Merge tag 'rproc-v5.14' of git://git.kernel.org/pub/scm/linux/kernel/git/andersson...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38
39 #include "i915_drv.h"
40 #include "gt/intel_gpu_commands.h"
41 #include "gt/intel_lrc.h"
42 #include "gt/intel_ring.h"
43 #include "gt/intel_gt_requests.h"
44 #include "gt/shmem_utils.h"
45 #include "gvt.h"
46 #include "i915_pvinfo.h"
47 #include "trace.h"
48
49 #include "gem/i915_gem_context.h"
50 #include "gem/i915_gem_pm.h"
51 #include "gt/intel_context.h"
52
53 #define INVALID_OP    (~0U)
54
55 #define OP_LEN_MI           9
56 #define OP_LEN_2D           10
57 #define OP_LEN_3D_MEDIA     16
58 #define OP_LEN_MFX_VC       16
59 #define OP_LEN_VEBOX        16
60
61 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
62
63 struct sub_op_bits {
64         int hi;
65         int low;
66 };
67 struct decode_info {
68         const char *name;
69         int op_len;
70         int nr_sub_op;
71         const struct sub_op_bits *sub_op;
72 };
73
74 #define   MAX_CMD_BUDGET                        0x7fffffff
75 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
76 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
77 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
78
79 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
80 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
81 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
82
83 /* Render Command Map */
84
85 /* MI_* command Opcode (28:23) */
86 #define OP_MI_NOOP                          0x0
87 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
88 #define OP_MI_USER_INTERRUPT                0x2
89 #define OP_MI_WAIT_FOR_EVENT                0x3
90 #define OP_MI_FLUSH                         0x4
91 #define OP_MI_ARB_CHECK                     0x5
92 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
93 #define OP_MI_REPORT_HEAD                   0x7
94 #define OP_MI_ARB_ON_OFF                    0x8
95 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
96 #define OP_MI_BATCH_BUFFER_END              0xA
97 #define OP_MI_SUSPEND_FLUSH                 0xB
98 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
99 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
100 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
101 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
102 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
103 #define OP_MI_DISPLAY_FLIP                  0x14
104 #define OP_MI_SEMAPHORE_MBOX                0x16
105 #define OP_MI_SET_CONTEXT                   0x18
106 #define OP_MI_MATH                          0x1A
107 #define OP_MI_URB_CLEAR                     0x19
108 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
109 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
110
111 #define OP_MI_STORE_DATA_IMM                0x20
112 #define OP_MI_STORE_DATA_INDEX              0x21
113 #define OP_MI_LOAD_REGISTER_IMM             0x22
114 #define OP_MI_UPDATE_GTT                    0x23
115 #define OP_MI_STORE_REGISTER_MEM            0x24
116 #define OP_MI_FLUSH_DW                      0x26
117 #define OP_MI_CLFLUSH                       0x27
118 #define OP_MI_REPORT_PERF_COUNT             0x28
119 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
120 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
121 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
122 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
123 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
124 #define OP_MI_2E                            0x2E  /* BDW+ */
125 #define OP_MI_2F                            0x2F  /* BDW+ */
126 #define OP_MI_BATCH_BUFFER_START            0x31
127
128 /* Bit definition for dword 0 */
129 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
130
131 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
132
133 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
134 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
135 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
136 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
137
138 /* 2D command: Opcode (28:22) */
139 #define OP_2D(x)    ((2<<7) | x)
140
141 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
142 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
143 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
144 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
145 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
146 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
147 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
148 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
149 #define OP_XY_PAT_BLT                               OP_2D(0x51)
150 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
151 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
152 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
153 #define OP_XY_FULL_BLT                              OP_2D(0x55)
154 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
155 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
156 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
157 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
158 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
159 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
160 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
161 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
162 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
163 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
164 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
165
166 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
167 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
168         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
169
170 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
171
172 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
173 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
174 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
175 #define OP_SWTESS_BASE_ADDRESS                  OP_3D_MEDIA(0x0, 0x1, 0x03)
176
177 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
178
179 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
180
181 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
182 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
183 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
184 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
185 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
186 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
187
188 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
189 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
190 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
191 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
192
193 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
194 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
195 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
196 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
197 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
198 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
199 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
200 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
201 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
202 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
203 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
204 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
205 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
206 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
207 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
208 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
209 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
210 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
211 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
212 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
213 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
214 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
215 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
216 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
217 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
218 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
219 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
220 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
221 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
222 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
223 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
224 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
225 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
226 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
227 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
228 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
229 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
230 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
231 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
232 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
233 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
234 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
235 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
236 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
237 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
238 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
239 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
240 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
241 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
242 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
243 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
244 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
245 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
246 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
247 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
248 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
249 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
250 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
251 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
252 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
253 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
254 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
255 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
256 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
257 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
258 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
259
260 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
261 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
262 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
263 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
264 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
265 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
266 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
267 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
268 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
269 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
270 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
271
272 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
273 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
274 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
275 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
276 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
277 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
278 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
279 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
280 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
281 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
282 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
283 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
284 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
285 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
286 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
287 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
288 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
289 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
290 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
291 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
292 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
293 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
294 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
295 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
296 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
297 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
298 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
299 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
300
301 /* VCCP Command Parser */
302
303 /*
304  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
305  * git://anongit.freedesktop.org/vaapi/intel-driver
306  * src/i965_defines.h
307  *
308  */
309
310 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
311         (3 << 13 | \
312          (pipeline) << 11 | \
313          (op) << 8 | \
314          (sub_opa) << 5 | \
315          (sub_opb))
316
317 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
318 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
319 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
320 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
321 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
322 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
323 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
324 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
325 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
326 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
327 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
328
329 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
330
331 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
332 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
333 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
334 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
335 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
336 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
337 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
338 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
339 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
340 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
341 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
342 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
343
344 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
345 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
346 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
347 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
348 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
349
350 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
351 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
352 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
353 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
354 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
355
356 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
357 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
358 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
359
360 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
361 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
362 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
363
364 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
365         (3 << 13 | \
366          (pipeline) << 11 | \
367          (op) << 8 | \
368          (sub_opa) << 5 | \
369          (sub_opb))
370
371 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
372 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
373 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
374
375 struct parser_exec_state;
376
377 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
378
379 #define GVT_CMD_HASH_BITS   7
380
381 /* which DWords need address fix */
382 #define ADDR_FIX_1(x1)                  (1 << (x1))
383 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
384 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
385 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
386 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
387
388 #define DWORD_FIELD(dword, end, start) \
389         FIELD_GET(GENMASK(end, start), cmd_val(s, dword))
390
391 #define OP_LENGTH_BIAS 2
392 #define CMD_LEN(value)  (value + OP_LENGTH_BIAS)
393
394 static int gvt_check_valid_cmd_length(int len, int valid_len)
395 {
396         if (valid_len != len) {
397                 gvt_err("len is not valid:  len=%u  valid_len=%u\n",
398                         len, valid_len);
399                 return -EFAULT;
400         }
401         return 0;
402 }
403
404 struct cmd_info {
405         const char *name;
406         u32 opcode;
407
408 #define F_LEN_MASK      3U
409 #define F_LEN_CONST  1U
410 #define F_LEN_VAR    0U
411 /* value is const although LEN maybe variable */
412 #define F_LEN_VAR_FIXED    (1<<1)
413
414 /*
415  * command has its own ip advance logic
416  * e.g. MI_BATCH_START, MI_BATCH_END
417  */
418 #define F_IP_ADVANCE_CUSTOM (1<<2)
419         u32 flag;
420
421 #define R_RCS   BIT(RCS0)
422 #define R_VCS1  BIT(VCS0)
423 #define R_VCS2  BIT(VCS1)
424 #define R_VCS   (R_VCS1 | R_VCS2)
425 #define R_BCS   BIT(BCS0)
426 #define R_VECS  BIT(VECS0)
427 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
428         /* rings that support this cmd: BLT/RCS/VCS/VECS */
429         u16 rings;
430
431         /* devices that support this cmd: SNB/IVB/HSW/... */
432         u16 devices;
433
434         /* which DWords are address that need fix up.
435          * bit 0 means a 32-bit non address operand in command
436          * bit 1 means address operand, which could be 32-bit
437          * or 64-bit depending on different architectures.(
438          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
439          * No matter the address length, each address only takes
440          * one bit in the bitmap.
