *    Chanbin Du <changbin.du@intel.com>
30  *    Min He <min.he@intel.com>
31  *    Bing Niu <bing.niu@intel.com>
32  *    Zhenyu Wang <zhenyuw@linux.intel.com>
33  *
34  */
35
36 #include <linux/kthread.h>
37
38 #include "gem/i915_gem_context.h"
39 #include "gem/i915_gem_pm.h"
40 #include "gt/intel_context.h"
41
42 #include "i915_drv.h"
43 #include "gvt.h"
44
45 #define RING_CTX_OFF(x) \
46         offsetof(struct execlist_ring_context, x)
47
48 static void set_context_pdp_root_pointer(
49                 struct execlist_ring_context *ring_context,
50                 u32 pdp[8])
51 {
52         int i;
53
54         for (i = 0; i < 8; i++)
55                 ring_context->pdps[i].val = pdp[7 - i];
56 }
57
58 static void update_shadow_pdps(struct intel_vgpu_workload *workload)
59 {
60         struct drm_i915_gem_object *ctx_obj =
61                 workload->req->hw_context->state->obj;
62         struct execlist_ring_context *shadow_ring_context;
63         struct page *page;
64
65         if (WARN_ON(!workload->shadow_mm))
66                 return;
67
68         if (WARN_ON(!atomic_read(&workload->shadow_mm->pincount)))
69                 return;
70
71         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
72         shadow_ring_context = kmap(page);
73         set_context_pdp_root_pointer(shadow_ring_context,
74                         (void *)workload->shadow_mm->ppgtt_mm.shadow_pdps);
75         kunmap(page);
76 }
77
78 /*
79  * when populating shadow ctx from guest, we should not overrride oa related
80  * registers, so that they will not be overlapped by guest oa configs. Thus
81  * made it possible to capture oa data from host for both host and guests.
82  */
83 static void sr_oa_regs(struct intel_vgpu_workload *workload,
84                 u32 *reg_state, bool save)
85 {
86         struct drm_i915_private *dev_priv = workload->vgpu->gvt->dev_priv;
87         u32 ctx_oactxctrl = dev_priv->perf.oa.ctx_oactxctrl_offset;
88         u32 ctx_flexeu0 = dev_priv->perf.oa.ctx_flexeu0_offset;
89         int i = 0;
90         u32 flex_mmio[] = {
91                 i915_mmio_reg_offset(EU_PERF_CNTL0),
92                 i915_mmio_reg_offset(EU_PERF_CNTL1),
93                 i915_mmio_reg_offset(EU_PERF_CNTL2),
94                 i915_mmio_reg_offset(EU_PERF_CNTL3),
95                 i915_mmio_reg_offset(EU_PERF_CNTL4),
96                 i915_mmio_reg_offset(EU_PERF_CNTL5),
97                 i915_mmio_reg_offset(EU_PERF_CNTL6),
98         };
99
100         if (workload->ring_id != RCS0)
101                 return;
102
103         if (save) {
104                 workload->oactxctrl = reg_state[ctx_oactxctrl + 1];
105
106                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
107                         u32 state_offset = ctx_flexeu0 + i * 2;
108
109                         workload->flex_mmio[i] = reg_state[state_offset + 1];
110                 }
111         } else {
112                 reg_state[ctx_oactxctrl] =
113                         i915_mmio_reg_offset(GEN8_OACTXCONTROL);
114                 reg_state[ctx_oactxctrl + 1] = workload->oactxctrl;
115
116                 for (i = 0; i < ARRAY_SIZE(workload->flex_mmio); i++) {
117                         u32 state_offset = ctx_flexeu0 + i * 2;
118                         u32 mmio = flex_mmio[i];
119
120                         reg_state[state_offset] = mmio;
121                         reg_state[state_offset + 1] = workload->flex_mmio[i];
122                 }
123         }
124 }
125
126 static int populate_shadow_context(struct intel_vgpu_workload *workload)
127 {
128         struct intel_vgpu *vgpu = workload->vgpu;
129         struct intel_gvt *gvt = vgpu->gvt;
130         int ring_id = workload->ring_id;
131         struct drm_i915_gem_object *ctx_obj =
132                 workload->req->hw_context->state->obj;
133         struct execlist_ring_context *shadow_ring_context;
134         struct page *page;
135         void *dst;
136         unsigned long context_gpa, context_page_num;
137         int i;
138
139         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
140         shadow_ring_context = kmap(page);
141
142         sr_oa_regs(workload, (u32 *)shadow_ring_context, true);
143 #define COPY_REG(name) \
144         intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
145                 + RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
146 #define COPY_REG_MASKED(name) {\
147                 intel_gvt_hypervisor_read_gpa(vgpu, workload->ring_context_gpa \
148                                               + RING_CTX_OFF(name.val),\
149                                               &shadow_ring_context->name.val, 4);\
150                 shadow_ring_context->name.val |= 0xffff << 16;\
151         }
152
153         COPY_REG_MASKED(ctx_ctrl);
154         COPY_REG(ctx_timestamp);
155
156         if (ring_id == RCS0) {
157                 COPY_REG(bb_per_ctx_ptr);
158                 COPY_REG(rcs_indirect_ctx);
159                 COPY_REG(rcs_indirect_ctx_offset);
160         }
161 #undef COPY_REG
162 #undef COPY_REG_MASKED
163
164         intel_gvt_hypervisor_read_gpa(vgpu,
165                         workload->ring_context_gpa +
166                         sizeof(*shadow_ring_context),
167                         (void *)shadow_ring_context +
168                         sizeof(*shadow_ring_context),
169                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
170
171         sr_oa_regs(workload, (u32 *)shadow_ring_context, false);
172         kunmap(page);
173
174         if (IS_RESTORE_INHIBIT(shadow_ring_context->ctx_ctrl.val))
175                 return 0;
176
177         gvt_dbg_sched("ring id %d workload lrca %x", ring_id,
178                         workload->ctx_desc.lrca);
179
180         context_page_num = gvt->dev_priv->engine[ring_id]->context_size;
181
182         context_page_num = context_page_num >> PAGE_SHIFT;
183
184         if (IS_BROADWELL(gvt->dev_priv) && ring_id == RCS0)
185                 context_page_num = 19;
186
187         i = 2;
188         while (i < context_page_num) {
189                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
190                                 (u32)((workload->ctx_desc.lrca + i) <<
191                                 I915_GTT_PAGE_SHIFT));
192                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
193                         gvt_vgpu_err("Invalid guest context descriptor\n");
194                         return -EFAULT;
195                 }
196
197                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
198                 dst = kmap(page);
199                 intel_gvt_hypervisor_read_gpa(vgpu, context_gpa, dst,
200                                 I915_GTT_PAGE_SIZE);
201                 kunmap(page);
202                 i++;
203         }
204         return 0;
205 }
206
207 static inline bool is_gvt_request(struct i915_request *req)
208 {
209         return i915_gem_context_force_single_submission(req->gem_context);
210 }
211
212 static void save_ring_hw_state(struct intel_vgpu *vgpu, int ring_id)
213 {
214         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
215         u32 ring_base = dev_priv->engine[ring_id]->mmio_base;
216         i915_reg_t reg;
217
218         reg = RING_INSTDONE(ring_base);
219         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
220         reg = RING_ACTHD(ring_base);
221         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
222         reg = RING_ACTHD_UDW(ring_base);
223         vgpu_vreg(vgpu, i915_mmio_reg_offset(reg)) = I915_READ_FW(reg);
224 }
225
226 static int shadow_context_status_change(struct notifier_block *nb,
227                 unsigned long action, void *data)
228 {
