Merge tag 'irqchip-fixes-5.3' of git://git.kernel.org/pub/scm/linux/kernel/git/maz...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include "gem/i915_gem_context.h"
137
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_engine_pm.h"
142 #include "intel_lrc_reg.h"
143 #include "intel_mocs.h"
144 #include "intel_reset.h"
145 #include "intel_workarounds.h"
146
147 #define RING_EXECLIST_QFULL             (1 << 0x2)
148 #define RING_EXECLIST1_VALID            (1 << 0x3)
149 #define RING_EXECLIST0_VALID            (1 << 0x4)
150 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
151 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
152 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
153
154 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
155 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
157 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
158 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
159 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
160
161 #define GEN8_CTX_STATUS_COMPLETED_MASK \
162          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163
164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166 #define WA_TAIL_DWORDS 2
167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168
169 struct virtual_engine {
170         struct intel_engine_cs base;
171         struct intel_context context;
172
173         /*
174          * We allow only a single request through the virtual engine at a time
175          * (each request in the timeline waits for the completion fence of
176          * the previous before being submitted). By restricting ourselves to
177          * only submitting a single request, each request is placed on to a
178          * physical to maximise load spreading (by virtue of the late greedy
179          * scheduling -- each real engine takes the next available request
180          * upon idling).
181          */
182         struct i915_request *request;
183
184         /*
185          * We keep a rbtree of available virtual engines inside each physical
186          * engine, sorted by priority. Here we preallocate the nodes we need
187          * for the virtual engine, indexed by physical_engine->id.
188          */
189         struct ve_node {
190                 struct rb_node rb;
191                 int prio;
192         } nodes[I915_NUM_ENGINES];
193
194         /*
195          * Keep track of bonded pairs -- restrictions upon on our selection
196          * of physical engines any particular request may be submitted to.
197          * If we receive a submit-fence from a master engine, we will only
198          * use one of sibling_mask physical engines.
199          */
200         struct ve_bond {
201                 const struct intel_engine_cs *master;
202                 intel_engine_mask_t sibling_mask;
203         } *bonds;
204         unsigned int num_bonds;
205
206         /* And finally, which physical engines this virtual engine maps onto. */
207         unsigned int num_siblings;
208         struct intel_engine_cs *siblings[0];
209 };
210
211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
212 {
213         GEM_BUG_ON(!intel_engine_is_virtual(engine));
214         return container_of(engine, struct virtual_engine, base);
215 }
216
217 static int execlists_context_deferred_alloc(struct intel_context *ce,
218                                             struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220                                      struct intel_context *ce,
221                                      struct intel_engine_cs *engine,
222                                      struct intel_ring *ring);
223
224 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
225 {
226         return rb_entry(rb, struct i915_priolist, node);
227 }
228
229 static inline int rq_prio(const struct i915_request *rq)
230 {
231         return rq->sched.attr.priority;
232 }
233
234 static int effective_prio(const struct i915_request *rq)
235 {
236         int prio = rq_prio(rq);
237
238         /*
239          * On unwinding the active request, we give it a priority bump
240          * if it has completed waiting on any semaphore. If we know that
241          * the request has already started, we can prevent an unwanted
242          * preempt-to-idle cycle by taking that into account now.
243          */
244         if (__i915_request_has_started(rq))
245                 prio |= I915_PRIORITY_NOSEMAPHORE;
246
247         /* Restrict mere WAIT boosts from triggering preemption */
248         return prio | __NO_PREEMPTION;
249 }
250
251 static int queue_prio(const struct intel_engine_execlists *execlists)
252 {
253         struct i915_priolist *p;
254         struct rb_node *rb;
255
256         rb = rb_first_cached(&execlists->queue);
257         if (!rb)
258                 return INT_MIN;
259
260         /*
261          * As the priolist[] are inverted, with the highest priority in [0],
262          * we have to flip the index value to become priority.
263          */
264         p = to_priolist(rb);
265         return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
266 }
267
268 static inline bool need_preempt(const struct intel_engine_cs *engine,
269                                 const struct i915_request *rq,
270                                 struct rb_node *rb)
271 {
272         int last_prio;
273
274         if (!engine->preempt_context)
275                 return false;
276
277         if (i915_request_completed(rq))
278                 return false;
279
280         /*
281          * Check if the current priority hint merits a preemption attempt.
282          *
283          * We record the highest value priority we saw during rescheduling
284          * prior to this dequeue, therefore we know that if it is strictly
285          * less than the current tail of ESLP[0], we do not need to force
286          * a preempt-to-idle cycle.
287          *
288          * However, the priority hint is a mere hint that we may need to
289          * preempt. If that hint is stale or we may be trying to preempt
290          * ourselves, ignore the request.
291          */
292         last_prio = effective_prio(rq);
293         if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
294                                          last_prio))
295                 return false;
296
297         /*
298          * Check against the first request in ELSP[1], it will, thanks to the
299          * power of PI, be the highest priority of that context.
300          */
301         if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
302             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
303                 return true;
304
305         if (rb) {
306                 struct virtual_engine *ve =
307                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
308                 bool preempt = false;
309
310                 if (engine == ve->siblings[0]) { /* only preempt one sibling */
311                         struct i915_request *next;
312
313                         rcu_read_lock();
314                         next = READ_ONCE(ve->request);
315                         if (next)
316                                 preempt = rq_prio(next) > last_prio;
317                         rcu_read_unlock();
318                 }
319
320                 if (preempt)
321                         return preempt;
322         }
323
324         /*
325          * If the inflight context did not trigger the preemption, then maybe
326          * it was the set of queued requests? Pick the highest priority in
327          * the queue (the first active priolist) and see if it deserves to be
328          * running instead of ELSP[0].
329          *
330          * The highest priority request in the queue can not be either
331          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
332          * context, it's priority would not exceed ELSP[0] aka last_prio.
333          */
334         return queue_prio(&engine->execlists) > last_prio;
335 }
336
337 __maybe_unused static inline bool
338 assert_priority_queue(const struct i915_request *prev,
339                       const struct i915_request *next)
340 {
341         const struct intel_engine_execlists *execlists =
342                 &prev->engine->execlists;
343
344         /*
345          * Without preemption, the prev may refer to the still active element
346          * which we refuse to let go.
347          *
348          * Even with preemption, there are times when we think it is better not
349          * to preempt and leave an ostensibly lower priority request in flight.
350          */
351         if (port_request(execlists->port) == prev)
352                 return true;
353
354         return rq_prio(prev) >= rq_prio(next);
355 }
356
357 /*
358  * The context descriptor encodes various attributes of a context,
359  * including its GTT address and some flags. Because it's fairly
360  * expensive to calculate, we'll just do it once and cache the result,
361  * which remains valid until the context is unpinned.
362  *
363  * This is what a descriptor looks like, from LSB to MSB::
364  *
365  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368  *      bits 53-54:    mbz, reserved for use by hardware
369  *      bits 55-63:    group ID, currently unused and set to 0
370  *
371  * Starting from Gen11, the upper dword of the descriptor has a new format:
372  *
373  *      bits 32-36:    reserved
374  *      bits 37-47:    SW context ID
375  *      bits 48:53:    engine instance
376  *      bit 54:        mbz, reserved for use by hardware
377  *      bits 55-60:    SW counter
378  *      bits 61-63:    engine class
379  *
380  * engine info, SW context ID and SW counter need to form a unique number
381  * (Context ID) per lrc.
382  */
383 static u64
384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385 {
386         struct i915_gem_context *ctx = ce->gem_context;
387         u64 desc;
388
389         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
390         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391
392         desc = ctx->desc_template;                              /* bits  0-11 */
393         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
394
395         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396                                                                 /* bits 12-31 */
397         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
398
399         /*
400          * The following 32bits are copied into the OA reports (dword 2).
401          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
402          * anything below.
403          */
404         if (INTEL_GEN(engine->i915) >= 11) {
405                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
406                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
407                                                                 /* bits 37-47 */
408
409                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
410                                                                 /* bits 48-53 */
411
412                 /* TODO: decide what to do with SW counter (bits 55-60) */
413
414                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
415                                                                 /* bits 61-63 */
416         } else {
417                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
418                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
419         }
420
421         return desc;
422 }
423
424 static void unwind_wa_tail(struct i915_request *rq)
425 {
426         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
427         assert_ring_tail_valid(rq->ring, rq->tail);
428 }
429
430 static struct i915_request *
431 __unwind_incomplete_requests(struct intel_engine_cs *engine)
432 {
433         struct i915_request *rq, *rn, *active = NULL;
434         struct list_head *uninitialized_var(pl);
435         int prio = I915_PRIORITY_INVALID;
436
437         lockdep_assert_held(&engine->active.lock);
438
439         list_for_each_entry_safe_reverse(rq, rn,
440                                          &engine->active.requests,
441                                          sched.link) {
442                 struct intel_engine_cs *owner;
443
444                 if (i915_request_completed(rq))
445                         break;
446
447                 __i915_request_unsubmit(rq);
448                 unwind_wa_tail(rq);
449
450                 GEM_BUG_ON(rq->hw_context->inflight);
451
452                 /*
453                  * Push the request back into the queue for later resubmission.
454                  * If this request is not native to this physical engine (i.e.
455                  * it came from a virtual source), push it back onto the virtual
456                  * engine so that it can be moved across onto another physical
457                  * engine as load dictates.
458                  */
459                 owner = rq->hw_context->engine;
460                 if (likely(owner == engine)) {
461                         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
462                         if (rq_prio(rq) != prio) {
463                                 prio = rq_prio(rq);
464                                 pl = i915_sched_lookup_priolist(engine, prio);
465                         }
466                         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467
468                         list_move(&rq->sched.link, pl);
469                         active = rq;
470                 } else {
471                         rq->engine = owner;
472                         owner->submit_request(rq);
473                         active = NULL;
474                 }
475         }
476
477         return active;
478 }
479
480 struct i915_request *
481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
482 {
483         struct intel_engine_cs *engine =
484                 container_of(execlists, typeof(*engine), execlists);
485
486         return __unwind_incomplete_requests(engine);
487 }
488
489 static inline void
490 execlists_context_status_change(struct i915_request *rq, unsigned long status)
491 {
492         /*
493          * Only used when GVT-g is enabled now. When GVT-g is disabled,
494          * The compiler should eliminate this function as dead-code.
495          */
496         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
497                 return;
498
499         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
500                                    status, rq);
501 }
502
503 inline void
504 execlists_user_begin(struct intel_engine_execlists *execlists,
505                      const struct execlist_port *port)
506 {
507         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
508 }
509
510 inline void
511 execlists_user_end(struct intel_engine_execlists *execlists)
512 {
513         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
514 }
515
516 static inline void
517 execlists_context_schedule_in(struct i915_request *rq)
518 {
519         GEM_BUG_ON(rq->hw_context->inflight);
520
521         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522         intel_engine_context_in(rq->engine);
523         rq->hw_context->inflight = rq->engine;
524 }
525
526 static void kick_siblings(struct i915_request *rq)
527 {
528         struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
529         struct i915_request *next = READ_ONCE(ve->request);
530
531         if (next && next->execution_mask & ~rq->execution_mask)
532                 tasklet_schedule(&ve->base.execlists.tasklet);
533 }
534
535 static inline void
536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537 {
538         rq->hw_context->inflight = NULL;
539         intel_engine_context_out(rq->engine);
540         execlists_context_status_change(rq, status);
541         trace_i915_request_out(rq);
542
543         /*
544          * If this is part of a virtual engine, its next request may have
545          * been blocked waiting for access to the active context. We have
546          * to kick all the siblings again in case we need to switch (e.g.
547          * the next request is not runnable on this engine). Hopefully,
548          * we will already have submitted the next request before the
549          * tasklet runs and do not need to rebuild each virtual tree
550          * and kick everyone again.
551          */
552         if (rq->engine != rq->hw_context->engine)
553                 kick_siblings(rq);
554 }
555
556 static u64 execlists_update_context(struct i915_request *rq)
557 {
558         struct intel_context *ce = rq->hw_context;
559
560         ce->lrc_reg_state[CTX_RING_TAIL + 1] =
561                 intel_ring_set_tail(rq->ring, rq->tail);
562
563         /*
564          * Make sure the context image is complete before we submit it to HW.
565          *
566          * Ostensibly, writes (including the WCB) should be flushed prior to
567          * an uncached write such as our mmio register access, the empirical
568          * evidence (esp. on Braswell) suggests that the WC write into memory
569          * may not be visible to the HW prior to the completion of the UC
570          * register write and that we may begin execution from the context
571          * before its image is complete leading to invalid PD chasing.
572          *
573          * Furthermore, Braswell, at least, wants a full mb to be sure that
574          * the writes are coherent in memory (visible to the GPU) prior to
575          * execution, and not just visible to other CPUs (as is the result of
576          * wmb).
577          */
578         mb();
579         return ce->lrc_desc;
580 }
581
582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
583 {
584         if (execlists->ctrl_reg) {
585                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
586                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
587         } else {
588                 writel(upper_32_bits(desc), execlists->submit_reg);
589                 writel(lower_32_bits(desc), execlists->submit_reg);
590         }
591 }
592
593 static void execlists_submit_ports(struct intel_engine_cs *engine)
594 {
595         struct intel_engine_execlists *execlists = &engine->execlists;
596         struct execlist_port *port = execlists->port;
597         unsigned int n;
598
599         /*
600          * We can skip acquiring intel_runtime_pm_get() here as it was taken
601          * on our behalf by the request (see i915_gem_mark_busy()) and it will
602          * not be relinquished until the device is idle (see
603          * i915_gem_idle_work_handler()). As a precaution, we make sure
604          * that all ELSP are drained i.e. we have processed the CSB,
605          * before allowing ourselves to idle and calling intel_runtime_pm_put().