441          */
442         u16 addr_bitmap;
443
444         /* flag == F_LEN_CONST : command length
445          * flag == F_LEN_VAR : length bias bits
446          * Note: length is in DWord
447          */
448         u32 len;
449
450         parser_cmd_handler handler;
451
452         /* valid length in DWord */
453         u32 valid_len;
454 };
455
456 struct cmd_entry {
457         struct hlist_node hlist;
458         const struct cmd_info *info;
459 };
460
461 enum {
462         RING_BUFFER_INSTRUCTION,
463         BATCH_BUFFER_INSTRUCTION,
464         BATCH_BUFFER_2ND_LEVEL,
465         RING_BUFFER_CTX,
466 };
467
468 enum {
469         GTT_BUFFER,
470         PPGTT_BUFFER
471 };
472
473 struct parser_exec_state {
474         struct intel_vgpu *vgpu;
475         const struct intel_engine_cs *engine;
476
477         int buf_type;
478
479         /* batch buffer address type */
480         int buf_addr_type;
481
482         /* graphics memory address of ring buffer start */
483         unsigned long ring_start;
484         unsigned long ring_size;
485         unsigned long ring_head;
486         unsigned long ring_tail;
487
488         /* instruction graphics memory address */
489         unsigned long ip_gma;
490
491         /* mapped va of the instr_gma */
492         void *ip_va;
493         void *rb_va;
494
495         void *ret_bb_va;
496         /* next instruction when return from  batch buffer to ring buffer */
497         unsigned long ret_ip_gma_ring;
498
499         /* next instruction when return from 2nd batch buffer to batch buffer */
500         unsigned long ret_ip_gma_bb;
501
502         /* batch buffer address type (GTT or PPGTT)
503          * used when ret from 2nd level batch buffer
504          */
505         int saved_buf_addr_type;
506         bool is_ctx_wa;
507         bool is_init_ctx;
508
509         const struct cmd_info *info;
510
511         struct intel_vgpu_workload *workload;
512 };
513
514 #define gmadr_dw_number(s)      \
515         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
516
517 static unsigned long bypass_scan_mask = 0;
518
519 /* ring ALL, type = 0 */
520 static const struct sub_op_bits sub_op_mi[] = {
521         {31, 29},
522         {28, 23},
523 };
524
525 static const struct decode_info decode_info_mi = {
526         "MI",
527         OP_LEN_MI,
528         ARRAY_SIZE(sub_op_mi),
529         sub_op_mi,
530 };
531
532 /* ring RCS, command type 2 */
533 static const struct sub_op_bits sub_op_2d[] = {
534         {31, 29},
535         {28, 22},
536 };
537
538 static const struct decode_info decode_info_2d = {
539         "2D",
540         OP_LEN_2D,
541         ARRAY_SIZE(sub_op_2d),
542         sub_op_2d,
543 };
544
545 /* ring RCS, command type 3 */
546 static const struct sub_op_bits sub_op_3d_media[] = {
547         {31, 29},
548         {28, 27},
549         {26, 24},
550         {23, 16},
551 };
552
553 static const struct decode_info decode_info_3d_media = {
554         "3D_Media",
555         OP_LEN_3D_MEDIA,
556         ARRAY_SIZE(sub_op_3d_media),
557         sub_op_3d_media,
558 };
559
560 /* ring VCS, command type 3 */
561 static const struct sub_op_bits sub_op_mfx_vc[] = {
562         {31, 29},
563         {28, 27},
564         {26, 24},
565         {23, 21},
566         {20, 16},
567 };
568
569 static const struct decode_info decode_info_mfx_vc = {
570         "MFX_VC",
571         OP_LEN_MFX_VC,
572         ARRAY_SIZE(sub_op_mfx_vc),
573         sub_op_mfx_vc,
574 };
575
576 /* ring VECS, command type 3 */
577 static const struct sub_op_bits sub_op_vebox[] = {
578         {31, 29},
579         {28, 27},
580         {26, 24},
581         {23, 21},
582         {20, 16},
583 };
584
585 static const struct decode_info decode_info_vebox = {
586         "VEBOX",
587         OP_LEN_VEBOX,
588         ARRAY_SIZE(sub_op_vebox),
589         sub_op_vebox,
590 };
591
592 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
593         [RCS0] = {
594                 &decode_info_mi,
595                 NULL,
596                 NULL,
597                 &decode_info_3d_media,
598                 NULL,
599                 NULL,
600                 NULL,
601                 NULL,
602         },
603
604         [VCS0] = {
605                 &decode_info_mi,
606                 NULL,
607                 NULL,
608                 &decode_info_mfx_vc,
609                 NULL,
610                 NULL,
611                 NULL,
612                 NULL,
613         },
614
615         [BCS0] = {
616                 &decode_info_mi,
617                 NULL,
618                 &decode_info_2d,
619                 NULL,
620                 NULL,
621                 NULL,
622                 NULL,
623                 NULL,
624         },
625
626         [VECS0] = {
627                 &decode_info_mi,
628                 NULL,
629                 NULL,
630                 &decode_info_vebox,
631                 NULL,
632                 NULL,
633                 NULL,
634                 NULL,
635         },
636
637         [VCS1] = {
638                 &decode_info_mi,
639                 NULL,
640                 NULL,
641                 &decode_info_mfx_vc,
642                 NULL,
643                 NULL,
644                 NULL,
645                 NULL,
646         },
647 };
648
649 static inline u32 get_opcode(u32 cmd, const struct intel_engine_cs *engine)
650 {
651         const struct decode_info *d_info;
652
653         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
654         if (d_info == NULL)
655                 return INVALID_OP;
656
657         return cmd >> (32 - d_info->op_len);
658 }
659
660 static inline const struct cmd_info *
661 find_cmd_entry(struct intel_gvt *gvt, unsigned int opcode,
662                const struct intel_engine_cs *engine)
663 {
664         struct cmd_entry *e;
665
666         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
667                 if (opcode == e->info->opcode &&
668                     e->info->rings & engine->mask)
669                         return e->info;
670         }
671         return NULL;
672 }
673
674 static inline const struct cmd_info *
675 get_cmd_info(struct intel_gvt *gvt, u32 cmd,
676              const struct intel_engine_cs *engine)
677 {
678         u32 opcode;
679
680         opcode = get_opcode(cmd, engine);
681         if (opcode == INVALID_OP)
682                 return NULL;
683
684         return find_cmd_entry(gvt, opcode, engine);
685 }
686
687 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
688 {
689         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
690 }
691
692 static inline void print_opcode(u32 cmd, const struct intel_engine_cs *engine)
693 {
694         const struct decode_info *d_info;
695         int i;
696
697         d_info = ring_decode_info[engine->id][CMD_TYPE(cmd)];
698         if (d_info == NULL)
699                 return;
700
701         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
702                         cmd >> (32 - d_info->op_len), d_info->name);
703
704         for (i = 0; i < d_info->nr_sub_op; i++)
705                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
706                                         d_info->sub_op[i].low));
707
708         pr_err("\n");
709 }
710
711 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
712 {
713         return s->ip_va + (index << 2);
714 }
715
716 static inline u32 cmd_val(struct parser_exec_state *s, int index)
717 {
718         return *cmd_ptr(s, index);
719 }
720
721 static inline bool is_init_ctx(struct parser_exec_state *s)
722 {
723         return (s->buf_type == RING_BUFFER_CTX && s->is_init_ctx);
724 }
725
726 static void parser_exec_state_dump(struct parser_exec_state *s)
727 {
728         int cnt = 0;
729         int i;
730
731         gvt_dbg_cmd("  vgpu%d RING%s: ring_start(%08lx) ring_end(%08lx)"
732                     " ring_head(%08lx) ring_tail(%08lx)\n",
733                     s->vgpu->id, s->engine->name,
734                     s->ring_start, s->ring_start + s->ring_size,
735                     s->ring_head, s->ring_tail);
736
737         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
738                         s->buf_type == RING_BUFFER_INSTRUCTION ?
739                         "RING_BUFFER" : ((s->buf_type == RING_BUFFER_CTX) ?
740                                 "CTX_BUFFER" : "BATCH_BUFFER"),
741                         s->buf_addr_type == GTT_BUFFER ?
742                         "GTT" : "PPGTT", s->ip_gma);
743
744         if (s->ip_va == NULL) {
745                 gvt_dbg_cmd(" ip_va(NULL)");
746                 return;
747         }
748
749         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
750                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
751                         cmd_val(s, 2), cmd_val(s, 3));
752
753         print_opcode(cmd_val(s, 0), s->engine);
754
755         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
756
757         while (cnt < 1024) {
758                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
759                 for (i = 0; i < 8; i++)
760                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
761                 gvt_dbg_cmd("\n");
762
763                 s->ip_va += 8 * sizeof(u32);
764                 cnt += 8;
765         }
766 }
767
768 static inline void update_ip_va(struct parser_exec_state *s)
769 {
770         unsigned long len = 0;
771
772         if (WARN_ON(s->ring_head == s->ring_tail))
773                 return;
774
775         if (s->buf_type == RING_BUFFER_INSTRUCTION ||
776                         s->buf_type == RING_BUFFER_CTX) {
777                 unsigned long ring_top = s->ring_start + s->ring_size;
778
779                 if (s->ring_head > s->ring_tail) {
780                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
781                                 len = (s->ip_gma - s->ring_head);
782                         else if (s->ip_gma >= s->ring_start &&
783                                         s->ip_gma <= s->ring_tail)
784                                 len = (ring_top - s->ring_head) +
785                                         (s->ip_gma - s->ring_start);
786                 } else
787                         len = (s->ip_gma - s->ring_head);
788
789                 s->ip_va = s->rb_va + len;
790         } else {/* shadow batch buffer */
791                 s->ip_va = s->ret_bb_va;
792         }
793 }
794
795 static inline int ip_gma_set(struct parser_exec_state *s,
796                 unsigned long ip_gma)
797 {
798         WARN_ON(!IS_ALIGNED(ip_gma, 4));
799
800         s->ip_gma = ip_gma;
801         update_ip_va(s);
802         return 0;
803 }
804
805 static inline int ip_gma_advance(struct parser_exec_state *s,
806                 unsigned int dw_len)
807 {
808         s->ip_gma += (dw_len << 2);
809
810         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
811                 if (s->ip_gma >= s->ring_start + s->ring_size)
812                         s->ip_gma -= s->ring_size;
813                 update_ip_va(s);
814         } else {
815                 s->ip_va += (dw_len << 2);
816         }
817
818         return 0;
819 }
820
821 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
822 {
823         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
824                 return info->len;
825         else
826                 return (cmd & ((1U << info->len) - 1)) + 2;
827         return 0;
828 }
829
830 static inline int cmd_length(struct parser_exec_state *s)
831 {
832         return get_cmd_length(s->info, cmd_val(s, 0));
833 }
834
835 /* do not remove this, some platform may need clflush here */
836 #define patch_value(s, addr, val) do { \
837         *addr = val; \
838 } while (0)
839
840 static inline bool is_mocs_mmio(unsigned int offset)
841 {
842         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
843                 ((offset >= 0xb020) && (offset <= 0xb0a0));
844 }
845
846 static int is_cmd_update_pdps(unsigned int offset,
847                               struct parser_exec_state *s)
848 {
849         u32 base = s->workload->engine->mmio_base;
850         return i915_mmio_reg_equal(_MMIO(offset), GEN8_RING_PDP_UDW(base, 0));
851 }
852
853 static int cmd_pdp_mmio_update_handler(struct parser_exec_state *s,
854                                        unsigned int offset, unsigned int index)
855 {
856         struct intel_vgpu *vgpu = s->vgpu;
857         struct intel_vgpu_mm *shadow_mm = s->workload->shadow_mm;
858         struct intel_vgpu_mm *mm;
859         u64 pdps[GEN8_3LVL_PDPES];
860
861         if (shadow_mm->ppgtt_mm.root_entry_type ==
862             GTT_TYPE_PPGTT_ROOT_L4_ENTRY) {
863                 pdps[0] = (u64)cmd_val(s, 2) << 32;
864                 pdps[0] |= cmd_val(s, 4);
865
866                 mm = intel_vgpu_find_ppgtt_mm(vgpu, pdps);
867                 if (!mm) {
868                         gvt_vgpu_err("failed to get the 4-level shadow vm\n");
869                         return -EINVAL;
870                 }
871                 intel_vgpu_mm_get(mm);
872                 list_add_tail(&mm->ppgtt_mm.link,
873                               &s->workload->lri_shadow_mm);
874                 *cmd_ptr(s, 2) = upper_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
875                 *cmd_ptr(s, 4) = lower_32_bits(mm->ppgtt_mm.shadow_pdps[0]);
876         } else {
877                 /* Currently all guests use PML4 table and now can't
878                  * have a guest with 3-level table but uses LRI for
879                  * PPGTT update. So this is simply un-testable. */
880                 GEM_BUG_ON(1);
881                 gvt_vgpu_err("invalid shared shadow vm type\n");
882                 return -EINVAL;
883         }
884         return 0;
885 }
886
887 static int cmd_reg_handler(struct parser_exec_state *s,
888         unsigned int offset, unsigned int index, char *cmd)
889 {
890         struct intel_vgpu *vgpu = s->vgpu;
891         struct intel_gvt *gvt = vgpu->gvt;
892         u32 ctx_sr_ctl;
893         u32 *vreg, vreg_old;
