Merge tag 'drm-misc-next-2021-10-14' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc_ct.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/time64.h>
9 #include <linux/timekeeping.h>
10
11 #include "i915_drv.h"
12 #include "intel_guc_ct.h"
13 #include "gt/intel_gt.h"
14
15 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
16 {
17         return container_of(ct, struct intel_guc, ct);
18 }
19
20 static inline struct intel_gt *ct_to_gt(struct intel_guc_ct *ct)
21 {
22         return guc_to_gt(ct_to_guc(ct));
23 }
24
25 static inline struct drm_i915_private *ct_to_i915(struct intel_guc_ct *ct)
26 {
27         return ct_to_gt(ct)->i915;
28 }
29
30 static inline struct drm_device *ct_to_drm(struct intel_guc_ct *ct)
31 {
32         return &ct_to_i915(ct)->drm;
33 }
34
35 #define CT_ERROR(_ct, _fmt, ...) \
36         drm_err(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
37 #ifdef CONFIG_DRM_I915_DEBUG_GUC
38 #define CT_DEBUG(_ct, _fmt, ...) \
39         drm_dbg(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
40 #else
41 #define CT_DEBUG(...)   do { } while (0)
42 #endif
43 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
44         i915_probe_error(ct_to_i915(ct), "CT: " _fmt, ##__VA_ARGS__)
45
46 /**
47  * DOC: CTB Blob
48  *
49  * We allocate single blob to hold both CTB descriptors and buffers:
50  *
51  *      +--------+-----------------------------------------------+------+
52  *      | offset | contents                                      | size |
53  *      +========+===============================================+======+
54  *      | 0x0000 | H2G `CTB Descriptor`_ (send)                  |      |
55  *      +--------+-----------------------------------------------+  4K  |
56  *      | 0x0800 | G2H `CTB Descriptor`_ (recv)                  |      |
57  *      +--------+-----------------------------------------------+------+
58  *      | 0x1000 | H2G `CT Buffer`_ (send)                       | n*4K |
59  *      |        |                                               |      |
60  *      +--------+-----------------------------------------------+------+
61  *      | 0x1000 | G2H `CT Buffer`_ (recv)                       | m*4K |
62  *      | + n*4K |                                               |      |
63  *      +--------+-----------------------------------------------+------+
64  *
65  * Size of each `CT Buffer`_ must be multiple of 4K.
66  * We don't expect too many messages in flight at any time, unless we are
67  * using the GuC submission. In that case each request requires a minimum
68  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
69  * enough space to avoid backpressure on the driver. We increase the size
70  * of the receive buffer (relative to the send) to ensure a G2H response
71  * CTB has a landing spot.
72  */
73 #define CTB_DESC_SIZE           ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
74 #define CTB_H2G_BUFFER_SIZE     (SZ_4K)
75 #define CTB_G2H_BUFFER_SIZE     (4 * CTB_H2G_BUFFER_SIZE)
76 #define G2H_ROOM_BUFFER_SIZE    (CTB_G2H_BUFFER_SIZE / 4)
77
78 struct ct_request {
79         struct list_head link;
80         u32 fence;
81         u32 status;
82         u32 response_len;
83         u32 *response_buf;
84 };
85
86 struct ct_incoming_msg {
87         struct list_head link;
88         u32 size;
89         u32 msg[];
90 };
91
92 enum { CTB_SEND = 0, CTB_RECV = 1 };
93
94 enum { CTB_OWNER_HOST = 0 };
95
96 static void ct_receive_tasklet_func(struct tasklet_struct *t);
97 static void ct_incoming_request_worker_func(struct work_struct *w);
98
99 /**
100  * intel_guc_ct_init_early - Initialize CT state without requiring device access
101  * @ct: pointer to CT struct
102  */
103 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
104 {
105         spin_lock_init(&ct->ctbs.send.lock);
106         spin_lock_init(&ct->ctbs.recv.lock);
107         spin_lock_init(&ct->requests.lock);
108         INIT_LIST_HEAD(&ct->requests.pending);
109         INIT_LIST_HEAD(&ct->requests.incoming);
110         INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
111         tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
112         init_waitqueue_head(&ct->wq);
113 }
114
115 static inline const char *guc_ct_buffer_type_to_str(u32 type)
116 {
117         switch (type) {
118         case GUC_CTB_TYPE_HOST2GUC:
119                 return "SEND";
