Merge tag 'xfs-4.17-merge-4' of git://git.kernel.org/pub/scm/fs/xfs/xfs-linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59                                 addr, size);
60                 return false;
61         }
62         return true;
63 }
64
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69                  "invalid guest gmadr %llx\n", g_addr))
70                 return -EACCES;
71
72         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74                           + (g_addr - vgpu_aperture_offset(vgpu));
75         else
76                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77                           + (g_addr - vgpu_hidden_offset(vgpu));
78         return 0;
79 }
80
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85                  "invalid host gmadr %llx\n", h_addr))
86                 return -EACCES;
87
88         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91         else
92                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94         return 0;
95 }
96
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98                              unsigned long *h_index)
99 {
100         u64 h_addr;
101         int ret;
102
103         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104                                        &h_addr);
105         if (ret)
106                 return ret;
107
108         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109         return 0;
110 }
111
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113                              unsigned long *g_index)
114 {
115         u64 g_addr;
116         int ret;
117
118         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119                                        &g_addr);
120         if (ret)
121                 return ret;
122
123         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124         return 0;
125 }
126
127 #define gtt_type_is_entry(type) \
128         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131
132 #define gtt_type_is_pt(type) \
133         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134
135 #define gtt_type_is_pte_pt(type) \
136         (type == GTT_TYPE_PPGTT_PTE_PT)
137
138 #define gtt_type_is_root_pointer(type) \
139         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140
141 #define gtt_init_entry(e, t, p, v) do { \
142         (e)->type = t; \
143         (e)->pdev = p; \
144         memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162
163 struct gtt_type_table_entry {
164         int entry_type;
165         int pt_type;
166         int next_pt_type;
167         int pse_entry_type;
168 };
169
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171         [type] = { \
172                 .entry_type = e_type, \
173                 .pt_type = cpt_type, \
174                 .next_pt_type = npt_type, \
175                 .pse_entry_type = pse_type, \
176         }
177
178 static struct gtt_type_table_entry gtt_type_table[] = {
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181                         GTT_TYPE_INVALID,
182                         GTT_TYPE_PPGTT_PML4_PT,
183                         GTT_TYPE_INVALID),
184         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185                         GTT_TYPE_PPGTT_PML4_ENTRY,
186                         GTT_TYPE_PPGTT_PML4_PT,
187                         GTT_TYPE_PPGTT_PDP_PT,
188                         GTT_TYPE_INVALID),
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190                         GTT_TYPE_PPGTT_PML4_ENTRY,
191                         GTT_TYPE_PPGTT_PML4_PT,
192                         GTT_TYPE_PPGTT_PDP_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195                         GTT_TYPE_PPGTT_PDP_ENTRY,
196                         GTT_TYPE_PPGTT_PDP_PT,
197                         GTT_TYPE_PPGTT_PDE_PT,
198                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201                         GTT_TYPE_INVALID,
202                         GTT_TYPE_PPGTT_PDE_PT,
203                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210                         GTT_TYPE_PPGTT_PDE_ENTRY,
211                         GTT_TYPE_PPGTT_PDE_PT,
212                         GTT_TYPE_PPGTT_PTE_PT,
213                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215                         GTT_TYPE_PPGTT_PDE_ENTRY,
216                         GTT_TYPE_PPGTT_PDE_PT,
217                         GTT_TYPE_PPGTT_PTE_PT,
218                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
220                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
221                         GTT_TYPE_PPGTT_PTE_PT,
222                         GTT_TYPE_INVALID,
223                         GTT_TYPE_INVALID),
224         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
225                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226                         GTT_TYPE_PPGTT_PTE_PT,
227                         GTT_TYPE_INVALID,
228                         GTT_TYPE_INVALID),
229         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
230                         GTT_TYPE_PPGTT_PDE_ENTRY,
231                         GTT_TYPE_PPGTT_PDE_PT,
232                         GTT_TYPE_INVALID,
233                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
234         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
235                         GTT_TYPE_PPGTT_PDP_ENTRY,
236                         GTT_TYPE_PPGTT_PDP_PT,
237                         GTT_TYPE_INVALID,
238                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
239         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
240                         GTT_TYPE_GGTT_PTE,
241                         GTT_TYPE_INVALID,
242                         GTT_TYPE_INVALID,
243                         GTT_TYPE_INVALID),
244 };
245
246 static inline int get_next_pt_type(int type)
247 {
248         return gtt_type_table[type].next_pt_type;
249 }
250
251 static inline int get_pt_type(int type)
252 {
253         return gtt_type_table[type].pt_type;
254 }
255
256 static inline int get_entry_type(int type)
257 {
258         return gtt_type_table[type].entry_type;
259 }
260
261 static inline int get_pse_type(int type)
262 {
263         return gtt_type_table[type].pse_entry_type;
264 }
265
266 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
267 {
268         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
269
270         return readq(addr);
271 }
272
273 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
274 {
275         mmio_hw_access_pre(dev_priv);
276         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
277         mmio_hw_access_post(dev_priv);
278 }
279
280 static void write_pte64(struct drm_i915_private *dev_priv,
281                 unsigned long index, u64 pte)
282 {
283         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
284
285         writeq(pte, addr);
286 }
287
288 static inline int gtt_get_entry64(void *pt,
289                 struct intel_gvt_gtt_entry *e,
290                 unsigned long index, bool hypervisor_access, unsigned long gpa,
291                 struct intel_vgpu *vgpu)
292 {
293         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
294         int ret;
295
296         if (WARN_ON(info->gtt_entry_size != 8))
297                 return -EINVAL;
298
299         if (hypervisor_access) {
300                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
301                                 (index << info->gtt_entry_size_shift),
302                                 &e->val64, 8);
303                 if (WARN_ON(ret))
304                         return ret;
305         } else if (!pt) {
306                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
307         } else {
308                 e->val64 = *((u64 *)pt + index);
309         }
310         return 0;
311 }
312
313 static inline int gtt_set_entry64(void *pt,
314                 struct intel_gvt_gtt_entry *e,
315                 unsigned long index, bool hypervisor_access, unsigned long gpa,
316                 struct intel_vgpu *vgpu)
317 {
318         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
319         int ret;
320
321         if (WARN_ON(info->gtt_entry_size != 8))
322                 return -EINVAL;
323
324         if (hypervisor_access) {
325                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
326                                 (index << info->gtt_entry_size_shift),
327                                 &e->val64, 8);
328                 if (WARN_ON(ret))
329                         return ret;
330         } else if (!pt) {
331                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
332         } else {
333                 *((u64 *)pt + index) = e->val64;
334         }
335         return 0;
336 }
337
338 #define GTT_HAW 46
339
340 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
341 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
342 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
343
344 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
345 {
346         unsigned long pfn;
347
348         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
349                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
350         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
351                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
352         else
353                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
354         return pfn;
355 }
356
357 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
358 {
359         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
360                 e->val64 &= ~ADDR_1G_MASK;
361                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
362         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
363                 e->val64 &= ~ADDR_2M_MASK;
364                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
365         } else {
366                 e->val64 &= ~ADDR_4K_MASK;
367                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
368         }
369
370         e->val64 |= (pfn << PAGE_SHIFT);
371 }
372
373 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
374 {
375         /* Entry doesn't have PSE bit. */
376         if (get_pse_type(e->type) == GTT_TYPE_INVALID)
377                 return false;
378
379         e->type = get_entry_type(e->type);
380         if (!(e->val64 & _PAGE_PSE))
381                 return false;
382
383         e->type = get_pse_type(e->type);
384         return true;
385 }
386
387 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
388 {
389         /*
390          * i915 writes PDP root pointer registers without present bit,
391          * it also works, so we need to treat root pointer entry
392          * specifically.