894
895         if (offset + 4 > gvt->device_info.mmio_size) {
896                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
897                                 cmd, offset);
898                 return -EFAULT;
899         }
900
901         if (is_init_ctx(s)) {
902                 struct intel_gvt_mmio_info *mmio_info;
903
904                 intel_gvt_mmio_set_cmd_accessible(gvt, offset);
905                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
906                 if (mmio_info && mmio_info->write)
907                         intel_gvt_mmio_set_cmd_write_patch(gvt, offset);
908                 return 0;
909         }
910
911         if (!intel_gvt_mmio_is_cmd_accessible(gvt, offset)) {
912                 gvt_vgpu_err("%s access to non-render register (%x)\n",
913                                 cmd, offset);
914                 return -EBADRQC;
915         }
916
917         if (!strncmp(cmd, "srm", 3) ||
918                         !strncmp(cmd, "lrm", 3)) {
919                 if (offset == i915_mmio_reg_offset(GEN8_L3SQCREG4) ||
920                     offset == 0x21f0 ||
921                     (IS_BROADWELL(gvt->gt->i915) &&
922                      offset == i915_mmio_reg_offset(INSTPM)))
923                         return 0;
924                 else {
925                         gvt_vgpu_err("%s access to register (%x)\n",
926                                         cmd, offset);
927                         return -EPERM;
928                 }
929         }
930
931         if (!strncmp(cmd, "lrr-src", 7) ||
932                         !strncmp(cmd, "lrr-dst", 7)) {
933                 if (IS_BROADWELL(gvt->gt->i915) && offset == 0x215c)
934                         return 0;
935                 else {
936                         gvt_vgpu_err("not allowed cmd %s reg (%x)\n", cmd, offset);
937                         return -EPERM;
938                 }
939         }
940
941         if (!strncmp(cmd, "pipe_ctrl", 9)) {
942                 /* TODO: add LRI POST logic here */
943                 return 0;
944         }
945
946         if (strncmp(cmd, "lri", 3))
947                 return -EPERM;
948
949         /* below are all lri handlers */
950         vreg = &vgpu_vreg(s->vgpu, offset);
951
952         if (is_cmd_update_pdps(offset, s) &&
953             cmd_pdp_mmio_update_handler(s, offset, index))
954                 return -EINVAL;
955
956         if (offset == i915_mmio_reg_offset(DERRMR) ||
957                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
958                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
959                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
960         }
961
962         if (is_mocs_mmio(offset))
963                 *vreg = cmd_val(s, index + 1);
964
965         vreg_old = *vreg;
966
967         if (intel_gvt_mmio_is_cmd_write_patch(gvt, offset)) {
968                 u32 cmdval_new, cmdval;
969                 struct intel_gvt_mmio_info *mmio_info;
970
971                 cmdval = cmd_val(s, index + 1);
972
973                 mmio_info = intel_gvt_find_mmio_info(gvt, offset);
974                 if (!mmio_info) {
975                         cmdval_new = cmdval;
976                 } else {
977                         u64 ro_mask = mmio_info->ro_mask;
978                         int ret;
979
980                         if (likely(!ro_mask))
981                                 ret = mmio_info->write(s->vgpu, offset,
982                                                 &cmdval, 4);
983                         else {
984                                 gvt_vgpu_err("try to write RO reg %x\n",
985                                                 offset);
986                                 ret = -EBADRQC;
987                         }
988                         if (ret)
989                                 return ret;
990                         cmdval_new = *vreg;
991                 }
992                 if (cmdval_new != cmdval)
993                         patch_value(s, cmd_ptr(s, index+1), cmdval_new);
994         }
995
996         /* only patch cmd. restore vreg value if changed in mmio write handler*/
997         *vreg = vreg_old;
998
999         /* TODO
1000          * In order to let workload with inhibit context to generate
1001          * correct image data into memory, vregs values will be loaded to
1002          * hw via LRIs in the workload with inhibit context. But as
1003          * indirect context is loaded prior to LRIs in workload, we don't
1004          * want reg values specified in indirect context overwritten by
1005          * LRIs in workloads. So, when scanning an indirect context, we
1006          * update reg values in it into vregs, so LRIs in workload with
1007          * inhibit context will restore with correct values
1008          */
1009         if (GRAPHICS_VER(s->engine->i915) == 9 &&
1010             intel_gvt_mmio_is_sr_in_ctx(gvt, offset) &&
1011             !strncmp(cmd, "lri", 3)) {
1012                 intel_gvt_hypervisor_read_gpa(s->vgpu,
1013                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
1014                 /* check inhibit context */
1015                 if (ctx_sr_ctl & 1) {
1016                         u32 data = cmd_val(s, index + 1);
1017
1018                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
1019                                 intel_vgpu_mask_mmio_write(vgpu,
1020                                                         offset, &data, 4);
1021                         else
1022                                 vgpu_vreg(vgpu, offset) = data;
1023                 }
1024         }
1025
1026         return 0;
1027 }
1028
1029 #define cmd_reg(s, i) \
1030         (cmd_val(s, i) & GENMASK(22, 2))
1031
1032 #define cmd_reg_inhibit(s, i) \
1033         (cmd_val(s, i) & GENMASK(22, 18))
1034
1035 #define cmd_gma(s, i) \
1036         (cmd_val(s, i) & GENMASK(31, 2))
1037
1038 #define cmd_gma_hi(s, i) \
1039         (cmd_val(s, i) & GENMASK(15, 0))
1040
1041 static int cmd_handler_lri(struct parser_exec_state *s)
1042 {
1043         int i, ret = 0;
1044         int cmd_len = cmd_length(s);
1045
1046         for (i = 1; i < cmd_len; i += 2) {
1047                 if (IS_BROADWELL(s->engine->i915) && s->engine->id != RCS0) {
1048                         if (s->engine->id == BCS0 &&
1049                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
1050                                 ret |= 0;
1051                         else
1052                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
1053                 }
1054                 if (ret)
1055                         break;
1056                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
1057                 if (ret)
1058                         break;
1059         }
1060         return ret;
1061 }
1062
1063 static int cmd_handler_lrr(struct parser_exec_state *s)
1064 {
1065         int i, ret = 0;
1066         int cmd_len = cmd_length(s);
1067
1068         for (i = 1; i < cmd_len; i += 2) {
1069                 if (IS_BROADWELL(s->engine->i915))
1070                         ret |= ((cmd_reg_inhibit(s, i) ||
1071                                  (cmd_reg_inhibit(s, i + 1)))) ?
1072                                 -EBADRQC : 0;
1073                 if (ret)
1074                         break;
1075                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
1076                 if (ret)
1077                         break;
1078                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
1079                 if (ret)
1080                         break;
1081         }
1082         return ret;
1083 }
1084
1085 static inline int cmd_address_audit(struct parser_exec_state *s,
1086                 unsigned long guest_gma, int op_size, bool index_mode);
1087
1088 static int cmd_handler_lrm(struct parser_exec_state *s)
1089 {
1090         struct intel_gvt *gvt = s->vgpu->gvt;
1091         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
1092         unsigned long gma;
1093         int i, ret = 0;
1094         int cmd_len = cmd_length(s);
1095
1096         for (i = 1; i < cmd_len;) {
1097                 if (IS_BROADWELL(s->engine->i915))
1098                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
1099                 if (ret)
1100                         break;
1101                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1102                 if (ret)
1103                         break;
1104                 if (cmd_val(s, 0) & (1 << 22)) {
1105                         gma = cmd_gma(s, i + 1);
1106                         if (gmadr_bytes == 8)
1107                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1108                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1109                         if (ret)
1110                                 break;
1111                 }
1112                 i += gmadr_dw_number(s) + 1;
1113         }
1114         return ret;
1115 }
1116
1117 static int cmd_handler_srm(struct parser_exec_state *s)
1118 {
1119         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1120         unsigned long gma;
1121         int i, ret = 0;
1122         int cmd_len = cmd_length(s);
1123
1124         for (i = 1; i < cmd_len;) {
1125                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1126                 if (ret)
1127                         break;
1128                 if (cmd_val(s, 0) & (1 << 22)) {
1129                         gma = cmd_gma(s, i + 1);
1130                         if (gmadr_bytes == 8)
1131                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1132                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1133                         if (ret)
1134                                 break;
1135                 }
1136                 i += gmadr_dw_number(s) + 1;
1137         }
1138         return ret;
1139 }
1140
1141 struct cmd_interrupt_event {
1142         int pipe_control_notify;
1143         int mi_flush_dw;
1144         int mi_user_interrupt;
1145 };
1146
1147 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1148         [RCS0] = {
1149                 .pipe_control_notify = RCS_PIPE_CONTROL,
1150                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1151                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1152         },
1153         [BCS0] = {
1154                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1155                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1156                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1157         },
1158         [VCS0] = {
1159                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1160                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1161                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1162         },
1163         [VCS1] = {
1164                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1165                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1166                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1167         },
1168         [VECS0] = {
1169                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1170                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1171                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1172         },
1173 };
1174
1175 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1176 {
1177         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1178         unsigned long gma;
1179         bool index_mode = false;
1180         unsigned int post_sync;
1181         int ret = 0;
1182         u32 hws_pga, val;
1183
1184         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1185
1186         /* LRI post sync */
1187         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1188                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1189         /* post sync */
1190         else if (post_sync) {
1191                 if (post_sync == 2)
1192                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1193                 else if (post_sync == 3)
1194                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1195                 else if (post_sync == 1) {
1196                         /* check ggtt*/
1197                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1198                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1199                                 if (gmadr_bytes == 8)
1200                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1201                                 /* Store Data Index */
1202                                 if (cmd_val(s, 1) & (1 << 21))
1203                                         index_mode = true;
1204                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1205                                                 index_mode);
1206                                 if (ret)
1207                                         return ret;
1208                                 if (index_mode) {
1209                                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1210                                         gma = hws_pga + gma;
1211                                         patch_value(s, cmd_ptr(s, 2), gma);
1212                                         val = cmd_val(s, 1) & (~(1 << 21));
1213                                         patch_value(s, cmd_ptr(s, 1), val);
1214                                 }
1215                         }
1216                 }
1217         }
1218
1219         if (ret)
1220                 return ret;
1221
1222         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1223                 set_bit(cmd_interrupt_events[s->engine->id].pipe_control_notify,
1224                         s->workload->pending_events);
1225         return 0;
1226 }
1227
1228 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1229 {
1230         set_bit(cmd_interrupt_events[s->engine->id].mi_user_interrupt,
