drm/i915/guc: Skip suspend/resume GuC action on platforms w/o GuC submission
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / uc / intel_guc.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_ads.h"
11 #include "intel_guc_submission.h"
12 #include "i915_drv.h"
13
14 /**
15  * DOC: GuC
16  *
17  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
18  * designed to offload some of the functionality usually performed by the host
19  * driver; currently the main operations it can take care of are:
20  *
21  * - Authentication of the HuC, which is required to fully enable HuC usage.
22  * - Low latency graphics context scheduling (a.k.a. GuC submission).
23  * - GT Power management.
24  *
25  * The enable_guc module parameter can be used to select which of those
26  * operations to enable within GuC. Note that not all the operations are
27  * supported on all gen9+ platforms.
28  *
29  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
30  * if at least one of the operations is selected. However, not loading the GuC
31  * might result in the loss of some features that do require the GuC (currently
32  * just the HuC, but more are expected to land in the future).
33  */
34
35 static void gen8_guc_raise_irq(struct intel_guc *guc)
36 {
37         struct intel_gt *gt = guc_to_gt(guc);
38
39         intel_uncore_write(gt->uncore, GUC_SEND_INTERRUPT, GUC_SEND_TRIGGER);
40 }
41
42 static void gen11_guc_raise_irq(struct intel_guc *guc)
43 {
44         struct intel_gt *gt = guc_to_gt(guc);
45
46         intel_uncore_write(gt->uncore, GEN11_GUC_HOST_INTERRUPT, 0);
47 }
48
49 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
50 {
51         GEM_BUG_ON(!guc->send_regs.base);
52         GEM_BUG_ON(!guc->send_regs.count);
53         GEM_BUG_ON(i >= guc->send_regs.count);
54
55         return _MMIO(guc->send_regs.base + 4 * i);
56 }
57
58 void intel_guc_init_send_regs(struct intel_guc *guc)
59 {
60         struct intel_gt *gt = guc_to_gt(guc);
61         enum forcewake_domains fw_domains = 0;
62         unsigned int i;
63
64         if (INTEL_GEN(gt->i915) >= 11) {
65                 guc->send_regs.base =
66                                 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
67                 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
68         } else {
69                 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
70                 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
71                 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
72         }
73
74         for (i = 0; i < guc->send_regs.count; i++) {
75                 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
76                                         guc_send_reg(guc, i),
77                                         FW_REG_READ | FW_REG_WRITE);
78         }
79         guc->send_regs.fw_domains = fw_domains;
80 }
81
82 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
83 {
84         struct intel_gt *gt = guc_to_gt(guc);
85
86         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
87
88         spin_lock_irq(&gt->irq_lock);
89         gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
90         spin_unlock_irq(&gt->irq_lock);
91 }
92
93 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
94 {
95         struct intel_gt *gt = guc_to_gt(guc);
96
97         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
98
99         spin_lock_irq(&gt->irq_lock);
100         if (!guc->interrupts.enabled) {
101                 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
102                              gt->pm_guc_events);
103                 guc->interrupts.enabled = true;
104                 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
105         }
106         spin_unlock_irq(&gt->irq_lock);
107 }
108
109 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
110 {
111         struct intel_gt *gt = guc_to_gt(guc);
112
113         assert_rpm_wakelock_held(&gt->i915->runtime_pm);
114
115         spin_lock_irq(&gt->irq_lock);
116         guc->interrupts.enabled = false;
117
118         gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
119
120         spin_unlock_irq(&gt->irq_lock);
121         intel_synchronize_irq(gt->i915);
122
123         gen9_reset_guc_interrupts(guc);
124 }
125
126 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
127 {
128         struct intel_gt *gt = guc_to_gt(guc);
129
130         spin_lock_irq(&gt->irq_lock);
131         gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
132         spin_unlock_irq(&gt->irq_lock);
133 }
134
135 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
136 {
137         struct intel_gt *gt = guc_to_gt(guc);
138
139         spin_lock_irq(&gt->irq_lock);
140         if (!guc->interrupts.enabled) {
141                 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
142
143                 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
144                 intel_uncore_write(gt->uncore,
145                                    GEN11_GUC_SG_INTR_ENABLE, events);
146                 intel_uncore_write(gt->uncore,
147                                    GEN11_GUC_SG_INTR_MASK, ~events);