120         case GUC_CTB_TYPE_GUC2HOST:
121                 return "RECV";
122         default:
123                 return "<invalid>";
124         }
125 }
126
127 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
128 {
129         memset(desc, 0, sizeof(*desc));
130 }
131
132 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
133 {
134         u32 space;
135
136         ctb->broken = false;
137         ctb->tail = 0;
138         ctb->head = 0;
139         space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
140         atomic_set(&ctb->space, space);
141
142         guc_ct_buffer_desc_init(ctb->desc);
143 }
144
145 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
146                                struct guc_ct_buffer_desc *desc,
147                                u32 *cmds, u32 size_in_bytes, u32 resv_space)
148 {
149         GEM_BUG_ON(size_in_bytes % 4);
150
151         ctb->desc = desc;
152         ctb->cmds = cmds;
153         ctb->size = size_in_bytes / 4;
154         ctb->resv_space = resv_space / 4;
155
156         guc_ct_buffer_reset(ctb);
157 }
158
159 static int guc_action_register_ct_buffer(struct intel_guc *guc, u32 type,
160                                          u32 desc_addr, u32 buff_addr, u32 size)
161 {
162         u32 request[HOST2GUC_REGISTER_CTB_REQUEST_MSG_LEN] = {
163                 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
164                 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
165                 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_REGISTER_CTB),
166                 FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_1_SIZE, size / SZ_4K - 1) |
167                 FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_1_TYPE, type),
168                 FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_2_DESC_ADDR, desc_addr),
169                 FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_3_BUFF_ADDR, buff_addr),
170         };
171         int ret;
172
173         GEM_BUG_ON(type != GUC_CTB_TYPE_HOST2GUC && type != GUC_CTB_TYPE_GUC2HOST);
174         GEM_BUG_ON(size % SZ_4K);
175
176         /* CT registration must go over MMIO */
177         ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
178
179         return ret > 0 ? -EPROTO : ret;
180 }
181
182 static int ct_register_buffer(struct intel_guc_ct *ct, u32 type,
183                               u32 desc_addr, u32 buff_addr, u32 size)
184 {
185         int err;
186
187         err = i915_inject_probe_error(guc_to_gt(ct_to_guc(ct))->i915, -ENXIO);
188         if (unlikely(err))
189                 return err;
190
191         err = guc_action_register_ct_buffer(ct_to_guc(ct), type,
192                                             desc_addr, buff_addr, size);
193         if (unlikely(err))
194                 CT_ERROR(ct, "Failed to register %s buffer (%pe)\n",
195                          guc_ct_buffer_type_to_str(type), ERR_PTR(err));
196         return err;
197 }
198
199 static int guc_action_deregister_ct_buffer(struct intel_guc *guc, u32 type)
200 {
201         u32 request[HOST2GUC_DEREGISTER_CTB_REQUEST_MSG_LEN] = {
202                 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
203                 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
204                 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_DEREGISTER_CTB),
205                 FIELD_PREP(HOST2GUC_DEREGISTER_CTB_REQUEST_MSG_1_TYPE, type),
206         };
207         int ret;
208
209         GEM_BUG_ON(type != GUC_CTB_TYPE_HOST2GUC && type != GUC_CTB_TYPE_GUC2HOST);
210
211         /* CT deregistration must go over MMIO */
212         ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
213
214         return ret > 0 ? -EPROTO : ret;
215 }
216
217 static int ct_deregister_buffer(struct intel_guc_ct *ct, u32 type)
218 {
219         int err = guc_action_deregister_ct_buffer(ct_to_guc(ct), type);
220
221         if (unlikely(err))
222                 CT_ERROR(ct, "Failed to deregister %s buffer (%pe)\n",
223                          guc_ct_buffer_type_to_str(type), ERR_PTR(err));
224         return err;
225 }
226
227 /**
228  * intel_guc_ct_init - Init buffer-based communication
229  * @ct: pointer to CT struct
230  *
231  * Allocate memory required for buffer-based communication.
232  *
233  * Return: 0 on success, a negative errno code on failure.