393          */
394         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
395                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
396                 return (e->val64 != 0);
397         else
398                 return (e->val64 & _PAGE_PRESENT);
399 }
400
401 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
402 {
403         e->val64 &= ~_PAGE_PRESENT;
404 }
405
406 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
407 {
408         e->val64 |= _PAGE_PRESENT;
409 }
410
411 /*
412  * Per-platform GMA routines.
413  */
414 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
415 {
416         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
417
418         trace_gma_index(__func__, gma, x);
419         return x;
420 }
421
422 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
423 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
424 { \
425         unsigned long x = (exp); \
426         trace_gma_index(__func__, gma, x); \
427         return x; \
428 }
429
430 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
431 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
432 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
433 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
434 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
435
436 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
437         .get_entry = gtt_get_entry64,
438         .set_entry = gtt_set_entry64,
439         .clear_present = gtt_entry_clear_present,
440         .set_present = gtt_entry_set_present,
441         .test_present = gen8_gtt_test_present,
442         .test_pse = gen8_gtt_test_pse,
443         .get_pfn = gen8_gtt_get_pfn,
444         .set_pfn = gen8_gtt_set_pfn,
445 };
446
447 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
448         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
449         .gma_to_pte_index = gen8_gma_to_pte_index,
450         .gma_to_pde_index = gen8_gma_to_pde_index,
451         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
452         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
453         .gma_to_pml4_index = gen8_gma_to_pml4_index,
454 };
455
456 /*
457  * MM helpers.
458  */
459 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
460                 struct intel_gvt_gtt_entry *entry, unsigned long index,
461                 bool guest)
462 {
463         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
464
465         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
466
467         entry->type = mm->ppgtt_mm.root_entry_type;
468         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
469                            mm->ppgtt_mm.shadow_pdps,
470                            entry, index, false, 0, mm->vgpu);
471
472         pte_ops->test_pse(entry);
473 }
474
475 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
476                 struct intel_gvt_gtt_entry *entry, unsigned long index)
477 {
478         _ppgtt_get_root_entry(mm, entry, index, true);
479 }
480
481 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
482                 struct intel_gvt_gtt_entry *entry, unsigned long index)
483 {
484         _ppgtt_get_root_entry(mm, entry, index, false);
485 }
486
487 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
488                 struct intel_gvt_gtt_entry *entry, unsigned long index,
489                 bool guest)
490 {
491         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
492
493         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
494                            mm->ppgtt_mm.shadow_pdps,
495                            entry, index, false, 0, mm->vgpu);
496 }
497
498 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
499                 struct intel_gvt_gtt_entry *entry, unsigned long index)
500 {
501         _ppgtt_set_root_entry(mm, entry, index, true);
502 }
503
504 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
505                 struct intel_gvt_gtt_entry *entry, unsigned long index)
506 {
507         _ppgtt_set_root_entry(mm, entry, index, false);
508 }
509
510 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
511                 struct intel_gvt_gtt_entry *entry, unsigned long index)
512 {
513         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
514
515         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
516
517         entry->type = GTT_TYPE_GGTT_PTE;
518         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
519                            false, 0, mm->vgpu);
520 }
521
522 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
523                 struct intel_gvt_gtt_entry *entry, unsigned long index)
524 {
525         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
526
527         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
528
529         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
530                            false, 0, mm->vgpu);
531 }
532
533 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
534                 struct intel_gvt_gtt_entry *entry, unsigned long index)
535 {
536         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
537
538         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
539
540         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
541 }
542
543 /*
544  * PPGTT shadow page table helpers.
545  */
546 static inline int ppgtt_spt_get_entry(
547                 struct intel_vgpu_ppgtt_spt *spt,
548                 void *page_table, int type,
549                 struct intel_gvt_gtt_entry *e, unsigned long index,
550                 bool guest)
551 {
552         struct intel_gvt *gvt = spt->vgpu->gvt;
553         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
554         int ret;
555
556         e->type = get_entry_type(type);
557
558         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
559                 return -EINVAL;
560
561         ret = ops->get_entry(page_table, e, index, guest,
562                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
563                         spt->vgpu);
564         if (ret)
565                 return ret;
566
567         ops->test_pse(e);
568
569         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
570                     type, e->type, index, e->val64);
571         return 0;
572 }
573
574 static inline int ppgtt_spt_set_entry(
575                 struct intel_vgpu_ppgtt_spt *spt,
576                 void *page_table, int type,
577                 struct intel_gvt_gtt_entry *e, unsigned long index,
578                 bool guest)
579 {
580         struct intel_gvt *gvt = spt->vgpu->gvt;
581         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
582
583         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
584                 return -EINVAL;
585
586         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
587                     type, e->type, index, e->val64);
588
589         return ops->set_entry(page_table, e, index, guest,
590                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
591                         spt->vgpu);
592 }
593
594 #define ppgtt_get_guest_entry(spt, e, index) \
595         ppgtt_spt_get_entry(spt, NULL, \
596                 spt->guest_page.type, e, index, true)
597
598 #define ppgtt_set_guest_entry(spt, e, index) \
599         ppgtt_spt_set_entry(spt, NULL, \
600                 spt->guest_page.type, e, index, true)
601
602 #define ppgtt_get_shadow_entry(spt, e, index) \
603         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
604                 spt->shadow_page.type, e, index, false)
605
606 #define ppgtt_set_shadow_entry(spt, e, index) \
607         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
608                 spt->shadow_page.type, e, index, false)
609
610 static void *alloc_spt(gfp_t gfp_mask)
611 {
612         struct intel_vgpu_ppgtt_spt *spt;
613
614         spt = kzalloc(sizeof(*spt), gfp_mask);
615         if (!spt)
616                 return NULL;
617
618         spt->shadow_page.page = alloc_page(gfp_mask);
619         if (!spt->shadow_page.page) {
620                 kfree(spt);
621                 return NULL;
622         }
623         return spt;
624 }
625
626 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
627 {
628         __free_page(spt->shadow_page.page);
629         kfree(spt);
630 }
631
632 static int detach_oos_page(struct intel_vgpu *vgpu,
633                 struct intel_vgpu_oos_page *oos_page);
634
635 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
636 {
637         struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
638
639         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
640
641         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
642                        PCI_DMA_BIDIRECTIONAL);
643
644         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
645
646         if (spt->guest_page.oos_page)
647                 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
648
649         intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
650
651         list_del_init(&spt->post_shadow_list);
652         free_spt(spt);
653 }
654
655 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
656 {
657         struct intel_vgpu_ppgtt_spt *spt;
658         struct radix_tree_iter iter;
659         void **slot;
660
661         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
662                 spt = radix_tree_deref_slot(slot);
663                 ppgtt_free_spt(spt);
664         }
665 }
666
667 static int ppgtt_handle_guest_write_page_table_bytes(
668                 struct intel_vgpu_ppgtt_spt *spt,
669                 u64 pa, void *p_data, int bytes);
670
671 static int ppgtt_write_protection_handler(
672                 struct intel_vgpu_page_track *page_track,
673                 u64 gpa, void *data, int bytes)
674 {
675         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
676
677         int ret;
678
679         if (bytes != 4 && bytes != 8)
680                 return -EINVAL;
681
682         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
683         if (ret)
684                 return ret;
685         return ret;
686 }
687
688 /* Find a spt by guest gfn. */
689 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
690                 struct intel_vgpu *vgpu, unsigned long gfn)
691 {
692         struct intel_vgpu_page_track *track;
693
694         track = intel_vgpu_find_page_track(vgpu, gfn);
695         if (track && track->handler == ppgtt_write_protection_handler)
696                 return track->priv_data;
697
698         return NULL;
699 }
700
701 /* Find the spt by shadow page mfn. */
702 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
703                 struct intel_vgpu *vgpu, unsigned long mfn)
704 {
705         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
706 }
707
708 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
709
710 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
711                 struct intel_vgpu *vgpu, int type, unsigned long gfn)
712 {
713         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
714         struct intel_vgpu_ppgtt_spt *spt = NULL;
715         dma_addr_t daddr;
716         int ret;
717
718 retry:
719         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
720         if (!spt) {
721                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
722                         goto retry;
723
724                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
725                 return ERR_PTR(-ENOMEM);
726         }
727
728         spt->vgpu = vgpu;
729         atomic_set(&spt->refcount, 1);
730         INIT_LIST_HEAD(&spt->post_shadow_list);
731
732         /*
733          * Init shadow_page.
