Merge tag 'for-linus-5.4-rc2-tag' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_ringbuffer.c
1 /*
2  * Copyright © 2008-2010 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Zou Nan hai <nanhai.zou@intel.com>
26  *    Xiang Hai hao<haihao.xiang@intel.com>
27  *
28  */
29
30 #include <linux/log2.h>
31
32 #include <drm/i915_drm.h>
33
34 #include "gem/i915_gem_context.h"
35
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_context.h"
39 #include "intel_gt.h"
40 #include "intel_gt_irq.h"
41 #include "intel_gt_pm_irq.h"
42 #include "intel_reset.h"
43 #include "intel_workarounds.h"
44
45 /* Rough estimate of the typical request size, performing a flush,
46  * set-context and then emitting the batch.
47  */
48 #define LEGACY_REQUEST_SIZE 200
49
50 unsigned int intel_ring_update_space(struct intel_ring *ring)
51 {
52         unsigned int space;
53
54         space = __intel_ring_space(ring->head, ring->emit, ring->size);
55
56         ring->space = space;
57         return space;
58 }
59
60 static int
61 gen2_render_ring_flush(struct i915_request *rq, u32 mode)
62 {
63         unsigned int num_store_dw;
64         u32 cmd, *cs;
65
66         cmd = MI_FLUSH;
67         num_store_dw = 0;
68         if (mode & EMIT_INVALIDATE)
69                 cmd |= MI_READ_FLUSH;
70         if (mode & EMIT_FLUSH)
71                 num_store_dw = 4;
72
73         cs = intel_ring_begin(rq, 2 + 3 * num_store_dw);
74         if (IS_ERR(cs))
75                 return PTR_ERR(cs);
76
77         *cs++ = cmd;
78         while (num_store_dw--) {
79                 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
80                 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
81                                                 INTEL_GT_SCRATCH_FIELD_DEFAULT);
82                 *cs++ = 0;
83         }
84         *cs++ = MI_FLUSH | MI_NO_WRITE_FLUSH;
85
86         intel_ring_advance(rq, cs);
87
88         return 0;
89 }
90
91 static int
92 gen4_render_ring_flush(struct i915_request *rq, u32 mode)
93 {
94         u32 cmd, *cs;
95         int i;
96
97         /*
98          * read/write caches:
99          *
100          * I915_GEM_DOMAIN_RENDER is always invalidated, but is
101          * only flushed if MI_NO_WRITE_FLUSH is unset.  On 965, it is
102          * also flushed at 2d versus 3d pipeline switches.
103          *
104          * read-only caches:
105          *
106          * I915_GEM_DOMAIN_SAMPLER is flushed on pre-965 if
107          * MI_READ_FLUSH is set, and is always flushed on 965.
108          *
109          * I915_GEM_DOMAIN_COMMAND may not exist?
110          *
111          * I915_GEM_DOMAIN_INSTRUCTION, which exists on 965, is
112          * invalidated when MI_EXE_FLUSH is set.
113          *
114          * I915_GEM_DOMAIN_VERTEX, which exists on 965, is
115          * invalidated with every MI_FLUSH.
116          *
117          * TLBs:
118          *
119          * On 965, TLBs associated with I915_GEM_DOMAIN_COMMAND
120          * and I915_GEM_DOMAIN_CPU in are invalidated at PTE write and
121          * I915_GEM_DOMAIN_RENDER and I915_GEM_DOMAIN_SAMPLER
122          * are flushed at any MI_FLUSH.
123          */
124
125         cmd = MI_FLUSH;
126         if (mode & EMIT_INVALIDATE) {
127                 cmd |= MI_EXE_FLUSH;
128                 if (IS_G4X(rq->i915) || IS_GEN(rq->i915, 5))
129                         cmd |= MI_INVALIDATE_ISP;
130         }
131
132         i = 2;
133         if (mode & EMIT_INVALIDATE)
134                 i += 20;
135
136         cs = intel_ring_begin(rq, i);
137         if (IS_ERR(cs))
138                 return PTR_ERR(cs);
139
140         *cs++ = cmd;
141
142         /*
143          * A random delay to let the CS invalidate take effect? Without this
144          * delay, the GPU relocation path fails as the CS does not see
145          * the updated contents. Just as important, if we apply the flushes
146          * to the EMIT_FLUSH branch (i.e. immediately after the relocation
147          * write and before the invalidate on the next batch), the relocations
148          * still fail. This implies that is a delay following invalidation
149          * that is required to reset the caches as opposed to a delay to
150          * ensure the memory is written.
151          */
152         if (mode & EMIT_INVALIDATE) {
153                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
154                 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
155                                                 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
156                         PIPE_CONTROL_GLOBAL_GTT;
157                 *cs++ = 0;
158                 *cs++ = 0;
159
160                 for (i = 0; i < 12; i++)
161                         *cs++ = MI_FLUSH;
162
163                 *cs++ = GFX_OP_PIPE_CONTROL(4) | PIPE_CONTROL_QW_WRITE;
164                 *cs++ = intel_gt_scratch_offset(rq->engine->gt,
165                                                 INTEL_GT_SCRATCH_FIELD_DEFAULT) |
166                         PIPE_CONTROL_GLOBAL_GTT;
167                 *cs++ = 0;
168                 *cs++ = 0;
169         }
170
171         *cs++ = cmd;
172
173         intel_ring_advance(rq, cs);
174
175         return 0;
176 }
177
178 /*
179  * Emits a PIPE_CONTROL with a non-zero post-sync operation, for
180  * implementing two workarounds on gen6.  From section 1.4.7.1
181  * "PIPE_CONTROL" of the Sandy Bridge PRM volume 2 part 1:
182  *
183  * [DevSNB-C+{W/A}] Before any depth stall flush (including those
184  * produced by non-pipelined state commands), software needs to first
185  * send a PIPE_CONTROL with no bits set except Post-Sync Operation !=
186  * 0.
187  *
188  * [Dev-SNB{W/A}]: Before a PIPE_CONTROL with Write Cache Flush Enable
189  * =1, a PIPE_CONTROL with any non-zero post-sync-op is required.
190  *
191  * And the workaround for these two requires this workaround first:
192  *
193  * [Dev-SNB{W/A}]: Pipe-control with CS-stall bit set must be sent
194  * BEFORE the pipe-control with a post-sync op and no write-cache
195  * flushes.
196  *
197  * And this last workaround is tricky because of the requirements on
198  * that bit.  From section 1.4.7.2.3 "Stall" of the Sandy Bridge PRM
199  * volume 2 part 1:
200  *
201  *     "1 of the following must also be set:
202  *      - Render Target Cache Flush Enable ([12] of DW1)
203  *      - Depth Cache Flush Enable ([0] of DW1)
204  *      - Stall at Pixel Scoreboard ([1] of DW1)
205  *      - Depth Stall ([13] of DW1)
206  *      - Post-Sync Operation ([13] of DW1)
207  *      - Notify Enable ([8] of DW1)"
208  *
209  * The cache flushes require the workaround flush that triggered this
210  * one, so we can't use it.  Depth stall would trigger the same.
211  * Post-sync nonzero is what triggered this second workaround, so we
212  * can't use that one either.  Notify enable is IRQs, which aren't
213  * really our business.  That leaves only stall at scoreboard.
214  */
215 static int
216 gen6_emit_post_sync_nonzero_flush(struct i915_request *rq)
217 {
218         u32 scratch_addr =
219                 intel_gt_scratch_offset(rq->engine->gt,
220                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
221         u32 *cs;
222
223         cs = intel_ring_begin(rq, 6);
224         if (IS_ERR(cs))
225                 return PTR_ERR(cs);
226
227         *cs++ = GFX_OP_PIPE_CONTROL(5);
228         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
229         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
230         *cs++ = 0; /* low dword */
231         *cs++ = 0; /* high dword */
232         *cs++ = MI_NOOP;
233         intel_ring_advance(rq, cs);
234
235         cs = intel_ring_begin(rq, 6);
236         if (IS_ERR(cs))
237                 return PTR_ERR(cs);
238
239         *cs++ = GFX_OP_PIPE_CONTROL(5);
240         *cs++ = PIPE_CONTROL_QW_WRITE;
241         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
242         *cs++ = 0;
243         *cs++ = 0;
244         *cs++ = MI_NOOP;
245         intel_ring_advance(rq, cs);
246
247         return 0;
248 }
249
250 static int
251 gen6_render_ring_flush(struct i915_request *rq, u32 mode)
252 {
253         u32 scratch_addr =
254                 intel_gt_scratch_offset(rq->engine->gt,
255                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
256         u32 *cs, flags = 0;
257         int ret;
258
259         /* Force SNB workarounds for PIPE_CONTROL flushes */
260         ret = gen6_emit_post_sync_nonzero_flush(rq);
261         if (ret)
262                 return ret;
263
264         /* Just flush everything.  Experiments have shown that reducing the
265          * number of bits based on the write domains has little performance
266          * impact.
267          */
268         if (mode & EMIT_FLUSH) {
269                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
270                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
271                 /*
272                  * Ensure that any following seqno writes only happen
273                  * when the render cache is indeed flushed.
274                  */
275                 flags |= PIPE_CONTROL_CS_STALL;
276         }
277         if (mode & EMIT_INVALIDATE) {
278                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
279                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
280                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
281                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
282                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
283                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
284                 /*
285                  * TLB invalidate requires a post-sync write.
