Merge tag 'socfpga_arm32_defconfig_for_v5.2' of git://git.kernel.org/pub/scm/linux...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gvt / cmd_parser.c
1 /*
2  * Copyright(c) 2011-2016 Intel Corporation. All rights reserved.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21  * SOFTWARE.
22  *
23  * Authors:
24  *    Ke Yu
25  *    Kevin Tian <kevin.tian@intel.com>
26  *    Zhiyuan Lv <zhiyuan.lv@intel.com>
27  *
28  * Contributors:
29  *    Min He <min.he@intel.com>
30  *    Ping Gao <ping.a.gao@intel.com>
31  *    Tina Zhang <tina.zhang@intel.com>
32  *    Yulei Zhang <yulei.zhang@intel.com>
33  *    Zhi Wang <zhi.a.wang@intel.com>
34  *
35  */
36
37 #include <linux/slab.h>
38 #include "i915_drv.h"
39 #include "gvt.h"
40 #include "i915_pvinfo.h"
41 #include "trace.h"
42
43 #define INVALID_OP    (~0U)
44
45 #define OP_LEN_MI           9
46 #define OP_LEN_2D           10
47 #define OP_LEN_3D_MEDIA     16
48 #define OP_LEN_MFX_VC       16
49 #define OP_LEN_VEBOX        16
50
51 #define CMD_TYPE(cmd)   (((cmd) >> 29) & 7)
52
53 struct sub_op_bits {
54         int hi;
55         int low;
56 };
57 struct decode_info {
58         const char *name;
59         int op_len;
60         int nr_sub_op;
61         const struct sub_op_bits *sub_op;
62 };
63
64 #define   MAX_CMD_BUDGET                        0x7fffffff
65 #define   MI_WAIT_FOR_PLANE_C_FLIP_PENDING      (1<<15)
66 #define   MI_WAIT_FOR_PLANE_B_FLIP_PENDING      (1<<9)
67 #define   MI_WAIT_FOR_PLANE_A_FLIP_PENDING      (1<<1)
68
69 #define   MI_WAIT_FOR_SPRITE_C_FLIP_PENDING      (1<<20)
70 #define   MI_WAIT_FOR_SPRITE_B_FLIP_PENDING      (1<<10)
71 #define   MI_WAIT_FOR_SPRITE_A_FLIP_PENDING      (1<<2)
72
73 /* Render Command Map */
74
75 /* MI_* command Opcode (28:23) */
76 #define OP_MI_NOOP                          0x0
77 #define OP_MI_SET_PREDICATE                 0x1  /* HSW+ */
78 #define OP_MI_USER_INTERRUPT                0x2
79 #define OP_MI_WAIT_FOR_EVENT                0x3
80 #define OP_MI_FLUSH                         0x4
81 #define OP_MI_ARB_CHECK                     0x5
82 #define OP_MI_RS_CONTROL                    0x6  /* HSW+ */
83 #define OP_MI_REPORT_HEAD                   0x7
84 #define OP_MI_ARB_ON_OFF                    0x8
85 #define OP_MI_URB_ATOMIC_ALLOC              0x9  /* HSW+ */
86 #define OP_MI_BATCH_BUFFER_END              0xA
87 #define OP_MI_SUSPEND_FLUSH                 0xB
88 #define OP_MI_PREDICATE                     0xC  /* IVB+ */
89 #define OP_MI_TOPOLOGY_FILTER               0xD  /* IVB+ */
90 #define OP_MI_SET_APPID                     0xE  /* IVB+ */
91 #define OP_MI_RS_CONTEXT                    0xF  /* HSW+ */
92 #define OP_MI_LOAD_SCAN_LINES_INCL          0x12 /* HSW+ */
93 #define OP_MI_DISPLAY_FLIP                  0x14
94 #define OP_MI_SEMAPHORE_MBOX                0x16
95 #define OP_MI_SET_CONTEXT                   0x18
96 #define OP_MI_MATH                          0x1A
97 #define OP_MI_URB_CLEAR                     0x19
98 #define OP_MI_SEMAPHORE_SIGNAL              0x1B  /* BDW+ */
99 #define OP_MI_SEMAPHORE_WAIT                0x1C  /* BDW+ */
100
101 #define OP_MI_STORE_DATA_IMM                0x20
102 #define OP_MI_STORE_DATA_INDEX              0x21
103 #define OP_MI_LOAD_REGISTER_IMM             0x22
104 #define OP_MI_UPDATE_GTT                    0x23
105 #define OP_MI_STORE_REGISTER_MEM            0x24
106 #define OP_MI_FLUSH_DW                      0x26
107 #define OP_MI_CLFLUSH                       0x27
108 #define OP_MI_REPORT_PERF_COUNT             0x28
109 #define OP_MI_LOAD_REGISTER_MEM             0x29  /* HSW+ */
110 #define OP_MI_LOAD_REGISTER_REG             0x2A  /* HSW+ */
111 #define OP_MI_RS_STORE_DATA_IMM             0x2B  /* HSW+ */
112 #define OP_MI_LOAD_URB_MEM                  0x2C  /* HSW+ */
113 #define OP_MI_STORE_URM_MEM                 0x2D  /* HSW+ */
114 #define OP_MI_2E                            0x2E  /* BDW+ */
115 #define OP_MI_2F                            0x2F  /* BDW+ */
116 #define OP_MI_BATCH_BUFFER_START            0x31
117
118 /* Bit definition for dword 0 */
119 #define _CMDBIT_BB_START_IN_PPGTT       (1UL << 8)
120
121 #define OP_MI_CONDITIONAL_BATCH_BUFFER_END  0x36
122
123 #define BATCH_BUFFER_ADDR_MASK ((1UL << 32) - (1U << 2))
124 #define BATCH_BUFFER_ADDR_HIGH_MASK ((1UL << 16) - (1U))
125 #define BATCH_BUFFER_ADR_SPACE_BIT(x)   (((x) >> 8) & 1U)
126 #define BATCH_BUFFER_2ND_LEVEL_BIT(x)   ((x) >> 22 & 1U)
127
128 /* 2D command: Opcode (28:22) */
129 #define OP_2D(x)    ((2<<7) | x)
130
131 #define OP_XY_SETUP_BLT                             OP_2D(0x1)
132 #define OP_XY_SETUP_CLIP_BLT                        OP_2D(0x3)
133 #define OP_XY_SETUP_MONO_PATTERN_SL_BLT             OP_2D(0x11)
134 #define OP_XY_PIXEL_BLT                             OP_2D(0x24)
135 #define OP_XY_SCANLINES_BLT                         OP_2D(0x25)
136 #define OP_XY_TEXT_BLT                              OP_2D(0x26)
137 #define OP_XY_TEXT_IMMEDIATE_BLT                    OP_2D(0x31)
138 #define OP_XY_COLOR_BLT                             OP_2D(0x50)
139 #define OP_XY_PAT_BLT                               OP_2D(0x51)
140 #define OP_XY_MONO_PAT_BLT                          OP_2D(0x52)
141 #define OP_XY_SRC_COPY_BLT                          OP_2D(0x53)
142 #define OP_XY_MONO_SRC_COPY_BLT                     OP_2D(0x54)
143 #define OP_XY_FULL_BLT                              OP_2D(0x55)
144 #define OP_XY_FULL_MONO_SRC_BLT                     OP_2D(0x56)
145 #define OP_XY_FULL_MONO_PATTERN_BLT                 OP_2D(0x57)
146 #define OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT        OP_2D(0x58)
147 #define OP_XY_MONO_PAT_FIXED_BLT                    OP_2D(0x59)
148 #define OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT           OP_2D(0x71)
149 #define OP_XY_PAT_BLT_IMMEDIATE                     OP_2D(0x72)
150 #define OP_XY_SRC_COPY_CHROMA_BLT                   OP_2D(0x73)
151 #define OP_XY_FULL_IMMEDIATE_PATTERN_BLT            OP_2D(0x74)
152 #define OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT   OP_2D(0x75)
153 #define OP_XY_PAT_CHROMA_BLT                        OP_2D(0x76)
154 #define OP_XY_PAT_CHROMA_BLT_IMMEDIATE              OP_2D(0x77)
155
156 /* 3D/Media Command: Pipeline Type(28:27) Opcode(26:24) Sub Opcode(23:16) */
157 #define OP_3D_MEDIA(sub_type, opcode, sub_opcode) \
158         ((3 << 13) | ((sub_type) << 11) | ((opcode) << 8) | (sub_opcode))
159
160 #define OP_STATE_PREFETCH                       OP_3D_MEDIA(0x0, 0x0, 0x03)
161
162 #define OP_STATE_BASE_ADDRESS                   OP_3D_MEDIA(0x0, 0x1, 0x01)
163 #define OP_STATE_SIP                            OP_3D_MEDIA(0x0, 0x1, 0x02)
164 #define OP_3D_MEDIA_0_1_4                       OP_3D_MEDIA(0x0, 0x1, 0x04)
165
166 #define OP_3DSTATE_VF_STATISTICS_GM45           OP_3D_MEDIA(0x1, 0x0, 0x0B)
167
168 #define OP_PIPELINE_SELECT                      OP_3D_MEDIA(0x1, 0x1, 0x04)
169
170 #define OP_MEDIA_VFE_STATE                      OP_3D_MEDIA(0x2, 0x0, 0x0)
171 #define OP_MEDIA_CURBE_LOAD                     OP_3D_MEDIA(0x2, 0x0, 0x1)
172 #define OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD      OP_3D_MEDIA(0x2, 0x0, 0x2)
173 #define OP_MEDIA_GATEWAY_STATE                  OP_3D_MEDIA(0x2, 0x0, 0x3)
174 #define OP_MEDIA_STATE_FLUSH                    OP_3D_MEDIA(0x2, 0x0, 0x4)
175 #define OP_MEDIA_POOL_STATE                     OP_3D_MEDIA(0x2, 0x0, 0x5)
176
177 #define OP_MEDIA_OBJECT                         OP_3D_MEDIA(0x2, 0x1, 0x0)
178 #define OP_MEDIA_OBJECT_PRT                     OP_3D_MEDIA(0x2, 0x1, 0x2)
179 #define OP_MEDIA_OBJECT_WALKER                  OP_3D_MEDIA(0x2, 0x1, 0x3)
180 #define OP_GPGPU_WALKER                         OP_3D_MEDIA(0x2, 0x1, 0x5)
181
182 #define OP_3DSTATE_CLEAR_PARAMS                 OP_3D_MEDIA(0x3, 0x0, 0x04) /* IVB+ */
183 #define OP_3DSTATE_DEPTH_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x05) /* IVB+ */
184 #define OP_3DSTATE_STENCIL_BUFFER               OP_3D_MEDIA(0x3, 0x0, 0x06) /* IVB+ */
185 #define OP_3DSTATE_HIER_DEPTH_BUFFER            OP_3D_MEDIA(0x3, 0x0, 0x07) /* IVB+ */
186 #define OP_3DSTATE_VERTEX_BUFFERS               OP_3D_MEDIA(0x3, 0x0, 0x08)
187 #define OP_3DSTATE_VERTEX_ELEMENTS              OP_3D_MEDIA(0x3, 0x0, 0x09)
188 #define OP_3DSTATE_INDEX_BUFFER                 OP_3D_MEDIA(0x3, 0x0, 0x0A)
189 #define OP_3DSTATE_VF_STATISTICS                OP_3D_MEDIA(0x3, 0x0, 0x0B)
190 #define OP_3DSTATE_VF                           OP_3D_MEDIA(0x3, 0x0, 0x0C)  /* HSW+ */
191 #define OP_3DSTATE_CC_STATE_POINTERS            OP_3D_MEDIA(0x3, 0x0, 0x0E)
192 #define OP_3DSTATE_SCISSOR_STATE_POINTERS       OP_3D_MEDIA(0x3, 0x0, 0x0F)
193 #define OP_3DSTATE_VS                           OP_3D_MEDIA(0x3, 0x0, 0x10)
194 #define OP_3DSTATE_GS                           OP_3D_MEDIA(0x3, 0x0, 0x11)
195 #define OP_3DSTATE_CLIP                         OP_3D_MEDIA(0x3, 0x0, 0x12)
196 #define OP_3DSTATE_SF                           OP_3D_MEDIA(0x3, 0x0, 0x13)
197 #define OP_3DSTATE_WM                           OP_3D_MEDIA(0x3, 0x0, 0x14)
198 #define OP_3DSTATE_CONSTANT_VS                  OP_3D_MEDIA(0x3, 0x0, 0x15)
199 #define OP_3DSTATE_CONSTANT_GS                  OP_3D_MEDIA(0x3, 0x0, 0x16)
200 #define OP_3DSTATE_CONSTANT_PS                  OP_3D_MEDIA(0x3, 0x0, 0x17)
201 #define OP_3DSTATE_SAMPLE_MASK                  OP_3D_MEDIA(0x3, 0x0, 0x18)
202 #define OP_3DSTATE_CONSTANT_HS                  OP_3D_MEDIA(0x3, 0x0, 0x19) /* IVB+ */
203 #define OP_3DSTATE_CONSTANT_DS                  OP_3D_MEDIA(0x3, 0x0, 0x1A) /* IVB+ */
204 #define OP_3DSTATE_HS                           OP_3D_MEDIA(0x3, 0x0, 0x1B) /* IVB+ */
205 #define OP_3DSTATE_TE                           OP_3D_MEDIA(0x3, 0x0, 0x1C) /* IVB+ */
206 #define OP_3DSTATE_DS                           OP_3D_MEDIA(0x3, 0x0, 0x1D) /* IVB+ */
207 #define OP_3DSTATE_STREAMOUT                    OP_3D_MEDIA(0x3, 0x0, 0x1E) /* IVB+ */
208 #define OP_3DSTATE_SBE                          OP_3D_MEDIA(0x3, 0x0, 0x1F) /* IVB+ */
209 #define OP_3DSTATE_PS                           OP_3D_MEDIA(0x3, 0x0, 0x20) /* IVB+ */
210 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP OP_3D_MEDIA(0x3, 0x0, 0x21) /* IVB+ */
211 #define OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC   OP_3D_MEDIA(0x3, 0x0, 0x23) /* IVB+ */
212 #define OP_3DSTATE_BLEND_STATE_POINTERS         OP_3D_MEDIA(0x3, 0x0, 0x24) /* IVB+ */
213 #define OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS OP_3D_MEDIA(0x3, 0x0, 0x25) /* IVB+ */
214 #define OP_3DSTATE_BINDING_TABLE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x26) /* IVB+ */
215 #define OP_3DSTATE_BINDING_TABLE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x27) /* IVB+ */
216 #define OP_3DSTATE_BINDING_TABLE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x28) /* IVB+ */
217 #define OP_3DSTATE_BINDING_TABLE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x29) /* IVB+ */
218 #define OP_3DSTATE_BINDING_TABLE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2A) /* IVB+ */
219 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_VS    OP_3D_MEDIA(0x3, 0x0, 0x2B) /* IVB+ */
220 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_HS    OP_3D_MEDIA(0x3, 0x0, 0x2C) /* IVB+ */
221 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_DS    OP_3D_MEDIA(0x3, 0x0, 0x2D) /* IVB+ */
222 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_GS    OP_3D_MEDIA(0x3, 0x0, 0x2E) /* IVB+ */
223 #define OP_3DSTATE_SAMPLER_STATE_POINTERS_PS    OP_3D_MEDIA(0x3, 0x0, 0x2F) /* IVB+ */
224 #define OP_3DSTATE_URB_VS                       OP_3D_MEDIA(0x3, 0x0, 0x30) /* IVB+ */