234  */
235 int intel_guc_ct_init(struct intel_guc_ct *ct)
236 {
237         struct intel_guc *guc = ct_to_guc(ct);
238         struct guc_ct_buffer_desc *desc;
239         u32 blob_size;
240         u32 cmds_size;
241         u32 resv_space;
242         void *blob;
243         u32 *cmds;
244         int err;
245
246         err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
247         if (err)
248                 return err;
249
250         GEM_BUG_ON(ct->vma);
251
252         blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
253         err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
254         if (unlikely(err)) {
255                 CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
256                                blob_size, ERR_PTR(err));
257                 return err;
258         }
259
260         CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
261
262         /* store pointers to desc and cmds for send ctb */
263         desc = blob;
264         cmds = blob + 2 * CTB_DESC_SIZE;
265         cmds_size = CTB_H2G_BUFFER_SIZE;
266         resv_space = 0;
267         CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
268                  ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
269                  resv_space);
270
271         guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
272
273         /* store pointers to desc and cmds for recv ctb */
274         desc = blob + CTB_DESC_SIZE;
275         cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
276         cmds_size = CTB_G2H_BUFFER_SIZE;
277         resv_space = G2H_ROOM_BUFFER_SIZE;
278         CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
279                  ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
280                  resv_space);
281
282         guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
283
284         return 0;
285 }
286
287 /**
288  * intel_guc_ct_fini - Fini buffer-based communication
289  * @ct: pointer to CT struct
290  *
291  * Deallocate memory required for buffer-based communication.
292  */
293 void intel_guc_ct_fini(struct intel_guc_ct *ct)
294 {
295         GEM_BUG_ON(ct->enabled);
296
297         tasklet_kill(&ct->receive_tasklet);
298         i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
299         memset(ct, 0, sizeof(*ct));
300 }
301
302 /**
303  * intel_guc_ct_enable - Enable buffer based command transport.
304  * @ct: pointer to CT struct
305  *
306  * Return: 0 on success, a negative errno code on failure.
307  */
308 int intel_guc_ct_enable(struct intel_guc_ct *ct)
309 {
310         struct intel_guc *guc = ct_to_guc(ct);
311         u32 base, desc, cmds;
312         void *blob;
313         int err;
314
315         GEM_BUG_ON(ct->enabled);
316
317         /* vma should be already allocated and map'ed */
318         GEM_BUG_ON(!ct->vma);
319         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
320         base = intel_guc_ggtt_offset(guc, ct->vma);
321
322         /* blob should start with send descriptor */
323         blob = __px_vaddr(ct->vma->obj);
324         GEM_BUG_ON(blob != ct->ctbs.send.desc);
325
326         /* (re)initialize descriptors */
327         guc_ct_buffer_reset(&ct->ctbs.send);
328         guc_ct_buffer_reset(&ct->ctbs.recv);
329
330         /*
331          * Register both CT buffers starting with RECV buffer.
332          * Descriptors are in first half of the blob.
333          */
334         desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
335         cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
336         err = ct_register_buffer(ct, GUC_CTB_TYPE_GUC2HOST,
337                                  desc, cmds, ct->ctbs.recv.size * 4);
338
339         if (unlikely(err))
340                 goto err_out;
341
342         desc = base + ptrdiff(ct->ctbs.send.desc, blob);
343         cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
344         err = ct_register_buffer(ct, GUC_CTB_TYPE_HOST2GUC,
345                                  desc, cmds, ct->ctbs.send.size * 4);
346
347         if (unlikely(err))
348                 goto err_deregister;
349
350         ct->enabled = true;
351         ct->stall_time = KTIME_MAX;
352
353         return 0;
354
355 err_deregister:
356         ct_deregister_buffer(ct, GUC_CTB_TYPE_GUC2HOST);
357 err_out:
358         CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
359         return err;
360 }
361
362 /**
363  * intel_guc_ct_disable - Disable buffer based command transport.