1231                 s->workload->pending_events);
1232         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1233         return 0;
1234 }
1235
1236 static int cmd_advance_default(struct parser_exec_state *s)
1237 {
1238         return ip_gma_advance(s, cmd_length(s));
1239 }
1240
1241 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1242 {
1243         int ret;
1244
1245         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1246                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1247                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1248                 s->buf_addr_type = s->saved_buf_addr_type;
1249         } else if (s->buf_type == RING_BUFFER_CTX) {
1250                 ret = ip_gma_set(s, s->ring_tail);
1251         } else {
1252                 s->buf_type = RING_BUFFER_INSTRUCTION;
1253                 s->buf_addr_type = GTT_BUFFER;
1254                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1255                         s->ret_ip_gma_ring -= s->ring_size;
1256                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1257         }
1258         return ret;
1259 }
1260
1261 struct mi_display_flip_command_info {
1262         int pipe;
1263         int plane;
1264         int event;
1265         i915_reg_t stride_reg;
1266         i915_reg_t ctrl_reg;
1267         i915_reg_t surf_reg;
1268         u64 stride_val;
1269         u64 tile_val;
1270         u64 surf_val;
1271         bool async_flip;
1272 };
1273
1274 struct plane_code_mapping {
1275         int pipe;
1276         int plane;
1277         int event;
1278 };
1279
1280 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1281                 struct mi_display_flip_command_info *info)
1282 {
1283         struct drm_i915_private *dev_priv = s->engine->i915;
1284         struct plane_code_mapping gen8_plane_code[] = {
1285                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1286                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1287                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1288                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1289                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1290                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1291         };
1292         u32 dword0, dword1, dword2;
1293         u32 v;
1294
1295         dword0 = cmd_val(s, 0);
1296         dword1 = cmd_val(s, 1);
1297         dword2 = cmd_val(s, 2);
1298
1299         v = (dword0 & GENMASK(21, 19)) >> 19;
1300         if (drm_WARN_ON(&dev_priv->drm, v >= ARRAY_SIZE(gen8_plane_code)))
1301                 return -EBADRQC;
1302
1303         info->pipe = gen8_plane_code[v].pipe;
1304         info->plane = gen8_plane_code[v].plane;
1305         info->event = gen8_plane_code[v].event;
1306         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1307         info->tile_val = (dword1 & 0x1);
1308         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1309         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1310
1311         if (info->plane == PLANE_A) {
1312                 info->ctrl_reg = DSPCNTR(info->pipe);
1313                 info->stride_reg = DSPSTRIDE(info->pipe);
1314                 info->surf_reg = DSPSURF(info->pipe);
1315         } else if (info->plane == PLANE_B) {
1316                 info->ctrl_reg = SPRCTL(info->pipe);
1317                 info->stride_reg = SPRSTRIDE(info->pipe);
1318                 info->surf_reg = SPRSURF(info->pipe);
1319         } else {
1320                 drm_WARN_ON(&dev_priv->drm, 1);
1321                 return -EBADRQC;
1322         }
1323         return 0;
1324 }
1325
1326 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1327                 struct mi_display_flip_command_info *info)
1328 {
1329         struct drm_i915_private *dev_priv = s->engine->i915;
1330         struct intel_vgpu *vgpu = s->vgpu;
1331         u32 dword0 = cmd_val(s, 0);
1332         u32 dword1 = cmd_val(s, 1);
1333         u32 dword2 = cmd_val(s, 2);
1334         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1335
1336         info->plane = PRIMARY_PLANE;
1337
1338         switch (plane) {
1339         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1340                 info->pipe = PIPE_A;
1341                 info->event = PRIMARY_A_FLIP_DONE;
1342                 break;
1343         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1344                 info->pipe = PIPE_B;
1345                 info->event = PRIMARY_B_FLIP_DONE;
1346                 break;
1347         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1348                 info->pipe = PIPE_C;
1349                 info->event = PRIMARY_C_FLIP_DONE;
1350                 break;
1351
1352         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1353                 info->pipe = PIPE_A;
1354                 info->event = SPRITE_A_FLIP_DONE;
1355                 info->plane = SPRITE_PLANE;
1356                 break;
1357         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1358                 info->pipe = PIPE_B;
1359                 info->event = SPRITE_B_FLIP_DONE;
1360                 info->plane = SPRITE_PLANE;
1361                 break;
1362         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1363                 info->pipe = PIPE_C;
1364                 info->event = SPRITE_C_FLIP_DONE;
1365                 info->plane = SPRITE_PLANE;
1366                 break;
1367
1368         default:
1369                 gvt_vgpu_err("unknown plane code %d\n", plane);
1370                 return -EBADRQC;
1371         }
1372
1373         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1374         info->tile_val = (dword1 & GENMASK(2, 0));
1375         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1376         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1377
1378         info->ctrl_reg = DSPCNTR(info->pipe);
1379         info->stride_reg = DSPSTRIDE(info->pipe);
1380         info->surf_reg = DSPSURF(info->pipe);
1381
1382         return 0;
1383 }
1384
1385 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1386                 struct mi_display_flip_command_info *info)
1387 {
1388         u32 stride, tile;
1389
1390         if (!info->async_flip)
1391                 return 0;
1392
1393         if (GRAPHICS_VER(s->engine->i915) >= 9) {
1394                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1395                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1396                                 GENMASK(12, 10)) >> 10;
1397         } else {
1398                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1399                                 GENMASK(15, 6)) >> 6;
1400                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1401         }
1402
1403         if (stride != info->stride_val)
1404                 gvt_dbg_cmd("cannot change stride during async flip\n");
1405
1406         if (tile != info->tile_val)
1407                 gvt_dbg_cmd("cannot change tile during async flip\n");
1408
1409         return 0;
1410 }
1411
1412 static int gen8_update_plane_mmio_from_mi_display_flip(
1413                 struct parser_exec_state *s,
1414                 struct mi_display_flip_command_info *info)
1415 {
1416         struct drm_i915_private *dev_priv = s->engine->i915;
1417         struct intel_vgpu *vgpu = s->vgpu;
1418
1419         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1420                       info->surf_val << 12);
1421         if (GRAPHICS_VER(dev_priv) >= 9) {
1422                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1423                               info->stride_val);
1424                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1425                               info->tile_val << 10);
1426         } else {
1427                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1428                               info->stride_val << 6);
1429                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1430                               info->tile_val << 10);
1431         }
1432
1433         if (info->plane == PLANE_PRIMARY)
1434                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1435
1436         if (info->async_flip)
1437                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1438         else
1439                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1440
1441         return 0;
1442 }
1443
1444 static int decode_mi_display_flip(struct parser_exec_state *s,
1445                 struct mi_display_flip_command_info *info)
1446 {
1447         if (IS_BROADWELL(s->engine->i915))
1448                 return gen8_decode_mi_display_flip(s, info);
1449         if (GRAPHICS_VER(s->engine->i915) >= 9)
1450                 return skl_decode_mi_display_flip(s, info);
1451
1452         return -ENODEV;
1453 }
1454
1455 static int check_mi_display_flip(struct parser_exec_state *s,
1456                 struct mi_display_flip_command_info *info)
1457 {
1458         return gen8_check_mi_display_flip(s, info);
1459 }
1460
1461 static int update_plane_mmio_from_mi_display_flip(
1462                 struct parser_exec_state *s,
1463                 struct mi_display_flip_command_info *info)
1464 {
1465         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1466 }
1467
1468 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1469 {
1470         struct mi_display_flip_command_info info;
1471         struct intel_vgpu *vgpu = s->vgpu;
1472         int ret;
1473         int i;
1474         int len = cmd_length(s);
1475         u32 valid_len = CMD_LEN(1);
1476
1477         /* Flip Type == Stereo 3D Flip */
1478         if (DWORD_FIELD(2, 1, 0) == 2)
1479                 valid_len++;
1480         ret = gvt_check_valid_cmd_length(cmd_length(s),
1481                         valid_len);
1482         if (ret)
1483                 return ret;
1484
1485         ret = decode_mi_display_flip(s, &info);
1486         if (ret) {
1487                 gvt_vgpu_err("fail to decode MI display flip command\n");
1488                 return ret;
1489         }
1490
1491         ret = check_mi_display_flip(s, &info);
1492         if (ret) {
1493                 gvt_vgpu_err("invalid MI display flip command\n");
1494                 return ret;
1495         }
1496
1497         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1498         if (ret) {
1499                 gvt_vgpu_err("fail to update plane mmio\n");
1500                 return ret;
1501         }
1502
1503         for (i = 0; i < len; i++)
1504                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1505         return 0;
1506 }
1507
1508 static bool is_wait_for_flip_pending(u32 cmd)
1509 {
1510         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1511                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1512                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1513                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1514                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1515                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1516 }
1517
1518 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1519 {
1520         u32 cmd = cmd_val(s, 0);
1521
1522         if (!is_wait_for_flip_pending(cmd))
1523                 return 0;
1524
1525         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1526         return 0;
1527 }
1528
1529 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1530 {
1531         unsigned long addr;
1532         unsigned long gma_high, gma_low;
1533         struct intel_vgpu *vgpu = s->vgpu;
1534         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1535
1536         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1537                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1538                 return INTEL_GVT_INVALID_ADDR;
1539         }
1540
1541         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1542         if (gmadr_bytes == 4) {
1543                 addr = gma_low;
1544         } else {
1545                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1546                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1547         }
1548         return addr;
1549 }
1550
1551 static inline int cmd_address_audit(struct parser_exec_state *s,
1552                 unsigned long guest_gma, int op_size, bool index_mode)
1553 {
1554         struct intel_vgpu *vgpu = s->vgpu;
1555         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1556         int i;
1557         int ret;
1558
1559         if (op_size > max_surface_size) {
1560                 gvt_vgpu_err("command address audit fail name %s\n",
1561                         s->info->name);
1562                 return -EFAULT;
1563         }
1564
1565         if (index_mode) {
1566                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1567                         ret = -EFAULT;
1568                         goto err;
1569                 }
1570         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1571                 ret = -EFAULT;
1572                 goto err;
1573         }
1574
1575         return 0;
1576
1577 err:
1578         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1579                         s->info->name, guest_gma, op_size);
1580
1581         pr_err("cmd dump: ");
1582         for (i = 0; i < cmd_length(s); i++) {
1583                 if (!(i % 4))
1584                         pr_err("\n%08x ", cmd_val(s, i));
1585                 else
1586                         pr_err("%08x ", cmd_val(s, i));
1587         }
1588         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1589                         vgpu->id,
1590                         vgpu_aperture_gmadr_base(vgpu),
1591                         vgpu_aperture_gmadr_end(vgpu),
1592                         vgpu_hidden_gmadr_base(vgpu),
1593                         vgpu_hidden_gmadr_end(vgpu));
1594         return ret;
1595 }
1596
1597 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1598 {