606          */
607         GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608
609         /*
610          * ELSQ note: the submit queue is not cleared after being submitted
611          * to the HW so we need to make sure we always clean it up. This is
612          * currently ensured by the fact that we always write the same number
613          * of elsq entries, keep this in mind before changing the loop below.
614          */
615         for (n = execlists_num_ports(execlists); n--; ) {
616                 struct i915_request *rq;
617                 unsigned int count;
618                 u64 desc;
619
620                 rq = port_unpack(&port[n], &count);
621                 if (rq) {
622                         GEM_BUG_ON(count > !n);
623                         if (!count++)
624                                 execlists_context_schedule_in(rq);
625                         port_set(&port[n], port_pack(rq, count));
626                         desc = execlists_update_context(rq);
627                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628
629                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630                                   engine->name, n,
631                                   port[n].context_id, count,
632                                   rq->fence.context, rq->fence.seqno,
633                                   hwsp_seqno(rq),
634                                   rq_prio(rq));
635                 } else {
636                         GEM_BUG_ON(!n);
637                         desc = 0;
638                 }
639
640                 write_desc(execlists, desc, n);
641         }
642
643         /* we need to manually load the submit queue */
644         if (execlists->ctrl_reg)
645                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
646
647         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 }
649
650 static bool ctx_single_port_submission(const struct intel_context *ce)
651 {
652         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653                 i915_gem_context_force_single_submission(ce->gem_context));
654 }
655
656 static bool can_merge_ctx(const struct intel_context *prev,
657                           const struct intel_context *next)
658 {
659         if (prev != next)
660                 return false;
661
662         if (ctx_single_port_submission(prev))
663                 return false;
664
665         return true;
666 }
667
668 static bool can_merge_rq(const struct i915_request *prev,
669                          const struct i915_request *next)
670 {
671         GEM_BUG_ON(!assert_priority_queue(prev, next));
672
673         if (!can_merge_ctx(prev->hw_context, next->hw_context))
674                 return false;
675
676         return true;
677 }
678
679 static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 {
681         GEM_BUG_ON(rq == port_request(port));
682
683         if (port_isset(port))
684                 i915_request_put(port_request(port));
685
686         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 }
688
689 static void inject_preempt_context(struct intel_engine_cs *engine)
690 {
691         struct intel_engine_execlists *execlists = &engine->execlists;
692         struct intel_context *ce = engine->preempt_context;
693         unsigned int n;
694
695         GEM_BUG_ON(execlists->preempt_complete_status !=
696                    upper_32_bits(ce->lrc_desc));
697
698         /*
699          * Switch to our empty preempt context so
700          * the state of the GPU is known (idle).
701          */
702         GEM_TRACE("%s\n", engine->name);
703         for (n = execlists_num_ports(execlists); --n; )
704                 write_desc(execlists, 0, n);
705
706         write_desc(execlists, ce->lrc_desc, n);
707
708         /* we need to manually load the submit queue */
709         if (execlists->ctrl_reg)
710                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
711
712         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
713         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714
715         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 }
717
718 static void complete_preempt_context(struct intel_engine_execlists *execlists)
719 {
720         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
721
722         if (inject_preempt_hang(execlists))
723                 return;
724
725         execlists_cancel_port_requests(execlists);
726         __unwind_incomplete_requests(container_of(execlists,
727                                                   struct intel_engine_cs,
728                                                   execlists));
729 }
730
731 static void virtual_update_register_offsets(u32 *regs,
732                                             struct intel_engine_cs *engine)
733 {
734         u32 base = engine->mmio_base;
735
736         /* Must match execlists_init_reg_state()! */
737
738         regs[CTX_CONTEXT_CONTROL] =
739                 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
740         regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
741         regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
742         regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
743         regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
744
745         regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
746         regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
747         regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
748         regs[CTX_SECOND_BB_HEAD_U] =
749                 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
750         regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
751         regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
752
753         regs[CTX_CTX_TIMESTAMP] =
754                 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
755         regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
756         regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
757         regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
758         regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
759         regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
760         regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
761         regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
762         regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
763
764         if (engine->class == RENDER_CLASS) {
765                 regs[CTX_RCS_INDIRECT_CTX] =
766                         i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
767                 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
768                         i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
769                 regs[CTX_BB_PER_CTX_PTR] =
770                         i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
771
772                 regs[CTX_R_PWR_CLK_STATE] =
773                         i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
774         }
775 }
776
777 static bool virtual_matches(const struct virtual_engine *ve,
778                             const struct i915_request *rq,
779                             const struct intel_engine_cs *engine)
780 {
781         const struct intel_engine_cs *inflight;
782
783         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
784                 return false;
785
786         /*
787          * We track when the HW has completed saving the context image
788          * (i.e. when we have seen the final CS event switching out of
789          * the context) and must not overwrite the context image before
790          * then. This restricts us to only using the active engine
791          * while the previous virtualized request is inflight (so
792          * we reuse the register offsets). This is a very small
793          * hystersis on the greedy seelction algorithm.
794          */
795         inflight = READ_ONCE(ve->context.inflight);
796         if (inflight && inflight != engine)
797                 return false;
798
799         return true;
800 }
801
802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
803                                      struct intel_engine_cs *engine)
804 {
805         struct intel_engine_cs *old = ve->siblings[0];
806
807         /* All unattached (rq->engine == old) must already be completed */
808
809         spin_lock(&old->breadcrumbs.irq_lock);
810         if (!list_empty(&ve->context.signal_link)) {
811                 list_move_tail(&ve->context.signal_link,
812                                &engine->breadcrumbs.signalers);
813                 intel_engine_queue_breadcrumbs(engine);
814         }
815         spin_unlock(&old->breadcrumbs.irq_lock);
816 }
817
818 static void execlists_dequeue(struct intel_engine_cs *engine)
819 {
820         struct intel_engine_execlists * const execlists = &engine->execlists;
821         struct execlist_port *port = execlists->port;
822         const struct execlist_port * const last_port =
823                 &execlists->port[execlists->port_mask];
824         struct i915_request *last = port_request(port);
825         struct rb_node *rb;
826         bool submit = false;
827
828         /*
829          * Hardware submission is through 2 ports. Conceptually each port
830          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
831          * static for a context, and unique to each, so we only execute
832          * requests belonging to a single context from each ring. RING_HEAD
833          * is maintained by the CS in the context image, it marks the place
834          * where it got up to last time, and through RING_TAIL we tell the CS
835          * where we want to execute up to this time.
836          *
837          * In this list the requests are in order of execution. Consecutive
838          * requests from the same context are adjacent in the ringbuffer. We
839          * can combine these requests into a single RING_TAIL update:
840          *
841          *              RING_HEAD...req1...req2
842          *                                    ^- RING_TAIL
843          * since to execute req2 the CS must first execute req1.
844          *
845          * Our goal then is to point each port to the end of a consecutive
846          * sequence of requests as being the most optimal (fewest wake ups
847          * and context switches) submission.
848          */
849
850         for (rb = rb_first_cached(&execlists->virtual); rb; ) {
851                 struct virtual_engine *ve =
852                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
853                 struct i915_request *rq = READ_ONCE(ve->request);
854
855                 if (!rq) { /* lazily cleanup after another engine handled rq */
856                         rb_erase_cached(rb, &execlists->virtual);
857                         RB_CLEAR_NODE(rb);
858                         rb = rb_first_cached(&execlists->virtual);
859                         continue;
860                 }
861
862                 if (!virtual_matches(ve, rq, engine)) {
863                         rb = rb_next(rb);
864                         continue;
865                 }
866
867                 break;
868         }
869
870         if (last) {
871                 /*
872                  * Don't resubmit or switch until all outstanding
873                  * preemptions (lite-restore) are seen. Then we
874                  * know the next preemption status we see corresponds
875                  * to this ELSP update.
876                  */
877                 GEM_BUG_ON(!execlists_is_active(execlists,
878                                                 EXECLISTS_ACTIVE_USER));
879                 GEM_BUG_ON(!port_count(&port[0]));
880
881                 /*
882                  * If we write to ELSP a second time before the HW has had
883                  * a chance to respond to the previous write, we can confuse
884                  * the HW and hit "undefined behaviour". After writing to ELSP,
885                  * we must then wait until we see a context-switch event from
886                  * the HW to indicate that it has had a chance to respond.
887                  */
888                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889                         return;
890
891                 if (need_preempt(engine, last, rb)) {
892                         inject_preempt_context(engine);
893                         return;
894                 }
895
896                 /*
897                  * In theory, we could coalesce more requests onto
898                  * the second port (the first port is active, with
899                  * no preemptions pending). However, that means we
900                  * then have to deal with the possible lite-restore
901                  * of the second port (as we submit the ELSP, there
902                  * may be a context-switch) but also we may complete
903                  * the resubmission before the context-switch. Ergo,
904                  * coalescing onto the second port will cause a
905                  * preemption event, but we cannot predict whether
906                  * that will affect port[0] or port[1].
907                  *
908                  * If the second port is already active, we can wait
909                  * until the next context-switch before contemplating
910                  * new requests. The GPU will be busy and we should be
911                  * able to resubmit the new ELSP before it idles,
912                  * avoiding pipeline bubbles (momentary pauses where
913                  * the driver is unable to keep up the supply of new
914                  * work). However, we have to double check that the
915                  * priorities of the ports haven't been switch.
916                  */
917                 if (port_count(&port[1]))
918                         return;
919
920                 /*
921                  * WaIdleLiteRestore:bdw,skl
922                  * Apply the wa NOOPs to prevent
923                  * ring:HEAD == rq:TAIL as we resubmit the
924                  * request. See gen8_emit_fini_breadcrumb() for
925                  * where we prepare the padding after the
926                  * end of the request.
927                  */
928                 last->tail = last->wa_tail;
929         }
930
931         while (rb) { /* XXX virtual is always taking precedence */
932                 struct virtual_engine *ve =
933                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
934                 struct i915_request *rq;
935
936                 spin_lock(&ve->base.active.lock);
937
938                 rq = ve->request;
939                 if (unlikely(!rq)) { /* lost the race to a sibling */
940                         spin_unlock(&ve->base.active.lock);
941                         rb_erase_cached(rb, &execlists->virtual);
942                         RB_CLEAR_NODE(rb);
943                         rb = rb_first_cached(&execlists->virtual);
944                         continue;
945                 }
946
947                 GEM_BUG_ON(rq != ve->request);
948                 GEM_BUG_ON(rq->engine != &ve->base);
949                 GEM_BUG_ON(rq->hw_context != &ve->context);
950
951                 if (rq_prio(rq) >= queue_prio(execlists)) {
952                         if (!virtual_matches(ve, rq, engine)) {
953                                 spin_unlock(&ve->base.active.lock);
954                                 rb = rb_next(rb);
955                                 continue;
956                         }
957
958                         if (last && !can_merge_rq(last, rq)) {
959                                 spin_unlock(&ve->base.active.lock);
960                                 return; /* leave this rq for another engine */
961                         }
962
963                         GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
964                                   engine->name,
965                                   rq->fence.context,
966                                   rq->fence.seqno,
967                                   i915_request_completed(rq) ? "!" :
968                                   i915_request_started(rq) ? "*" :
969                                   "",
970                                   yesno(engine != ve->siblings[0]));
971
972                         ve->request = NULL;
973                         ve->base.execlists.queue_priority_hint = INT_MIN;
974                         rb_erase_cached(rb, &execlists->virtual);
975                         RB_CLEAR_NODE(rb);
976
977                         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978                         rq->engine = engine;
979
980                         if (engine != ve->siblings[0]) {
981                                 u32 *regs = ve->context.lrc_reg_state;
982                                 unsigned int n;
983
984                                 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
985                                 virtual_update_register_offsets(regs, engine);
986
987                                 if (!list_empty(&ve->context.signals))
988                                         virtual_xfer_breadcrumbs(ve, engine);
989
990                                 /*
991                                  * Move the bound engine to the top of the list
992                                  * for future execution. We then kick this
993                                  * tasklet first before checking others, so that
994                                  * we preferentially reuse this set of bound
995                                  * registers.
996                                  */
997                                 for (n = 1; n < ve->num_siblings; n++) {
998                                         if (ve->siblings[n] == engine) {
999                                                 swap(ve->siblings[n],
1000                                                      ve->siblings[0]);
1001                                                 break;
1002                                         }
1003                                 }
1004
1005                                 GEM_BUG_ON(ve->siblings[0] != engine);
1006                         }
1007
1008                         __i915_request_submit(rq);
1009                         trace_i915_request_in(rq, port_index(port, execlists));
1010                         submit = true;
1011                         last = rq;
1012                 }
1013
1014                 spin_unlock(&ve->base.active.lock);
1015                 break;
1016         }
1017
1018         while ((rb = rb_first_cached(&execlists->queue))) {
1019                 struct i915_priolist *p = to_priolist(rb);
1020                 struct i915_request *rq, *rn;
1021                 int i;
1022
1023                 priolist_for_each_request_consume(rq, rn, p, i) {
1024                         /*
1025                          * Can we combine this request with the current port?