286                  */
287                 flags |= PIPE_CONTROL_QW_WRITE | PIPE_CONTROL_CS_STALL;
288         }
289
290         cs = intel_ring_begin(rq, 4);
291         if (IS_ERR(cs))
292                 return PTR_ERR(cs);
293
294         *cs++ = GFX_OP_PIPE_CONTROL(4);
295         *cs++ = flags;
296         *cs++ = scratch_addr | PIPE_CONTROL_GLOBAL_GTT;
297         *cs++ = 0;
298         intel_ring_advance(rq, cs);
299
300         return 0;
301 }
302
303 static u32 *gen6_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
304 {
305         /* First we do the gen6_emit_post_sync_nonzero_flush w/a */
306         *cs++ = GFX_OP_PIPE_CONTROL(4);
307         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
308         *cs++ = 0;
309         *cs++ = 0;
310
311         *cs++ = GFX_OP_PIPE_CONTROL(4);
312         *cs++ = PIPE_CONTROL_QW_WRITE;
313         *cs++ = intel_gt_scratch_offset(rq->engine->gt,
314                                         INTEL_GT_SCRATCH_FIELD_DEFAULT) |
315                 PIPE_CONTROL_GLOBAL_GTT;
316         *cs++ = 0;
317
318         /* Finally we can flush and with it emit the breadcrumb */
319         *cs++ = GFX_OP_PIPE_CONTROL(4);
320         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
321                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
322                  PIPE_CONTROL_DC_FLUSH_ENABLE |
323                  PIPE_CONTROL_QW_WRITE |
324                  PIPE_CONTROL_CS_STALL);
325         *cs++ = rq->timeline->hwsp_offset | PIPE_CONTROL_GLOBAL_GTT;
326         *cs++ = rq->fence.seqno;
327
328         *cs++ = MI_USER_INTERRUPT;
329         *cs++ = MI_NOOP;
330
331         rq->tail = intel_ring_offset(rq, cs);
332         assert_ring_tail_valid(rq->ring, rq->tail);
333
334         return cs;
335 }
336
337 static int
338 gen7_render_ring_cs_stall_wa(struct i915_request *rq)
339 {
340         u32 *cs;
341
342         cs = intel_ring_begin(rq, 4);
343         if (IS_ERR(cs))
344                 return PTR_ERR(cs);
345
346         *cs++ = GFX_OP_PIPE_CONTROL(4);
347         *cs++ = PIPE_CONTROL_CS_STALL | PIPE_CONTROL_STALL_AT_SCOREBOARD;
348         *cs++ = 0;
349         *cs++ = 0;
350         intel_ring_advance(rq, cs);
351
352         return 0;
353 }
354
355 static int
356 gen7_render_ring_flush(struct i915_request *rq, u32 mode)
357 {
358         u32 scratch_addr =
359                 intel_gt_scratch_offset(rq->engine->gt,
360                                         INTEL_GT_SCRATCH_FIELD_RENDER_FLUSH);
361         u32 *cs, flags = 0;
362
363         /*
364          * Ensure that any following seqno writes only happen when the render
365          * cache is indeed flushed.
366          *
367          * Workaround: 4th PIPE_CONTROL command (except the ones with only
368          * read-cache invalidate bits set) must have the CS_STALL bit set. We
369          * don't try to be clever and just set it unconditionally.
370          */
371         flags |= PIPE_CONTROL_CS_STALL;
372
373         /* Just flush everything.  Experiments have shown that reducing the
374          * number of bits based on the write domains has little performance
375          * impact.
376          */
377         if (mode & EMIT_FLUSH) {
378                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
379                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
380                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
381                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
382         }
383         if (mode & EMIT_INVALIDATE) {
384                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
385                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
386                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
387                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
388                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
389                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
390                 flags |= PIPE_CONTROL_MEDIA_STATE_CLEAR;
391                 /*
392                  * TLB invalidate requires a post-sync write.
393                  */
394                 flags |= PIPE_CONTROL_QW_WRITE;
395                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
396
397                 flags |= PIPE_CONTROL_STALL_AT_SCOREBOARD;
398
399                 /* Workaround: we must issue a pipe_control with CS-stall bit
400                  * set before a pipe_control command that has the state cache
401                  * invalidate bit set. */
402                 gen7_render_ring_cs_stall_wa(rq);
403         }
404
405         cs = intel_ring_begin(rq, 4);
406         if (IS_ERR(cs))
407                 return PTR_ERR(cs);
408
409         *cs++ = GFX_OP_PIPE_CONTROL(4);
410         *cs++ = flags;
411         *cs++ = scratch_addr;
412         *cs++ = 0;
413         intel_ring_advance(rq, cs);
414
415         return 0;
416 }
417
418 static u32 *gen7_rcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
419 {
420         *cs++ = GFX_OP_PIPE_CONTROL(4);
421         *cs++ = (PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
422                  PIPE_CONTROL_DEPTH_CACHE_FLUSH |
423                  PIPE_CONTROL_DC_FLUSH_ENABLE |
424                  PIPE_CONTROL_FLUSH_ENABLE |
425                  PIPE_CONTROL_QW_WRITE |
426                  PIPE_CONTROL_GLOBAL_GTT_IVB |
427                  PIPE_CONTROL_CS_STALL);
428         *cs++ = rq->timeline->hwsp_offset;
429         *cs++ = rq->fence.seqno;
430
431         *cs++ = MI_USER_INTERRUPT;
432         *cs++ = MI_NOOP;
433
434         rq->tail = intel_ring_offset(rq, cs);
435         assert_ring_tail_valid(rq->ring, rq->tail);
436
437         return cs;
438 }
439
440 static u32 *gen6_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
441 {
442         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
443         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
444
445         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
446         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
447         *cs++ = rq->fence.seqno;
448
449         *cs++ = MI_USER_INTERRUPT;
450
451         rq->tail = intel_ring_offset(rq, cs);
452         assert_ring_tail_valid(rq->ring, rq->tail);
453
454         return cs;
455 }
456
457 #define GEN7_XCS_WA 32
458 static u32 *gen7_xcs_emit_breadcrumb(struct i915_request *rq, u32 *cs)
459 {
460         int i;
461
462         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
463         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
464
465         *cs++ = MI_FLUSH_DW | MI_FLUSH_DW_OP_STOREDW | MI_FLUSH_DW_STORE_INDEX;
466         *cs++ = I915_GEM_HWS_SEQNO_ADDR | MI_FLUSH_DW_USE_GTT;
467         *cs++ = rq->fence.seqno;
468
469         for (i = 0; i < GEN7_XCS_WA; i++) {
470                 *cs++ = MI_STORE_DWORD_INDEX;
471                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
472                 *cs++ = rq->fence.seqno;
473         }
474
475         *cs++ = MI_FLUSH_DW;
476         *cs++ = 0;
477         *cs++ = 0;
478
479         *cs++ = MI_USER_INTERRUPT;
480         *cs++ = MI_NOOP;
481
482         rq->tail = intel_ring_offset(rq, cs);
483         assert_ring_tail_valid(rq->ring, rq->tail);
484
485         return cs;
486 }
487 #undef GEN7_XCS_WA
488
489 static void set_hwstam(struct intel_engine_cs *engine, u32 mask)
490 {
491         /*
492          * Keep the render interrupt unmasked as this papers over
493          * lost interrupts following a reset.
494          */
495         if (engine->class == RENDER_CLASS) {
496                 if (INTEL_GEN(engine->i915) >= 6)
497                         mask &= ~BIT(0);
498                 else
499                         mask &= ~I915_USER_INTERRUPT;
500         }
501
502         intel_engine_set_hwsp_writemask(engine, mask);
503 }
504
505 static void set_hws_pga(struct intel_engine_cs *engine, phys_addr_t phys)
506 {
507         struct drm_i915_private *dev_priv = engine->i915;
508         u32 addr;
509
510         addr = lower_32_bits(phys);
511         if (INTEL_GEN(dev_priv) >= 4)
512                 addr |= (phys >> 28) & 0xf0;
513
514         I915_WRITE(HWS_PGA, addr);
515 }
516
517 static struct page *status_page(struct intel_engine_cs *engine)
518 {
519         struct drm_i915_gem_object *obj = engine->status_page.vma->obj;
520
521         GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj));
522         return sg_page(obj->mm.pages->sgl);
523 }
524
525 static void ring_setup_phys_status_page(struct intel_engine_cs *engine)
526 {
527         set_hws_pga(engine, PFN_PHYS(page_to_pfn(status_page(engine))));
528         set_hwstam(engine, ~0u);
529 }
530
531 static void set_hwsp(struct intel_engine_cs *engine, u32 offset)
532 {
533         struct drm_i915_private *dev_priv = engine->i915;
534         i915_reg_t hwsp;
535
536         /*
537          * The ring status page addresses are no longer next to the rest of
538          * the ring registers as of gen7.
539          */
540         if (IS_GEN(dev_priv, 7)) {
541                 switch (engine->id) {
542                 /*
543                  * No more rings exist on Gen7. Default case is only to shut up
544                  * gcc switch check warning.
545                  */
546                 default:
547                         GEM_BUG_ON(engine->id);
548                         /* fallthrough */
549                 case RCS0:
550                         hwsp = RENDER_HWS_PGA_GEN7;
551                         break;
552                 case BCS0:
553                         hwsp = BLT_HWS_PGA_GEN7;
554                         break;
555                 case VCS0:
556                         hwsp = BSD_HWS_PGA_GEN7;
557                         break;
558                 case VECS0:
559                         hwsp = VEBOX_HWS_PGA_GEN7;
560                         break;
561                 }
562         } else if (IS_GEN(dev_priv, 6)) {
563                 hwsp = RING_HWS_PGA_GEN6(engine->mmio_base);
564         } else {
565                 hwsp = RING_HWS_PGA(engine->mmio_base);
566         }
567
568         I915_WRITE(hwsp, offset);
569         POSTING_READ(hwsp);
570 }
571
572 static void flush_cs_tlb(struct intel_engine_cs *engine)
573 {
574         struct drm_i915_private *dev_priv = engine->i915;
575
576         if (!IS_GEN_RANGE(dev_priv, 6, 7))
577                 return;
578
579         /* ring should be idle before issuing a sync flush*/
580         WARN_ON((ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
581
582         ENGINE_WRITE(engine, RING_INSTPM,
583                      _MASKED_BIT_ENABLE(INSTPM_TLB_INVALIDATE |
584                                         INSTPM_SYNC_FLUSH));
585         if (intel_wait_for_register(engine->uncore,
586                                     RING_INSTPM(engine->mmio_base),
587                                     INSTPM_SYNC_FLUSH, 0,
588                                     1000))
589                 DRM_ERROR("%s: wait for SyncFlush to complete for TLB invalidation timed out\n",
590                           engine->name);
591 }
592
593 static void ring_setup_status_page(struct intel_engine_cs *engine)
594 {
595         set_hwsp(engine, i915_ggtt_offset(engine->status_page.vma));
596         set_hwstam(engine, ~0u);
597
598         flush_cs_tlb(engine);
599 }
600
601 static bool stop_ring(struct intel_engine_cs *engine)
602 {
603         struct drm_i915_private *dev_priv = engine->i915;
604
605         if (INTEL_GEN(dev_priv) > 2) {
606                 ENGINE_WRITE(engine,
607                              RING_MI_MODE, _MASKED_BIT_ENABLE(STOP_RING));
608                 if (intel_wait_for_register(engine->uncore,
609                                             RING_MI_MODE(engine->mmio_base),
610                                             MODE_IDLE,
611                                             MODE_IDLE,
612                                             1000)) {
613                         DRM_ERROR("%s : timed out trying to stop ring\n",
614                                   engine->name);
615
616                         /*
617                          * Sometimes we observe that the idle flag is not
618                          * set even though the ring is empty. So double
619                          * check before giving up.
