drm/i915/gvt: Add software PTE flag to mark special 64K splited entry
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / gtt.c
1 /*
2  * GTT virtualization
3  *
4  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a
7  * copy of this software and associated documentation files (the "Software"),
8  * to deal in the Software without restriction, including without limitation
9  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
10  * and/or sell copies of the Software, and to permit persons to whom the
11  * Software is furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice (including the next
14  * paragraph) shall be included in all copies or substantial portions of the
15  * Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
23  * SOFTWARE.
24  *
25  * Authors:
26  *    Zhi Wang <zhi.a.wang@intel.com>
27  *    Zhenyu Wang <zhenyuw@linux.intel.com>
28  *    Xiao Zheng <xiao.zheng@intel.com>
29  *
30  * Contributors:
31  *    Min He <min.he@intel.com>
32  *    Bing Niu <bing.niu@intel.com>
33  *
34  */
35
36 #include "i915_drv.h"
37 #include "gvt.h"
38 #include "i915_pvinfo.h"
39 #include "trace.h"
40
41 #if defined(VERBOSE_DEBUG)
42 #define gvt_vdbg_mm(fmt, args...) gvt_dbg_mm(fmt, ##args)
43 #else
44 #define gvt_vdbg_mm(fmt, args...)
45 #endif
46
47 static bool enable_out_of_sync = false;
48 static int preallocated_oos_pages = 8192;
49
50 /*
51  * validate a gm address and related range size,
52  * translate it to host gm address
53  */
54 bool intel_gvt_ggtt_validate_range(struct intel_vgpu *vgpu, u64 addr, u32 size)
55 {
56         if ((!vgpu_gmadr_is_valid(vgpu, addr)) || (size
57                         && !vgpu_gmadr_is_valid(vgpu, addr + size - 1))) {
58                 gvt_vgpu_err("invalid range gmadr 0x%llx size 0x%x\n",
59                                 addr, size);
60                 return false;
61         }
62         return true;
63 }
64
65 /* translate a guest gmadr to host gmadr */
66 int intel_gvt_ggtt_gmadr_g2h(struct intel_vgpu *vgpu, u64 g_addr, u64 *h_addr)
67 {
68         if (WARN(!vgpu_gmadr_is_valid(vgpu, g_addr),
69                  "invalid guest gmadr %llx\n", g_addr))
70                 return -EACCES;
71
72         if (vgpu_gmadr_is_aperture(vgpu, g_addr))
73                 *h_addr = vgpu_aperture_gmadr_base(vgpu)
74                           + (g_addr - vgpu_aperture_offset(vgpu));
75         else
76                 *h_addr = vgpu_hidden_gmadr_base(vgpu)
77                           + (g_addr - vgpu_hidden_offset(vgpu));
78         return 0;
79 }
80
81 /* translate a host gmadr to guest gmadr */
82 int intel_gvt_ggtt_gmadr_h2g(struct intel_vgpu *vgpu, u64 h_addr, u64 *g_addr)
83 {
84         if (WARN(!gvt_gmadr_is_valid(vgpu->gvt, h_addr),
85                  "invalid host gmadr %llx\n", h_addr))
86                 return -EACCES;
87
88         if (gvt_gmadr_is_aperture(vgpu->gvt, h_addr))
89                 *g_addr = vgpu_aperture_gmadr_base(vgpu)
90                         + (h_addr - gvt_aperture_gmadr_base(vgpu->gvt));
91         else
92                 *g_addr = vgpu_hidden_gmadr_base(vgpu)
93                         + (h_addr - gvt_hidden_gmadr_base(vgpu->gvt));
94         return 0;
95 }
96
97 int intel_gvt_ggtt_index_g2h(struct intel_vgpu *vgpu, unsigned long g_index,
98                              unsigned long *h_index)
99 {
100         u64 h_addr;
101         int ret;
102
103         ret = intel_gvt_ggtt_gmadr_g2h(vgpu, g_index << I915_GTT_PAGE_SHIFT,
104                                        &h_addr);
105         if (ret)
106                 return ret;
107
108         *h_index = h_addr >> I915_GTT_PAGE_SHIFT;
109         return 0;
110 }
111
112 int intel_gvt_ggtt_h2g_index(struct intel_vgpu *vgpu, unsigned long h_index,
113                              unsigned long *g_index)
114 {
115         u64 g_addr;
116         int ret;
117
118         ret = intel_gvt_ggtt_gmadr_h2g(vgpu, h_index << I915_GTT_PAGE_SHIFT,
119                                        &g_addr);
120         if (ret)
121                 return ret;
122
123         *g_index = g_addr >> I915_GTT_PAGE_SHIFT;
124         return 0;
125 }
126
127 #define gtt_type_is_entry(type) \
128         (type > GTT_TYPE_INVALID && type < GTT_TYPE_PPGTT_ENTRY \
129          && type != GTT_TYPE_PPGTT_PTE_ENTRY \
130          && type != GTT_TYPE_PPGTT_ROOT_ENTRY)
131
132 #define gtt_type_is_pt(type) \
133         (type >= GTT_TYPE_PPGTT_PTE_PT && type < GTT_TYPE_MAX)
134
135 #define gtt_type_is_pte_pt(type) \
136         (type == GTT_TYPE_PPGTT_PTE_PT)
137
138 #define gtt_type_is_root_pointer(type) \
139         (gtt_type_is_entry(type) && type > GTT_TYPE_PPGTT_ROOT_ENTRY)
140
141 #define gtt_init_entry(e, t, p, v) do { \
142         (e)->type = t; \
143         (e)->pdev = p; \
144         memcpy(&(e)->val64, &v, sizeof(v)); \
145 } while (0)
146
147 /*
148  * Mappings between GTT_TYPE* enumerations.
149  * Following information can be found according to the given type:
150  * - type of next level page table
151  * - type of entry inside this level page table
152  * - type of entry with PSE set
153  *
154  * If the given type doesn't have such a kind of information,
155  * e.g. give a l4 root entry type, then request to get its PSE type,
156  * give a PTE page table type, then request to get its next level page
157  * table type, as we know l4 root entry doesn't have a PSE bit,
158  * and a PTE page table doesn't have a next level page table type,
159  * GTT_TYPE_INVALID will be returned. This is useful when traversing a
160  * page table.
161  */
162
163 struct gtt_type_table_entry {
164         int entry_type;
165         int pt_type;
166         int next_pt_type;
167         int pse_entry_type;
168 };
169
170 #define GTT_TYPE_TABLE_ENTRY(type, e_type, cpt_type, npt_type, pse_type) \
171         [type] = { \
172                 .entry_type = e_type, \
173                 .pt_type = cpt_type, \
174                 .next_pt_type = npt_type, \
175                 .pse_entry_type = pse_type, \
176         }
177
178 static struct gtt_type_table_entry gtt_type_table[] = {
179         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
180                         GTT_TYPE_PPGTT_ROOT_L4_ENTRY,
181                         GTT_TYPE_INVALID,
182                         GTT_TYPE_PPGTT_PML4_PT,
183                         GTT_TYPE_INVALID),
184         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_PT,
185                         GTT_TYPE_PPGTT_PML4_ENTRY,
186                         GTT_TYPE_PPGTT_PML4_PT,
187                         GTT_TYPE_PPGTT_PDP_PT,
188                         GTT_TYPE_INVALID),
189         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PML4_ENTRY,
190                         GTT_TYPE_PPGTT_PML4_ENTRY,
191                         GTT_TYPE_PPGTT_PML4_PT,
192                         GTT_TYPE_PPGTT_PDP_PT,
193                         GTT_TYPE_INVALID),
194         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_PT,
195                         GTT_TYPE_PPGTT_PDP_ENTRY,
196                         GTT_TYPE_PPGTT_PDP_PT,
197                         GTT_TYPE_PPGTT_PDE_PT,
198                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
199         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
200                         GTT_TYPE_PPGTT_ROOT_L3_ENTRY,
201                         GTT_TYPE_INVALID,
202                         GTT_TYPE_PPGTT_PDE_PT,
203                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
204         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDP_ENTRY,
205                         GTT_TYPE_PPGTT_PDP_ENTRY,
206                         GTT_TYPE_PPGTT_PDP_PT,
207                         GTT_TYPE_PPGTT_PDE_PT,
208                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
209         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_PT,
210                         GTT_TYPE_PPGTT_PDE_ENTRY,
211                         GTT_TYPE_PPGTT_PDE_PT,
212                         GTT_TYPE_PPGTT_PTE_PT,
213                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
214         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PDE_ENTRY,
215                         GTT_TYPE_PPGTT_PDE_ENTRY,
216                         GTT_TYPE_PPGTT_PDE_PT,
217                         GTT_TYPE_PPGTT_PTE_PT,
218                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
219         /* We take IPS bit as 'PSE' for PTE level. */
220         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_PT,
221                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
222                         GTT_TYPE_PPGTT_PTE_PT,
223                         GTT_TYPE_INVALID,
224                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
225         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_4K_ENTRY,
226                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
227                         GTT_TYPE_PPGTT_PTE_PT,
228                         GTT_TYPE_INVALID,
229                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
230         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_64K_ENTRY,
231                         GTT_TYPE_PPGTT_PTE_4K_ENTRY,
232                         GTT_TYPE_PPGTT_PTE_PT,
233                         GTT_TYPE_INVALID,
234                         GTT_TYPE_PPGTT_PTE_64K_ENTRY),
235         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_2M_ENTRY,
236                         GTT_TYPE_PPGTT_PDE_ENTRY,
237                         GTT_TYPE_PPGTT_PDE_PT,
238                         GTT_TYPE_INVALID,
239                         GTT_TYPE_PPGTT_PTE_2M_ENTRY),
240         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_PPGTT_PTE_1G_ENTRY,
241                         GTT_TYPE_PPGTT_PDP_ENTRY,
242                         GTT_TYPE_PPGTT_PDP_PT,
243                         GTT_TYPE_INVALID,
244                         GTT_TYPE_PPGTT_PTE_1G_ENTRY),
245         GTT_TYPE_TABLE_ENTRY(GTT_TYPE_GGTT_PTE,
246                         GTT_TYPE_GGTT_PTE,
247                         GTT_TYPE_INVALID,
248                         GTT_TYPE_INVALID,
249                         GTT_TYPE_INVALID),
250 };
251
252 static inline int get_next_pt_type(int type)
253 {
254         return gtt_type_table[type].next_pt_type;
255 }
256
257 static inline int get_pt_type(int type)
258 {
259         return gtt_type_table[type].pt_type;
260 }
261
262 static inline int get_entry_type(int type)
263 {
264         return gtt_type_table[type].entry_type;
265 }
266
267 static inline int get_pse_type(int type)
268 {
269         return gtt_type_table[type].pse_entry_type;
270 }
271
272 static u64 read_pte64(struct drm_i915_private *dev_priv, unsigned long index)
273 {
274         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
275
276         return readq(addr);
277 }
278
279 static void ggtt_invalidate(struct drm_i915_private *dev_priv)
280 {
281         mmio_hw_access_pre(dev_priv);
282         I915_WRITE(GFX_FLSH_CNTL_GEN6, GFX_FLSH_CNTL_EN);
283         mmio_hw_access_post(dev_priv);
284 }
285
286 static void write_pte64(struct drm_i915_private *dev_priv,
287                 unsigned long index, u64 pte)
288 {
289         void __iomem *addr = (gen8_pte_t __iomem *)dev_priv->ggtt.gsm + index;
290
291         writeq(pte, addr);
292 }
293
294 static inline int gtt_get_entry64(void *pt,
295                 struct intel_gvt_gtt_entry *e,
296                 unsigned long index, bool hypervisor_access, unsigned long gpa,
297                 struct intel_vgpu *vgpu)
298 {
299         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
300         int ret;
301
302         if (WARN_ON(info->gtt_entry_size != 8))