1026                          * It has to be the same context/ringbuffer and not
1027                          * have any exceptions (e.g. GVT saying never to
1028                          * combine contexts).
1029                          *
1030                          * If we can combine the requests, we can execute both
1031                          * by updating the RING_TAIL to point to the end of the
1032                          * second request, and so we never need to tell the
1033                          * hardware about the first.
1034                          */
1035                         if (last && !can_merge_rq(last, rq)) {
1036                                 /*
1037                                  * If we are on the second port and cannot
1038                                  * combine this request with the last, then we
1039                                  * are done.
1040                                  */
1041                                 if (port == last_port)
1042                                         goto done;
1043
1044                                 /*
1045                                  * We must not populate both ELSP[] with the
1046                                  * same LRCA, i.e. we must submit 2 different
1047                                  * contexts if we submit 2 ELSP.
1048                                  */
1049                                 if (last->hw_context == rq->hw_context)
1050                                         goto done;
1051
1052                                 /*
1053                                  * If GVT overrides us we only ever submit
1054                                  * port[0], leaving port[1] empty. Note that we
1055                                  * also have to be careful that we don't queue
1056                                  * the same context (even though a different
1057                                  * request) to the second port.
1058                                  */
1059                                 if (ctx_single_port_submission(last->hw_context) ||
1060                                     ctx_single_port_submission(rq->hw_context))
1061                                         goto done;
1062
1063
1064                                 if (submit)
1065                                         port_assign(port, last);
1066                                 port++;
1067
1068                                 GEM_BUG_ON(port_isset(port));
1069                         }
1070
1071                         __i915_request_submit(rq);
1072                         trace_i915_request_in(rq, port_index(port, execlists));
1073
1074                         last = rq;
1075                         submit = true;
1076                 }
1077
1078                 rb_erase_cached(&p->node, &execlists->queue);
1079                 i915_priolist_free(p);
1080         }
1081
1082 done:
1083         /*
1084          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1085          *
1086          * We choose the priority hint such that if we add a request of greater
1087          * priority than this, we kick the submission tasklet to decide on
1088          * the right order of submitting the requests to hardware. We must
1089          * also be prepared to reorder requests as they are in-flight on the
1090          * HW. We derive the priority hint then as the first "hole" in
1091          * the HW submission ports and if there are no available slots,
1092          * the priority of the lowest executing request, i.e. last.
1093          *
1094          * When we do receive a higher priority request ready to run from the
1095          * user, see queue_request(), the priority hint is bumped to that
1096          * request triggering preemption on the next dequeue (or subsequent
1097          * interrupt for secondary ports).
1098          */
1099         execlists->queue_priority_hint = queue_prio(execlists);
1100
1101         if (submit) {
1102                 port_assign(port, last);
1103                 execlists_submit_ports(engine);
1104         }
1105
1106         /* We must always keep the beast fed if we have work piled up */
1107         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1108                    !port_isset(execlists->port));
1109
1110         /* Re-evaluate the executing context setup after each preemptive kick */
1111         if (last)
1112                 execlists_user_begin(execlists, execlists->port);
1113
1114         /* If the engine is now idle, so should be the flag; and vice versa. */
1115         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1116                                        EXECLISTS_ACTIVE_USER) ==
1117                    !port_isset(engine->execlists.port));
1118 }
1119
1120 void
1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122 {
1123         struct execlist_port *port = execlists->port;
1124         unsigned int num_ports = execlists_num_ports(execlists);
1125
1126         while (num_ports-- && port_isset(port)) {
1127                 struct i915_request *rq = port_request(port);
1128
1129                 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130                           rq->engine->name,
1131                           (unsigned int)(port - execlists->port),
1132                           rq->fence.context, rq->fence.seqno,
1133                           hwsp_seqno(rq));
1134
1135                 GEM_BUG_ON(!execlists->active);
1136                 execlists_context_schedule_out(rq,
1137                                                i915_request_completed(rq) ?
1138                                                INTEL_CONTEXT_SCHEDULE_OUT :
1139                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140
1141                 i915_request_put(rq);
1142
1143                 memset(port, 0, sizeof(*port));
1144                 port++;
1145         }
1146
1147         execlists_clear_all_active(execlists);
1148 }
1149
1150 static inline void
1151 invalidate_csb_entries(const u32 *first, const u32 *last)
1152 {
1153         clflush((void *)first);
1154         clflush((void *)last);
1155 }
1156
1157 static inline bool
1158 reset_in_progress(const struct intel_engine_execlists *execlists)
1159 {
1160         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1161 }
1162
1163 static void process_csb(struct intel_engine_cs *engine)
1164 {
1165         struct intel_engine_execlists * const execlists = &engine->execlists;
1166         struct execlist_port *port = execlists->port;
1167         const u32 * const buf = execlists->csb_status;
1168         const u8 num_entries = execlists->csb_size;
1169         u8 head, tail;
1170
1171         lockdep_assert_held(&engine->active.lock);
1172         GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1173
1174         /*
1175          * Note that csb_write, csb_status may be either in HWSP or mmio.
1176          * When reading from the csb_write mmio register, we have to be
1177          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1178          * the low 4bits. As it happens we know the next 4bits are always
1179          * zero and so we can simply masked off the low u8 of the register
1180          * and treat it identically to reading from the HWSP (without having
1181          * to use explicit shifting and masking, and probably bifurcating
1182          * the code to handle the legacy mmio read).
1183          */
1184         head = execlists->csb_head;
1185         tail = READ_ONCE(*execlists->csb_write);
1186         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1187         if (unlikely(head == tail))
1188                 return;
1189
1190         /*
1191          * Hopefully paired with a wmb() in HW!
1192          *
1193          * We must complete the read of the write pointer before any reads
1194          * from the CSB, so that we do not see stale values. Without an rmb
1195          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1196          * we perform the READ_ONCE(*csb_write).
1197          */
1198         rmb();
1199
1200         do {
1201                 struct i915_request *rq;
1202                 unsigned int status;
1203                 unsigned int count;
1204
1205                 if (++head == num_entries)
1206                         head = 0;
1207
1208                 /*
1209                  * We are flying near dragons again.
1210                  *
1211                  * We hold a reference to the request in execlist_port[]
1212                  * but no more than that. We are operating in softirq
1213                  * context and so cannot hold any mutex or sleep. That
1214                  * prevents us stopping the requests we are processing
1215                  * in port[] from being retired simultaneously (the
1216                  * breadcrumb will be complete before we see the
1217                  * context-switch). As we only hold the reference to the
1218                  * request, any pointer chasing underneath the request
1219                  * is subject to a potential use-after-free. Thus we
1220                  * store all of the bookkeeping within port[] as
1221                  * required, and avoid using unguarded pointers beneath
1222                  * request itself. The same applies to the atomic
1223                  * status notifier.
1224                  */
1225
1226                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1227                           engine->name, head,
1228                           buf[2 * head + 0], buf[2 * head + 1],
1229                           execlists->active);
1230
1231                 status = buf[2 * head];
1232                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1233                               GEN8_CTX_STATUS_PREEMPTED))
1234                         execlists_set_active(execlists,
1235                                              EXECLISTS_ACTIVE_HWACK);
1236                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1237                         execlists_clear_active(execlists,
1238                                                EXECLISTS_ACTIVE_HWACK);
1239
1240                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1241                         continue;
1242
1243                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1244                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1245
1246                 if (status & GEN8_CTX_STATUS_COMPLETE &&
1247                     buf[2*head + 1] == execlists->preempt_complete_status) {
1248                         GEM_TRACE("%s preempt-idle\n", engine->name);
1249                         complete_preempt_context(execlists);
1250                         continue;
1251                 }
1252
1253                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1254                     execlists_is_active(execlists,
1255                                         EXECLISTS_ACTIVE_PREEMPT))
1256                         continue;
1257
1258                 GEM_BUG_ON(!execlists_is_active(execlists,
1259                                                 EXECLISTS_ACTIVE_USER));
1260
1261                 rq = port_unpack(port, &count);
1262                 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1263                           engine->name,
1264                           port->context_id, count,
1265                           rq ? rq->fence.context : 0,
1266                           rq ? rq->fence.seqno : 0,
1267                           rq ? hwsp_seqno(rq) : 0,
1268                           rq ? rq_prio(rq) : 0);
1269
1270                 /* Check the context/desc id for this event matches */
1271                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1272
1273                 GEM_BUG_ON(count == 0);
1274                 if (--count == 0) {
1275                         /*
1276                          * On the final event corresponding to the
1277                          * submission of this context, we expect either
1278                          * an element-switch event or a completion
1279                          * event (and on completion, the active-idle
1280                          * marker). No more preemptions, lite-restore
1281                          * or otherwise.
1282                          */
1283                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1284                         GEM_BUG_ON(port_isset(&port[1]) &&
1285                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1286                         GEM_BUG_ON(!port_isset(&port[1]) &&
1287                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1288
1289                         /*
1290                          * We rely on the hardware being strongly
1291                          * ordered, that the breadcrumb write is
1292                          * coherent (visible from the CPU) before the
1293                          * user interrupt and CSB is processed.
1294                          */
1295                         GEM_BUG_ON(!i915_request_completed(rq));
1296
1297                         execlists_context_schedule_out(rq,
1298                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1299                         i915_request_put(rq);
1300
1301                         GEM_TRACE("%s completed ctx=%d\n",
1302                                   engine->name, port->context_id);
1303
1304                         port = execlists_port_complete(execlists, port);
1305                         if (port_isset(port))
1306                                 execlists_user_begin(execlists, port);
1307                         else
1308                                 execlists_user_end(execlists);
1309                 } else {
1310                         port_set(port, port_pack(rq, count));
1311                 }
1312         } while (head != tail);
1313
1314         execlists->csb_head = head;
1315
1316         /*
1317          * Gen11 has proven to fail wrt global observation point between
1318          * entry and tail update, failing on the ordering and thus
1319          * we see an old entry in the context status buffer.
1320          *
1321          * Forcibly evict out entries for the next gpu csb update,
1322          * to increase the odds that we get a fresh entries with non
1323          * working hardware. The cost for doing so comes out mostly with
1324          * the wash as hardware, working or not, will need to do the
1325          * invalidation before.
1326          */
1327         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1328 }
1329
1330 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1331 {
1332         lockdep_assert_held(&engine->active.lock);
1333
1334         process_csb(engine);
1335         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1336                 execlists_dequeue(engine);
1337 }
1338
1339 /*
1340  * Check the unread Context Status Buffers and manage the submission of new
1341  * contexts to the ELSP accordingly.