229         struct i915_request *req = data;
230         struct intel_gvt *gvt = container_of(nb, struct intel_gvt,
231                                 shadow_ctx_notifier_block[req->engine->id]);
232         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
233         enum intel_engine_id ring_id = req->engine->id;
234         struct intel_vgpu_workload *workload;
235         unsigned long flags;
236
237         if (!is_gvt_request(req)) {
238                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
239                 if (action == INTEL_CONTEXT_SCHEDULE_IN &&
240                     scheduler->engine_owner[ring_id]) {
241                         /* Switch ring from vGPU to host. */
242                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
243                                               NULL, ring_id);
244                         scheduler->engine_owner[ring_id] = NULL;
245                 }
246                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
247
248                 return NOTIFY_OK;
249         }
250
251         workload = scheduler->current_workload[ring_id];
252         if (unlikely(!workload))
253                 return NOTIFY_OK;
254
255         switch (action) {
256         case INTEL_CONTEXT_SCHEDULE_IN:
257                 spin_lock_irqsave(&scheduler->mmio_context_lock, flags);
258                 if (workload->vgpu != scheduler->engine_owner[ring_id]) {
259                         /* Switch ring from host to vGPU or vGPU to vGPU. */
260                         intel_gvt_switch_mmio(scheduler->engine_owner[ring_id],
261                                               workload->vgpu, ring_id);
262                         scheduler->engine_owner[ring_id] = workload->vgpu;
263                 } else
264                         gvt_dbg_sched("skip ring %d mmio switch for vgpu%d\n",
265                                       ring_id, workload->vgpu->id);
266                 spin_unlock_irqrestore(&scheduler->mmio_context_lock, flags);
267                 atomic_set(&workload->shadow_ctx_active, 1);
268                 break;
269         case INTEL_CONTEXT_SCHEDULE_OUT:
270                 save_ring_hw_state(workload->vgpu, ring_id);
271                 atomic_set(&workload->shadow_ctx_active, 0);
272                 break;
273         case INTEL_CONTEXT_SCHEDULE_PREEMPTED:
274                 save_ring_hw_state(workload->vgpu, ring_id);
275                 break;
276         default:
277                 WARN_ON(1);
278                 return NOTIFY_OK;
279         }
280         wake_up(&workload->shadow_ctx_status_wq);
281         return NOTIFY_OK;
282 }
283
284 static void
285 shadow_context_descriptor_update(struct intel_context *ce,
286                                  struct intel_vgpu_workload *workload)
287 {
288         u64 desc = ce->lrc_desc;
289
290         /*
291          * Update bits 0-11 of the context descriptor which includes flags
292          * like GEN8_CTX_* cached in desc_template
293          */
294         desc &= U64_MAX << 12;
295         desc |= ce->gem_context->desc_template & ((1ULL << 12) - 1);
296
297         desc &= ~(0x3 << GEN8_CTX_ADDRESSING_MODE_SHIFT);
298         desc |= workload->ctx_desc.addressing_mode <<
299                 GEN8_CTX_ADDRESSING_MODE_SHIFT;
300
301         ce->lrc_desc = desc;
302 }
303
304 static int copy_workload_to_ring_buffer(struct intel_vgpu_workload *workload)
305 {
306         struct intel_vgpu *vgpu = workload->vgpu;
307         struct i915_request *req = workload->req;
308         void *shadow_ring_buffer_va;
309         u32 *cs;
310         int err;
311
312         if (IS_GEN(req->i915, 9) && is_inhibit_context(req->hw_context))
313                 intel_vgpu_restore_inhibit_context(vgpu, req);
314
315         /*
316          * To track whether a request has started on HW, we can emit a
317          * breadcrumb at the beginning of the request and check its
318          * timeline's HWSP to see if the breadcrumb has advanced past the
319          * start of this request. Actually, the request must have the
320          * init_breadcrumb if its timeline set has_init_bread_crumb, or the
321          * scheduler might get a wrong state of it during reset. Since the
322          * requests from gvt always set the has_init_breadcrumb flag, here
323          * need to do the emit_init_breadcrumb for all the requests.
324          */
325         if (req->engine->emit_init_breadcrumb) {
326                 err = req->engine->emit_init_breadcrumb(req);
327                 if (err) {
328                         gvt_vgpu_err("fail to emit init breadcrumb\n");
329                         return err;
330                 }
331         }
332
333         /* allocate shadow ring buffer */
334         cs = intel_ring_begin(workload->req, workload->rb_len / sizeof(u32));
335         if (IS_ERR(cs)) {
336                 gvt_vgpu_err("fail to alloc size =%ld shadow  ring buffer\n",
337                         workload->rb_len);
338                 return PTR_ERR(cs);
339         }
340
341         shadow_ring_buffer_va = workload->shadow_ring_buffer_va;
342
343         /* get shadow ring buffer va */
344         workload->shadow_ring_buffer_va = cs;
345
346         memcpy(cs, shadow_ring_buffer_va,
347                         workload->rb_len);
348
349         cs += workload->rb_len / sizeof(u32);
350         intel_ring_advance(workload->req, cs);
351
352         return 0;
353 }
354
355 static void release_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
356 {
357         if (!wa_ctx->indirect_ctx.obj)
358                 return;
359
360         i915_gem_object_unpin_map(wa_ctx->indirect_ctx.obj);
361         i915_gem_object_put(wa_ctx->indirect_ctx.obj);
362
363         wa_ctx->indirect_ctx.obj = NULL;
364         wa_ctx->indirect_ctx.shadow_va = NULL;
365 }
366
367 static void set_context_ppgtt_from_shadow(struct intel_vgpu_workload *workload,
368                                           struct i915_gem_context *ctx)
369 {
370         struct intel_vgpu_mm *mm = workload->shadow_mm;
371         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ctx->vm);
372         int i = 0;
373
374         if (mm->ppgtt_mm.root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
375                 px_dma(ppgtt->pd) = mm->ppgtt_mm.shadow_pdps[0];
376         } else {
377                 for (i = 0; i < GVT_RING_CTX_NR_PDPS; i++) {
378                         struct i915_page_directory * const pd =
379                                 i915_pd_entry(ppgtt->pd, i);
380
381                         px_dma(pd) = mm->ppgtt_mm.shadow_pdps[i];
382                 }
383         }
384 }
385
386 static int
387 intel_gvt_workload_req_alloc(struct intel_vgpu_workload *workload)
388 {
389         struct intel_vgpu *vgpu = workload->vgpu;
390         struct intel_vgpu_submission *s = &vgpu->submission;
391         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
392         struct i915_request *rq;
393
394         lockdep_assert_held(&dev_priv->drm.struct_mutex);
395
396         if (workload->req)
397                 return 0;
398
399         rq = i915_request_create(s->shadow[workload->ring_id]);
400         if (IS_ERR(rq)) {
401                 gvt_vgpu_err("fail to allocate gem request\n");
402                 return PTR_ERR(rq);
403         }
404
405         workload->req = i915_request_get(rq);
406         return 0;
407 }
408
409 /**
410  * intel_gvt_scan_and_shadow_workload - audit the workload by scanning and
411  * shadow it as well, include ringbuffer,wa_ctx and ctx.
412  * @workload: an abstract entity for each execlist submission.
413  *
414  * This function is called before the workload submitting to i915, to make
415  * sure the content of the workload is valid.