620                          */
621                         if (ENGINE_READ(engine, RING_HEAD) !=
622                             ENGINE_READ(engine, RING_TAIL))
623                                 return false;
624                 }
625         }
626
627         ENGINE_WRITE(engine, RING_HEAD, ENGINE_READ(engine, RING_TAIL));
628
629         ENGINE_WRITE(engine, RING_HEAD, 0);
630         ENGINE_WRITE(engine, RING_TAIL, 0);
631
632         /* The ring must be empty before it is disabled */
633         ENGINE_WRITE(engine, RING_CTL, 0);
634
635         return (ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) == 0;
636 }
637
638 static int xcs_resume(struct intel_engine_cs *engine)
639 {
640         struct drm_i915_private *dev_priv = engine->i915;
641         struct intel_ring *ring = engine->legacy.ring;
642         int ret = 0;
643
644         GEM_TRACE("%s: ring:{HEAD:%04x, TAIL:%04x}\n",
645                   engine->name, ring->head, ring->tail);
646
647         intel_uncore_forcewake_get(engine->uncore, FORCEWAKE_ALL);
648
649         /* WaClearRingBufHeadRegAtInit:ctg,elk */
650         if (!stop_ring(engine)) {
651                 /* G45 ring initialization often fails to reset head to zero */
652                 DRM_DEBUG_DRIVER("%s head not reset to zero "
653                                 "ctl %08x head %08x tail %08x start %08x\n",
654                                 engine->name,
655                                 ENGINE_READ(engine, RING_CTL),
656                                 ENGINE_READ(engine, RING_HEAD),
657                                 ENGINE_READ(engine, RING_TAIL),
658                                 ENGINE_READ(engine, RING_START));
659
660                 if (!stop_ring(engine)) {
661                         DRM_ERROR("failed to set %s head to zero "
662                                   "ctl %08x head %08x tail %08x start %08x\n",
663                                   engine->name,
664                                   ENGINE_READ(engine, RING_CTL),
665                                   ENGINE_READ(engine, RING_HEAD),
666                                   ENGINE_READ(engine, RING_TAIL),
667                                   ENGINE_READ(engine, RING_START));
668                         ret = -EIO;
669                         goto out;
670                 }
671         }
672
673         if (HWS_NEEDS_PHYSICAL(dev_priv))
674                 ring_setup_phys_status_page(engine);
675         else
676                 ring_setup_status_page(engine);
677
678         intel_engine_reset_breadcrumbs(engine);
679
680         /* Enforce ordering by reading HEAD register back */
681         ENGINE_POSTING_READ(engine, RING_HEAD);
682
683         /*
684          * Initialize the ring. This must happen _after_ we've cleared the ring
685          * registers with the above sequence (the readback of the HEAD registers
686          * also enforces ordering), otherwise the hw might lose the new ring
687          * register values.
688          */
689         ENGINE_WRITE(engine, RING_START, i915_ggtt_offset(ring->vma));
690
691         /* Check that the ring offsets point within the ring! */
692         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
693         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
694         intel_ring_update_space(ring);
695
696         /* First wake the ring up to an empty/idle ring */
697         ENGINE_WRITE(engine, RING_HEAD, ring->head);
698         ENGINE_WRITE(engine, RING_TAIL, ring->head);
699         ENGINE_POSTING_READ(engine, RING_TAIL);
700
701         ENGINE_WRITE(engine, RING_CTL, RING_CTL_SIZE(ring->size) | RING_VALID);
702
703         /* If the head is still not zero, the ring is dead */
704         if (intel_wait_for_register(engine->uncore,
705                                     RING_CTL(engine->mmio_base),
706                                     RING_VALID, RING_VALID,
707                                     50)) {
708                 DRM_ERROR("%s initialization failed "
709                           "ctl %08x (valid? %d) head %08x [%08x] tail %08x [%08x] start %08x [expected %08x]\n",
710                           engine->name,
711                           ENGINE_READ(engine, RING_CTL),
712                           ENGINE_READ(engine, RING_CTL) & RING_VALID,
713                           ENGINE_READ(engine, RING_HEAD), ring->head,
714                           ENGINE_READ(engine, RING_TAIL), ring->tail,
715                           ENGINE_READ(engine, RING_START),
716                           i915_ggtt_offset(ring->vma));
717                 ret = -EIO;
718                 goto out;
719         }
720
721         if (INTEL_GEN(dev_priv) > 2)
722                 ENGINE_WRITE(engine,
723                              RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
724
725         /* Now awake, let it get started */
726         if (ring->tail != ring->head) {
727                 ENGINE_WRITE(engine, RING_TAIL, ring->tail);
728                 ENGINE_POSTING_READ(engine, RING_TAIL);
729         }
730
731         /* Papering over lost _interrupts_ immediately following the restart */
732         intel_engine_queue_breadcrumbs(engine);
733 out:
734         intel_uncore_forcewake_put(engine->uncore, FORCEWAKE_ALL);
735
736         return ret;
737 }
738
739 static void reset_prepare(struct intel_engine_cs *engine)
740 {
741         struct intel_uncore *uncore = engine->uncore;
742         const u32 base = engine->mmio_base;
743
744         /*
745          * We stop engines, otherwise we might get failed reset and a
746          * dead gpu (on elk). Also as modern gpu as kbl can suffer
747          * from system hang if batchbuffer is progressing when
748          * the reset is issued, regardless of READY_TO_RESET ack.
749          * Thus assume it is best to stop engines on all gens
750          * where we have a gpu reset.
751          *
752          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
753          *
754          * WaMediaResetMainRingCleanup:ctg,elk (presumably)
755          *
756          * FIXME: Wa for more modern gens needs to be validated
757          */
758         GEM_TRACE("%s\n", engine->name);
759
760         if (intel_engine_stop_cs(engine))
761                 GEM_TRACE("%s: timed out on STOP_RING\n", engine->name);
762
763         intel_uncore_write_fw(uncore,
764                               RING_HEAD(base),
765                               intel_uncore_read_fw(uncore, RING_TAIL(base)));
766         intel_uncore_posting_read_fw(uncore, RING_HEAD(base)); /* paranoia */
767
768         intel_uncore_write_fw(uncore, RING_HEAD(base), 0);
769         intel_uncore_write_fw(uncore, RING_TAIL(base), 0);
770         intel_uncore_posting_read_fw(uncore, RING_TAIL(base));
771
772         /* The ring must be empty before it is disabled */
773         intel_uncore_write_fw(uncore, RING_CTL(base), 0);
774
775         /* Check acts as a post */
776         if (intel_uncore_read_fw(uncore, RING_HEAD(base)))
777                 GEM_TRACE("%s: ring head [%x] not parked\n",
778                           engine->name,
779                           intel_uncore_read_fw(uncore, RING_HEAD(base)));
780 }
781
782 static void reset_ring(struct intel_engine_cs *engine, bool stalled)
783 {
784         struct i915_request *pos, *rq;
785         unsigned long flags;
786         u32 head;
787
788         rq = NULL;
789         spin_lock_irqsave(&engine->active.lock, flags);
790         list_for_each_entry(pos, &engine->active.requests, sched.link) {
791                 if (!i915_request_completed(pos)) {
792                         rq = pos;
793                         break;
794                 }
795         }
796
797         /*
798          * The guilty request will get skipped on a hung engine.
799          *
800          * Users of client default contexts do not rely on logical
801          * state preserved between batches so it is safe to execute
802          * queued requests following the hang. Non default contexts
803          * rely on preserved state, so skipping a batch loses the
804          * evolution of the state and it needs to be considered corrupted.
805          * Executing more queued batches on top of corrupted state is
806          * risky. But we take the risk by trying to advance through
807          * the queued requests in order to make the client behaviour
808          * more predictable around resets, by not throwing away random
809          * amount of batches it has prepared for execution. Sophisticated
810          * clients can use gem_reset_stats_ioctl and dma fence status
811          * (exported via sync_file info ioctl on explicit fences) to observe
812          * when it loses the context state and should rebuild accordingly.
813          *
814          * The context ban, and ultimately the client ban, mechanism are safety
815          * valves if client submission ends up resulting in nothing more than
816          * subsequent hangs.
817          */
818
819         if (rq) {
820                 /*
821                  * Try to restore the logical GPU state to match the
822                  * continuation of the request queue. If we skip the
823                  * context/PD restore, then the next request may try to execute
824                  * assuming that its context is valid and loaded on the GPU and
825                  * so may try to access invalid memory, prompting repeated GPU
826                  * hangs.
827                  *
828                  * If the request was guilty, we still restore the logical
829                  * state in case the next request requires it (e.g. the
830                  * aliasing ppgtt), but skip over the hung batch.
831                  *
832                  * If the request was innocent, we try to replay the request
833                  * with the restored context.
834                  */
835                 __i915_request_reset(rq, stalled);
836
837                 GEM_BUG_ON(rq->ring != engine->legacy.ring);
838                 head = rq->head;
839         } else {
840                 head = engine->legacy.ring->tail;
841         }
842         engine->legacy.ring->head = intel_ring_wrap(engine->legacy.ring, head);
843
844         spin_unlock_irqrestore(&engine->active.lock, flags);
845 }
846
847 static void reset_finish(struct intel_engine_cs *engine)
848 {
849 }
850
851 static int rcs_resume(struct intel_engine_cs *engine)
852 {
853         struct drm_i915_private *dev_priv = engine->i915;
854
855         /*
856          * Disable CONSTANT_BUFFER before it is loaded from the context
857          * image. For as it is loaded, it is executed and the stored
858          * address may no longer be valid, leading to a GPU hang.
859          *
860          * This imposes the requirement that userspace reload their
861          * CONSTANT_BUFFER on every batch, fortunately a requirement
862          * they are already accustomed to from before contexts were
863          * enabled.
864          */
865         if (IS_GEN(dev_priv, 4))
866                 I915_WRITE(ECOSKPD,
867                            _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE));
868
869         /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
870         if (IS_GEN_RANGE(dev_priv, 4, 6))
871                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH));
872
873         /* We need to disable the AsyncFlip performance optimisations in order
874          * to use MI_WAIT_FOR_EVENT within the CS. It should already be
875          * programmed to '1' on all products.
876          *
877          * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
878          */
879         if (IS_GEN_RANGE(dev_priv, 6, 7))
880                 I915_WRITE(MI_MODE, _MASKED_BIT_ENABLE(ASYNC_FLIP_PERF_DISABLE));
881
882         /* Required for the hardware to program scanline values for waiting */
883         /* WaEnableFlushTlbInvalidationMode:snb */
884         if (IS_GEN(dev_priv, 6))
885                 I915_WRITE(GFX_MODE,
886                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT));
887
888         /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
889         if (IS_GEN(dev_priv, 7))
890                 I915_WRITE(GFX_MODE_GEN7,
891                            _MASKED_BIT_ENABLE(GFX_TLB_INVALIDATE_EXPLICIT) |
892                            _MASKED_BIT_ENABLE(GFX_REPLAY_MODE));
893
894         if (IS_GEN(dev_priv, 6)) {
895                 /* From the Sandybridge PRM, volume 1 part 3, page 24:
896                  * "If this bit is set, STCunit will have LRA as replacement
897                  *  policy. [...] This bit must be reset.  LRA replacement
898                  *  policy is not supported."