1342  */
1343 static void execlists_submission_tasklet(unsigned long data)
1344 {
1345         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1346         unsigned long flags;
1347
1348         GEM_TRACE("%s awake?=%d, active=%x\n",
1349                   engine->name,
1350                   !!intel_wakeref_active(&engine->wakeref),
1351                   engine->execlists.active);
1352
1353         spin_lock_irqsave(&engine->active.lock, flags);
1354         __execlists_submission_tasklet(engine);
1355         spin_unlock_irqrestore(&engine->active.lock, flags);
1356 }
1357
1358 static void queue_request(struct intel_engine_cs *engine,
1359                           struct i915_sched_node *node,
1360                           int prio)
1361 {
1362         GEM_BUG_ON(!list_empty(&node->link));
1363         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1364 }
1365
1366 static void __submit_queue_imm(struct intel_engine_cs *engine)
1367 {
1368         struct intel_engine_execlists * const execlists = &engine->execlists;
1369
1370         if (reset_in_progress(execlists))
1371                 return; /* defer until we restart the engine following reset */
1372
1373         if (execlists->tasklet.func == execlists_submission_tasklet)
1374                 __execlists_submission_tasklet(engine);
1375         else
1376                 tasklet_hi_schedule(&execlists->tasklet);
1377 }
1378
1379 static void submit_queue(struct intel_engine_cs *engine, int prio)
1380 {
1381         if (prio > engine->execlists.queue_priority_hint) {
1382                 engine->execlists.queue_priority_hint = prio;
1383                 __submit_queue_imm(engine);
1384         }
1385 }
1386
1387 static void execlists_submit_request(struct i915_request *request)
1388 {
1389         struct intel_engine_cs *engine = request->engine;
1390         unsigned long flags;
1391
1392         /* Will be called from irq-context when using foreign fences. */
1393         spin_lock_irqsave(&engine->active.lock, flags);
1394
1395         queue_request(engine, &request->sched, rq_prio(request));
1396
1397         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1398         GEM_BUG_ON(list_empty(&request->sched.link));
1399
1400         submit_queue(engine, rq_prio(request));
1401
1402         spin_unlock_irqrestore(&engine->active.lock, flags);
1403 }
1404
1405 static void __execlists_context_fini(struct intel_context *ce)
1406 {
1407         intel_ring_put(ce->ring);
1408
1409         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1410         i915_gem_object_put(ce->state->obj);
1411 }
1412
1413 static void execlists_context_destroy(struct kref *kref)
1414 {
1415         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1416
1417         GEM_BUG_ON(intel_context_is_pinned(ce));
1418
1419         if (ce->state)
1420                 __execlists_context_fini(ce);
1421
1422         intel_context_free(ce);
1423 }
1424
1425 static void execlists_context_unpin(struct intel_context *ce)
1426 {
1427         i915_gem_context_unpin_hw_id(ce->gem_context);
1428         i915_gem_object_unpin_map(ce->state->obj);
1429         intel_ring_unpin(ce->ring);
1430 }
1431
1432 static void
1433 __execlists_update_reg_state(struct intel_context *ce,
1434                              struct intel_engine_cs *engine)
1435 {
1436         struct intel_ring *ring = ce->ring;
1437         u32 *regs = ce->lrc_reg_state;
1438
1439         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1440         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1441
1442         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1443         regs[CTX_RING_HEAD + 1] = ring->head;
1444         regs[CTX_RING_TAIL + 1] = ring->tail;
1445
1446         /* RPCS */
1447         if (engine->class == RENDER_CLASS)
1448                 regs[CTX_R_PWR_CLK_STATE + 1] =
1449                         intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1450 }
1451
1452 static int
1453 __execlists_context_pin(struct intel_context *ce,
1454                         struct intel_engine_cs *engine)
1455 {
1456         void *vaddr;
1457         int ret;
1458
1459         GEM_BUG_ON(!ce->gem_context->vm);
1460
1461         ret = execlists_context_deferred_alloc(ce, engine);
1462         if (ret)
1463                 goto err;
1464         GEM_BUG_ON(!ce->state);
1465
1466         ret = intel_context_active_acquire(ce,
1467                                            engine->i915->ggtt.pin_bias |
1468                                            PIN_OFFSET_BIAS |
1469                                            PIN_HIGH);
1470         if (ret)
1471                 goto err;
1472
1473         vaddr = i915_gem_object_pin_map(ce->state->obj,
1474                                         i915_coherent_map_type(engine->i915) |
1475                                         I915_MAP_OVERRIDE);
1476         if (IS_ERR(vaddr)) {
1477                 ret = PTR_ERR(vaddr);
1478                 goto unpin_active;
1479         }
1480
1481         ret = intel_ring_pin(ce->ring);
1482         if (ret)
1483                 goto unpin_map;
1484
1485         ret = i915_gem_context_pin_hw_id(ce->gem_context);
1486         if (ret)
1487                 goto unpin_ring;
1488
1489         ce->lrc_desc = lrc_descriptor(ce, engine);
1490         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1491         __execlists_update_reg_state(ce, engine);
1492
1493         return 0;
1494
1495 unpin_ring:
1496         intel_ring_unpin(ce->ring);
1497 unpin_map:
1498         i915_gem_object_unpin_map(ce->state->obj);
1499 unpin_active:
1500         intel_context_active_release(ce);
1501 err:
1502         return ret;
1503 }
1504
1505 static int execlists_context_pin(struct intel_context *ce)
1506 {
1507         return __execlists_context_pin(ce, ce->engine);
1508 }
1509
1510 static void execlists_context_reset(struct intel_context *ce)
1511 {
1512         /*
1513          * Because we emit WA_TAIL_DWORDS there may be a disparity
1514          * between our bookkeeping in ce->ring->head and ce->ring->tail and
1515          * that stored in context. As we only write new commands from
1516          * ce->ring->tail onwards, everything before that is junk. If the GPU
1517          * starts reading from its RING_HEAD from the context, it may try to
1518          * execute that junk and die.
1519          *
1520          * The contexts that are stilled pinned on resume belong to the
1521          * kernel, and are local to each engine. All other contexts will
1522          * have their head/tail sanitized upon pinning before use, so they
1523          * will never see garbage,
1524          *
1525          * So to avoid that we reset the context images upon resume. For
1526          * simplicity, we just zero everything out.
1527          */
1528         intel_ring_reset(ce->ring, 0);
1529         __execlists_update_reg_state(ce, ce->engine);
1530 }
1531
1532 static const struct intel_context_ops execlists_context_ops = {
1533         .pin = execlists_context_pin,
1534         .unpin = execlists_context_unpin,
1535
1536         .enter = intel_context_enter_engine,
1537         .exit = intel_context_exit_engine,
1538
1539         .reset = execlists_context_reset,
1540         .destroy = execlists_context_destroy,
1541 };
1542
1543 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1544 {
1545         u32 *cs;
1546
1547         GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1548
1549         cs = intel_ring_begin(rq, 6);
1550         if (IS_ERR(cs))
1551                 return PTR_ERR(cs);
1552
1553         /*
1554          * Check if we have been preempted before we even get started.
1555          *
1556          * After this point i915_request_started() reports true, even if
1557          * we get preempted and so are no longer running.
1558          */
1559         *cs++ = MI_ARB_CHECK;
1560         *cs++ = MI_NOOP;
1561
1562         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1563         *cs++ = rq->timeline->hwsp_offset;
1564         *cs++ = 0;
1565         *cs++ = rq->fence.seqno - 1;
1566
1567         intel_ring_advance(rq, cs);
1568
1569         /* Record the updated position of the request's payload */
1570         rq->infix = intel_ring_offset(rq, cs);
1571
1572         return 0;
1573 }
1574
1575 static int emit_pdps(struct i915_request *rq)
1576 {
1577         const struct intel_engine_cs * const engine = rq->engine;
1578         struct i915_ppgtt * const ppgtt =
1579                 i915_vm_to_ppgtt(rq->gem_context->vm);
1580         int err, i;
1581         u32 *cs;
1582
1583         GEM_BUG_ON(intel_vgpu_active(rq->i915));
1584
1585         /*
1586          * Beware ye of the dragons, this sequence is magic!
1587          *
1588          * Small changes to this sequence can cause anything from
1589          * GPU hangs to forcewake errors and machine lockups!
1590          */
1591
1592         /* Flush any residual operations from the context load */
1593         err = engine->emit_flush(rq, EMIT_FLUSH);
1594         if (err)
1595                 return err;
1596
1597         /* Magic required to prevent forcewake errors! */
1598         err = engine->emit_flush(rq, EMIT_INVALIDATE);
1599         if (err)
1600                 return err;
1601
1602         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1603         if (IS_ERR(cs))
1604                 return PTR_ERR(cs);
1605
1606         /* Ensure the LRI have landed before we invalidate & continue */
1607         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1608         for (i = GEN8_3LVL_PDPES; i--; ) {
1609                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1610                 u32 base = engine->mmio_base;
1611
1612                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1613                 *cs++ = upper_32_bits(pd_daddr);
1614                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1615                 *cs++ = lower_32_bits(pd_daddr);
1616         }
1617         *cs++ = MI_NOOP;
1618
1619         intel_ring_advance(rq, cs);
1620
1621         /* Be doubly sure the LRI have landed before proceeding */
1622         err = engine->emit_flush(rq, EMIT_FLUSH);
1623         if (err)
1624                 return err;
1625
1626         /* Re-invalidate the TLB for luck */
1627         return engine->emit_flush(rq, EMIT_INVALIDATE);
1628 }
1629
1630 static int execlists_request_alloc(struct i915_request *request)
1631 {
1632         int ret;
1633
1634         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1635
1636         /*
1637          * Flush enough space to reduce the likelihood of waiting after
1638          * we start building the request - in which case we will just
1639          * have to repeat work.
1640          */
1641         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1642
1643         /*
1644          * Note that after this point, we have committed to using
1645          * this request as it is being used to both track the
1646          * state of engine initialisation and liveness of the
1647          * golden renderstate above. Think twice before you try
1648          * to cancel/unwind this request now.
1649          */
1650
1651         /* Unconditionally invalidate GPU caches and TLBs. */
1652         if (i915_vm_is_4lvl(request->gem_context->vm))
1653                 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1654         else
1655                 ret = emit_pdps(request);
1656         if (ret)
1657                 return ret;
1658
1659         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1660         return 0;
1661 }
1662
1663 /*
1664  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1665  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1666  * but there is a slight complication as this is applied in WA batch where the
1667  * values are only initialized once so we cannot take register value at the
1668  * beginning and reuse it further; hence we save its value to memory, upload a
1669  * constant value with bit21 set and then we restore it back with the saved value.
1670  * To simplify the WA, a constant value is formed by using the default value
1671  * of this register. This shouldn't be a problem because we are only modifying
1672  * it for a short period and this batch in non-premptible. We can ofcourse
1673  * use additional instructions that read the actual value of the register
1674  * at that time and set our bit of interest but it makes the WA complicated.
1675  *
1676  * This WA is also required for Gen9 so extracting as a function avoids
1677  * code duplication.
1678  */
1679 static u32 *
1680 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1681 {
1682         /* NB no one else is allowed to scribble over scratch + 256! */
1683         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1684         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1685         *batch++ = i915_scratch_offset(engine->i915) + 256;
1686         *batch++ = 0;
1687
1688         *batch++ = MI_LOAD_REGISTER_IMM(1);
1689         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1690         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1691
1692         batch = gen8_emit_pipe_control(batch,
1693                                        PIPE_CONTROL_CS_STALL |
1694                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1695                                        0);
1696
1697         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1698         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1699         *batch++ = i915_scratch_offset(engine->i915) + 256;
1700         *batch++ = 0;
1701
1702         return batch;
1703 }
1704
1705 /*
1706  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1707  * initialized at the beginning and shared across all contexts but this field
1708  * helps us to have multiple batches at different offsets and select them based
1709  * on a criteria. At the moment this batch always start at the beginning of the page
1710  * and at this point we don't have multiple wa_ctx batch buffers.
1711  *
1712  * The number of WA applied are not known at the beginning; we use this field
1713  * to return the no of DWORDS written.
1714  *
1715  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1716  * so it adds NOOPs as padding to make it cacheline aligned.
1717  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1718  * makes a complete batch buffer.
1719  */
1720 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1721 {
1722         /* WaDisableCtxRestoreArbitration:bdw,chv */
1723         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1724
1725         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1726         if (IS_BROADWELL(engine->i915))
1727                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1728
1729         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1730         /* Actual scratch location is at 128 bytes offset */
1731         batch = gen8_emit_pipe_control(batch,
1732                                        PIPE_CONTROL_FLUSH_L3 |
1733                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1734                                        PIPE_CONTROL_CS_STALL |
1735                                        PIPE_CONTROL_QW_WRITE,
1736                                        i915_scratch_offset(engine->i915) +
1737                                        2 * CACHELINE_BYTES);
1738
1739         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1740
1741         /* Pad to end of cacheline */
1742         while ((unsigned long)batch % CACHELINE_BYTES)
1743                 *batch++ = MI_NOOP;
1744
1745         /*
1746          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1747          * execution depends on the length specified in terms of cache lines
1748          * in the register CTX_RCS_INDIRECT_CTX
1749          */
1750
1751         return batch;
1752 }
1753
1754 struct lri {
1755         i915_reg_t reg;
1756         u32 value;
1757 };
1758
1759 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1760 {
1761         GEM_BUG_ON(!count || count > 63);
1762
1763         *batch++ = MI_LOAD_REGISTER_IMM(count);
1764         do {
1765                 *batch++ = i915_mmio_reg_offset(lri->reg);
1766                 *batch++ = lri->value;
1767         } while (lri++, --count);
1768         *batch++ = MI_NOOP;
1769
1770         return batch;
1771 }
1772
1773 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1774 {
1775         static const struct lri lri[] = {
1776                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1777                 {
1778                         COMMON_SLICE_CHICKEN2,
1779                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1780                                        0),
1781                 },
1782
1783                 /* BSpec: 11391 */
1784                 {
1785                         FF_SLICE_CHICKEN,
1786                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1787                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1788                 },
1789
1790                 /* BSpec: 11299 */
1791                 {
1792                         _3D_CHICKEN3,
1793                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1794                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1795                 }
1796         };
1797
1798         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1799
1800         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1801         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1802
1803         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1804
1805         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1806         if (HAS_POOLED_EU(engine->i915)) {
1807                 /*
1808                  * EU pool configuration is setup along with golden context
1809                  * during context initialization. This value depends on
1810                  * device type (2x6 or 3x6) and needs to be updated based
1811                  * on which subslice is disabled especially for 2x6
1812                  * devices, however it is safe to load default
1813                  * configuration of 3x6 device instead of masking off
1814                  * corresponding bits because HW ignores bits of a disabled
1815                  * subslice and drops down to appropriate config. Please
1816                  * see render_state_setup() in i915_gem_render_state.c for
1817                  * possible configurations, to avoid duplication they are
1818                  * not shown here again.
1819                  */
1820                 *batch++ = GEN9_MEDIA_POOL_STATE;
1821                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1822                 *batch++ = 0x00777000;
1823                 *batch++ = 0;
1824                 *batch++ = 0;
1825                 *batch++ = 0;
1826         }
1827
1828         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1829
1830         /* Pad to end of cacheline */
1831         while ((unsigned long)batch % CACHELINE_BYTES)
1832                 *batch++ = MI_NOOP;
1833
1834         return batch;
1835 }
1836
1837 static u32 *
1838 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1839 {
1840         int i;
1841
1842         /*
1843          * WaPipeControlBefore3DStateSamplePattern: cnl
1844          *
1845          * Ensure the engine is idle prior to programming a
1846          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1847          */
1848         batch = gen8_emit_pipe_control(batch,
1849                                        PIPE_CONTROL_CS_STALL,
1850                                        0);
1851         /*
1852          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1853          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1854          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1855          * confusing. Since gen8_emit_pipe_control() already advances the
1856          * batch by 6 dwords, we advance the other 10 here, completing a
1857          * cacheline. It's not clear if the workaround requires this padding
1858          * before other commands, or if it's just the regular padding we would
1859          * already have for the workaround bb, so leave it here for now.
