drm/i915: Only recover active engines
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include "gem/i915_gem_context.h"
137
138 #include "i915_drv.h"
139 #include "i915_gem_render_state.h"
140 #include "i915_vgpu.h"
141 #include "intel_engine_pm.h"
142 #include "intel_lrc_reg.h"
143 #include "intel_mocs.h"
144 #include "intel_reset.h"
145 #include "intel_workarounds.h"
146
147 #define RING_EXECLIST_QFULL             (1 << 0x2)
148 #define RING_EXECLIST1_VALID            (1 << 0x3)
149 #define RING_EXECLIST0_VALID            (1 << 0x4)
150 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
151 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
152 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
153
154 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
155 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
156 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
157 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
158 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
159 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
160
161 #define GEN8_CTX_STATUS_COMPLETED_MASK \
162          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
163
164 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
165 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
166 #define WA_TAIL_DWORDS 2
167 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
168
169 struct virtual_engine {
170         struct intel_engine_cs base;
171         struct intel_context context;
172
173         /*
174          * We allow only a single request through the virtual engine at a time
175          * (each request in the timeline waits for the completion fence of
176          * the previous before being submitted). By restricting ourselves to
177          * only submitting a single request, each request is placed on to a
178          * physical to maximise load spreading (by virtue of the late greedy
179          * scheduling -- each real engine takes the next available request
180          * upon idling).
181          */
182         struct i915_request *request;
183
184         /*
185          * We keep a rbtree of available virtual engines inside each physical
186          * engine, sorted by priority. Here we preallocate the nodes we need
187          * for the virtual engine, indexed by physical_engine->id.
188          */
189         struct ve_node {
190                 struct rb_node rb;
191                 int prio;
192         } nodes[I915_NUM_ENGINES];
193
194         /*
195          * Keep track of bonded pairs -- restrictions upon on our selection
196          * of physical engines any particular request may be submitted to.
197          * If we receive a submit-fence from a master engine, we will only
198          * use one of sibling_mask physical engines.
199          */
200         struct ve_bond {
201                 const struct intel_engine_cs *master;
202                 intel_engine_mask_t sibling_mask;
203         } *bonds;
204         unsigned int num_bonds;
205
206         /* And finally, which physical engines this virtual engine maps onto. */
207         unsigned int num_siblings;
208         struct intel_engine_cs *siblings[0];
209 };
210
211 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
212 {
213         GEM_BUG_ON(!intel_engine_is_virtual(engine));
214         return container_of(engine, struct virtual_engine, base);
215 }
216
217 static int execlists_context_deferred_alloc(struct intel_context *ce,
218                                             struct intel_engine_cs *engine);
219 static void execlists_init_reg_state(u32 *reg_state,
220                                      struct intel_context *ce,
221                                      struct intel_engine_cs *engine,
222                                      struct intel_ring *ring);
223
224 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
225 {
226         return rb_entry(rb, struct i915_priolist, node);
227 }
228
229 static inline int rq_prio(const struct i915_request *rq)
230 {
231         return rq->sched.attr.priority;
232 }
233
234 static int effective_prio(const struct i915_request *rq)
235 {
236         int prio = rq_prio(rq);
237
238         /*
239          * On unwinding the active request, we give it a priority bump
240          * if it has completed waiting on any semaphore. If we know that
241          * the request has already started, we can prevent an unwanted
242          * preempt-to-idle cycle by taking that into account now.
243          */
244         if (__i915_request_has_started(rq))
245                 prio |= I915_PRIORITY_NOSEMAPHORE;
246
247         /* Restrict mere WAIT boosts from triggering preemption */
248         return prio | __NO_PREEMPTION;
249 }
250
251 static int queue_prio(const struct intel_engine_execlists *execlists)
252 {
253         struct i915_priolist *p;
254         struct rb_node *rb;
255
256         rb = rb_first_cached(&execlists->queue);
257         if (!rb)
258                 return INT_MIN;
259
260         /*
261          * As the priolist[] are inverted, with the highest priority in [0],
262          * we have to flip the index value to become priority.