1599         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1600         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1601         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1602         unsigned long gma, gma_low, gma_high;
1603         u32 valid_len = CMD_LEN(2);
1604         int ret = 0;
1605
1606         /* check ppggt */
1607         if (!(cmd_val(s, 0) & (1 << 22)))
1608                 return 0;
1609
1610         /* check if QWORD */
1611         if (DWORD_FIELD(0, 21, 21))
1612                 valid_len++;
1613         ret = gvt_check_valid_cmd_length(cmd_length(s),
1614                         valid_len);
1615         if (ret)
1616                 return ret;
1617
1618         gma = cmd_val(s, 2) & GENMASK(31, 2);
1619
1620         if (gmadr_bytes == 8) {
1621                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1622                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1623                 gma = (gma_high << 32) | gma_low;
1624                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1625         }
1626         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1627         return ret;
1628 }
1629
1630 static inline int unexpected_cmd(struct parser_exec_state *s)
1631 {
1632         struct intel_vgpu *vgpu = s->vgpu;
1633
1634         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1635
1636         return -EBADRQC;
1637 }
1638
1639 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1640 {
1641         return unexpected_cmd(s);
1642 }
1643
1644 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1645 {
1646         return unexpected_cmd(s);
1647 }
1648
1649 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1650 {
1651         return unexpected_cmd(s);
1652 }
1653
1654 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1655 {
1656         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1657         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1658                         sizeof(u32);
1659         unsigned long gma, gma_high;
1660         u32 valid_len = CMD_LEN(1);
1661         int ret = 0;
1662
1663         if (!(cmd_val(s, 0) & (1 << 22)))
1664                 return ret;
1665
1666         /* check inline data */
1667         if (cmd_val(s, 0) & BIT(18))
1668                 valid_len = CMD_LEN(9);
1669         ret = gvt_check_valid_cmd_length(cmd_length(s),
1670                         valid_len);
1671         if (ret)
1672                 return ret;
1673
1674         gma = cmd_val(s, 1) & GENMASK(31, 2);
1675         if (gmadr_bytes == 8) {
1676                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1677                 gma = (gma_high << 32) | gma;
1678         }
1679         ret = cmd_address_audit(s, gma, op_size, false);
1680         return ret;
1681 }
1682
1683 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1684 {
1685         return unexpected_cmd(s);
1686 }
1687
1688 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1689 {
1690         return unexpected_cmd(s);
1691 }
1692
1693 static int cmd_handler_mi_conditional_batch_buffer_end(
1694                 struct parser_exec_state *s)
1695 {
1696         return unexpected_cmd(s);
1697 }
1698
1699 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1700 {
1701         return unexpected_cmd(s);
1702 }
1703
1704 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1705 {
1706         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1707         unsigned long gma;
1708         bool index_mode = false;
1709         int ret = 0;
1710         u32 hws_pga, val;
1711         u32 valid_len = CMD_LEN(2);
1712
1713         ret = gvt_check_valid_cmd_length(cmd_length(s),
1714                         valid_len);
1715         if (ret) {
1716                 /* Check again for Qword */
1717                 ret = gvt_check_valid_cmd_length(cmd_length(s),
1718                         ++valid_len);
1719                 return ret;
1720         }
1721
1722         /* Check post-sync and ppgtt bit */
1723         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1724                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1725                 if (gmadr_bytes == 8)
1726                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1727                 /* Store Data Index */
1728                 if (cmd_val(s, 0) & (1 << 21))
1729                         index_mode = true;
1730                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1731                 if (ret)
1732                         return ret;
1733                 if (index_mode) {
1734                         hws_pga = s->vgpu->hws_pga[s->engine->id];
1735                         gma = hws_pga + gma;
1736                         patch_value(s, cmd_ptr(s, 1), gma);
1737                         val = cmd_val(s, 0) & (~(1 << 21));
1738                         patch_value(s, cmd_ptr(s, 0), val);
1739                 }
1740         }
1741         /* Check notify bit */
1742         if ((cmd_val(s, 0) & (1 << 8)))
1743                 set_bit(cmd_interrupt_events[s->engine->id].mi_flush_dw,
1744                         s->workload->pending_events);
1745         return ret;
1746 }
1747
1748 static void addr_type_update_snb(struct parser_exec_state *s)
1749 {
1750         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1751                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1752                 s->buf_addr_type = PPGTT_BUFFER;
1753         }
1754 }
1755
1756
1757 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1758                 unsigned long gma, unsigned long end_gma, void *va)
1759 {
1760         unsigned long copy_len, offset;
1761         unsigned long len = 0;
1762         unsigned long gpa;
1763
1764         while (gma != end_gma) {
1765                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1766                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1767                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1768                         return -EFAULT;
1769                 }
1770
1771                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1772
1773                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1774                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1775
1776                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1777
1778                 len += copy_len;
1779                 gma += copy_len;
1780         }
1781         return len;
1782 }
1783
1784
1785 /*
1786  * Check whether a batch buffer needs to be scanned. Currently
1787  * the only criteria is based on privilege.
1788  */
1789 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1790 {
1791         /* Decide privilege based on address space */
1792         if (cmd_val(s, 0) & BIT(8) &&
1793             !(s->vgpu->scan_nonprivbb & s->engine->mask))
1794                 return 0;
1795
1796         return 1;
1797 }
1798
1799 static const char *repr_addr_type(unsigned int type)
1800 {
1801         return type == PPGTT_BUFFER ? "ppgtt" : "ggtt";
1802 }
1803
1804 static int find_bb_size(struct parser_exec_state *s,
1805                         unsigned long *bb_size,
1806                         unsigned long *bb_end_cmd_offset)
1807 {
1808         unsigned long gma = 0;
1809         const struct cmd_info *info;
1810         u32 cmd_len = 0;
1811         bool bb_end = false;
1812         struct intel_vgpu *vgpu = s->vgpu;
1813         u32 cmd;
1814         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1815                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1816
1817         *bb_size = 0;
1818         *bb_end_cmd_offset = 0;
1819
1820         /* get the start gm address of the batch buffer */
1821         gma = get_gma_bb_from_cmd(s, 1);
1822         if (gma == INTEL_GVT_INVALID_ADDR)
1823                 return -EFAULT;
1824
1825         cmd = cmd_val(s, 0);
1826         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1827         if (info == NULL) {
1828                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1829                              cmd, get_opcode(cmd, s->engine),
1830                              repr_addr_type(s->buf_addr_type),
1831                              s->engine->name, s->workload);
1832                 return -EBADRQC;
1833         }
1834         do {
1835                 if (copy_gma_to_hva(s->vgpu, mm,
1836                                     gma, gma + 4, &cmd) < 0)
1837                         return -EFAULT;
1838                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1839                 if (info == NULL) {
1840                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1841                                      cmd, get_opcode(cmd, s->engine),
1842                                      repr_addr_type(s->buf_addr_type),
1843                                      s->engine->name, s->workload);
1844                         return -EBADRQC;
1845                 }
1846
1847                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1848                         bb_end = true;
1849                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1850                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1851                                 /* chained batch buffer */
1852                                 bb_end = true;
1853                 }
1854
1855                 if (bb_end)
1856                         *bb_end_cmd_offset = *bb_size;
1857
1858                 cmd_len = get_cmd_length(info, cmd) << 2;
1859                 *bb_size += cmd_len;
1860                 gma += cmd_len;
1861         } while (!bb_end);
1862
1863         return 0;
1864 }
1865
1866 static int audit_bb_end(struct parser_exec_state *s, void *va)
1867 {
1868         struct intel_vgpu *vgpu = s->vgpu;
1869         u32 cmd = *(u32 *)va;
1870         const struct cmd_info *info;
1871
1872         info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
1873         if (info == NULL) {
1874                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
1875                              cmd, get_opcode(cmd, s->engine),
1876                              repr_addr_type(s->buf_addr_type),
1877                              s->engine->name, s->workload);
1878                 return -EBADRQC;
1879         }
1880
1881         if ((info->opcode == OP_MI_BATCH_BUFFER_END) ||
1882             ((info->opcode == OP_MI_BATCH_BUFFER_START) &&
1883              (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)))
1884                 return 0;
1885
1886         return -EBADRQC;
1887 }
1888
1889 static int perform_bb_shadow(struct parser_exec_state *s)
1890 {
1891         struct intel_vgpu *vgpu = s->vgpu;
1892         struct intel_vgpu_shadow_bb *bb;
1893         unsigned long gma = 0;
1894         unsigned long bb_size;
1895         unsigned long bb_end_cmd_offset;
1896         int ret = 0;
1897         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1898                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1899         unsigned long start_offset = 0;
1900
1901         /* get the start gm address of the batch buffer */
1902         gma = get_gma_bb_from_cmd(s, 1);
1903         if (gma == INTEL_GVT_INVALID_ADDR)
1904                 return -EFAULT;
1905
1906         ret = find_bb_size(s, &bb_size, &bb_end_cmd_offset);
1907         if (ret)
1908                 return ret;
1909
1910         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1911         if (!bb)
1912                 return -ENOMEM;
1913
1914         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1915
1916         /* the start_offset stores the batch buffer's start gma's
1917          * offset relative to page boundary. so for non-privileged batch
1918          * buffer, the shadowed gem object holds exactly the same page
1919          * layout as original gem object. This is for the convience of
1920          * replacing the whole non-privilged batch buffer page to this
1921          * shadowed one in PPGTT at the same gma address. (this replacing
1922          * action is not implemented yet now, but may be necessary in
1923          * future).
1924          * for prileged batch buffer, we just change start gma address to
1925          * that of shadowed page.
1926          */
1927         if (bb->ppgtt)
1928                 start_offset = gma & ~I915_GTT_PAGE_MASK;
1929
1930         bb->obj = i915_gem_object_create_shmem(s->engine->i915,
1931                                                round_up(bb_size + start_offset,
1932                                                         PAGE_SIZE));
1933         if (IS_ERR(bb->obj)) {
1934                 ret = PTR_ERR(bb->obj);
1935                 goto err_free_bb;
1936         }
1937
1938         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1939         if (IS_ERR(bb->va)) {
1940                 ret = PTR_ERR(bb->va);
1941                 goto err_free_obj;
1942         }
1943
1944         ret = copy_gma_to_hva(s->vgpu, mm,
1945                               gma, gma + bb_size,
1946                               bb->va + start_offset);
1947         if (ret < 0) {
1948                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1949                 ret = -EFAULT;
1950                 goto err_unmap;
1951         }
1952
1953         ret = audit_bb_end(s, bb->va + start_offset + bb_end_cmd_offset);
1954         if (ret)
1955                 goto err_unmap;
1956
1957         i915_gem_object_unlock(bb->obj);
1958         INIT_LIST_HEAD(&bb->list);
1959         list_add(&bb->list, &s->workload->shadow_bb);
1960
1961         bb->bb_start_cmd_va = s->ip_va;
1962
1963         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1964                 bb->bb_offset = s->ip_va - s->rb_va;
1965         else
1966                 bb->bb_offset = 0;
1967
1968         /*
1969          * ip_va saves the virtual address of the shadow batch buffer, while
1970          * ip_gma saves the graphics address of the original batch buffer.