1860          */
1861         for (i = 0; i < 10; i++)
1862                 *batch++ = MI_NOOP;
1863
1864         /* Pad to end of cacheline */
1865         while ((unsigned long)batch % CACHELINE_BYTES)
1866                 *batch++ = MI_NOOP;
1867
1868         return batch;
1869 }
1870
1871 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1872
1873 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1874 {
1875         struct drm_i915_gem_object *obj;
1876         struct i915_vma *vma;
1877         int err;
1878
1879         obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1880         if (IS_ERR(obj))
1881                 return PTR_ERR(obj);
1882
1883         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1884         if (IS_ERR(vma)) {
1885                 err = PTR_ERR(vma);
1886                 goto err;
1887         }
1888
1889         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1890         if (err)
1891                 goto err;
1892
1893         engine->wa_ctx.vma = vma;
1894         return 0;
1895
1896 err:
1897         i915_gem_object_put(obj);
1898         return err;
1899 }
1900
1901 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1902 {
1903         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1904 }
1905
1906 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1907
1908 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1909 {
1910         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1911         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1912                                             &wa_ctx->per_ctx };
1913         wa_bb_func_t wa_bb_fn[2];
1914         struct page *page;
1915         void *batch, *batch_ptr;
1916         unsigned int i;
1917         int ret;
1918
1919         if (engine->class != RENDER_CLASS)
1920                 return 0;
1921
1922         switch (INTEL_GEN(engine->i915)) {
1923         case 11:
1924                 return 0;
1925         case 10:
1926                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1927                 wa_bb_fn[1] = NULL;
1928                 break;
1929         case 9:
1930                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1931                 wa_bb_fn[1] = NULL;
1932                 break;
1933         case 8:
1934                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1935                 wa_bb_fn[1] = NULL;
1936                 break;
1937         default:
1938                 MISSING_CASE(INTEL_GEN(engine->i915));
1939                 return 0;
1940         }
1941
1942         ret = lrc_setup_wa_ctx(engine);
1943         if (ret) {
1944                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1945                 return ret;
1946         }
1947
1948         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1949         batch = batch_ptr = kmap_atomic(page);
1950
1951         /*
1952          * Emit the two workaround batch buffers, recording the offset from the
1953          * start of the workaround batch buffer object for each and their
1954          * respective sizes.
1955          */
1956         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1957                 wa_bb[i]->offset = batch_ptr - batch;
1958                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1959                                                   CACHELINE_BYTES))) {
1960                         ret = -EINVAL;
1961                         break;
1962                 }
1963                 if (wa_bb_fn[i])
1964                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1965                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1966         }
1967
1968         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1969
1970         kunmap_atomic(batch);
1971         if (ret)
1972                 lrc_destroy_wa_ctx(engine);
1973
1974         return ret;
1975 }
1976
1977 static void enable_execlists(struct intel_engine_cs *engine)
1978 {
1979         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1980
1981         if (INTEL_GEN(engine->i915) >= 11)
1982                 ENGINE_WRITE(engine,
1983                              RING_MODE_GEN7,
1984                              _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1985         else
1986                 ENGINE_WRITE(engine,
1987                              RING_MODE_GEN7,
1988                              _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1989
1990         ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1991
1992         ENGINE_WRITE(engine,
1993                      RING_HWS_PGA,
1994                      i915_ggtt_offset(engine->status_page.vma));
1995         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
1996 }
1997
1998 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1999 {
2000         bool unexpected = false;
2001
2002         if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
2003                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2004                 unexpected = true;
2005         }
2006
2007         return unexpected;
2008 }
2009
2010 static int execlists_resume(struct intel_engine_cs *engine)
2011 {
2012         intel_engine_apply_workarounds(engine);
2013         intel_engine_apply_whitelist(engine);
2014
2015         intel_mocs_init_engine(engine);
2016
2017         intel_engine_reset_breadcrumbs(engine);
2018
2019         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2020                 struct drm_printer p = drm_debug_printer(__func__);
2021
2022                 intel_engine_dump(engine, &p, NULL);
2023         }
2024
2025         enable_execlists(engine);
2026
2027         return 0;
2028 }
2029
2030 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2031 {
2032         struct intel_engine_execlists * const execlists = &engine->execlists;
2033         unsigned long flags;
2034
2035         GEM_TRACE("%s: depth<-%d\n", engine->name,
2036                   atomic_read(&execlists->tasklet.count));
2037
2038         /*
2039          * Prevent request submission to the hardware until we have
2040          * completed the reset in i915_gem_reset_finish(). If a request
2041          * is completed by one engine, it may then queue a request
2042          * to a second via its execlists->tasklet *just* as we are
2043          * calling engine->resume() and also writing the ELSP.
2044          * Turning off the execlists->tasklet until the reset is over
2045          * prevents the race.
2046          */
2047         __tasklet_disable_sync_once(&execlists->tasklet);
2048         GEM_BUG_ON(!reset_in_progress(execlists));
2049
2050         intel_engine_stop_cs(engine);
2051
2052         /* And flush any current direct submission. */
2053         spin_lock_irqsave(&engine->active.lock, flags);
2054         spin_unlock_irqrestore(&engine->active.lock, flags);
2055 }
2056
2057 static bool lrc_regs_ok(const struct i915_request *rq)
2058 {
2059         const struct intel_ring *ring = rq->ring;
2060         const u32 *regs = rq->hw_context->lrc_reg_state;
2061
2062         /* Quick spot check for the common signs of context corruption */
2063
2064         if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2065             (RING_CTL_SIZE(ring->size) | RING_VALID))
2066                 return false;
2067
2068         if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2069                 return false;
2070
2071         return true;
2072 }
2073
2074 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2075 {
2076         const unsigned int reset_value = execlists->csb_size - 1;
2077
2078         /*
2079          * After a reset, the HW starts writing into CSB entry [0]. We
2080          * therefore have to set our HEAD pointer back one entry so that
2081          * the *first* entry we check is entry 0. To complicate this further,
2082          * as we don't wait for the first interrupt after reset, we have to
2083          * fake the HW write to point back to the last entry so that our
2084          * inline comparison of our cached head position against the last HW
2085          * write works even before the first interrupt.
2086          */
2087         execlists->csb_head = reset_value;
2088         WRITE_ONCE(*execlists->csb_write, reset_value);
2089         wmb(); /* Make sure this is visible to HW (paranoia?) */
2090
2091         invalidate_csb_entries(&execlists->csb_status[0],
2092                                &execlists->csb_status[reset_value]);
2093 }
2094
2095 static struct i915_request *active_request(struct i915_request *rq)
2096 {
2097         const struct list_head * const list = &rq->engine->active.requests;
2098         const struct intel_context * const context = rq->hw_context;
2099         struct i915_request *active = NULL;
2100
2101         list_for_each_entry_from_reverse(rq, list, sched.link) {
2102                 if (i915_request_completed(rq))
2103                         break;
2104
2105                 if (rq->hw_context != context)
2106                         break;
2107
2108                 active = rq;
2109         }
2110
2111         return active;
2112 }
2113
2114 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2115 {
2116         struct intel_engine_execlists * const execlists = &engine->execlists;
2117         struct intel_context *ce;
2118         struct i915_request *rq;
2119         u32 *regs;
2120
2121         process_csb(engine); /* drain preemption events */
2122
2123         /* Following the reset, we need to reload the CSB read/write pointers */
2124         reset_csb_pointers(&engine->execlists);
2125
2126         /*
2127          * Save the currently executing context, even if we completed
2128          * its request, it was still running at the time of the
2129          * reset and will have been clobbered.
2130          */
2131         if (!port_isset(execlists->port))
2132                 goto out_clear;
2133
2134         rq = port_request(execlists->port);
2135         ce = rq->hw_context;
2136
2137         /*
2138          * Catch up with any missed context-switch interrupts.
2139          *
2140          * Ideally we would just read the remaining CSB entries now that we
2141          * know the gpu is idle. However, the CSB registers are sometimes^W
2142          * often trashed across a GPU reset! Instead we have to rely on
2143          * guessing the missed context-switch events by looking at what
2144          * requests were completed.
2145          */
2146         execlists_cancel_port_requests(execlists);
2147
2148         rq = active_request(rq);
2149         if (!rq)
2150                 goto out_replay;
2151
2152         /*
2153          * If this request hasn't started yet, e.g. it is waiting on a
2154          * semaphore, we need to avoid skipping the request or else we
2155          * break the signaling chain. However, if the context is corrupt
2156          * the request will not restart and we will be stuck with a wedged
2157          * device. It is quite often the case that if we issue a reset
2158          * while the GPU is loading the context image, that the context
2159          * image becomes corrupt.
2160          *
2161          * Otherwise, if we have not started yet, the request should replay
2162          * perfectly and we do not need to flag the result as being erroneous.
2163          */
2164         if (!i915_request_started(rq) && lrc_regs_ok(rq))
2165                 goto out_replay;
2166
2167         /*
2168          * If the request was innocent, we leave the request in the ELSP
2169          * and will try to replay it on restarting. The context image may
2170          * have been corrupted by the reset, in which case we may have
2171          * to service a new GPU hang, but more likely we can continue on
2172          * without impact.
2173          *
2174          * If the request was guilty, we presume the context is corrupt
2175          * and have to at least restore the RING register in the context
2176          * image back to the expected values to skip over the guilty request.
2177          */
2178         i915_reset_request(rq, stalled);
2179         if (!stalled && lrc_regs_ok(rq))
2180                 goto out_replay;
2181
2182         /*
2183          * We want a simple context + ring to execute the breadcrumb update.
2184          * We cannot rely on the context being intact across the GPU hang,
2185          * so clear it and rebuild just what we need for the breadcrumb.
2186          * All pending requests for this context will be zapped, and any
2187          * future request will be after userspace has had the opportunity
2188          * to recreate its own state.
2189          */
2190         regs = ce->lrc_reg_state;
2191         if (engine->pinned_default_state) {
2192                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2193                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2194                        engine->context_size - PAGE_SIZE);
2195         }
2196         execlists_init_reg_state(regs, ce, engine, ce->ring);
2197
2198 out_replay:
2199         /* Rerun the request; its payload has been neutered (if guilty). */
2200         ce->ring->head =
2201                 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2202         intel_ring_update_space(ce->ring);
2203         __execlists_update_reg_state(ce, engine);
2204
2205         /* Push back any incomplete requests for replay after the reset. */
2206         __unwind_incomplete_requests(engine);
2207
2208 out_clear:
2209         execlists_clear_all_active(execlists);
2210 }
2211
2212 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2213 {
2214         unsigned long flags;
2215
2216         GEM_TRACE("%s\n", engine->name);
2217
2218         spin_lock_irqsave(&engine->active.lock, flags);
2219
2220         __execlists_reset(engine, stalled);
2221
2222         spin_unlock_irqrestore(&engine->active.lock, flags);
2223 }
2224
2225 static void nop_submission_tasklet(unsigned long data)
2226 {
2227         /* The driver is wedged; don't process any more events. */
2228 }
2229
2230 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2231 {
2232         struct intel_engine_execlists * const execlists = &engine->execlists;
2233         struct i915_request *rq, *rn;
2234         struct rb_node *rb;
2235         unsigned long flags;
2236
2237         GEM_TRACE("%s\n", engine->name);
2238
2239         /*
2240          * Before we call engine->cancel_requests(), we should have exclusive
2241          * access to the submission state. This is arranged for us by the
2242          * caller disabling the interrupt generation, the tasklet and other
2243          * threads that may then access the same state, giving us a free hand
2244          * to reset state. However, we still need to let lockdep be aware that
2245          * we know this state may be accessed in hardirq context, so we
2246          * disable the irq around this manipulation and we want to keep
2247          * the spinlock focused on its duties and not accidentally conflate
2248          * coverage to the submission's irq state. (Similarly, although we
2249          * shouldn't need to disable irq around the manipulation of the
2250          * submission's irq state, we also wish to remind ourselves that
2251          * it is irq state.)