416  */
417 int intel_gvt_scan_and_shadow_workload(struct intel_vgpu_workload *workload)
418 {
419         struct intel_vgpu *vgpu = workload->vgpu;
420         struct intel_vgpu_submission *s = &vgpu->submission;
421         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
422         int ret;
423
424         lockdep_assert_held(&dev_priv->drm.struct_mutex);
425
426         if (workload->shadow)
427                 return 0;
428
429         if (!test_and_set_bit(workload->ring_id, s->shadow_ctx_desc_updated))
430                 shadow_context_descriptor_update(s->shadow[workload->ring_id],
431                                                  workload);
432
433         ret = intel_gvt_scan_and_shadow_ringbuffer(workload);
434         if (ret)
435                 return ret;
436
437         if (workload->ring_id == RCS0 && workload->wa_ctx.indirect_ctx.size) {
438                 ret = intel_gvt_scan_and_shadow_wa_ctx(&workload->wa_ctx);
439                 if (ret)
440                         goto err_shadow;
441         }
442
443         workload->shadow = true;
444         return 0;
445 err_shadow:
446         release_shadow_wa_ctx(&workload->wa_ctx);
447         return ret;
448 }
449
450 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload);
451
452 static int prepare_shadow_batch_buffer(struct intel_vgpu_workload *workload)
453 {
454         struct intel_gvt *gvt = workload->vgpu->gvt;
455         const int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
456         struct intel_vgpu_shadow_bb *bb;
457         int ret;
458
459         list_for_each_entry(bb, &workload->shadow_bb, list) {
460                 /* For privilge batch buffer and not wa_ctx, the bb_start_cmd_va
461                  * is only updated into ring_scan_buffer, not real ring address
462                  * allocated in later copy_workload_to_ring_buffer. pls be noted
463                  * shadow_ring_buffer_va is now pointed to real ring buffer va
464                  * in copy_workload_to_ring_buffer.
465                  */
466
467                 if (bb->bb_offset)
468                         bb->bb_start_cmd_va = workload->shadow_ring_buffer_va
469                                 + bb->bb_offset;
470
471                 if (bb->ppgtt) {
472                         /* for non-priv bb, scan&shadow is only for
473                          * debugging purpose, so the content of shadow bb
474                          * is the same as original bb. Therefore,
475                          * here, rather than switch to shadow bb's gma
476                          * address, we directly use original batch buffer's
477                          * gma address, and send original bb to hardware
478                          * directly
479                          */
480                         if (bb->clflush & CLFLUSH_AFTER) {
481                                 drm_clflush_virt_range(bb->va,
482                                                 bb->obj->base.size);
483                                 bb->clflush &= ~CLFLUSH_AFTER;
484                         }
485                         i915_gem_object_finish_access(bb->obj);
486                         bb->accessing = false;
487
488                 } else {
489                         bb->vma = i915_gem_object_ggtt_pin(bb->obj,
490                                         NULL, 0, 0, 0);
491                         if (IS_ERR(bb->vma)) {
492                                 ret = PTR_ERR(bb->vma);
493                                 goto err;
494                         }
495
496                         /* relocate shadow batch buffer */
497                         bb->bb_start_cmd_va[1] = i915_ggtt_offset(bb->vma);
498                         if (gmadr_bytes == 8)
499                                 bb->bb_start_cmd_va[2] = 0;
500
501                         /* No one is going to touch shadow bb from now on. */
502                         if (bb->clflush & CLFLUSH_AFTER) {
503                                 drm_clflush_virt_range(bb->va,
504                                                 bb->obj->base.size);
505                                 bb->clflush &= ~CLFLUSH_AFTER;
506                         }
507
508                         ret = i915_gem_object_set_to_gtt_domain(bb->obj,
509                                                                 false);
510                         if (ret)
511                                 goto err;
512
513                         ret = i915_vma_move_to_active(bb->vma,
514                                                       workload->req,
515                                                       0);
516                         if (ret)
517                                 goto err;
518
519                         i915_gem_object_finish_access(bb->obj);
520                         bb->accessing = false;
521                 }
522         }
523         return 0;
524 err:
525         release_shadow_batch_buffer(workload);
526         return ret;
527 }
528
529 static void update_wa_ctx_2_shadow_ctx(struct intel_shadow_wa_ctx *wa_ctx)
530 {
531         struct intel_vgpu_workload *workload =
532                 container_of(wa_ctx, struct intel_vgpu_workload, wa_ctx);
533         struct i915_request *rq = workload->req;
534         struct execlist_ring_context *shadow_ring_context =
535                 (struct execlist_ring_context *)rq->hw_context->lrc_reg_state;
536
537         shadow_ring_context->bb_per_ctx_ptr.val =
538                 (shadow_ring_context->bb_per_ctx_ptr.val &
539                 (~PER_CTX_ADDR_MASK)) | wa_ctx->per_ctx.shadow_gma;
540         shadow_ring_context->rcs_indirect_ctx.val =
541                 (shadow_ring_context->rcs_indirect_ctx.val &
542                 (~INDIRECT_CTX_ADDR_MASK)) | wa_ctx->indirect_ctx.shadow_gma;
543 }
544
545 static int prepare_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
546 {
547         struct i915_vma *vma;
548         unsigned char *per_ctx_va =
549                 (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
550                 wa_ctx->indirect_ctx.size;
551
552         if (wa_ctx->indirect_ctx.size == 0)
553                 return 0;
554
555         vma = i915_gem_object_ggtt_pin(wa_ctx->indirect_ctx.obj, NULL,
556                                        0, CACHELINE_BYTES, 0);
557         if (IS_ERR(vma))
558                 return PTR_ERR(vma);
559
560         /* FIXME: we are not tracking our pinned VMA leaving it
561          * up to the core to fix up the stray pin_count upon
562          * free.