1971          * As the shadow batch buffer is just a copy from the originial one,
1972          * it should be right to use shadow batch buffer'va and original batch
1973          * buffer's gma in pair. After all, we don't want to pin the shadow
1974          * buffer here (too early).
1975          */
1976         s->ip_va = bb->va + start_offset;
1977         s->ip_gma = gma;
1978         return 0;
1979 err_unmap:
1980         i915_gem_object_unpin_map(bb->obj);
1981 err_free_obj:
1982         i915_gem_object_put(bb->obj);
1983 err_free_bb:
1984         kfree(bb);
1985         return ret;
1986 }
1987
1988 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1989 {
1990         bool second_level;
1991         int ret = 0;
1992         struct intel_vgpu *vgpu = s->vgpu;
1993
1994         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1995                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1996                 return -EFAULT;
1997         }
1998
1999         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
2000         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
2001                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
2002                 return -EFAULT;
2003         }
2004
2005         s->saved_buf_addr_type = s->buf_addr_type;
2006         addr_type_update_snb(s);
2007         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2008                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
2009                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
2010         } else if (second_level) {
2011                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
2012                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
2013                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
2014         }
2015
2016         if (batch_buffer_needs_scan(s)) {
2017                 ret = perform_bb_shadow(s);
2018                 if (ret < 0)
2019                         gvt_vgpu_err("invalid shadow batch buffer\n");
2020         } else {
2021                 /* emulate a batch buffer end to do return right */
2022                 ret = cmd_handler_mi_batch_buffer_end(s);
2023                 if (ret < 0)
2024                         return ret;
2025         }
2026         return ret;
2027 }
2028
2029 static int mi_noop_index;
2030
2031 static const struct cmd_info cmd_info[] = {
2032         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2033
2034         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
2035                 0, 1, NULL},
2036
2037         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
2038                 0, 1, cmd_handler_mi_user_interrupt},
2039
2040         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
2041                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
2042
2043         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2044
2045         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2046                 NULL},
2047
2048         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2049                 NULL},
2050
2051         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2052                 NULL},
2053
2054         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2055                 NULL},
2056
2057         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
2058                 D_ALL, 0, 1, NULL},
2059
2060         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
2061                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2062                 cmd_handler_mi_batch_buffer_end},
2063
2064         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
2065                 0, 1, NULL},
2066
2067         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2068                 NULL},
2069
2070         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
2071                 D_ALL, 0, 1, NULL},
2072
2073         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
2074                 NULL},
2075
2076         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
2077                 NULL},
2078
2079         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR,
2080                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
2081
2082         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR | F_LEN_VAR_FIXED,
2083                 R_ALL, D_ALL, 0, 8, NULL, CMD_LEN(1)},
2084
2085         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
2086
2087         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS,
2088                 D_ALL, 0, 8, NULL, CMD_LEN(0)},
2089
2090         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL,
2091                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, 0, 8,
2092                 NULL, CMD_LEN(0)},
2093
2094         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT,
2095                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS, ADDR_FIX_1(2),
2096                 8, cmd_handler_mi_semaphore_wait, CMD_LEN(2)},
2097
2098         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
2099                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
2100
2101         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
2102                 0, 8, cmd_handler_mi_store_data_index},
2103
2104         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
2105                 D_ALL, 0, 8, cmd_handler_lri},
2106
2107         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
2108                 cmd_handler_mi_update_gtt},
2109
2110         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM,
2111                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2112                 cmd_handler_srm, CMD_LEN(2)},
2113
2114         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
2115                 cmd_handler_mi_flush_dw},
2116
2117         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
2118                 10, cmd_handler_mi_clflush},
2119
2120         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT,
2121                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(1), 6,
2122                 cmd_handler_mi_report_perf_count, CMD_LEN(2)},
2123
2124         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM,
2125                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2126                 cmd_handler_lrm, CMD_LEN(2)},
2127
2128         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG,
2129                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, 0, 8,
2130                 cmd_handler_lrr, CMD_LEN(1)},
2131
2132         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM,
2133                 F_LEN_VAR | F_LEN_VAR_FIXED, R_RCS, D_ALL, 0,
2134                 8, NULL, CMD_LEN(2)},
2135
2136         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR | F_LEN_VAR_FIXED,
2137                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL, CMD_LEN(2)},
2138
2139         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
2140                 ADDR_FIX_1(2), 8, NULL},
2141
2142         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_BDW_PLUS,
2143                 ADDR_FIX_2(1, 2), 8, cmd_handler_mi_op_2e, CMD_LEN(3)},
2144
2145         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
2146                 8, cmd_handler_mi_op_2f},
2147
2148         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
2149                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
2150                 cmd_handler_mi_batch_buffer_start},
2151
2152         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
2153                 F_LEN_VAR | F_LEN_VAR_FIXED, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
2154                 cmd_handler_mi_conditional_batch_buffer_end, CMD_LEN(2)},
2155
2156         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
2157                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
2158
2159         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2160                 ADDR_FIX_2(4, 7), 8, NULL},
2161
2162         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
2163                 0, 8, NULL},
2164
2165         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
2166                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2167
2168         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2169
2170         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
2171                 0, 8, NULL},
2172
2173         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2174                 ADDR_FIX_1(3), 8, NULL},
2175
2176         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2177                 D_ALL, 0, 8, NULL},
2178
2179         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2180                 ADDR_FIX_1(4), 8, NULL},
2181
2182         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2183                 ADDR_FIX_2(4, 5), 8, NULL},
2184
2185         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2186                 ADDR_FIX_1(4), 8, NULL},
2187
2188         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2189                 ADDR_FIX_2(4, 7), 8, NULL},
2190
2191         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2192                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2193
2194         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2195
2196         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2197                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2198
2199         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2200                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2201
2202         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2203                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2204                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2205
2206         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2207                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2208
2209         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2210                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2211
2212         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2213                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2214
2215         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2216                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2217
2218         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2219                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2220
2221         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2222                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2223                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2224
2225         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2226                 ADDR_FIX_2(4, 5), 8, NULL},
2227
2228         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2229                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2230
2231         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2232                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2233                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2234
2235         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2236                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2237                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2238
2239         {"3DSTATE_BLEND_STATE_POINTERS",
2240                 OP_3DSTATE_BLEND_STATE_POINTERS,
2241                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2242
2243         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2244                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2245                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2246
2247         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2248                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2249                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2250
2251         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2252                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2253                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2256                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2257                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2260                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2261                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2262
2263         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2264                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2265                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2266
2267         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2268                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2269                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2270
2271         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2272                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2273                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2274
2275         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2276                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2277                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2278
2279         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2280                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2281                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2282
2283         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2284                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2285                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2286
2287         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2288                 0, 8, NULL},
2289
2290         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2291                 0, 8, NULL},
2292
2293         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2294                 0, 8, NULL},
2295
2296         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2297                 0, 8, NULL},
2298
2299         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2300                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2301
2302         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2303                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2304
2305         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2306                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2307
2308         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2309                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2312                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2315                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2316
2317         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2318                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2319
2320         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2321                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322
2323         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2324                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2325
2326         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2327                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2328
2329         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2330                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2331
2332         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2333                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2334
2335         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2336                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2337
2338         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2339                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2340
2341         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2342                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2343
2344         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2345                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2346
2347         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2348                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2349
2350         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2351                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2352
2353         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2354                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2355
2356         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2357                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2358
2359         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2360                 D_BDW_PLUS, 0, 8, NULL},
2361
2362         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2363                 NULL},