303                 return -EINVAL;
304
305         if (hypervisor_access) {
306                 ret = intel_gvt_hypervisor_read_gpa(vgpu, gpa +
307                                 (index << info->gtt_entry_size_shift),
308                                 &e->val64, 8);
309                 if (WARN_ON(ret))
310                         return ret;
311         } else if (!pt) {
312                 e->val64 = read_pte64(vgpu->gvt->dev_priv, index);
313         } else {
314                 e->val64 = *((u64 *)pt + index);
315         }
316         return 0;
317 }
318
319 static inline int gtt_set_entry64(void *pt,
320                 struct intel_gvt_gtt_entry *e,
321                 unsigned long index, bool hypervisor_access, unsigned long gpa,
322                 struct intel_vgpu *vgpu)
323 {
324         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
325         int ret;
326
327         if (WARN_ON(info->gtt_entry_size != 8))
328                 return -EINVAL;
329
330         if (hypervisor_access) {
331                 ret = intel_gvt_hypervisor_write_gpa(vgpu, gpa +
332                                 (index << info->gtt_entry_size_shift),
333                                 &e->val64, 8);
334                 if (WARN_ON(ret))
335                         return ret;
336         } else if (!pt) {
337                 write_pte64(vgpu->gvt->dev_priv, index, e->val64);
338         } else {
339                 *((u64 *)pt + index) = e->val64;
340         }
341         return 0;
342 }
343
344 #define GTT_HAW 46
345
346 #define ADDR_1G_MASK    GENMASK_ULL(GTT_HAW - 1, 30)
347 #define ADDR_2M_MASK    GENMASK_ULL(GTT_HAW - 1, 21)
348 #define ADDR_64K_MASK   GENMASK_ULL(GTT_HAW - 1, 16)
349 #define ADDR_4K_MASK    GENMASK_ULL(GTT_HAW - 1, 12)
350
351 #define GTT_SPTE_FLAG_MASK GENMASK_ULL(62, 52)
352 #define GTT_SPTE_FLAG_64K_SPLITED BIT(52) /* splited 64K gtt entry */
353
354 static unsigned long gen8_gtt_get_pfn(struct intel_gvt_gtt_entry *e)
355 {
356         unsigned long pfn;
357
358         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY)
359                 pfn = (e->val64 & ADDR_1G_MASK) >> PAGE_SHIFT;
360         else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY)
361                 pfn = (e->val64 & ADDR_2M_MASK) >> PAGE_SHIFT;
362         else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY)
363                 pfn = (e->val64 & ADDR_64K_MASK) >> PAGE_SHIFT;
364         else
365                 pfn = (e->val64 & ADDR_4K_MASK) >> PAGE_SHIFT;
366         return pfn;
367 }
368
369 static void gen8_gtt_set_pfn(struct intel_gvt_gtt_entry *e, unsigned long pfn)
370 {
371         if (e->type == GTT_TYPE_PPGTT_PTE_1G_ENTRY) {
372                 e->val64 &= ~ADDR_1G_MASK;
373                 pfn &= (ADDR_1G_MASK >> PAGE_SHIFT);
374         } else if (e->type == GTT_TYPE_PPGTT_PTE_2M_ENTRY) {
375                 e->val64 &= ~ADDR_2M_MASK;
376                 pfn &= (ADDR_2M_MASK >> PAGE_SHIFT);
377         } else if (e->type == GTT_TYPE_PPGTT_PTE_64K_ENTRY) {
378                 e->val64 &= ~ADDR_64K_MASK;
379                 pfn &= (ADDR_64K_MASK >> PAGE_SHIFT);
380         } else {
381                 e->val64 &= ~ADDR_4K_MASK;
382                 pfn &= (ADDR_4K_MASK >> PAGE_SHIFT);
383         }
384
385         e->val64 |= (pfn << PAGE_SHIFT);
386 }
387
388 static bool gen8_gtt_test_pse(struct intel_gvt_gtt_entry *e)
389 {
390         return !!(e->val64 & _PAGE_PSE);
391 }
392
393 static bool gen8_gtt_test_ips(struct intel_gvt_gtt_entry *e)
394 {
395         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
396                 return false;
397
398         return !!(e->val64 & GEN8_PDE_IPS_64K);
399 }
400
401 static void gen8_gtt_clear_ips(struct intel_gvt_gtt_entry *e)
402 {
403         if (GEM_WARN_ON(e->type != GTT_TYPE_PPGTT_PDE_ENTRY))
404                 return;
405
406         e->val64 &= ~GEN8_PDE_IPS_64K;
407 }
408
409 static bool gen8_gtt_test_present(struct intel_gvt_gtt_entry *e)
410 {
411         /*
412          * i915 writes PDP root pointer registers without present bit,
413          * it also works, so we need to treat root pointer entry
414          * specifically.
415          */
416         if (e->type == GTT_TYPE_PPGTT_ROOT_L3_ENTRY
417                         || e->type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
418                 return (e->val64 != 0);
419         else
420                 return (e->val64 & _PAGE_PRESENT);
421 }
422
423 static void gtt_entry_clear_present(struct intel_gvt_gtt_entry *e)
424 {
425         e->val64 &= ~_PAGE_PRESENT;
426 }
427
428 static void gtt_entry_set_present(struct intel_gvt_gtt_entry *e)
429 {
430         e->val64 |= _PAGE_PRESENT;
431 }
432
433 static bool gen8_gtt_test_64k_splited(struct intel_gvt_gtt_entry *e)
434 {
435         return !!(e->val64 & GTT_SPTE_FLAG_64K_SPLITED);
436 }
437
438 static void gen8_gtt_set_64k_splited(struct intel_gvt_gtt_entry *e)
439 {
440         e->val64 |= GTT_SPTE_FLAG_64K_SPLITED;
441 }
442
443 static void gen8_gtt_clear_64k_splited(struct intel_gvt_gtt_entry *e)
444 {
445         e->val64 &= ~GTT_SPTE_FLAG_64K_SPLITED;
446 }
447
448 /*
449  * Per-platform GMA routines.
450  */
451 static unsigned long gma_to_ggtt_pte_index(unsigned long gma)
452 {
453         unsigned long x = (gma >> I915_GTT_PAGE_SHIFT);
454
455         trace_gma_index(__func__, gma, x);
456         return x;
457 }
458
459 #define DEFINE_PPGTT_GMA_TO_INDEX(prefix, ename, exp) \
460 static unsigned long prefix##_gma_to_##ename##_index(unsigned long gma) \
461 { \
462         unsigned long x = (exp); \
463         trace_gma_index(__func__, gma, x); \
464         return x; \
465 }
466
467 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pte, (gma >> 12 & 0x1ff));
468 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pde, (gma >> 21 & 0x1ff));
469 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l3_pdp, (gma >> 30 & 0x3));
470 DEFINE_PPGTT_GMA_TO_INDEX(gen8, l4_pdp, (gma >> 30 & 0x1ff));
471 DEFINE_PPGTT_GMA_TO_INDEX(gen8, pml4, (gma >> 39 & 0x1ff));
472
473 static struct intel_gvt_gtt_pte_ops gen8_gtt_pte_ops = {
474         .get_entry = gtt_get_entry64,
475         .set_entry = gtt_set_entry64,
476         .clear_present = gtt_entry_clear_present,
477         .set_present = gtt_entry_set_present,
478         .test_present = gen8_gtt_test_present,
479         .test_pse = gen8_gtt_test_pse,
480         .clear_ips = gen8_gtt_clear_ips,
481         .test_ips = gen8_gtt_test_ips,
482         .clear_64k_splited = gen8_gtt_clear_64k_splited,
483         .set_64k_splited = gen8_gtt_set_64k_splited,
484         .test_64k_splited = gen8_gtt_test_64k_splited,
485         .get_pfn = gen8_gtt_get_pfn,
486         .set_pfn = gen8_gtt_set_pfn,
487 };
488
489 static struct intel_gvt_gtt_gma_ops gen8_gtt_gma_ops = {
490         .gma_to_ggtt_pte_index = gma_to_ggtt_pte_index,
491         .gma_to_pte_index = gen8_gma_to_pte_index,
492         .gma_to_pde_index = gen8_gma_to_pde_index,
493         .gma_to_l3_pdp_index = gen8_gma_to_l3_pdp_index,
494         .gma_to_l4_pdp_index = gen8_gma_to_l4_pdp_index,
495         .gma_to_pml4_index = gen8_gma_to_pml4_index,
496 };
497
498 /* Update entry type per pse and ips bit. */
499 static void update_entry_type_for_real(struct intel_gvt_gtt_pte_ops *pte_ops,
500         struct intel_gvt_gtt_entry *entry, bool ips)
501 {
502         switch (entry->type) {
503         case GTT_TYPE_PPGTT_PDE_ENTRY:
504         case GTT_TYPE_PPGTT_PDP_ENTRY:
505                 if (pte_ops->test_pse(entry))
506                         entry->type = get_pse_type(entry->type);
507                 break;
508         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
509                 if (ips)
510                         entry->type = get_pse_type(entry->type);
511                 break;
512         default:
513                 GEM_BUG_ON(!gtt_type_is_entry(entry->type));
514         }
515
516         GEM_BUG_ON(entry->type == GTT_TYPE_INVALID);
517 }
518
519 /*
520  * MM helpers.
521  */
522 static void _ppgtt_get_root_entry(struct intel_vgpu_mm *mm,
523                 struct intel_gvt_gtt_entry *entry, unsigned long index,
524                 bool guest)
525 {
526         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
527
528         GEM_BUG_ON(mm->type != INTEL_GVT_MM_PPGTT);
529
530         entry->type = mm->ppgtt_mm.root_entry_type;
531         pte_ops->get_entry(guest ? mm->ppgtt_mm.guest_pdps :
532                            mm->ppgtt_mm.shadow_pdps,
533                            entry, index, false, 0, mm->vgpu);
534         update_entry_type_for_real(pte_ops, entry, false);
535 }
536
537 static inline void ppgtt_get_guest_root_entry(struct intel_vgpu_mm *mm,
538                 struct intel_gvt_gtt_entry *entry, unsigned long index)
539 {
540         _ppgtt_get_root_entry(mm, entry, index, true);
541 }
542
543 static inline void ppgtt_get_shadow_root_entry(struct intel_vgpu_mm *mm,
544                 struct intel_gvt_gtt_entry *entry, unsigned long index)
545 {
546         _ppgtt_get_root_entry(mm, entry, index, false);
547 }
548
549 static void _ppgtt_set_root_entry(struct intel_vgpu_mm *mm,
550                 struct intel_gvt_gtt_entry *entry, unsigned long index,
551                 bool guest)
552 {
553         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
554
555         pte_ops->set_entry(guest ? mm->ppgtt_mm.guest_pdps :
556                            mm->ppgtt_mm.shadow_pdps,
557                            entry, index, false, 0, mm->vgpu);
558 }
559
560 static inline void ppgtt_set_guest_root_entry(struct intel_vgpu_mm *mm,
561                 struct intel_gvt_gtt_entry *entry, unsigned long index)
562 {
563         _ppgtt_set_root_entry(mm, entry, index, true);
564 }
565
566 static inline void ppgtt_set_shadow_root_entry(struct intel_vgpu_mm *mm,
567                 struct intel_gvt_gtt_entry *entry, unsigned long index)
568 {
569         _ppgtt_set_root_entry(mm, entry, index, false);
570 }
571
572 static void ggtt_get_guest_entry(struct intel_vgpu_mm *mm,
573                 struct intel_gvt_gtt_entry *entry, unsigned long index)
574 {
575         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
576
577         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
578
579         entry->type = GTT_TYPE_GGTT_PTE;
580         pte_ops->get_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
581                            false, 0, mm->vgpu);
582 }
583
584 static void ggtt_set_guest_entry(struct intel_vgpu_mm *mm,
585                 struct intel_gvt_gtt_entry *entry, unsigned long index)
586 {
587         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
588
589         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
590
591         pte_ops->set_entry(mm->ggtt_mm.virtual_ggtt, entry, index,
592                            false, 0, mm->vgpu);
593 }
594
595 static void ggtt_get_host_entry(struct intel_vgpu_mm *mm,
596                 struct intel_gvt_gtt_entry *entry, unsigned long index)
597 {
598         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
599
600         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
601
602         pte_ops->get_entry(NULL, entry, index, false, 0, mm->vgpu);
603 }
604
605 static void ggtt_set_host_entry(struct intel_vgpu_mm *mm,
606                 struct intel_gvt_gtt_entry *entry, unsigned long index)
607 {
608         struct intel_gvt_gtt_pte_ops *pte_ops = mm->vgpu->gvt->gtt.pte_ops;
609
610         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT);
611
612         pte_ops->set_entry(NULL, entry, index, false, 0, mm->vgpu);
613 }
614
615 /*
616  * PPGTT shadow page table helpers.