899                  */
900                 I915_WRITE(CACHE_MODE_0,
901                            _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
902         }
903
904         if (IS_GEN_RANGE(dev_priv, 6, 7))
905                 I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_FORCE_ORDERING));
906
907         return xcs_resume(engine);
908 }
909
910 static void cancel_requests(struct intel_engine_cs *engine)
911 {
912         struct i915_request *request;
913         unsigned long flags;
914
915         spin_lock_irqsave(&engine->active.lock, flags);
916
917         /* Mark all submitted requests as skipped. */
918         list_for_each_entry(request, &engine->active.requests, sched.link) {
919                 if (!i915_request_signaled(request))
920                         dma_fence_set_error(&request->fence, -EIO);
921
922                 i915_request_mark_complete(request);
923         }
924
925         /* Remaining _unready_ requests will be nop'ed when submitted */
926
927         spin_unlock_irqrestore(&engine->active.lock, flags);
928 }
929
930 static void i9xx_submit_request(struct i915_request *request)
931 {
932         i915_request_submit(request);
933
934         ENGINE_WRITE(request->engine, RING_TAIL,
935                      intel_ring_set_tail(request->ring, request->tail));
936 }
937
938 static u32 *i9xx_emit_breadcrumb(struct i915_request *rq, u32 *cs)
939 {
940         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
941         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
942
943         *cs++ = MI_FLUSH;
944
945         *cs++ = MI_STORE_DWORD_INDEX;
946         *cs++ = I915_GEM_HWS_SEQNO_ADDR;
947         *cs++ = rq->fence.seqno;
948
949         *cs++ = MI_USER_INTERRUPT;
950         *cs++ = MI_NOOP;
951
952         rq->tail = intel_ring_offset(rq, cs);
953         assert_ring_tail_valid(rq->ring, rq->tail);
954
955         return cs;
956 }
957
958 #define GEN5_WA_STORES 8 /* must be at least 1! */
959 static u32 *gen5_emit_breadcrumb(struct i915_request *rq, u32 *cs)
960 {
961         int i;
962
963         GEM_BUG_ON(rq->timeline->hwsp_ggtt != rq->engine->status_page.vma);
964         GEM_BUG_ON(offset_in_page(rq->timeline->hwsp_offset) != I915_GEM_HWS_SEQNO_ADDR);
965
966         *cs++ = MI_FLUSH;
967
968         BUILD_BUG_ON(GEN5_WA_STORES < 1);
969         for (i = 0; i < GEN5_WA_STORES; i++) {
970                 *cs++ = MI_STORE_DWORD_INDEX;
971                 *cs++ = I915_GEM_HWS_SEQNO_ADDR;
972                 *cs++ = rq->fence.seqno;
973         }
974
975         *cs++ = MI_USER_INTERRUPT;
976
977         rq->tail = intel_ring_offset(rq, cs);
978         assert_ring_tail_valid(rq->ring, rq->tail);
979
980         return cs;
981 }
982 #undef GEN5_WA_STORES
983
984 static void
985 gen5_irq_enable(struct intel_engine_cs *engine)
986 {
987         gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
988 }
989
990 static void
991 gen5_irq_disable(struct intel_engine_cs *engine)
992 {
993         gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
994 }
995
996 static void
997 i9xx_irq_enable(struct intel_engine_cs *engine)
998 {
999         engine->i915->irq_mask &= ~engine->irq_enable_mask;
1000         intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1001         intel_uncore_posting_read_fw(engine->uncore, GEN2_IMR);
1002 }
1003
1004 static void
1005 i9xx_irq_disable(struct intel_engine_cs *engine)
1006 {
1007         engine->i915->irq_mask |= engine->irq_enable_mask;
1008         intel_uncore_write(engine->uncore, GEN2_IMR, engine->i915->irq_mask);
1009 }
1010
1011 static void
1012 i8xx_irq_enable(struct intel_engine_cs *engine)
1013 {
1014         struct drm_i915_private *i915 = engine->i915;
1015
1016         i915->irq_mask &= ~engine->irq_enable_mask;
1017         intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1018         ENGINE_POSTING_READ16(engine, RING_IMR);
1019 }
1020
1021 static void
1022 i8xx_irq_disable(struct intel_engine_cs *engine)
1023 {
1024         struct drm_i915_private *i915 = engine->i915;
1025
1026         i915->irq_mask |= engine->irq_enable_mask;
1027         intel_uncore_write16(&i915->uncore, GEN2_IMR, i915->irq_mask);
1028 }
1029
1030 static int
1031 bsd_ring_flush(struct i915_request *rq, u32 mode)
1032 {
1033         u32 *cs;
1034
1035         cs = intel_ring_begin(rq, 2);
1036         if (IS_ERR(cs))
1037                 return PTR_ERR(cs);
1038
1039         *cs++ = MI_FLUSH;
1040         *cs++ = MI_NOOP;
1041         intel_ring_advance(rq, cs);
1042         return 0;
1043 }
1044
1045 static void
1046 gen6_irq_enable(struct intel_engine_cs *engine)
1047 {
1048         ENGINE_WRITE(engine, RING_IMR,
1049                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
1050
1051         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1052         ENGINE_POSTING_READ(engine, RING_IMR);
1053
1054         gen5_gt_enable_irq(engine->gt, engine->irq_enable_mask);
1055 }
1056
1057 static void
1058 gen6_irq_disable(struct intel_engine_cs *engine)
1059 {
1060         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
1061         gen5_gt_disable_irq(engine->gt, engine->irq_enable_mask);
1062 }
1063
1064 static void
1065 hsw_vebox_irq_enable(struct intel_engine_cs *engine)
1066 {
1067         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_enable_mask);
1068
1069         /* Flush/delay to ensure the RING_IMR is active before the GT IMR */
1070         ENGINE_POSTING_READ(engine, RING_IMR);
1071
1072         gen6_gt_pm_unmask_irq(engine->gt, engine->irq_enable_mask);
1073 }
1074
1075 static void
1076 hsw_vebox_irq_disable(struct intel_engine_cs *engine)
1077 {
1078         ENGINE_WRITE(engine, RING_IMR, ~0);
1079         gen6_gt_pm_mask_irq(engine->gt, engine->irq_enable_mask);
1080 }
1081
1082 static int
1083 i965_emit_bb_start(struct i915_request *rq,
1084                    u64 offset, u32 length,
1085                    unsigned int dispatch_flags)
1086 {
1087         u32 *cs;
1088
1089         cs = intel_ring_begin(rq, 2);
1090         if (IS_ERR(cs))
1091                 return PTR_ERR(cs);
1092
1093         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT | (dispatch_flags &
1094                 I915_DISPATCH_SECURE ? 0 : MI_BATCH_NON_SECURE_I965);
1095         *cs++ = offset;
1096         intel_ring_advance(rq, cs);
1097
1098         return 0;
1099 }
1100
1101 /* Just userspace ABI convention to limit the wa batch bo to a resonable size */
1102 #define I830_BATCH_LIMIT SZ_256K
1103 #define I830_TLB_ENTRIES (2)
1104 #define I830_WA_SIZE max(I830_TLB_ENTRIES*4096, I830_BATCH_LIMIT)
1105 static int
1106 i830_emit_bb_start(struct i915_request *rq,
1107                    u64 offset, u32 len,
1108                    unsigned int dispatch_flags)
1109 {
1110         u32 *cs, cs_offset =
1111                 intel_gt_scratch_offset(rq->engine->gt,
1112                                         INTEL_GT_SCRATCH_FIELD_DEFAULT);
1113
1114         GEM_BUG_ON(rq->engine->gt->scratch->size < I830_WA_SIZE);
1115
1116         cs = intel_ring_begin(rq, 6);
1117         if (IS_ERR(cs))
1118                 return PTR_ERR(cs);
1119
1120         /* Evict the invalid PTE TLBs */
1121         *cs++ = COLOR_BLT_CMD | BLT_WRITE_RGBA;
1122         *cs++ = BLT_DEPTH_32 | BLT_ROP_COLOR_COPY | 4096;
1123         *cs++ = I830_TLB_ENTRIES << 16 | 4; /* load each page */
1124         *cs++ = cs_offset;
1125         *cs++ = 0xdeadbeef;
1126         *cs++ = MI_NOOP;
1127         intel_ring_advance(rq, cs);
1128
1129         if ((dispatch_flags & I915_DISPATCH_PINNED) == 0) {
1130                 if (len > I830_BATCH_LIMIT)
1131                         return -ENOSPC;
1132
1133                 cs = intel_ring_begin(rq, 6 + 2);
1134                 if (IS_ERR(cs))
1135                         return PTR_ERR(cs);
1136
1137                 /* Blit the batch (which has now all relocs applied) to the
1138                  * stable batch scratch bo area (so that the CS never
1139                  * stumbles over its tlb invalidation bug) ...