225 #define OP_3DSTATE_URB_HS                       OP_3D_MEDIA(0x3, 0x0, 0x31) /* IVB+ */
226 #define OP_3DSTATE_URB_DS                       OP_3D_MEDIA(0x3, 0x0, 0x32) /* IVB+ */
227 #define OP_3DSTATE_URB_GS                       OP_3D_MEDIA(0x3, 0x0, 0x33) /* IVB+ */
228 #define OP_3DSTATE_GATHER_CONSTANT_VS           OP_3D_MEDIA(0x3, 0x0, 0x34) /* HSW+ */
229 #define OP_3DSTATE_GATHER_CONSTANT_GS           OP_3D_MEDIA(0x3, 0x0, 0x35) /* HSW+ */
230 #define OP_3DSTATE_GATHER_CONSTANT_HS           OP_3D_MEDIA(0x3, 0x0, 0x36) /* HSW+ */
231 #define OP_3DSTATE_GATHER_CONSTANT_DS           OP_3D_MEDIA(0x3, 0x0, 0x37) /* HSW+ */
232 #define OP_3DSTATE_GATHER_CONSTANT_PS           OP_3D_MEDIA(0x3, 0x0, 0x38) /* HSW+ */
233 #define OP_3DSTATE_DX9_CONSTANTF_VS             OP_3D_MEDIA(0x3, 0x0, 0x39) /* HSW+ */
234 #define OP_3DSTATE_DX9_CONSTANTF_PS             OP_3D_MEDIA(0x3, 0x0, 0x3A) /* HSW+ */
235 #define OP_3DSTATE_DX9_CONSTANTI_VS             OP_3D_MEDIA(0x3, 0x0, 0x3B) /* HSW+ */
236 #define OP_3DSTATE_DX9_CONSTANTI_PS             OP_3D_MEDIA(0x3, 0x0, 0x3C) /* HSW+ */
237 #define OP_3DSTATE_DX9_CONSTANTB_VS             OP_3D_MEDIA(0x3, 0x0, 0x3D) /* HSW+ */
238 #define OP_3DSTATE_DX9_CONSTANTB_PS             OP_3D_MEDIA(0x3, 0x0, 0x3E) /* HSW+ */
239 #define OP_3DSTATE_DX9_LOCAL_VALID_VS           OP_3D_MEDIA(0x3, 0x0, 0x3F) /* HSW+ */
240 #define OP_3DSTATE_DX9_LOCAL_VALID_PS           OP_3D_MEDIA(0x3, 0x0, 0x40) /* HSW+ */
241 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_VS       OP_3D_MEDIA(0x3, 0x0, 0x41) /* HSW+ */
242 #define OP_3DSTATE_DX9_GENERATE_ACTIVE_PS       OP_3D_MEDIA(0x3, 0x0, 0x42) /* HSW+ */
243 #define OP_3DSTATE_BINDING_TABLE_EDIT_VS        OP_3D_MEDIA(0x3, 0x0, 0x43) /* HSW+ */
244 #define OP_3DSTATE_BINDING_TABLE_EDIT_GS        OP_3D_MEDIA(0x3, 0x0, 0x44) /* HSW+ */
245 #define OP_3DSTATE_BINDING_TABLE_EDIT_HS        OP_3D_MEDIA(0x3, 0x0, 0x45) /* HSW+ */
246 #define OP_3DSTATE_BINDING_TABLE_EDIT_DS        OP_3D_MEDIA(0x3, 0x0, 0x46) /* HSW+ */
247 #define OP_3DSTATE_BINDING_TABLE_EDIT_PS        OP_3D_MEDIA(0x3, 0x0, 0x47) /* HSW+ */
248
249 #define OP_3DSTATE_VF_INSTANCING                OP_3D_MEDIA(0x3, 0x0, 0x49) /* BDW+ */
250 #define OP_3DSTATE_VF_SGVS                      OP_3D_MEDIA(0x3, 0x0, 0x4A) /* BDW+ */
251 #define OP_3DSTATE_VF_TOPOLOGY                  OP_3D_MEDIA(0x3, 0x0, 0x4B) /* BDW+ */
252 #define OP_3DSTATE_WM_CHROMAKEY                 OP_3D_MEDIA(0x3, 0x0, 0x4C) /* BDW+ */
253 #define OP_3DSTATE_PS_BLEND                     OP_3D_MEDIA(0x3, 0x0, 0x4D) /* BDW+ */
254 #define OP_3DSTATE_WM_DEPTH_STENCIL             OP_3D_MEDIA(0x3, 0x0, 0x4E) /* BDW+ */
255 #define OP_3DSTATE_PS_EXTRA                     OP_3D_MEDIA(0x3, 0x0, 0x4F) /* BDW+ */
256 #define OP_3DSTATE_RASTER                       OP_3D_MEDIA(0x3, 0x0, 0x50) /* BDW+ */
257 #define OP_3DSTATE_SBE_SWIZ                     OP_3D_MEDIA(0x3, 0x0, 0x51) /* BDW+ */
258 #define OP_3DSTATE_WM_HZ_OP                     OP_3D_MEDIA(0x3, 0x0, 0x52) /* BDW+ */
259 #define OP_3DSTATE_COMPONENT_PACKING            OP_3D_MEDIA(0x3, 0x0, 0x55) /* SKL+ */
260
261 #define OP_3DSTATE_DRAWING_RECTANGLE            OP_3D_MEDIA(0x3, 0x1, 0x00)
262 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD0        OP_3D_MEDIA(0x3, 0x1, 0x02)
263 #define OP_3DSTATE_CHROMA_KEY                   OP_3D_MEDIA(0x3, 0x1, 0x04)
264 #define OP_SNB_3DSTATE_DEPTH_BUFFER             OP_3D_MEDIA(0x3, 0x1, 0x05)
265 #define OP_3DSTATE_POLY_STIPPLE_OFFSET          OP_3D_MEDIA(0x3, 0x1, 0x06)
266 #define OP_3DSTATE_POLY_STIPPLE_PATTERN         OP_3D_MEDIA(0x3, 0x1, 0x07)
267 #define OP_3DSTATE_LINE_STIPPLE                 OP_3D_MEDIA(0x3, 0x1, 0x08)
268 #define OP_3DSTATE_AA_LINE_PARAMS               OP_3D_MEDIA(0x3, 0x1, 0x0A)
269 #define OP_3DSTATE_GS_SVB_INDEX                 OP_3D_MEDIA(0x3, 0x1, 0x0B)
270 #define OP_3DSTATE_SAMPLER_PALETTE_LOAD1        OP_3D_MEDIA(0x3, 0x1, 0x0C)
271 #define OP_3DSTATE_MULTISAMPLE_BDW              OP_3D_MEDIA(0x3, 0x0, 0x0D)
272 #define OP_SNB_3DSTATE_STENCIL_BUFFER           OP_3D_MEDIA(0x3, 0x1, 0x0E)
273 #define OP_SNB_3DSTATE_HIER_DEPTH_BUFFER        OP_3D_MEDIA(0x3, 0x1, 0x0F)
274 #define OP_SNB_3DSTATE_CLEAR_PARAMS             OP_3D_MEDIA(0x3, 0x1, 0x10)
275 #define OP_3DSTATE_MONOFILTER_SIZE              OP_3D_MEDIA(0x3, 0x1, 0x11)
276 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS       OP_3D_MEDIA(0x3, 0x1, 0x12) /* IVB+ */
277 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS       OP_3D_MEDIA(0x3, 0x1, 0x13) /* IVB+ */
278 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS       OP_3D_MEDIA(0x3, 0x1, 0x14) /* IVB+ */
279 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS       OP_3D_MEDIA(0x3, 0x1, 0x15) /* IVB+ */
280 #define OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS       OP_3D_MEDIA(0x3, 0x1, 0x16) /* IVB+ */
281 #define OP_3DSTATE_SO_DECL_LIST                 OP_3D_MEDIA(0x3, 0x1, 0x17)
282 #define OP_3DSTATE_SO_BUFFER                    OP_3D_MEDIA(0x3, 0x1, 0x18)
283 #define OP_3DSTATE_BINDING_TABLE_POOL_ALLOC     OP_3D_MEDIA(0x3, 0x1, 0x19) /* HSW+ */
284 #define OP_3DSTATE_GATHER_POOL_ALLOC            OP_3D_MEDIA(0x3, 0x1, 0x1A) /* HSW+ */
285 #define OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC OP_3D_MEDIA(0x3, 0x1, 0x1B) /* HSW+ */
286 #define OP_3DSTATE_SAMPLE_PATTERN               OP_3D_MEDIA(0x3, 0x1, 0x1C)
287 #define OP_PIPE_CONTROL                         OP_3D_MEDIA(0x3, 0x2, 0x00)
288 #define OP_3DPRIMITIVE                          OP_3D_MEDIA(0x3, 0x3, 0x00)
289
290 /* VCCP Command Parser */
291
292 /*
293  * Below MFX and VBE cmd definition is from vaapi intel driver project (BSD License)
294  * git://anongit.freedesktop.org/vaapi/intel-driver
295  * src/i965_defines.h
296  *
297  */
298
299 #define OP_MFX(pipeline, op, sub_opa, sub_opb)     \
300         (3 << 13 | \
301          (pipeline) << 11 | \
302          (op) << 8 | \
303          (sub_opa) << 5 | \
304          (sub_opb))
305
306 #define OP_MFX_PIPE_MODE_SELECT                    OP_MFX(2, 0, 0, 0)  /* ALL */
307 #define OP_MFX_SURFACE_STATE                       OP_MFX(2, 0, 0, 1)  /* ALL */
308 #define OP_MFX_PIPE_BUF_ADDR_STATE                 OP_MFX(2, 0, 0, 2)  /* ALL */
309 #define OP_MFX_IND_OBJ_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 3)  /* ALL */
310 #define OP_MFX_BSP_BUF_BASE_ADDR_STATE             OP_MFX(2, 0, 0, 4)  /* ALL */
311 #define OP_2_0_0_5                                 OP_MFX(2, 0, 0, 5)  /* ALL */
312 #define OP_MFX_STATE_POINTER                       OP_MFX(2, 0, 0, 6)  /* ALL */
313 #define OP_MFX_QM_STATE                            OP_MFX(2, 0, 0, 7)  /* IVB+ */
314 #define OP_MFX_FQM_STATE                           OP_MFX(2, 0, 0, 8)  /* IVB+ */
315 #define OP_MFX_PAK_INSERT_OBJECT                   OP_MFX(2, 0, 2, 8)  /* IVB+ */
316 #define OP_MFX_STITCH_OBJECT                       OP_MFX(2, 0, 2, 0xA)  /* IVB+ */
317
318 #define OP_MFD_IT_OBJECT                           OP_MFX(2, 0, 1, 9) /* ALL */
319
320 #define OP_MFX_WAIT                                OP_MFX(1, 0, 0, 0) /* IVB+ */
321 #define OP_MFX_AVC_IMG_STATE                       OP_MFX(2, 1, 0, 0) /* ALL */
322 #define OP_MFX_AVC_QM_STATE                        OP_MFX(2, 1, 0, 1) /* ALL */
323 #define OP_MFX_AVC_DIRECTMODE_STATE                OP_MFX(2, 1, 0, 2) /* ALL */
324 #define OP_MFX_AVC_SLICE_STATE                     OP_MFX(2, 1, 0, 3) /* ALL */
325 #define OP_MFX_AVC_REF_IDX_STATE                   OP_MFX(2, 1, 0, 4) /* ALL */
326 #define OP_MFX_AVC_WEIGHTOFFSET_STATE              OP_MFX(2, 1, 0, 5) /* ALL */
327 #define OP_MFD_AVC_PICID_STATE                     OP_MFX(2, 1, 1, 5) /* HSW+ */
328 #define OP_MFD_AVC_DPB_STATE                       OP_MFX(2, 1, 1, 6) /* IVB+ */
329 #define OP_MFD_AVC_SLICEADDR                       OP_MFX(2, 1, 1, 7) /* IVB+ */
330 #define OP_MFD_AVC_BSD_OBJECT                      OP_MFX(2, 1, 1, 8) /* ALL */
331 #define OP_MFC_AVC_PAK_OBJECT                      OP_MFX(2, 1, 2, 9) /* ALL */
332
333 #define OP_MFX_VC1_PRED_PIPE_STATE                 OP_MFX(2, 2, 0, 1) /* ALL */
334 #define OP_MFX_VC1_DIRECTMODE_STATE                OP_MFX(2, 2, 0, 2) /* ALL */
335 #define OP_MFD_VC1_SHORT_PIC_STATE                 OP_MFX(2, 2, 1, 0) /* IVB+ */
336 #define OP_MFD_VC1_LONG_PIC_STATE                  OP_MFX(2, 2, 1, 1) /* IVB+ */
337 #define OP_MFD_VC1_BSD_OBJECT                      OP_MFX(2, 2, 1, 8) /* ALL */
338
339 #define OP_MFX_MPEG2_PIC_STATE                     OP_MFX(2, 3, 0, 0) /* ALL */
340 #define OP_MFX_MPEG2_QM_STATE                      OP_MFX(2, 3, 0, 1) /* ALL */
341 #define OP_MFD_MPEG2_BSD_OBJECT                    OP_MFX(2, 3, 1, 8) /* ALL */
342 #define OP_MFC_MPEG2_SLICEGROUP_STATE              OP_MFX(2, 3, 2, 3) /* ALL */
343 #define OP_MFC_MPEG2_PAK_OBJECT                    OP_MFX(2, 3, 2, 9) /* ALL */
344
345 #define OP_MFX_2_6_0_0                             OP_MFX(2, 6, 0, 0) /* IVB+ */
346 #define OP_MFX_2_6_0_8                             OP_MFX(2, 6, 0, 8) /* IVB+ */
347 #define OP_MFX_2_6_0_9                             OP_MFX(2, 6, 0, 9) /* IVB+ */
348
349 #define OP_MFX_JPEG_PIC_STATE                      OP_MFX(2, 7, 0, 0)
350 #define OP_MFX_JPEG_HUFF_TABLE_STATE               OP_MFX(2, 7, 0, 2)
351 #define OP_MFD_JPEG_BSD_OBJECT                     OP_MFX(2, 7, 1, 8)
352
353 #define OP_VEB(pipeline, op, sub_opa, sub_opb) \
354         (3 << 13 | \
355          (pipeline) << 11 | \
356          (op) << 8 | \
357          (sub_opa) << 5 | \
358          (sub_opb))
359
360 #define OP_VEB_SURFACE_STATE                       OP_VEB(2, 4, 0, 0)
361 #define OP_VEB_STATE                               OP_VEB(2, 4, 0, 2)
362 #define OP_VEB_DNDI_IECP_STATE                     OP_VEB(2, 4, 0, 3)
363
364 struct parser_exec_state;
365
366 typedef int (*parser_cmd_handler)(struct parser_exec_state *s);
367
368 #define GVT_CMD_HASH_BITS   7
369
370 /* which DWords need address fix */
371 #define ADDR_FIX_1(x1)                  (1 << (x1))
372 #define ADDR_FIX_2(x1, x2)              (ADDR_FIX_1(x1) | ADDR_FIX_1(x2))
373 #define ADDR_FIX_3(x1, x2, x3)          (ADDR_FIX_1(x1) | ADDR_FIX_2(x2, x3))
374 #define ADDR_FIX_4(x1, x2, x3, x4)      (ADDR_FIX_1(x1) | ADDR_FIX_3(x2, x3, x4))
375 #define ADDR_FIX_5(x1, x2, x3, x4, x5)  (ADDR_FIX_1(x1) | ADDR_FIX_4(x2, x3, x4, x5))
376
377 struct cmd_info {
378         const char *name;
379         u32 opcode;
380
381 #define F_LEN_MASK      (1U<<0)
382 #define F_LEN_CONST  1U
383 #define F_LEN_VAR    0U
384
385 /*
386  * command has its own ip advance logic
387  * e.g. MI_BATCH_START, MI_BATCH_END
388  */
389 #define F_IP_ADVANCE_CUSTOM (1<<1)
390
391 #define F_POST_HANDLE   (1<<2)
392         u32 flag;
393
394 #define R_RCS   BIT(RCS0)
395 #define R_VCS1  BIT(VCS0)
396 #define R_VCS2  BIT(VCS1)
397 #define R_VCS   (R_VCS1 | R_VCS2)
398 #define R_BCS   BIT(BCS0)
399 #define R_VECS  BIT(VECS0)
400 #define R_ALL (R_RCS | R_VCS | R_BCS | R_VECS)
401         /* rings that support this cmd: BLT/RCS/VCS/VECS */
402         u16 rings;
403
404         /* devices that support this cmd: SNB/IVB/HSW/... */
405         u16 devices;
406
407         /* which DWords are address that need fix up.
408          * bit 0 means a 32-bit non address operand in command
409          * bit 1 means address operand, which could be 32-bit
410          * or 64-bit depending on different architectures.(
411          * defined by "gmadr_bytes_in_cmd" in intel_gvt.
412          * No matter the address length, each address only takes
413          * one bit in the bitmap.