617  */
618 static inline int ppgtt_spt_get_entry(
619                 struct intel_vgpu_ppgtt_spt *spt,
620                 void *page_table, int type,
621                 struct intel_gvt_gtt_entry *e, unsigned long index,
622                 bool guest)
623 {
624         struct intel_gvt *gvt = spt->vgpu->gvt;
625         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
626         int ret;
627
628         e->type = get_entry_type(type);
629
630         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
631                 return -EINVAL;
632
633         ret = ops->get_entry(page_table, e, index, guest,
634                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
635                         spt->vgpu);
636         if (ret)
637                 return ret;
638
639         update_entry_type_for_real(ops, e, guest ?
640                                    spt->guest_page.pde_ips : false);
641
642         gvt_vdbg_mm("read ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
643                     type, e->type, index, e->val64);
644         return 0;
645 }
646
647 static inline int ppgtt_spt_set_entry(
648                 struct intel_vgpu_ppgtt_spt *spt,
649                 void *page_table, int type,
650                 struct intel_gvt_gtt_entry *e, unsigned long index,
651                 bool guest)
652 {
653         struct intel_gvt *gvt = spt->vgpu->gvt;
654         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
655
656         if (WARN(!gtt_type_is_entry(e->type), "invalid entry type\n"))
657                 return -EINVAL;
658
659         gvt_vdbg_mm("set ppgtt entry, spt type %d, entry type %d, index %lu, value %llx\n",
660                     type, e->type, index, e->val64);
661
662         return ops->set_entry(page_table, e, index, guest,
663                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
664                         spt->vgpu);
665 }
666
667 #define ppgtt_get_guest_entry(spt, e, index) \
668         ppgtt_spt_get_entry(spt, NULL, \
669                 spt->guest_page.type, e, index, true)
670
671 #define ppgtt_set_guest_entry(spt, e, index) \
672         ppgtt_spt_set_entry(spt, NULL, \
673                 spt->guest_page.type, e, index, true)
674
675 #define ppgtt_get_shadow_entry(spt, e, index) \
676         ppgtt_spt_get_entry(spt, spt->shadow_page.vaddr, \
677                 spt->shadow_page.type, e, index, false)
678
679 #define ppgtt_set_shadow_entry(spt, e, index) \
680         ppgtt_spt_set_entry(spt, spt->shadow_page.vaddr, \
681                 spt->shadow_page.type, e, index, false)
682
683 static void *alloc_spt(gfp_t gfp_mask)
684 {
685         struct intel_vgpu_ppgtt_spt *spt;
686
687         spt = kzalloc(sizeof(*spt), gfp_mask);
688         if (!spt)
689                 return NULL;
690
691         spt->shadow_page.page = alloc_page(gfp_mask);
692         if (!spt->shadow_page.page) {
693                 kfree(spt);
694                 return NULL;
695         }
696         return spt;
697 }
698
699 static void free_spt(struct intel_vgpu_ppgtt_spt *spt)
700 {
701         __free_page(spt->shadow_page.page);
702         kfree(spt);
703 }
704
705 static int detach_oos_page(struct intel_vgpu *vgpu,
706                 struct intel_vgpu_oos_page *oos_page);
707
708 static void ppgtt_free_spt(struct intel_vgpu_ppgtt_spt *spt)
709 {
710         struct device *kdev = &spt->vgpu->gvt->dev_priv->drm.pdev->dev;
711
712         trace_spt_free(spt->vgpu->id, spt, spt->guest_page.type);
713
714         dma_unmap_page(kdev, spt->shadow_page.mfn << I915_GTT_PAGE_SHIFT, 4096,
715                        PCI_DMA_BIDIRECTIONAL);
716
717         radix_tree_delete(&spt->vgpu->gtt.spt_tree, spt->shadow_page.mfn);
718
719         if (spt->guest_page.oos_page)
720                 detach_oos_page(spt->vgpu, spt->guest_page.oos_page);
721
722         intel_vgpu_unregister_page_track(spt->vgpu, spt->guest_page.gfn);
723
724         list_del_init(&spt->post_shadow_list);
725         free_spt(spt);
726 }
727
728 static void ppgtt_free_all_spt(struct intel_vgpu *vgpu)
729 {
730         struct intel_vgpu_ppgtt_spt *spt;
731         struct radix_tree_iter iter;
732         void **slot;
733
734         radix_tree_for_each_slot(slot, &vgpu->gtt.spt_tree, &iter, 0) {
735                 spt = radix_tree_deref_slot(slot);
736                 ppgtt_free_spt(spt);
737         }
738 }
739
740 static int ppgtt_handle_guest_write_page_table_bytes(
741                 struct intel_vgpu_ppgtt_spt *spt,
742                 u64 pa, void *p_data, int bytes);
743
744 static int ppgtt_write_protection_handler(
745                 struct intel_vgpu_page_track *page_track,
746                 u64 gpa, void *data, int bytes)
747 {
748         struct intel_vgpu_ppgtt_spt *spt = page_track->priv_data;
749
750         int ret;
751
752         if (bytes != 4 && bytes != 8)
753                 return -EINVAL;
754
755         ret = ppgtt_handle_guest_write_page_table_bytes(spt, gpa, data, bytes);
756         if (ret)
757                 return ret;
758         return ret;
759 }
760
761 /* Find a spt by guest gfn. */
762 static struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_gfn(
763                 struct intel_vgpu *vgpu, unsigned long gfn)
764 {
765         struct intel_vgpu_page_track *track;
766
767         track = intel_vgpu_find_page_track(vgpu, gfn);
768         if (track && track->handler == ppgtt_write_protection_handler)
769                 return track->priv_data;
770
771         return NULL;
772 }
773
774 /* Find the spt by shadow page mfn. */
775 static inline struct intel_vgpu_ppgtt_spt *intel_vgpu_find_spt_by_mfn(
776                 struct intel_vgpu *vgpu, unsigned long mfn)
777 {
778         return radix_tree_lookup(&vgpu->gtt.spt_tree, mfn);
779 }
780
781 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt);
782
783 static struct intel_vgpu_ppgtt_spt *ppgtt_alloc_spt(
784                 struct intel_vgpu *vgpu, int type, unsigned long gfn,
785                 bool guest_pde_ips)
786 {
787         struct device *kdev = &vgpu->gvt->dev_priv->drm.pdev->dev;
788         struct intel_vgpu_ppgtt_spt *spt = NULL;
789         dma_addr_t daddr;
790         int ret;
791
792 retry:
793         spt = alloc_spt(GFP_KERNEL | __GFP_ZERO);
794         if (!spt) {
795                 if (reclaim_one_ppgtt_mm(vgpu->gvt))
796                         goto retry;
797
798                 gvt_vgpu_err("fail to allocate ppgtt shadow page\n");
799                 return ERR_PTR(-ENOMEM);
800         }
801
802         spt->vgpu = vgpu;
803         atomic_set(&spt->refcount, 1);
804         INIT_LIST_HEAD(&spt->post_shadow_list);
805
806         /*
807          * Init shadow_page.
808          */
809         spt->shadow_page.type = type;
810         daddr = dma_map_page(kdev, spt->shadow_page.page,
811                              0, 4096, PCI_DMA_BIDIRECTIONAL);
812         if (dma_mapping_error(kdev, daddr)) {
813                 gvt_vgpu_err("fail to map dma addr\n");
814                 ret = -EINVAL;
815                 goto err_free_spt;
816         }
817         spt->shadow_page.vaddr = page_address(spt->shadow_page.page);
818         spt->shadow_page.mfn = daddr >> I915_GTT_PAGE_SHIFT;
819
820         /*
821          * Init guest_page.
822          */
823         spt->guest_page.type = type;
824         spt->guest_page.gfn = gfn;
825         spt->guest_page.pde_ips = guest_pde_ips;
826
827         ret = intel_vgpu_register_page_track(vgpu, spt->guest_page.gfn,
828                                         ppgtt_write_protection_handler, spt);
829         if (ret)
830                 goto err_unmap_dma;
831
832         ret = radix_tree_insert(&vgpu->gtt.spt_tree, spt->shadow_page.mfn, spt);
833         if (ret)
834                 goto err_unreg_page_track;
835
836         trace_spt_alloc(vgpu->id, spt, type, spt->shadow_page.mfn, gfn);
837         return spt;
838
839 err_unreg_page_track:
840         intel_vgpu_unregister_page_track(vgpu, spt->guest_page.gfn);
841 err_unmap_dma:
842         dma_unmap_page(kdev, daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
843 err_free_spt:
844         free_spt(spt);
845         return ERR_PTR(ret);
846 }
847
848 #define pt_entry_size_shift(spt) \
849         ((spt)->vgpu->gvt->device_info.gtt_entry_size_shift)
850
851 #define pt_entries(spt) \
852         (I915_GTT_PAGE_SIZE >> pt_entry_size_shift(spt))
853
854 #define for_each_present_guest_entry(spt, e, i) \
855         for (i = 0; i < pt_entries(spt); i++) \
856                 if (!ppgtt_get_guest_entry(spt, e, i) && \
857                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
858
859 #define for_each_present_shadow_entry(spt, e, i) \
860         for (i = 0; i < pt_entries(spt); i++) \
861                 if (!ppgtt_get_shadow_entry(spt, e, i) && \
862                     spt->vgpu->gvt->gtt.pte_ops->test_present(e))
863
864 static void ppgtt_get_spt(struct intel_vgpu_ppgtt_spt *spt)
865 {
866         int v = atomic_read(&spt->refcount);
867
868         trace_spt_refcount(spt->vgpu->id, "inc", spt, v, (v + 1));
869
870         atomic_inc(&spt->refcount);
871 }
872
873 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt);
874
875 static int ppgtt_invalidate_spt_by_shadow_entry(struct intel_vgpu *vgpu,
876                 struct intel_gvt_gtt_entry *e)
877 {
878         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
879         struct intel_vgpu_ppgtt_spt *s;
880         intel_gvt_gtt_type_t cur_pt_type;
881
882         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(e->type)));
883
884         if (e->type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY
885                 && e->type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
886                 cur_pt_type = get_next_pt_type(e->type) + 1;
887                 if (ops->get_pfn(e) ==
888                         vgpu->gtt.scratch_pt[cur_pt_type].page_mfn)
889                         return 0;
890         }
891         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
892         if (!s) {
893                 gvt_vgpu_err("fail to find shadow page: mfn: 0x%lx\n",
894                                 ops->get_pfn(e));
895                 return -ENXIO;
896         }
897         return ppgtt_invalidate_spt(s);
898 }
899
900 static inline void ppgtt_invalidate_pte(struct intel_vgpu_ppgtt_spt *spt,
901                 struct intel_gvt_gtt_entry *entry)
902 {
903         struct intel_vgpu *vgpu = spt->vgpu;
904         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
905         unsigned long pfn;
906         int type;
907
908         pfn = ops->get_pfn(entry);
909         type = spt->shadow_page.type;
910
911         if (pfn == vgpu->gtt.scratch_pt[type].page_mfn)
912                 return;
913
914         intel_gvt_hypervisor_dma_unmap_guest_page(vgpu, pfn << PAGE_SHIFT);
915 }
916
917 static int ppgtt_invalidate_spt(struct intel_vgpu_ppgtt_spt *spt)
918 {
919         struct intel_vgpu *vgpu = spt->vgpu;
920         struct intel_gvt_gtt_entry e;
921         unsigned long index;
922         int ret;
923         int v = atomic_read(&spt->refcount);
924
925         trace_spt_change(spt->vgpu->id, "die", spt,
926                         spt->guest_page.gfn, spt->shadow_page.type);
927
928         trace_spt_refcount(spt->vgpu->id, "dec", spt, v, (v - 1));
929
930         if (atomic_dec_return(&spt->refcount) > 0)
931                 return 0;
932
933         for_each_present_shadow_entry(spt, &e, index) {
934                 switch (e.type) {
935                 case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
936                         gvt_vdbg_mm("invalidate 4K entry\n");
937                         ppgtt_invalidate_pte(spt, &e);
938                         break;
939                 case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
940                 case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
941                 case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
942                         WARN(1, "GVT doesn't support 64K/2M/1GB page\n");
943                         continue;
944                 case GTT_TYPE_PPGTT_PML4_ENTRY:
945                 case GTT_TYPE_PPGTT_PDP_ENTRY:
946                 case GTT_TYPE_PPGTT_PDE_ENTRY:
947                         gvt_vdbg_mm("invalidate PMUL4/PDP/PDE entry\n");
948                         ret = ppgtt_invalidate_spt_by_shadow_entry(
949                                         spt->vgpu, &e);
950                         if (ret)
951                                 goto fail;
952                         break;
953                 default:
954                         GEM_BUG_ON(1);
955                 }
956         }
957
958         trace_spt_change(spt->vgpu->id, "release", spt,
959                          spt->guest_page.gfn, spt->shadow_page.type);
960         ppgtt_free_spt(spt);
961         return 0;
962 fail:
963         gvt_vgpu_err("fail: shadow page %p shadow entry 0x%llx type %d\n",
964                         spt, e.val64, e.type);
965         return ret;
966 }
967
968 static bool vgpu_ips_enabled(struct intel_vgpu *vgpu)
969 {
970         struct drm_i915_private *dev_priv = vgpu->gvt->dev_priv;
971
972         if (INTEL_GEN(dev_priv) == 9 || INTEL_GEN(dev_priv) == 10) {
973                 u32 ips = vgpu_vreg_t(vgpu, GEN8_GAMW_ECO_DEV_RW_IA) &
974                         GAMW_ECO_ENABLE_64K_IPS_FIELD;
975
976                 return ips == GAMW_ECO_ENABLE_64K_IPS_FIELD;
977         } else if (INTEL_GEN(dev_priv) >= 11) {
978                 /* 64K paging only controlled by IPS bit in PTE now. */
979                 return true;
980         } else
981                 return false;
982 }
983
984 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt);
985
986 static struct intel_vgpu_ppgtt_spt *ppgtt_populate_spt_by_guest_entry(
987                 struct intel_vgpu *vgpu, struct intel_gvt_gtt_entry *we)
988 {
989         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