1140                  */
1141                 *cs++ = SRC_COPY_BLT_CMD | BLT_WRITE_RGBA | (6 - 2);
1142                 *cs++ = BLT_DEPTH_32 | BLT_ROP_SRC_COPY | 4096;
1143                 *cs++ = DIV_ROUND_UP(len, 4096) << 16 | 4096;
1144                 *cs++ = cs_offset;
1145                 *cs++ = 4096;
1146                 *cs++ = offset;
1147
1148                 *cs++ = MI_FLUSH;
1149                 *cs++ = MI_NOOP;
1150                 intel_ring_advance(rq, cs);
1151
1152                 /* ... and execute it. */
1153                 offset = cs_offset;
1154         }
1155
1156         cs = intel_ring_begin(rq, 2);
1157         if (IS_ERR(cs))
1158                 return PTR_ERR(cs);
1159
1160         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1161         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1162                 MI_BATCH_NON_SECURE);
1163         intel_ring_advance(rq, cs);
1164
1165         return 0;
1166 }
1167
1168 static int
1169 i915_emit_bb_start(struct i915_request *rq,
1170                    u64 offset, u32 len,
1171                    unsigned int dispatch_flags)
1172 {
1173         u32 *cs;
1174
1175         cs = intel_ring_begin(rq, 2);
1176         if (IS_ERR(cs))
1177                 return PTR_ERR(cs);
1178
1179         *cs++ = MI_BATCH_BUFFER_START | MI_BATCH_GTT;
1180         *cs++ = offset | (dispatch_flags & I915_DISPATCH_SECURE ? 0 :
1181                 MI_BATCH_NON_SECURE);
1182         intel_ring_advance(rq, cs);
1183
1184         return 0;
1185 }
1186
1187 int intel_ring_pin(struct intel_ring *ring)
1188 {
1189         struct i915_vma *vma = ring->vma;
1190         unsigned int flags;
1191         void *addr;
1192         int ret;
1193
1194         if (atomic_fetch_inc(&ring->pin_count))
1195                 return 0;
1196
1197         flags = PIN_GLOBAL;
1198
1199         /* Ring wraparound at offset 0 sometimes hangs. No idea why. */
1200         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1201
1202         if (vma->obj->stolen)
1203                 flags |= PIN_MAPPABLE;
1204         else
1205                 flags |= PIN_HIGH;
1206
1207         ret = i915_vma_pin(vma, 0, 0, flags);
1208         if (unlikely(ret))
1209                 goto err_unpin;
1210
1211         if (i915_vma_is_map_and_fenceable(vma))
1212                 addr = (void __force *)i915_vma_pin_iomap(vma);
1213         else
1214                 addr = i915_gem_object_pin_map(vma->obj,
1215                                                i915_coherent_map_type(vma->vm->i915));
1216         if (IS_ERR(addr)) {
1217                 ret = PTR_ERR(addr);
1218                 goto err_ring;
1219         }
1220
1221         i915_vma_make_unshrinkable(vma);
1222
1223         GEM_BUG_ON(ring->vaddr);
1224         ring->vaddr = addr;
1225
1226         return 0;
1227
1228 err_ring:
1229         i915_vma_unpin(vma);
1230 err_unpin:
1231         atomic_dec(&ring->pin_count);
1232         return ret;
1233 }
1234
1235 void intel_ring_reset(struct intel_ring *ring, u32 tail)
1236 {
1237         tail = intel_ring_wrap(ring, tail);
1238         ring->tail = tail;
1239         ring->head = tail;
1240         ring->emit = tail;
1241         intel_ring_update_space(ring);
1242 }
1243
1244 void intel_ring_unpin(struct intel_ring *ring)
1245 {
1246         struct i915_vma *vma = ring->vma;
1247
1248         if (!atomic_dec_and_test(&ring->pin_count))
1249                 return;
1250
1251         /* Discard any unused bytes beyond that submitted to hw. */
1252         intel_ring_reset(ring, ring->emit);
1253
1254         i915_vma_unset_ggtt_write(vma);
1255         if (i915_vma_is_map_and_fenceable(vma))
1256                 i915_vma_unpin_iomap(vma);
1257         else
1258                 i915_gem_object_unpin_map(vma->obj);
1259
1260         GEM_BUG_ON(!ring->vaddr);
1261         ring->vaddr = NULL;
1262
1263         i915_vma_unpin(vma);
1264         i915_vma_make_purgeable(vma);
1265 }
1266
1267 static struct i915_vma *create_ring_vma(struct i915_ggtt *ggtt, int size)
1268 {
1269         struct i915_address_space *vm = &ggtt->vm;
1270         struct drm_i915_private *i915 = vm->i915;
1271         struct drm_i915_gem_object *obj;
1272         struct i915_vma *vma;
1273
1274         obj = i915_gem_object_create_stolen(i915, size);
1275         if (!obj)
1276                 obj = i915_gem_object_create_internal(i915, size);
1277         if (IS_ERR(obj))
1278                 return ERR_CAST(obj);
1279
1280         /*
1281          * Mark ring buffers as read-only from GPU side (so no stray overwrites)
1282          * if supported by the platform's GGTT.
1283          */
1284         if (vm->has_read_only)
1285                 i915_gem_object_set_readonly(obj);
1286
1287         vma = i915_vma_instance(obj, vm, NULL);
1288         if (IS_ERR(vma))
1289                 goto err;
1290
1291         return vma;
1292
1293 err:
1294         i915_gem_object_put(obj);
1295         return vma;
1296 }
1297
1298 struct intel_ring *
1299 intel_engine_create_ring(struct intel_engine_cs *engine, int size)
1300 {
1301         struct drm_i915_private *i915 = engine->i915;
1302         struct intel_ring *ring;
1303         struct i915_vma *vma;
1304
1305         GEM_BUG_ON(!is_power_of_2(size));
1306         GEM_BUG_ON(RING_CTL_SIZE(size) & ~RING_NR_PAGES);
1307
1308         ring = kzalloc(sizeof(*ring), GFP_KERNEL);
1309         if (!ring)
1310                 return ERR_PTR(-ENOMEM);
1311
1312         kref_init(&ring->ref);
1313
1314         ring->size = size;
1315         /* Workaround an erratum on the i830 which causes a hang if
1316          * the TAIL pointer points to within the last 2 cachelines
1317          * of the buffer.
1318          */
1319         ring->effective_size = size;
1320         if (IS_I830(i915) || IS_I845G(i915))
1321                 ring->effective_size -= 2 * CACHELINE_BYTES;
1322
1323         intel_ring_update_space(ring);
1324
1325         vma = create_ring_vma(engine->gt->ggtt, size);
1326         if (IS_ERR(vma)) {
1327                 kfree(ring);
1328                 return ERR_CAST(vma);
1329         }
1330         ring->vma = vma;
1331
1332         return ring;
1333 }
1334
1335 void intel_ring_free(struct kref *ref)
1336 {
1337         struct intel_ring *ring = container_of(ref, typeof(*ring), ref);
1338
1339         i915_vma_close(ring->vma);
1340         i915_vma_put(ring->vma);
1341
1342         kfree(ring);
1343 }
1344
1345 static void __ring_context_fini(struct intel_context *ce)
1346 {
1347         i915_gem_object_put(ce->state->obj);
1348 }
1349
1350 static void ring_context_destroy(struct kref *ref)
1351 {
1352         struct intel_context *ce = container_of(ref, typeof(*ce), ref);
1353
1354         GEM_BUG_ON(intel_context_is_pinned(ce));
1355
1356         if (ce->state)
1357                 __ring_context_fini(ce);
1358
1359         intel_context_fini(ce);
1360         intel_context_free(ce);
1361 }
1362
1363 static struct i915_address_space *vm_alias(struct intel_context *ce)
1364 {
1365         struct i915_address_space *vm;
1366
1367         vm = ce->vm;
1368         if (i915_is_ggtt(vm))
1369                 vm = &i915_vm_to_ggtt(vm)->alias->vm;
1370
1371         return vm;
1372 }
1373
1374 static int __context_pin_ppgtt(struct intel_context *ce)
1375 {
1376         struct i915_address_space *vm;
1377         int err = 0;
1378
1379         vm = vm_alias(ce);
1380         if (vm)
1381                 err = gen6_ppgtt_pin(i915_vm_to_ppgtt((vm)));
1382
1383         return err;
1384 }
1385
1386 static void __context_unpin_ppgtt(struct intel_context *ce)
1387 {
1388         struct i915_address_space *vm;
1389
1390         vm = vm_alias(ce);
1391         if (vm)
1392                 gen6_ppgtt_unpin(i915_vm_to_ppgtt(vm));
1393 }
1394
1395 static void ring_context_unpin(struct intel_context *ce)
1396 {
1397         __context_unpin_ppgtt(ce);
1398 }
1399
1400 static struct i915_vma *
1401 alloc_context_vma(struct intel_engine_cs *engine)
1402 {
1403         struct drm_i915_private *i915 = engine->i915;
1404         struct drm_i915_gem_object *obj;
1405         struct i915_vma *vma;
1406         int err;
1407
1408         obj = i915_gem_object_create_shmem(i915, engine->context_size);
1409         if (IS_ERR(obj))
1410                 return ERR_CAST(obj);
1411
1412         /*
1413          * Try to make the context utilize L3 as well as LLC.
1414          *
1415          * On VLV we don't have L3 controls in the PTEs so we
1416          * shouldn't touch the cache level, especially as that
1417          * would make the object snooped which might have a
1418          * negative performance impact.
1419          *
1420          * Snooping is required on non-llc platforms in execlist
1421          * mode, but since all GGTT accesses use PAT entry 0 we
1422          * get snooping anyway regardless of cache_level.
1423          *
1424          * This is only applicable for Ivy Bridge devices since
1425          * later platforms don't have L3 control bits in the PTE.