148                 guc->interrupts.enabled = true;
149         }
150         spin_unlock_irq(&gt->irq_lock);
151 }
152
153 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
154 {
155         struct intel_gt *gt = guc_to_gt(guc);
156
157         spin_lock_irq(&gt->irq_lock);
158         guc->interrupts.enabled = false;
159
160         intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
161         intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
162
163         spin_unlock_irq(&gt->irq_lock);
164         intel_synchronize_irq(gt->i915);
165
166         gen11_reset_guc_interrupts(guc);
167 }
168
169 void intel_guc_init_early(struct intel_guc *guc)
170 {
171         struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
172
173         intel_guc_fw_init_early(guc);
174         intel_guc_ct_init_early(&guc->ct);
175         intel_guc_log_init_early(&guc->log);
176         intel_guc_submission_init_early(guc);
177
178         mutex_init(&guc->send_mutex);
179         spin_lock_init(&guc->irq_lock);
180         guc->send = intel_guc_send_nop;
181         guc->handler = intel_guc_to_host_event_handler_nop;
182         if (INTEL_GEN(i915) >= 11) {
183                 guc->notify = gen11_guc_raise_irq;
184                 guc->interrupts.reset = gen11_reset_guc_interrupts;
185                 guc->interrupts.enable = gen11_enable_guc_interrupts;
186                 guc->interrupts.disable = gen11_disable_guc_interrupts;
187         } else {
188                 guc->notify = gen8_guc_raise_irq;
189                 guc->interrupts.reset = gen9_reset_guc_interrupts;
190                 guc->interrupts.enable = gen9_enable_guc_interrupts;
191                 guc->interrupts.disable = gen9_disable_guc_interrupts;
192         }
193 }
194
195 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
196 {
197         u32 level = intel_guc_log_get_level(&guc->log);
198         u32 flags = 0;
199
200         if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
201                 flags |= GUC_LOG_DISABLED;
202         else
203                 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
204                          GUC_LOG_VERBOSITY_SHIFT;
205
206         return flags;
207 }
208
209 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
210 {
211         u32 flags = 0;
212
213         if (!intel_guc_is_submission_supported(guc))
214                 flags |= GUC_CTL_DISABLE_SCHEDULER;
215
216         return flags;
217 }
218
219 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
220 {
221         u32 flags = 0;
222
223         if (intel_guc_is_submission_supported(guc)) {
224                 u32 ctxnum, base;
225
226                 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
227                 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
228
229                 base >>= PAGE_SHIFT;
230                 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
231                         (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
232         }
233         return flags;
234 }
235
236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
237 {
238         u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
239         u32 flags;
240
241         #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
242         #define UNIT SZ_1M
243         #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
244         #else
245         #define UNIT SZ_4K
246         #define FLAG 0
247         #endif
248
249         BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
250         BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
251         BUILD_BUG_ON(!DPC_BUFFER_SIZE);
252         BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
253         BUILD_BUG_ON(!ISR_BUFFER_SIZE);
254         BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
255
256         BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
257                         (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
258         BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
259                         (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
260         BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
261                         (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
262
263         flags = GUC_LOG_VALID |
264                 GUC_LOG_NOTIFY_ON_HALF_FULL |
265                 FLAG |
266                 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
267                 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
268                 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
269                 (offset << GUC_LOG_BUF_ADDR_SHIFT);
270
271         #undef UNIT
272         #undef FLAG
273
274         return flags;
275 }
276
277 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
278 {
279         u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
280         u32 flags = ads << GUC_ADS_ADDR_SHIFT;
281
282         return flags;
283 }
284
285 /*
286  * Initialise the GuC parameter block before starting the firmware
287  * transfer. These parameters are read by the firmware on startup
288  * and cannot be changed thereafter.