990         struct intel_vgpu_ppgtt_spt *spt = NULL;
991         bool ips = false;
992         int ret;
993
994         GEM_BUG_ON(!gtt_type_is_pt(get_next_pt_type(we->type)));
995
996         spt = intel_vgpu_find_spt_by_gfn(vgpu, ops->get_pfn(we));
997         if (spt)
998                 ppgtt_get_spt(spt);
999         else {
1000                 int type = get_next_pt_type(we->type);
1001
1002                 if (we->type == GTT_TYPE_PPGTT_PDE_ENTRY)
1003                         ips = vgpu_ips_enabled(vgpu) && ops->test_ips(we);
1004
1005                 spt = ppgtt_alloc_spt(vgpu, type, ops->get_pfn(we), ips);
1006                 if (IS_ERR(spt)) {
1007                         ret = PTR_ERR(spt);
1008                         goto fail;
1009                 }
1010
1011                 ret = intel_vgpu_enable_page_track(vgpu, spt->guest_page.gfn);
1012                 if (ret)
1013                         goto fail;
1014
1015                 ret = ppgtt_populate_spt(spt);
1016                 if (ret)
1017                         goto fail;
1018
1019                 trace_spt_change(vgpu->id, "new", spt, spt->guest_page.gfn,
1020                                  spt->shadow_page.type);
1021         }
1022         return spt;
1023 fail:
1024         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1025                      spt, we->val64, we->type);
1026         return ERR_PTR(ret);
1027 }
1028
1029 static inline void ppgtt_generate_shadow_entry(struct intel_gvt_gtt_entry *se,
1030                 struct intel_vgpu_ppgtt_spt *s, struct intel_gvt_gtt_entry *ge)
1031 {
1032         struct intel_gvt_gtt_pte_ops *ops = s->vgpu->gvt->gtt.pte_ops;
1033
1034         se->type = ge->type;
1035         se->val64 = ge->val64;
1036
1037         ops->set_pfn(se, s->shadow_page.mfn);
1038 }
1039
1040 static int ppgtt_populate_shadow_entry(struct intel_vgpu *vgpu,
1041         struct intel_vgpu_ppgtt_spt *spt, unsigned long index,
1042         struct intel_gvt_gtt_entry *ge)
1043 {
1044         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1045         struct intel_gvt_gtt_entry se = *ge;
1046         unsigned long gfn;
1047         dma_addr_t dma_addr;
1048         int ret;
1049
1050         if (!pte_ops->test_present(ge))
1051                 return 0;
1052
1053         gfn = pte_ops->get_pfn(ge);
1054
1055         switch (ge->type) {
1056         case GTT_TYPE_PPGTT_PTE_4K_ENTRY:
1057                 gvt_vdbg_mm("shadow 4K gtt entry\n");
1058                 break;
1059         case GTT_TYPE_PPGTT_PTE_64K_ENTRY:
1060         case GTT_TYPE_PPGTT_PTE_2M_ENTRY:
1061         case GTT_TYPE_PPGTT_PTE_1G_ENTRY:
1062                 gvt_vgpu_err("GVT doesn't support 64K/2M/1GB entry\n");
1063                 return -EINVAL;
1064         default:
1065                 GEM_BUG_ON(1);
1066         };
1067
1068         /* direct shadow */
1069         ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn, &dma_addr);
1070         if (ret)
1071                 return -ENXIO;
1072
1073         pte_ops->set_pfn(&se, dma_addr >> PAGE_SHIFT);
1074         ppgtt_set_shadow_entry(spt, &se, index);
1075         return 0;
1076 }
1077
1078 static int ppgtt_populate_spt(struct intel_vgpu_ppgtt_spt *spt)
1079 {
1080         struct intel_vgpu *vgpu = spt->vgpu;
1081         struct intel_gvt *gvt = vgpu->gvt;
1082         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1083         struct intel_vgpu_ppgtt_spt *s;
1084         struct intel_gvt_gtt_entry se, ge;
1085         unsigned long gfn, i;
1086         int ret;
1087
1088         trace_spt_change(spt->vgpu->id, "born", spt,
1089                          spt->guest_page.gfn, spt->shadow_page.type);
1090
1091         for_each_present_guest_entry(spt, &ge, i) {
1092                 if (gtt_type_is_pt(get_next_pt_type(ge.type))) {
1093                         s = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1094                         if (IS_ERR(s)) {
1095                                 ret = PTR_ERR(s);
1096                                 goto fail;
1097                         }
1098                         ppgtt_get_shadow_entry(spt, &se, i);
1099                         ppgtt_generate_shadow_entry(&se, s, &ge);
1100                         ppgtt_set_shadow_entry(spt, &se, i);
1101                 } else {
1102                         gfn = ops->get_pfn(&ge);
1103                         if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1104                                 ops->set_pfn(&se, gvt->gtt.scratch_mfn);
1105                                 ppgtt_set_shadow_entry(spt, &se, i);
1106                                 continue;
1107                         }
1108
1109                         ret = ppgtt_populate_shadow_entry(vgpu, spt, i, &ge);
1110                         if (ret)
1111                                 goto fail;
1112                 }
1113         }
1114         return 0;
1115 fail:
1116         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1117                         spt, ge.val64, ge.type);
1118         return ret;
1119 }
1120
1121 static int ppgtt_handle_guest_entry_removal(struct intel_vgpu_ppgtt_spt *spt,
1122                 struct intel_gvt_gtt_entry *se, unsigned long index)
1123 {
1124         struct intel_vgpu *vgpu = spt->vgpu;
1125         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1126         int ret;
1127
1128         trace_spt_guest_change(spt->vgpu->id, "remove", spt,
1129                                spt->shadow_page.type, se->val64, index);
1130
1131         gvt_vdbg_mm("destroy old shadow entry, type %d, index %lu, value %llx\n",
1132                     se->type, index, se->val64);
1133
1134         if (!ops->test_present(se))
1135                 return 0;
1136
1137         if (ops->get_pfn(se) ==
1138             vgpu->gtt.scratch_pt[spt->shadow_page.type].page_mfn)
1139                 return 0;
1140
1141         if (gtt_type_is_pt(get_next_pt_type(se->type))) {
1142                 struct intel_vgpu_ppgtt_spt *s =
1143                         intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(se));
1144                 if (!s) {
1145                         gvt_vgpu_err("fail to find guest page\n");
1146                         ret = -ENXIO;
1147                         goto fail;
1148                 }
1149                 ret = ppgtt_invalidate_spt(s);
1150                 if (ret)
1151                         goto fail;
1152         } else
1153                 ppgtt_invalidate_pte(spt, se);
1154
1155         return 0;
1156 fail:
1157         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d\n",
1158                         spt, se->val64, se->type);
1159         return ret;
1160 }
1161
1162 static int ppgtt_handle_guest_entry_add(struct intel_vgpu_ppgtt_spt *spt,
1163                 struct intel_gvt_gtt_entry *we, unsigned long index)
1164 {
1165         struct intel_vgpu *vgpu = spt->vgpu;
1166         struct intel_gvt_gtt_entry m;
1167         struct intel_vgpu_ppgtt_spt *s;
1168         int ret;
1169
1170         trace_spt_guest_change(spt->vgpu->id, "add", spt, spt->shadow_page.type,
1171                                we->val64, index);
1172
1173         gvt_vdbg_mm("add shadow entry: type %d, index %lu, value %llx\n",
1174                     we->type, index, we->val64);
1175
1176         if (gtt_type_is_pt(get_next_pt_type(we->type))) {
1177                 s = ppgtt_populate_spt_by_guest_entry(vgpu, we);
1178                 if (IS_ERR(s)) {
1179                         ret = PTR_ERR(s);
1180                         goto fail;
1181                 }
1182                 ppgtt_get_shadow_entry(spt, &m, index);
1183                 ppgtt_generate_shadow_entry(&m, s, we);
1184                 ppgtt_set_shadow_entry(spt, &m, index);
1185         } else {
1186                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, we);
1187                 if (ret)
1188                         goto fail;
1189         }
1190         return 0;
1191 fail:
1192         gvt_vgpu_err("fail: spt %p guest entry 0x%llx type %d\n",
1193                 spt, we->val64, we->type);
1194         return ret;
1195 }
1196
1197 static int sync_oos_page(struct intel_vgpu *vgpu,
1198                 struct intel_vgpu_oos_page *oos_page)
1199 {
1200         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1201         struct intel_gvt *gvt = vgpu->gvt;
1202         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1203         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1204         struct intel_gvt_gtt_entry old, new;
1205         int index;
1206         int ret;
1207
1208         trace_oos_change(vgpu->id, "sync", oos_page->id,
1209                          spt, spt->guest_page.type);
1210
1211         old.type = new.type = get_entry_type(spt->guest_page.type);
1212         old.val64 = new.val64 = 0;
1213
1214         for (index = 0; index < (I915_GTT_PAGE_SIZE >>
1215                                 info->gtt_entry_size_shift); index++) {
1216                 ops->get_entry(oos_page->mem, &old, index, false, 0, vgpu);
1217                 ops->get_entry(NULL, &new, index, true,
1218                                spt->guest_page.gfn << PAGE_SHIFT, vgpu);
1219
1220                 if (old.val64 == new.val64
1221                         && !test_and_clear_bit(index, spt->post_shadow_bitmap))
1222                         continue;
1223
1224                 trace_oos_sync(vgpu->id, oos_page->id,
1225                                 spt, spt->guest_page.type,
1226                                 new.val64, index);
1227
1228                 ret = ppgtt_populate_shadow_entry(vgpu, spt, index, &new);
1229                 if (ret)
1230                         return ret;
1231
1232                 ops->set_entry(oos_page->mem, &new, index, false, 0, vgpu);
1233         }
1234
1235         spt->guest_page.write_cnt = 0;
1236         list_del_init(&spt->post_shadow_list);
1237         return 0;
1238 }
1239
1240 static int detach_oos_page(struct intel_vgpu *vgpu,
1241                 struct intel_vgpu_oos_page *oos_page)
1242 {
1243         struct intel_gvt *gvt = vgpu->gvt;
1244         struct intel_vgpu_ppgtt_spt *spt = oos_page->spt;
1245
1246         trace_oos_change(vgpu->id, "detach", oos_page->id,
1247                          spt, spt->guest_page.type);
1248
1249         spt->guest_page.write_cnt = 0;
1250         spt->guest_page.oos_page = NULL;
1251         oos_page->spt = NULL;
1252
1253         list_del_init(&oos_page->vm_list);
1254         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_free_list_head);
1255
1256         return 0;
1257 }
1258
1259 static int attach_oos_page(struct intel_vgpu_oos_page *oos_page,
1260                 struct intel_vgpu_ppgtt_spt *spt)
1261 {
1262         struct intel_gvt *gvt = spt->vgpu->gvt;
1263         int ret;
1264
1265         ret = intel_gvt_hypervisor_read_gpa(spt->vgpu,
1266                         spt->guest_page.gfn << I915_GTT_PAGE_SHIFT,
1267                         oos_page->mem, I915_GTT_PAGE_SIZE);
1268         if (ret)
1269                 return ret;
1270
1271         oos_page->spt = spt;
1272         spt->guest_page.oos_page = oos_page;
1273
1274         list_move_tail(&oos_page->list, &gvt->gtt.oos_page_use_list_head);
1275
1276         trace_oos_change(spt->vgpu->id, "attach", oos_page->id,
1277                          spt, spt->guest_page.type);
1278         return 0;
1279 }
1280
1281 static int ppgtt_set_guest_page_sync(struct intel_vgpu_ppgtt_spt *spt)
1282 {
1283         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1284         int ret;
1285
1286         ret = intel_vgpu_enable_page_track(spt->vgpu, spt->guest_page.gfn);
1287         if (ret)
1288                 return ret;
1289
1290         trace_oos_change(spt->vgpu->id, "set page sync", oos_page->id,
1291                          spt, spt->guest_page.type);
1292
1293         list_del_init(&oos_page->vm_list);
1294         return sync_oos_page(spt->vgpu, oos_page);
1295 }
1296
1297 static int ppgtt_allocate_oos_page(struct intel_vgpu_ppgtt_spt *spt)
1298 {
1299         struct intel_gvt *gvt = spt->vgpu->gvt;
1300         struct intel_gvt_gtt *gtt = &gvt->gtt;
1301         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1302         int ret;
1303
1304         WARN(oos_page, "shadow PPGTT page has already has a oos page\n");
1305
1306         if (list_empty(&gtt->oos_page_free_list_head)) {
1307                 oos_page = container_of(gtt->oos_page_use_list_head.next,
1308                         struct intel_vgpu_oos_page, list);
1309                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1310                 if (ret)
1311                         return ret;
1312                 ret = detach_oos_page(spt->vgpu, oos_page);
1313                 if (ret)
1314                         return ret;
1315         } else
1316                 oos_page = container_of(gtt->oos_page_free_list_head.next,
1317                         struct intel_vgpu_oos_page, list);
1318         return attach_oos_page(oos_page, spt);
1319 }
1320
1321 static int ppgtt_set_guest_page_oos(struct intel_vgpu_ppgtt_spt *spt)
1322 {
1323         struct intel_vgpu_oos_page *oos_page = spt->guest_page.oos_page;
1324
1325         if (WARN(!oos_page, "shadow PPGTT page should have a oos page\n"))
1326                 return -EINVAL;
1327
1328         trace_oos_change(spt->vgpu->id, "set page out of sync", oos_page->id,
1329                          spt, spt->guest_page.type);
1330
1331         list_add_tail(&oos_page->vm_list, &spt->vgpu->gtt.oos_page_list_head);
1332         return intel_vgpu_disable_page_track(spt->vgpu, spt->guest_page.gfn);
1333 }
1334
1335 /**
1336  * intel_vgpu_sync_oos_pages - sync all the out-of-synced shadow for vGPU
1337  * @vgpu: a vGPU
1338  *
1339  * This function is called before submitting a guest workload to host,
1340  * to sync all the out-of-synced shadow for vGPU
1341  *
1342  * Returns:
1343  * Zero on success, negative error code if failed.