734          */
735         spt->shadow_page.type = type;
736         daddr = dma_map_page(kdev, spt->shadow_page.page,
737                              0, 4096, PCI_DMA_BIDIRECTIONAL);
738         if (dma_mapping_error(kdev, daddr)) {
739                 gvt_vgpu_err("fail to map dma addr\n");
740                 ret = -EINVAL;
741                 goto err_free_spt;
742         }
743         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
744         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
745
746         /*
747          * Init guest_page.
748          */
749         spt->guest_page.type = type;
750         spt->guest_page.gfn = gfn;
751
752         ret = intel_vgpu_register_page_track(vgpu, spt->guest_page.gfn,
753                                         ppgtt_write_protection_handler, spt);
754         if (ret)
755                 goto err_unmap_dma;
756
757         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
758         if (ret)
759                 goto err_unreg_page_track;
760
761         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
762         return spt;
763
764 err_unreg_page_track:
765         intel_vgpu_unregister_page_track(vgpu, spt->guest_page.gfn);
766 err_unmap_dma:
767         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
768 err_free_spt:
769         free_spt(spt);
770         return ERR_PTR(ret);
771 }
772
773 #define pt_entry_size_shift(spt) \
774         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
775
776 #define pt_entries(spt) \
777         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
778
779 #define for_each_present_guest_entry(spt, e, i) \
780         for (i = 0; i < pt_entries(spt); i++) \
781                 if (!ppgtt_get_guest_entry(spt, e, i) && \
782                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
783
784 #define for_each_present_shadow_entry(spt, e, i) \
785         for (i = 0; i < pt_entries(spt); i++) \
786                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
787                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
788
789 static void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
790 {
791         int v = atomic_read(&spt->refcount);
792
793         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
794
795         atomic_inc(&spt->refcount);
796 }
797
798 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
799
800 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
801                 struct intel_gvt_gtt_entry *e)
802 {
803         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
804         struct intel_vgpu_ppgtt_spt *s;
805         intel_gvt_gtt_type_t cur_pt_type;
806
807         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
808
809         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
810                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
811                 cur_pt_type = get_next_pt_type(e->type) + 1;
812                 if (ops->get_pfn(e) ==
813                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
814                         return 0;
815         }
816         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
817         if (!s) {
818                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
819                                 ops->get_pfn(e));
820                 return -ENXIO;
821         }
822         return ppgtt_invalidate_spt(s);
823 }
824
825 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
826                 struct intel_gvt_gtt_entry *entry)
827 {
828         struct intel_vgpu *vgpu = spt->vgpu;
829         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
830         unsigned long pfn;
831         int type;
832
833         pfn = ops->get_pfn(entry);
834         type = spt->shadow_page.type;
835
836         if (pfn == vgpu->gtt.scratch_pt[type].page_mfn)
837                 return;
838
839         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
840 }
841
842 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
843 {
844         struct intel_vgpu *vgpu = spt->vgpu;
845         struct intel_gvt_gtt_entry e;
846         unsigned long index;
847         int ret;
848         int v = atomic_read(&spt->refcount);
849
850         trace_spt_change(spt->vgpu->id, "die", spt,
851                         spt->guest_page.gfn, spt->shadow_page.type);
852
853         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
854
855         if (atomic_dec_return(&spt->refcount) > 0)
856                 return 0;
857
858         for_each_present_shadow_entry(spt, &e, index) {
859                 switch (e.type) {
860                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
861                         gvt_vdbg_mm("invalidate 4K entry\n");
862                         ppgtt_invalidate_pte(spt, &e);
863                         break;
864                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
865                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
866                         WARN(1, "GVT doesn't support 2M/1GB page\n");
867                         continue;
868                 case GTT_TYPE_PPGTT_PML4_ENTRY:
869                 case GTT_TYPE_PPGTT_PDP_ENTRY:
870                 case GTT_TYPE_PPGTT_PDE_ENTRY:
871                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
872                         ret = ppgtt_invalidate_spt_by_shadow_entry(
873                                         spt->vgpu, &e);
874                         if (ret)
875                                 goto fail;
876                         break;
877                 default:
878                         GEM_BUG_ON(1);
879                 }
880         }
881
882         trace_spt_change(spt->vgpu->id, "release", spt,
883                          spt->guest_page.gfn, spt->shadow_page.type);
884         ppgtt_free_spt(spt);
885         return 0;
886 fail:
887         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
888                         spt, e.val64, e.type);
889         return ret;
890 }
891
892 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
893
894 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
895                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
896 {
897         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
898         struct intel_vgpu_ppgtt_spt *spt = NULL;
899         int ret;
900
901         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
902
903         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
904         if (spt)
905                 ppgtt_get_spt(spt);
906         else {
907                 int type = get_next_pt_type(we->type);
908
909                 spt = ppgtt_alloc_spt(vgpu, type, ops->get_pfn(we));
910                 if (IS_ERR(spt)) {
911                         ret = PTR_ERR(spt);
912                         goto fail;
913                 }
914
915                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
916                 if (ret)
917                         goto fail;
918
919                 ret = ppgtt_populate_spt(spt);
920                 if (ret)
921                         goto fail;
922
923                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
924                                  spt->shadow_page.type);
925         }
926         return spt;
927 fail:
928         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
929                      spt, we->val64, we->type);
930         return ERR_PTR(ret);
931 }
932
933 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
934                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
935 {
936         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
937
938         se->type = ge->type;
939         se->val64 = ge->val64;
940
941         ops->set_pfn(se, s->shadow_page.mfn);
942 }
943
944 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
945         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
946         struct intel_gvt_gtt_entry *ge)
947 {
948         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
949         struct intel_gvt_gtt_entry se = *ge;
950         unsigned long gfn;
951         dma_addr_t dma_addr;
952         int ret;
953
954         if (!pte_ops->test_present(ge))
955                 return 0;
956
957         gfn = pte_ops->get_pfn(ge);
958
959         switch (ge->type) {
960         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
961                 gvt_vdbg_mm("shadow 4K gtt entry\n");
962                 break;
963         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
964         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
965                 gvt_vgpu_err("GVT doesn't support 2M/1GB entry\n");
966                 return -EINVAL;
967         default:
968                 GEM_BUG_ON(1);
969         };
970
971         /* direct shadow */
972         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, &dma_addr);
973         if (ret)
974                 return -ENXIO;
975
976         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
977         ppgtt_set_shadow_entry(spt, &se, index);
978         return 0;
979 }
980
981 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
982 {
983         struct intel_vgpu *vgpu = spt->vgpu;
984         struct intel_gvt *gvt = vgpu->gvt;
985         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
986         struct intel_vgpu_ppgtt_spt *s;
987         struct intel_gvt_gtt_entry se, ge;
988         unsigned long gfn, i;
989         int ret;
990
991         trace_spt_change(spt->vgpu->id, "born", spt,
992                          spt->guest_page.gfn, spt->shadow_page.type);
993
994         for_each_present_guest_entry(spt, &ge, i) {
995                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