289  */
290 static void guc_init_params(struct intel_guc *guc)
291 {
292         u32 *params = guc->params;
293         int i;
294
295         BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
296
297         params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
298         params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
299         params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
300         params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
301         params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
302
303         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
304                 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
305 }
306
307 /*
308  * Initialise the GuC parameter block before starting the firmware
309  * transfer. These parameters are read by the firmware on startup
310  * and cannot be changed thereafter.
311  */
312 void intel_guc_write_params(struct intel_guc *guc)
313 {
314         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
315         int i;
316
317         /*
318          * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
319          * they are power context saved so it's ok to release forcewake
320          * when we are done here and take it again at xfer time.
321          */
322         intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
323
324         intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
325
326         for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
327                 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
328
329         intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
330 }
331
332 int intel_guc_init(struct intel_guc *guc)
333 {
334         struct intel_gt *gt = guc_to_gt(guc);
335         int ret;
336
337         ret = intel_uc_fw_init(&guc->fw);
338         if (ret)
339                 goto err_fetch;
340
341         ret = intel_guc_log_create(&guc->log);
342         if (ret)
343                 goto err_fw;
344
345         ret = intel_guc_ads_create(guc);
346         if (ret)
347                 goto err_log;
348         GEM_BUG_ON(!guc->ads_vma);
349
350         ret = intel_guc_ct_init(&guc->ct);
351         if (ret)
352                 goto err_ads;
353
354         if (intel_guc_is_submission_supported(guc)) {
355                 /*
356                  * This is stuff we need to have available at fw load time
357                  * if we are planning to enable submission later
358                  */
359                 ret = intel_guc_submission_init(guc);
360                 if (ret)
361                         goto err_ct;
362         }
363
364         /* now that everything is perma-pinned, initialize the parameters */
365         guc_init_params(guc);
366
367         /* We need to notify the guc whenever we change the GGTT */
368         i915_ggtt_enable_guc(gt->ggtt);
369
370         return 0;
371
372 err_ct:
373         intel_guc_ct_fini(&guc->ct);
374 err_ads:
375         intel_guc_ads_destroy(guc);
376 err_log:
377         intel_guc_log_destroy(&guc->log);
378 err_fw:
379         intel_uc_fw_fini(&guc->fw);
380 err_fetch:
381         intel_uc_fw_cleanup_fetch(&guc->fw);
382         DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
383         return ret;
384 }
385
386 void intel_guc_fini(struct intel_guc *guc)
387 {
388         struct intel_gt *gt = guc_to_gt(guc);
389
390         if (!intel_uc_fw_is_available(&guc->fw))
391                 return;
392
393         i915_ggtt_disable_guc(gt->ggtt);
394
395         if (intel_guc_is_submission_supported(guc))
396                 intel_guc_submission_fini(guc);
397
398         intel_guc_ct_fini(&guc->ct);
399
400         intel_guc_ads_destroy(guc);
401         intel_guc_log_destroy(&guc->log);
402         intel_uc_fw_fini(&guc->fw);
403         intel_uc_fw_cleanup_fetch(&guc->fw);
404 }
405
406 int intel_guc_send_nop(struct intel_guc *guc, const u32 *action, u32 len,
407                        u32 *response_buf, u32 response_buf_size)
408 {
409         WARN(1, "Unexpected send: action=%#x\n", *action);
410         return -ENODEV;
411 }
412
413 void intel_guc_to_host_event_handler_nop(struct intel_guc *guc)
414 {
415         WARN(1, "Unexpected event: no suitable handler\n");
416 }
417
418 /*
419  * This function implements the MMIO based host to GuC interface.