1344  */
1345 int intel_vgpu_sync_oos_pages(struct intel_vgpu *vgpu)
1346 {
1347         struct list_head *pos, *n;
1348         struct intel_vgpu_oos_page *oos_page;
1349         int ret;
1350
1351         if (!enable_out_of_sync)
1352                 return 0;
1353
1354         list_for_each_safe(pos, n, &vgpu->gtt.oos_page_list_head) {
1355                 oos_page = container_of(pos,
1356                                 struct intel_vgpu_oos_page, vm_list);
1357                 ret = ppgtt_set_guest_page_sync(oos_page->spt);
1358                 if (ret)
1359                         return ret;
1360         }
1361         return 0;
1362 }
1363
1364 /*
1365  * The heart of PPGTT shadow page table.
1366  */
1367 static int ppgtt_handle_guest_write_page_table(
1368                 struct intel_vgpu_ppgtt_spt *spt,
1369                 struct intel_gvt_gtt_entry *we, unsigned long index)
1370 {
1371         struct intel_vgpu *vgpu = spt->vgpu;
1372         int type = spt->shadow_page.type;
1373         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1374         struct intel_gvt_gtt_entry old_se;
1375         int new_present;
1376         int ret;
1377
1378         new_present = ops->test_present(we);
1379
1380         /*
1381          * Adding the new entry first and then removing the old one, that can
1382          * guarantee the ppgtt table is validated during the window between
1383          * adding and removal.
1384          */
1385         ppgtt_get_shadow_entry(spt, &old_se, index);
1386
1387         if (new_present) {
1388                 ret = ppgtt_handle_guest_entry_add(spt, we, index);
1389                 if (ret)
1390                         goto fail;
1391         }
1392
1393         ret = ppgtt_handle_guest_entry_removal(spt, &old_se, index);
1394         if (ret)
1395                 goto fail;
1396
1397         if (!new_present) {
1398                 ops->set_pfn(&old_se, vgpu->gtt.scratch_pt[type].page_mfn);
1399                 ppgtt_set_shadow_entry(spt, &old_se, index);
1400         }
1401
1402         return 0;
1403 fail:
1404         gvt_vgpu_err("fail: shadow page %p guest entry 0x%llx type %d.\n",
1405                         spt, we->val64, we->type);
1406         return ret;
1407 }
1408
1409
1410
1411 static inline bool can_do_out_of_sync(struct intel_vgpu_ppgtt_spt *spt)
1412 {
1413         return enable_out_of_sync
1414                 && gtt_type_is_pte_pt(spt->guest_page.type)
1415                 && spt->guest_page.write_cnt >= 2;
1416 }
1417
1418 static void ppgtt_set_post_shadow(struct intel_vgpu_ppgtt_spt *spt,
1419                 unsigned long index)
1420 {
1421         set_bit(index, spt->post_shadow_bitmap);
1422         if (!list_empty(&spt->post_shadow_list))
1423                 return;
1424
1425         list_add_tail(&spt->post_shadow_list,
1426                         &spt->vgpu->gtt.post_shadow_list_head);
1427 }
1428
1429 /**
1430  * intel_vgpu_flush_post_shadow - flush the post shadow transactions
1431  * @vgpu: a vGPU
1432  *
1433  * This function is called before submitting a guest workload to host,
1434  * to flush all the post shadows for a vGPU.
1435  *
1436  * Returns:
1437  * Zero on success, negative error code if failed.
1438  */
1439 int intel_vgpu_flush_post_shadow(struct intel_vgpu *vgpu)
1440 {
1441         struct list_head *pos, *n;
1442         struct intel_vgpu_ppgtt_spt *spt;
1443         struct intel_gvt_gtt_entry ge;
1444         unsigned long index;
1445         int ret;
1446
1447         list_for_each_safe(pos, n, &vgpu->gtt.post_shadow_list_head) {
1448                 spt = container_of(pos, struct intel_vgpu_ppgtt_spt,
1449                                 post_shadow_list);
1450
1451                 for_each_set_bit(index, spt->post_shadow_bitmap,
1452                                 GTT_ENTRY_NUM_IN_ONE_PAGE) {
1453                         ppgtt_get_guest_entry(spt, &ge, index);
1454
1455                         ret = ppgtt_handle_guest_write_page_table(spt,
1456                                                         &ge, index);
1457                         if (ret)
1458                                 return ret;
1459                         clear_bit(index, spt->post_shadow_bitmap);
1460                 }
1461                 list_del_init(&spt->post_shadow_list);
1462         }
1463         return 0;
1464 }
1465
1466 static int ppgtt_handle_guest_write_page_table_bytes(
1467                 struct intel_vgpu_ppgtt_spt *spt,
1468                 u64 pa, void *p_data, int bytes)
1469 {
1470         struct intel_vgpu *vgpu = spt->vgpu;
1471         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1472         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1473         struct intel_gvt_gtt_entry we, se;
1474         unsigned long index;
1475         int ret;
1476
1477         index = (pa & (PAGE_SIZE - 1)) >> info->gtt_entry_size_shift;
1478
1479         ppgtt_get_guest_entry(spt, &we, index);
1480
1481         if (bytes == info->gtt_entry_size) {
1482                 ret = ppgtt_handle_guest_write_page_table(spt, &we, index);
1483                 if (ret)
1484                         return ret;
1485         } else {
1486                 if (!test_bit(index, spt->post_shadow_bitmap)) {
1487                         int type = spt->shadow_page.type;
1488
1489                         ppgtt_get_shadow_entry(spt, &se, index);
1490                         ret = ppgtt_handle_guest_entry_removal(spt, &se, index);
1491                         if (ret)
1492                                 return ret;
1493                         ops->set_pfn(&se, vgpu->gtt.scratch_pt[type].page_mfn);
1494                         ppgtt_set_shadow_entry(spt, &se, index);
1495                 }
1496                 ppgtt_set_post_shadow(spt, index);
1497         }
1498
1499         if (!enable_out_of_sync)
1500                 return 0;
1501
1502         spt->guest_page.write_cnt++;
1503
1504         if (spt->guest_page.oos_page)
1505                 ops->set_entry(spt->guest_page.oos_page->mem, &we, index,
1506                                 false, 0, vgpu);
1507
1508         if (can_do_out_of_sync(spt)) {
1509                 if (!spt->guest_page.oos_page)
1510                         ppgtt_allocate_oos_page(spt);
1511
1512                 ret = ppgtt_set_guest_page_oos(spt);
1513                 if (ret < 0)
1514                         return ret;
1515         }
1516         return 0;
1517 }
1518
1519 static void invalidate_ppgtt_mm(struct intel_vgpu_mm *mm)
1520 {
1521         struct intel_vgpu *vgpu = mm->vgpu;
1522         struct intel_gvt *gvt = vgpu->gvt;
1523         struct intel_gvt_gtt *gtt = &gvt->gtt;
1524         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1525         struct intel_gvt_gtt_entry se;
1526         int index;
1527
1528         if (!mm->ppgtt_mm.shadowed)
1529                 return;
1530
1531         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.shadow_pdps); index++) {
1532                 ppgtt_get_shadow_root_entry(mm, &se, index);
1533
1534                 if (!ops->test_present(&se))
1535                         continue;
1536
1537                 ppgtt_invalidate_spt_by_shadow_entry(vgpu, &se);
1538                 se.val64 = 0;
1539                 ppgtt_set_shadow_root_entry(mm, &se, index);
1540
1541                 trace_spt_guest_change(vgpu->id, "destroy root pointer",
1542                                        NULL, se.type, se.val64, index);
1543         }
1544
1545         mm->ppgtt_mm.shadowed = false;
1546 }
1547
1548
1549 static int shadow_ppgtt_mm(struct intel_vgpu_mm *mm)
1550 {
1551         struct intel_vgpu *vgpu = mm->vgpu;
1552         struct intel_gvt *gvt = vgpu->gvt;
1553         struct intel_gvt_gtt *gtt = &gvt->gtt;
1554         struct intel_gvt_gtt_pte_ops *ops = gtt->pte_ops;
1555         struct intel_vgpu_ppgtt_spt *spt;
1556         struct intel_gvt_gtt_entry ge, se;
1557         int index, ret;
1558
1559         if (mm->ppgtt_mm.shadowed)
1560                 return 0;
1561
1562         mm->ppgtt_mm.shadowed = true;
1563
1564         for (index = 0; index < ARRAY_SIZE(mm->ppgtt_mm.guest_pdps); index++) {
1565                 ppgtt_get_guest_root_entry(mm, &ge, index);
1566
1567                 if (!ops->test_present(&ge))
1568                         continue;
1569
1570                 trace_spt_guest_change(vgpu->id, __func__, NULL,
1571                                        ge.type, ge.val64, index);
1572
1573                 spt = ppgtt_populate_spt_by_guest_entry(vgpu, &ge);
1574                 if (IS_ERR(spt)) {
1575                         gvt_vgpu_err("fail to populate guest root pointer\n");
1576                         ret = PTR_ERR(spt);
1577                         goto fail;
1578                 }
1579                 ppgtt_generate_shadow_entry(&se, spt, &ge);
1580                 ppgtt_set_shadow_root_entry(mm, &se, index);
1581
1582                 trace_spt_guest_change(vgpu->id, "populate root pointer",
1583                                        NULL, se.type, se.val64, index);
1584         }
1585
1586         return 0;
1587 fail:
1588         invalidate_ppgtt_mm(mm);
1589         return ret;
1590 }
1591
1592 static struct intel_vgpu_mm *vgpu_alloc_mm(struct intel_vgpu *vgpu)
1593 {
1594         struct intel_vgpu_mm *mm;
1595
1596         mm = kzalloc(sizeof(*mm), GFP_KERNEL);
1597         if (!mm)
1598                 return NULL;
1599
1600         mm->vgpu = vgpu;
1601         kref_init(&mm->ref);
1602         atomic_set(&mm->pincount, 0);
1603
1604         return mm;
1605 }
1606
1607 static void vgpu_free_mm(struct intel_vgpu_mm *mm)
1608 {
1609         kfree(mm);
1610 }
1611
1612 /**
1613  * intel_vgpu_create_ppgtt_mm - create a ppgtt mm object for a vGPU
1614  * @vgpu: a vGPU
1615  * @root_entry_type: ppgtt root entry type
1616  * @pdps: guest pdps.