414          */
415         u16 addr_bitmap;
416
417         /* flag == F_LEN_CONST : command length
418          * flag == F_LEN_VAR : length bias bits
419          * Note: length is in DWord
420          */
421         u8 len;
422
423         parser_cmd_handler handler;
424 };
425
426 struct cmd_entry {
427         struct hlist_node hlist;
428         const struct cmd_info *info;
429 };
430
431 enum {
432         RING_BUFFER_INSTRUCTION,
433         BATCH_BUFFER_INSTRUCTION,
434         BATCH_BUFFER_2ND_LEVEL,
435 };
436
437 enum {
438         GTT_BUFFER,
439         PPGTT_BUFFER
440 };
441
442 struct parser_exec_state {
443         struct intel_vgpu *vgpu;
444         int ring_id;
445
446         int buf_type;
447
448         /* batch buffer address type */
449         int buf_addr_type;
450
451         /* graphics memory address of ring buffer start */
452         unsigned long ring_start;
453         unsigned long ring_size;
454         unsigned long ring_head;
455         unsigned long ring_tail;
456
457         /* instruction graphics memory address */
458         unsigned long ip_gma;
459
460         /* mapped va of the instr_gma */
461         void *ip_va;
462         void *rb_va;
463
464         void *ret_bb_va;
465         /* next instruction when return from  batch buffer to ring buffer */
466         unsigned long ret_ip_gma_ring;
467
468         /* next instruction when return from 2nd batch buffer to batch buffer */
469         unsigned long ret_ip_gma_bb;
470
471         /* batch buffer address type (GTT or PPGTT)
472          * used when ret from 2nd level batch buffer
473          */
474         int saved_buf_addr_type;
475         bool is_ctx_wa;
476
477         const struct cmd_info *info;
478
479         struct intel_vgpu_workload *workload;
480 };
481
482 #define gmadr_dw_number(s)      \
483         (s->vgpu->gvt->device_info.gmadr_bytes_in_cmd >> 2)
484
485 static unsigned long bypass_scan_mask = 0;
486
487 /* ring ALL, type = 0 */
488 static const struct sub_op_bits sub_op_mi[] = {
489         {31, 29},
490         {28, 23},
491 };
492
493 static const struct decode_info decode_info_mi = {
494         "MI",
495         OP_LEN_MI,
496         ARRAY_SIZE(sub_op_mi),
497         sub_op_mi,
498 };
499
500 /* ring RCS, command type 2 */
501 static const struct sub_op_bits sub_op_2d[] = {
502         {31, 29},
503         {28, 22},
504 };
505
506 static const struct decode_info decode_info_2d = {
507         "2D",
508         OP_LEN_2D,
509         ARRAY_SIZE(sub_op_2d),
510         sub_op_2d,
511 };
512
513 /* ring RCS, command type 3 */
514 static const struct sub_op_bits sub_op_3d_media[] = {
515         {31, 29},
516         {28, 27},
517         {26, 24},
518         {23, 16},
519 };
520
521 static const struct decode_info decode_info_3d_media = {
522         "3D_Media",
523         OP_LEN_3D_MEDIA,
524         ARRAY_SIZE(sub_op_3d_media),
525         sub_op_3d_media,
526 };
527
528 /* ring VCS, command type 3 */
529 static const struct sub_op_bits sub_op_mfx_vc[] = {
530         {31, 29},
531         {28, 27},
532         {26, 24},
533         {23, 21},
534         {20, 16},
535 };
536
537 static const struct decode_info decode_info_mfx_vc = {
538         "MFX_VC",
539         OP_LEN_MFX_VC,
540         ARRAY_SIZE(sub_op_mfx_vc),
541         sub_op_mfx_vc,
542 };
543
544 /* ring VECS, command type 3 */
545 static const struct sub_op_bits sub_op_vebox[] = {
546         {31, 29},
547         {28, 27},
548         {26, 24},
549         {23, 21},
550         {20, 16},
551 };
552
553 static const struct decode_info decode_info_vebox = {
554         "VEBOX",
555         OP_LEN_VEBOX,
556         ARRAY_SIZE(sub_op_vebox),
557         sub_op_vebox,
558 };
559
560 static const struct decode_info *ring_decode_info[I915_NUM_ENGINES][8] = {
561         [RCS0] = {
562                 &decode_info_mi,
563                 NULL,
564                 NULL,
565                 &decode_info_3d_media,
566                 NULL,
567                 NULL,
568                 NULL,
569                 NULL,
570         },
571
572         [VCS0] = {
573                 &decode_info_mi,
574                 NULL,
575                 NULL,
576                 &decode_info_mfx_vc,
577                 NULL,
578                 NULL,
579                 NULL,
580                 NULL,
581         },
582
583         [BCS0] = {
584                 &decode_info_mi,
585                 NULL,
586                 &decode_info_2d,
587                 NULL,
588                 NULL,
589                 NULL,
590                 NULL,
591                 NULL,
592         },
593
594         [VECS0] = {
595                 &decode_info_mi,
596                 NULL,
597                 NULL,
598                 &decode_info_vebox,
599                 NULL,
600                 NULL,
601                 NULL,
602                 NULL,
603         },
604
605         [VCS1] = {
606                 &decode_info_mi,
607                 NULL,
608                 NULL,
609                 &decode_info_mfx_vc,
610                 NULL,
611                 NULL,
612                 NULL,
613                 NULL,
614         },
615 };
616
617 static inline u32 get_opcode(u32 cmd, int ring_id)
618 {
619         const struct decode_info *d_info;
620
621         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
622         if (d_info == NULL)
623                 return INVALID_OP;
624
625         return cmd >> (32 - d_info->op_len);
626 }
627
628 static inline const struct cmd_info *find_cmd_entry(struct intel_gvt *gvt,
629                 unsigned int opcode, int ring_id)
630 {
631         struct cmd_entry *e;
632
633         hash_for_each_possible(gvt->cmd_table, e, hlist, opcode) {
634                 if (opcode == e->info->opcode && e->info->rings & BIT(ring_id))
635                         return e->info;
636         }
637         return NULL;
638 }
639
640 static inline const struct cmd_info *get_cmd_info(struct intel_gvt *gvt,
641                 u32 cmd, int ring_id)
642 {
643         u32 opcode;
644
645         opcode = get_opcode(cmd, ring_id);
646         if (opcode == INVALID_OP)
647                 return NULL;
648
649         return find_cmd_entry(gvt, opcode, ring_id);
650 }
651
652 static inline u32 sub_op_val(u32 cmd, u32 hi, u32 low)
653 {
654         return (cmd >> low) & ((1U << (hi - low + 1)) - 1);
655 }
656
657 static inline void print_opcode(u32 cmd, int ring_id)
658 {
659         const struct decode_info *d_info;
660         int i;
661
662         d_info = ring_decode_info[ring_id][CMD_TYPE(cmd)];
663         if (d_info == NULL)
664                 return;
665
666         gvt_dbg_cmd("opcode=0x%x %s sub_ops:",
667                         cmd >> (32 - d_info->op_len), d_info->name);
668
669         for (i = 0; i < d_info->nr_sub_op; i++)
670                 pr_err("0x%x ", sub_op_val(cmd, d_info->sub_op[i].hi,
671                                         d_info->sub_op[i].low));
672
673         pr_err("\n");
674 }
675
676 static inline u32 *cmd_ptr(struct parser_exec_state *s, int index)
677 {
678         return s->ip_va + (index << 2);
679 }
680
681 static inline u32 cmd_val(struct parser_exec_state *s, int index)
682 {
683         return *cmd_ptr(s, index);
684 }
685
686 static void parser_exec_state_dump(struct parser_exec_state *s)
687 {
688         int cnt = 0;
689         int i;
690
691         gvt_dbg_cmd("  vgpu%d RING%d: ring_start(%08lx) ring_end(%08lx)"
692                         " ring_head(%08lx) ring_tail(%08lx)\n", s->vgpu->id,
693                         s->ring_id, s->ring_start, s->ring_start + s->ring_size,
694                         s->ring_head, s->ring_tail);
695
696         gvt_dbg_cmd("  %s %s ip_gma(%08lx) ",
697                         s->buf_type == RING_BUFFER_INSTRUCTION ?
698                         "RING_BUFFER" : "BATCH_BUFFER",
699                         s->buf_addr_type == GTT_BUFFER ?
700                         "GTT" : "PPGTT", s->ip_gma);
701
702         if (s->ip_va == NULL) {
703                 gvt_dbg_cmd(" ip_va(NULL)");
704                 return;
705         }
706
707         gvt_dbg_cmd("  ip_va=%p: %08x %08x %08x %08x\n",
708                         s->ip_va, cmd_val(s, 0), cmd_val(s, 1),
709                         cmd_val(s, 2), cmd_val(s, 3));
710
711         print_opcode(cmd_val(s, 0), s->ring_id);
712
713         s->ip_va = (u32 *)((((u64)s->ip_va) >> 12) << 12);
714
715         while (cnt < 1024) {
716                 gvt_dbg_cmd("ip_va=%p: ", s->ip_va);
717                 for (i = 0; i < 8; i++)
718                         gvt_dbg_cmd("%08x ", cmd_val(s, i));
719                 gvt_dbg_cmd("\n");
720
721                 s->ip_va += 8 * sizeof(u32);
722                 cnt += 8;
723         }
724 }
725
726 static inline void update_ip_va(struct parser_exec_state *s)
727 {
728         unsigned long len = 0;
729
730         if (WARN_ON(s->ring_head == s->ring_tail))
731                 return;
732
733         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
734                 unsigned long ring_top = s->ring_start + s->ring_size;
735
736                 if (s->ring_head > s->ring_tail) {
737                         if (s->ip_gma >= s->ring_head && s->ip_gma < ring_top)
738                                 len = (s->ip_gma - s->ring_head);
739                         else if (s->ip_gma >= s->ring_start &&
740                                         s->ip_gma <= s->ring_tail)
741                                 len = (ring_top - s->ring_head) +
742                                         (s->ip_gma - s->ring_start);
743                 } else
744                         len = (s->ip_gma - s->ring_head);
745
746                 s->ip_va = s->rb_va + len;
747         } else {/* shadow batch buffer */
748                 s->ip_va = s->ret_bb_va;
749         }
750 }
751
752 static inline int ip_gma_set(struct parser_exec_state *s,
753                 unsigned long ip_gma)
754 {
755         WARN_ON(!IS_ALIGNED(ip_gma, 4));
756
757         s->ip_gma = ip_gma;
758         update_ip_va(s);
759         return 0;
760 }
761
762 static inline int ip_gma_advance(struct parser_exec_state *s,
763                 unsigned int dw_len)
764 {
765         s->ip_gma += (dw_len << 2);
766
767         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
768                 if (s->ip_gma >= s->ring_start + s->ring_size)
769                         s->ip_gma -= s->ring_size;
770                 update_ip_va(s);
771         } else {
772                 s->ip_va += (dw_len << 2);
773         }
774
775         return 0;
776 }
777
778 static inline int get_cmd_length(const struct cmd_info *info, u32 cmd)
779 {
780         if ((info->flag & F_LEN_MASK) == F_LEN_CONST)
781                 return info->len;
782         else
783                 return (cmd & ((1U << info->len) - 1)) + 2;
784         return 0;
785 }
786
787 static inline int cmd_length(struct parser_exec_state *s)
788 {
789         return get_cmd_length(s->info, cmd_val(s, 0));
790 }
791
792 /* do not remove this, some platform may need clflush here */
793 #define patch_value(s, addr, val) do { \
794         *addr = val; \
795 } while (0)
796
797 static bool is_shadowed_mmio(unsigned int offset)
798 {
799         bool ret = false;
800
801         if ((offset == 0x2168) || /*BB current head register UDW */
802             (offset == 0x2140) || /*BB current header register */
803             (offset == 0x211c) || /*second BB header register UDW */
804             (offset == 0x2114)) { /*second BB header register UDW */
805                 ret = true;
806         }
807         return ret;
808 }
809
810 static inline bool is_force_nonpriv_mmio(unsigned int offset)
811 {
812         return (offset >= 0x24d0 && offset < 0x2500);
813 }
814
815 static int force_nonpriv_reg_handler(struct parser_exec_state *s,
816                 unsigned int offset, unsigned int index, char *cmd)
817 {
818         struct intel_gvt *gvt = s->vgpu->gvt;
819         unsigned int data;
820         u32 ring_base;
821         u32 nopid;
822         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
823
824         if (!strcmp(cmd, "lri"))
825                 data = cmd_val(s, index + 1);
826         else {
827                 gvt_err("Unexpected forcenonpriv 0x%x write from cmd %s\n",
828                         offset, cmd);
829                 return -EINVAL;
830         }
831
832         ring_base = dev_priv->engine[s->ring_id]->mmio_base;
833         nopid = i915_mmio_reg_offset(RING_NOPID(ring_base));
834
835         if (!intel_gvt_in_force_nonpriv_whitelist(gvt, data) &&
836                         data != nopid) {
837                 gvt_err("Unexpected forcenonpriv 0x%x LRI write, value=0x%x\n",
838                         offset, data);
839                 patch_value(s, cmd_ptr(s, index), nopid);
840                 return 0;
841         }
842         return 0;
843 }
844
845 static inline bool is_mocs_mmio(unsigned int offset)
846 {
847         return ((offset >= 0xc800) && (offset <= 0xcff8)) ||
848                 ((offset >= 0xb020) && (offset <= 0xb0a0));
849 }
850
851 static int mocs_cmd_reg_handler(struct parser_exec_state *s,
852                                 unsigned int offset, unsigned int index)
853 {
854         if (!is_mocs_mmio(offset))
855                 return -EINVAL;
856         vgpu_vreg(s->vgpu, offset) = cmd_val(s, index + 1);
857         return 0;
858 }
859
860 static int cmd_reg_handler(struct parser_exec_state *s,
861         unsigned int offset, unsigned int index, char *cmd)
862 {
863         struct intel_vgpu *vgpu = s->vgpu;
864         struct intel_gvt *gvt = vgpu->gvt;
865         u32 ctx_sr_ctl;
866
867         if (offset + 4 > gvt->device_info.mmio_size) {
868                 gvt_vgpu_err("%s access to (%x) outside of MMIO range\n",
869                                 cmd, offset);
870                 return -EFAULT;
871         }
872
873         if (!intel_gvt_mmio_is_cmd_access(gvt, offset)) {
874                 gvt_vgpu_err("%s access to non-render register (%x)\n",
875                                 cmd, offset);
876                 return -EBADRQC;
877         }
878
879         if (is_shadowed_mmio(offset)) {
880                 gvt_vgpu_err("found access of shadowed MMIO %x\n", offset);
881                 return 0;
882         }
883
884         if (is_mocs_mmio(offset) &&
885             mocs_cmd_reg_handler(s, offset, index))
886                 return -EINVAL;
887
888         if (is_force_nonpriv_mmio(offset) &&
889                 force_nonpriv_reg_handler(s, offset, index, cmd))
890                 return -EPERM;
891
892         if (offset == i915_mmio_reg_offset(DERRMR) ||
893                 offset == i915_mmio_reg_offset(FORCEWAKE_MT)) {
894                 /* Writing to HW VGT_PVINFO_PAGE offset will be discarded */
895                 patch_value(s, cmd_ptr(s, index), VGT_PVINFO_PAGE);
896         }
897
898         /* TODO
899          * Right now only scan LRI command on KBL and in inhibit context.
900          * It's good enough to support initializing mmio by lri command in
901          * vgpu inhibit context on KBL.
902          */
903         if ((IS_KABYLAKE(s->vgpu->gvt->dev_priv)
904                 || IS_COFFEELAKE(s->vgpu->gvt->dev_priv)) &&
905                         intel_gvt_mmio_is_in_ctx(gvt, offset) &&
906                         !strncmp(cmd, "lri", 3)) {
907                 intel_gvt_hypervisor_read_gpa(s->vgpu,
908                         s->workload->ring_context_gpa + 12, &ctx_sr_ctl, 4);
909                 /* check inhibit context */
910                 if (ctx_sr_ctl & 1) {
911                         u32 data = cmd_val(s, index + 1);
912
913                         if (intel_gvt_mmio_has_mode_mask(s->vgpu->gvt, offset))
914                                 intel_vgpu_mask_mmio_write(vgpu,
915                                                         offset, &data, 4);
916                         else
917                                 vgpu_vreg(vgpu, offset) = data;
918                 }
919         }
920
921         /* TODO: Update the global mask if this MMIO is a masked-MMIO */
922         intel_gvt_mmio_set_cmd_accessed(gvt, offset);
923         return 0;
924 }
925
926 #define cmd_reg(s, i) \
927         (cmd_val(s, i) & GENMASK(22, 2))
928
929 #define cmd_reg_inhibit(s, i) \
930         (cmd_val(s, i) & GENMASK(22, 18))
931
932 #define cmd_gma(s, i) \
933         (cmd_val(s, i) & GENMASK(31, 2))
934
935 #define cmd_gma_hi(s, i) \
936         (cmd_val(s, i) & GENMASK(15, 0))
937
938 static int cmd_handler_lri(struct parser_exec_state *s)
939 {
940         int i, ret = 0;
941         int cmd_len = cmd_length(s);
942         struct intel_gvt *gvt = s->vgpu->gvt;
943
944         for (i = 1; i < cmd_len; i += 2) {
945                 if (IS_BROADWELL(gvt->dev_priv) && s->ring_id != RCS0) {
946                         if (s->ring_id == BCS0 &&
947                             cmd_reg(s, i) == i915_mmio_reg_offset(DERRMR))
948                                 ret |= 0;
949                         else
950                                 ret |= cmd_reg_inhibit(s, i) ? -EBADRQC : 0;
951                 }
952                 if (ret)
953                         break;
954                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lri");
955                 if (ret)
956                         break;
957         }
958         return ret;
959 }
960
961 static int cmd_handler_lrr(struct parser_exec_state *s)
962 {
963         int i, ret = 0;
964         int cmd_len = cmd_length(s);
965
966         for (i = 1; i < cmd_len; i += 2) {
967                 if (IS_BROADWELL(s->vgpu->gvt->dev_priv))
968                         ret |= ((cmd_reg_inhibit(s, i) ||
969                                         (cmd_reg_inhibit(s, i + 1)))) ?