563          */
564
565         wa_ctx->indirect_ctx.shadow_gma = i915_ggtt_offset(vma);
566
567         wa_ctx->per_ctx.shadow_gma = *((unsigned int *)per_ctx_va + 1);
568         memset(per_ctx_va, 0, CACHELINE_BYTES);
569
570         update_wa_ctx_2_shadow_ctx(wa_ctx);
571         return 0;
572 }
573
574 static void release_shadow_batch_buffer(struct intel_vgpu_workload *workload)
575 {
576         struct intel_vgpu *vgpu = workload->vgpu;
577         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
578         struct intel_vgpu_shadow_bb *bb, *pos;
579
580         if (list_empty(&workload->shadow_bb))
581                 return;
582
583         bb = list_first_entry(&workload->shadow_bb,
584                         struct intel_vgpu_shadow_bb, list);
585
586         mutex_lock(&dev_priv->drm.struct_mutex);
587
588         list_for_each_entry_safe(bb, pos, &workload->shadow_bb, list) {
589                 if (bb->obj) {
590                         if (bb->accessing)
591                                 i915_gem_object_finish_access(bb->obj);
592
593                         if (bb->va && !IS_ERR(bb->va))
594                                 i915_gem_object_unpin_map(bb->obj);
595
596                         if (bb->vma && !IS_ERR(bb->vma)) {
597                                 i915_vma_unpin(bb->vma);
598                                 i915_vma_close(bb->vma);
599                         }
600                         i915_gem_object_put(bb->obj);
601                 }
602                 list_del(&bb->list);
603                 kfree(bb);
604         }
605
606         mutex_unlock(&dev_priv->drm.struct_mutex);
607 }
608
609 static int prepare_workload(struct intel_vgpu_workload *workload)
610 {
611         struct intel_vgpu *vgpu = workload->vgpu;
612         struct intel_vgpu_submission *s = &vgpu->submission;
613         int ring = workload->ring_id;
614         int ret = 0;
615
616         ret = intel_vgpu_pin_mm(workload->shadow_mm);
617         if (ret) {
618                 gvt_vgpu_err("fail to vgpu pin mm\n");
619                 return ret;
620         }
621
622         if (workload->shadow_mm->type != INTEL_GVT_MM_PPGTT ||
623             !workload->shadow_mm->ppgtt_mm.shadowed) {
624                 gvt_vgpu_err("workload shadow ppgtt isn't ready\n");
625                 return -EINVAL;
626         }
627
628         update_shadow_pdps(workload);
629
630         set_context_ppgtt_from_shadow(workload, s->shadow[ring]->gem_context);
631
632         ret = intel_vgpu_sync_oos_pages(workload->vgpu);
633         if (ret) {
634                 gvt_vgpu_err("fail to vgpu sync oos pages\n");
635                 goto err_unpin_mm;
636         }
637
638         ret = intel_vgpu_flush_post_shadow(workload->vgpu);
639         if (ret) {
640                 gvt_vgpu_err("fail to flush post shadow\n");
641                 goto err_unpin_mm;
642         }
643
644         ret = copy_workload_to_ring_buffer(workload);
645         if (ret) {
646                 gvt_vgpu_err("fail to generate request\n");
647                 goto err_unpin_mm;
648         }
649
650         ret = prepare_shadow_batch_buffer(workload);
651         if (ret) {
652                 gvt_vgpu_err("fail to prepare_shadow_batch_buffer\n");
653                 goto err_unpin_mm;
654         }
655
656         ret = prepare_shadow_wa_ctx(&workload->wa_ctx);
657         if (ret) {
658                 gvt_vgpu_err("fail to prepare_shadow_wa_ctx\n");
659                 goto err_shadow_batch;
660         }
661
662         if (workload->prepare) {
663                 ret = workload->prepare(workload);
664                 if (ret)
665                         goto err_shadow_wa_ctx;
666         }
667
668         return 0;
669 err_shadow_wa_ctx:
670         release_shadow_wa_ctx(&workload->wa_ctx);
671 err_shadow_batch:
672         release_shadow_batch_buffer(workload);
673 err_unpin_mm:
674         intel_vgpu_unpin_mm(workload->shadow_mm);
675         return ret;
676 }
677
678 static int dispatch_workload(struct intel_vgpu_workload *workload)
679 {
680         struct intel_vgpu *vgpu = workload->vgpu;
681         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
682         struct i915_request *rq;
683         int ring_id = workload->ring_id;
684         int ret;
685
686         gvt_dbg_sched("ring id %d prepare to dispatch workload %p\n",
687                 ring_id, workload);
688
689         mutex_lock(&vgpu->vgpu_lock);
690         mutex_lock(&dev_priv->drm.struct_mutex);
691
692         ret = intel_gvt_workload_req_alloc(workload);
693         if (ret)
694                 goto err_req;
695
696         ret = intel_gvt_scan_and_shadow_workload(workload);
697         if (ret)
698                 goto out;
699
700         ret = populate_shadow_context(workload);
701         if (ret) {
702                 release_shadow_wa_ctx(&workload->wa_ctx);
703                 goto out;
704         }
705
706         ret = prepare_workload(workload);
707 out:
708         if (ret) {
709                 /* We might still need to add request with
710                  * clean ctx to retire it properly..
711                  */
712                 rq = fetch_and_zero(&workload->req);
713                 i915_request_put(rq);
714         }
715
716         if (!IS_ERR_OR_NULL(workload->req)) {
717                 gvt_dbg_sched("ring id %d submit workload to i915 %p\n",
718                                 ring_id, workload->req);
719                 i915_request_add(workload->req);
720                 workload->dispatched = true;
721         }
722 err_req:
723         if (ret)
724                 workload->status = ret;
725         mutex_unlock(&dev_priv->drm.struct_mutex);
726         mutex_unlock(&vgpu->vgpu_lock);
727         return ret;
728 }
729
730 static struct intel_vgpu_workload *pick_next_workload(
731                 struct intel_gvt *gvt, int ring_id)
732 {
733         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
734         struct intel_vgpu_workload *workload = NULL;
735
736         mutex_lock(&gvt->sched_lock);
737
738         /*
739          * no current vgpu / will be scheduled out / no workload
740          * bail out
741          */
742         if (!scheduler->current_vgpu) {
743                 gvt_dbg_sched("ring id %d stop - no current vgpu\n", ring_id);
744                 goto out;
745         }
746
747         if (scheduler->need_reschedule) {
748                 gvt_dbg_sched("ring id %d stop - will reschedule\n", ring_id);
749                 goto out;
750         }
751
752         if (!scheduler->current_vgpu->active ||
753             list_empty(workload_q_head(scheduler->current_vgpu, ring_id)))
754                 goto out;
755
756         /*
757          * still have current workload, maybe the workload disptacher
758          * fail to submit it for some reason, resubmit it.
759          */
760         if (scheduler->current_workload[ring_id]) {
761                 workload = scheduler->current_workload[ring_id];
762                 gvt_dbg_sched("ring id %d still have current workload %p\n",
763                                 ring_id, workload);
764                 goto out;
765         }
766
767         /*
768          * pick a workload as current workload
769          * once current workload is set, schedule policy routines
770          * will wait the current workload is finished when trying to
771          * schedule out a vgpu.
772          */
773         scheduler->current_workload[ring_id] = container_of(
774                         workload_q_head(scheduler->current_vgpu, ring_id)->next,
775                         struct intel_vgpu_workload, list);
776
777         workload = scheduler->current_workload[ring_id];
778
779         gvt_dbg_sched("ring id %d pick new workload %p\n", ring_id, workload);
780
781         atomic_inc(&workload->vgpu->submission.running_workload_num);
782 out:
783         mutex_unlock(&gvt->sched_lock);
784         return workload;
785 }
786
787 static void update_guest_context(struct intel_vgpu_workload *workload)
788 {
789         struct i915_request *rq = workload->req;
790         struct intel_vgpu *vgpu = workload->vgpu;
791         struct intel_gvt *gvt = vgpu->gvt;
792         struct drm_i915_gem_object *ctx_obj = rq->hw_context->state->obj;
793         struct execlist_ring_context *shadow_ring_context;
794         struct page *page;
795         void *src;