1617  *
1618  * This function is used to create a ppgtt mm object for a vGPU.
1619  *
1620  * Returns:
1621  * Zero on success, negative error code in pointer if failed.
1622  */
1623 struct intel_vgpu_mm *intel_vgpu_create_ppgtt_mm(struct intel_vgpu *vgpu,
1624                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
1625 {
1626         struct intel_gvt *gvt = vgpu->gvt;
1627         struct intel_vgpu_mm *mm;
1628         int ret;
1629
1630         mm = vgpu_alloc_mm(vgpu);
1631         if (!mm)
1632                 return ERR_PTR(-ENOMEM);
1633
1634         mm->type = INTEL_GVT_MM_PPGTT;
1635
1636         GEM_BUG_ON(root_entry_type != GTT_TYPE_PPGTT_ROOT_L3_ENTRY &&
1637                    root_entry_type != GTT_TYPE_PPGTT_ROOT_L4_ENTRY);
1638         mm->ppgtt_mm.root_entry_type = root_entry_type;
1639
1640         INIT_LIST_HEAD(&mm->ppgtt_mm.list);
1641         INIT_LIST_HEAD(&mm->ppgtt_mm.lru_list);
1642
1643         if (root_entry_type == GTT_TYPE_PPGTT_ROOT_L4_ENTRY)
1644                 mm->ppgtt_mm.guest_pdps[0] = pdps[0];
1645         else
1646                 memcpy(mm->ppgtt_mm.guest_pdps, pdps,
1647                        sizeof(mm->ppgtt_mm.guest_pdps));
1648
1649         ret = shadow_ppgtt_mm(mm);
1650         if (ret) {
1651                 gvt_vgpu_err("failed to shadow ppgtt mm\n");
1652                 vgpu_free_mm(mm);
1653                 return ERR_PTR(ret);
1654         }
1655
1656         list_add_tail(&mm->ppgtt_mm.list, &vgpu->gtt.ppgtt_mm_list_head);
1657         list_add_tail(&mm->ppgtt_mm.lru_list, &gvt->gtt.ppgtt_mm_lru_list_head);
1658         return mm;
1659 }
1660
1661 static struct intel_vgpu_mm *intel_vgpu_create_ggtt_mm(struct intel_vgpu *vgpu)
1662 {
1663         struct intel_vgpu_mm *mm;
1664         unsigned long nr_entries;
1665
1666         mm = vgpu_alloc_mm(vgpu);
1667         if (!mm)
1668                 return ERR_PTR(-ENOMEM);
1669
1670         mm->type = INTEL_GVT_MM_GGTT;
1671
1672         nr_entries = gvt_ggtt_gm_sz(vgpu->gvt) >> I915_GTT_PAGE_SHIFT;
1673         mm->ggtt_mm.virtual_ggtt = vzalloc(nr_entries *
1674                                         vgpu->gvt->device_info.gtt_entry_size);
1675         if (!mm->ggtt_mm.virtual_ggtt) {
1676                 vgpu_free_mm(mm);
1677                 return ERR_PTR(-ENOMEM);
1678         }
1679
1680         return mm;
1681 }
1682
1683 /**
1684  * _intel_vgpu_mm_release - destroy a mm object
1685  * @mm_ref: a kref object
1686  *
1687  * This function is used to destroy a mm object for vGPU
1688  *
1689  */
1690 void _intel_vgpu_mm_release(struct kref *mm_ref)
1691 {
1692         struct intel_vgpu_mm *mm = container_of(mm_ref, typeof(*mm), ref);
1693
1694         if (GEM_WARN_ON(atomic_read(&mm->pincount)))
1695                 gvt_err("vgpu mm pin count bug detected\n");
1696
1697         if (mm->type == INTEL_GVT_MM_PPGTT) {
1698                 list_del(&mm->ppgtt_mm.list);
1699                 list_del(&mm->ppgtt_mm.lru_list);
1700                 invalidate_ppgtt_mm(mm);
1701         } else {
1702                 vfree(mm->ggtt_mm.virtual_ggtt);
1703         }
1704
1705         vgpu_free_mm(mm);
1706 }
1707
1708 /**
1709  * intel_vgpu_unpin_mm - decrease the pin count of a vGPU mm object
1710  * @mm: a vGPU mm object
1711  *
1712  * This function is called when user doesn't want to use a vGPU mm object
1713  */
1714 void intel_vgpu_unpin_mm(struct intel_vgpu_mm *mm)
1715 {
1716         atomic_dec(&mm->pincount);
1717 }
1718
1719 /**
1720  * intel_vgpu_pin_mm - increase the pin count of a vGPU mm object
1721  * @vgpu: a vGPU
1722  *
1723  * This function is called when user wants to use a vGPU mm object. If this
1724  * mm object hasn't been shadowed yet, the shadow will be populated at this
1725  * time.
1726  *
1727  * Returns:
1728  * Zero on success, negative error code if failed.
1729  */
1730 int intel_vgpu_pin_mm(struct intel_vgpu_mm *mm)
1731 {
1732         int ret;
1733
1734         atomic_inc(&mm->pincount);
1735
1736         if (mm->type == INTEL_GVT_MM_PPGTT) {
1737                 ret = shadow_ppgtt_mm(mm);
1738                 if (ret)
1739                         return ret;
1740
1741                 list_move_tail(&mm->ppgtt_mm.lru_list,
1742                                &mm->vgpu->gvt->gtt.ppgtt_mm_lru_list_head);
1743
1744         }
1745
1746         return 0;
1747 }
1748
1749 static int reclaim_one_ppgtt_mm(struct intel_gvt *gvt)
1750 {
1751         struct intel_vgpu_mm *mm;
1752         struct list_head *pos, *n;
1753
1754         list_for_each_safe(pos, n, &gvt->gtt.ppgtt_mm_lru_list_head) {
1755                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.lru_list);
1756
1757                 if (atomic_read(&mm->pincount))
1758                         continue;
1759
1760                 list_del_init(&mm->ppgtt_mm.lru_list);
1761                 invalidate_ppgtt_mm(mm);
1762                 return 1;
1763         }
1764         return 0;
1765 }
1766
1767 /*
1768  * GMA translation APIs.
1769  */
1770 static inline int ppgtt_get_next_level_entry(struct intel_vgpu_mm *mm,
1771                 struct intel_gvt_gtt_entry *e, unsigned long index, bool guest)
1772 {
1773         struct intel_vgpu *vgpu = mm->vgpu;
1774         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
1775         struct intel_vgpu_ppgtt_spt *s;
1776
1777         s = intel_vgpu_find_spt_by_mfn(vgpu, ops->get_pfn(e));
1778         if (!s)
1779                 return -ENXIO;
1780
1781         if (!guest)
1782                 ppgtt_get_shadow_entry(s, e, index);
1783         else
1784                 ppgtt_get_guest_entry(s, e, index);
1785         return 0;
1786 }
1787
1788 /**
1789  * intel_vgpu_gma_to_gpa - translate a gma to GPA
1790  * @mm: mm object. could be a PPGTT or GGTT mm object
1791  * @gma: graphics memory address in this mm object
1792  *
1793  * This function is used to translate a graphics memory address in specific
1794  * graphics memory space to guest physical address.
1795  *
1796  * Returns:
1797  * Guest physical address on success, INTEL_GVT_INVALID_ADDR if failed.
1798  */
1799 unsigned long intel_vgpu_gma_to_gpa(struct intel_vgpu_mm *mm, unsigned long gma)
1800 {
1801         struct intel_vgpu *vgpu = mm->vgpu;
1802         struct intel_gvt *gvt = vgpu->gvt;
1803         struct intel_gvt_gtt_pte_ops *pte_ops = gvt->gtt.pte_ops;
1804         struct intel_gvt_gtt_gma_ops *gma_ops = gvt->gtt.gma_ops;
1805         unsigned long gpa = INTEL_GVT_INVALID_ADDR;
1806         unsigned long gma_index[4];
1807         struct intel_gvt_gtt_entry e;
1808         int i, levels = 0;
1809         int ret;
1810
1811         GEM_BUG_ON(mm->type != INTEL_GVT_MM_GGTT &&
1812                    mm->type != INTEL_GVT_MM_PPGTT);
1813
1814         if (mm->type == INTEL_GVT_MM_GGTT) {
1815                 if (!vgpu_gmadr_is_valid(vgpu, gma))
1816                         goto err;
1817
1818                 ggtt_get_guest_entry(mm, &e,
1819                         gma_ops->gma_to_ggtt_pte_index(gma));
1820
1821                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT)
1822                         + (gma & ~I915_GTT_PAGE_MASK);
1823
1824                 trace_gma_translate(vgpu->id, "ggtt", 0, 0, gma, gpa);
1825         } else {
1826                 switch (mm->ppgtt_mm.root_entry_type) {
1827                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
1828                         ppgtt_get_shadow_root_entry(mm, &e, 0);
1829
1830                         gma_index[0] = gma_ops->gma_to_pml4_index(gma);
1831                         gma_index[1] = gma_ops->gma_to_l4_pdp_index(gma);
1832                         gma_index[2] = gma_ops->gma_to_pde_index(gma);
1833                         gma_index[3] = gma_ops->gma_to_pte_index(gma);
1834                         levels = 4;
1835                         break;
1836                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
1837                         ppgtt_get_shadow_root_entry(mm, &e,
1838                                         gma_ops->gma_to_l3_pdp_index(gma));
1839
1840                         gma_index[0] = gma_ops->gma_to_pde_index(gma);
1841                         gma_index[1] = gma_ops->gma_to_pte_index(gma);
1842                         levels = 2;
1843                         break;
1844                 default:
1845                         GEM_BUG_ON(1);
1846                 }
1847
1848                 /* walk the shadow page table and get gpa from guest entry */
1849                 for (i = 0; i < levels; i++) {
1850                         ret = ppgtt_get_next_level_entry(mm, &e, gma_index[i],
1851                                 (i == levels - 1));
1852                         if (ret)
1853                                 goto err;
1854
1855                         if (!pte_ops->test_present(&e)) {
1856                                 gvt_dbg_core("GMA 0x%lx is not present\n", gma);
1857                                 goto err;
1858                         }
1859                 }
1860
1861                 gpa = (pte_ops->get_pfn(&e) << I915_GTT_PAGE_SHIFT) +
1862                                         (gma & ~I915_GTT_PAGE_MASK);
1863                 trace_gma_translate(vgpu->id, "ppgtt", 0,
1864                                     mm->ppgtt_mm.root_entry_type, gma, gpa);
1865         }
1866
1867         return gpa;
1868 err:
1869         gvt_vgpu_err("invalid mm type: %d gma %lx\n", mm->type, gma);
1870         return INTEL_GVT_INVALID_ADDR;
1871 }
1872
1873 static int emulate_ggtt_mmio_read(struct intel_vgpu *vgpu,
1874         unsigned int off, void *p_data, unsigned int bytes)
1875 {
1876         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1877         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1878         unsigned long index = off >> info->gtt_entry_size_shift;
1879         struct intel_gvt_gtt_entry e;
1880
1881         if (bytes != 4 && bytes != 8)
1882                 return -EINVAL;
1883
1884         ggtt_get_guest_entry(ggtt_mm, &e, index);
1885         memcpy(p_data, (void *)&e.val64 + (off & (info->gtt_entry_size - 1)),
1886                         bytes);
1887         return 0;
1888 }
1889
1890 /**
1891  * intel_vgpu_emulate_gtt_mmio_read - emulate GTT MMIO register read
1892  * @vgpu: a vGPU
1893  * @off: register offset
1894  * @p_data: data will be returned to guest
1895  * @bytes: data length
1896  *
1897  * This function is used to emulate the GTT MMIO register read
1898  *
1899  * Returns:
1900  * Zero on success, error code if failed.