2364
2365         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2366                 D_BDW_PLUS, 0, 8, NULL},
2367
2368         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2369                 D_BDW_PLUS, 0, 8, NULL},
2370
2371         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2372                 8, NULL},
2373
2374         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2375                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2376
2377         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2378                 8, NULL},
2379
2380         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2381                 NULL},
2382
2383         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2384                 NULL},
2385
2386         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2387                 NULL},
2388
2389         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2390                 D_BDW_PLUS, 0, 8, NULL},
2391
2392         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2393                 R_RCS, D_ALL, 0, 8, NULL},
2394
2395         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2396                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2397
2398         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2399                 R_RCS, D_ALL, 0, 1, NULL},
2400
2401         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2402
2403         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2404                 R_RCS, D_ALL, 0, 8, NULL},
2405
2406         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2407                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2408
2409         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2410
2411         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2412
2413         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2414
2415         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2416                 D_BDW_PLUS, 0, 8, NULL},
2417
2418         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2419                 D_BDW_PLUS, 0, 8, NULL},
2420
2421         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2422                 D_ALL, 0, 8, NULL},
2423
2424         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2425                 D_BDW_PLUS, 0, 8, NULL},
2426
2427         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2428                 D_BDW_PLUS, 0, 8, NULL},
2429
2430         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2431
2432         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2433
2434         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2435
2436         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2437                 D_ALL, 0, 8, NULL},
2438
2439         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2440
2441         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2442
2443         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2444                 R_RCS, D_ALL, 0, 8, NULL},
2445
2446         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2447                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2448
2449         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2450                 0, 8, NULL},
2451
2452         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2453                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2454
2455         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2456                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2457
2458         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2459                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2460
2461         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2462                 D_ALL, 0, 8, NULL},
2463
2464         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2465                 D_ALL, 0, 8, NULL},
2466
2467         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2468                 D_ALL, 0, 8, NULL},
2469
2470         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2471                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2472
2473         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2474                 D_BDW_PLUS, 0, 8, NULL},
2475
2476         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2477                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2478
2479         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2480                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2481
2482         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2483                 R_RCS, D_ALL, 0, 8, NULL},
2484
2485         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2486                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2487
2488         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2489                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2490
2491         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2492                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2493
2494         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2495                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2496
2497         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2498                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2499
2500         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2501                 R_RCS, D_ALL, 0, 8, NULL},
2502
2503         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2504                 D_ALL, 0, 9, NULL},
2505
2506         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2507                 ADDR_FIX_2(2, 4), 8, NULL},
2508
2509         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2510                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2511                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2512
2513         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2514                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2515
2516         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2517                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2518                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2519
2520         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2521                 D_BDW_PLUS, 0, 8, NULL},
2522
2523         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2524                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2525
2526         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2527
2528         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2529                 1, NULL},
2530
2531         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2532                 ADDR_FIX_1(1), 8, NULL},
2533
2534         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2535
2536         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2537                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2538
2539         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2540                 ADDR_FIX_1(1), 8, NULL},
2541
2542         {"OP_SWTESS_BASE_ADDRESS", OP_SWTESS_BASE_ADDRESS,
2543                 F_LEN_VAR, R_RCS, D_ALL, ADDR_FIX_2(1, 2), 3, NULL},
2544
2545         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2546
2547         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2548
2549         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2550                 0, 8, NULL},
2551
2552         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2553                 D_SKL_PLUS, 0, 8, NULL},
2554
2555         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2556                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2557
2558         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2559                 0, 16, NULL},
2560
2561         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2562                 0, 16, NULL},
2563
2564         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2565                 0, 16, NULL},
2566
2567         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2568
2569         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2570                 0, 16, NULL},
2571
2572         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2573                 0, 16, NULL},
2574
2575         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2576                 0, 16, NULL},
2577
2578         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2579                 0, 8, NULL},
2580
2581         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2582                 NULL},
2583
2584         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2585                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2586
2587         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2588                 R_VCS, D_ALL, 0, 12, NULL},
2589
2590         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2591                 R_VCS, D_ALL, 0, 12, NULL},
2592
2593         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2594                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2595
2596         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2597                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2598
2599         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2600                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2601
2602         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2603
2604         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2605                 R_VCS, D_ALL, 0, 12, NULL},
2606
2607         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2608                 R_VCS, D_ALL, 0, 12, NULL},
2609
2610         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2611                 R_VCS, D_ALL, 0, 12, NULL},
2612
2613         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2614                 R_VCS, D_ALL, 0, 12, NULL},
2615
2616         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2617                 R_VCS, D_ALL, 0, 12, NULL},
2618
2619         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2620                 R_VCS, D_ALL, 0, 12, NULL},
2621
2622         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2623                 R_VCS, D_ALL, 0, 6, NULL},
2624
2625         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2626                 R_VCS, D_ALL, 0, 12, NULL},
2627
2628         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2629                 R_VCS, D_ALL, 0, 12, NULL},
2630
2631         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2632                 R_VCS, D_ALL, 0, 12, NULL},
2633
2634         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2635                 R_VCS, D_ALL, 0, 12, NULL},
2636
2637         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2638                 R_VCS, D_ALL, 0, 12, NULL},
2639
2640         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2641                 R_VCS, D_ALL, 0, 12, NULL},
2642
2643         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2644                 R_VCS, D_ALL, 0, 12, NULL},
2645         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2646                 R_VCS, D_ALL, 0, 12, NULL},
2647
2648         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2649                 R_VCS, D_ALL, 0, 12, NULL},
2650
2651         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2652                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2653
2654         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2655                 R_VCS, D_ALL, 0, 12, NULL},
2656
2657         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2658                 R_VCS, D_ALL, 0, 12, NULL},
2659
2660         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2661                 R_VCS, D_ALL, 0, 12, NULL},
2662
2663         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2664                 R_VCS, D_ALL, 0, 12, NULL},
2665
2666         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2667                 R_VCS, D_ALL, 0, 12, NULL},
2668
2669         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2670                 R_VCS, D_ALL, 0, 12, NULL},
2671
2672         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2673                 R_VCS, D_ALL, 0, 12, NULL},
2674
2675         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2676                 R_VCS, D_ALL, 0, 12, NULL},
2677
2678         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2679                 R_VCS, D_ALL, 0, 12, NULL},
2680
2681         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2682                 R_VCS, D_ALL, 0, 12, NULL},
2683
2684         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2685                 R_VCS, D_ALL, 0, 12, NULL},
2686
2687         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2688                 0, 16, NULL},
2689
2690         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2691
2692         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2693
2694         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2695                 R_VCS, D_ALL, 0, 12, NULL},
2696
2697         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2698                 R_VCS, D_ALL, 0, 12, NULL},
2699
2700         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2701                 R_VCS, D_ALL, 0, 12, NULL},
2702
2703         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2704
2705         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2706                 0, 12, NULL},
2707
2708         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2709                 0, 12, NULL},
2710 };
2711
2712 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2713 {
2714         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2715 }
2716
2717 /* call the cmd handler, and advance ip */
2718 static int cmd_parser_exec(struct parser_exec_state *s)
2719 {
2720         struct intel_vgpu *vgpu = s->vgpu;
2721         const struct cmd_info *info;
2722         u32 cmd;
2723         int ret = 0;
2724
2725         cmd = cmd_val(s, 0);
2726
2727         /* fastpath for MI_NOOP */
2728         if (cmd == MI_NOOP)
2729                 info = &cmd_info[mi_noop_index];
2730         else
2731                 info = get_cmd_info(s->vgpu->gvt, cmd, s->engine);
2732
2733         if (info == NULL) {
2734                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %s, workload=%p\n",
2735                              cmd, get_opcode(cmd, s->engine),
2736                              repr_addr_type(s->buf_addr_type),
2737                              s->engine->name, s->workload);
2738                 return -EBADRQC;
2739         }
2740
2741         s->info = info;
2742
2743         trace_gvt_command(vgpu->id, s->engine->id, s->ip_gma, s->ip_va,
2744                           cmd_length(s), s->buf_type, s->buf_addr_type,
2745                           s->workload, info->name);
2746
2747         if ((info->flag & F_LEN_MASK) == F_LEN_VAR_FIXED) {
2748                 ret = gvt_check_valid_cmd_length(cmd_length(s),
2749                                                  info->valid_len);
2750                 if (ret)
2751                         return ret;
2752         }
2753
2754         if (info->handler) {
2755                 ret = info->handler(s);
2756                 if (ret < 0) {
2757                         gvt_vgpu_err("%s handler error\n", info->name);
2758                         return ret;
2759                 }
2760         }
2761
2762         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2763                 ret = cmd_advance_default(s);
2764                 if (ret) {
2765                         gvt_vgpu_err("%s IP advance error\n", info->name);
2766                         return ret;
2767                 }
2768         }
2769         return 0;
2770 }
2771
2772 static inline bool gma_out_of_range(unsigned long gma,
2773                 unsigned long gma_head, unsigned int gma_tail)
2774 {
2775         if (gma_tail >= gma_head)
2776                 return (gma < gma_head) || (gma > gma_tail);
2777         else
2778                 return (gma > gma_tail) && (gma < gma_head);
2779 }
2780
2781 /* Keep the consistent return type, e.g EBADRQC for unknown
2782  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2783  * works as the input of VM healthy status.
2784  */
2785 static int command_scan(struct parser_exec_state *s,
2786                 unsigned long rb_head, unsigned long rb_tail,
2787                 unsigned long rb_start, unsigned long rb_len)
2788 {
2789
2790         unsigned long gma_head, gma_tail, gma_bottom;
2791         int ret = 0;
2792         struct intel_vgpu *vgpu = s->vgpu;
2793
2794         gma_head = rb_start + rb_head;
2795         gma_tail = rb_start + rb_tail;
2796         gma_bottom = rb_start +  rb_len;
2797
2798         while (s->ip_gma != gma_tail) {
2799                 if (s->buf_type == RING_BUFFER_INSTRUCTION ||