796         unsigned long context_gpa, context_page_num;
797         int i;
798         struct drm_i915_private *dev_priv = gvt->dev_priv;
799         u32 ring_base;
800         u32 head, tail;
801         u16 wrap_count;
802
803         gvt_dbg_sched("ring id %d workload lrca %x\n", rq->engine->id,
804                       workload->ctx_desc.lrca);
805
806         head = workload->rb_head;
807         tail = workload->rb_tail;
808         wrap_count = workload->guest_rb_head >> RB_HEAD_WRAP_CNT_OFF;
809
810         if (tail < head) {
811                 if (wrap_count == RB_HEAD_WRAP_CNT_MAX)
812                         wrap_count = 0;
813                 else
814                         wrap_count += 1;
815         }
816
817         head = (wrap_count << RB_HEAD_WRAP_CNT_OFF) | tail;
818
819         ring_base = dev_priv->engine[workload->ring_id]->mmio_base;
820         vgpu_vreg_t(vgpu, RING_TAIL(ring_base)) = tail;
821         vgpu_vreg_t(vgpu, RING_HEAD(ring_base)) = head;
822
823         context_page_num = rq->engine->context_size;
824         context_page_num = context_page_num >> PAGE_SHIFT;
825
826         if (IS_BROADWELL(gvt->dev_priv) && rq->engine->id == RCS0)
827                 context_page_num = 19;
828
829         i = 2;
830
831         while (i < context_page_num) {
832                 context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
833                                 (u32)((workload->ctx_desc.lrca + i) <<
834                                         I915_GTT_PAGE_SHIFT));
835                 if (context_gpa == INTEL_GVT_INVALID_ADDR) {
836                         gvt_vgpu_err("invalid guest context descriptor\n");
837                         return;
838                 }
839
840                 page = i915_gem_object_get_page(ctx_obj, LRC_HEADER_PAGES + i);
841                 src = kmap(page);
842                 intel_gvt_hypervisor_write_gpa(vgpu, context_gpa, src,
843                                 I915_GTT_PAGE_SIZE);
844                 kunmap(page);
845                 i++;
846         }
847
848         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa +
849                 RING_CTX_OFF(ring_header.val), &workload->rb_tail, 4);
850
851         page = i915_gem_object_get_page(ctx_obj, LRC_STATE_PN);
852         shadow_ring_context = kmap(page);
853
854 #define COPY_REG(name) \
855         intel_gvt_hypervisor_write_gpa(vgpu, workload->ring_context_gpa + \
856                 RING_CTX_OFF(name.val), &shadow_ring_context->name.val, 4)
857
858         COPY_REG(ctx_ctrl);
859         COPY_REG(ctx_timestamp);
860
861 #undef COPY_REG
862
863         intel_gvt_hypervisor_write_gpa(vgpu,
864                         workload->ring_context_gpa +
865                         sizeof(*shadow_ring_context),
866                         (void *)shadow_ring_context +
867                         sizeof(*shadow_ring_context),
868                         I915_GTT_PAGE_SIZE - sizeof(*shadow_ring_context));
869
870         kunmap(page);
871 }
872
873 void intel_vgpu_clean_workloads(struct intel_vgpu *vgpu,
874                                 intel_engine_mask_t engine_mask)
875 {
876         struct intel_vgpu_submission *s = &vgpu->submission;
877         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
878         struct intel_engine_cs *engine;
879         struct intel_vgpu_workload *pos, *n;
880         intel_engine_mask_t tmp;
881
882         /* free the unsubmited workloads in the queues. */
883         for_each_engine_masked(engine, dev_priv, engine_mask, tmp) {
884                 list_for_each_entry_safe(pos, n,
885                         &s->workload_q_head[engine->id], list) {
886                         list_del_init(&pos->list);
887                         intel_vgpu_destroy_workload(pos);
888                 }
889                 clear_bit(engine->id, s->shadow_ctx_desc_updated);
890         }
891 }
892
893 static void complete_current_workload(struct intel_gvt *gvt, int ring_id)
894 {
895         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
896         struct intel_vgpu_workload *workload =
897                 scheduler->current_workload[ring_id];
898         struct intel_vgpu *vgpu = workload->vgpu;
899         struct intel_vgpu_submission *s = &vgpu->submission;
900         struct i915_request *rq = workload->req;
901         int event;
902
903         mutex_lock(&vgpu->vgpu_lock);
904         mutex_lock(&gvt->sched_lock);
905
906         /* For the workload w/ request, needs to wait for the context
907          * switch to make sure request is completed.
908          * For the workload w/o request, directly complete the workload.
909          */
910         if (rq) {
911                 wait_event(workload->shadow_ctx_status_wq,
912                            !atomic_read(&workload->shadow_ctx_active));
913
914                 /* If this request caused GPU hang, req->fence.error will
915                  * be set to -EIO. Use -EIO to set workload status so
916                  * that when this request caused GPU hang, didn't trigger
917                  * context switch interrupt to guest.
918                  */
919                 if (likely(workload->status == -EINPROGRESS)) {
920                         if (workload->req->fence.error == -EIO)
921                                 workload->status = -EIO;
922                         else
923                                 workload->status = 0;
924                 }
925
926                 if (!workload->status &&
927                     !(vgpu->resetting_eng & BIT(ring_id))) {
928                         update_guest_context(workload);
929
930                         for_each_set_bit(event, workload->pending_events,
931                                          INTEL_GVT_EVENT_MAX)
932                                 intel_vgpu_trigger_virtual_event(vgpu, event);
933                 }
934
935                 i915_request_put(fetch_and_zero(&workload->req));
936         }
937
938         gvt_dbg_sched("ring id %d complete workload %p status %d\n",
939                         ring_id, workload, workload->status);
940
941         scheduler->current_workload[ring_id] = NULL;
942
943         list_del_init(&workload->list);
944
945         if (workload->status || vgpu->resetting_eng & BIT(ring_id)) {
946                 /* if workload->status is not successful means HW GPU
947                  * has occurred GPU hang or something wrong with i915/GVT,
948                  * and GVT won't inject context switch interrupt to guest.
949                  * So this error is a vGPU hang actually to the guest.
950                  * According to this we should emunlate a vGPU hang. If
951                  * there are pending workloads which are already submitted
952                  * from guest, we should clean them up like HW GPU does.
953                  *
954                  * if it is in middle of engine resetting, the pending
955                  * workloads won't be submitted to HW GPU and will be
956                  * cleaned up during the resetting process later, so doing
957                  * the workload clean up here doesn't have any impact.
958                  **/
959                 intel_vgpu_clean_workloads(vgpu, BIT(ring_id));
960         }
961
962         workload->complete(workload);
963
964         atomic_dec(&s->running_workload_num);
965         wake_up(&scheduler->workload_complete_wq);
966
967         if (gvt->scheduler.need_reschedule)
968                 intel_gvt_request_service(gvt, INTEL_GVT_REQUEST_EVENT_SCHED);
969
970         mutex_unlock(&gvt->sched_lock);
971         mutex_unlock(&vgpu->vgpu_lock);
972 }
973
974 struct workload_thread_param {
975         struct intel_gvt *gvt;
976         int ring_id;
977 };
978
979 static int workload_thread(void *priv)
980 {
981         struct workload_thread_param *p = (struct workload_thread_param *)priv;
982         struct intel_gvt *gvt = p->gvt;
983         int ring_id = p->ring_id;
984         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
985         struct intel_vgpu_workload *workload = NULL;
986         struct intel_vgpu *vgpu = NULL;
987         int ret;
988         bool need_force_wake = (INTEL_GEN(gvt->dev_priv) >= 9);
989         DEFINE_WAIT_FUNC(wait, woken_wake_function);
990         struct intel_runtime_pm *rpm = &gvt->dev_priv->runtime_pm;
991
992         kfree(p);
993