970                                 -EBADRQC : 0;
971                 if (ret)
972                         break;
973                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrr-src");
974                 if (ret)
975                         break;
976                 ret |= cmd_reg_handler(s, cmd_reg(s, i + 1), i, "lrr-dst");
977                 if (ret)
978                         break;
979         }
980         return ret;
981 }
982
983 static inline int cmd_address_audit(struct parser_exec_state *s,
984                 unsigned long guest_gma, int op_size, bool index_mode);
985
986 static int cmd_handler_lrm(struct parser_exec_state *s)
987 {
988         struct intel_gvt *gvt = s->vgpu->gvt;
989         int gmadr_bytes = gvt->device_info.gmadr_bytes_in_cmd;
990         unsigned long gma;
991         int i, ret = 0;
992         int cmd_len = cmd_length(s);
993
994         for (i = 1; i < cmd_len;) {
995                 if (IS_BROADWELL(gvt->dev_priv))
996                         ret |= (cmd_reg_inhibit(s, i)) ? -EBADRQC : 0;
997                 if (ret)
998                         break;
999                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "lrm");
1000                 if (ret)
1001                         break;
1002                 if (cmd_val(s, 0) & (1 << 22)) {
1003                         gma = cmd_gma(s, i + 1);
1004                         if (gmadr_bytes == 8)
1005                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1006                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1007                         if (ret)
1008                                 break;
1009                 }
1010                 i += gmadr_dw_number(s) + 1;
1011         }
1012         return ret;
1013 }
1014
1015 static int cmd_handler_srm(struct parser_exec_state *s)
1016 {
1017         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1018         unsigned long gma;
1019         int i, ret = 0;
1020         int cmd_len = cmd_length(s);
1021
1022         for (i = 1; i < cmd_len;) {
1023                 ret |= cmd_reg_handler(s, cmd_reg(s, i), i, "srm");
1024                 if (ret)
1025                         break;
1026                 if (cmd_val(s, 0) & (1 << 22)) {
1027                         gma = cmd_gma(s, i + 1);
1028                         if (gmadr_bytes == 8)
1029                                 gma |= (cmd_gma_hi(s, i + 2)) << 32;
1030                         ret |= cmd_address_audit(s, gma, sizeof(u32), false);
1031                         if (ret)
1032                                 break;
1033                 }
1034                 i += gmadr_dw_number(s) + 1;
1035         }
1036         return ret;
1037 }
1038
1039 struct cmd_interrupt_event {
1040         int pipe_control_notify;
1041         int mi_flush_dw;
1042         int mi_user_interrupt;
1043 };
1044
1045 static struct cmd_interrupt_event cmd_interrupt_events[] = {
1046         [RCS0] = {
1047                 .pipe_control_notify = RCS_PIPE_CONTROL,
1048                 .mi_flush_dw = INTEL_GVT_EVENT_RESERVED,
1049                 .mi_user_interrupt = RCS_MI_USER_INTERRUPT,
1050         },
1051         [BCS0] = {
1052                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1053                 .mi_flush_dw = BCS_MI_FLUSH_DW,
1054                 .mi_user_interrupt = BCS_MI_USER_INTERRUPT,
1055         },
1056         [VCS0] = {
1057                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1058                 .mi_flush_dw = VCS_MI_FLUSH_DW,
1059                 .mi_user_interrupt = VCS_MI_USER_INTERRUPT,
1060         },
1061         [VCS1] = {
1062                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1063                 .mi_flush_dw = VCS2_MI_FLUSH_DW,
1064                 .mi_user_interrupt = VCS2_MI_USER_INTERRUPT,
1065         },
1066         [VECS0] = {
1067                 .pipe_control_notify = INTEL_GVT_EVENT_RESERVED,
1068                 .mi_flush_dw = VECS_MI_FLUSH_DW,
1069                 .mi_user_interrupt = VECS_MI_USER_INTERRUPT,
1070         },
1071 };
1072
1073 static int cmd_handler_pipe_control(struct parser_exec_state *s)
1074 {
1075         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1076         unsigned long gma;
1077         bool index_mode = false;
1078         unsigned int post_sync;
1079         int ret = 0;
1080         u32 hws_pga, val;
1081
1082         post_sync = (cmd_val(s, 1) & PIPE_CONTROL_POST_SYNC_OP_MASK) >> 14;
1083
1084         /* LRI post sync */
1085         if (cmd_val(s, 1) & PIPE_CONTROL_MMIO_WRITE)
1086                 ret = cmd_reg_handler(s, cmd_reg(s, 2), 1, "pipe_ctrl");
1087         /* post sync */
1088         else if (post_sync) {
1089                 if (post_sync == 2)
1090                         ret = cmd_reg_handler(s, 0x2350, 1, "pipe_ctrl");
1091                 else if (post_sync == 3)
1092                         ret = cmd_reg_handler(s, 0x2358, 1, "pipe_ctrl");
1093                 else if (post_sync == 1) {
1094                         /* check ggtt*/
1095                         if ((cmd_val(s, 1) & PIPE_CONTROL_GLOBAL_GTT_IVB)) {
1096                                 gma = cmd_val(s, 2) & GENMASK(31, 3);
1097                                 if (gmadr_bytes == 8)
1098                                         gma |= (cmd_gma_hi(s, 3)) << 32;
1099                                 /* Store Data Index */
1100                                 if (cmd_val(s, 1) & (1 << 21))
1101                                         index_mode = true;
1102                                 ret |= cmd_address_audit(s, gma, sizeof(u64),
1103                                                 index_mode);
1104                                 if (ret)
1105                                         return ret;
1106                                 if (index_mode) {
1107                                         hws_pga = s->vgpu->hws_pga[s->ring_id];
1108                                         gma = hws_pga + gma;
1109                                         patch_value(s, cmd_ptr(s, 2), gma);
1110                                         val = cmd_val(s, 1) & (~(1 << 21));
1111                                         patch_value(s, cmd_ptr(s, 1), val);
1112                                 }
1113                         }
1114                 }
1115         }
1116
1117         if (ret)
1118                 return ret;
1119
1120         if (cmd_val(s, 1) & PIPE_CONTROL_NOTIFY)
1121                 set_bit(cmd_interrupt_events[s->ring_id].pipe_control_notify,
1122                                 s->workload->pending_events);
1123         return 0;
1124 }
1125
1126 static int cmd_handler_mi_user_interrupt(struct parser_exec_state *s)
1127 {
1128         set_bit(cmd_interrupt_events[s->ring_id].mi_user_interrupt,
1129                         s->workload->pending_events);
1130         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1131         return 0;
1132 }
1133
1134 static int cmd_advance_default(struct parser_exec_state *s)
1135 {
1136         return ip_gma_advance(s, cmd_length(s));
1137 }
1138
1139 static int cmd_handler_mi_batch_buffer_end(struct parser_exec_state *s)
1140 {
1141         int ret;
1142
1143         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1144                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1145                 ret = ip_gma_set(s, s->ret_ip_gma_bb);
1146                 s->buf_addr_type = s->saved_buf_addr_type;
1147         } else {
1148                 s->buf_type = RING_BUFFER_INSTRUCTION;
1149                 s->buf_addr_type = GTT_BUFFER;
1150                 if (s->ret_ip_gma_ring >= s->ring_start + s->ring_size)
1151                         s->ret_ip_gma_ring -= s->ring_size;
1152                 ret = ip_gma_set(s, s->ret_ip_gma_ring);
1153         }
1154         return ret;
1155 }
1156
1157 struct mi_display_flip_command_info {
1158         int pipe;
1159         int plane;
1160         int event;
1161         i915_reg_t stride_reg;
1162         i915_reg_t ctrl_reg;
1163         i915_reg_t surf_reg;
1164         u64 stride_val;
1165         u64 tile_val;
1166         u64 surf_val;
1167         bool async_flip;
1168 };
1169
1170 struct plane_code_mapping {
1171         int pipe;
1172         int plane;
1173         int event;
1174 };
1175
1176 static int gen8_decode_mi_display_flip(struct parser_exec_state *s,
1177                 struct mi_display_flip_command_info *info)
1178 {
1179         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1180         struct plane_code_mapping gen8_plane_code[] = {
1181                 [0] = {PIPE_A, PLANE_A, PRIMARY_A_FLIP_DONE},
1182                 [1] = {PIPE_B, PLANE_A, PRIMARY_B_FLIP_DONE},
1183                 [2] = {PIPE_A, PLANE_B, SPRITE_A_FLIP_DONE},
1184                 [3] = {PIPE_B, PLANE_B, SPRITE_B_FLIP_DONE},
1185                 [4] = {PIPE_C, PLANE_A, PRIMARY_C_FLIP_DONE},
1186                 [5] = {PIPE_C, PLANE_B, SPRITE_C_FLIP_DONE},
1187         };
1188         u32 dword0, dword1, dword2;
1189         u32 v;
1190
1191         dword0 = cmd_val(s, 0);
1192         dword1 = cmd_val(s, 1);
1193         dword2 = cmd_val(s, 2);
1194
1195         v = (dword0 & GENMASK(21, 19)) >> 19;
1196         if (WARN_ON(v >= ARRAY_SIZE(gen8_plane_code)))
1197                 return -EBADRQC;
1198
1199         info->pipe = gen8_plane_code[v].pipe;
1200         info->plane = gen8_plane_code[v].plane;
1201         info->event = gen8_plane_code[v].event;
1202         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1203         info->tile_val = (dword1 & 0x1);
1204         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1205         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1206
1207         if (info->plane == PLANE_A) {
1208                 info->ctrl_reg = DSPCNTR(info->pipe);
1209                 info->stride_reg = DSPSTRIDE(info->pipe);
1210                 info->surf_reg = DSPSURF(info->pipe);
1211         } else if (info->plane == PLANE_B) {
1212                 info->ctrl_reg = SPRCTL(info->pipe);
1213                 info->stride_reg = SPRSTRIDE(info->pipe);
1214                 info->surf_reg = SPRSURF(info->pipe);
1215         } else {
1216                 WARN_ON(1);
1217                 return -EBADRQC;
1218         }
1219         return 0;
1220 }
1221
1222 static int skl_decode_mi_display_flip(struct parser_exec_state *s,
1223                 struct mi_display_flip_command_info *info)
1224 {
1225         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1226         struct intel_vgpu *vgpu = s->vgpu;
1227         u32 dword0 = cmd_val(s, 0);
1228         u32 dword1 = cmd_val(s, 1);
1229         u32 dword2 = cmd_val(s, 2);
1230         u32 plane = (dword0 & GENMASK(12, 8)) >> 8;
1231
1232         info->plane = PRIMARY_PLANE;
1233
1234         switch (plane) {
1235         case MI_DISPLAY_FLIP_SKL_PLANE_1_A:
1236                 info->pipe = PIPE_A;
1237                 info->event = PRIMARY_A_FLIP_DONE;
1238                 break;
1239         case MI_DISPLAY_FLIP_SKL_PLANE_1_B:
1240                 info->pipe = PIPE_B;
1241                 info->event = PRIMARY_B_FLIP_DONE;
1242                 break;
1243         case MI_DISPLAY_FLIP_SKL_PLANE_1_C:
1244                 info->pipe = PIPE_C;
1245                 info->event = PRIMARY_C_FLIP_DONE;
1246                 break;
1247
1248         case MI_DISPLAY_FLIP_SKL_PLANE_2_A:
1249                 info->pipe = PIPE_A;
1250                 info->event = SPRITE_A_FLIP_DONE;
1251                 info->plane = SPRITE_PLANE;
1252                 break;
1253         case MI_DISPLAY_FLIP_SKL_PLANE_2_B:
1254                 info->pipe = PIPE_B;
1255                 info->event = SPRITE_B_FLIP_DONE;
1256                 info->plane = SPRITE_PLANE;
1257                 break;
1258         case MI_DISPLAY_FLIP_SKL_PLANE_2_C:
1259                 info->pipe = PIPE_C;
1260                 info->event = SPRITE_C_FLIP_DONE;
1261                 info->plane = SPRITE_PLANE;
1262                 break;
1263
1264         default:
1265                 gvt_vgpu_err("unknown plane code %d\n", plane);
1266                 return -EBADRQC;
1267         }
1268
1269         info->stride_val = (dword1 & GENMASK(15, 6)) >> 6;
1270         info->tile_val = (dword1 & GENMASK(2, 0));
1271         info->surf_val = (dword2 & GENMASK(31, 12)) >> 12;
1272         info->async_flip = ((dword2 & GENMASK(1, 0)) == 0x1);
1273
1274         info->ctrl_reg = DSPCNTR(info->pipe);
1275         info->stride_reg = DSPSTRIDE(info->pipe);
1276         info->surf_reg = DSPSURF(info->pipe);
1277
1278         return 0;
1279 }
1280
1281 static int gen8_check_mi_display_flip(struct parser_exec_state *s,
1282                 struct mi_display_flip_command_info *info)
1283 {
1284         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1285         u32 stride, tile;
1286
1287         if (!info->async_flip)
1288                 return 0;
1289
1290         if (INTEL_GEN(dev_priv) >= 9) {
1291                 stride = vgpu_vreg_t(s->vgpu, info->stride_reg) & GENMASK(9, 0);
1292                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) &
1293                                 GENMASK(12, 10)) >> 10;
1294         } else {
1295                 stride = (vgpu_vreg_t(s->vgpu, info->stride_reg) &
1296                                 GENMASK(15, 6)) >> 6;
1297                 tile = (vgpu_vreg_t(s->vgpu, info->ctrl_reg) & (1 << 10)) >> 10;
1298         }
1299
1300         if (stride != info->stride_val)
1301                 gvt_dbg_cmd("cannot change stride during async flip\n");
1302
1303         if (tile != info->tile_val)
1304                 gvt_dbg_cmd("cannot change tile during async flip\n");
1305
1306         return 0;
1307 }
1308
1309 static int gen8_update_plane_mmio_from_mi_display_flip(
1310                 struct parser_exec_state *s,
1311                 struct mi_display_flip_command_info *info)
1312 {
1313         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1314         struct intel_vgpu *vgpu = s->vgpu;
1315
1316         set_mask_bits(&vgpu_vreg_t(vgpu, info->surf_reg), GENMASK(31, 12),
1317                       info->surf_val << 12);
1318         if (INTEL_GEN(dev_priv) >= 9) {
1319                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(9, 0),
1320                               info->stride_val);
1321                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(12, 10),
1322                               info->tile_val << 10);
1323         } else {
1324                 set_mask_bits(&vgpu_vreg_t(vgpu, info->stride_reg), GENMASK(15, 6),
1325                               info->stride_val << 6);
1326                 set_mask_bits(&vgpu_vreg_t(vgpu, info->ctrl_reg), GENMASK(10, 10),
1327                               info->tile_val << 10);
1328         }
1329
1330         if (info->plane == PLANE_PRIMARY)
1331                 vgpu_vreg_t(vgpu, PIPE_FLIPCOUNT_G4X(info->pipe))++;
1332
1333         if (info->async_flip)
1334                 intel_vgpu_trigger_virtual_event(vgpu, info->event);
1335         else
1336                 set_bit(info->event, vgpu->irq.flip_done_event[info->pipe]);
1337
1338         return 0;
1339 }
1340
1341 static int decode_mi_display_flip(struct parser_exec_state *s,
1342                 struct mi_display_flip_command_info *info)
1343 {
1344         struct drm_i915_private *dev_priv = s->vgpu->gvt->dev_priv;
1345
1346         if (IS_BROADWELL(dev_priv))
1347                 return gen8_decode_mi_display_flip(s, info);
1348         if (INTEL_GEN(dev_priv) >= 9)
1349                 return skl_decode_mi_display_flip(s, info);
1350
1351         return -ENODEV;
1352 }
1353
1354 static int check_mi_display_flip(struct parser_exec_state *s,
1355                 struct mi_display_flip_command_info *info)
1356 {
1357         return gen8_check_mi_display_flip(s, info);
1358 }
1359
1360 static int update_plane_mmio_from_mi_display_flip(
1361                 struct parser_exec_state *s,
1362                 struct mi_display_flip_command_info *info)
1363 {
1364         return gen8_update_plane_mmio_from_mi_display_flip(s, info);
1365 }
1366
1367 static int cmd_handler_mi_display_flip(struct parser_exec_state *s)
1368 {
1369         struct mi_display_flip_command_info info;
1370         struct intel_vgpu *vgpu = s->vgpu;
1371         int ret;
1372         int i;
1373         int len = cmd_length(s);
1374
1375         ret = decode_mi_display_flip(s, &info);
1376         if (ret) {
1377                 gvt_vgpu_err("fail to decode MI display flip command\n");
1378                 return ret;
1379         }
1380
1381         ret = check_mi_display_flip(s, &info);
1382         if (ret) {
1383                 gvt_vgpu_err("invalid MI display flip command\n");
1384                 return ret;
1385         }
1386
1387         ret = update_plane_mmio_from_mi_display_flip(s, &info);
1388         if (ret) {
1389                 gvt_vgpu_err("fail to update plane mmio\n");
1390                 return ret;
1391         }
1392
1393         for (i = 0; i < len; i++)
1394                 patch_value(s, cmd_ptr(s, i), MI_NOOP);
1395         return 0;
1396 }
1397
1398 static bool is_wait_for_flip_pending(u32 cmd)
1399 {
1400         return cmd & (MI_WAIT_FOR_PLANE_A_FLIP_PENDING |
1401                         MI_WAIT_FOR_PLANE_B_FLIP_PENDING |
1402                         MI_WAIT_FOR_PLANE_C_FLIP_PENDING |
1403                         MI_WAIT_FOR_SPRITE_A_FLIP_PENDING |
1404                         MI_WAIT_FOR_SPRITE_B_FLIP_PENDING |
1405                         MI_WAIT_FOR_SPRITE_C_FLIP_PENDING);
1406 }
1407
1408 static int cmd_handler_mi_wait_for_event(struct parser_exec_state *s)
1409 {
1410         u32 cmd = cmd_val(s, 0);
1411
1412         if (!is_wait_for_flip_pending(cmd))
1413                 return 0;
1414
1415         patch_value(s, cmd_ptr(s, 0), MI_NOOP);
1416         return 0;
1417 }
1418
1419 static unsigned long get_gma_bb_from_cmd(struct parser_exec_state *s, int index)
1420 {
1421         unsigned long addr;
1422         unsigned long gma_high, gma_low;
1423         struct intel_vgpu *vgpu = s->vgpu;
1424         int gmadr_bytes = vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1425
1426         if (WARN_ON(gmadr_bytes != 4 && gmadr_bytes != 8)) {
1427                 gvt_vgpu_err("invalid gma bytes %d\n", gmadr_bytes);
1428                 return INTEL_GVT_INVALID_ADDR;
1429         }
1430
1431         gma_low = cmd_val(s, index) & BATCH_BUFFER_ADDR_MASK;
1432         if (gmadr_bytes == 4) {
1433                 addr = gma_low;
1434         } else {
1435                 gma_high = cmd_val(s, index + 1) & BATCH_BUFFER_ADDR_HIGH_MASK;
1436                 addr = (((unsigned long)gma_high) << 32) | gma_low;
1437         }
1438         return addr;
1439 }
1440
1441 static inline int cmd_address_audit(struct parser_exec_state *s,
1442                 unsigned long guest_gma, int op_size, bool index_mode)
1443 {
1444         struct intel_vgpu *vgpu = s->vgpu;
1445         u32 max_surface_size = vgpu->gvt->device_info.max_surface_size;
1446         int i;
1447         int ret;
1448
1449         if (op_size > max_surface_size) {
1450                 gvt_vgpu_err("command address audit fail name %s\n",
1451                         s->info->name);
1452                 return -EFAULT;
1453         }
1454
1455         if (index_mode) {
1456                 if (guest_gma >= I915_GTT_PAGE_SIZE) {
1457                         ret = -EFAULT;
1458                         goto err;
1459                 }
1460         } else if (!intel_gvt_ggtt_validate_range(vgpu, guest_gma, op_size)) {
1461                 ret = -EFAULT;
1462                 goto err;
1463         }
1464
1465         return 0;
1466
1467 err:
1468         gvt_vgpu_err("cmd_parser: Malicious %s detected, addr=0x%lx, len=%d!\n",
1469                         s->info->name, guest_gma, op_size);
1470
1471         pr_err("cmd dump: ");
1472         for (i = 0; i < cmd_length(s); i++) {
1473                 if (!(i % 4))
1474                         pr_err("\n%08x ", cmd_val(s, i));
1475                 else
1476                         pr_err("%08x ", cmd_val(s, i));
1477         }
1478         pr_err("\nvgpu%d: aperture 0x%llx - 0x%llx, hidden 0x%llx - 0x%llx\n",
1479                         vgpu->id,
1480                         vgpu_aperture_gmadr_base(vgpu),
1481                         vgpu_aperture_gmadr_end(vgpu),
1482                         vgpu_hidden_gmadr_base(vgpu),
1483                         vgpu_hidden_gmadr_end(vgpu));
1484         return ret;
1485 }
1486
1487 static int cmd_handler_mi_store_data_imm(struct parser_exec_state *s)
1488 {
1489         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1490         int op_size = (cmd_length(s) - 3) * sizeof(u32);
1491         int core_id = (cmd_val(s, 2) & (1 << 0)) ? 1 : 0;
1492         unsigned long gma, gma_low, gma_high;
1493         int ret = 0;
1494
1495         /* check ppggt */
1496         if (!(cmd_val(s, 0) & (1 << 22)))
1497                 return 0;
1498
1499         gma = cmd_val(s, 2) & GENMASK(31, 2);
1500
1501         if (gmadr_bytes == 8) {
1502                 gma_low = cmd_val(s, 1) & GENMASK(31, 2);
1503                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1504                 gma = (gma_high << 32) | gma_low;
1505                 core_id = (cmd_val(s, 1) & (1 << 0)) ? 1 : 0;
1506         }
1507         ret = cmd_address_audit(s, gma + op_size * core_id, op_size, false);
1508         return ret;
1509 }
1510
1511 static inline int unexpected_cmd(struct parser_exec_state *s)
1512 {
1513         struct intel_vgpu *vgpu = s->vgpu;
1514
1515         gvt_vgpu_err("Unexpected %s in command buffer!\n", s->info->name);
1516
1517         return -EBADRQC;
1518 }
1519
1520 static int cmd_handler_mi_semaphore_wait(struct parser_exec_state *s)
1521 {
1522         return unexpected_cmd(s);
1523 }
1524
1525 static int cmd_handler_mi_report_perf_count(struct parser_exec_state *s)
1526 {
1527         return unexpected_cmd(s);
1528 }
1529
1530 static int cmd_handler_mi_op_2e(struct parser_exec_state *s)
1531 {
1532         return unexpected_cmd(s);
1533 }
1534
1535 static int cmd_handler_mi_op_2f(struct parser_exec_state *s)
1536 {
1537         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1538         int op_size = (1 << ((cmd_val(s, 0) & GENMASK(20, 19)) >> 19)) *
1539                         sizeof(u32);
1540         unsigned long gma, gma_high;
1541         int ret = 0;
1542
1543         if (!(cmd_val(s, 0) & (1 << 22)))
1544                 return ret;
1545
1546         gma = cmd_val(s, 1) & GENMASK(31, 2);
1547         if (gmadr_bytes == 8) {
1548                 gma_high = cmd_val(s, 2) & GENMASK(15, 0);
1549                 gma = (gma_high << 32) | gma;
1550         }
1551         ret = cmd_address_audit(s, gma, op_size, false);
1552         return ret;
1553 }
1554
1555 static int cmd_handler_mi_store_data_index(struct parser_exec_state *s)
1556 {
1557         return unexpected_cmd(s);
1558 }
1559
1560 static int cmd_handler_mi_clflush(struct parser_exec_state *s)
1561 {
1562         return unexpected_cmd(s);
1563 }
1564
1565 static int cmd_handler_mi_conditional_batch_buffer_end(
1566                 struct parser_exec_state *s)
1567 {
1568         return unexpected_cmd(s);
1569 }
1570
1571 static int cmd_handler_mi_update_gtt(struct parser_exec_state *s)
1572 {
1573         return unexpected_cmd(s);
1574 }
1575
1576 static int cmd_handler_mi_flush_dw(struct parser_exec_state *s)
1577 {
1578         int gmadr_bytes = s->vgpu->gvt->device_info.gmadr_bytes_in_cmd;
1579         unsigned long gma;
1580         bool index_mode = false;
1581         int ret = 0;
1582         u32 hws_pga, val;
1583
1584         /* Check post-sync and ppgtt bit */
1585         if (((cmd_val(s, 0) >> 14) & 0x3) && (cmd_val(s, 1) & (1 << 2))) {
1586                 gma = cmd_val(s, 1) & GENMASK(31, 3);
1587                 if (gmadr_bytes == 8)
1588                         gma |= (cmd_val(s, 2) & GENMASK(15, 0)) << 32;
1589                 /* Store Data Index */
1590                 if (cmd_val(s, 0) & (1 << 21))
1591                         index_mode = true;
1592                 ret = cmd_address_audit(s, gma, sizeof(u64), index_mode);
1593                 if (ret)
1594                         return ret;
1595                 if (index_mode) {
1596                         hws_pga = s->vgpu->hws_pga[s->ring_id];
1597                         gma = hws_pga + gma;
1598                         patch_value(s, cmd_ptr(s, 1), gma);
1599                         val = cmd_val(s, 0) & (~(1 << 21));
1600                         patch_value(s, cmd_ptr(s, 0), val);
1601                 }
1602         }
1603         /* Check notify bit */
1604         if ((cmd_val(s, 0) & (1 << 8)))
1605                 set_bit(cmd_interrupt_events[s->ring_id].mi_flush_dw,
1606                                 s->workload->pending_events);
1607         return ret;
1608 }
1609
1610 static void addr_type_update_snb(struct parser_exec_state *s)
1611 {
1612         if ((s->buf_type == RING_BUFFER_INSTRUCTION) &&
1613                         (BATCH_BUFFER_ADR_SPACE_BIT(cmd_val(s, 0)) == 1)) {
1614                 s->buf_addr_type = PPGTT_BUFFER;
1615         }
1616 }
1617
1618
1619 static int copy_gma_to_hva(struct intel_vgpu *vgpu, struct intel_vgpu_mm *mm,
1620                 unsigned long gma, unsigned long end_gma, void *va)
1621 {
1622         unsigned long copy_len, offset;
1623         unsigned long len = 0;
1624         unsigned long gpa;
1625
1626         while (gma != end_gma) {
1627                 gpa = intel_vgpu_gma_to_gpa(mm, gma);
1628                 if (gpa == INTEL_GVT_INVALID_ADDR) {
1629                         gvt_vgpu_err("invalid gma address: %lx\n", gma);
1630                         return -EFAULT;
1631                 }
1632
1633                 offset = gma & (I915_GTT_PAGE_SIZE - 1);
1634
1635                 copy_len = (end_gma - gma) >= (I915_GTT_PAGE_SIZE - offset) ?