364  * @ct: pointer to CT struct
365  */
366 void intel_guc_ct_disable(struct intel_guc_ct *ct)
367 {
368         struct intel_guc *guc = ct_to_guc(ct);
369
370         GEM_BUG_ON(!ct->enabled);
371
372         ct->enabled = false;
373
374         if (intel_guc_is_fw_running(guc)) {
375                 ct_deregister_buffer(ct, GUC_CTB_TYPE_HOST2GUC);
376                 ct_deregister_buffer(ct, GUC_CTB_TYPE_GUC2HOST);
377         }
378 }
379
380 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
381 {
382         /* For now it's trivial */
383         return ++ct->requests.last_fence;
384 }
385
386 static int ct_write(struct intel_guc_ct *ct,
387                     const u32 *action,
388                     u32 len /* in dwords */,
389                     u32 fence, u32 flags)
390 {
391         struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
392         struct guc_ct_buffer_desc *desc = ctb->desc;
393         u32 tail = ctb->tail;
394         u32 size = ctb->size;
395         u32 header;
396         u32 hxg;
397         u32 type;
398         u32 *cmds = ctb->cmds;
399         unsigned int i;
400
401         if (unlikely(desc->status))
402                 goto corrupted;
403
404         GEM_BUG_ON(tail > size);
405
406 #ifdef CONFIG_DRM_I915_DEBUG_GUC
407         if (unlikely(tail != READ_ONCE(desc->tail))) {
408                 CT_ERROR(ct, "Tail was modified %u != %u\n",
409                          desc->tail, tail);
410                 desc->status |= GUC_CTB_STATUS_MISMATCH;
411                 goto corrupted;
412         }
413         if (unlikely(READ_ONCE(desc->head) >= size)) {
414                 CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
415                          desc->head, size);
416                 desc->status |= GUC_CTB_STATUS_OVERFLOW;
417                 goto corrupted;
418         }
419 #endif
420
421         /*
422          * dw0: CT header (including fence)
423          * dw1: HXG header (including action code)
424          * dw2+: action data
425          */
426         header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
427                  FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
428                  FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
429
430         type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_EVENT :
431                 GUC_HXG_TYPE_REQUEST;
432         hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
433                 FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
434                            GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
435
436         CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
437                  tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
438
439         cmds[tail] = header;
440         tail = (tail + 1) % size;
441
442         cmds[tail] = hxg;
443         tail = (tail + 1) % size;
444
445         for (i = 1; i < len; i++) {
446                 cmds[tail] = action[i];
447                 tail = (tail + 1) % size;
448         }
449         GEM_BUG_ON(tail > size);
450
451         /*
452          * make sure H2G buffer update and LRC tail update (if this triggering a
453          * submission) are visible before updating the descriptor tail
454          */
455         intel_guc_write_barrier(ct_to_guc(ct));
456
457         /* update local copies */
458         ctb->tail = tail;
459         GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
460         atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
461
462         /* now update descriptor */
463         WRITE_ONCE(desc->tail, tail);
464
465         return 0;
466
467 corrupted:
468         CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
469                  desc->head, desc->tail, desc->status);
470         ctb->broken = true;
471         return -EPIPE;
472 }
473
474 /**
475  * wait_for_ct_request_update - Wait for CT request state update.
476  * @req:        pointer to pending request
477  * @status:     placeholder for status
478  *
479  * For each sent request, GuC shall send back CT response message.
480  * Our message handler will update status of tracked request once
481  * response message with given fence is received. Wait here and
482  * check for valid response status value.
483  *
484  * Return:
485  * *    0 response received (status is valid)
486  * *    -ETIMEDOUT no response within hardcoded timeout
487  */
488 static int wait_for_ct_request_update(struct ct_request *req, u32 *status)
489 {
490         int err;
491
492         /*
493          * Fast commands should complete in less than 10us, so sample quickly
494          * up to that length of time, then switch to a slower sleep-wait loop.
495          * No GuC command should ever take longer than 10ms but many GuC
496          * commands can be inflight at time, so use a 1s timeout on the slower
497          * sleep-wait loop.
498          */
499 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
500 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
501 #define done \
502         (FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
503          GUC_HXG_ORIGIN_GUC)
504         err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
505         if (err)
506                 err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
507 #undef done
508
509         *status = req->status;
510         return err;
511 }
512
513 #define GUC_CTB_TIMEOUT_MS      1500
514 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
515 {
516         long timeout = GUC_CTB_TIMEOUT_MS;
517         bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
518
519         if (unlikely(ret)) {
520                 struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
521                 struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
522
523                 CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
524                          ktime_ms_delta(ktime_get(), ct->stall_time),
525                          send->status, recv->status);
526                 ct->ctbs.send.broken = true;
527         }
528
529         return ret;
530 }
531
532 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
533 {
534         struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
535
536         /*
537          * We leave a certain amount of space in the G2H CTB buffer for
538          * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
539          */
540         return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
541 }
542
543 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
544 {
545         lockdep_assert_held(&ct->ctbs.send.lock);
546