994         gvt_dbg_core("workload thread for ring %d started\n", ring_id);
995
996         while (!kthread_should_stop()) {
997                 add_wait_queue(&scheduler->waitq[ring_id], &wait);
998                 do {
999                         workload = pick_next_workload(gvt, ring_id);
1000                         if (workload)
1001                                 break;
1002                         wait_woken(&wait, TASK_INTERRUPTIBLE,
1003                                    MAX_SCHEDULE_TIMEOUT);
1004                 } while (!kthread_should_stop());
1005                 remove_wait_queue(&scheduler->waitq[ring_id], &wait);
1006
1007                 if (!workload)
1008                         break;
1009
1010                 gvt_dbg_sched("ring id %d next workload %p vgpu %d\n",
1011                                 workload->ring_id, workload,
1012                                 workload->vgpu->id);
1013
1014                 intel_runtime_pm_get(rpm);
1015
1016                 gvt_dbg_sched("ring id %d will dispatch workload %p\n",
1017                                 workload->ring_id, workload);
1018
1019                 if (need_force_wake)
1020                         intel_uncore_forcewake_get(&gvt->dev_priv->uncore,
1021                                         FORCEWAKE_ALL);
1022
1023                 ret = dispatch_workload(workload);
1024
1025                 if (ret) {
1026                         vgpu = workload->vgpu;
1027                         gvt_vgpu_err("fail to dispatch workload, skip\n");
1028                         goto complete;
1029                 }
1030
1031                 gvt_dbg_sched("ring id %d wait workload %p\n",
1032                                 workload->ring_id, workload);
1033                 i915_request_wait(workload->req, 0, MAX_SCHEDULE_TIMEOUT);
1034
1035 complete:
1036                 gvt_dbg_sched("will complete workload %p, status: %d\n",
1037                                 workload, workload->status);
1038
1039                 complete_current_workload(gvt, ring_id);
1040
1041                 if (need_force_wake)
1042                         intel_uncore_forcewake_put(&gvt->dev_priv->uncore,
1043                                         FORCEWAKE_ALL);
1044
1045                 intel_runtime_pm_put_unchecked(rpm);
1046                 if (ret && (vgpu_is_vm_unhealthy(ret)))
1047                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1048         }
1049         return 0;
1050 }
1051
1052 void intel_gvt_wait_vgpu_idle(struct intel_vgpu *vgpu)
1053 {
1054         struct intel_vgpu_submission *s = &vgpu->submission;
1055         struct intel_gvt *gvt = vgpu->gvt;
1056         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1057
1058         if (atomic_read(&s->running_workload_num)) {
1059                 gvt_dbg_sched("wait vgpu idle\n");
1060
1061                 wait_event(scheduler->workload_complete_wq,
1062                                 !atomic_read(&s->running_workload_num));
1063         }
1064 }
1065
1066 void intel_gvt_clean_workload_scheduler(struct intel_gvt *gvt)
1067 {
1068         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1069         struct intel_engine_cs *engine;
1070         enum intel_engine_id i;
1071
1072         gvt_dbg_core("clean workload scheduler\n");
1073
1074         for_each_engine(engine, gvt->dev_priv, i) {
1075                 atomic_notifier_chain_unregister(
1076                                         &engine->context_status_notifier,
1077                                         &gvt->shadow_ctx_notifier_block[i]);
1078                 kthread_stop(scheduler->thread[i]);
1079         }
1080 }
1081
1082 int intel_gvt_init_workload_scheduler(struct intel_gvt *gvt)
1083 {
1084         struct intel_gvt_workload_scheduler *scheduler = &gvt->scheduler;
1085         struct workload_thread_param *param = NULL;
1086         struct intel_engine_cs *engine;
1087         enum intel_engine_id i;
1088         int ret;
1089
1090         gvt_dbg_core("init workload scheduler\n");
1091
1092         init_waitqueue_head(&scheduler->workload_complete_wq);
1093
1094         for_each_engine(engine, gvt->dev_priv, i) {
1095                 init_waitqueue_head(&scheduler->waitq[i]);
1096
1097                 param = kzalloc(sizeof(*param), GFP_KERNEL);
1098                 if (!param) {
1099                         ret = -ENOMEM;
1100                         goto err;
1101                 }
1102
1103                 param->gvt = gvt;
1104                 param->ring_id = i;
1105
1106                 scheduler->thread[i] = kthread_run(workload_thread, param,
1107                         "gvt workload %d", i);
1108                 if (IS_ERR(scheduler->thread[i])) {
1109                         gvt_err("fail to create workload thread\n");
1110                         ret = PTR_ERR(scheduler->thread[i]);
1111                         goto err;
1112                 }
1113
1114                 gvt->shadow_ctx_notifier_block[i].notifier_call =
1115                                         shadow_context_status_change;
1116                 atomic_notifier_chain_register(&engine->context_status_notifier,
1117                                         &gvt->shadow_ctx_notifier_block[i]);
1118         }
1119         return 0;
1120 err:
1121         intel_gvt_clean_workload_scheduler(gvt);
1122         kfree(param);
1123         param = NULL;
1124         return ret;
1125 }
1126
1127 static void
1128 i915_context_ppgtt_root_restore(struct intel_vgpu_submission *s,
1129                                 struct i915_ppgtt *ppgtt)
1130 {
1131         int i;
1132
1133         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1134                 px_dma(ppgtt->pd) = s->i915_context_pml4;
1135         } else {
1136                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1137                         struct i915_page_directory * const pd =
1138                                 i915_pd_entry(ppgtt->pd, i);
1139
1140                         px_dma(pd) = s->i915_context_pdps[i];
1141                 }
1142         }
1143 }
1144
1145 /**
1146  * intel_vgpu_clean_submission - free submission-related resource for vGPU
1147  * @vgpu: a vGPU
1148  *
1149  * This function is called when a vGPU is being destroyed.
1150  *
1151  */
1152 void intel_vgpu_clean_submission(struct intel_vgpu *vgpu)
1153 {
1154         struct intel_vgpu_submission *s = &vgpu->submission;
1155         struct intel_engine_cs *engine;
1156         enum intel_engine_id id;
1157
1158         intel_vgpu_select_submission_ops(vgpu, ALL_ENGINES, 0);
1159
1160         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(s->shadow[0]->gem_context->vm));
1161         for_each_engine(engine, vgpu->gvt->dev_priv, id)
1162                 intel_context_unpin(s->shadow[id]);
1163
1164         kmem_cache_destroy(s->workloads);
1165 }
1166
1167
1168 /**
1169  * intel_vgpu_reset_submission - reset submission-related resource for vGPU
1170  * @vgpu: a vGPU
1171  * @engine_mask: engines expected to be reset
1172  *
1173  * This function is called when a vGPU is being destroyed.
1174  *
1175  */
1176 void intel_vgpu_reset_submission(struct intel_vgpu *vgpu,
1177                                  intel_engine_mask_t engine_mask)
1178 {
1179         struct intel_vgpu_submission *s = &vgpu->submission;
1180
1181         if (!s->active)
1182                 return;
1183
1184         intel_vgpu_clean_workloads(vgpu, engine_mask);
1185         s->ops->reset(vgpu, engine_mask);
1186 }
1187
1188 static void
1189 i915_context_ppgtt_root_save(struct intel_vgpu_submission *s,
1190                              struct i915_ppgtt *ppgtt)
1191 {
1192         int i;
1193
1194         if (i915_vm_is_4lvl(&ppgtt->vm)) {
1195                 s->i915_context_pml4 = px_dma(ppgtt->pd);
1196         } else {
1197                 for (i = 0; i < GEN8_3LVL_PDPES; i++) {
1198                         struct i915_page_directory * const pd =
1199                                 i915_pd_entry(ppgtt->pd, i);
1200
1201                         s->i915_context_pdps[i] = px_dma(pd);
1202                 }
1203         }
1204 }
1205
1206 /**
1207  * intel_vgpu_setup_submission - setup submission-related resource for vGPU
1208  * @vgpu: a vGPU
1209  *
1210  * This function is called when a vGPU is being created.
1211  *
1212  * Returns:
1213  * Zero on success, negative error code if failed.