996                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
997                         if (IS_ERR(s)) {
998                                 ret = PTR_ERR(s);
999                                 goto fail;
1000                         }
1001                         ppgtt_get_shadow_entry(spt, &se, i);
1002                         ppgtt_generate_shadow_entry(&se, s, &ge);
1003                         ppgtt_set_shadow_entry(spt, &se, i);
1004                 } else {
1005                         gfn = ops->get_pfn(&ge);
1006                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1007                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1008                                 ppgtt_set_shadow_entry(spt, &se, i);
1009                                 continue;
1010                         }
1011
1012                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1013                         if (ret)
1014                                 goto fail;
1015                 }
1016         }
1017         return 0;
1018 fail:
1019         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1020                         spt, ge.val64, ge.type);
1021         return ret;
1022 }
1023
1024 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1025                 struct intel_gvt_gtt_entry *se, unsigned long index)
1026 {
1027         struct intel_vgpu *vgpu = spt->vgpu;
1028         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1029         int ret;
1030
1031         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1032                                spt->shadow_page.type, se->val64, index);
1033
1034         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1035                     se->type, index, se->val64);
1036
1037         if (!ops->test_present(se))
1038                 return 0;
1039
1040         if (ops->get_pfn(se) ==
1041             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1042                 return 0;
1043
1044         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1045                 struct intel_vgpu_ppgtt_spt *s =
1046                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1047                 if (!s) {
1048                         gvt_vgpu_err("fail to find guest page\n");
1049                         ret = -ENXIO;
1050                         goto fail;
1051                 }
1052                 ret = ppgtt_invalidate_spt(s);
1053                 if (ret)
1054                         goto fail;
1055         } else
1056                 ppgtt_invalidate_pte(spt, se);
1057
1058         return 0;
1059 fail:
1060         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1061                         spt, se->val64, se->type);
1062         return ret;
1063 }
1064
1065 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1066                 struct intel_gvt_gtt_entry *we, unsigned long index)
1067 {
1068         struct intel_vgpu *vgpu = spt->vgpu;
1069         struct intel_gvt_gtt_entry m;
1070         struct intel_vgpu_ppgtt_spt *s;
1071         int ret;
1072
1073         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1074                                we->val64, index);
1075
1076         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1077                     we->type, index, we->val64);
1078
1079         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1080                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1081                 if (IS_ERR(s)) {
1082                         ret = PTR_ERR(s);
1083                         goto fail;
1084                 }
1085                 ppgtt_get_shadow_entry(spt, &m, index);
1086                 ppgtt_generate_shadow_entry(&m, s, we);
1087                 ppgtt_set_shadow_entry(spt, &m, index);
1088         } else {
1089                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1090                 if (ret)
1091                         goto fail;
1092         }
1093         return 0;
1094 fail:
1095         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1096                 spt, we->val64, we->type);
1097         return ret;
1098 }
1099
1100 static int sync_oos_page(struct intel_vgpu *vgpu,
1101                 struct intel_vgpu_oos_page *oos_page)
1102 {
1103         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1104         struct intel_gvt *gvt = vgpu->gvt;
1105         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1106         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1107         struct intel_gvt_gtt_entry old, new;
1108         int index;
1109         int ret;
1110
1111         trace_oos_change(vgpu->id, "sync", oos_page->id,
1112                          spt, spt->guest_page.type);
1113
1114         old.type = new.type = get_entry_type(spt->guest_page.type);
1115         old.val64 = new.val64 = 0;
1116
1117         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1118                                 info->gtt_entry_size_shift); index++) {
1119                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1120                 ops->get_entry(NULL, &new, index, true,
1121                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1122
1123                 if (old.val64 == new.val64
1124                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1125                         continue;
1126
1127                 trace_oos_sync(vgpu->id, oos_page->id,
1128                                 spt, spt->guest_page.type,
1129                                 new.val64, index);
1130
1131                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1132                 if (ret)
1133                         return ret;
1134
1135                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1136         }
1137
1138         spt->guest_page.write_cnt = 0;
1139         list_del_init(&spt->post_shadow_list);
1140         return 0;
1141 }
1142
1143 static int detach_oos_page(struct intel_vgpu *vgpu,
1144                 struct intel_vgpu_oos_page *oos_page)
1145 {
1146         struct intel_gvt *gvt = vgpu->gvt;
1147         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1148
1149         trace_oos_change(vgpu->id, "detach", oos_page->id,
1150                          spt, spt->guest_page.type);
1151
1152         spt->guest_page.write_cnt = 0;
1153         spt->guest_page.oos_page = NULL;
1154         oos_page->spt = NULL;
1155
1156         list_del_init(&oos_page->vm_list);
1157         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1158
1159         return 0;
1160 }
1161
1162 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1163                 struct intel_vgpu_ppgtt_spt *spt)
1164 {
1165         struct intel_gvt *gvt = spt->vgpu->gvt;
1166         int ret;
1167
1168         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1169                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1170                         oos_page->mem, I915_GTT_PAGE_SIZE);
1171         if (ret)
1172                 return ret;
1173
1174         oos_page->spt = spt;
1175         spt->guest_page.oos_page = oos_page;
1176
1177         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1178
1179         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1180                          spt, spt->guest_page.type);
1181         return 0;
1182 }
1183
1184 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1185 {
1186         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1187         int ret;
1188
1189         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1190         if (ret)
1191                 return ret;
1192
1193         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1194                          spt, spt->guest_page.type);
1195
1196         list_del_init(&oos_page->vm_list);
1197         return sync_oos_page(spt->vgpu, oos_page);
1198 }
1199
1200 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1201 {
1202         struct intel_gvt *gvt = spt->vgpu->gvt;
1203         struct intel_gvt_gtt *gtt = &gvt->gtt;
1204         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1205         int ret;
1206
1207         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1208
1209         if (list_empty(&gtt->oos_page_free_list_head)) {
1210                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1211                         struct intel_vgpu_oos_page, list);
1212                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1213                 if (ret)
1214                         return ret;
1215                 ret = detach_oos_page(spt->vgpu, oos_page);
1216                 if (ret)
1217                         return ret;
1218         } else
1219                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1220                         struct intel_vgpu_oos_page, list);
1221         return attach_oos_page(oos_page, spt);
1222 }
1223
1224 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1225 {
1226         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1227
1228         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1229                 return -EINVAL;
1230
1231         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1232                          spt, spt->guest_page.type);
1233
1234         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1235         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1236 }
1237
1238 /**
1239  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1240  * @vgpu: a vGPU
1241  *
1242  * This function is called before submitting a guest workload to host,
1243  * to sync all the out-of-synced shadow for vGPU
1244  *
1245  * Returns:
1246  * Zero on success, negative error code if failed.