263          */
264         p = to_priolist(rb);
265         return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
266 }
267
268 static inline bool need_preempt(const struct intel_engine_cs *engine,
269                                 const struct i915_request *rq,
270                                 struct rb_node *rb)
271 {
272         int last_prio;
273
274         if (!engine->preempt_context)
275                 return false;
276
277         if (i915_request_completed(rq))
278                 return false;
279
280         /*
281          * Check if the current priority hint merits a preemption attempt.
282          *
283          * We record the highest value priority we saw during rescheduling
284          * prior to this dequeue, therefore we know that if it is strictly
285          * less than the current tail of ESLP[0], we do not need to force
286          * a preempt-to-idle cycle.
287          *
288          * However, the priority hint is a mere hint that we may need to
289          * preempt. If that hint is stale or we may be trying to preempt
290          * ourselves, ignore the request.
291          */
292         last_prio = effective_prio(rq);
293         if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
294                                          last_prio))
295                 return false;
296
297         /*
298          * Check against the first request in ELSP[1], it will, thanks to the
299          * power of PI, be the highest priority of that context.
300          */
301         if (!list_is_last(&rq->sched.link, &engine->active.requests) &&
302             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
303                 return true;
304
305         if (rb) {
306                 struct virtual_engine *ve =
307                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
308                 bool preempt = false;
309
310                 if (engine == ve->siblings[0]) { /* only preempt one sibling */
311                         struct i915_request *next;
312
313                         rcu_read_lock();
314                         next = READ_ONCE(ve->request);
315                         if (next)
316                                 preempt = rq_prio(next) > last_prio;
317                         rcu_read_unlock();
318                 }
319
320                 if (preempt)
321                         return preempt;
322         }
323
324         /*
325          * If the inflight context did not trigger the preemption, then maybe
326          * it was the set of queued requests? Pick the highest priority in
327          * the queue (the first active priolist) and see if it deserves to be
328          * running instead of ELSP[0].
329          *
330          * The highest priority request in the queue can not be either
331          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
332          * context, it's priority would not exceed ELSP[0] aka last_prio.
333          */
334         return queue_prio(&engine->execlists) > last_prio;
335 }
336
337 __maybe_unused static inline bool
338 assert_priority_queue(const struct i915_request *prev,
339                       const struct i915_request *next)
340 {
341         const struct intel_engine_execlists *execlists =
342                 &prev->engine->execlists;
343
344         /*
345          * Without preemption, the prev may refer to the still active element
346          * which we refuse to let go.
347          *
348          * Even with preemption, there are times when we think it is better not
349          * to preempt and leave an ostensibly lower priority request in flight.
350          */
351         if (port_request(execlists->port) == prev)
352                 return true;
353
354         return rq_prio(prev) >= rq_prio(next);
355 }
356
357 /*
358  * The context descriptor encodes various attributes of a context,
359  * including its GTT address and some flags. Because it's fairly
360  * expensive to calculate, we'll just do it once and cache the result,
361  * which remains valid until the context is unpinned.
362  *
363  * This is what a descriptor looks like, from LSB to MSB::
364  *
365  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
366  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
367  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
368  *      bits 53-54:    mbz, reserved for use by hardware
369  *      bits 55-63:    group ID, currently unused and set to 0
370  *
371  * Starting from Gen11, the upper dword of the descriptor has a new format:
372  *
373  *      bits 32-36:    reserved
374  *      bits 37-47:    SW context ID
375  *      bits 48:53:    engine instance
376  *      bit 54:        mbz, reserved for use by hardware
377  *      bits 55-60:    SW counter
378  *      bits 61-63:    engine class
379  *
380  * engine info, SW context ID and SW counter need to form a unique number
381  * (Context ID) per lrc.
382  */
383 static u64
384 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
385 {
386         struct i915_gem_context *ctx = ce->gem_context;
387         u64 desc;
388
389         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
390         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
391
392         desc = ctx->desc_template;                              /* bits  0-11 */
393         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
394
395         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
396                                                                 /* bits 12-31 */
397         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
398
399         /*
400          * The following 32bits are copied into the OA reports (dword 2).
401          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
402          * anything below.