547         GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
548
549         if (g2h_len_dw)
550                 atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
551 }
552
553 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
554 {
555         atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
556 }
557
558 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
559 {
560         struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
561         struct guc_ct_buffer_desc *desc = ctb->desc;
562         u32 head;
563         u32 space;
564
565         if (atomic_read(&ctb->space) >= len_dw)
566                 return true;
567
568         head = READ_ONCE(desc->head);
569         if (unlikely(head > ctb->size)) {
570                 CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
571                          head, ctb->size);
572                 desc->status |= GUC_CTB_STATUS_OVERFLOW;
573                 ctb->broken = true;
574                 return false;
575         }
576
577         space = CIRC_SPACE(ctb->tail, head, ctb->size);
578         atomic_set(&ctb->space, space);
579
580         return space >= len_dw;
581 }
582
583 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
584 {
585         lockdep_assert_held(&ct->ctbs.send.lock);
586
587         if (unlikely(!h2g_has_room(ct, h2g_dw) || !g2h_has_room(ct, g2h_dw))) {
588                 if (ct->stall_time == KTIME_MAX)
589                         ct->stall_time = ktime_get();
590
591                 if (unlikely(ct_deadlocked(ct)))
592                         return -EPIPE;
593                 else
594                         return -EBUSY;
595         }
596
597         ct->stall_time = KTIME_MAX;
598         return 0;
599 }
600
601 #define G2H_LEN_DW(f) ({ \
602         typeof(f) f_ = (f); \
603         FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
604         FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
605         GUC_CTB_HXG_MSG_MIN_LEN : 0; \
606 })
607 static int ct_send_nb(struct intel_guc_ct *ct,
608                       const u32 *action,
609                       u32 len,
610                       u32 flags)
611 {
612         struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
613         unsigned long spin_flags;
614         u32 g2h_len_dw = G2H_LEN_DW(flags);
615         u32 fence;
616         int ret;
617
618         spin_lock_irqsave(&ctb->lock, spin_flags);
619
620         ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
621         if (unlikely(ret))
622                 goto out;
623
624         fence = ct_get_next_fence(ct);
625         ret = ct_write(ct, action, len, fence, flags);
626         if (unlikely(ret))
627                 goto out;
628
629         g2h_reserve_space(ct, g2h_len_dw);
630         intel_guc_notify(ct_to_guc(ct));
631
632 out:
633         spin_unlock_irqrestore(&ctb->lock, spin_flags);
634
635         return ret;
636 }
637
638 static int ct_send(struct intel_guc_ct *ct,
639                    const u32 *action,
640                    u32 len,
641                    u32 *response_buf,
642                    u32 response_buf_size,
643                    u32 *status)
644 {
645         struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
646         struct ct_request request;
647         unsigned long flags;
648         unsigned int sleep_period_ms = 1;
649         u32 fence;
650         int err;
651
652         GEM_BUG_ON(!ct->enabled);
653         GEM_BUG_ON(!len);
654         GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK);
655         GEM_BUG_ON(!response_buf && response_buf_size);
656         might_sleep();
657
658         /*
659          * We use a lazy spin wait loop here as we believe that if the CT
660          * buffers are sized correctly the flow control condition should be
661          * rare. Reserving the maximum size in the G2H credits as we don't know
662          * how big the response is going to be.
663          */
664 retry:
665         spin_lock_irqsave(&ctb->lock, flags);
666         if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
667                      !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
668                 if (ct->stall_time == KTIME_MAX)
669                         ct->stall_time = ktime_get();
670                 spin_unlock_irqrestore(&ctb->lock, flags);
671
672                 if (unlikely(ct_deadlocked(ct)))
673                         return -EPIPE;
674
675                 if (msleep_interruptible(sleep_period_ms))
676                         return -EINTR;
677                 sleep_period_ms = sleep_period_ms << 1;
678
679                 goto retry;
680         }
681
682         ct->stall_time = KTIME_MAX;
683
684         fence = ct_get_next_fence(ct);
685         request.fence = fence;
686         request.status = 0;
687         request.response_len = response_buf_size;
688         request.response_buf = response_buf;
689
690         spin_lock(&ct->requests.lock);
691         list_add_tail(&request.link, &ct->requests.pending);
692         spin_unlock(&ct->requests.lock);
693
694         err = ct_write(ct, action, len, fence, 0);
695         g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
696
697         spin_unlock_irqrestore(&ctb->lock, flags);
698
699         if (unlikely(err))
700                 goto unlink;
701
702         intel_guc_notify(ct_to_guc(ct));
703
704         err = wait_for_ct_request_update(&request, status);
705         g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
706         if (unlikely(err)) {
707                 CT_ERROR(ct, "No response for request %#x (fence %u)\n",
708                          action[0], request.fence);
709                 goto unlink;
710         }
711
712         if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
713                 err = -EIO;
714                 goto unlink;
715         }
716
717         if (response_buf) {
718                 /* There shall be no data in the status */
719                 WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
720                 /* Return actual response len */
721                 err = request.response_len;
722         } else {
723                 /* There shall be no response payload */
724                 WARN_ON(request.response_len);
725                 /* Return data decoded from the status dword */
726                 err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
727         }
728
729 unlink:
730         spin_lock_irqsave(&ct->requests.lock, flags);
731         list_del(&request.link);
732         spin_unlock_irqrestore(&ct->requests.lock, flags);
733
734         return err;
735 }
736
737 /*
738  * Command Transport (CT) buffer based GuC send function.