1636                         I915_GTT_PAGE_SIZE - offset : end_gma - gma;
1637
1638                 intel_gvt_hypervisor_read_gpa(vgpu, gpa, va + len, copy_len);
1639
1640                 len += copy_len;
1641                 gma += copy_len;
1642         }
1643         return len;
1644 }
1645
1646
1647 /*
1648  * Check whether a batch buffer needs to be scanned. Currently
1649  * the only criteria is based on privilege.
1650  */
1651 static int batch_buffer_needs_scan(struct parser_exec_state *s)
1652 {
1653         /* Decide privilege based on address space */
1654         if (cmd_val(s, 0) & (1 << 8) &&
1655                         !(s->vgpu->scan_nonprivbb & (1 << s->ring_id)))
1656                 return 0;
1657         return 1;
1658 }
1659
1660 static int find_bb_size(struct parser_exec_state *s, unsigned long *bb_size)
1661 {
1662         unsigned long gma = 0;
1663         const struct cmd_info *info;
1664         u32 cmd_len = 0;
1665         bool bb_end = false;
1666         struct intel_vgpu *vgpu = s->vgpu;
1667         u32 cmd;
1668         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1669                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1670
1671         *bb_size = 0;
1672
1673         /* get the start gm address of the batch buffer */
1674         gma = get_gma_bb_from_cmd(s, 1);
1675         if (gma == INTEL_GVT_INVALID_ADDR)
1676                 return -EFAULT;
1677
1678         cmd = cmd_val(s, 0);
1679         info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1680         if (info == NULL) {
1681                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1682                                 cmd, get_opcode(cmd, s->ring_id),
1683                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1684                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1685                 return -EBADRQC;
1686         }
1687         do {
1688                 if (copy_gma_to_hva(s->vgpu, mm,
1689                                 gma, gma + 4, &cmd) < 0)
1690                         return -EFAULT;
1691                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
1692                 if (info == NULL) {
1693                         gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
1694                                 cmd, get_opcode(cmd, s->ring_id),
1695                                 (s->buf_addr_type == PPGTT_BUFFER) ?
1696                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
1697                         return -EBADRQC;
1698                 }
1699
1700                 if (info->opcode == OP_MI_BATCH_BUFFER_END) {
1701                         bb_end = true;
1702                 } else if (info->opcode == OP_MI_BATCH_BUFFER_START) {
1703                         if (BATCH_BUFFER_2ND_LEVEL_BIT(cmd) == 0)
1704                                 /* chained batch buffer */
1705                                 bb_end = true;
1706                 }
1707                 cmd_len = get_cmd_length(info, cmd) << 2;
1708                 *bb_size += cmd_len;
1709                 gma += cmd_len;
1710         } while (!bb_end);
1711
1712         return 0;
1713 }
1714
1715 static int perform_bb_shadow(struct parser_exec_state *s)
1716 {
1717         struct intel_vgpu *vgpu = s->vgpu;
1718         struct intel_vgpu_shadow_bb *bb;
1719         unsigned long gma = 0;
1720         unsigned long bb_size;
1721         int ret = 0;
1722         struct intel_vgpu_mm *mm = (s->buf_addr_type == GTT_BUFFER) ?
1723                 s->vgpu->gtt.ggtt_mm : s->workload->shadow_mm;
1724         unsigned long gma_start_offset = 0;
1725
1726         /* get the start gm address of the batch buffer */
1727         gma = get_gma_bb_from_cmd(s, 1);
1728         if (gma == INTEL_GVT_INVALID_ADDR)
1729                 return -EFAULT;
1730
1731         ret = find_bb_size(s, &bb_size);
1732         if (ret)
1733                 return ret;
1734
1735         bb = kzalloc(sizeof(*bb), GFP_KERNEL);
1736         if (!bb)
1737                 return -ENOMEM;
1738
1739         bb->ppgtt = (s->buf_addr_type == GTT_BUFFER) ? false : true;
1740
1741         /* the gma_start_offset stores the batch buffer's start gma's
1742          * offset relative to page boundary. so for non-privileged batch
1743          * buffer, the shadowed gem object holds exactly the same page
1744          * layout as original gem object. This is for the convience of
1745          * replacing the whole non-privilged batch buffer page to this
1746          * shadowed one in PPGTT at the same gma address. (this replacing
1747          * action is not implemented yet now, but may be necessary in
1748          * future).
1749          * for prileged batch buffer, we just change start gma address to
1750          * that of shadowed page.
1751          */
1752         if (bb->ppgtt)
1753                 gma_start_offset = gma & ~I915_GTT_PAGE_MASK;
1754
1755         bb->obj = i915_gem_object_create(s->vgpu->gvt->dev_priv,
1756                          roundup(bb_size + gma_start_offset, PAGE_SIZE));
1757         if (IS_ERR(bb->obj)) {
1758                 ret = PTR_ERR(bb->obj);
1759                 goto err_free_bb;
1760         }
1761
1762         ret = i915_gem_obj_prepare_shmem_write(bb->obj, &bb->clflush);
1763         if (ret)
1764                 goto err_free_obj;
1765
1766         bb->va = i915_gem_object_pin_map(bb->obj, I915_MAP_WB);
1767         if (IS_ERR(bb->va)) {
1768                 ret = PTR_ERR(bb->va);
1769                 goto err_finish_shmem_access;
1770         }
1771
1772         if (bb->clflush & CLFLUSH_BEFORE) {
1773                 drm_clflush_virt_range(bb->va, bb->obj->base.size);
1774                 bb->clflush &= ~CLFLUSH_BEFORE;
1775         }
1776
1777         ret = copy_gma_to_hva(s->vgpu, mm,
1778                               gma, gma + bb_size,
1779                               bb->va + gma_start_offset);
1780         if (ret < 0) {
1781                 gvt_vgpu_err("fail to copy guest ring buffer\n");
1782                 ret = -EFAULT;
1783                 goto err_unmap;
1784         }
1785
1786         INIT_LIST_HEAD(&bb->list);
1787         list_add(&bb->list, &s->workload->shadow_bb);
1788
1789         bb->accessing = true;
1790         bb->bb_start_cmd_va = s->ip_va;
1791
1792         if ((s->buf_type == BATCH_BUFFER_INSTRUCTION) && (!s->is_ctx_wa))
1793                 bb->bb_offset = s->ip_va - s->rb_va;
1794         else
1795                 bb->bb_offset = 0;
1796
1797         /*
1798          * ip_va saves the virtual address of the shadow batch buffer, while
1799          * ip_gma saves the graphics address of the original batch buffer.
1800          * As the shadow batch buffer is just a copy from the originial one,
1801          * it should be right to use shadow batch buffer'va and original batch
1802          * buffer's gma in pair. After all, we don't want to pin the shadow
1803          * buffer here (too early).
1804          */
1805         s->ip_va = bb->va + gma_start_offset;
1806         s->ip_gma = gma;
1807         return 0;
1808 err_unmap:
1809         i915_gem_object_unpin_map(bb->obj);
1810 err_finish_shmem_access:
1811         i915_gem_obj_finish_shmem_access(bb->obj);
1812 err_free_obj:
1813         i915_gem_object_put(bb->obj);
1814 err_free_bb:
1815         kfree(bb);
1816         return ret;
1817 }
1818
1819 static int cmd_handler_mi_batch_buffer_start(struct parser_exec_state *s)
1820 {
1821         bool second_level;
1822         int ret = 0;
1823         struct intel_vgpu *vgpu = s->vgpu;
1824
1825         if (s->buf_type == BATCH_BUFFER_2ND_LEVEL) {
1826                 gvt_vgpu_err("Found MI_BATCH_BUFFER_START in 2nd level BB\n");
1827                 return -EFAULT;
1828         }
1829
1830         second_level = BATCH_BUFFER_2ND_LEVEL_BIT(cmd_val(s, 0)) == 1;
1831         if (second_level && (s->buf_type != BATCH_BUFFER_INSTRUCTION)) {
1832                 gvt_vgpu_err("Jumping to 2nd level BB from RB is not allowed\n");
1833                 return -EFAULT;
1834         }
1835
1836         s->saved_buf_addr_type = s->buf_addr_type;
1837         addr_type_update_snb(s);
1838         if (s->buf_type == RING_BUFFER_INSTRUCTION) {
1839                 s->ret_ip_gma_ring = s->ip_gma + cmd_length(s) * sizeof(u32);
1840                 s->buf_type = BATCH_BUFFER_INSTRUCTION;
1841         } else if (second_level) {
1842                 s->buf_type = BATCH_BUFFER_2ND_LEVEL;
1843                 s->ret_ip_gma_bb = s->ip_gma + cmd_length(s) * sizeof(u32);
1844                 s->ret_bb_va = s->ip_va + cmd_length(s) * sizeof(u32);
1845         }
1846
1847         if (batch_buffer_needs_scan(s)) {
1848                 ret = perform_bb_shadow(s);
1849                 if (ret < 0)
1850                         gvt_vgpu_err("invalid shadow batch buffer\n");
1851         } else {
1852                 /* emulate a batch buffer end to do return right */
1853                 ret = cmd_handler_mi_batch_buffer_end(s);
1854                 if (ret < 0)
1855                         return ret;
1856         }
1857         return ret;
1858 }
1859
1860 static int mi_noop_index;
1861
1862 static const struct cmd_info cmd_info[] = {
1863         {"MI_NOOP", OP_MI_NOOP, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1864
1865         {"MI_SET_PREDICATE", OP_MI_SET_PREDICATE, F_LEN_CONST, R_ALL, D_ALL,
1866                 0, 1, NULL},
1867
1868         {"MI_USER_INTERRUPT", OP_MI_USER_INTERRUPT, F_LEN_CONST, R_ALL, D_ALL,
1869                 0, 1, cmd_handler_mi_user_interrupt},
1870
1871         {"MI_WAIT_FOR_EVENT", OP_MI_WAIT_FOR_EVENT, F_LEN_CONST, R_RCS | R_BCS,
1872                 D_ALL, 0, 1, cmd_handler_mi_wait_for_event},
1873
1874         {"MI_FLUSH", OP_MI_FLUSH, F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
1875
1876         {"MI_ARB_CHECK", OP_MI_ARB_CHECK, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1877                 NULL},
1878
1879         {"MI_RS_CONTROL", OP_MI_RS_CONTROL, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1880                 NULL},
1881
1882         {"MI_REPORT_HEAD", OP_MI_REPORT_HEAD, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1883                 NULL},
1884
1885         {"MI_ARB_ON_OFF", OP_MI_ARB_ON_OFF, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1886                 NULL},
1887
1888         {"MI_URB_ATOMIC_ALLOC", OP_MI_URB_ATOMIC_ALLOC, F_LEN_CONST, R_RCS,
1889                 D_ALL, 0, 1, NULL},
1890
1891         {"MI_BATCH_BUFFER_END", OP_MI_BATCH_BUFFER_END,
1892                 F_IP_ADVANCE_CUSTOM | F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1893                 cmd_handler_mi_batch_buffer_end},
1894
1895         {"MI_SUSPEND_FLUSH", OP_MI_SUSPEND_FLUSH, F_LEN_CONST, R_ALL, D_ALL,
1896                 0, 1, NULL},
1897
1898         {"MI_PREDICATE", OP_MI_PREDICATE, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1899                 NULL},
1900
1901         {"MI_TOPOLOGY_FILTER", OP_MI_TOPOLOGY_FILTER, F_LEN_CONST, R_ALL,
1902                 D_ALL, 0, 1, NULL},
1903
1904         {"MI_SET_APPID", OP_MI_SET_APPID, F_LEN_CONST, R_ALL, D_ALL, 0, 1,
1905                 NULL},
1906
1907         {"MI_RS_CONTEXT", OP_MI_RS_CONTEXT, F_LEN_CONST, R_RCS, D_ALL, 0, 1,
1908                 NULL},
1909
1910         {"MI_DISPLAY_FLIP", OP_MI_DISPLAY_FLIP, F_LEN_VAR | F_POST_HANDLE,
1911                 R_RCS | R_BCS, D_ALL, 0, 8, cmd_handler_mi_display_flip},
1912
1913         {"MI_SEMAPHORE_MBOX", OP_MI_SEMAPHORE_MBOX, F_LEN_VAR, R_ALL, D_ALL,
1914                 0, 8, NULL},
1915
1916         {"MI_MATH", OP_MI_MATH, F_LEN_VAR, R_ALL, D_ALL, 0, 8, NULL},
1917
1918         {"MI_URB_CLEAR", OP_MI_URB_CLEAR, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
1919
1920         {"MI_SEMAPHORE_SIGNAL", OP_MI_SEMAPHORE_SIGNAL, F_LEN_VAR, R_ALL,
1921                 D_BDW_PLUS, 0, 8, NULL},
1922
1923         {"MI_SEMAPHORE_WAIT", OP_MI_SEMAPHORE_WAIT, F_LEN_VAR, R_ALL,
1924                 D_BDW_PLUS, ADDR_FIX_1(2), 8, cmd_handler_mi_semaphore_wait},
1925
1926         {"MI_STORE_DATA_IMM", OP_MI_STORE_DATA_IMM, F_LEN_VAR, R_ALL, D_BDW_PLUS,
1927                 ADDR_FIX_1(1), 10, cmd_handler_mi_store_data_imm},
1928
1929         {"MI_STORE_DATA_INDEX", OP_MI_STORE_DATA_INDEX, F_LEN_VAR, R_ALL, D_ALL,
1930                 0, 8, cmd_handler_mi_store_data_index},
1931
1932         {"MI_LOAD_REGISTER_IMM", OP_MI_LOAD_REGISTER_IMM, F_LEN_VAR, R_ALL,
1933                 D_ALL, 0, 8, cmd_handler_lri},
1934
1935         {"MI_UPDATE_GTT", OP_MI_UPDATE_GTT, F_LEN_VAR, R_ALL, D_BDW_PLUS, 0, 10,
1936                 cmd_handler_mi_update_gtt},
1937
1938         {"MI_STORE_REGISTER_MEM", OP_MI_STORE_REGISTER_MEM, F_LEN_VAR, R_ALL,
1939                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_srm},
1940
1941         {"MI_FLUSH_DW", OP_MI_FLUSH_DW, F_LEN_VAR, R_ALL, D_ALL, 0, 6,
1942                 cmd_handler_mi_flush_dw},
1943
1944         {"MI_CLFLUSH", OP_MI_CLFLUSH, F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(1),
1945                 10, cmd_handler_mi_clflush},
1946
1947         {"MI_REPORT_PERF_COUNT", OP_MI_REPORT_PERF_COUNT, F_LEN_VAR, R_ALL,
1948                 D_ALL, ADDR_FIX_1(1), 6, cmd_handler_mi_report_perf_count},
1949
1950         {"MI_LOAD_REGISTER_MEM", OP_MI_LOAD_REGISTER_MEM, F_LEN_VAR, R_ALL,
1951                 D_ALL, ADDR_FIX_1(2), 8, cmd_handler_lrm},
1952
1953         {"MI_LOAD_REGISTER_REG", OP_MI_LOAD_REGISTER_REG, F_LEN_VAR, R_ALL,
1954                 D_ALL, 0, 8, cmd_handler_lrr},
1955
1956         {"MI_RS_STORE_DATA_IMM", OP_MI_RS_STORE_DATA_IMM, F_LEN_VAR, R_RCS,
1957                 D_ALL, 0, 8, NULL},
1958
1959         {"MI_LOAD_URB_MEM", OP_MI_LOAD_URB_MEM, F_LEN_VAR, R_RCS, D_ALL,