1426          */
1427         if (IS_IVYBRIDGE(i915))
1428                 i915_gem_object_set_cache_coherency(obj, I915_CACHE_L3_LLC);
1429
1430         if (engine->default_state) {
1431                 void *defaults, *vaddr;
1432
1433                 vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
1434                 if (IS_ERR(vaddr)) {
1435                         err = PTR_ERR(vaddr);
1436                         goto err_obj;
1437                 }
1438
1439                 defaults = i915_gem_object_pin_map(engine->default_state,
1440                                                    I915_MAP_WB);
1441                 if (IS_ERR(defaults)) {
1442                         err = PTR_ERR(defaults);
1443                         goto err_map;
1444                 }
1445
1446                 memcpy(vaddr, defaults, engine->context_size);
1447                 i915_gem_object_unpin_map(engine->default_state);
1448
1449                 i915_gem_object_flush_map(obj);
1450                 i915_gem_object_unpin_map(obj);
1451         }
1452
1453         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
1454         if (IS_ERR(vma)) {
1455                 err = PTR_ERR(vma);
1456                 goto err_obj;
1457         }
1458
1459         return vma;
1460
1461 err_map:
1462         i915_gem_object_unpin_map(obj);
1463 err_obj:
1464         i915_gem_object_put(obj);
1465         return ERR_PTR(err);
1466 }
1467
1468 static int ring_context_alloc(struct intel_context *ce)
1469 {
1470         struct intel_engine_cs *engine = ce->engine;
1471
1472         /* One ringbuffer to rule them all */
1473         GEM_BUG_ON(!engine->legacy.ring);
1474         ce->ring = engine->legacy.ring;
1475         ce->timeline = intel_timeline_get(engine->legacy.timeline);
1476
1477         GEM_BUG_ON(ce->state);
1478         if (engine->context_size) {
1479                 struct i915_vma *vma;
1480
1481                 vma = alloc_context_vma(engine);
1482                 if (IS_ERR(vma))
1483                         return PTR_ERR(vma);
1484
1485                 ce->state = vma;
1486         }
1487
1488         return 0;
1489 }
1490
1491 static int ring_context_pin(struct intel_context *ce)
1492 {
1493         int err;
1494
1495         err = intel_context_active_acquire(ce);
1496         if (err)
1497                 return err;
1498
1499         err = __context_pin_ppgtt(ce);
1500         if (err)
1501                 goto err_active;
1502
1503         return 0;
1504
1505 err_active:
1506         intel_context_active_release(ce);
1507         return err;
1508 }
1509
1510 static void ring_context_reset(struct intel_context *ce)
1511 {
1512         intel_ring_reset(ce->ring, 0);
1513 }
1514
1515 static const struct intel_context_ops ring_context_ops = {
1516         .alloc = ring_context_alloc,
1517
1518         .pin = ring_context_pin,
1519         .unpin = ring_context_unpin,
1520
1521         .enter = intel_context_enter_engine,
1522         .exit = intel_context_exit_engine,
1523
1524         .reset = ring_context_reset,
1525         .destroy = ring_context_destroy,
1526 };
1527
1528 static int load_pd_dir(struct i915_request *rq, const struct i915_ppgtt *ppgtt)
1529 {
1530         const struct intel_engine_cs * const engine = rq->engine;
1531         u32 *cs;
1532
1533         cs = intel_ring_begin(rq, 6);
1534         if (IS_ERR(cs))
1535                 return PTR_ERR(cs);
1536
1537         *cs++ = MI_LOAD_REGISTER_IMM(1);
1538         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_DCLV(engine->mmio_base));
1539         *cs++ = PP_DIR_DCLV_2G;
1540
1541         *cs++ = MI_LOAD_REGISTER_IMM(1);
1542         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1543         *cs++ = px_base(ppgtt->pd)->ggtt_offset << 10;
1544
1545         intel_ring_advance(rq, cs);
1546
1547         return 0;
1548 }
1549
1550 static int flush_pd_dir(struct i915_request *rq)
1551 {
1552         const struct intel_engine_cs * const engine = rq->engine;
1553         u32 *cs;
1554
1555         cs = intel_ring_begin(rq, 4);
1556         if (IS_ERR(cs))
1557                 return PTR_ERR(cs);
1558
1559         /* Stall until the page table load is complete */
1560         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1561         *cs++ = i915_mmio_reg_offset(RING_PP_DIR_BASE(engine->mmio_base));
1562         *cs++ = intel_gt_scratch_offset(rq->engine->gt,
1563                                         INTEL_GT_SCRATCH_FIELD_DEFAULT);
1564         *cs++ = MI_NOOP;
1565
1566         intel_ring_advance(rq, cs);
1567         return 0;
1568 }
1569
1570 static inline int mi_set_context(struct i915_request *rq, u32 flags)
1571 {
1572         struct drm_i915_private *i915 = rq->i915;
1573         struct intel_engine_cs *engine = rq->engine;
1574         enum intel_engine_id id;
1575         const int num_engines =
1576                 IS_HSW_GT1(i915) ? RUNTIME_INFO(i915)->num_engines - 1 : 0;
1577         bool force_restore = false;
1578         int len;
1579         u32 *cs;
1580
1581         flags |= MI_MM_SPACE_GTT;
1582         if (IS_HASWELL(i915))
1583                 /* These flags are for resource streamer on HSW+ */
1584                 flags |= HSW_MI_RS_SAVE_STATE_EN | HSW_MI_RS_RESTORE_STATE_EN;
1585         else
1586                 /* We need to save the extended state for powersaving modes */
1587                 flags |= MI_SAVE_EXT_STATE_EN | MI_RESTORE_EXT_STATE_EN;
1588
1589         len = 4;
1590         if (IS_GEN(i915, 7))
1591                 len += 2 + (num_engines ? 4 * num_engines + 6 : 0);
1592         else if (IS_GEN(i915, 5))
1593                 len += 2;
1594         if (flags & MI_FORCE_RESTORE) {
1595                 GEM_BUG_ON(flags & MI_RESTORE_INHIBIT);
1596                 flags &= ~MI_FORCE_RESTORE;
1597                 force_restore = true;
1598                 len += 2;
1599         }
1600
1601         cs = intel_ring_begin(rq, len);
1602         if (IS_ERR(cs))
1603                 return PTR_ERR(cs);
1604
1605         /* WaProgramMiArbOnOffAroundMiSetContext:ivb,vlv,hsw,bdw,chv */
1606         if (IS_GEN(i915, 7)) {
1607                 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1608                 if (num_engines) {
1609                         struct intel_engine_cs *signaller;
1610
1611                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1612                         for_each_engine(signaller, i915, id) {
1613                                 if (signaller == engine)
1614                                         continue;
1615
1616                                 *cs++ = i915_mmio_reg_offset(
1617                                            RING_PSMI_CTL(signaller->mmio_base));
1618                                 *cs++ = _MASKED_BIT_ENABLE(
1619                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1620                         }
1621                 }
1622         } else if (IS_GEN(i915, 5)) {
1623                 /*
1624                  * This w/a is only listed for pre-production ilk a/b steppings,
1625                  * but is also mentioned for programming the powerctx. To be
1626                  * safe, just apply the workaround; we do not use SyncFlush so
1627                  * this should never take effect and so be a no-op!
1628                  */
1629                 *cs++ = MI_SUSPEND_FLUSH | MI_SUSPEND_FLUSH_EN;
1630         }
1631
1632         if (force_restore) {
1633                 /*
1634                  * The HW doesn't handle being told to restore the current
1635                  * context very well. Quite often it likes goes to go off and
1636                  * sulk, especially when it is meant to be reloading PP_DIR.
1637                  * A very simple fix to force the reload is to simply switch
1638                  * away from the current context and back again.
1639                  *
1640                  * Note that the kernel_context will contain random state
1641                  * following the INHIBIT_RESTORE. We accept this since we
1642                  * never use the kernel_context state; it is merely a
1643                  * placeholder we use to flush other contexts.
1644                  */
1645                 *cs++ = MI_SET_CONTEXT;
1646                 *cs++ = i915_ggtt_offset(engine->kernel_context->state) |
1647                         MI_MM_SPACE_GTT |
1648                         MI_RESTORE_INHIBIT;
1649         }
1650
1651         *cs++ = MI_NOOP;
1652         *cs++ = MI_SET_CONTEXT;
1653         *cs++ = i915_ggtt_offset(rq->hw_context->state) | flags;
1654         /*
1655          * w/a: MI_SET_CONTEXT must always be followed by MI_NOOP
1656          * WaMiSetContext_Hang:snb,ivb,vlv
1657          */
1658         *cs++ = MI_NOOP;
1659
1660         if (IS_GEN(i915, 7)) {
1661                 if (num_engines) {
1662                         struct intel_engine_cs *signaller;
1663                         i915_reg_t last_reg = {}; /* keep gcc quiet */
1664
1665                         *cs++ = MI_LOAD_REGISTER_IMM(num_engines);
1666                         for_each_engine(signaller, i915, id) {
1667                                 if (signaller == engine)
1668                                         continue;
1669
1670                                 last_reg = RING_PSMI_CTL(signaller->mmio_base);
1671                                 *cs++ = i915_mmio_reg_offset(last_reg);
1672                                 *cs++ = _MASKED_BIT_DISABLE(
1673                                                 GEN6_PSMI_SLEEP_MSG_DISABLE);
1674                         }
1675
1676                         /* Insert a delay before the next switch! */
1677                         *cs++ = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
1678                         *cs++ = i915_mmio_reg_offset(last_reg);
1679                         *cs++ = intel_gt_scratch_offset(rq->engine->gt,
1680                                                         INTEL_GT_SCRATCH_FIELD_DEFAULT);
1681                         *cs++ = MI_NOOP;
1682                 }
1683                 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1684         } else if (IS_GEN(i915, 5)) {
1685                 *cs++ = MI_SUSPEND_FLUSH;
1686         }
1687
1688         intel_ring_advance(rq, cs);
1689
1690         return 0;
1691 }
1692
1693 static int remap_l3_slice(struct i915_request *rq, int slice)
1694 {
1695         u32 *cs, *remap_info = rq->i915->l3_parity.remap_info[slice];
1696         int i;
1697
1698         if (!remap_info)
1699                 return 0;
1700
1701         cs = intel_ring_begin(rq, GEN7_L3LOG_SIZE/4 * 2 + 2);
1702         if (IS_ERR(cs))
1703                 return PTR_ERR(cs);
1704
1705         /*
1706          * Note: We do not worry about the concurrent register cacheline hang
1707          * here because no other code should access these registers other than
1708          * at initialization time.
1709          */
1710         *cs++ = MI_LOAD_REGISTER_IMM(GEN7_L3LOG_SIZE/4);
1711         for (i = 0; i < GEN7_L3LOG_SIZE/4; i++) {
1712                 *cs++ = i915_mmio_reg_offset(GEN7_L3LOG(slice, i));
1713                 *cs++ = remap_info[i];
1714         }
1715         *cs++ = MI_NOOP;
1716         intel_ring_advance(rq, cs);
1717
1718         return 0;
1719 }
1720
1721 static int remap_l3(struct i915_request *rq)
1722 {
1723         struct i915_gem_context *ctx = rq->gem_context;
1724         int i, err;
1725
1726         if (!ctx->remap_slice)
1727                 return 0;
1728
1729         for (i = 0; i < MAX_L3_SLICES; i++) {
1730                 if (!(ctx->remap_slice & BIT(i)))
1731                         continue;
1732
1733                 err = remap_l3_slice(rq, i);
1734                 if (err)
1735                         return err;
1736         }
1737
1738         ctx->remap_slice = 0;
1739         return 0;
1740 }
1741
1742 static int switch_context(struct i915_request *rq)
1743 {
1744         struct intel_engine_cs *engine = rq->engine;
1745         struct i915_address_space *vm = vm_alias(rq->hw_context);
1746         unsigned int unwind_mm = 0;
1747         u32 hw_flags = 0;
1748         int ret;
1749
1750         GEM_BUG_ON(HAS_EXECLISTS(rq->i915));
1751
1752         if (vm) {
1753                 struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(vm);
1754                 int loops;
1755
1756                 /*
1757                  * Baytail takes a little more convincing that it really needs
1758                  * to reload the PD between contexts. It is not just a little
1759                  * longer, as adding more stalls after the load_pd_dir (i.e.
1760                  * adding a long loop around flush_pd_dir) is not as effective
1761                  * as reloading the PD umpteen times. 32 is derived from
1762                  * experimentation (gem_exec_parallel/fds) and has no good
1763                  * explanation.
1764                  */
1765                 loops = 1;
1766                 if (engine->id == BCS0 && IS_VALLEYVIEW(engine->i915))
1767                         loops = 32;
1768
1769                 do {
1770                         ret = load_pd_dir(rq, ppgtt);
1771                         if (ret)
1772                                 goto err;
1773                 } while (--loops);
1774
1775                 if (ppgtt->pd_dirty_engines & engine->mask) {
1776                         unwind_mm = engine->mask;
1777                         ppgtt->pd_dirty_engines &= ~unwind_mm;
1778                         hw_flags = MI_FORCE_RESTORE;
1779                 }
1780         }
1781
1782         if (rq->hw_context->state) {
1783                 GEM_BUG_ON(engine->id != RCS0);
1784
1785                 /*
1786                  * The kernel context(s) is treated as pure scratch and is not
1787                  * expected to retain any state (as we sacrifice it during
1788                  * suspend and on resume it may be corrupted). This is ok,
1789                  * as nothing actually executes using the kernel context; it
1790                  * is purely used for flushing user contexts.