739  */
740 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
741                       u32 *response_buf, u32 response_buf_size, u32 flags)
742 {
743         u32 status = ~0; /* undefined */
744         int ret;
745
746         if (unlikely(!ct->enabled)) {
747                 struct intel_guc *guc = ct_to_guc(ct);
748                 struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
749
750                 WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
751                 return -ENODEV;
752         }
753
754         if (unlikely(ct->ctbs.send.broken))
755                 return -EPIPE;
756
757         if (flags & INTEL_GUC_CT_SEND_NB)
758                 return ct_send_nb(ct, action, len, flags);
759
760         ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
761         if (unlikely(ret < 0)) {
762                 CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
763                          action[0], ERR_PTR(ret), status);
764         } else if (unlikely(ret)) {
765                 CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
766                          action[0], ret, ret);
767         }
768
769         return ret;
770 }
771
772 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
773 {
774         struct ct_incoming_msg *msg;
775
776         msg = kmalloc(sizeof(*msg) + sizeof(u32) * num_dwords, GFP_ATOMIC);
777         if (msg)
778                 msg->size = num_dwords;
779         return msg;
780 }
781
782 static void ct_free_msg(struct ct_incoming_msg *msg)
783 {
784         kfree(msg);
785 }
786
787 /*
788  * Return: number available remaining dwords to read (0 if empty)
789  *         or a negative error code on failure
790  */
791 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
792 {
793         struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
794         struct guc_ct_buffer_desc *desc = ctb->desc;
795         u32 head = ctb->head;
796         u32 tail = READ_ONCE(desc->tail);
797         u32 size = ctb->size;
798         u32 *cmds = ctb->cmds;
799         s32 available;
800         unsigned int len;
801         unsigned int i;
802         u32 header;
803
804         if (unlikely(ctb->broken))
805                 return -EPIPE;
806
807         if (unlikely(desc->status))
808                 goto corrupted;
809
810         GEM_BUG_ON(head > size);
811
812 #ifdef CONFIG_DRM_I915_DEBUG_GUC
813         if (unlikely(head != READ_ONCE(desc->head))) {
814                 CT_ERROR(ct, "Head was modified %u != %u\n",
815                          desc->head, head);
816                 desc->status |= GUC_CTB_STATUS_MISMATCH;
817                 goto corrupted;
818         }
819 #endif
820         if (unlikely(tail >= size)) {
821                 CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
822                          tail, size);
823                 desc->status |= GUC_CTB_STATUS_OVERFLOW;
824                 goto corrupted;
825         }
826
827         /* tail == head condition indicates empty */
828         available = tail - head;
829         if (unlikely(available == 0)) {
830                 *msg = NULL;
831                 return 0;
832         }
833
834         /* beware of buffer wrap case */
835         if (unlikely(available < 0))
836                 available += size;
837         CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
838         GEM_BUG_ON(available < 0);
839
840         header = cmds[head];
841         head = (head + 1) % size;
842
843         /* message len with header */
844         len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
845         if (unlikely(len > (u32)available)) {
846                 CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
847                          4, &header,
848                          4 * (head + available - 1 > size ?
849                               size - head : available - 1), &cmds[head],
850                          4 * (head + available - 1 > size ?
851                               available - 1 - size + head : 0), &cmds[0]);
852                 desc->status |= GUC_CTB_STATUS_UNDERFLOW;
853                 goto corrupted;
854         }
855
856         *msg = ct_alloc_msg(len);
857         if (!*msg) {
858                 CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
859                          4, &header,
860                          4 * (head + available - 1 > size ?
861                               size - head : available - 1), &cmds[head],
862                          4 * (head + available - 1 > size ?