2252          */
2253         spin_lock_irqsave(&engine->active.lock, flags);
2254
2255         __execlists_reset(engine, true);
2256
2257         /* Mark all executing requests as skipped. */
2258         list_for_each_entry(rq, &engine->active.requests, sched.link) {
2259                 if (!i915_request_signaled(rq))
2260                         dma_fence_set_error(&rq->fence, -EIO);
2261
2262                 i915_request_mark_complete(rq);
2263         }
2264
2265         /* Flush the queued requests to the timeline list (for retiring). */
2266         while ((rb = rb_first_cached(&execlists->queue))) {
2267                 struct i915_priolist *p = to_priolist(rb);
2268                 int i;
2269
2270                 priolist_for_each_request_consume(rq, rn, p, i) {
2271                         list_del_init(&rq->sched.link);
2272                         __i915_request_submit(rq);
2273                         dma_fence_set_error(&rq->fence, -EIO);
2274                         i915_request_mark_complete(rq);
2275                 }
2276
2277                 rb_erase_cached(&p->node, &execlists->queue);
2278                 i915_priolist_free(p);
2279         }
2280
2281         /* Cancel all attached virtual engines */
2282         while ((rb = rb_first_cached(&execlists->virtual))) {
2283                 struct virtual_engine *ve =
2284                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2285
2286                 rb_erase_cached(rb, &execlists->virtual);
2287                 RB_CLEAR_NODE(rb);
2288
2289                 spin_lock(&ve->base.active.lock);
2290                 if (ve->request) {
2291                         ve->request->engine = engine;
2292                         __i915_request_submit(ve->request);
2293                         dma_fence_set_error(&ve->request->fence, -EIO);
2294                         i915_request_mark_complete(ve->request);
2295                         ve->base.execlists.queue_priority_hint = INT_MIN;
2296                         ve->request = NULL;
2297                 }
2298                 spin_unlock(&ve->base.active.lock);
2299         }
2300
2301         /* Remaining _unready_ requests will be nop'ed when submitted */
2302
2303         execlists->queue_priority_hint = INT_MIN;
2304         execlists->queue = RB_ROOT_CACHED;
2305         GEM_BUG_ON(port_isset(execlists->port));
2306
2307         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2308         execlists->tasklet.func = nop_submission_tasklet;
2309
2310         spin_unlock_irqrestore(&engine->active.lock, flags);
2311 }
2312
2313 static void execlists_reset_finish(struct intel_engine_cs *engine)
2314 {
2315         struct intel_engine_execlists * const execlists = &engine->execlists;
2316
2317         /*
2318          * After a GPU reset, we may have requests to replay. Do so now while
2319          * we still have the forcewake to be sure that the GPU is not allowed
2320          * to sleep before we restart and reload a context.
2321          */
2322         GEM_BUG_ON(!reset_in_progress(execlists));
2323         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2324                 execlists->tasklet.func(execlists->tasklet.data);
2325
2326         if (__tasklet_enable(&execlists->tasklet))
2327                 /* And kick in case we missed a new request submission. */
2328                 tasklet_hi_schedule(&execlists->tasklet);
2329         GEM_TRACE("%s: depth->%d\n", engine->name,
2330                   atomic_read(&execlists->tasklet.count));
2331 }
2332
2333 static int gen8_emit_bb_start(struct i915_request *rq,
2334                               u64 offset, u32 len,
2335                               const unsigned int flags)
2336 {
2337         u32 *cs;
2338
2339         cs = intel_ring_begin(rq, 4);
2340         if (IS_ERR(cs))
2341                 return PTR_ERR(cs);
2342
2343         /*
2344          * WaDisableCtxRestoreArbitration:bdw,chv
2345          *
2346          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2347          * particular all the gen that do not need the w/a at all!), if we
2348          * took care to make sure that on every switch into this context
2349          * (both ordinary and for preemption) that arbitrartion was enabled
2350          * we would be fine.  However, for gen8 there is another w/a that
2351          * requires us to not preempt inside GPGPU execution, so we keep
2352          * arbitration disabled for gen8 batches. Arbitration will be
2353          * re-enabled before we close the request
2354          * (engine->emit_fini_breadcrumb).
2355          */
2356         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2357
2358         /* FIXME(BDW+): Address space and security selectors. */
2359         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2360                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2361         *cs++ = lower_32_bits(offset);
2362         *cs++ = upper_32_bits(offset);
2363
2364         intel_ring_advance(rq, cs);
2365
2366         return 0;
2367 }
2368
2369 static int gen9_emit_bb_start(struct i915_request *rq,
2370                               u64 offset, u32 len,
2371                               const unsigned int flags)
2372 {
2373         u32 *cs;
2374
2375         cs = intel_ring_begin(rq, 6);
2376         if (IS_ERR(cs))
2377                 return PTR_ERR(cs);
2378
2379         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2380
2381         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2382                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2383         *cs++ = lower_32_bits(offset);
2384         *cs++ = upper_32_bits(offset);
2385
2386         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2387         *cs++ = MI_NOOP;
2388
2389         intel_ring_advance(rq, cs);
2390
2391         return 0;
2392 }
2393
2394 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2395 {
2396         ENGINE_WRITE(engine, RING_IMR,
2397                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
2398         ENGINE_POSTING_READ(engine, RING_IMR);
2399 }
2400
2401 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2402 {
2403         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2404 }
2405
2406 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2407 {
2408         u32 cmd, *cs;
2409
2410         cs = intel_ring_begin(request, 4);
2411         if (IS_ERR(cs))
2412                 return PTR_ERR(cs);
2413
2414         cmd = MI_FLUSH_DW + 1;
2415
2416         /* We always require a command barrier so that subsequent
2417          * commands, such as breadcrumb interrupts, are strictly ordered
2418          * wrt the contents of the write cache being flushed to memory
2419          * (and thus being coherent from the CPU).
2420          */
2421         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2422
2423         if (mode & EMIT_INVALIDATE) {
2424                 cmd |= MI_INVALIDATE_TLB;
2425                 if (request->engine->class == VIDEO_DECODE_CLASS)
2426                         cmd |= MI_INVALIDATE_BSD;
2427         }
2428
2429         *cs++ = cmd;
2430         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2431         *cs++ = 0; /* upper addr */
2432         *cs++ = 0; /* value */
2433         intel_ring_advance(request, cs);
2434
2435         return 0;
2436 }
2437
2438 static int gen8_emit_flush_render(struct i915_request *request,
2439                                   u32 mode)
2440 {
2441         struct intel_engine_cs *engine = request->engine;
2442         u32 scratch_addr =
2443                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2444         bool vf_flush_wa = false, dc_flush_wa = false;
2445         u32 *cs, flags = 0;
2446         int len;
2447
2448         flags |= PIPE_CONTROL_CS_STALL;
2449
2450         if (mode & EMIT_FLUSH) {
2451                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2452                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2453                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2454                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2455         }
2456
2457         if (mode & EMIT_INVALIDATE) {
2458                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2459                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2460                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2461                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2462                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2463                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2464                 flags |= PIPE_CONTROL_QW_WRITE;
2465                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2466
2467                 /*
2468                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2469                  * pipe control.
2470                  */
2471                 if (IS_GEN(request->i915, 9))
2472                         vf_flush_wa = true;
2473
2474                 /* WaForGAMHang:kbl */
2475                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2476                         dc_flush_wa = true;
2477         }
2478
2479         len = 6;
2480
2481         if (vf_flush_wa)
2482                 len += 6;
2483
2484         if (dc_flush_wa)
2485                 len += 12;
2486
2487         cs = intel_ring_begin(request, len);
2488         if (IS_ERR(cs))
2489                 return PTR_ERR(cs);
2490
2491         if (vf_flush_wa)
2492                 cs = gen8_emit_pipe_control(cs, 0, 0);
2493
2494         if (dc_flush_wa)
2495                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2496                                             0);
2497
2498         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2499
2500         if (dc_flush_wa)
2501                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2502
2503         intel_ring_advance(request, cs);
2504
2505         return 0;
2506 }
2507
2508 /*
2509  * Reserve space for 2 NOOPs at the end of each request to be
2510  * used as a workaround for not being allowed to do lite
2511  * restore with HEAD==TAIL (WaIdleLiteRestore).
2512  */
2513 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2514 {
2515         /* Ensure there's always at least one preemption point per-request. */
2516         *cs++ = MI_ARB_CHECK;
2517         *cs++ = MI_NOOP;
2518         request->wa_tail = intel_ring_offset(request, cs);
2519
2520         return cs;
2521 }
2522
2523 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2524 {
2525         cs = gen8_emit_ggtt_write(cs,
2526                                   request->fence.seqno,
2527                                   request->timeline->hwsp_offset,
2528                                   0);
2529
2530         *cs++ = MI_USER_INTERRUPT;
2531         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2532
2533         request->tail = intel_ring_offset(request, cs);
2534         assert_ring_tail_valid(request->ring, request->tail);
2535
2536         return gen8_emit_wa_tail(request, cs);
2537 }
2538
2539 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2540 {
2541         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2542         cs = gen8_emit_ggtt_write_rcs(cs,
2543                                       request->fence.seqno,
2544                                       request->timeline->hwsp_offset,
2545                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2546                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2547                                       PIPE_CONTROL_DC_FLUSH_ENABLE);
2548         cs = gen8_emit_pipe_control(cs,
2549                                     PIPE_CONTROL_FLUSH_ENABLE |
2550                                     PIPE_CONTROL_CS_STALL,
2551                                     0);
2552
2553         *cs++ = MI_USER_INTERRUPT;
2554         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2555
2556         request->tail = intel_ring_offset(request, cs);
2557         assert_ring_tail_valid(request->ring, request->tail);
2558
2559         return gen8_emit_wa_tail(request, cs);
2560 }
2561
2562 static int gen8_init_rcs_context(struct i915_request *rq)
2563 {
2564         int ret;
2565
2566         ret = intel_engine_emit_ctx_wa(rq);
2567         if (ret)
2568                 return ret;
2569
2570         ret = intel_rcs_context_init_mocs(rq);
2571         /*
2572          * Failing to program the MOCS is non-fatal.The system will not
2573          * run at peak performance. So generate an error and carry on.
2574          */
2575         if (ret)
2576                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2577
2578         return i915_gem_render_state_emit(rq);
2579 }
2580
2581 static void execlists_park(struct intel_engine_cs *engine)
2582 {
2583         intel_engine_park(engine);
2584 }
2585
2586 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2587 {
2588         engine->submit_request = execlists_submit_request;
2589         engine->cancel_requests = execlists_cancel_requests;
2590         engine->schedule = i915_schedule;
2591         engine->execlists.tasklet.func = execlists_submission_tasklet;
2592
2593         engine->reset.prepare = execlists_reset_prepare;
2594         engine->reset.reset = execlists_reset;
2595         engine->reset.finish = execlists_reset_finish;
2596
2597         engine->park = execlists_park;
2598         engine->unpark = NULL;
2599
2600         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2601         if (!intel_vgpu_active(engine->i915))
2602                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2603         if (engine->preempt_context &&
2604             HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2605                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2606 }
2607
2608 static void execlists_destroy(struct intel_engine_cs *engine)
2609 {
2610         intel_engine_cleanup_common(engine);
2611         lrc_destroy_wa_ctx(engine);
2612         kfree(engine);
2613 }
2614
2615 static void
2616 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2617 {
2618         /* Default vfuncs which can be overriden by each engine. */
2619
2620         engine->destroy = execlists_destroy;
2621         engine->resume = execlists_resume;
2622
2623         engine->reset.prepare = execlists_reset_prepare;
2624         engine->reset.reset = execlists_reset;
2625         engine->reset.finish = execlists_reset_finish;
2626
2627         engine->cops = &execlists_context_ops;
2628         engine->request_alloc = execlists_request_alloc;
2629
2630         engine->emit_flush = gen8_emit_flush;
2631         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2632         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2633
2634         engine->set_default_submission = intel_execlists_set_default_submission;
2635
2636         if (INTEL_GEN(engine->i915) < 11) {
2637                 engine->irq_enable = gen8_logical_ring_enable_irq;
2638                 engine->irq_disable = gen8_logical_ring_disable_irq;
2639         } else {
2640                 /*
2641                  * TODO: On Gen11 interrupt masks need to be clear
2642                  * to allow C6 entry. Keep interrupts enabled at
2643                  * and take the hit of generating extra interrupts
2644                  * until a more refined solution exists.