1791                  */
1792                 if (i915_gem_context_is_kernel(rq->gem_context))
1793                         hw_flags = MI_RESTORE_INHIBIT;
1794
1795                 ret = mi_set_context(rq, hw_flags);
1796                 if (ret)
1797                         goto err_mm;
1798         }
1799
1800         if (vm) {
1801                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1802                 if (ret)
1803                         goto err_mm;
1804
1805                 ret = flush_pd_dir(rq);
1806                 if (ret)
1807                         goto err_mm;
1808
1809                 /*
1810                  * Not only do we need a full barrier (post-sync write) after
1811                  * invalidating the TLBs, but we need to wait a little bit
1812                  * longer. Whether this is merely delaying us, or the
1813                  * subsequent flush is a key part of serialising with the
1814                  * post-sync op, this extra pass appears vital before a
1815                  * mm switch!
1816                  */
1817                 ret = engine->emit_flush(rq, EMIT_INVALIDATE);
1818                 if (ret)
1819                         goto err_mm;
1820
1821                 ret = engine->emit_flush(rq, EMIT_FLUSH);
1822                 if (ret)
1823                         goto err_mm;
1824         }
1825
1826         ret = remap_l3(rq);
1827         if (ret)
1828                 goto err_mm;
1829
1830         return 0;
1831
1832 err_mm:
1833         if (unwind_mm)
1834                 i915_vm_to_ppgtt(vm)->pd_dirty_engines |= unwind_mm;
1835 err:
1836         return ret;
1837 }
1838
1839 static int ring_request_alloc(struct i915_request *request)
1840 {
1841         int ret;
1842
1843         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1844         GEM_BUG_ON(request->timeline->has_initial_breadcrumb);
1845
1846         /*
1847          * Flush enough space to reduce the likelihood of waiting after
1848          * we start building the request - in which case we will just
1849          * have to repeat work.
1850          */
1851         request->reserved_space += LEGACY_REQUEST_SIZE;
1852
1853         /* Unconditionally invalidate GPU caches and TLBs. */
1854         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1855         if (ret)
1856                 return ret;
1857
1858         ret = switch_context(request);
1859         if (ret)
1860                 return ret;
1861
1862         request->reserved_space -= LEGACY_REQUEST_SIZE;
1863         return 0;
1864 }
1865
1866 static noinline int
1867 wait_for_space(struct intel_ring *ring,
1868                struct intel_timeline *tl,
1869                unsigned int bytes)
1870 {
1871         struct i915_request *target;
1872         long timeout;
1873
1874         if (intel_ring_update_space(ring) >= bytes)
1875                 return 0;
1876
1877         GEM_BUG_ON(list_empty(&tl->requests));
1878         list_for_each_entry(target, &tl->requests, link) {
1879                 if (target->ring != ring)
1880                         continue;
1881
1882                 /* Would completion of this request free enough space? */
1883                 if (bytes <= __intel_ring_space(target->postfix,
1884                                                 ring->emit, ring->size))
1885                         break;
1886         }
1887
1888         if (GEM_WARN_ON(&target->link == &tl->requests))
1889                 return -ENOSPC;
1890
1891         timeout = i915_request_wait(target,
1892                                     I915_WAIT_INTERRUPTIBLE,
1893                                     MAX_SCHEDULE_TIMEOUT);
1894         if (timeout < 0)
1895                 return timeout;
1896
1897         i915_request_retire_upto(target);
1898
1899         intel_ring_update_space(ring);
1900         GEM_BUG_ON(ring->space < bytes);
1901         return 0;
1902 }
1903
1904 u32 *intel_ring_begin(struct i915_request *rq, unsigned int num_dwords)
1905 {
1906         struct intel_ring *ring = rq->ring;
1907         const unsigned int remain_usable = ring->effective_size - ring->emit;
1908         const unsigned int bytes = num_dwords * sizeof(u32);
1909         unsigned int need_wrap = 0;
1910         unsigned int total_bytes;
1911         u32 *cs;
1912
1913         /* Packets must be qword aligned. */
1914         GEM_BUG_ON(num_dwords & 1);
1915
1916         total_bytes = bytes + rq->reserved_space;
1917         GEM_BUG_ON(total_bytes > ring->effective_size);
1918
1919         if (unlikely(total_bytes > remain_usable)) {
1920                 const int remain_actual = ring->size - ring->emit;
1921
1922                 if (bytes > remain_usable) {
1923                         /*
1924                          * Not enough space for the basic request. So need to
1925                          * flush out the remainder and then wait for
1926                          * base + reserved.
1927                          */
1928                         total_bytes += remain_actual;
1929                         need_wrap = remain_actual | 1;
1930                 } else  {
1931                         /*
1932                          * The base request will fit but the reserved space
1933                          * falls off the end. So we don't need an immediate
1934                          * wrap and only need to effectively wait for the
1935                          * reserved size from the start of ringbuffer.
1936                          */
1937                         total_bytes = rq->reserved_space + remain_actual;
1938                 }
1939         }
1940
1941         if (unlikely(total_bytes > ring->space)) {
1942                 int ret;
1943
1944                 /*
1945                  * Space is reserved in the ringbuffer for finalising the
1946                  * request, as that cannot be allowed to fail. During request
1947                  * finalisation, reserved_space is set to 0 to stop the
1948                  * overallocation and the assumption is that then we never need
1949                  * to wait (which has the risk of failing with EINTR).
1950                  *
1951                  * See also i915_request_alloc() and i915_request_add().
1952                  */
1953                 GEM_BUG_ON(!rq->reserved_space);
1954
1955                 ret = wait_for_space(ring, rq->timeline, total_bytes);
1956                 if (unlikely(ret))
1957                         return ERR_PTR(ret);
1958         }
1959
1960         if (unlikely(need_wrap)) {
1961                 need_wrap &= ~1;
1962                 GEM_BUG_ON(need_wrap > ring->space);
1963                 GEM_BUG_ON(ring->emit + need_wrap > ring->size);
1964                 GEM_BUG_ON(!IS_ALIGNED(need_wrap, sizeof(u64)));
1965
1966                 /* Fill the tail with MI_NOOP */
1967                 memset64(ring->vaddr + ring->emit, 0, need_wrap / sizeof(u64));
1968                 ring->space -= need_wrap;
1969                 ring->emit = 0;
1970         }
1971
1972         GEM_BUG_ON(ring->emit > ring->size - bytes);
1973         GEM_BUG_ON(ring->space < bytes);
1974         cs = ring->vaddr + ring->emit;
1975         GEM_DEBUG_EXEC(memset32(cs, POISON_INUSE, bytes / sizeof(*cs)));
1976         ring->emit += bytes;
1977         ring->space -= bytes;
1978
1979         return cs;
1980 }
1981
1982 /* Align the ring tail to a cacheline boundary */
1983 int intel_ring_cacheline_align(struct i915_request *rq)
1984 {
1985         int num_dwords;
1986         void *cs;
1987
1988         num_dwords = (rq->ring->emit & (CACHELINE_BYTES - 1)) / sizeof(u32);
1989         if (num_dwords == 0)
1990                 return 0;
1991
1992         num_dwords = CACHELINE_DWORDS - num_dwords;
1993         GEM_BUG_ON(num_dwords & 1);
1994
1995         cs = intel_ring_begin(rq, num_dwords);
1996         if (IS_ERR(cs))
1997                 return PTR_ERR(cs);
1998
1999         memset64(cs, (u64)MI_NOOP << 32 | MI_NOOP, num_dwords / 2);
2000         intel_ring_advance(rq, cs);
2001
2002         GEM_BUG_ON(rq->ring->emit & (CACHELINE_BYTES - 1));
2003         return 0;
2004 }
2005
2006 static void gen6_bsd_submit_request(struct i915_request *request)
2007 {
2008         struct intel_uncore *uncore = request->engine->uncore;
2009
2010         intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
2011
2012        /* Every tail move must follow the sequence below */
2013
2014         /* Disable notification that the ring is IDLE. The GT
2015          * will then assume that it is busy and bring it out of rc6.
2016          */
2017         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2018                               _MASKED_BIT_ENABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2019
2020         /* Clear the context id. Here be magic! */
2021         intel_uncore_write64_fw(uncore, GEN6_BSD_RNCID, 0x0);
2022
2023         /* Wait for the ring not to be idle, i.e. for it to wake up. */
2024         if (__intel_wait_for_register_fw(uncore,
2025                                          GEN6_BSD_SLEEP_PSMI_CONTROL,
2026                                          GEN6_BSD_SLEEP_INDICATOR,
2027                                          0,
2028                                          1000, 0, NULL))
2029                 DRM_ERROR("timed out waiting for the BSD ring to wake up\n");
2030
2031         /* Now that the ring is fully powered up, update the tail */
2032         i9xx_submit_request(request);
2033
2034         /* Let the ring send IDLE messages to the GT again,
2035          * and so let it sleep to conserve power when idle.
2036          */
2037         intel_uncore_write_fw(uncore, GEN6_BSD_SLEEP_PSMI_CONTROL,
2038                               _MASKED_BIT_DISABLE(GEN6_BSD_SLEEP_MSG_DISABLE));
2039
2040         intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
2041 }
2042
2043 static int mi_flush_dw(struct i915_request *rq, u32 flags)
2044 {
2045         u32 cmd, *cs;
2046
2047         cs = intel_ring_begin(rq, 4);
2048         if (IS_ERR(cs))
2049                 return PTR_ERR(cs);
2050
2051         cmd = MI_FLUSH_DW;
2052
2053         /*
2054          * We always require a command barrier so that subsequent
2055          * commands, such as breadcrumb interrupts, are strictly ordered
2056          * wrt the contents of the write cache being flushed to memory
2057          * (and thus being coherent from the CPU).
2058          */
2059         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2060
2061         /*
2062          * Bspec vol 1c.3 - blitter engine command streamer:
2063          * "If ENABLED, all TLBs will be invalidated once the flush
2064          * operation is complete. This bit is only valid when the
2065          * Post-Sync Operation field is a value of 1h or 3h."
2066          */
2067         cmd |= flags;
2068
2069         *cs++ = cmd;
2070         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2071         *cs++ = 0;
2072         *cs++ = MI_NOOP;
2073
2074         intel_ring_advance(rq, cs);
2075
2076         return 0;
2077 }
2078
2079 static int gen6_flush_dw(struct i915_request *rq, u32 mode, u32 invflags)
2080 {
2081         return mi_flush_dw(rq, mode & EMIT_INVALIDATE ? invflags : 0);
2082 }
2083
2084 static int gen6_bsd_ring_flush(struct i915_request *rq, u32 mode)
2085 {
2086         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB | MI_INVALIDATE_BSD);
2087 }
2088
2089 static int
2090 hsw_emit_bb_start(struct i915_request *rq,
2091                   u64 offset, u32 len,
2092                   unsigned int dispatch_flags)
2093 {
2094         u32 *cs;
2095
2096         cs = intel_ring_begin(rq, 2);
2097         if (IS_ERR(cs))
2098                 return PTR_ERR(cs);
2099
2100         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2101                 0 : MI_BATCH_PPGTT_HSW | MI_BATCH_NON_SECURE_HSW);
2102         /* bit0-7 is the length on GEN6+ */
2103         *cs++ = offset;
2104         intel_ring_advance(rq, cs);
2105
2106         return 0;
2107 }
2108
2109 static int
2110 gen6_emit_bb_start(struct i915_request *rq,
2111                    u64 offset, u32 len,
2112                    unsigned int dispatch_flags)
2113 {
2114         u32 *cs;
2115
2116         cs = intel_ring_begin(rq, 2);
2117         if (IS_ERR(cs))
2118                 return PTR_ERR(cs);
2119
2120         *cs++ = MI_BATCH_BUFFER_START | (dispatch_flags & I915_DISPATCH_SECURE ?