1960                 ADDR_FIX_1(2), 8, NULL},
1961
1962         {"MI_STORE_URM_MEM", OP_MI_STORE_URM_MEM, F_LEN_VAR, R_RCS, D_ALL,
1963                 ADDR_FIX_1(2), 8, NULL},
1964
1965         {"MI_OP_2E", OP_MI_2E, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_2(1, 2),
1966                 8, cmd_handler_mi_op_2e},
1967
1968         {"MI_OP_2F", OP_MI_2F, F_LEN_VAR, R_ALL, D_BDW_PLUS, ADDR_FIX_1(1),
1969                 8, cmd_handler_mi_op_2f},
1970
1971         {"MI_BATCH_BUFFER_START", OP_MI_BATCH_BUFFER_START,
1972                 F_IP_ADVANCE_CUSTOM, R_ALL, D_ALL, 0, 8,
1973                 cmd_handler_mi_batch_buffer_start},
1974
1975         {"MI_CONDITIONAL_BATCH_BUFFER_END", OP_MI_CONDITIONAL_BATCH_BUFFER_END,
1976                 F_LEN_VAR, R_ALL, D_ALL, ADDR_FIX_1(2), 8,
1977                 cmd_handler_mi_conditional_batch_buffer_end},
1978
1979         {"MI_LOAD_SCAN_LINES_INCL", OP_MI_LOAD_SCAN_LINES_INCL, F_LEN_CONST,
1980                 R_RCS | R_BCS, D_ALL, 0, 2, NULL},
1981
1982         {"XY_SETUP_BLT", OP_XY_SETUP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1983                 ADDR_FIX_2(4, 7), 8, NULL},
1984
1985         {"XY_SETUP_CLIP_BLT", OP_XY_SETUP_CLIP_BLT, F_LEN_VAR, R_BCS, D_ALL,
1986                 0, 8, NULL},
1987
1988         {"XY_SETUP_MONO_PATTERN_SL_BLT", OP_XY_SETUP_MONO_PATTERN_SL_BLT,
1989                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
1990
1991         {"XY_PIXEL_BLT", OP_XY_PIXEL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
1992
1993         {"XY_SCANLINES_BLT", OP_XY_SCANLINES_BLT, F_LEN_VAR, R_BCS, D_ALL,
1994                 0, 8, NULL},
1995
1996         {"XY_TEXT_BLT", OP_XY_TEXT_BLT, F_LEN_VAR, R_BCS, D_ALL,
1997                 ADDR_FIX_1(3), 8, NULL},
1998
1999         {"XY_TEXT_IMMEDIATE_BLT", OP_XY_TEXT_IMMEDIATE_BLT, F_LEN_VAR, R_BCS,
2000                 D_ALL, 0, 8, NULL},
2001
2002         {"XY_COLOR_BLT", OP_XY_COLOR_BLT, F_LEN_VAR, R_BCS, D_ALL,
2003                 ADDR_FIX_1(4), 8, NULL},
2004
2005         {"XY_PAT_BLT", OP_XY_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2006                 ADDR_FIX_2(4, 5), 8, NULL},
2007
2008         {"XY_MONO_PAT_BLT", OP_XY_MONO_PAT_BLT, F_LEN_VAR, R_BCS, D_ALL,
2009                 ADDR_FIX_1(4), 8, NULL},
2010
2011         {"XY_SRC_COPY_BLT", OP_XY_SRC_COPY_BLT, F_LEN_VAR, R_BCS, D_ALL,
2012                 ADDR_FIX_2(4, 7), 8, NULL},
2013
2014         {"XY_MONO_SRC_COPY_BLT", OP_XY_MONO_SRC_COPY_BLT, F_LEN_VAR, R_BCS,
2015                 D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2016
2017         {"XY_FULL_BLT", OP_XY_FULL_BLT, F_LEN_VAR, R_BCS, D_ALL, 0, 8, NULL},
2018
2019         {"XY_FULL_MONO_SRC_BLT", OP_XY_FULL_MONO_SRC_BLT, F_LEN_VAR, R_BCS,
2020                 D_ALL, ADDR_FIX_3(4, 5, 8), 8, NULL},
2021
2022         {"XY_FULL_MONO_PATTERN_BLT", OP_XY_FULL_MONO_PATTERN_BLT, F_LEN_VAR,
2023                 R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2024
2025         {"XY_FULL_MONO_PATTERN_MONO_SRC_BLT",
2026                 OP_XY_FULL_MONO_PATTERN_MONO_SRC_BLT,
2027                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2028
2029         {"XY_MONO_PAT_FIXED_BLT", OP_XY_MONO_PAT_FIXED_BLT, F_LEN_VAR, R_BCS,
2030                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2031
2032         {"XY_MONO_SRC_COPY_IMMEDIATE_BLT", OP_XY_MONO_SRC_COPY_IMMEDIATE_BLT,
2033                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2034
2035         {"XY_PAT_BLT_IMMEDIATE", OP_XY_PAT_BLT_IMMEDIATE, F_LEN_VAR, R_BCS,
2036                 D_ALL, ADDR_FIX_1(4), 8, NULL},
2037
2038         {"XY_SRC_COPY_CHROMA_BLT", OP_XY_SRC_COPY_CHROMA_BLT, F_LEN_VAR, R_BCS,
2039                 D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2040
2041         {"XY_FULL_IMMEDIATE_PATTERN_BLT", OP_XY_FULL_IMMEDIATE_PATTERN_BLT,
2042                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 7), 8, NULL},
2043
2044         {"XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT",
2045                 OP_XY_FULL_MONO_SRC_IMMEDIATE_PATTERN_BLT,
2046                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_2(4, 5), 8, NULL},
2047
2048         {"XY_PAT_CHROMA_BLT", OP_XY_PAT_CHROMA_BLT, F_LEN_VAR, R_BCS, D_ALL,
2049                 ADDR_FIX_2(4, 5), 8, NULL},
2050
2051         {"XY_PAT_CHROMA_BLT_IMMEDIATE", OP_XY_PAT_CHROMA_BLT_IMMEDIATE,
2052                 F_LEN_VAR, R_BCS, D_ALL, ADDR_FIX_1(4), 8, NULL},
2053
2054         {"3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP",
2055                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_SF_CLIP,
2056                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2057
2058         {"3DSTATE_VIEWPORT_STATE_POINTERS_CC",
2059                 OP_3DSTATE_VIEWPORT_STATE_POINTERS_CC,
2060                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2061
2062         {"3DSTATE_BLEND_STATE_POINTERS",
2063                 OP_3DSTATE_BLEND_STATE_POINTERS,
2064                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2065
2066         {"3DSTATE_DEPTH_STENCIL_STATE_POINTERS",
2067                 OP_3DSTATE_DEPTH_STENCIL_STATE_POINTERS,
2068                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2069
2070         {"3DSTATE_BINDING_TABLE_POINTERS_VS",
2071                 OP_3DSTATE_BINDING_TABLE_POINTERS_VS,
2072                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2073
2074         {"3DSTATE_BINDING_TABLE_POINTERS_HS",
2075                 OP_3DSTATE_BINDING_TABLE_POINTERS_HS,
2076                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2077
2078         {"3DSTATE_BINDING_TABLE_POINTERS_DS",
2079                 OP_3DSTATE_BINDING_TABLE_POINTERS_DS,
2080                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2081
2082         {"3DSTATE_BINDING_TABLE_POINTERS_GS",
2083                 OP_3DSTATE_BINDING_TABLE_POINTERS_GS,
2084                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2085
2086         {"3DSTATE_BINDING_TABLE_POINTERS_PS",
2087                 OP_3DSTATE_BINDING_TABLE_POINTERS_PS,
2088                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2089
2090         {"3DSTATE_SAMPLER_STATE_POINTERS_VS",
2091                 OP_3DSTATE_SAMPLER_STATE_POINTERS_VS,
2092                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2093
2094         {"3DSTATE_SAMPLER_STATE_POINTERS_HS",
2095                 OP_3DSTATE_SAMPLER_STATE_POINTERS_HS,
2096                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2097
2098         {"3DSTATE_SAMPLER_STATE_POINTERS_DS",
2099                 OP_3DSTATE_SAMPLER_STATE_POINTERS_DS,
2100                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2101
2102         {"3DSTATE_SAMPLER_STATE_POINTERS_GS",
2103                 OP_3DSTATE_SAMPLER_STATE_POINTERS_GS,
2104                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2105
2106         {"3DSTATE_SAMPLER_STATE_POINTERS_PS",
2107                 OP_3DSTATE_SAMPLER_STATE_POINTERS_PS,
2108                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2109
2110         {"3DSTATE_URB_VS", OP_3DSTATE_URB_VS, F_LEN_VAR, R_RCS, D_ALL,
2111                 0, 8, NULL},
2112
2113         {"3DSTATE_URB_HS", OP_3DSTATE_URB_HS, F_LEN_VAR, R_RCS, D_ALL,
2114                 0, 8, NULL},
2115
2116         {"3DSTATE_URB_DS", OP_3DSTATE_URB_DS, F_LEN_VAR, R_RCS, D_ALL,
2117                 0, 8, NULL},
2118
2119         {"3DSTATE_URB_GS", OP_3DSTATE_URB_GS, F_LEN_VAR, R_RCS, D_ALL,
2120                 0, 8, NULL},
2121
2122         {"3DSTATE_GATHER_CONSTANT_VS", OP_3DSTATE_GATHER_CONSTANT_VS,
2123                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2124
2125         {"3DSTATE_GATHER_CONSTANT_GS", OP_3DSTATE_GATHER_CONSTANT_GS,
2126                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2127
2128         {"3DSTATE_GATHER_CONSTANT_HS", OP_3DSTATE_GATHER_CONSTANT_HS,
2129                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2130
2131         {"3DSTATE_GATHER_CONSTANT_DS", OP_3DSTATE_GATHER_CONSTANT_DS,
2132                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2133
2134         {"3DSTATE_GATHER_CONSTANT_PS", OP_3DSTATE_GATHER_CONSTANT_PS,
2135                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2136
2137         {"3DSTATE_DX9_CONSTANTF_VS", OP_3DSTATE_DX9_CONSTANTF_VS,
2138                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2139
2140         {"3DSTATE_DX9_CONSTANTF_PS", OP_3DSTATE_DX9_CONSTANTF_PS,
2141                 F_LEN_VAR, R_RCS, D_ALL, 0, 11, NULL},
2142
2143         {"3DSTATE_DX9_CONSTANTI_VS", OP_3DSTATE_DX9_CONSTANTI_VS,
2144                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2145
2146         {"3DSTATE_DX9_CONSTANTI_PS", OP_3DSTATE_DX9_CONSTANTI_PS,
2147                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2148
2149         {"3DSTATE_DX9_CONSTANTB_VS", OP_3DSTATE_DX9_CONSTANTB_VS,
2150                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2151
2152         {"3DSTATE_DX9_CONSTANTB_PS", OP_3DSTATE_DX9_CONSTANTB_PS,
2153                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2154
2155         {"3DSTATE_DX9_LOCAL_VALID_VS", OP_3DSTATE_DX9_LOCAL_VALID_VS,
2156                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2157
2158         {"3DSTATE_DX9_LOCAL_VALID_PS", OP_3DSTATE_DX9_LOCAL_VALID_PS,
2159                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2160
2161         {"3DSTATE_DX9_GENERATE_ACTIVE_VS", OP_3DSTATE_DX9_GENERATE_ACTIVE_VS,
2162                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2163
2164         {"3DSTATE_DX9_GENERATE_ACTIVE_PS", OP_3DSTATE_DX9_GENERATE_ACTIVE_PS,
2165                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2166
2167         {"3DSTATE_BINDING_TABLE_EDIT_VS", OP_3DSTATE_BINDING_TABLE_EDIT_VS,
2168                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2169
2170         {"3DSTATE_BINDING_TABLE_EDIT_GS", OP_3DSTATE_BINDING_TABLE_EDIT_GS,
2171                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2172
2173         {"3DSTATE_BINDING_TABLE_EDIT_HS", OP_3DSTATE_BINDING_TABLE_EDIT_HS,
2174                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2175
2176         {"3DSTATE_BINDING_TABLE_EDIT_DS", OP_3DSTATE_BINDING_TABLE_EDIT_DS,
2177                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2178
2179         {"3DSTATE_BINDING_TABLE_EDIT_PS", OP_3DSTATE_BINDING_TABLE_EDIT_PS,
2180                 F_LEN_VAR, R_RCS, D_ALL, 0, 9, NULL},
2181
2182         {"3DSTATE_VF_INSTANCING", OP_3DSTATE_VF_INSTANCING, F_LEN_VAR, R_RCS,
2183                 D_BDW_PLUS, 0, 8, NULL},
2184
2185         {"3DSTATE_VF_SGVS", OP_3DSTATE_VF_SGVS, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2186                 NULL},
2187
2188         {"3DSTATE_VF_TOPOLOGY", OP_3DSTATE_VF_TOPOLOGY, F_LEN_VAR, R_RCS,
2189                 D_BDW_PLUS, 0, 8, NULL},
2190
2191         {"3DSTATE_WM_CHROMAKEY", OP_3DSTATE_WM_CHROMAKEY, F_LEN_VAR, R_RCS,
2192                 D_BDW_PLUS, 0, 8, NULL},
2193
2194         {"3DSTATE_PS_BLEND", OP_3DSTATE_PS_BLEND, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2195                 8, NULL},
2196
2197         {"3DSTATE_WM_DEPTH_STENCIL", OP_3DSTATE_WM_DEPTH_STENCIL, F_LEN_VAR,
2198                 R_RCS, D_BDW_PLUS, 0, 8, NULL},
2199
2200         {"3DSTATE_PS_EXTRA", OP_3DSTATE_PS_EXTRA, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0,
2201                 8, NULL},
2202
2203         {"3DSTATE_RASTER", OP_3DSTATE_RASTER, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2204                 NULL},
2205
2206         {"3DSTATE_SBE_SWIZ", OP_3DSTATE_SBE_SWIZ, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2207                 NULL},
2208
2209         {"3DSTATE_WM_HZ_OP", OP_3DSTATE_WM_HZ_OP, F_LEN_VAR, R_RCS, D_BDW_PLUS, 0, 8,
2210                 NULL},
2211
2212         {"3DSTATE_VERTEX_BUFFERS", OP_3DSTATE_VERTEX_BUFFERS, F_LEN_VAR, R_RCS,
2213                 D_BDW_PLUS, 0, 8, NULL},
2214
2215         {"3DSTATE_VERTEX_ELEMENTS", OP_3DSTATE_VERTEX_ELEMENTS, F_LEN_VAR,
2216                 R_RCS, D_ALL, 0, 8, NULL},
2217
2218         {"3DSTATE_INDEX_BUFFER", OP_3DSTATE_INDEX_BUFFER, F_LEN_VAR, R_RCS,
2219                 D_BDW_PLUS, ADDR_FIX_1(2), 8, NULL},
2220
2221         {"3DSTATE_VF_STATISTICS", OP_3DSTATE_VF_STATISTICS, F_LEN_CONST,
2222                 R_RCS, D_ALL, 0, 1, NULL},
2223
2224         {"3DSTATE_VF", OP_3DSTATE_VF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2225
2226         {"3DSTATE_CC_STATE_POINTERS", OP_3DSTATE_CC_STATE_POINTERS, F_LEN_VAR,
2227                 R_RCS, D_ALL, 0, 8, NULL},
2228
2229         {"3DSTATE_SCISSOR_STATE_POINTERS", OP_3DSTATE_SCISSOR_STATE_POINTERS,
2230                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2231
2232         {"3DSTATE_GS", OP_3DSTATE_GS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2233
2234         {"3DSTATE_CLIP", OP_3DSTATE_CLIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2235
2236         {"3DSTATE_WM", OP_3DSTATE_WM, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2237
2238         {"3DSTATE_CONSTANT_GS", OP_3DSTATE_CONSTANT_GS, F_LEN_VAR, R_RCS,
2239                 D_BDW_PLUS, 0, 8, NULL},
2240
2241         {"3DSTATE_CONSTANT_PS", OP_3DSTATE_CONSTANT_PS, F_LEN_VAR, R_RCS,
2242                 D_BDW_PLUS, 0, 8, NULL},
2243
2244         {"3DSTATE_SAMPLE_MASK", OP_3DSTATE_SAMPLE_MASK, F_LEN_VAR, R_RCS,
2245                 D_ALL, 0, 8, NULL},
2246
2247         {"3DSTATE_CONSTANT_HS", OP_3DSTATE_CONSTANT_HS, F_LEN_VAR, R_RCS,