1247  */
1248 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1249 {
1250         struct list_head *pos, *n;
1251         struct intel_vgpu_oos_page *oos_page;
1252         int ret;
1253
1254         if (!enable_out_of_sync)
1255                 return 0;
1256
1257         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1258                 oos_page = container_of(pos,
1259                                 struct intel_vgpu_oos_page, vm_list);
1260                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1261                 if (ret)
1262                         return ret;
1263         }
1264         return 0;
1265 }
1266
1267 /*
1268  * The heart of PPGTT shadow page table.
1269  */
1270 static int ppgtt_handle_guest_write_page_table(
1271                 struct intel_vgpu_ppgtt_spt *spt,
1272                 struct intel_gvt_gtt_entry *we, unsigned long index)
1273 {
1274         struct intel_vgpu *vgpu = spt->vgpu;
1275         int type = spt->shadow_page.type;
1276         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1277         struct intel_gvt_gtt_entry old_se;
1278         int new_present;
1279         int ret;
1280
1281         new_present = ops->test_present(we);
1282
1283         /*
1284          * Adding the new entry first and then removing the old one, that can
1285          * guarantee the ppgtt table is validated during the window between
1286          * adding and removal.
1287          */
1288         ppgtt_get_shadow_entry(spt, &old_se, index);
1289
1290         if (new_present) {
1291                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1292                 if (ret)
1293                         goto fail;
1294         }
1295
1296         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1297         if (ret)
1298                 goto fail;
1299
1300         if (!new_present) {
1301                 ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn);
1302                 ppgtt_set_shadow_entry(spt, &old_se, index);
1303         }
1304
1305         return 0;
1306 fail:
1307         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1308                         spt, we->val64, we->type);
1309         return ret;
1310 }
1311
1312
1313
1314 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1315 {
1316         return enable_out_of_sync
1317                 && gtt_type_is_pte_pt(spt->guest_page.type)
1318                 && spt->guest_page.write_cnt >= 2;
1319 }
1320
1321 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1322                 unsigned long index)
1323 {
1324         set_bit(index, spt->post_shadow_bitmap);
1325         if (!list_empty(&spt->post_shadow_list))
1326                 return;
1327
1328         list_add_tail(&spt->post_shadow_list,
1329                         &spt->vgpu->gtt.post_shadow_list_head);
1330 }
1331
1332 /**
1333  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1334  * @vgpu: a vGPU
1335  *
1336  * This function is called before submitting a guest workload to host,
1337  * to flush all the post shadows for a vGPU.
1338  *
1339  * Returns:
1340  * Zero on success, negative error code if failed.
1341  */
1342 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1343 {
1344         struct list_head *pos, *n;
1345         struct intel_vgpu_ppgtt_spt *spt;
1346         struct intel_gvt_gtt_entry ge;
1347         unsigned long index;
1348         int ret;
1349
1350         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1351                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1352                                 post_shadow_list);
1353
1354                 for_each_set_bit(index, spt->post_shadow_bitmap,
1355                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1356                         ppgtt_get_guest_entry(spt, &ge, index);
1357
1358                         ret = ppgtt_handle_guest_write_page_table(spt,
1359                                                         &ge, index);
1360                         if (ret)
1361                                 return ret;
1362                         clear_bit(index, spt->post_shadow_bitmap);
1363                 }
1364                 list_del_init(&spt->post_shadow_list);
1365         }
1366         return 0;
1367 }
1368
1369 static int ppgtt_handle_guest_write_page_table_bytes(
1370                 struct intel_vgpu_ppgtt_spt *spt,
1371                 u64 pa, void *p_data, int bytes)
1372 {
1373         struct intel_vgpu *vgpu = spt->vgpu;
1374         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1375         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1376         struct intel_gvt_gtt_entry we, se;
1377         unsigned long index;
1378         int ret;
1379
1380         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1381
1382         ppgtt_get_guest_entry(spt, &we, index);
1383
1384         ops->test_pse(&we);
1385
1386         if (bytes == info->gtt_entry_size) {
1387                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1388                 if (ret)
1389                         return ret;
1390         } else {
1391                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1392                         int type = spt->shadow_page.type;
1393
1394                         ppgtt_get_shadow_entry(spt, &se, index);
1395                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1396                         if (ret)
1397                                 return ret;
1398                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1399                         ppgtt_set_shadow_entry(spt, &se, index);
1400                 }
1401                 ppgtt_set_post_shadow(spt, index);
1402         }
1403
1404         if (!enable_out_of_sync)
1405                 return 0;
1406
1407         spt->guest_page.write_cnt++;
1408
1409         if (spt->guest_page.oos_page)
1410                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1411                                 false, 0, vgpu);
1412
1413         if (can_do_out_of_sync(spt)) {
1414                 if (!spt->guest_page.oos_page)
1415                         ppgtt_allocate_oos_page(spt);
1416
1417                 ret = ppgtt_set_guest_page_oos(spt);
1418                 if (ret < 0)
1419                         return ret;
1420         }
1421         return 0;
1422 }
1423
1424 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1425 {
1426         struct intel_vgpu *vgpu = mm->vgpu;
1427         struct intel_gvt *gvt = vgpu->gvt;
1428         struct intel_gvt_gtt *gtt = &gvt->gtt;
1429         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1430         struct intel_gvt_gtt_entry se;
1431         int index;
1432
1433         if (!mm->ppgtt_mm.shadowed)
1434                 return;
1435
1436         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1437                 ppgtt_get_shadow_root_entry(mm, &se, index);
1438
1439                 if (!ops->test_present(&se))
1440                         continue;
1441
1442                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1443                 se.val64 = 0;
1444                 ppgtt_set_shadow_root_entry(mm, &se, index);
1445
1446                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1447                                        NULL, se.type, se.val64, index);
1448         }
1449
1450         mm->ppgtt_mm.shadowed = false;
1451 }
1452
1453
1454 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1455 {
1456         struct intel_vgpu *vgpu = mm->vgpu;
1457         struct intel_gvt *gvt = vgpu->gvt;
1458         struct intel_gvt_gtt *gtt = &gvt->gtt;
1459         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1460         struct intel_vgpu_ppgtt_spt *spt;
1461         struct intel_gvt_gtt_entry ge, se;
1462         int index, ret;
1463
1464         if (mm->ppgtt_mm.shadowed)
1465                 return 0;
1466
1467         mm->ppgtt_mm.shadowed = true;
1468
1469         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1470                 ppgtt_get_guest_root_entry(mm, &ge, index);
1471
1472                 if (!ops->test_present(&ge))
1473                         continue;
1474
1475                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1476                                        ge.type, ge.val64, index);
1477
1478                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1479                 if (IS_ERR(spt)) {
1480                         gvt_vgpu_err("fail to populate guest root pointer\n");
1481                         ret = PTR_ERR(spt);
1482                         goto fail;
1483                 }
1484                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1485                 ppgtt_set_shadow_root_entry(mm, &se, index);
1486
1487                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1488                                        NULL, se.type, se.val64, index);
1489         }
1490
1491         return 0;
1492 fail:
1493         invalidate_ppgtt_mm(mm);
1494         return ret;
1495 }
1496
1497 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1498 {
1499         struct intel_vgpu_mm *mm;
1500
1501         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1502         if (!mm)
1503                 return NULL;
1504
1505         mm->vgpu = vgpu;
1506         kref_init(&mm->ref);
1507         atomic_set(&mm->pincount, 0);
1508
1509         return mm;
1510 }
1511
1512 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1513 {
1514         kfree(mm);
1515 }
1516
1517 /**
1518  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1519  * @vgpu: a vGPU
1520  * @root_entry_type: ppgtt root entry type
1521  * @pdps: guest pdps.