1214  *
1215  */
1216 int intel_vgpu_setup_submission(struct intel_vgpu *vgpu)
1217 {
1218         struct intel_vgpu_submission *s = &vgpu->submission;
1219         struct intel_engine_cs *engine;
1220         struct i915_gem_context *ctx;
1221         enum intel_engine_id i;
1222         int ret;
1223
1224         ctx = i915_gem_context_create_gvt(&vgpu->gvt->dev_priv->drm);
1225         if (IS_ERR(ctx))
1226                 return PTR_ERR(ctx);
1227
1228         i915_context_ppgtt_root_save(s, i915_vm_to_ppgtt(ctx->vm));
1229
1230         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1231                 struct intel_context *ce;
1232
1233                 INIT_LIST_HEAD(&s->workload_q_head[i]);
1234                 s->shadow[i] = ERR_PTR(-EINVAL);
1235
1236                 ce = i915_gem_context_get_engine(ctx, i);
1237                 if (IS_ERR(ce)) {
1238                         ret = PTR_ERR(ce);
1239                         goto out_shadow_ctx;
1240                 }
1241
1242                 ret = intel_context_pin(ce);
1243                 intel_context_put(ce);
1244                 if (ret)
1245                         goto out_shadow_ctx;
1246
1247                 s->shadow[i] = ce;
1248         }
1249
1250         bitmap_zero(s->shadow_ctx_desc_updated, I915_NUM_ENGINES);
1251
1252         s->workloads = kmem_cache_create_usercopy("gvt-g_vgpu_workload",
1253                                                   sizeof(struct intel_vgpu_workload), 0,
1254                                                   SLAB_HWCACHE_ALIGN,
1255                                                   offsetof(struct intel_vgpu_workload, rb_tail),
1256                                                   sizeof_field(struct intel_vgpu_workload, rb_tail),
1257                                                   NULL);
1258
1259         if (!s->workloads) {
1260                 ret = -ENOMEM;
1261                 goto out_shadow_ctx;
1262         }
1263
1264         atomic_set(&s->running_workload_num, 0);
1265         bitmap_zero(s->tlb_handle_pending, I915_NUM_ENGINES);
1266
1267         i915_gem_context_put(ctx);
1268         return 0;
1269
1270 out_shadow_ctx:
1271         i915_context_ppgtt_root_restore(s, i915_vm_to_ppgtt(ctx->vm));
1272         for_each_engine(engine, vgpu->gvt->dev_priv, i) {
1273                 if (IS_ERR(s->shadow[i]))
1274                         break;
1275
1276                 intel_context_unpin(s->shadow[i]);
1277         }
1278         i915_gem_context_put(ctx);
1279         return ret;
1280 }
1281
1282 /**
1283  * intel_vgpu_select_submission_ops - select virtual submission interface
1284  * @vgpu: a vGPU
1285  * @engine_mask: either ALL_ENGINES or target engine mask
1286  * @interface: expected vGPU virtual submission interface
1287  *
1288  * This function is called when guest configures submission interface.
1289  *
1290  * Returns:
1291  * Zero on success, negative error code if failed.
1292  *
1293  */
1294 int intel_vgpu_select_submission_ops(struct intel_vgpu *vgpu,
1295                                      intel_engine_mask_t engine_mask,
1296                                      unsigned int interface)
1297 {
1298         struct intel_vgpu_submission *s = &vgpu->submission;
1299         const struct intel_vgpu_submission_ops *ops[] = {
1300                 [INTEL_VGPU_EXECLIST_SUBMISSION] =
1301                         &intel_vgpu_execlist_submission_ops,
1302         };
1303         int ret;
1304
1305         if (WARN_ON(interface >= ARRAY_SIZE(ops)))
1306                 return -EINVAL;
1307
1308         if (WARN_ON(interface == 0 && engine_mask != ALL_ENGINES))
1309                 return -EINVAL;
1310
1311         if (s->active)
1312                 s->ops->clean(vgpu, engine_mask);
1313
1314         if (interface == 0) {
1315                 s->ops = NULL;
1316                 s->virtual_submission_interface = 0;
1317                 s->active = false;
1318                 gvt_dbg_core("vgpu%d: remove submission ops\n", vgpu->id);
1319                 return 0;
1320         }
1321
1322         ret = ops[interface]->init(vgpu, engine_mask);
1323         if (ret)
1324                 return ret;
1325
1326         s->ops = ops[interface];
1327         s->virtual_submission_interface = interface;
1328         s->active = true;
1329
1330         gvt_dbg_core("vgpu%d: activate ops [ %s ]\n",
1331                         vgpu->id, s->ops->name);
1332
1333         return 0;
1334 }
1335
1336 /**
1337  * intel_vgpu_destroy_workload - destroy a vGPU workload
1338  * @workload: workload to destroy
1339  *
1340  * This function is called when destroy a vGPU workload.
1341  *
1342  */
1343 void intel_vgpu_destroy_workload(struct intel_vgpu_workload *workload)
1344 {
1345         struct intel_vgpu_submission *s = &workload->vgpu->submission;
1346
1347         release_shadow_batch_buffer(workload);
1348         release_shadow_wa_ctx(&workload->wa_ctx);
1349
1350         if (workload->shadow_mm)
1351                 intel_vgpu_mm_put(workload->shadow_mm);
1352
1353         kmem_cache_free(s->workloads, workload);
1354 }
1355
1356 static struct intel_vgpu_workload *
1357 alloc_workload(struct intel_vgpu *vgpu)
1358 {
1359         struct intel_vgpu_submission *s = &vgpu->submission;
1360         struct intel_vgpu_workload *workload;
1361
1362         workload = kmem_cache_zalloc(s->workloads, GFP_KERNEL);
1363         if (!workload)
1364                 return ERR_PTR(-ENOMEM);
1365
1366         INIT_LIST_HEAD(&workload->list);
1367         INIT_LIST_HEAD(&workload->shadow_bb);
1368
1369         init_waitqueue_head(&workload->shadow_ctx_status_wq);
1370         atomic_set(&workload->shadow_ctx_active, 0);
1371
1372         workload->status = -EINPROGRESS;
1373         workload->vgpu = vgpu;
1374
1375         return workload;
1376 }
1377
1378 #define RING_CTX_OFF(x) \
1379         offsetof(struct execlist_ring_context, x)
1380
1381 static void read_guest_pdps(struct intel_vgpu *vgpu,
1382                 u64 ring_context_gpa, u32 pdp[8])
1383 {
1384         u64 gpa;
1385         int i;
1386
1387         gpa = ring_context_gpa + RING_CTX_OFF(pdps[0].val);
1388
1389         for (i = 0; i < 8; i++)
1390                 intel_gvt_hypervisor_read_gpa(vgpu,
1391                                 gpa + i * 8, &pdp[7 - i], 4);
1392 }
1393
1394 static int prepare_mm(struct intel_vgpu_workload *workload)
1395 {
1396         struct execlist_ctx_descriptor_format *desc = &workload->ctx_desc;
1397         struct intel_vgpu_mm *mm;
1398         struct intel_vgpu *vgpu = workload->vgpu;
1399         enum intel_gvt_gtt_type root_entry_type;
1400         u64 pdps[GVT_RING_CTX_NR_PDPS];
1401
1402         switch (desc->addressing_mode) {
1403         case 1: /* legacy 32-bit */
1404                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L3_ENTRY;
1405                 break;
1406         case 3: /* legacy 64-bit */
1407                 root_entry_type = GTT_TYPE_PPGTT_ROOT_L4_ENTRY;
1408                 break;
1409         default:
1410                 gvt_vgpu_err("Advanced Context mode(SVM) is not supported!\n");
1411                 return -EINVAL;
1412         }
1413
1414         read_guest_pdps(workload->vgpu, workload->ring_context_gpa, (void *)pdps);
1415
1416         mm = intel_vgpu_get_ppgtt_mm(workload->vgpu, root_entry_type, pdps);
1417         if (IS_ERR(mm))
1418                 return PTR_ERR(mm);
1419
1420         workload->shadow_mm = mm;
1421         return 0;
1422 }
1423
1424 #define same_context(a, b) (((a)->context_id == (b)->context_id) && \
1425                 ((a)->lrca == (b)->lrca))
1426
1427 #define get_last_workload(q) \
1428         (list_empty(q) ? NULL : container_of(q->prev, \
1429         struct intel_vgpu_workload, list))
1430 /**
1431  * intel_vgpu_create_workload - create a vGPU workload
1432  * @vgpu: a vGPU
1433  * @ring_id: ring index
1434  * @desc: a guest context descriptor
1435  *
1436  * This function is called when creating a vGPU workload.