2645                  */
2646         }
2647         if (IS_GEN(engine->i915, 8))
2648                 engine->emit_bb_start = gen8_emit_bb_start;
2649         else
2650                 engine->emit_bb_start = gen9_emit_bb_start;
2651 }
2652
2653 static inline void
2654 logical_ring_default_irqs(struct intel_engine_cs *engine)
2655 {
2656         unsigned int shift = 0;
2657
2658         if (INTEL_GEN(engine->i915) < 11) {
2659                 const u8 irq_shifts[] = {
2660                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2661                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2662                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2663                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2664                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
2665                 };
2666
2667                 shift = irq_shifts[engine->id];
2668         }
2669
2670         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2671         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2672 }
2673
2674 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2675 {
2676         /* Intentionally left blank. */
2677         engine->buffer = NULL;
2678
2679         tasklet_init(&engine->execlists.tasklet,
2680                      execlists_submission_tasklet, (unsigned long)engine);
2681
2682         logical_ring_default_vfuncs(engine);
2683         logical_ring_default_irqs(engine);
2684
2685         if (engine->class == RENDER_CLASS) {
2686                 engine->init_context = gen8_init_rcs_context;
2687                 engine->emit_flush = gen8_emit_flush_render;
2688                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2689         }
2690
2691         return 0;
2692 }
2693
2694 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2695 {
2696         struct intel_engine_execlists * const execlists = &engine->execlists;
2697         struct drm_i915_private *i915 = engine->i915;
2698         struct intel_uncore *uncore = engine->uncore;
2699         u32 base = engine->mmio_base;
2700         int ret;
2701
2702         ret = intel_engine_init_common(engine);
2703         if (ret)
2704                 return ret;
2705
2706         intel_engine_init_workarounds(engine);
2707         intel_engine_init_whitelist(engine);
2708
2709         if (intel_init_workaround_bb(engine))
2710                 /*
2711                  * We continue even if we fail to initialize WA batch
2712                  * because we only expect rare glitches but nothing
2713                  * critical to prevent us from using GPU
2714                  */
2715                 DRM_ERROR("WA batch buffer initialization failed\n");
2716
2717         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2718                 execlists->submit_reg = uncore->regs +
2719                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2720                 execlists->ctrl_reg = uncore->regs +
2721                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2722         } else {
2723                 execlists->submit_reg = uncore->regs +
2724                         i915_mmio_reg_offset(RING_ELSP(base));
2725         }
2726
2727         execlists->preempt_complete_status = ~0u;
2728         if (engine->preempt_context)
2729                 execlists->preempt_complete_status =
2730                         upper_32_bits(engine->preempt_context->lrc_desc);
2731
2732         execlists->csb_status =
2733                 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2734
2735         execlists->csb_write =
2736                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2737
2738         if (INTEL_GEN(i915) < 11)
2739                 execlists->csb_size = GEN8_CSB_ENTRIES;
2740         else
2741                 execlists->csb_size = GEN11_CSB_ENTRIES;
2742
2743         reset_csb_pointers(execlists);
2744
2745         return 0;
2746 }
2747
2748 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2749 {
2750         u32 indirect_ctx_offset;
2751
2752         switch (INTEL_GEN(engine->i915)) {
2753         default:
2754                 MISSING_CASE(INTEL_GEN(engine->i915));
2755                 /* fall through */
2756         case 11:
2757                 indirect_ctx_offset =
2758                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2759                 break;
2760         case 10:
2761                 indirect_ctx_offset =
2762                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2763                 break;
2764         case 9:
2765                 indirect_ctx_offset =
2766                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2767                 break;
2768         case 8:
2769                 indirect_ctx_offset =
2770                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2771                 break;
2772         }
2773
2774         return indirect_ctx_offset;
2775 }
2776
2777 static void execlists_init_reg_state(u32 *regs,
2778                                      struct intel_context *ce,
2779                                      struct intel_engine_cs *engine,
2780                                      struct intel_ring *ring)
2781 {
2782         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2783         bool rcs = engine->class == RENDER_CLASS;
2784         u32 base = engine->mmio_base;
2785
2786         /*
2787          * A context is actually a big batch buffer with several
2788          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2789          * values we are setting here are only for the first context restore:
2790          * on a subsequent save, the GPU will recreate this batchbuffer with new
2791          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2792          * we are not initializing here).
2793          *
2794          * Must keep consistent with virtual_update_register_offsets().
2795          */
2796         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2797                                  MI_LRI_FORCE_POSTED;
2798
2799         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2800                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2801                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2802         if (INTEL_GEN(engine->i915) < 11) {
2803                 regs[CTX_CONTEXT_CONTROL + 1] |=
2804                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2805                                             CTX_CTRL_RS_CTX_ENABLE);
2806         }
2807         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2808         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2809         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2810         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2811                 RING_CTL_SIZE(ring->size) | RING_VALID);
2812         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2813         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2814         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2815         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2816         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2817         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2818         if (rcs) {
2819                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2820
2821                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2822                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2823                         RING_INDIRECT_CTX_OFFSET(base), 0);
2824                 if (wa_ctx->indirect_ctx.size) {
2825                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2826
2827                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2828                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2829                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2830
2831                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2832                                 intel_lr_indirect_ctx_offset(engine) << 6;
2833                 }
2834
2835                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2836                 if (wa_ctx->per_ctx.size) {
2837                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2838
2839                         regs[CTX_BB_PER_CTX_PTR + 1] =
2840                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2841                 }
2842         }
2843
2844         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2845
2846         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2847         /* PDP values well be assigned later if needed */
2848         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2849         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2850         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2851         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2852         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2853         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2854         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2855         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2856
2857         if (i915_vm_is_4lvl(&ppgtt->vm)) {
2858                 /* 64b PPGTT (48bit canonical)
2859                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2860                  * other PDP Descriptors are ignored.
2861                  */
2862                 ASSIGN_CTX_PML4(ppgtt, regs);
2863         } else {
2864                 ASSIGN_CTX_PDP(ppgtt, regs, 3);
2865                 ASSIGN_CTX_PDP(ppgtt, regs, 2);
2866                 ASSIGN_CTX_PDP(ppgtt, regs, 1);
2867                 ASSIGN_CTX_PDP(ppgtt, regs, 0);
2868         }
2869
2870         if (rcs) {
2871                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2872                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2873
2874                 i915_oa_init_reg_state(engine, ce, regs);
2875         }
2876
2877         regs[CTX_END] = MI_BATCH_BUFFER_END;
2878         if (INTEL_GEN(engine->i915) >= 10)
2879                 regs[CTX_END] |= BIT(0);
2880 }
2881
2882 static int
2883 populate_lr_context(struct intel_context *ce,
2884                     struct drm_i915_gem_object *ctx_obj,
2885                     struct intel_engine_cs *engine,
2886                     struct intel_ring *ring)
2887 {
2888         void *vaddr;
2889         u32 *regs;
2890         int ret;
2891
2892         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2893         if (IS_ERR(vaddr)) {
2894                 ret = PTR_ERR(vaddr);
2895                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2896                 return ret;
2897         }
2898
2899         if (engine->default_state) {
2900                 /*
2901                  * We only want to copy over the template context state;
2902                  * skipping over the headers reserved for GuC communication,
2903                  * leaving those as zero.
2904                  */
2905                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2906                 void *defaults;
2907
2908                 defaults = i915_gem_object_pin_map(engine->default_state,
2909                                                    I915_MAP_WB);
2910                 if (IS_ERR(defaults)) {
2911                         ret = PTR_ERR(defaults);
2912                         goto err_unpin_ctx;
2913                 }
2914
2915                 memcpy(vaddr + start, defaults + start, engine->context_size);
2916                 i915_gem_object_unpin_map(engine->default_state);
2917         }
2918
2919         /* The second page of the context object contains some fields which must
2920          * be set up prior to the first execution. */
2921         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2922         execlists_init_reg_state(regs, ce, engine, ring);
2923         if (!engine->default_state)
2924                 regs[CTX_CONTEXT_CONTROL + 1] |=
2925                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2926         if (ce->gem_context == engine->i915->preempt_context &&
2927             INTEL_GEN(engine->i915) < 11)
2928                 regs[CTX_CONTEXT_CONTROL + 1] |=
2929                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2930                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2931
2932         ret = 0;
2933 err_unpin_ctx:
2934         __i915_gem_object_flush_map(ctx_obj,
2935                                     LRC_HEADER_PAGES * PAGE_SIZE,
2936                                     engine->context_size);
2937         i915_gem_object_unpin_map(ctx_obj);
2938         return ret;
2939 }
2940
2941 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2942 {
2943         if (ctx->timeline)
2944                 return i915_timeline_get(ctx->timeline);
2945         else
2946                 return i915_timeline_create(ctx->i915, NULL);
2947 }
2948
2949 static int execlists_context_deferred_alloc(struct intel_context *ce,
2950                                             struct intel_engine_cs *engine)
2951 {
2952         struct drm_i915_gem_object *ctx_obj;
2953         struct i915_vma *vma;
2954         u32 context_size;
2955         struct intel_ring *ring;
2956         struct i915_timeline *timeline;
2957         int ret;
2958
2959         if (ce->state)
2960                 return 0;
2961
2962         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2963
2964         /*
2965          * Before the actual start of the context image, we insert a few pages
2966          * for our own use and for sharing with the GuC.
2967          */
2968         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2969
2970         ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
2971         if (IS_ERR(ctx_obj))
2972                 return PTR_ERR(ctx_obj);
2973
2974         vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2975         if (IS_ERR(vma)) {
2976                 ret = PTR_ERR(vma);
2977                 goto error_deref_obj;
2978         }
2979
2980         timeline = get_timeline(ce->gem_context);
2981         if (IS_ERR(timeline)) {
2982                 ret = PTR_ERR(timeline);
2983                 goto error_deref_obj;
2984         }
2985
2986         ring = intel_engine_create_ring(engine,
2987                                         timeline,
2988                                         ce->gem_context->ring_size);
2989         i915_timeline_put(timeline);
2990         if (IS_ERR(ring)) {
2991                 ret = PTR_ERR(ring);
2992                 goto error_deref_obj;
2993         }
2994
2995         ret = populate_lr_context(ce, ctx_obj, engine, ring);
2996         if (ret) {
2997                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2998                 goto error_ring_free;
2999         }
3000
3001         ce->ring = ring;
3002         ce->state = vma;
3003
3004         return 0;
3005
3006 error_ring_free:
3007         intel_ring_put(ring);
3008 error_deref_obj:
3009         i915_gem_object_put(ctx_obj);
3010         return ret;
3011 }
3012
3013 static struct list_head *virtual_queue(struct virtual_engine *ve)
3014 {
3015         return &ve->base.execlists.default_priolist.requests[0];
3016 }
3017
3018 static void virtual_context_destroy(struct kref *kref)
3019 {
3020         struct virtual_engine *ve =
3021                 container_of(kref, typeof(*ve), context.ref);
3022         unsigned int n;
3023
3024         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3025         GEM_BUG_ON(ve->request);
3026         GEM_BUG_ON(ve->context.inflight);
3027
3028         for (n = 0; n < ve->num_siblings; n++) {
3029                 struct intel_engine_cs *sibling = ve->siblings[n];
3030                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3031
3032                 if (RB_EMPTY_NODE(node))
3033                         continue;
3034
3035                 spin_lock_irq(&sibling->active.lock);
3036
3037                 /* Detachment is lazily performed in the execlists tasklet */
3038                 if (!RB_EMPTY_NODE(node))
3039                         rb_erase_cached(node, &sibling->execlists.virtual);
3040
3041                 spin_unlock_irq(&sibling->active.lock);
3042         }
3043         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3044
3045         if (ve->context.state)
3046                 __execlists_context_fini(&ve->context);
3047
3048         kfree(ve->bonds);
3049         kfree(ve);
3050 }
3051
3052 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3053 {
3054         int swp;
3055
3056         /*
3057          * Pick a random sibling on starting to help spread the load around.
3058          *
3059          * New contexts are typically created with exactly the same order
3060          * of siblings, and often started in batches. Due to the way we iterate
3061          * the array of sibling when submitting requests, sibling[0] is
3062          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3063          * randomised across the system, we also help spread the load by the
3064          * first engine we inspect being different each time.
3065          *
3066          * NB This does not force us to execute on this engine, it will just
3067          * typically be the first we inspect for submission.
3068          */
3069         swp = prandom_u32_max(ve->num_siblings);
3070         if (!swp)
3071                 return;
3072
3073         swap(ve->siblings[swp], ve->siblings[0]);
3074         virtual_update_register_offsets(ve->context.lrc_reg_state,
3075                                         ve->siblings[0]);
3076 }
3077
3078 static int virtual_context_pin(struct intel_context *ce)
3079 {
3080         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3081         int err;
3082
3083         /* Note: we must use a real engine class for setting up reg state */
3084         err = __execlists_context_pin(ce, ve->siblings[0]);
3085         if (err)
3086                 return err;
3087
3088         virtual_engine_initial_hint(ve);
3089         return 0;
3090 }
3091
3092 static void virtual_context_enter(struct intel_context *ce)
3093 {
3094         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3095         unsigned int n;
3096
3097         for (n = 0; n < ve->num_siblings; n++)
3098                 intel_engine_pm_get(ve->siblings[n]);
3099 }
3100
3101 static void virtual_context_exit(struct intel_context *ce)
3102 {
3103         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3104         unsigned int n;
3105
3106         for (n = 0; n < ve->num_siblings; n++)
3107                 intel_engine_pm_put(ve->siblings[n]);
3108 }
3109
3110 static const struct intel_context_ops virtual_context_ops = {
3111         .pin = virtual_context_pin,
3112         .unpin = execlists_context_unpin,
3113
3114         .enter = virtual_context_enter,
3115         .exit = virtual_context_exit,
3116
3117         .destroy = virtual_context_destroy,
3118 };
3119
3120 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3121 {
3122         struct i915_request *rq;
3123         intel_engine_mask_t mask;
3124
3125         rq = READ_ONCE(ve->request);
3126         if (!rq)
3127                 return 0;
3128
3129         /* The rq is ready for submission; rq->execution_mask is now stable. */
3130         mask = rq->execution_mask;
3131         if (unlikely(!mask)) {
3132                 /* Invalid selection, submit to a random engine in error */
3133                 i915_request_skip(rq, -ENODEV);
3134                 mask = ve->siblings[0]->mask;
3135         }
3136
3137         GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3138                   ve->base.name,
3139                   rq->fence.context, rq->fence.seqno,
3140                   mask, ve->base.execlists.queue_priority_hint);
3141
3142         return mask;
3143 }
3144
3145 static void virtual_submission_tasklet(unsigned long data)
3146 {
3147         struct virtual_engine * const ve = (struct virtual_engine *)data;
3148         const int prio = ve->base.execlists.queue_priority_hint;
3149         intel_engine_mask_t mask;
3150         unsigned int n;
3151
3152         rcu_read_lock();
3153         mask = virtual_submission_mask(ve);
3154         rcu_read_unlock();
3155         if (unlikely(!mask))
3156                 return;
3157
3158         local_irq_disable();
3159         for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3160                 struct intel_engine_cs *sibling = ve->siblings[n];
3161                 struct ve_node * const node = &ve->nodes[sibling->id];
3162                 struct rb_node **parent, *rb;
3163                 bool first;
3164
3165                 if (unlikely(!(mask & sibling->mask))) {
3166                         if (!RB_EMPTY_NODE(&node->rb)) {
3167                                 spin_lock(&sibling->active.lock);
3168                                 rb_erase_cached(&node->rb,
3169                                                 &sibling->execlists.virtual);
3170                                 RB_CLEAR_NODE(&node->rb);
3171                                 spin_unlock(&sibling->active.lock);
3172                         }
3173                         continue;
3174                 }
3175
3176                 spin_lock(&sibling->active.lock);
3177
3178                 if (!RB_EMPTY_NODE(&node->rb)) {
3179                         /*
3180                          * Cheat and avoid rebalancing the tree if we can
3181                          * reuse this node in situ.