1901  */
1902 int intel_vgpu_emulate_ggtt_mmio_read(struct intel_vgpu *vgpu, unsigned int off,
1903         void *p_data, unsigned int bytes)
1904 {
1905         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
1906         int ret;
1907
1908         if (bytes != 4 && bytes != 8)
1909                 return -EINVAL;
1910
1911         off -= info->gtt_start_offset;
1912         ret = emulate_ggtt_mmio_read(vgpu, off, p_data, bytes);
1913         return ret;
1914 }
1915
1916 static void ggtt_invalidate_pte(struct intel_vgpu *vgpu,
1917                 struct intel_gvt_gtt_entry *entry)
1918 {
1919         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
1920         unsigned long pfn;
1921
1922         pfn = pte_ops->get_pfn(entry);
1923         if (pfn != vgpu->gvt->gtt.scratch_mfn)
1924                 intel_gvt_hypervisor_dma_unmap_guest_page(vgpu,
1925                                                 pfn << PAGE_SHIFT);
1926 }
1927
1928 static int emulate_ggtt_mmio_write(struct intel_vgpu *vgpu, unsigned int off,
1929         void *p_data, unsigned int bytes)
1930 {
1931         struct intel_gvt *gvt = vgpu->gvt;
1932         const struct intel_gvt_device_info *info = &gvt->device_info;
1933         struct intel_vgpu_mm *ggtt_mm = vgpu->gtt.ggtt_mm;
1934         struct intel_gvt_gtt_pte_ops *ops = gvt->gtt.pte_ops;
1935         unsigned long g_gtt_index = off >> info->gtt_entry_size_shift;
1936         unsigned long gma, gfn;
1937         struct intel_gvt_gtt_entry e, m;
1938         dma_addr_t dma_addr;
1939         int ret;
1940
1941         if (bytes != 4 && bytes != 8)
1942                 return -EINVAL;
1943
1944         gma = g_gtt_index << I915_GTT_PAGE_SHIFT;
1945
1946         /* the VM may configure the whole GM space when ballooning is used */
1947         if (!vgpu_gmadr_is_valid(vgpu, gma))
1948                 return 0;
1949
1950         ggtt_get_guest_entry(ggtt_mm, &e, g_gtt_index);
1951
1952         memcpy((void *)&e.val64 + (off & (info->gtt_entry_size - 1)), p_data,
1953                         bytes);
1954
1955         if (ops->test_present(&e)) {
1956                 gfn = ops->get_pfn(&e);
1957                 m = e;
1958
1959                 /* one PTE update may be issued in multiple writes and the
1960                  * first write may not construct a valid gfn
1961                  */
1962                 if (!intel_gvt_hypervisor_is_valid_gfn(vgpu, gfn)) {
1963                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1964                         goto out;
1965                 }
1966
1967                 ret = intel_gvt_hypervisor_dma_map_guest_page(vgpu, gfn,
1968                                                               &dma_addr);
1969                 if (ret) {
1970                         gvt_vgpu_err("fail to populate guest ggtt entry\n");
1971                         /* guest driver may read/write the entry when partial
1972                          * update the entry in this situation p2m will fail
1973                          * settting the shadow entry to point to a scratch page
1974                          */
1975                         ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1976                 } else
1977                         ops->set_pfn(&m, dma_addr >> PAGE_SHIFT);
1978         } else {
1979                 ggtt_get_host_entry(ggtt_mm, &m, g_gtt_index);
1980                 ggtt_invalidate_pte(vgpu, &m);
1981                 ops->set_pfn(&m, gvt->gtt.scratch_mfn);
1982                 ops->clear_present(&m);
1983         }
1984
1985 out:
1986         ggtt_set_host_entry(ggtt_mm, &m, g_gtt_index);
1987         ggtt_invalidate(gvt->dev_priv);
1988         ggtt_set_guest_entry(ggtt_mm, &e, g_gtt_index);
1989         return 0;
1990 }
1991
1992 /*
1993  * intel_vgpu_emulate_ggtt_mmio_write - emulate GTT MMIO register write
1994  * @vgpu: a vGPU
1995  * @off: register offset
1996  * @p_data: data from guest write
1997  * @bytes: data length
1998  *
1999  * This function is used to emulate the GTT MMIO register write
2000  *
2001  * Returns:
2002  * Zero on success, error code if failed.
2003  */
2004 int intel_vgpu_emulate_ggtt_mmio_write(struct intel_vgpu *vgpu,
2005                 unsigned int off, void *p_data, unsigned int bytes)
2006 {
2007         const struct intel_gvt_device_info *info = &vgpu->gvt->device_info;
2008         int ret;
2009
2010         if (bytes != 4 && bytes != 8)
2011                 return -EINVAL;
2012
2013         off -= info->gtt_start_offset;
2014         ret = emulate_ggtt_mmio_write(vgpu, off, p_data, bytes);
2015         return ret;
2016 }
2017
2018 static int alloc_scratch_pages(struct intel_vgpu *vgpu,
2019                 intel_gvt_gtt_type_t type)
2020 {
2021         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2022         struct intel_gvt_gtt_pte_ops *ops = vgpu->gvt->gtt.pte_ops;
2023         int page_entry_num = I915_GTT_PAGE_SIZE >>
2024                                 vgpu->gvt->device_info.gtt_entry_size_shift;
2025         void *scratch_pt;
2026         int i;
2027         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2028         dma_addr_t daddr;
2029
2030         if (WARN_ON(type < GTT_TYPE_PPGTT_PTE_PT || type >= GTT_TYPE_MAX))
2031                 return -EINVAL;
2032
2033         scratch_pt = (void *)get_zeroed_page(GFP_KERNEL);
2034         if (!scratch_pt) {
2035                 gvt_vgpu_err("fail to allocate scratch page\n");
2036                 return -ENOMEM;
2037         }
2038
2039         daddr = dma_map_page(dev, virt_to_page(scratch_pt), 0,
2040                         4096, PCI_DMA_BIDIRECTIONAL);
2041         if (dma_mapping_error(dev, daddr)) {
2042                 gvt_vgpu_err("fail to dmamap scratch_pt\n");
2043                 __free_page(virt_to_page(scratch_pt));
2044                 return -ENOMEM;
2045         }
2046         gtt->scratch_pt[type].page_mfn =
2047                 (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2048         gtt->scratch_pt[type].page = virt_to_page(scratch_pt);
2049         gvt_dbg_mm("vgpu%d create scratch_pt: type %d mfn=0x%lx\n",
2050                         vgpu->id, type, gtt->scratch_pt[type].page_mfn);
2051
2052         /* Build the tree by full filled the scratch pt with the entries which
2053          * point to the next level scratch pt or scratch page. The
2054          * scratch_pt[type] indicate the scratch pt/scratch page used by the
2055          * 'type' pt.
2056          * e.g. scratch_pt[GTT_TYPE_PPGTT_PDE_PT] is used by
2057          * GTT_TYPE_PPGTT_PDE_PT level pt, that means this scratch_pt it self
2058          * is GTT_TYPE_PPGTT_PTE_PT, and full filled by scratch page mfn.
2059          */
2060         if (type > GTT_TYPE_PPGTT_PTE_PT) {
2061                 struct intel_gvt_gtt_entry se;
2062
2063                 memset(&se, 0, sizeof(struct intel_gvt_gtt_entry));
2064                 se.type = get_entry_type(type - 1);
2065                 ops->set_pfn(&se, gtt->scratch_pt[type - 1].page_mfn);
2066
2067                 /* The entry parameters like present/writeable/cache type
2068                  * set to the same as i915's scratch page tree.
2069                  */
2070                 se.val64 |= _PAGE_PRESENT | _PAGE_RW;
2071                 if (type == GTT_TYPE_PPGTT_PDE_PT)
2072                         se.val64 |= PPAT_CACHED;
2073
2074                 for (i = 0; i < page_entry_num; i++)
2075                         ops->set_entry(scratch_pt, &se, i, false, 0, vgpu);
2076         }
2077
2078         return 0;
2079 }
2080
2081 static int release_scratch_page_tree(struct intel_vgpu *vgpu)
2082 {
2083         int i;
2084         struct device *dev = &vgpu->gvt->dev_priv->drm.pdev->dev;
2085         dma_addr_t daddr;
2086
2087         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2088                 if (vgpu->gtt.scratch_pt[i].page != NULL) {
2089                         daddr = (dma_addr_t)(vgpu->gtt.scratch_pt[i].page_mfn <<
2090                                         I915_GTT_PAGE_SHIFT);
2091                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2092                         __free_page(vgpu->gtt.scratch_pt[i].page);
2093                         vgpu->gtt.scratch_pt[i].page = NULL;
2094                         vgpu->gtt.scratch_pt[i].page_mfn = 0;
2095                 }
2096         }
2097
2098         return 0;
2099 }
2100
2101 static int create_scratch_page_tree(struct intel_vgpu *vgpu)
2102 {
2103         int i, ret;
2104
2105         for (i = GTT_TYPE_PPGTT_PTE_PT; i < GTT_TYPE_MAX; i++) {
2106                 ret = alloc_scratch_pages(vgpu, i);
2107                 if (ret)
2108                         goto err;
2109         }
2110
2111         return 0;
2112
2113 err:
2114         release_scratch_page_tree(vgpu);
2115         return ret;
2116 }
2117
2118 /**
2119  * intel_vgpu_init_gtt - initialize per-vGPU graphics memory virulization
2120  * @vgpu: a vGPU
2121  *
2122  * This function is used to initialize per-vGPU graphics memory virtualization
2123  * components.
2124  *
2125  * Returns:
2126  * Zero on success, error code if failed.
2127  */
2128 int intel_vgpu_init_gtt(struct intel_vgpu *vgpu)
2129 {
2130         struct intel_vgpu_gtt *gtt = &vgpu->gtt;
2131
2132         INIT_RADIX_TREE(&gtt->spt_tree, GFP_KERNEL);
2133
2134         INIT_LIST_HEAD(&gtt->ppgtt_mm_list_head);
2135         INIT_LIST_HEAD(&gtt->oos_page_list_head);
2136         INIT_LIST_HEAD(&gtt->post_shadow_list_head);
2137
2138         gtt->ggtt_mm = intel_vgpu_create_ggtt_mm(vgpu);
2139         if (IS_ERR(gtt->ggtt_mm)) {
2140                 gvt_vgpu_err("fail to create mm for ggtt.\n");
2141                 return PTR_ERR(gtt->ggtt_mm);
2142         }
2143
2144         intel_vgpu_reset_ggtt(vgpu, false);
2145
2146         return create_scratch_page_tree(vgpu);
2147 }
2148
2149 static void intel_vgpu_destroy_all_ppgtt_mm(struct intel_vgpu *vgpu)
2150 {
2151         struct list_head *pos, *n;
2152         struct intel_vgpu_mm *mm;
2153
2154         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2155                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2156                 intel_vgpu_destroy_mm(mm);
2157         }
2158
2159         if (GEM_WARN_ON(!list_empty(&vgpu->gtt.ppgtt_mm_list_head)))
2160                 gvt_err("vgpu ppgtt mm is not fully destroyed\n");
2161
2162         if (GEM_WARN_ON(!radix_tree_empty(&vgpu->gtt.spt_tree))) {
2163                 gvt_err("Why we still has spt not freed?\n");
2164                 ppgtt_free_all_spt(vgpu);
2165         }
2166 }
2167
2168 static void intel_vgpu_destroy_ggtt_mm(struct intel_vgpu *vgpu)
2169 {
2170         intel_vgpu_destroy_mm(vgpu->gtt.ggtt_mm);
2171         vgpu->gtt.ggtt_mm = NULL;
2172 }
2173
2174 /**
2175  * intel_vgpu_clean_gtt - clean up per-vGPU graphics memory virulization
2176  * @vgpu: a vGPU
2177  *
2178  * This function is used to clean up per-vGPU graphics memory virtualization
2179  * components.