2248                 D_BDW_PLUS, 0, 8, NULL},
2249
2250         {"3DSTATE_CONSTANT_DS", OP_3DSTATE_CONSTANT_DS, F_LEN_VAR, R_RCS,
2251                 D_BDW_PLUS, 0, 8, NULL},
2252
2253         {"3DSTATE_HS", OP_3DSTATE_HS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2254
2255         {"3DSTATE_TE", OP_3DSTATE_TE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2256
2257         {"3DSTATE_DS", OP_3DSTATE_DS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2258
2259         {"3DSTATE_STREAMOUT", OP_3DSTATE_STREAMOUT, F_LEN_VAR, R_RCS,
2260                 D_ALL, 0, 8, NULL},
2261
2262         {"3DSTATE_SBE", OP_3DSTATE_SBE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2263
2264         {"3DSTATE_PS", OP_3DSTATE_PS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2265
2266         {"3DSTATE_DRAWING_RECTANGLE", OP_3DSTATE_DRAWING_RECTANGLE, F_LEN_VAR,
2267                 R_RCS, D_ALL, 0, 8, NULL},
2268
2269         {"3DSTATE_SAMPLER_PALETTE_LOAD0", OP_3DSTATE_SAMPLER_PALETTE_LOAD0,
2270                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2271
2272         {"3DSTATE_CHROMA_KEY", OP_3DSTATE_CHROMA_KEY, F_LEN_VAR, R_RCS, D_ALL,
2273                 0, 8, NULL},
2274
2275         {"3DSTATE_DEPTH_BUFFER", OP_3DSTATE_DEPTH_BUFFER, F_LEN_VAR, R_RCS,
2276                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2277
2278         {"3DSTATE_POLY_STIPPLE_OFFSET", OP_3DSTATE_POLY_STIPPLE_OFFSET,
2279                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2280
2281         {"3DSTATE_POLY_STIPPLE_PATTERN", OP_3DSTATE_POLY_STIPPLE_PATTERN,
2282                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2283
2284         {"3DSTATE_LINE_STIPPLE", OP_3DSTATE_LINE_STIPPLE, F_LEN_VAR, R_RCS,
2285                 D_ALL, 0, 8, NULL},
2286
2287         {"3DSTATE_AA_LINE_PARAMS", OP_3DSTATE_AA_LINE_PARAMS, F_LEN_VAR, R_RCS,
2288                 D_ALL, 0, 8, NULL},
2289
2290         {"3DSTATE_GS_SVB_INDEX", OP_3DSTATE_GS_SVB_INDEX, F_LEN_VAR, R_RCS,
2291                 D_ALL, 0, 8, NULL},
2292
2293         {"3DSTATE_SAMPLER_PALETTE_LOAD1", OP_3DSTATE_SAMPLER_PALETTE_LOAD1,
2294                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2295
2296         {"3DSTATE_MULTISAMPLE", OP_3DSTATE_MULTISAMPLE_BDW, F_LEN_VAR, R_RCS,
2297                 D_BDW_PLUS, 0, 8, NULL},
2298
2299         {"3DSTATE_STENCIL_BUFFER", OP_3DSTATE_STENCIL_BUFFER, F_LEN_VAR, R_RCS,
2300                 D_ALL, ADDR_FIX_1(2), 8, NULL},
2301
2302         {"3DSTATE_HIER_DEPTH_BUFFER", OP_3DSTATE_HIER_DEPTH_BUFFER, F_LEN_VAR,
2303                 R_RCS, D_ALL, ADDR_FIX_1(2), 8, NULL},
2304
2305         {"3DSTATE_CLEAR_PARAMS", OP_3DSTATE_CLEAR_PARAMS, F_LEN_VAR,
2306                 R_RCS, D_ALL, 0, 8, NULL},
2307
2308         {"3DSTATE_PUSH_CONSTANT_ALLOC_VS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_VS,
2309                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2310
2311         {"3DSTATE_PUSH_CONSTANT_ALLOC_HS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_HS,
2312                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2313
2314         {"3DSTATE_PUSH_CONSTANT_ALLOC_DS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_DS,
2315                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2316
2317         {"3DSTATE_PUSH_CONSTANT_ALLOC_GS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_GS,
2318                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2319
2320         {"3DSTATE_PUSH_CONSTANT_ALLOC_PS", OP_3DSTATE_PUSH_CONSTANT_ALLOC_PS,
2321                 F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2322
2323         {"3DSTATE_MONOFILTER_SIZE", OP_3DSTATE_MONOFILTER_SIZE, F_LEN_VAR,
2324                 R_RCS, D_ALL, 0, 8, NULL},
2325
2326         {"3DSTATE_SO_DECL_LIST", OP_3DSTATE_SO_DECL_LIST, F_LEN_VAR, R_RCS,
2327                 D_ALL, 0, 9, NULL},
2328
2329         {"3DSTATE_SO_BUFFER", OP_3DSTATE_SO_BUFFER, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2330                 ADDR_FIX_2(2, 4), 8, NULL},
2331
2332         {"3DSTATE_BINDING_TABLE_POOL_ALLOC",
2333                 OP_3DSTATE_BINDING_TABLE_POOL_ALLOC,
2334                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2335
2336         {"3DSTATE_GATHER_POOL_ALLOC", OP_3DSTATE_GATHER_POOL_ALLOC,
2337                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2338
2339         {"3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC",
2340                 OP_3DSTATE_DX9_CONSTANT_BUFFER_POOL_ALLOC,
2341                 F_LEN_VAR, R_RCS, D_BDW_PLUS, ADDR_FIX_1(1), 8, NULL},
2342
2343         {"3DSTATE_SAMPLE_PATTERN", OP_3DSTATE_SAMPLE_PATTERN, F_LEN_VAR, R_RCS,
2344                 D_BDW_PLUS, 0, 8, NULL},
2345
2346         {"PIPE_CONTROL", OP_PIPE_CONTROL, F_LEN_VAR, R_RCS, D_ALL,
2347                 ADDR_FIX_1(2), 8, cmd_handler_pipe_control},
2348
2349         {"3DPRIMITIVE", OP_3DPRIMITIVE, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2350
2351         {"PIPELINE_SELECT", OP_PIPELINE_SELECT, F_LEN_CONST, R_RCS, D_ALL, 0,
2352                 1, NULL},
2353
2354         {"STATE_PREFETCH", OP_STATE_PREFETCH, F_LEN_VAR, R_RCS, D_ALL,
2355                 ADDR_FIX_1(1), 8, NULL},
2356
2357         {"STATE_SIP", OP_STATE_SIP, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2358
2359         {"STATE_BASE_ADDRESS", OP_STATE_BASE_ADDRESS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2360                 ADDR_FIX_5(1, 3, 4, 5, 6), 8, NULL},
2361
2362         {"OP_3D_MEDIA_0_1_4", OP_3D_MEDIA_0_1_4, F_LEN_VAR, R_RCS, D_ALL,
2363                 ADDR_FIX_1(1), 8, NULL},
2364
2365         {"3DSTATE_VS", OP_3DSTATE_VS, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2366
2367         {"3DSTATE_SF", OP_3DSTATE_SF, F_LEN_VAR, R_RCS, D_ALL, 0, 8, NULL},
2368
2369         {"3DSTATE_CONSTANT_VS", OP_3DSTATE_CONSTANT_VS, F_LEN_VAR, R_RCS, D_BDW_PLUS,
2370                 0, 8, NULL},
2371
2372         {"3DSTATE_COMPONENT_PACKING", OP_3DSTATE_COMPONENT_PACKING, F_LEN_VAR, R_RCS,
2373                 D_SKL_PLUS, 0, 8, NULL},
2374
2375         {"MEDIA_INTERFACE_DESCRIPTOR_LOAD", OP_MEDIA_INTERFACE_DESCRIPTOR_LOAD,
2376                 F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2377
2378         {"MEDIA_GATEWAY_STATE", OP_MEDIA_GATEWAY_STATE, F_LEN_VAR, R_RCS, D_ALL,
2379                 0, 16, NULL},
2380
2381         {"MEDIA_STATE_FLUSH", OP_MEDIA_STATE_FLUSH, F_LEN_VAR, R_RCS, D_ALL,
2382                 0, 16, NULL},
2383
2384         {"MEDIA_POOL_STATE", OP_MEDIA_POOL_STATE, F_LEN_VAR, R_RCS, D_ALL,
2385                 0, 16, NULL},
2386
2387         {"MEDIA_OBJECT", OP_MEDIA_OBJECT, F_LEN_VAR, R_RCS, D_ALL, 0, 16, NULL},
2388
2389         {"MEDIA_CURBE_LOAD", OP_MEDIA_CURBE_LOAD, F_LEN_VAR, R_RCS, D_ALL,
2390                 0, 16, NULL},
2391
2392         {"MEDIA_OBJECT_PRT", OP_MEDIA_OBJECT_PRT, F_LEN_VAR, R_RCS, D_ALL,
2393                 0, 16, NULL},
2394
2395         {"MEDIA_OBJECT_WALKER", OP_MEDIA_OBJECT_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2396                 0, 16, NULL},
2397
2398         {"GPGPU_WALKER", OP_GPGPU_WALKER, F_LEN_VAR, R_RCS, D_ALL,
2399                 0, 8, NULL},
2400
2401         {"MEDIA_VFE_STATE", OP_MEDIA_VFE_STATE, F_LEN_VAR, R_RCS, D_ALL, 0, 16,
2402                 NULL},
2403
2404         {"3DSTATE_VF_STATISTICS_GM45", OP_3DSTATE_VF_STATISTICS_GM45,
2405                 F_LEN_CONST, R_ALL, D_ALL, 0, 1, NULL},
2406
2407         {"MFX_PIPE_MODE_SELECT", OP_MFX_PIPE_MODE_SELECT, F_LEN_VAR,
2408                 R_VCS, D_ALL, 0, 12, NULL},
2409
2410         {"MFX_SURFACE_STATE", OP_MFX_SURFACE_STATE, F_LEN_VAR,
2411                 R_VCS, D_ALL, 0, 12, NULL},
2412
2413         {"MFX_PIPE_BUF_ADDR_STATE", OP_MFX_PIPE_BUF_ADDR_STATE, F_LEN_VAR,
2414                 R_VCS, D_BDW_PLUS, 0, 12, NULL},
2415
2416         {"MFX_IND_OBJ_BASE_ADDR_STATE", OP_MFX_IND_OBJ_BASE_ADDR_STATE,
2417                 F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2418
2419         {"MFX_BSP_BUF_BASE_ADDR_STATE", OP_MFX_BSP_BUF_BASE_ADDR_STATE,
2420                 F_LEN_VAR, R_VCS, D_BDW_PLUS, ADDR_FIX_3(1, 3, 5), 12, NULL},
2421
2422         {"OP_2_0_0_5", OP_2_0_0_5, F_LEN_VAR, R_VCS, D_BDW_PLUS, 0, 12, NULL},
2423
2424         {"MFX_STATE_POINTER", OP_MFX_STATE_POINTER, F_LEN_VAR,
2425                 R_VCS, D_ALL, 0, 12, NULL},
2426
2427         {"MFX_QM_STATE", OP_MFX_QM_STATE, F_LEN_VAR,
2428                 R_VCS, D_ALL, 0, 12, NULL},
2429
2430         {"MFX_FQM_STATE", OP_MFX_FQM_STATE, F_LEN_VAR,
2431                 R_VCS, D_ALL, 0, 12, NULL},
2432
2433         {"MFX_PAK_INSERT_OBJECT", OP_MFX_PAK_INSERT_OBJECT, F_LEN_VAR,
2434                 R_VCS, D_ALL, 0, 12, NULL},
2435
2436         {"MFX_STITCH_OBJECT", OP_MFX_STITCH_OBJECT, F_LEN_VAR,
2437                 R_VCS, D_ALL, 0, 12, NULL},
2438
2439         {"MFD_IT_OBJECT", OP_MFD_IT_OBJECT, F_LEN_VAR,
2440                 R_VCS, D_ALL, 0, 12, NULL},
2441
2442         {"MFX_WAIT", OP_MFX_WAIT, F_LEN_VAR,
2443                 R_VCS, D_ALL, 0, 6, NULL},
2444
2445         {"MFX_AVC_IMG_STATE", OP_MFX_AVC_IMG_STATE, F_LEN_VAR,
2446                 R_VCS, D_ALL, 0, 12, NULL},
2447
2448         {"MFX_AVC_QM_STATE", OP_MFX_AVC_QM_STATE, F_LEN_VAR,
2449                 R_VCS, D_ALL, 0, 12, NULL},
2450
2451         {"MFX_AVC_DIRECTMODE_STATE", OP_MFX_AVC_DIRECTMODE_STATE, F_LEN_VAR,
2452                 R_VCS, D_ALL, 0, 12, NULL},
2453
2454         {"MFX_AVC_SLICE_STATE", OP_MFX_AVC_SLICE_STATE, F_LEN_VAR,
2455                 R_VCS, D_ALL, 0, 12, NULL},
2456
2457         {"MFX_AVC_REF_IDX_STATE", OP_MFX_AVC_REF_IDX_STATE, F_LEN_VAR,
2458                 R_VCS, D_ALL, 0, 12, NULL},
2459
2460         {"MFX_AVC_WEIGHTOFFSET_STATE", OP_MFX_AVC_WEIGHTOFFSET_STATE, F_LEN_VAR,
2461                 R_VCS, D_ALL, 0, 12, NULL},
2462
2463         {"MFD_AVC_PICID_STATE", OP_MFD_AVC_PICID_STATE, F_LEN_VAR,
2464                 R_VCS, D_ALL, 0, 12, NULL},
2465         {"MFD_AVC_DPB_STATE", OP_MFD_AVC_DPB_STATE, F_LEN_VAR,
2466                 R_VCS, D_ALL, 0, 12, NULL},
2467
2468         {"MFD_AVC_BSD_OBJECT", OP_MFD_AVC_BSD_OBJECT, F_LEN_VAR,
2469                 R_VCS, D_ALL, 0, 12, NULL},
2470
2471         {"MFD_AVC_SLICEADDR", OP_MFD_AVC_SLICEADDR, F_LEN_VAR,
2472                 R_VCS, D_ALL, ADDR_FIX_1(2), 12, NULL},
2473
2474         {"MFC_AVC_PAK_OBJECT", OP_MFC_AVC_PAK_OBJECT, F_LEN_VAR,
2475                 R_VCS, D_ALL, 0, 12, NULL},
2476
2477         {"MFX_VC1_PRED_PIPE_STATE", OP_MFX_VC1_PRED_PIPE_STATE, F_LEN_VAR,
2478                 R_VCS, D_ALL, 0, 12, NULL},
2479
2480         {"MFX_VC1_DIRECTMODE_STATE", OP_MFX_VC1_DIRECTMODE_STATE, F_LEN_VAR,
2481                 R_VCS, D_ALL, 0, 12, NULL},
2482
2483         {"MFD_VC1_SHORT_PIC_STATE", OP_MFD_VC1_SHORT_PIC_STATE, F_LEN_VAR,
2484                 R_VCS, D_ALL, 0, 12, NULL},
2485
2486         {"MFD_VC1_LONG_PIC_STATE", OP_MFD_VC1_LONG_PIC_STATE, F_LEN_VAR,
2487                 R_VCS, D_ALL, 0, 12, NULL},
2488
2489         {"MFD_VC1_BSD_OBJECT", OP_MFD_VC1_BSD_OBJECT, F_LEN_VAR,
2490                 R_VCS, D_ALL, 0, 12, NULL},
2491
2492         {"MFC_MPEG2_SLICEGROUP_STATE", OP_MFC_MPEG2_SLICEGROUP_STATE, F_LEN_VAR,
2493                 R_VCS, D_ALL, 0, 12, NULL},
2494
2495         {"MFC_MPEG2_PAK_OBJECT", OP_MFC_MPEG2_PAK_OBJECT, F_LEN_VAR,
2496                 R_VCS, D_ALL, 0, 12, NULL},
2497
2498         {"MFX_MPEG2_PIC_STATE", OP_MFX_MPEG2_PIC_STATE, F_LEN_VAR,
2499                 R_VCS, D_ALL, 0, 12, NULL},
2500
2501         {"MFX_MPEG2_QM_STATE", OP_MFX_MPEG2_QM_STATE, F_LEN_VAR,
2502                 R_VCS, D_ALL, 0, 12, NULL},
2503
2504         {"MFD_MPEG2_BSD_OBJECT", OP_MFD_MPEG2_BSD_OBJECT, F_LEN_VAR,
2505                 R_VCS, D_ALL, 0, 12, NULL},
2506
2507         {"MFX_2_6_0_0", OP_MFX_2_6_0_0, F_LEN_VAR, R_VCS, D_ALL,
2508                 0, 16, NULL},
2509
2510         {"MFX_2_6_0_9", OP_MFX_2_6_0_9, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2511
2512         {"MFX_2_6_0_8", OP_MFX_2_6_0_8, F_LEN_VAR, R_VCS, D_ALL, 0, 16, NULL},
2513
2514         {"MFX_JPEG_PIC_STATE", OP_MFX_JPEG_PIC_STATE, F_LEN_VAR,
2515                 R_VCS, D_ALL, 0, 12, NULL},
2516
2517         {"MFX_JPEG_HUFF_TABLE_STATE", OP_MFX_JPEG_HUFF_TABLE_STATE, F_LEN_VAR,
2518                 R_VCS, D_ALL, 0, 12, NULL},
2519
2520         {"MFD_JPEG_BSD_OBJECT", OP_MFD_JPEG_BSD_OBJECT, F_LEN_VAR,
2521                 R_VCS, D_ALL, 0, 12, NULL},
2522
2523         {"VEBOX_STATE", OP_VEB_STATE, F_LEN_VAR, R_VECS, D_ALL, 0, 12, NULL},
2524
2525         {"VEBOX_SURFACE_STATE", OP_VEB_SURFACE_STATE, F_LEN_VAR, R_VECS, D_ALL,
2526                 0, 12, NULL},
2527
2528         {"VEB_DI_IECP", OP_VEB_DNDI_IECP_STATE, F_LEN_VAR, R_VECS, D_BDW_PLUS,
2529                 0, 20, NULL},
2530 };
2531
2532 static void add_cmd_entry(struct intel_gvt *gvt, struct cmd_entry *e)
2533 {
2534         hash_add(gvt->cmd_table, &e->hlist, e->info->opcode);
2535 }
2536
2537 /* call the cmd handler, and advance ip */
2538 static int cmd_parser_exec(struct parser_exec_state *s)
2539 {
2540         struct intel_vgpu *vgpu = s->vgpu;
2541         const struct cmd_info *info;
2542         u32 cmd;
2543         int ret = 0;
2544
2545         cmd = cmd_val(s, 0);
2546
2547         /* fastpath for MI_NOOP */
2548         if (cmd == MI_NOOP)
2549                 info = &cmd_info[mi_noop_index];
2550         else
2551                 info = get_cmd_info(s->vgpu->gvt, cmd, s->ring_id);
2552
2553         if (info == NULL) {
2554                 gvt_vgpu_err("unknown cmd 0x%x, opcode=0x%x, addr_type=%s, ring %d, workload=%p\n",
2555                                 cmd, get_opcode(cmd, s->ring_id),
2556                                 (s->buf_addr_type == PPGTT_BUFFER) ?