1522  *
1523  * This function is used to create a ppgtt mm object for a vGPU.
1524  *
1525  * Returns:
1526  * Zero on success, negative error code in pointer if failed.
1527  */
1528 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1529                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1530 {
1531         struct intel_gvt *gvt = vgpu->gvt;
1532         struct intel_vgpu_mm *mm;
1533         int ret;
1534
1535         mm = vgpu_alloc_mm(vgpu);
1536         if (!mm)
1537                 return ERR_PTR(-ENOMEM);
1538
1539         mm->type = INTEL_GVT_MM_PPGTT;
1540
1541         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1542                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1543         mm->ppgtt_mm.root_entry_type = root_entry_type;
1544
1545         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1546         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1547
1548         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1549                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1550         else
1551                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1552                        sizeof(mm->ppgtt_mm.guest_pdps));
1553
1554         ret = shadow_ppgtt_mm(mm);
1555         if (ret) {
1556                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1557                 vgpu_free_mm(mm);
1558                 return ERR_PTR(ret);
1559         }
1560
1561         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1562         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1563         return mm;
1564 }
1565
1566 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1567 {
1568         struct intel_vgpu_mm *mm;
1569         unsigned long nr_entries;
1570
1571         mm = vgpu_alloc_mm(vgpu);
1572         if (!mm)
1573                 return ERR_PTR(-ENOMEM);
1574
1575         mm->type = INTEL_GVT_MM_GGTT;
1576
1577         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1578         mm->ggtt_mm.virtual_ggtt = vzalloc(nr_entries *
1579                                         vgpu->gvt->device_info.gtt_entry_size);
1580         if (!mm->ggtt_mm.virtual_ggtt) {
1581                 vgpu_free_mm(mm);
1582                 return ERR_PTR(-ENOMEM);
1583         }
1584
1585         return mm;
1586 }
1587
1588 /**
1589  * _intel_vgpu_mm_release - destroy a mm object
1590  * @mm_ref: a kref object
1591  *
1592  * This function is used to destroy a mm object for vGPU
1593  *
1594  */
1595 void _intel_vgpu_mm_release(struct kref *mm_ref)
1596 {
1597         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1598
1599         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1600                 gvt_err("vgpu mm pin count bug detected\n");
1601
1602         if (mm->type == INTEL_GVT_MM_PPGTT) {
1603                 list_del(&mm->ppgtt_mm.list);
1604                 list_del(&mm->ppgtt_mm.lru_list);
1605                 invalidate_ppgtt_mm(mm);
1606         } else {
1607                 vfree(mm->ggtt_mm.virtual_ggtt);
1608         }
1609
1610         vgpu_free_mm(mm);
1611 }
1612
1613 /**
1614  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1615  * @mm: a vGPU mm object
1616  *
1617  * This function is called when user doesn't want to use a vGPU mm object
1618  */
1619 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1620 {
1621         atomic_dec(&mm->pincount);
1622 }
1623
1624 /**
1625  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1626  * @vgpu: a vGPU
1627  *
1628  * This function is called when user wants to use a vGPU mm object. If this
1629  * mm object hasn't been shadowed yet, the shadow will be populated at this
1630  * time.
1631  *
1632  * Returns:
1633  * Zero on success, negative error code if failed.
1634  */
1635 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1636 {
1637         int ret;
1638
1639         atomic_inc(&mm->pincount);
1640
1641         if (mm->type == INTEL_GVT_MM_PPGTT) {
1642                 ret = shadow_ppgtt_mm(mm);
1643                 if (ret)
1644                         return ret;
1645
1646                 list_move_tail(&mm->ppgtt_mm.lru_list,
1647                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1648
1649         }
1650
1651         return 0;
1652 }
1653
1654 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1655 {
1656         struct intel_vgpu_mm *mm;
1657         struct list_head *pos, *n;
1658
1659         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1660                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1661
1662                 if (atomic_read(&mm->pincount))
1663                         continue;
1664
1665                 list_del_init(&mm->ppgtt_mm.lru_list);
1666                 invalidate_ppgtt_mm(mm);
1667                 return 1;
1668         }
1669         return 0;
1670 }
1671
1672 /*
1673  * GMA translation APIs.
1674  */
1675 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1676                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1677 {
1678         struct intel_vgpu *vgpu = mm->vgpu;
1679         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1680         struct intel_vgpu_ppgtt_spt *s;
1681
1682         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
1683         if (!s)
1684                 return -ENXIO;
1685
1686         if (!guest)
1687                 ppgtt_get_shadow_entry(s, e, index);
1688         else
1689                 ppgtt_get_guest_entry(s, e, index);
1690         return 0;
1691 }
1692
1693 /**
1694  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1695  * @mm: mm object. could be a PPGTT or GGTT mm object
1696  * @gma: graphics memory address in this mm object
1697  *
1698  * This function is used to translate a graphics memory address in specific
1699  * graphics memory space to guest physical address.
1700  *
1701  * Returns:
1702  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1703  */
1704 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1705 {
1706         struct intel_vgpu *vgpu = mm->vgpu;
1707         struct intel_gvt *gvt = vgpu->gvt;
1708         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1709         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1710         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1711         unsigned long gma_index[4];
1712         struct intel_gvt_gtt_entry e;
1713         int i, levels = 0;
1714         int ret;
1715
1716         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
1717                    mm->type != INTEL_GVT_MM_PPGTT);
1718
1719         if (mm->type == INTEL_GVT_MM_GGTT) {
1720                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1721                         goto err;
1722
1723                 ggtt_get_guest_entry(mm, &e,
1724                         gma_ops->gma_to_ggtt_pte_index(gma));
1725
1726                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1727                         + (gma & ~I915_GTT_PAGE_MASK);
1728
1729                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1730         } else {
1731                 switch (mm->ppgtt_mm.root_entry_type) {
1732                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
1733                         ppgtt_get_shadow_root_entry(mm, &e, 0);
1734
1735                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1736                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1737                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
1738                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
1739                         levels = 4;
1740                         break;
1741                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
1742                         ppgtt_get_shadow_root_entry(mm, &e,
1743                                         gma_ops->gma_to_l3_pdp_index(gma));
1744
1745                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
1746                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
1747                         levels = 2;
1748                         break;
1749                 default:
1750                         GEM_BUG_ON(1);
1751                 }
1752
1753                 /* walk the shadow page table and get gpa from guest entry */
1754                 for (i = 0; i < levels; i++) {
1755                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1756                                 (i == levels - 1));
1757                         if (ret)
1758                                 goto err;
1759
1760                         if (!pte_ops->test_present(&e)) {
1761                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1762                                 goto err;
1763                         }
1764                 }
1765
1766                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
1767                                         (gma & ~I915_GTT_PAGE_MASK);
1768                 trace_gma_translate(vgpu->id, "ppgtt", 0,
1769                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
1770         }
1771
1772         return gpa;
1773 err:
1774         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1775         return INTEL_GVT_INVALID_ADDR;
1776 }
1777
1778 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
1779         unsigned int off, void *p_data, unsigned int bytes)
1780 {
1781         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1782         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1783         unsigned long index = off >> info->gtt_entry_size_shift;
1784         struct intel_gvt_gtt_entry e;
1785
1786         if (bytes != 4 && bytes != 8)
1787                 return -EINVAL;
1788
1789         ggtt_get_guest_entry(ggtt_mm, &e, index);
1790         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1791                         bytes);
1792         return 0;
1793 }
1794
1795 /**
1796  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1797  * @vgpu: a vGPU
1798  * @off: register offset
1799  * @p_data: data will be returned to guest
1800  * @bytes: data length
1801  *
1802  * This function is used to emulate the GTT MMIO register read
1803  *
1804  * Returns:
1805  * Zero on success, error code if failed.