420  */
421 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
422                         u32 *response_buf, u32 response_buf_size)
423 {
424         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
425         u32 status;
426         int i;
427         int ret;
428
429         GEM_BUG_ON(!len);
430         GEM_BUG_ON(len > guc->send_regs.count);
431
432         /* We expect only action code */
433         GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
434
435         /* If CT is available, we expect to use MMIO only during init/fini */
436         GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
437                    *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
438
439         mutex_lock(&guc->send_mutex);
440         intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
441
442         for (i = 0; i < len; i++)
443                 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
444
445         intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
446
447         intel_guc_notify(guc);
448
449         /*
450          * No GuC command should ever take longer than 10ms.
451          * Fast commands should still complete in 10us.
452          */
453         ret = __intel_wait_for_register_fw(uncore,
454                                            guc_send_reg(guc, 0),
455                                            INTEL_GUC_MSG_TYPE_MASK,
456                                            INTEL_GUC_MSG_TYPE_RESPONSE <<
457                                            INTEL_GUC_MSG_TYPE_SHIFT,
458                                            10, 10, &status);
459         /* If GuC explicitly returned an error, convert it to -EIO */
460         if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
461                 ret = -EIO;
462
463         if (ret) {
464                 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
465                           action[0], ret, status);
466                 goto out;
467         }
468
469         if (response_buf) {
470                 int count = min(response_buf_size, guc->send_regs.count - 1);
471
472                 for (i = 0; i < count; i++)
473                         response_buf[i] = intel_uncore_read(uncore,
474                                                             guc_send_reg(guc, i + 1));
475         }
476
477         /* Use data from the GuC response as our return value */
478         ret = INTEL_GUC_MSG_TO_DATA(status);
479
480 out:
481         intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
482         mutex_unlock(&guc->send_mutex);
483
484         return ret;
485 }
486
487 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
488                                        const u32 *payload, u32 len)
489 {
490         u32 msg;
491
492         if (unlikely(!len))
493                 return -EPROTO;
494
495         /* Make sure to handle only enabled messages */
496         msg = payload[0] & guc->msg_enabled_mask;
497
498         if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
499                    INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
500                 intel_guc_log_handle_flush_event(&guc->log);
501
502         return 0;
503 }
504
505 int intel_guc_sample_forcewake(struct intel_guc *guc)
506 {
507         struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
508         u32 action[2];
509
510         action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
511         /* WaRsDisableCoarsePowerGating:skl,cnl */
512         if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
513                 action[1] = 0;
514         else
515                 /* bit 0 and 1 are for Render and Media domain separately */
516                 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
517
518         return intel_guc_send(guc, action, ARRAY_SIZE(action));
519 }
520
521 /**
522  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
523  * @guc: intel_guc structure
524  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
525  *
526  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
527  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
528  * intel_huc_auth().
529  *
530  * Return:      non-zero code on error
531  */
532 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
533 {
534         u32 action[] = {
535                 INTEL_GUC_ACTION_AUTHENTICATE_HUC,
536                 rsa_offset
537         };
538
539         return intel_guc_send(guc, action, ARRAY_SIZE(action));
540 }
541
542 /**
543  * intel_guc_suspend() - notify GuC entering suspend state
544  * @guc:        the guc
545  */
546 int intel_guc_suspend(struct intel_guc *guc)
547 {
548         struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
549         int ret;
550         u32 status;
551         u32 action[] = {
552                 INTEL_GUC_ACTION_ENTER_S_STATE,
553                 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
554         };
555
556         /*
557          * If GuC communication is enabled but submission is not supported,
558          * we do not need to suspend the GuC.
559          */
560         if (!intel_guc_submission_is_enabled(guc))
561                 return 0;
562
563         /*
564          * The ENTER_S_STATE action queues the save/restore operation in GuC FW
565          * and then returns, so waiting on the H2G is not enough to guarantee
566          * GuC is done. When all the processing is done, GuC writes
567          * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
568          * on that. Note that GuC does not ensure that the value in the register
569          * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
570          * in progress so we need to take care of that ourselves as well.