2180  *
2181  * Returns:
2182  * Zero on success, error code if failed.
2183  */
2184 void intel_vgpu_clean_gtt(struct intel_vgpu *vgpu)
2185 {
2186         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2187         intel_vgpu_destroy_ggtt_mm(vgpu);
2188         release_scratch_page_tree(vgpu);
2189 }
2190
2191 static void clean_spt_oos(struct intel_gvt *gvt)
2192 {
2193         struct intel_gvt_gtt *gtt = &gvt->gtt;
2194         struct list_head *pos, *n;
2195         struct intel_vgpu_oos_page *oos_page;
2196
2197         WARN(!list_empty(&gtt->oos_page_use_list_head),
2198                 "someone is still using oos page\n");
2199
2200         list_for_each_safe(pos, n, &gtt->oos_page_free_list_head) {
2201                 oos_page = container_of(pos, struct intel_vgpu_oos_page, list);
2202                 list_del(&oos_page->list);
2203                 kfree(oos_page);
2204         }
2205 }
2206
2207 static int setup_spt_oos(struct intel_gvt *gvt)
2208 {
2209         struct intel_gvt_gtt *gtt = &gvt->gtt;
2210         struct intel_vgpu_oos_page *oos_page;
2211         int i;
2212         int ret;
2213
2214         INIT_LIST_HEAD(&gtt->oos_page_free_list_head);
2215         INIT_LIST_HEAD(&gtt->oos_page_use_list_head);
2216
2217         for (i = 0; i < preallocated_oos_pages; i++) {
2218                 oos_page = kzalloc(sizeof(*oos_page), GFP_KERNEL);
2219                 if (!oos_page) {
2220                         ret = -ENOMEM;
2221                         goto fail;
2222                 }
2223
2224                 INIT_LIST_HEAD(&oos_page->list);
2225                 INIT_LIST_HEAD(&oos_page->vm_list);
2226                 oos_page->id = i;
2227                 list_add_tail(&oos_page->list, &gtt->oos_page_free_list_head);
2228         }
2229
2230         gvt_dbg_mm("%d oos pages preallocated\n", i);
2231
2232         return 0;
2233 fail:
2234         clean_spt_oos(gvt);
2235         return ret;
2236 }
2237
2238 /**
2239  * intel_vgpu_find_ppgtt_mm - find a PPGTT mm object
2240  * @vgpu: a vGPU
2241  * @page_table_level: PPGTT page table level
2242  * @root_entry: PPGTT page table root pointers
2243  *
2244  * This function is used to find a PPGTT mm object from mm object pool
2245  *
2246  * Returns:
2247  * pointer to mm object on success, NULL if failed.
2248  */
2249 struct intel_vgpu_mm *intel_vgpu_find_ppgtt_mm(struct intel_vgpu *vgpu,
2250                 u64 pdps[])
2251 {
2252         struct intel_vgpu_mm *mm;
2253         struct list_head *pos;
2254
2255         list_for_each(pos, &vgpu->gtt.ppgtt_mm_list_head) {
2256                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2257
2258                 switch (mm->ppgtt_mm.root_entry_type) {
2259                 case GTT_TYPE_PPGTT_ROOT_L4_ENTRY:
2260                         if (pdps[0] == mm->ppgtt_mm.guest_pdps[0])
2261                                 return mm;
2262                         break;
2263                 case GTT_TYPE_PPGTT_ROOT_L3_ENTRY:
2264                         if (!memcmp(pdps, mm->ppgtt_mm.guest_pdps,
2265                                     sizeof(mm->ppgtt_mm.guest_pdps)))
2266                                 return mm;
2267                         break;
2268                 default:
2269                         GEM_BUG_ON(1);
2270                 }
2271         }
2272         return NULL;
2273 }
2274
2275 /**
2276  * intel_vgpu_get_ppgtt_mm - get or create a PPGTT mm object.
2277  * @vgpu: a vGPU
2278  * @root_entry_type: ppgtt root entry type
2279  * @pdps: guest pdps
2280  *
2281  * This function is used to find or create a PPGTT mm object from a guest.
2282  *
2283  * Returns:
2284  * Zero on success, negative error code if failed.
2285  */
2286 struct intel_vgpu_mm *intel_vgpu_get_ppgtt_mm(struct intel_vgpu *vgpu,
2287                 intel_gvt_gtt_type_t root_entry_type, u64 pdps[])
2288 {
2289         struct intel_vgpu_mm *mm;
2290
2291         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2292         if (mm) {
2293                 intel_vgpu_mm_get(mm);
2294         } else {
2295                 mm = intel_vgpu_create_ppgtt_mm(vgpu, root_entry_type, pdps);
2296                 if (IS_ERR(mm))
2297                         gvt_vgpu_err("fail to create mm\n");
2298         }
2299         return mm;
2300 }
2301
2302 /**
2303  * intel_vgpu_put_ppgtt_mm - find and put a PPGTT mm object.
2304  * @vgpu: a vGPU
2305  * @pdps: guest pdps
2306  *
2307  * This function is used to find a PPGTT mm object from a guest and destroy it.
2308  *
2309  * Returns:
2310  * Zero on success, negative error code if failed.
2311  */
2312 int intel_vgpu_put_ppgtt_mm(struct intel_vgpu *vgpu, u64 pdps[])
2313 {
2314         struct intel_vgpu_mm *mm;
2315
2316         mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
2317         if (!mm) {
2318                 gvt_vgpu_err("fail to find ppgtt instance.\n");
2319                 return -EINVAL;
2320         }
2321         intel_vgpu_mm_put(mm);
2322         return 0;
2323 }
2324
2325 /**
2326  * intel_gvt_init_gtt - initialize mm components of a GVT device
2327  * @gvt: GVT device
2328  *
2329  * This function is called at the initialization stage, to initialize
2330  * the mm components of a GVT device.
2331  *
2332  * Returns:
2333  * zero on success, negative error code if failed.
2334  */
2335 int intel_gvt_init_gtt(struct intel_gvt *gvt)
2336 {
2337         int ret;
2338         void *page;
2339         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2340         dma_addr_t daddr;
2341
2342         gvt_dbg_core("init gtt\n");
2343
2344         gvt->gtt.pte_ops = &gen8_gtt_pte_ops;
2345         gvt->gtt.gma_ops = &gen8_gtt_gma_ops;
2346
2347         page = (void *)get_zeroed_page(GFP_KERNEL);
2348         if (!page) {
2349                 gvt_err("fail to allocate scratch ggtt page\n");
2350                 return -ENOMEM;
2351         }
2352
2353         daddr = dma_map_page(dev, virt_to_page(page), 0,
2354                         4096, PCI_DMA_BIDIRECTIONAL);
2355         if (dma_mapping_error(dev, daddr)) {
2356                 gvt_err("fail to dmamap scratch ggtt page\n");
2357                 __free_page(virt_to_page(page));
2358                 return -ENOMEM;
2359         }
2360
2361         gvt->gtt.scratch_page = virt_to_page(page);
2362         gvt->gtt.scratch_mfn = (unsigned long)(daddr >> I915_GTT_PAGE_SHIFT);
2363
2364         if (enable_out_of_sync) {
2365                 ret = setup_spt_oos(gvt);
2366                 if (ret) {
2367                         gvt_err("fail to initialize SPT oos\n");
2368                         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2369                         __free_page(gvt->gtt.scratch_page);
2370                         return ret;
2371                 }
2372         }
2373         INIT_LIST_HEAD(&gvt->gtt.ppgtt_mm_lru_list_head);
2374         return 0;
2375 }
2376
2377 /**
2378  * intel_gvt_clean_gtt - clean up mm components of a GVT device
2379  * @gvt: GVT device
2380  *
2381  * This function is called at the driver unloading stage, to clean up the
2382  * the mm components of a GVT device.
2383  *
2384  */
2385 void intel_gvt_clean_gtt(struct intel_gvt *gvt)
2386 {
2387         struct device *dev = &gvt->dev_priv->drm.pdev->dev;
2388         dma_addr_t daddr = (dma_addr_t)(gvt->gtt.scratch_mfn <<
2389                                         I915_GTT_PAGE_SHIFT);
2390
2391         dma_unmap_page(dev, daddr, 4096, PCI_DMA_BIDIRECTIONAL);
2392
2393         __free_page(gvt->gtt.scratch_page);
2394
2395         if (enable_out_of_sync)
2396                 clean_spt_oos(gvt);
2397 }
2398
2399 /**
2400  * intel_vgpu_invalidate_ppgtt - invalidate PPGTT instances
2401  * @vgpu: a vGPU
2402  *
2403  * This function is called when invalidate all PPGTT instances of a vGPU.
2404  *
2405  */
2406 void intel_vgpu_invalidate_ppgtt(struct intel_vgpu *vgpu)
2407 {
2408         struct list_head *pos, *n;
2409         struct intel_vgpu_mm *mm;
2410
2411         list_for_each_safe(pos, n, &vgpu->gtt.ppgtt_mm_list_head) {
2412                 mm = container_of(pos, struct intel_vgpu_mm, ppgtt_mm.list);
2413                 if (mm->type == INTEL_GVT_MM_PPGTT) {
2414                         list_del_init(&mm->ppgtt_mm.lru_list);
2415                         if (mm->ppgtt_mm.shadowed)
2416                                 invalidate_ppgtt_mm(mm);
2417                 }
2418         }
2419 }
2420
2421 /**
2422  * intel_vgpu_reset_ggtt - reset the GGTT entry
2423  * @vgpu: a vGPU
2424  * @invalidate_old: invalidate old entries
2425  *
2426  * This function is called at the vGPU create stage
2427  * to reset all the GGTT entries.
2428  *
2429  */
2430 void intel_vgpu_reset_ggtt(struct intel_vgpu *vgpu, bool invalidate_old)
2431 {
2432         struct intel_gvt *gvt = vgpu->gvt;
2433         struct drm_i915_private *dev_priv = gvt->dev_priv;
2434         struct intel_gvt_gtt_pte_ops *pte_ops = vgpu->gvt->gtt.pte_ops;
2435         struct intel_gvt_gtt_entry entry = {.type = GTT_TYPE_GGTT_PTE};
2436         struct intel_gvt_gtt_entry old_entry;
2437         u32 index;
2438         u32 num_entries;
2439
2440         pte_ops->set_pfn(&entry, gvt->gtt.scratch_mfn);
2441         pte_ops->set_present(&entry);
2442
2443         index = vgpu_aperture_gmadr_base(vgpu) >> PAGE_SHIFT;
2444         num_entries = vgpu_aperture_sz(vgpu) >> PAGE_SHIFT;
2445         while (num_entries--) {
2446                 if (invalidate_old) {
2447                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2448                         ggtt_invalidate_pte(vgpu, &old_entry);
2449                 }
2450                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2451         }
2452
2453         index = vgpu_hidden_gmadr_base(vgpu) >> PAGE_SHIFT;
2454         num_entries = vgpu_hidden_sz(vgpu) >> PAGE_SHIFT;
2455         while (num_entries--) {
2456                 if (invalidate_old) {
2457                         ggtt_get_host_entry(vgpu->gtt.ggtt_mm, &old_entry, index);
2458                         ggtt_invalidate_pte(vgpu, &old_entry);
2459                 }
2460                 ggtt_set_host_entry(vgpu->gtt.ggtt_mm, &entry, index++);
2461         }
2462
2463         ggtt_invalidate(dev_priv);
2464 }
2465
2466 /**
2467  * intel_vgpu_reset_gtt - reset the all GTT related status
2468  * @vgpu: a vGPU
2469  *
2470  * This function is called from vfio core to reset reset all
2471  * GTT related status, including GGTT, PPGTT, scratch page.
2472  *
2473  */
2474 void intel_vgpu_reset_gtt(struct intel_vgpu *vgpu)
2475 {
2476         /* Shadow pages are only created when there is no page
2477          * table tracking data, so remove page tracking data after
2478          * removing the shadow pages.
2479          */
2480         intel_vgpu_destroy_all_ppgtt_mm(vgpu);
2481         intel_vgpu_reset_ggtt(vgpu, true);
2482 }