1806  */
1807 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1808         void *p_data, unsigned int bytes)
1809 {
1810         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1811         int ret;
1812
1813         if (bytes != 4 && bytes != 8)
1814                 return -EINVAL;
1815
1816         off -= info->gtt_start_offset;
1817         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
1818         return ret;
1819 }
1820
1821 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1822         void *p_data, unsigned int bytes)
1823 {
1824         struct intel_gvt *gvt = vgpu->gvt;
1825         const struct intel_gvt_device_info *info = &gvt->device_info;
1826         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1827         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1828         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1829         unsigned long gma, gfn;
1830         struct intel_gvt_gtt_entry e, m;
1831         dma_addr_t dma_addr;
1832         int ret;
1833
1834         if (bytes != 4 && bytes != 8)
1835                 return -EINVAL;
1836
1837         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1838
1839         /* the VM may configure the whole GM space when ballooning is used */
1840         if (!vgpu_gmadr_is_valid(vgpu, gma))
1841                 return 0;
1842
1843         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1844
1845         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1846                         bytes);
1847         m = e;
1848
1849         if (ops->test_present(&e)) {
1850                 gfn = ops->get_pfn(&e);
1851
1852                 /* one PTE update may be issued in multiple writes and the
1853                  * first write may not construct a valid gfn
1854                  */
1855                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1856                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1857                         goto out;
1858                 }
1859
1860                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
1861                                                               &dma_addr);
1862                 if (ret) {
1863                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
1864                         /* guest driver may read/write the entry when partial
1865                          * update the entry in this situation p2m will fail
1866                          * settting the shadow entry to point to a scratch page
1867                          */
1868                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1869                 } else
1870                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
1871         } else
1872                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1873
1874 out:
1875         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
1876         ggtt_invalidate(gvt->dev_priv);
1877         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1878         return 0;
1879 }
1880
1881 /*
1882  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
1883  * @vgpu: a vGPU
1884  * @off: register offset
1885  * @p_data: data from guest write
1886  * @bytes: data length
1887  *
1888  * This function is used to emulate the GTT MMIO register write
1889  *
1890  * Returns:
1891  * Zero on success, error code if failed.
1892  */
1893 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
1894                 unsigned int off, void *p_data, unsigned int bytes)
1895 {
1896         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1897         int ret;
1898
1899         if (bytes != 4 && bytes != 8)
1900                 return -EINVAL;
1901
1902         off -= info->gtt_start_offset;
1903         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
1904         return ret;
1905 }
1906
1907 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
1908                 intel_gvt_gtt_type_t type)
1909 {
1910         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
1911         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1912         int page_entry_num = I915_GTT_PAGE_SIZE >>
1913                                 vgpu->gvt->device_info.gtt_entry_size_shift;
1914         void *scratch_pt;
1915         int i;
1916         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1917         dma_addr_t daddr;
1918
1919         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
1920                 return -EINVAL;
1921
1922         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
1923         if (!scratch_pt) {
1924                 gvt_vgpu_err("fail to allocate scratch page\n");
1925                 return -ENOMEM;
1926         }
1927
1928         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
1929                         4096, PCI_DMA_BIDIRECTIONAL);
1930         if (dma_mapping_error(dev, daddr)) {
1931                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
1932                 __free_page(virt_to_page(scratch_pt));
1933                 return -ENOMEM;
1934         }
1935         gtt->scratch_pt[type].page_mfn =
1936                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
1937         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
1938         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
1939                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
1940
1941         /* Build the tree by full filled the scratch pt with the entries which
1942          * point to the next level scratch pt or scratch page. The
1943          * scratch_pt[type] indicate the scratch pt/scratch page used by the
1944          * 'type' pt.
1945          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
1946          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
1947          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
1948          */
1949         if (type > GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX) {
1950                 struct intel_gvt_gtt_entry se;
1951
1952                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
1953                 se.type = get_entry_type(type - 1);
1954                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
1955
1956                 /* The entry parameters like present/writeable/cache type
1957                  * set to the same as i915's scratch page tree.
1958                  */
1959                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
1960                 if (type == GTT_TYPE_PPGTT_PDE_PT)
1961                         se.val64 |= PPAT_CACHED;
1962
1963                 for (i = 0; i < page_entry_num; i++)
1964                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
1965         }
1966
1967         return 0;
1968 }
1969
1970 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
1971 {
1972         int i;
1973         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
1974         dma_addr_t daddr;
1975
1976         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1977                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
1978                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
1979                                         I915_GTT_PAGE_SHIFT);
1980                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
1981                         __free_page(vgpu->gtt.scratch_pt[i].page);
1982                         vgpu->gtt.scratch_pt[i].page = NULL;
1983                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
1984                 }
1985         }
1986
1987         return 0;
1988 }
1989
1990 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
1991 {
1992         int i, ret;
1993
1994         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
1995                 ret = alloc_scratch_pages(vgpu, i);
1996                 if (ret)
1997                         goto err;
1998         }
1999
2000         return 0;
2001
2002 err:
2003         release_scratch_page_tree(vgpu);
2004         return ret;
2005 }
2006
2007 /**
2008  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2009  * @vgpu: a vGPU
2010  *
2011  * This function is used to initialize per-vGPU graphics memory virtualization
2012  * components.
2013  *
2014  * Returns:
2015  * Zero on success, error code if failed.
2016  */
2017 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2018 {
2019         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2020
2021         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2022
2023         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2024         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2025         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2026
2027         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2028         if (IS_ERR(gtt->ggtt_mm)) {
2029                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2030                 return PTR_ERR(gtt->ggtt_mm);
2031         }
2032
2033         intel_vgpu_reset_ggtt(vgpu);
2034
2035         return create_scratch_page_tree(vgpu);
2036 }
2037
2038 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2039 {
2040         struct list_head *pos, *n;
2041         struct intel_vgpu_mm *mm;
2042
2043         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2044                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2045                 intel_vgpu_destroy_mm(mm);
2046         }
2047
2048         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2049                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2050
2051         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2052                 gvt_err("Why we still has spt not freed?\n");
2053                 ppgtt_free_all_spt(vgpu);
2054         }
2055 }
2056
2057 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2058 {
2059         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2060         vgpu->gtt.ggtt_mm = NULL;
2061 }
2062
2063 /**
2064  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2065  * @vgpu: a vGPU
2066  *
2067  * This function is used to clean up per-vGPU graphics memory virtualization
2068  * components.
2069  *
2070  * Returns:
2071  * Zero on success, error code if failed.