571          */
572
573         intel_uncore_write(uncore, SOFT_SCRATCH(14),
574                            INTEL_GUC_SLEEP_STATE_INVALID_MASK);
575
576         ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
577         if (ret)
578                 return ret;
579
580         ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
581                                         INTEL_GUC_SLEEP_STATE_INVALID_MASK,
582                                         0, 0, 10, &status);
583         if (ret)
584                 return ret;
585
586         if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
587                 DRM_ERROR("GuC failed to change sleep state. "
588                           "action=0x%x, err=%u\n",
589                           action[0], status);
590                 return -EIO;
591         }
592
593         return 0;
594 }
595
596 /**
597  * intel_guc_reset_engine() - ask GuC to reset an engine
598  * @guc:        intel_guc structure
599  * @engine:     engine to be reset
600  */
601 int intel_guc_reset_engine(struct intel_guc *guc,
602                            struct intel_engine_cs *engine)
603 {
604         /* XXX: to be implemented with submission interface rework */
605
606         return -ENODEV;
607 }
608
609 /**
610  * intel_guc_resume() - notify GuC resuming from suspend state
611  * @guc:        the guc
612  */
613 int intel_guc_resume(struct intel_guc *guc)
614 {
615         u32 action[] = {
616                 INTEL_GUC_ACTION_EXIT_S_STATE,
617                 GUC_POWER_D0,
618         };
619
620         /*
621          * If GuC communication is enabled but submission is not supported,
622          * we do not need to resume the GuC but we do need to enable the
623          * GuC communication on resume (above).
624          */
625         if (!intel_guc_submission_is_enabled(guc))
626                 return 0;
627
628         return intel_guc_send(guc, action, ARRAY_SIZE(action));
629 }
630
631 /**
632  * DOC: GuC Memory Management
633  *
634  * GuC can't allocate any memory for its own usage, so all the allocations must
635  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
636  * exception of the top and bottom parts of the 4GB address space, which are
637  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
638  * or other parts of the HW. The driver must take care not to place objects that
639  * the GuC is going to access in these reserved ranges. The layout of the GuC
640  * address space is shown below:
641  *
642  * ::
643  *
644  *     +===========> +====================+ <== FFFF_FFFF
645  *     ^             |      Reserved      |
646  *     |             +====================+ <== GUC_GGTT_TOP
647  *     |             |                    |
648  *     |             |        DRAM        |
649  *    GuC            |                    |
650  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
651  *   Space     ^     |                    |
652  *     |       |     |                    |
653  *     |      GuC    |        GuC         |
654  *     |     WOPCM   |       WOPCM        |
655  *     |      Size   |                    |
656  *     |       |     |                    |
657  *     v       v     |                    |
658  *     +=======+===> +====================+ <== 0000_0000
659  *
660  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
661  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
662  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
663  */
664
665 /**
666  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
667  * @guc:        the guc
668  * @size:       size of area to allocate (both virtual space and memory)
669  *
670  * This is a wrapper to create an object for use with the GuC. In order to
671  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
672  * both some backing storage and a range inside the Global GTT. We must pin
673  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
674  * range is reserved inside GuC.
675  *
676  * Return:      A i915_vma if successful, otherwise an ERR_PTR.
677  */
678 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
679 {
680         struct intel_gt *gt = guc_to_gt(guc);
681         struct drm_i915_gem_object *obj;
682         struct i915_vma *vma;
683         u64 flags;
684         int ret;
685
686         obj = i915_gem_object_create_shmem(gt->i915, size);
687         if (IS_ERR(obj))
688                 return ERR_CAST(obj);
689
690         vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
691         if (IS_ERR(vma))
692                 goto err;
693
694         flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
695         ret = i915_vma_pin(vma, 0, 0, flags);
696         if (ret) {
697                 vma = ERR_PTR(ret);
698                 goto err;
699         }
700
701         return i915_vma_make_unshrinkable(vma);
702
703 err:
704         i915_gem_object_put(obj);
705         return vma;
706 }