863                               available - 1 - size + head : 0), &cmds[0]);
864                 return available;
865         }
866
867         (*msg)->msg[0] = header;
868
869         for (i = 1; i < len; i++) {
870                 (*msg)->msg[i] = cmds[head];
871                 head = (head + 1) % size;
872         }
873         CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
874
875         /* update local copies */
876         ctb->head = head;
877
878         /* now update descriptor */
879         WRITE_ONCE(desc->head, head);
880
881         return available - len;
882
883 corrupted:
884         CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
885                  desc->head, desc->tail, desc->status);
886         ctb->broken = true;
887         return -EPIPE;
888 }
889
890 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
891 {
892         u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
893         u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
894         const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
895         const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
896         u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
897         struct ct_request *req;
898         unsigned long flags;
899         bool found = false;
900         int err = 0;
901
902         GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
903         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
904         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
905                    FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
906
907         CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
908
909         spin_lock_irqsave(&ct->requests.lock, flags);
910         list_for_each_entry(req, &ct->requests.pending, link) {
911                 if (unlikely(fence != req->fence)) {
912                         CT_DEBUG(ct, "request %u awaits response\n",
913                                  req->fence);
914                         continue;
915                 }
916                 if (unlikely(datalen > req->response_len)) {
917                         CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
918                                  req->fence, datalen, req->response_len);
919                         datalen = min(datalen, req->response_len);
920                         err = -EMSGSIZE;
921                 }
922                 if (datalen)
923                         memcpy(req->response_buf, data, 4 * datalen);
924                 req->response_len = datalen;
925                 WRITE_ONCE(req->status, hxg[0]);
926                 found = true;
927                 break;
928         }
929         if (!found) {
930                 CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence);
931                 CT_ERROR(ct, "Could not find fence=%u, last_fence=%u\n", fence,
932                          ct->requests.last_fence);
933                 list_for_each_entry(req, &ct->requests.pending, link)
934                         CT_ERROR(ct, "request %u awaits response\n",
935                                  req->fence);
936                 err = -ENOKEY;
937         }
938         spin_unlock_irqrestore(&ct->requests.lock, flags);
939
940         if (unlikely(err))
941                 return err;
942
943         ct_free_msg(response);
944         return 0;
945 }
946
947 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
948 {
949         struct intel_guc *guc = ct_to_guc(ct);
950         const u32 *hxg;
951         const u32 *payload;
952         u32 hxg_len, action, len;
953         int ret;
954
955         hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
956         hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
957         payload = &hxg[GUC_HXG_MSG_MIN_LEN];
958         action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
959         len = hxg_len - GUC_HXG_MSG_MIN_LEN;
960
961         CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
962
963         switch (action) {
964         case INTEL_GUC_ACTION_DEFAULT:
965                 ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
966                 break;
967         case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
968                 ret = intel_guc_deregister_done_process_msg(guc, payload,
969                                                             len);
970                 break;
971         case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
972                 ret = intel_guc_sched_done_process_msg(guc, payload, len);
973                 break;
974         case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
975                 ret = intel_guc_context_reset_process_msg(guc, payload, len);
976                 break;
977         case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
978                 ret = intel_guc_engine_failure_process_msg(guc, payload, len);
979                 break;
980         default:
981                 ret = -EOPNOTSUPP;
982                 break;
983         }
984
985         if (unlikely(ret)) {
986                 CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
987                          action, ERR_PTR(ret));
988                 return ret;
989         }
990
991         ct_free_msg(request);
992         return 0;
993 }
994
995 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
996 {
997         unsigned long flags;
998         struct ct_incoming_msg *request;
999         bool done;
1000         int err;
1001
1002         spin_lock_irqsave(&ct->requests.lock, flags);
1003         request = list_first_entry_or_null(&ct->requests.incoming,
1004                                            struct ct_incoming_msg, link);
1005         if (request)
1006                 list_del(&request->link);
1007         done = !!list_empty(&ct->requests.incoming);
1008         spin_unlock_irqrestore(&ct->requests.lock, flags);
1009
1010         if (!request)
1011                 return true;
1012
1013         err = ct_process_request(ct, request);
1014         if (unlikely(err)) {
1015                 CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1016                          ERR_PTR(err), 4 * request->size, request->msg);
1017                 ct_free_msg(request);
1018         }
1019
1020         return done;
1021 }
1022
1023 static void ct_incoming_request_worker_func(struct work_struct *w)
1024 {
1025         struct intel_guc_ct *ct =
1026                 container_of(w, struct intel_guc_ct, requests.worker);
1027         bool done;
1028
1029         do {
1030                 done = ct_process_incoming_requests(ct);
1031         } while (!done);
1032 }
1033
1034 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1035 {
1036         const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1037         u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1038         unsigned long flags;
1039
1040         GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1041
1042         /*
1043          * Adjusting the space must be done in IRQ or deadlock can occur as the
1044          * CTB processing in the below workqueue can send CTBs which creates a
1045          * circular dependency if the space was returned there.