2072  */
2073 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2074 {
2075         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2076         intel_vgpu_destroy_ggtt_mm(vgpu);
2077         release_scratch_page_tree(vgpu);
2078 }
2079
2080 static void clean_spt_oos(struct intel_gvt *gvt)
2081 {
2082         struct intel_gvt_gtt *gtt = &gvt->gtt;
2083         struct list_head *pos, *n;
2084         struct intel_vgpu_oos_page *oos_page;
2085
2086         WARN(!list_empty(&gtt->oos_page_use_list_head),
2087                 "someone is still using oos page\n");
2088
2089         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2090                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2091                 list_del(&oos_page->list);
2092                 kfree(oos_page);
2093         }
2094 }
2095
2096 static int setup_spt_oos(struct intel_gvt *gvt)
2097 {
2098         struct intel_gvt_gtt *gtt = &gvt->gtt;
2099         struct intel_vgpu_oos_page *oos_page;
2100         int i;
2101         int ret;
2102
2103         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2104         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2105
2106         for (i = 0; i < preallocated_oos_pages; i++) {
2107                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2108                 if (!oos_page) {
2109                         ret = -ENOMEM;
2110                         goto fail;
2111                 }
2112
2113                 INIT_LIST_HEAD(&oos_page->list);
2114                 INIT_LIST_HEAD(&oos_page->vm_list);
2115                 oos_page->id = i;
2116                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2117         }
2118
2119         gvt_dbg_mm("%d oos pages preallocated\n", i);
2120
2121         return 0;
2122 fail:
2123         clean_spt_oos(gvt);
2124         return ret;
2125 }
2126
2127 /**
2128  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2129  * @vgpu: a vGPU
2130  * @page_table_level: PPGTT page table level
2131  * @root_entry: PPGTT page table root pointers
2132  *
2133  * This function is used to find a PPGTT mm object from mm object pool
2134  *
2135  * Returns:
2136  * pointer to mm object on success, NULL if failed.
2137  */
2138 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2139                 u64 pdps[])
2140 {
2141         struct intel_vgpu_mm *mm;
2142         struct list_head *pos;
2143
2144         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2145                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2146
2147                 switch (mm->ppgtt_mm.root_entry_type) {
2148                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2149                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2150                                 return mm;
2151                         break;
2152                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2153                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2154                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2155                                 return mm;
2156                         break;
2157                 default:
2158                         GEM_BUG_ON(1);
2159                 }
2160         }
2161         return NULL;
2162 }
2163
2164 /**
2165  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2166  * @vgpu: a vGPU
2167  * @root_entry_type: ppgtt root entry type
2168  * @pdps: guest pdps
2169  *
2170  * This function is used to find or create a PPGTT mm object from a guest.
2171  *
2172  * Returns:
2173  * Zero on success, negative error code if failed.
2174  */
2175 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2176                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2177 {
2178         struct intel_vgpu_mm *mm;
2179
2180         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2181         if (mm) {
2182                 intel_vgpu_mm_get(mm);
2183         } else {
2184                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2185                 if (IS_ERR(mm))
2186                         gvt_vgpu_err("fail to create mm\n");
2187         }
2188         return mm;
2189 }
2190
2191 /**
2192  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2193  * @vgpu: a vGPU
2194  * @pdps: guest pdps
2195  *
2196  * This function is used to find a PPGTT mm object from a guest and destroy it.
2197  *
2198  * Returns:
2199  * Zero on success, negative error code if failed.
2200  */
2201 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2202 {
2203         struct intel_vgpu_mm *mm;
2204
2205         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2206         if (!mm) {
2207                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2208                 return -EINVAL;
2209         }
2210         intel_vgpu_mm_put(mm);
2211         return 0;
2212 }
2213
2214 /**
2215  * intel_gvt_init_gtt - initialize mm components of a GVT device
2216  * @gvt: GVT device
2217  *
2218  * This function is called at the initialization stage, to initialize
2219  * the mm components of a GVT device.
2220  *
2221  * Returns:
2222  * zero on success, negative error code if failed.
2223  */
2224 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2225 {
2226         int ret;
2227         void *page;
2228         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2229         dma_addr_t daddr;
2230
2231         gvt_dbg_core("init gtt\n");
2232
2233         if (IS_BROADWELL(gvt->dev_priv) || IS_SKYLAKE(gvt->dev_priv)
2234                 || IS_KABYLAKE(gvt->dev_priv)) {
2235                 gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2236                 gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2237         } else {
2238                 return -ENODEV;
2239         }
2240
2241         page = (void *)get_zeroed_page(GFP_KERNEL);
2242         if (!page) {
2243                 gvt_err("fail to allocate scratch ggtt page\n");
2244                 return -ENOMEM;
2245         }
2246
2247         daddr = dma_map_page(dev, virt_to_page(page), 0,
2248                         4096, PCI_DMA_BIDIRECTIONAL);
2249         if (dma_mapping_error(dev, daddr)) {
2250                 gvt_err("fail to dmamap scratch ggtt page\n");
2251                 __free_page(virt_to_page(page));
2252                 return -ENOMEM;
2253         }
2254
2255         gvt->gtt.scratch_page = virt_to_page(page);
2256         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2257
2258         if (enable_out_of_sync) {
2259                 ret = setup_spt_oos(gvt);
2260                 if (ret) {
2261                         gvt_err("fail to initialize SPT oos\n");
2262                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2263                         __free_page(gvt->gtt.scratch_page);
2264                         return ret;
2265                 }
2266         }
2267         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2268         return 0;
2269 }
2270
2271 /**
2272  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2273  * @gvt: GVT device
2274  *
2275  * This function is called at the driver unloading stage, to clean up the
2276  * the mm components of a GVT device.
2277  *
2278  */
2279 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2280 {
2281         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2282         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2283                                         I915_GTT_PAGE_SHIFT);
2284
2285         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2286
2287         __free_page(gvt->gtt.scratch_page);
2288
2289         if (enable_out_of_sync)
2290                 clean_spt_oos(gvt);
2291 }
2292
2293 /**
2294  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2295  * @vgpu: a vGPU
2296  *
2297  * This function is called when invalidate all PPGTT instances of a vGPU.
2298  *
2299  */
2300 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2301 {
2302         struct list_head *pos, *n;
2303         struct intel_vgpu_mm *mm;
2304
2305         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2306                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2307                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2308                         list_del_init(&mm->ppgtt_mm.lru_list);
2309                         if (mm->ppgtt_mm.shadowed)
2310                                 invalidate_ppgtt_mm(mm);
2311                 }
2312         }
2313 }
2314
2315 /**
2316  * intel_vgpu_reset_ggtt - reset the GGTT entry
2317  * @vgpu: a vGPU
2318  *
2319  * This function is called at the vGPU create stage
2320  * to reset all the GGTT entries.
2321  *
2322  */
2323 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu)
2324 {
2325         struct intel_gvt *gvt = vgpu->gvt;
2326         struct drm_i915_private *dev_priv = gvt->dev_priv;
2327         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2328         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2329         u32 index;
2330         u32 num_entries;
2331
2332         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2333         pte_ops->set_present(&entry);
2334
2335         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2336         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2337         while (num_entries--)
2338                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2339
2340         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2341         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2342         while (num_entries--)
2343                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2344
2345         ggtt_invalidate(dev_priv);
2346 }
2347
2348 /**
2349  * intel_vgpu_reset_gtt - reset the all GTT related status
2350  * @vgpu: a vGPU
2351  *
2352  * This function is called from vfio core to reset reset all
2353  * GTT related status, including GGTT, PPGTT, scratch page.
2354  *
2355  */
2356 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2357 {
2358         /* Shadow pages are only created when there is no page
2359          * table tracking data, so remove page tracking data after
2360          * removing the shadow pages.
2361          */
2362         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2363         intel_vgpu_reset_ggtt(vgpu);
2364 }