1437  *
1438  * Returns:
1439  * struct intel_vgpu_workload * on success, negative error code in
1440  * pointer if failed.
1441  *
1442  */
1443 struct intel_vgpu_workload *
1444 intel_vgpu_create_workload(struct intel_vgpu *vgpu, int ring_id,
1445                            struct execlist_ctx_descriptor_format *desc)
1446 {
1447         struct intel_vgpu_submission *s = &vgpu->submission;
1448         struct list_head *q = workload_q_head(vgpu, ring_id);
1449         struct intel_vgpu_workload *last_workload = get_last_workload(q);
1450         struct intel_vgpu_workload *workload = NULL;
1451         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
1452         u64 ring_context_gpa;
1453         u32 head, tail, start, ctl, ctx_ctl, per_ctx, indirect_ctx;
1454         u32 guest_head;
1455         int ret;
1456
1457         ring_context_gpa = intel_vgpu_gma_to_gpa(vgpu->gtt.ggtt_mm,
1458                         (u32)((desc->lrca + 1) << I915_GTT_PAGE_SHIFT));
1459         if (ring_context_gpa == INTEL_GVT_INVALID_ADDR) {
1460                 gvt_vgpu_err("invalid guest context LRCA: %x\n", desc->lrca);
1461                 return ERR_PTR(-EINVAL);
1462         }
1463
1464         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1465                         RING_CTX_OFF(ring_header.val), &head, 4);
1466
1467         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1468                         RING_CTX_OFF(ring_tail.val), &tail, 4);
1469
1470         guest_head = head;
1471
1472         head &= RB_HEAD_OFF_MASK;
1473         tail &= RB_TAIL_OFF_MASK;
1474
1475         if (last_workload && same_context(&last_workload->ctx_desc, desc)) {
1476                 gvt_dbg_el("ring id %d cur workload == last\n", ring_id);
1477                 gvt_dbg_el("ctx head %x real head %lx\n", head,
1478                                 last_workload->rb_tail);
1479                 /*
1480                  * cannot use guest context head pointer here,
1481                  * as it might not be updated at this time
1482                  */
1483                 head = last_workload->rb_tail;
1484         }
1485
1486         gvt_dbg_el("ring id %d begin a new workload\n", ring_id);
1487
1488         /* record some ring buffer register values for scan and shadow */
1489         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1490                         RING_CTX_OFF(rb_start.val), &start, 4);
1491         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1492                         RING_CTX_OFF(rb_ctrl.val), &ctl, 4);
1493         intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1494                         RING_CTX_OFF(ctx_ctrl.val), &ctx_ctl, 4);
1495
1496         if (!intel_gvt_ggtt_validate_range(vgpu, start,
1497                                 _RING_CTL_BUF_SIZE(ctl))) {
1498                 gvt_vgpu_err("context contain invalid rb at: 0x%x\n", start);
1499                 return ERR_PTR(-EINVAL);
1500         }
1501
1502         workload = alloc_workload(vgpu);
1503         if (IS_ERR(workload))
1504                 return workload;
1505
1506         workload->ring_id = ring_id;
1507         workload->ctx_desc = *desc;
1508         workload->ring_context_gpa = ring_context_gpa;
1509         workload->rb_head = head;
1510         workload->guest_rb_head = guest_head;
1511         workload->rb_tail = tail;
1512         workload->rb_start = start;
1513         workload->rb_ctl = ctl;
1514
1515         if (ring_id == RCS0) {
1516                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1517                         RING_CTX_OFF(bb_per_ctx_ptr.val), &per_ctx, 4);
1518                 intel_gvt_hypervisor_read_gpa(vgpu, ring_context_gpa +
1519                         RING_CTX_OFF(rcs_indirect_ctx.val), &indirect_ctx, 4);
1520
1521                 workload->wa_ctx.indirect_ctx.guest_gma =
1522                         indirect_ctx & INDIRECT_CTX_ADDR_MASK;
1523                 workload->wa_ctx.indirect_ctx.size =
1524                         (indirect_ctx & INDIRECT_CTX_SIZE_MASK) *
1525                         CACHELINE_BYTES;
1526
1527                 if (workload->wa_ctx.indirect_ctx.size != 0) {
1528                         if (!intel_gvt_ggtt_validate_range(vgpu,
1529                                 workload->wa_ctx.indirect_ctx.guest_gma,
1530                                 workload->wa_ctx.indirect_ctx.size)) {
1531                                 gvt_vgpu_err("invalid wa_ctx at: 0x%lx\n",
1532                                     workload->wa_ctx.indirect_ctx.guest_gma);
1533                                 kmem_cache_free(s->workloads, workload);
1534                                 return ERR_PTR(-EINVAL);
1535                         }
1536                 }
1537
1538                 workload->wa_ctx.per_ctx.guest_gma =
1539                         per_ctx & PER_CTX_ADDR_MASK;
1540                 workload->wa_ctx.per_ctx.valid = per_ctx & 1;
1541                 if (workload->wa_ctx.per_ctx.valid) {
1542                         if (!intel_gvt_ggtt_validate_range(vgpu,
1543                                 workload->wa_ctx.per_ctx.guest_gma,
1544                                 CACHELINE_BYTES)) {
1545                                 gvt_vgpu_err("invalid per_ctx at: 0x%lx\n",
1546                                         workload->wa_ctx.per_ctx.guest_gma);
1547                                 kmem_cache_free(s->workloads, workload);
1548                                 return ERR_PTR(-EINVAL);
1549                         }
1550                 }
1551         }
1552
1553         gvt_dbg_el("workload %p ring id %d head %x tail %x start %x ctl %x\n",
1554                         workload, ring_id, head, tail, start, ctl);
1555
1556         ret = prepare_mm(workload);
1557         if (ret) {
1558                 kmem_cache_free(s->workloads, workload);
1559                 return ERR_PTR(ret);
1560         }
1561
1562         /* Only scan and shadow the first workload in the queue
1563          * as there is only one pre-allocated buf-obj for shadow.
1564          */
1565         if (list_empty(workload_q_head(vgpu, ring_id))) {
1566                 intel_runtime_pm_get(&dev_priv->runtime_pm);
1567                 mutex_lock(&dev_priv->drm.struct_mutex);
1568                 ret = intel_gvt_scan_and_shadow_workload(workload);
1569                 mutex_unlock(&dev_priv->drm.struct_mutex);
1570                 intel_runtime_pm_put_unchecked(&dev_priv->runtime_pm);
1571         }
1572
1573         if (ret) {
1574                 if (vgpu_is_vm_unhealthy(ret))
1575                         enter_failsafe_mode(vgpu, GVT_FAILSAFE_GUEST_ERR);
1576                 intel_vgpu_destroy_workload(workload);
1577                 return ERR_PTR(ret);
1578         }
1579
1580         return workload;
1581 }
1582
1583 /**
1584  * intel_vgpu_queue_workload - Qeue a vGPU workload
1585  * @workload: the workload to queue in
1586  */
1587 void intel_vgpu_queue_workload(struct intel_vgpu_workload *workload)
1588 {
1589         list_add_tail(&workload->list,
1590                 workload_q_head(workload->vgpu, workload->ring_id));
1591         intel_gvt_kick_schedule(workload->vgpu->gvt);
1592         wake_up(&workload->vgpu->gvt->scheduler.waitq[workload->ring_id]);
1593 }