1046          */
1047         switch (action) {
1048         case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1049         case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1050                 g2h_release_space(ct, request->size);
1051         }
1052
1053         spin_lock_irqsave(&ct->requests.lock, flags);
1054         list_add_tail(&request->link, &ct->requests.incoming);
1055         spin_unlock_irqrestore(&ct->requests.lock, flags);
1056
1057         queue_work(system_unbound_wq, &ct->requests.worker);
1058         return 0;
1059 }
1060
1061 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1062 {
1063         u32 origin, type;
1064         u32 *hxg;
1065         int err;
1066
1067         if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1068                 return -EBADMSG;
1069
1070         hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1071
1072         origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1073         if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1074                 err = -EPROTO;
1075                 goto failed;
1076         }
1077
1078         type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1079         switch (type) {
1080         case GUC_HXG_TYPE_EVENT:
1081                 err = ct_handle_event(ct, msg);
1082                 break;
1083         case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1084         case GUC_HXG_TYPE_RESPONSE_FAILURE:
1085                 err = ct_handle_response(ct, msg);
1086                 break;
1087         default:
1088                 err = -EOPNOTSUPP;
1089         }
1090
1091         if (unlikely(err)) {
1092 failed:
1093                 CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1094                          ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1095         }
1096         return err;
1097 }
1098
1099 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1100 {
1101         u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1102         int err;
1103
1104         if (format == GUC_CTB_FORMAT_HXG)
1105                 err = ct_handle_hxg(ct, msg);
1106         else
1107                 err = -EOPNOTSUPP;
1108
1109         if (unlikely(err)) {
1110                 CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1111                          ERR_PTR(err), 4 * msg->size, msg->msg);
1112                 ct_free_msg(msg);
1113         }
1114 }
1115
1116 /*
1117  * Return: number available remaining dwords to read (0 if empty)
1118  *         or a negative error code on failure
1119  */
1120 static int ct_receive(struct intel_guc_ct *ct)
1121 {
1122         struct ct_incoming_msg *msg = NULL;
1123         unsigned long flags;
1124         int ret;
1125
1126         spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1127         ret = ct_read(ct, &msg);
1128         spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1129         if (ret < 0)
1130                 return ret;
1131
1132         if (msg)
1133                 ct_handle_msg(ct, msg);
1134
1135         return ret;
1136 }
1137
1138 static void ct_try_receive_message(struct intel_guc_ct *ct)
1139 {
1140         int ret;
1141
1142         if (GEM_WARN_ON(!ct->enabled))
1143                 return;
1144
1145         ret = ct_receive(ct);
1146         if (ret > 0)
1147                 tasklet_hi_schedule(&ct->receive_tasklet);
1148 }
1149
1150 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1151 {
1152         struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1153
1154         ct_try_receive_message(ct);
1155 }
1156
1157 /*
1158  * When we're communicating with the GuC over CT, GuC uses events
1159  * to notify us about new messages being posted on the RECV buffer.
1160  */
1161 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1162 {
1163         if (unlikely(!ct->enabled)) {
1164                 WARN(1, "Unexpected GuC event received while CT disabled!\n");
1165                 return;
1166         }
1167
1168         ct_try_receive_message(ct);
1169 }
1170
1171 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1172                              struct drm_printer *p)
1173 {
1174         drm_printf(p, "CT %s\n", enableddisabled(ct->enabled));
1175
1176         if (!ct->enabled)
1177                 return;
1178
1179         drm_printf(p, "H2G Space: %u\n",
1180                    atomic_read(&ct->ctbs.send.space) * 4);
1181         drm_printf(p, "Head: %u\n",
1182                    ct->ctbs.send.desc->head);
1183         drm_printf(p, "Tail: %u\n",
1184                    ct->ctbs.send.desc->tail);
1185         drm_printf(p, "G2H Space: %u\n",
1186                    atomic_read(&ct->ctbs.recv.space) * 4);
1187         drm_printf(p, "Head: %u\n",
1188                    ct->ctbs.recv.desc->head);
1189         drm_printf(p, "Tail: %u\n",
1190                    ct->ctbs.recv.desc->tail);
1191 }