2121                 0 : MI_BATCH_NON_SECURE_I965);
2122         /* bit0-7 is the length on GEN6+ */
2123         *cs++ = offset;
2124         intel_ring_advance(rq, cs);
2125
2126         return 0;
2127 }
2128
2129 /* Blitter support (SandyBridge+) */
2130
2131 static int gen6_ring_flush(struct i915_request *rq, u32 mode)
2132 {
2133         return gen6_flush_dw(rq, mode, MI_INVALIDATE_TLB);
2134 }
2135
2136 static void i9xx_set_default_submission(struct intel_engine_cs *engine)
2137 {
2138         engine->submit_request = i9xx_submit_request;
2139         engine->cancel_requests = cancel_requests;
2140
2141         engine->park = NULL;
2142         engine->unpark = NULL;
2143 }
2144
2145 static void gen6_bsd_set_default_submission(struct intel_engine_cs *engine)
2146 {
2147         i9xx_set_default_submission(engine);
2148         engine->submit_request = gen6_bsd_submit_request;
2149 }
2150
2151 static void ring_destroy(struct intel_engine_cs *engine)
2152 {
2153         struct drm_i915_private *dev_priv = engine->i915;
2154
2155         WARN_ON(INTEL_GEN(dev_priv) > 2 &&
2156                 (ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE) == 0);
2157
2158         intel_engine_cleanup_common(engine);
2159
2160         intel_ring_unpin(engine->legacy.ring);
2161         intel_ring_put(engine->legacy.ring);
2162
2163         intel_timeline_unpin(engine->legacy.timeline);
2164         intel_timeline_put(engine->legacy.timeline);
2165
2166         kfree(engine);
2167 }
2168
2169 static void setup_irq(struct intel_engine_cs *engine)
2170 {
2171         struct drm_i915_private *i915 = engine->i915;
2172
2173         if (INTEL_GEN(i915) >= 6) {
2174                 engine->irq_enable = gen6_irq_enable;
2175                 engine->irq_disable = gen6_irq_disable;
2176         } else if (INTEL_GEN(i915) >= 5) {
2177                 engine->irq_enable = gen5_irq_enable;
2178                 engine->irq_disable = gen5_irq_disable;
2179         } else if (INTEL_GEN(i915) >= 3) {
2180                 engine->irq_enable = i9xx_irq_enable;
2181                 engine->irq_disable = i9xx_irq_disable;
2182         } else {
2183                 engine->irq_enable = i8xx_irq_enable;
2184                 engine->irq_disable = i8xx_irq_disable;
2185         }
2186 }
2187
2188 static void setup_common(struct intel_engine_cs *engine)
2189 {
2190         struct drm_i915_private *i915 = engine->i915;
2191
2192         /* gen8+ are only supported with execlists */
2193         GEM_BUG_ON(INTEL_GEN(i915) >= 8);
2194
2195         setup_irq(engine);
2196
2197         engine->destroy = ring_destroy;
2198
2199         engine->resume = xcs_resume;
2200         engine->reset.prepare = reset_prepare;
2201         engine->reset.reset = reset_ring;
2202         engine->reset.finish = reset_finish;
2203
2204         engine->cops = &ring_context_ops;
2205         engine->request_alloc = ring_request_alloc;
2206
2207         /*
2208          * Using a global execution timeline; the previous final breadcrumb is
2209          * equivalent to our next initial bread so we can elide
2210          * engine->emit_init_breadcrumb().
2211          */
2212         engine->emit_fini_breadcrumb = i9xx_emit_breadcrumb;
2213         if (IS_GEN(i915, 5))
2214                 engine->emit_fini_breadcrumb = gen5_emit_breadcrumb;
2215
2216         engine->set_default_submission = i9xx_set_default_submission;
2217
2218         if (INTEL_GEN(i915) >= 6)
2219                 engine->emit_bb_start = gen6_emit_bb_start;
2220         else if (INTEL_GEN(i915) >= 4)
2221                 engine->emit_bb_start = i965_emit_bb_start;
2222         else if (IS_I830(i915) || IS_I845G(i915))
2223                 engine->emit_bb_start = i830_emit_bb_start;
2224         else
2225                 engine->emit_bb_start = i915_emit_bb_start;
2226 }
2227
2228 static void setup_rcs(struct intel_engine_cs *engine)
2229 {
2230         struct drm_i915_private *i915 = engine->i915;
2231
2232         if (HAS_L3_DPF(i915))
2233                 engine->irq_keep_mask = GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
2234
2235         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT;
2236
2237         if (INTEL_GEN(i915) >= 7) {
2238                 engine->emit_flush = gen7_render_ring_flush;
2239                 engine->emit_fini_breadcrumb = gen7_rcs_emit_breadcrumb;
2240         } else if (IS_GEN(i915, 6)) {
2241                 engine->emit_flush = gen6_render_ring_flush;
2242                 engine->emit_fini_breadcrumb = gen6_rcs_emit_breadcrumb;
2243         } else if (IS_GEN(i915, 5)) {
2244                 engine->emit_flush = gen4_render_ring_flush;
2245         } else {
2246                 if (INTEL_GEN(i915) < 4)
2247                         engine->emit_flush = gen2_render_ring_flush;
2248                 else
2249                         engine->emit_flush = gen4_render_ring_flush;
2250                 engine->irq_enable_mask = I915_USER_INTERRUPT;
2251         }
2252
2253         if (IS_HASWELL(i915))
2254                 engine->emit_bb_start = hsw_emit_bb_start;
2255
2256         engine->resume = rcs_resume;
2257 }
2258
2259 static void setup_vcs(struct intel_engine_cs *engine)
2260 {
2261         struct drm_i915_private *i915 = engine->i915;
2262
2263         if (INTEL_GEN(i915) >= 6) {
2264                 /* gen6 bsd needs a special wa for tail updates */
2265                 if (IS_GEN(i915, 6))
2266                         engine->set_default_submission = gen6_bsd_set_default_submission;
2267                 engine->emit_flush = gen6_bsd_ring_flush;
2268                 engine->irq_enable_mask = GT_BSD_USER_INTERRUPT;
2269
2270                 if (IS_GEN(i915, 6))
2271                         engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2272                 else
2273                         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2274         } else {
2275                 engine->emit_flush = bsd_ring_flush;
2276                 if (IS_GEN(i915, 5))
2277                         engine->irq_enable_mask = ILK_BSD_USER_INTERRUPT;
2278                 else
2279                         engine->irq_enable_mask = I915_BSD_USER_INTERRUPT;
2280         }
2281 }
2282
2283 static void setup_bcs(struct intel_engine_cs *engine)
2284 {
2285         struct drm_i915_private *i915 = engine->i915;
2286
2287         engine->emit_flush = gen6_ring_flush;
2288         engine->irq_enable_mask = GT_BLT_USER_INTERRUPT;
2289
2290         if (IS_GEN(i915, 6))
2291                 engine->emit_fini_breadcrumb = gen6_xcs_emit_breadcrumb;
2292         else
2293                 engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2294 }
2295
2296 static void setup_vecs(struct intel_engine_cs *engine)
2297 {
2298         struct drm_i915_private *i915 = engine->i915;
2299
2300         GEM_BUG_ON(INTEL_GEN(i915) < 7);
2301
2302         engine->emit_flush = gen6_ring_flush;
2303         engine->irq_enable_mask = PM_VEBOX_USER_INTERRUPT;
2304         engine->irq_enable = hsw_vebox_irq_enable;
2305         engine->irq_disable = hsw_vebox_irq_disable;
2306
2307         engine->emit_fini_breadcrumb = gen7_xcs_emit_breadcrumb;
2308 }
2309
2310 int intel_ring_submission_setup(struct intel_engine_cs *engine)
2311 {
2312         setup_common(engine);
2313
2314         switch (engine->class) {
2315         case RENDER_CLASS:
2316                 setup_rcs(engine);
2317                 break;
2318         case VIDEO_DECODE_CLASS:
2319                 setup_vcs(engine);
2320                 break;
2321         case COPY_ENGINE_CLASS:
2322                 setup_bcs(engine);
2323                 break;
2324         case VIDEO_ENHANCEMENT_CLASS:
2325                 setup_vecs(engine);
2326                 break;
2327         default:
2328                 MISSING_CASE(engine->class);
2329                 return -ENODEV;
2330         }
2331
2332         return 0;
2333 }
2334
2335 int intel_ring_submission_init(struct intel_engine_cs *engine)
2336 {
2337         struct intel_timeline *timeline;
2338         struct intel_ring *ring;
2339         int err;
2340
2341         timeline = intel_timeline_create(engine->gt, engine->status_page.vma);
2342         if (IS_ERR(timeline)) {
2343                 err = PTR_ERR(timeline);
2344                 goto err;
2345         }
2346         GEM_BUG_ON(timeline->has_initial_breadcrumb);
2347
2348         err = intel_timeline_pin(timeline);
2349         if (err)
2350                 goto err_timeline;
2351
2352         ring = intel_engine_create_ring(engine, SZ_16K);
2353         if (IS_ERR(ring)) {
2354                 err = PTR_ERR(ring);
2355                 goto err_timeline_unpin;
2356         }
2357
2358         err = intel_ring_pin(ring);
2359         if (err)
2360                 goto err_ring;
2361
2362         GEM_BUG_ON(engine->legacy.ring);
2363         engine->legacy.ring = ring;
2364         engine->legacy.timeline = timeline;
2365
2366         err = intel_engine_init_common(engine);
2367         if (err)
2368                 goto err_ring_unpin;
2369
2370         GEM_BUG_ON(timeline->hwsp_ggtt != engine->status_page.vma);
2371
2372         return 0;
2373
2374 err_ring_unpin:
2375         intel_ring_unpin(ring);
2376 err_ring:
2377         intel_ring_put(ring);
2378 err_timeline_unpin:
2379         intel_timeline_unpin(timeline);
2380 err_timeline:
2381         intel_timeline_put(timeline);
2382 err:
2383         intel_engine_cleanup_common(engine);
2384         return err;
2385 }