2557                                 "ppgtt" : "ggtt", s->ring_id, s->workload);
2558                 return -EBADRQC;
2559         }
2560
2561         s->info = info;
2562
2563         trace_gvt_command(vgpu->id, s->ring_id, s->ip_gma, s->ip_va,
2564                           cmd_length(s), s->buf_type, s->buf_addr_type,
2565                           s->workload, info->name);
2566
2567         if (info->handler) {
2568                 ret = info->handler(s);
2569                 if (ret < 0) {
2570                         gvt_vgpu_err("%s handler error\n", info->name);
2571                         return ret;
2572                 }
2573         }
2574
2575         if (!(info->flag & F_IP_ADVANCE_CUSTOM)) {
2576                 ret = cmd_advance_default(s);
2577                 if (ret) {
2578                         gvt_vgpu_err("%s IP advance error\n", info->name);
2579                         return ret;
2580                 }
2581         }
2582         return 0;
2583 }
2584
2585 static inline bool gma_out_of_range(unsigned long gma,
2586                 unsigned long gma_head, unsigned int gma_tail)
2587 {
2588         if (gma_tail >= gma_head)
2589                 return (gma < gma_head) || (gma > gma_tail);
2590         else
2591                 return (gma > gma_tail) && (gma < gma_head);
2592 }
2593
2594 /* Keep the consistent return type, e.g EBADRQC for unknown
2595  * cmd, EFAULT for invalid address, EPERM for nonpriv. later
2596  * works as the input of VM healthy status.
2597  */
2598 static int command_scan(struct parser_exec_state *s,
2599                 unsigned long rb_head, unsigned long rb_tail,
2600                 unsigned long rb_start, unsigned long rb_len)
2601 {
2602
2603         unsigned long gma_head, gma_tail, gma_bottom;
2604         int ret = 0;
2605         struct intel_vgpu *vgpu = s->vgpu;
2606
2607         gma_head = rb_start + rb_head;
2608         gma_tail = rb_start + rb_tail;
2609         gma_bottom = rb_start +  rb_len;
2610
2611         while (s->ip_gma != gma_tail) {
2612                 if (s->buf_type == RING_BUFFER_INSTRUCTION) {
2613                         if (!(s->ip_gma >= rb_start) ||
2614                                 !(s->ip_gma < gma_bottom)) {
2615                                 gvt_vgpu_err("ip_gma %lx out of ring scope."
2616                                         "(base:0x%lx, bottom: 0x%lx)\n",
2617                                         s->ip_gma, rb_start,
2618                                         gma_bottom);
2619                                 parser_exec_state_dump(s);
2620                                 return -EFAULT;
2621                         }
2622                         if (gma_out_of_range(s->ip_gma, gma_head, gma_tail)) {
2623                                 gvt_vgpu_err("ip_gma %lx out of range."
2624                                         "base 0x%lx head 0x%lx tail 0x%lx\n",
2625                                         s->ip_gma, rb_start,
2626                                         rb_head, rb_tail);
2627                                 parser_exec_state_dump(s);
2628                                 break;
2629                         }
2630                 }
2631                 ret = cmd_parser_exec(s);
2632                 if (ret) {
2633                         gvt_vgpu_err("cmd parser error\n");
2634                         parser_exec_state_dump(s);
2635                         break;
2636                 }
2637         }
2638
2639         return ret;
2640 }
2641
2642 static int scan_workload(struct intel_vgpu_workload *workload)
2643 {
2644         unsigned long gma_head, gma_tail, gma_bottom;
2645         struct parser_exec_state s;
2646         int ret = 0;
2647
2648         /* ring base is page aligned */
2649         if (WARN_ON(!IS_ALIGNED(workload->rb_start, I915_GTT_PAGE_SIZE)))
2650                 return -EINVAL;
2651
2652         gma_head = workload->rb_start + workload->rb_head;
2653         gma_tail = workload->rb_start + workload->rb_tail;
2654         gma_bottom = workload->rb_start +  _RING_CTL_BUF_SIZE(workload->rb_ctl);
2655
2656         s.buf_type = RING_BUFFER_INSTRUCTION;
2657         s.buf_addr_type = GTT_BUFFER;
2658         s.vgpu = workload->vgpu;
2659         s.ring_id = workload->ring_id;
2660         s.ring_start = workload->rb_start;
2661         s.ring_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2662         s.ring_head = gma_head;
2663         s.ring_tail = gma_tail;
2664         s.rb_va = workload->shadow_ring_buffer_va;
2665         s.workload = workload;
2666         s.is_ctx_wa = false;
2667
2668         if ((bypass_scan_mask & (1 << workload->ring_id)) ||
2669                 gma_head == gma_tail)
2670                 return 0;
2671
2672         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2673                 ret = -EINVAL;
2674                 goto out;
2675         }
2676
2677         ret = ip_gma_set(&s, gma_head);
2678         if (ret)
2679                 goto out;
2680
2681         ret = command_scan(&s, workload->rb_head, workload->rb_tail,
2682                 workload->rb_start, _RING_CTL_BUF_SIZE(workload->rb_ctl));
2683
2684 out:
2685         return ret;
2686 }
2687
2688 static int scan_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2689 {
2690
2691         unsigned long gma_head, gma_tail, gma_bottom, ring_size, ring_tail;
2692         struct parser_exec_state s;
2693         int ret = 0;
2694         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2695                                 struct intel_vgpu_workload,
2696                                 wa_ctx);
2697
2698         /* ring base is page aligned */
2699         if (WARN_ON(!IS_ALIGNED(wa_ctx->indirect_ctx.guest_gma,
2700                                         I915_GTT_PAGE_SIZE)))
2701                 return -EINVAL;
2702
2703         ring_tail = wa_ctx->indirect_ctx.size + 3 * sizeof(u32);
2704         ring_size = round_up(wa_ctx->indirect_ctx.size + CACHELINE_BYTES,
2705                         PAGE_SIZE);
2706         gma_head = wa_ctx->indirect_ctx.guest_gma;
2707         gma_tail = wa_ctx->indirect_ctx.guest_gma + ring_tail;
2708         gma_bottom = wa_ctx->indirect_ctx.guest_gma + ring_size;
2709
2710         s.buf_type = RING_BUFFER_INSTRUCTION;
2711         s.buf_addr_type = GTT_BUFFER;
2712         s.vgpu = workload->vgpu;
2713         s.ring_id = workload->ring_id;
2714         s.ring_start = wa_ctx->indirect_ctx.guest_gma;
2715         s.ring_size = ring_size;
2716         s.ring_head = gma_head;
2717         s.ring_tail = gma_tail;
2718         s.rb_va = wa_ctx->indirect_ctx.shadow_va;
2719         s.workload = workload;
2720         s.is_ctx_wa = true;
2721
2722         if (!intel_gvt_ggtt_validate_range(s.vgpu, s.ring_start, s.ring_size)) {
2723                 ret = -EINVAL;
2724                 goto out;
2725         }
2726
2727         ret = ip_gma_set(&s, gma_head);
2728         if (ret)
2729                 goto out;
2730
2731         ret = command_scan(&s, 0, ring_tail,
2732                 wa_ctx->indirect_ctx.guest_gma, ring_size);
2733 out:
2734         return ret;
2735 }
2736
2737 static int shadow_workload_ring_buffer(struct intel_vgpu_workload *workload)
2738 {
2739         struct intel_vgpu *vgpu = workload->vgpu;
2740         struct intel_vgpu_submission *s = &vgpu->submission;
2741         unsigned long gma_head, gma_tail, gma_top, guest_rb_size;
2742         void *shadow_ring_buffer_va;
2743         int ring_id = workload->ring_id;
2744         int ret;
2745
2746         guest_rb_size = _RING_CTL_BUF_SIZE(workload->rb_ctl);
2747
2748         /* calculate workload ring buffer size */
2749         workload->rb_len = (workload->rb_tail + guest_rb_size -
2750                         workload->rb_head) % guest_rb_size;
2751
2752         gma_head = workload->rb_start + workload->rb_head;
2753         gma_tail = workload->rb_start + workload->rb_tail;
2754         gma_top = workload->rb_start + guest_rb_size;
2755
2756         if (workload->rb_len > s->ring_scan_buffer_size[ring_id]) {
2757                 void *p;
2758
2759                 /* realloc the new ring buffer if needed */
2760                 p = krealloc(s->ring_scan_buffer[ring_id], workload->rb_len,
2761                                 GFP_KERNEL);
2762                 if (!p) {
2763                         gvt_vgpu_err("fail to re-alloc ring scan buffer\n");
2764                         return -ENOMEM;
2765                 }
2766                 s->ring_scan_buffer[ring_id] = p;
2767                 s->ring_scan_buffer_size[ring_id] = workload->rb_len;
2768         }
2769
2770         shadow_ring_buffer_va = s->ring_scan_buffer[ring_id];
2771
2772         /* get shadow ring buffer va */
2773         workload->shadow_ring_buffer_va = shadow_ring_buffer_va;
2774
2775         /* head > tail --> copy head <-> top */
2776         if (gma_head > gma_tail) {
2777                 ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm,
2778                                       gma_head, gma_top, shadow_ring_buffer_va);
2779                 if (ret < 0) {
2780                         gvt_vgpu_err("fail to copy guest ring buffer\n");
2781                         return ret;
2782                 }
2783                 shadow_ring_buffer_va += ret;
2784                 gma_head = workload->rb_start;
2785         }
2786
2787         /* copy head or start <-> tail */
2788         ret = copy_gma_to_hva(vgpu, vgpu->gtt.ggtt_mm, gma_head, gma_tail,
2789                                 shadow_ring_buffer_va);
2790         if (ret < 0) {
2791                 gvt_vgpu_err("fail to copy guest ring buffer\n");
2792                 return ret;
2793         }
2794         return 0;
2795 }
2796
2797 int intel_gvt_scan_and_shadow_ringbuffer(struct intel_vgpu_workload *workload)
2798 {
2799         int ret;
2800         struct intel_vgpu *vgpu = workload->vgpu;
2801
2802         ret = shadow_workload_ring_buffer(workload);
2803         if (ret) {
2804                 gvt_vgpu_err("fail to shadow workload ring_buffer\n");
2805                 return ret;
2806         }
2807
2808         ret = scan_workload(workload);
2809         if (ret) {
2810                 gvt_vgpu_err("scan workload error\n");
2811                 return ret;
2812         }
2813         return 0;
2814 }
2815
2816 static int shadow_indirect_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2817 {
2818         int ctx_size = wa_ctx->indirect_ctx.size;
2819         unsigned long guest_gma = wa_ctx->indirect_ctx.guest_gma;
2820         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2821                                         struct intel_vgpu_workload,
2822                                         wa_ctx);
2823         struct intel_vgpu *vgpu = workload->vgpu;
2824         struct drm_i915_gem_object *obj;
2825         int ret = 0;
2826         void *map;
2827
2828         obj = i915_gem_object_create(workload->vgpu->gvt->dev_priv,
2829                                      roundup(ctx_size + CACHELINE_BYTES,
2830                                              PAGE_SIZE));
2831         if (IS_ERR(obj))
2832                 return PTR_ERR(obj);
2833
2834         /* get the va of the shadow batch buffer */
2835         map = i915_gem_object_pin_map(obj, I915_MAP_WB);
2836         if (IS_ERR(map)) {
2837                 gvt_vgpu_err("failed to vmap shadow indirect ctx\n");
2838                 ret = PTR_ERR(map);
2839                 goto put_obj;
2840         }
2841
2842         ret = i915_gem_object_set_to_cpu_domain(obj, false);
2843         if (ret) {
2844                 gvt_vgpu_err("failed to set shadow indirect ctx to CPU\n");
2845                 goto unmap_src;
2846         }
2847
2848         ret = copy_gma_to_hva(workload->vgpu,
2849                                 workload->vgpu->gtt.ggtt_mm,
2850                                 guest_gma, guest_gma + ctx_size,
2851                                 map);
2852         if (ret < 0) {
2853                 gvt_vgpu_err("fail to copy guest indirect ctx\n");
2854                 goto unmap_src;
2855         }
2856
2857         wa_ctx->indirect_ctx.obj = obj;
2858         wa_ctx->indirect_ctx.shadow_va = map;
2859         return 0;
2860
2861 unmap_src:
2862         i915_gem_object_unpin_map(obj);
2863 put_obj:
2864         i915_gem_object_put(obj);
2865         return ret;
2866 }
2867
2868 static int combine_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2869 {
2870         u32 per_ctx_start[CACHELINE_DWORDS] = {0};
2871         unsigned char *bb_start_sva;
2872
2873         if (!wa_ctx->per_ctx.valid)
2874                 return 0;
2875
2876         per_ctx_start[0] = 0x18800001;
2877         per_ctx_start[1] = wa_ctx->per_ctx.guest_gma;
2878
2879         bb_start_sva = (unsigned char *)wa_ctx->indirect_ctx.shadow_va +
2880                                 wa_ctx->indirect_ctx.size;
2881
2882         memcpy(bb_start_sva, per_ctx_start, CACHELINE_BYTES);
2883
2884         return 0;
2885 }
2886
2887 int intel_gvt_scan_and_shadow_wa_ctx(struct intel_shadow_wa_ctx *wa_ctx)
2888 {
2889         int ret;
2890         struct intel_vgpu_workload *workload = container_of(wa_ctx,
2891                                         struct intel_vgpu_workload,
2892                                         wa_ctx);
2893         struct intel_vgpu *vgpu = workload->vgpu;
2894
2895         if (wa_ctx->indirect_ctx.size == 0)
2896                 return 0;
2897
2898         ret = shadow_indirect_ctx(wa_ctx);
2899         if (ret) {
2900                 gvt_vgpu_err("fail to shadow indirect ctx\n");
2901                 return ret;
2902         }
2903
2904         combine_wa_ctx(wa_ctx);
2905
2906         ret = scan_wa_ctx(wa_ctx);
2907         if (ret) {
2908                 gvt_vgpu_err("scan wa ctx error\n");
2909                 return ret;
2910         }
2911
2912         return 0;
2913 }
2914
2915 static const struct cmd_info *find_cmd_entry_any_ring(struct intel_gvt *gvt,
2916                 unsigned int opcode, unsigned long rings)
2917 {
2918         const struct cmd_info *info = NULL;
2919         unsigned int ring;
2920
2921         for_each_set_bit(ring, &rings, I915_NUM_ENGINES) {
2922                 info = find_cmd_entry(gvt, opcode, ring);
2923                 if (info)
2924                         break;
2925         }
2926         return info;
2927 }
2928
2929 static int init_cmd_table(struct intel_gvt *gvt)
2930 {
2931         int i;
2932         struct cmd_entry *e;
2933         const struct cmd_info *info;
2934         unsigned int gen_type;
2935
2936         gen_type = intel_gvt_get_device_type(gvt);
2937
2938         for (i = 0; i < ARRAY_SIZE(cmd_info); i++) {
2939                 if (!(cmd_info[i].devices & gen_type))
2940                         continue;
2941
2942                 e = kzalloc(sizeof(*e), GFP_KERNEL);
2943                 if (!e)
2944                         return -ENOMEM;
2945
2946                 e->info = &cmd_info[i];
2947                 info = find_cmd_entry_any_ring(gvt,
2948                                 e->info->opcode, e->info->rings);
2949                 if (info) {
2950                         gvt_err("%s %s duplicated\n", e->info->name,
2951                                         info->name);
2952                         kfree(e);
2953                         return -EEXIST;
2954                 }
2955                 if (cmd_info[i].opcode == OP_MI_NOOP)
2956                         mi_noop_index = i;
2957
2958                 INIT_HLIST_NODE(&e->hlist);
2959                 add_cmd_entry(gvt, e);
2960                 gvt_dbg_cmd("add %-30s op %04x flag %x devs %02x rings %02x\n",
2961                                 e->info->name, e->info->opcode, e->info->flag,
2962                                 e->info->devices, e->info->rings);
2963         }
2964         return 0;
2965 }
2966
2967 static void clean_cmd_table(struct intel_gvt *gvt)
2968 {
2969         struct hlist_node *tmp;
2970         struct cmd_entry *e;
2971         int i;
2972
2973         hash_for_each_safe(gvt->cmd_table, i, tmp, e, hlist)
2974                 kfree(e);
2975
2976         hash_init(gvt->cmd_table);
2977 }
2978
2979 void intel_gvt_clean_cmd_parser(struct intel_gvt *gvt)
2980 {
2981         clean_cmd_table(gvt);
2982 }
2983
2984 int intel_gvt_init_cmd_parser(struct intel_gvt *gvt)
2985 {
2986         int ret;
2987
2988         ret = init_cmd_table(gvt);
2989         if (ret) {
2990                 intel_gvt_clean_cmd_parser(gvt);
2991                 return ret;
2992         }
2993         return 0;
2994 }