3182                          */
3183                         first = rb_first_cached(&sibling->execlists.virtual) ==
3184                                 &node->rb;
3185                         if (prio == node->prio || (prio > node->prio && first))
3186                                 goto submit_engine;
3187
3188                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3189                 }
3190
3191                 rb = NULL;
3192                 first = true;
3193                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3194                 while (*parent) {
3195                         struct ve_node *other;
3196
3197                         rb = *parent;
3198                         other = rb_entry(rb, typeof(*other), rb);
3199                         if (prio > other->prio) {
3200                                 parent = &rb->rb_left;
3201                         } else {
3202                                 parent = &rb->rb_right;
3203                                 first = false;
3204                         }
3205                 }
3206
3207                 rb_link_node(&node->rb, rb, parent);
3208                 rb_insert_color_cached(&node->rb,
3209                                        &sibling->execlists.virtual,
3210                                        first);
3211
3212 submit_engine:
3213                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3214                 node->prio = prio;
3215                 if (first && prio > sibling->execlists.queue_priority_hint) {
3216                         sibling->execlists.queue_priority_hint = prio;
3217                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3218                 }
3219
3220                 spin_unlock(&sibling->active.lock);
3221         }
3222         local_irq_enable();
3223 }
3224
3225 static void virtual_submit_request(struct i915_request *rq)
3226 {
3227         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3228
3229         GEM_TRACE("%s: rq=%llx:%lld\n",
3230                   ve->base.name,
3231                   rq->fence.context,
3232                   rq->fence.seqno);
3233
3234         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3235
3236         GEM_BUG_ON(ve->request);
3237         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3238
3239         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3240         WRITE_ONCE(ve->request, rq);
3241
3242         list_move_tail(&rq->sched.link, virtual_queue(ve));
3243
3244         tasklet_schedule(&ve->base.execlists.tasklet);
3245 }
3246
3247 static struct ve_bond *
3248 virtual_find_bond(struct virtual_engine *ve,
3249                   const struct intel_engine_cs *master)
3250 {
3251         int i;
3252
3253         for (i = 0; i < ve->num_bonds; i++) {
3254                 if (ve->bonds[i].master == master)
3255                         return &ve->bonds[i];
3256         }
3257
3258         return NULL;
3259 }
3260
3261 static void
3262 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3263 {
3264         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3265         struct ve_bond *bond;
3266
3267         bond = virtual_find_bond(ve, to_request(signal)->engine);
3268         if (bond) {
3269                 intel_engine_mask_t old, new, cmp;
3270
3271                 cmp = READ_ONCE(rq->execution_mask);
3272                 do {
3273                         old = cmp;
3274                         new = cmp & bond->sibling_mask;
3275                 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3276         }
3277 }
3278
3279 struct intel_context *
3280 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3281                                struct intel_engine_cs **siblings,
3282                                unsigned int count)
3283 {
3284         struct virtual_engine *ve;
3285         unsigned int n;
3286         int err;
3287
3288         if (count == 0)
3289                 return ERR_PTR(-EINVAL);
3290
3291         if (count == 1)
3292                 return intel_context_create(ctx, siblings[0]);
3293
3294         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3295         if (!ve)
3296                 return ERR_PTR(-ENOMEM);
3297
3298         ve->base.i915 = ctx->i915;
3299         ve->base.id = -1;
3300         ve->base.class = OTHER_CLASS;
3301         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3302         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3303         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3304
3305         /*
3306          * The decision on whether to submit a request using semaphores
3307          * depends on the saturated state of the engine. We only compute
3308          * this during HW submission of the request, and we need for this
3309          * state to be globally applied to all requests being submitted
3310          * to this engine. Virtual engines encompass more than one physical
3311          * engine and so we cannot accurately tell in advance if one of those
3312          * engines is already saturated and so cannot afford to use a semaphore
3313          * and be pessimized in priority for doing so -- if we are the only
3314          * context using semaphores after all other clients have stopped, we
3315          * will be starved on the saturated system. Such a global switch for
3316          * semaphores is less than ideal, but alas is the current compromise.
3317          */
3318         ve->base.saturated = ALL_ENGINES;
3319
3320         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3321
3322         intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3323
3324         intel_engine_init_execlists(&ve->base);
3325
3326         ve->base.cops = &virtual_context_ops;
3327         ve->base.request_alloc = execlists_request_alloc;
3328
3329         ve->base.schedule = i915_schedule;
3330         ve->base.submit_request = virtual_submit_request;
3331         ve->base.bond_execute = virtual_bond_execute;
3332
3333         INIT_LIST_HEAD(virtual_queue(ve));
3334         ve->base.execlists.queue_priority_hint = INT_MIN;
3335         tasklet_init(&ve->base.execlists.tasklet,
3336                      virtual_submission_tasklet,
3337                      (unsigned long)ve);
3338
3339         intel_context_init(&ve->context, ctx, &ve->base);
3340
3341         for (n = 0; n < count; n++) {
3342                 struct intel_engine_cs *sibling = siblings[n];
3343
3344                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3345                 if (sibling->mask & ve->base.mask) {
3346                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3347                                   sibling->name);
3348                         err = -EINVAL;
3349                         goto err_put;
3350                 }
3351
3352                 /*
3353                  * The virtual engine implementation is tightly coupled to
3354                  * the execlists backend -- we push out request directly
3355                  * into a tree inside each physical engine. We could support
3356                  * layering if we handle cloning of the requests and
3357                  * submitting a copy into each backend.
3358                  */
3359                 if (sibling->execlists.tasklet.func !=
3360                     execlists_submission_tasklet) {
3361                         err = -ENODEV;
3362                         goto err_put;
3363                 }
3364
3365                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3366                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3367
3368                 ve->siblings[ve->num_siblings++] = sibling;
3369                 ve->base.mask |= sibling->mask;
3370
3371                 /*
3372                  * All physical engines must be compatible for their emission
3373                  * functions (as we build the instructions during request
3374                  * construction and do not alter them before submission
3375                  * on the physical engine). We use the engine class as a guide
3376                  * here, although that could be refined.
3377                  */
3378                 if (ve->base.class != OTHER_CLASS) {
3379                         if (ve->base.class != sibling->class) {
3380                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3381                                           sibling->class, ve->base.class);
3382                                 err = -EINVAL;
3383                                 goto err_put;
3384                         }
3385                         continue;
3386                 }
3387
3388                 ve->base.class = sibling->class;
3389                 ve->base.uabi_class = sibling->uabi_class;
3390                 snprintf(ve->base.name, sizeof(ve->base.name),
3391                          "v%dx%d", ve->base.class, count);
3392                 ve->base.context_size = sibling->context_size;
3393
3394                 ve->base.emit_bb_start = sibling->emit_bb_start;
3395                 ve->base.emit_flush = sibling->emit_flush;
3396                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3397                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3398                 ve->base.emit_fini_breadcrumb_dw =
3399                         sibling->emit_fini_breadcrumb_dw;
3400         }
3401
3402         return &ve->context;
3403
3404 err_put:
3405         intel_context_put(&ve->context);
3406         return ERR_PTR(err);
3407 }
3408
3409 struct intel_context *
3410 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3411                               struct intel_engine_cs *src)
3412 {
3413         struct virtual_engine *se = to_virtual_engine(src);
3414         struct intel_context *dst;
3415
3416         dst = intel_execlists_create_virtual(ctx,
3417                                              se->siblings,
3418                                              se->num_siblings);
3419         if (IS_ERR(dst))
3420                 return dst;
3421
3422         if (se->num_bonds) {
3423                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3424
3425                 de->bonds = kmemdup(se->bonds,
3426                                     sizeof(*se->bonds) * se->num_bonds,
3427                                     GFP_KERNEL);
3428                 if (!de->bonds) {
3429                         intel_context_put(dst);
3430                         return ERR_PTR(-ENOMEM);
3431                 }
3432
3433                 de->num_bonds = se->num_bonds;
3434         }
3435
3436         return dst;
3437 }
3438
3439 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3440                                      const struct intel_engine_cs *master,
3441                                      const struct intel_engine_cs *sibling)
3442 {
3443         struct virtual_engine *ve = to_virtual_engine(engine);
3444         struct ve_bond *bond;
3445         int n;
3446
3447         /* Sanity check the sibling is part of the virtual engine */
3448         for (n = 0; n < ve->num_siblings; n++)
3449                 if (sibling == ve->siblings[n])
3450                         break;
3451         if (n == ve->num_siblings)
3452                 return -EINVAL;
3453
3454         bond = virtual_find_bond(ve, master);
3455         if (bond) {
3456                 bond->sibling_mask |= sibling->mask;
3457                 return 0;
3458         }
3459
3460         bond = krealloc(ve->bonds,
3461                         sizeof(*bond) * (ve->num_bonds + 1),
3462                         GFP_KERNEL);
3463         if (!bond)
3464                 return -ENOMEM;
3465
3466         bond[ve->num_bonds].master = master;
3467         bond[ve->num_bonds].sibling_mask = sibling->mask;
3468
3469         ve->bonds = bond;
3470         ve->num_bonds++;
3471
3472         return 0;
3473 }
3474
3475 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3476                                    struct drm_printer *m,
3477                                    void (*show_request)(struct drm_printer *m,
3478                                                         struct i915_request *rq,
3479                                                         const char *prefix),
3480                                    unsigned int max)
3481 {
3482         const struct intel_engine_execlists *execlists = &engine->execlists;
3483         struct i915_request *rq, *last;
3484         unsigned long flags;
3485         unsigned int count;
3486         struct rb_node *rb;
3487
3488         spin_lock_irqsave(&engine->active.lock, flags);
3489
3490         last = NULL;
3491         count = 0;
3492         list_for_each_entry(rq, &engine->active.requests, sched.link) {
3493                 if (count++ < max - 1)
3494                         show_request(m, rq, "\t\tE ");
3495                 else
3496                         last = rq;
3497         }
3498         if (last) {
3499                 if (count > max) {
3500                         drm_printf(m,
3501                                    "\t\t...skipping %d executing requests...\n",
3502                                    count - max);
3503                 }
3504                 show_request(m, last, "\t\tE ");
3505         }
3506
3507         last = NULL;
3508         count = 0;
3509         if (execlists->queue_priority_hint != INT_MIN)
3510                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3511                            execlists->queue_priority_hint);
3512         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3513                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3514                 int i;
3515
3516                 priolist_for_each_request(rq, p, i) {
3517                         if (count++ < max - 1)
3518                                 show_request(m, rq, "\t\tQ ");
3519                         else
3520                                 last = rq;
3521                 }
3522         }
3523         if (last) {
3524                 if (count > max) {
3525                         drm_printf(m,
3526                                    "\t\t...skipping %d queued requests...\n",
3527                                    count - max);
3528                 }
3529                 show_request(m, last, "\t\tQ ");
3530         }
3531
3532         last = NULL;
3533         count = 0;
3534         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3535                 struct virtual_engine *ve =
3536                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3537                 struct i915_request *rq = READ_ONCE(ve->request);
3538
3539                 if (rq) {
3540                         if (count++ < max - 1)
3541                                 show_request(m, rq, "\t\tV ");
3542                         else
3543                                 last = rq;
3544                 }
3545         }
3546         if (last) {
3547                 if (count > max) {
3548                         drm_printf(m,
3549                                    "\t\t...skipping %d virtual requests...\n",
3550                                    count - max);
3551                 }
3552                 show_request(m, last, "\t\tV ");
3553         }
3554
3555         spin_unlock_irqrestore(&engine->active.lock, flags);
3556 }
3557
3558 void intel_lr_context_reset(struct intel_engine_cs *engine,
3559                             struct intel_context *ce,
3560                             u32 head,
3561                             bool scrub)
3562 {
3563         /*
3564          * We want a simple context + ring to execute the breadcrumb update.
3565          * We cannot rely on the context being intact across the GPU hang,
3566          * so clear it and rebuild just what we need for the breadcrumb.
3567          * All pending requests for this context will be zapped, and any
3568          * future request will be after userspace has had the opportunity
3569          * to recreate its own state.
3570          */
3571         if (scrub) {
3572                 u32 *regs = ce->lrc_reg_state;
3573
3574                 if (engine->pinned_default_state) {
3575                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
3576                                engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3577                                engine->context_size - PAGE_SIZE);
3578                 }
3579                 execlists_init_reg_state(regs, ce, engine, ce->ring);
3580         }
3581
3582         /* Rerun the request; its payload has been neutered (if guilty). */
3583         ce->ring->head = head;
3584         intel_ring_update_space(ce->ring);
3585
3586         __execlists_update_reg_state(ce, engine);
3587 }
3588
3589 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3590 #include "selftest_lrc.c"
3591 #endif