2800                                 s->buf_type == RING_BUFFER_CTX) {
2801                         if (!(s->ip_gma >= rb_start) ||
2802                                 !(s->ip_gma < gma_bottom)) {
2803                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2804                                         "(base:0x%lx, bottom: 0x%lx)\n",
2805                                         s->ip_gma, rb_start,
2806                                         gma_bottom);
2807                                 parser_exec_state_dump(s);
2808                                 return -EFAULT;
2809                         }
2810                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2811                                 gvt_vgpu_err("ip_gma %lx out of range."
2812                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2813                                         s->ip_gma, rb_start,
2814                                         rb_head, rb_tail);
2815                                 parser_exec_state_dump(s);
2816                                 break;
2817                         }
2818                 }
2819                 ret = cmd_parser_exec(s);
2820                 if (ret) {
2821                         gvt_vgpu_err("cmd parser error\n");
2822                         parser_exec_state_dump(s);
2823                         break;
2824                 }
2825         }
2826
2827         return ret;
2828 }
2829
2830 static int scan_workload(struct intel_vgpu_workload *workload)
2831 {
2832         unsigned long gma_head, gma_tail, gma_bottom;
2833         struct parser_exec_state s;
2834         int ret = 0;
2835
2836         /* ring base is page aligned */
2837         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2838                 return -EINVAL;
2839
2840         gma_head = workload->rb_start + workload->rb_head;
2841         gma_tail = workload->rb_start + workload->rb_tail;
2842         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2843
2844         s.buf_type = RING_BUFFER_INSTRUCTION;
2845         s.buf_addr_type = GTT_BUFFER;
2846         s.vgpu = workload->vgpu;
2847         s.engine = workload->engine;
2848         s.ring_start = workload->rb_start;
2849         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2850         s.ring_head = gma_head;
2851         s.ring_tail = gma_tail;
2852         s.rb_va = workload->shadow_ring_buffer_va;
2853         s.workload = workload;
2854         s.is_ctx_wa = false;
2855
2856         if (bypass_scan_mask & workload->engine->mask || gma_head == gma_tail)
2857                 return 0;
2858
2859         ret = ip_gma_set(&s, gma_head);
2860         if (ret)
2861                 goto out;
2862
2863         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2864                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2865
2866 out:
2867         return ret;
2868 }
2869
2870 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2871 {
2872
2873         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2874         struct parser_exec_state s;
2875         int ret = 0;
2876         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2877                                 struct intel_vgpu_workload,
2878                                 wa_ctx);
2879
2880         /* ring base is page aligned */
2881         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2882                                         I915_GTT_PAGE_SIZE)))
2883                 return -EINVAL;
2884
2885         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2886         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2887                         PAGE_SIZE);
2888         gma_head = wa_ctx->indirect_ctx.guest_gma;
2889         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2890         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2891
2892         s.buf_type = RING_BUFFER_INSTRUCTION;
2893         s.buf_addr_type = GTT_BUFFER;
2894         s.vgpu = workload->vgpu;
2895         s.engine = workload->engine;
2896         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2897         s.ring_size = ring_size;
2898         s.ring_head = gma_head;
2899         s.ring_tail = gma_tail;
2900         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2901         s.workload = workload;
2902         s.is_ctx_wa = true;
2903
2904         ret = ip_gma_set(&s, gma_head);
2905         if (ret)
2906                 goto out;
2907
2908         ret = command_scan(&s, 0, ring_tail,
2909                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2910 out:
2911         return ret;
2912 }
2913
2914 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2915 {
2916         struct intel_vgpu *vgpu = workload->vgpu;
2917         struct intel_vgpu_submission *s = &vgpu->submission;
2918         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2919         void *shadow_ring_buffer_va;
2920         int ret;
2921
2922         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2923
2924         /* calculate workload ring buffer size */
2925         workload->rb_len = (workload->rb_tail + guest_rb_size -
2926                         workload->rb_head) % guest_rb_size;
2927
2928         gma_head = workload->rb_start + workload->rb_head;
2929         gma_tail = workload->rb_start + workload->rb_tail;
2930         gma_top = workload->rb_start + guest_rb_size;
2931
2932         if (workload->rb_len > s->ring_scan_buffer_size[workload->engine->id]) {
2933                 void *p;
2934
2935                 /* realloc the new ring buffer if needed */
2936                 p = krealloc(s->ring_scan_buffer[workload->engine->id],
2937                              workload->rb_len, GFP_KERNEL);
2938                 if (!p) {
2939                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2940                         return -ENOMEM;
2941                 }
2942                 s->ring_scan_buffer[workload->engine->id] = p;
2943                 s->ring_scan_buffer_size[workload->engine->id] = workload->rb_len;
2944         }
2945
2946         shadow_ring_buffer_va = s->ring_scan_buffer[workload->engine->id];
2947
2948         /* get shadow ring buffer va */
2949         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2950
2951         /* head > tail --> copy head <-> top */
2952         if (gma_head > gma_tail) {
2953                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2954                                       gma_head, gma_top, shadow_ring_buffer_va);
2955                 if (ret < 0) {
2956                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2957                         return ret;
2958                 }
2959                 shadow_ring_buffer_va += ret;
2960                 gma_head = workload->rb_start;
2961         }
2962
2963         /* copy head or start <-> tail */
2964         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2965                                 shadow_ring_buffer_va);
2966         if (ret < 0) {
2967                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2968                 return ret;
2969         }
2970         return 0;
2971 }
2972
2973 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2974 {
2975         int ret;
2976         struct intel_vgpu *vgpu = workload->vgpu;
2977
2978         ret = shadow_workload_ring_buffer(workload);
2979         if (ret) {
2980                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2981                 return ret;
2982         }
2983
2984         ret = scan_workload(workload);
2985         if (ret) {
2986                 gvt_vgpu_err("scan workload error\n");
2987                 return ret;
2988         }
2989         return 0;
2990 }
2991
2992 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2993 {
2994         int ctx_size = wa_ctx->indirect_ctx.size;
2995         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2996         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2997                                         struct intel_vgpu_workload,
2998                                         wa_ctx);
2999         struct intel_vgpu *vgpu = workload->vgpu;
3000         struct drm_i915_gem_object *obj;
3001         int ret = 0;
3002         void *map;
3003
3004         obj = i915_gem_object_create_shmem(workload->engine->i915,
3005                                            roundup(ctx_size + CACHELINE_BYTES,
3006                                                    PAGE_SIZE));
3007         if (IS_ERR(obj))
3008                 return PTR_ERR(obj);
3009
3010         /* get the va of the shadow batch buffer */
3011         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
3012         if (IS_ERR(map)) {
3013                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
3014                 ret = PTR_ERR(map);
3015                 goto put_obj;
3016         }
3017
3018         i915_gem_object_lock(obj, NULL);
3019         ret = i915_gem_object_set_to_cpu_domain(obj, false);
3020         i915_gem_object_unlock(obj);
3021         if (ret) {
3022                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
3023                 goto unmap_src;
3024         }
3025
3026         ret = copy_gma_to_hva(workload->vgpu,
3027                                 workload->vgpu->gtt.ggtt_mm,
3028                                 guest_gma, guest_gma + ctx_size,
3029                                 map);
3030         if (ret < 0) {
3031                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
3032                 goto unmap_src;
3033         }
3034
3035         wa_ctx->indirect_ctx.obj = obj;
3036         wa_ctx->indirect_ctx.shadow_va = map;
3037         return 0;
3038
3039 unmap_src:
3040         i915_gem_object_unpin_map(obj);
3041 put_obj:
3042         i915_gem_object_put(obj);
3043         return ret;
3044 }
3045
3046 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3047 {
3048         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
3049         unsigned char *bb_start_sva;
3050
3051         if (!wa_ctx->per_ctx.valid)
3052                 return 0;
3053
3054         per_ctx_start[0] = 0x18800001;
3055         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
3056
3057         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
3058                                 wa_ctx->indirect_ctx.size;
3059
3060         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
3061
3062         return 0;
3063 }
3064
3065 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
3066 {
3067         int ret;
3068         struct intel_vgpu_workload *workload = container_of(wa_ctx,
3069                                         struct intel_vgpu_workload,
3070                                         wa_ctx);
3071         struct intel_vgpu *vgpu = workload->vgpu;
3072
3073         if (wa_ctx->indirect_ctx.size == 0)
3074                 return 0;
3075
3076         ret = shadow_indirect_ctx(wa_ctx);
3077         if (ret) {
3078                 gvt_vgpu_err("fail to shadow indirect ctx\n");
3079                 return ret;
3080         }
3081
3082         combine_wa_ctx(wa_ctx);
3083
3084         ret = scan_wa_ctx(wa_ctx);
3085         if (ret) {
3086                 gvt_vgpu_err("scan wa ctx error\n");
3087                 return ret;
3088         }
3089
3090         return 0;
3091 }
3092
3093 /* generate dummy contexts by sending empty requests to HW, and let
3094  * the HW to fill Engine Contexts. This dummy contexts are used for
3095  * initialization purpose (update reg whitelist), so referred to as
3096  * init context here
3097  */
3098 void intel_gvt_update_reg_whitelist(struct intel_vgpu *vgpu)
3099 {
3100         const unsigned long start = LRC_STATE_PN * PAGE_SIZE;
3101         struct intel_gvt *gvt = vgpu->gvt;
3102         struct intel_engine_cs *engine;
3103         enum intel_engine_id id;
3104
3105         if (gvt->is_reg_whitelist_updated)
3106                 return;
3107
3108         /* scan init ctx to update cmd accessible list */
3109         for_each_engine(engine, gvt->gt, id) {
3110                 struct parser_exec_state s;
3111                 void *vaddr;
3112                 int ret;
3113
3114                 if (!engine->default_state)
3115                         continue;
3116
3117                 vaddr = shmem_pin_map(engine->default_state);
3118                 if (IS_ERR(vaddr)) {
3119                         gvt_err("failed to map %s->default state, err:%zd\n",
3120                                 engine->name, PTR_ERR(vaddr));
3121                         return;
3122                 }
3123
3124                 s.buf_type = RING_BUFFER_CTX;
3125                 s.buf_addr_type = GTT_BUFFER;
3126                 s.vgpu = vgpu;
3127                 s.engine = engine;
3128                 s.ring_start = 0;
3129                 s.ring_size = engine->context_size - start;
3130                 s.ring_head = 0;
3131                 s.ring_tail = s.ring_size;
3132                 s.rb_va = vaddr + start;
3133                 s.workload = NULL;
3134                 s.is_ctx_wa = false;
3135                 s.is_init_ctx = true;
3136
3137                 /* skipping the first RING_CTX_SIZE(0x50) dwords */
3138                 ret = ip_gma_set(&s, RING_CTX_SIZE);
3139                 if (ret == 0) {
3140                         ret = command_scan(&s, 0, s.ring_size, 0, s.ring_size);
3141                         if (ret)
3142                                 gvt_err("Scan init ctx error\n");
3143                 }
3144
3145                 shmem_unpin_map(engine->default_state, vaddr);
3146                 if (ret)
3147                         return;
3148         }
3149
3150         gvt->is_reg_whitelist_updated = true;
3151 }
3152
3153 int intel_gvt_scan_engine_context(struct intel_vgpu_workload *workload)
3154 {
3155         struct intel_vgpu *vgpu = workload->vgpu;
3156         unsigned long gma_head, gma_tail, gma_start, ctx_size;
3157         struct parser_exec_state s;
3158         int ring_id = workload->engine->id;
3159         struct intel_context *ce = vgpu->submission.shadow[ring_id];
3160         int ret;
3161
3162         GEM_BUG_ON(atomic_read(&ce->pin_count) < 0);
3163
3164         ctx_size = workload->engine->context_size - PAGE_SIZE;
3165
3166         /* Only ring contxt is loaded to HW for inhibit context, no need to
3167          * scan engine context
3168          */
3169         if (is_inhibit_context(ce))
3170                 return 0;
3171
3172         gma_start = i915_ggtt_offset(ce->state) + LRC_STATE_PN*PAGE_SIZE;
3173         gma_head = 0;
3174         gma_tail = ctx_size;
3175
3176         s.buf_type = RING_BUFFER_CTX;
3177         s.buf_addr_type = GTT_BUFFER;
3178         s.vgpu = workload->vgpu;
3179         s.engine = workload->engine;
3180         s.ring_start = gma_start;
3181         s.ring_size = ctx_size;
3182         s.ring_head = gma_start + gma_head;
3183         s.ring_tail = gma_start + gma_tail;
3184         s.rb_va = ce->lrc_reg_state;
3185         s.workload = workload;
3186         s.is_ctx_wa = false;
3187         s.is_init_ctx = false;
3188
3189         /* don't scan the first RING_CTX_SIZE(0x50) dwords, as it's ring
3190          * context
3191          */
3192         ret = ip_gma_set(&s, gma_start + gma_head + RING_CTX_SIZE);
3193         if (ret)
3194                 goto out;
3195
3196         ret = command_scan(&s, gma_head, gma_tail,
3197                 gma_start, ctx_size);
3198 out:
3199         if (ret)
3200                 gvt_vgpu_err("scan shadow ctx error\n");
3201
3202         return ret;
3203 }
3204
3205 static int init_cmd_table(struct intel_gvt *gvt)
3206 {
3207         unsigned int gen_type = intel_gvt_get_device_type(gvt);
3208         int i;
3209
3210         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
3211                 struct cmd_entry *e;
3212
3213                 if (!(cmd_info[i].devices & gen_type))
3214                         continue;
3215
3216                 e = kzalloc(sizeof(*e), GFP_KERNEL);
3217                 if (!e)
3218                         return -ENOMEM;
3219
3220                 e->info = &cmd_info[i];
3221                 if (cmd_info[i].opcode == OP_MI_NOOP)
3222                         mi_noop_index = i;
3223
3224                 INIT_HLIST_NODE(&e->hlist);
3225                 add_cmd_entry(gvt, e);
3226                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
3227                             e->info->name, e->info->opcode, e->info->flag,
3228                             e->info->devices, e->info->rings);
3229         }
3230
3231         return 0;
3232 }
3233
3234 static void clean_cmd_table(struct intel_gvt *gvt)
3235 {
3236         struct hlist_node *tmp;
3237         struct cmd_entry *e;
3238         int i;
3239
3240         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
3241                 kfree(e);
3242
3243         hash_init(gvt->cmd_table);
3244 }
3245
3246 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
3247 {
3248         clean_cmd_table(gvt);
3249 }
3250
3251 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
3252 {
3253         int ret;
3254
3255         ret = init_cmd_table(gvt);
3256         if (ret) {
3257                 intel_gvt_clean_cmd_parser(gvt);
3258                 return ret;
3259         }
3260         return 0;
3261 }