403          */
404         if (INTEL_GEN(engine->i915) >= 11) {
405                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
406                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
407                                                                 /* bits 37-47 */
408
409                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
410                                                                 /* bits 48-53 */
411
412                 /* TODO: decide what to do with SW counter (bits 55-60) */
413
414                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
415                                                                 /* bits 61-63 */
416         } else {
417                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
418                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
419         }
420
421         return desc;
422 }
423
424 static void unwind_wa_tail(struct i915_request *rq)
425 {
426         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
427         assert_ring_tail_valid(rq->ring, rq->tail);
428 }
429
430 static struct i915_request *
431 __unwind_incomplete_requests(struct intel_engine_cs *engine)
432 {
433         struct i915_request *rq, *rn, *active = NULL;
434         struct list_head *uninitialized_var(pl);
435         int prio = I915_PRIORITY_INVALID;
436
437         lockdep_assert_held(&engine->active.lock);
438
439         list_for_each_entry_safe_reverse(rq, rn,
440                                          &engine->active.requests,
441                                          sched.link) {
442                 struct intel_engine_cs *owner;
443
444                 if (i915_request_completed(rq))
445                         break;
446
447                 __i915_request_unsubmit(rq);
448                 unwind_wa_tail(rq);
449
450                 GEM_BUG_ON(rq->hw_context->inflight);
451
452                 /*
453                  * Push the request back into the queue for later resubmission.
454                  * If this request is not native to this physical engine (i.e.
455                  * it came from a virtual source), push it back onto the virtual
456                  * engine so that it can be moved across onto another physical
457                  * engine as load dictates.
458                  */
459                 owner = rq->hw_context->engine;
460                 if (likely(owner == engine)) {
461                         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
462                         if (rq_prio(rq) != prio) {
463                                 prio = rq_prio(rq);
464                                 pl = i915_sched_lookup_priolist(engine, prio);
465                         }
466                         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
467
468                         list_move(&rq->sched.link, pl);
469                         active = rq;
470                 } else {
471                         rq->engine = owner;
472                         owner->submit_request(rq);
473                         active = NULL;
474                 }
475         }
476
477         return active;
478 }
479
480 struct i915_request *
481 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
482 {
483         struct intel_engine_cs *engine =
484                 container_of(execlists, typeof(*engine), execlists);
485
486         return __unwind_incomplete_requests(engine);
487 }
488
489 static inline void
490 execlists_context_status_change(struct i915_request *rq, unsigned long status)
491 {
492         /*
493          * Only used when GVT-g is enabled now. When GVT-g is disabled,
494          * The compiler should eliminate this function as dead-code.
495          */
496         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
497                 return;
498
499         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
500                                    status, rq);
501 }
502
503 inline void
504 execlists_user_begin(struct intel_engine_execlists *execlists,
505                      const struct execlist_port *port)
506 {
507         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
508 }
509
510 inline void
511 execlists_user_end(struct intel_engine_execlists *execlists)
512 {
513         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
514 }
515
516 static inline void
517 execlists_context_schedule_in(struct i915_request *rq)
518 {
519         GEM_BUG_ON(rq->hw_context->inflight);
520
521         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
522         intel_engine_context_in(rq->engine);
523         rq->hw_context->inflight = rq->engine;
524 }
525
526 static void kick_siblings(struct i915_request *rq)
527 {
528         struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
529         struct i915_request *next = READ_ONCE(ve->request);
530
531         if (next && next->execution_mask & ~rq->execution_mask)
532                 tasklet_schedule(&ve->base.execlists.tasklet);
533 }
534
535 static inline void
536 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
537 {
538         rq->hw_context->inflight = NULL;
539         intel_engine_context_out(rq->engine);
540         execlists_context_status_change(rq, status);
541         trace_i915_request_out(rq);
542
543         /*
544          * If this is part of a virtual engine, its next request may have
545          * been blocked waiting for access to the active context. We have
546          * to kick all the siblings again in case we need to switch (e.g.
547          * the next request is not runnable on this engine). Hopefully,
548          * we will already have submitted the next request before the
549          * tasklet runs and do not need to rebuild each virtual tree
550          * and kick everyone again.
551          */
552         if (rq->engine != rq->hw_context->engine)
553                 kick_siblings(rq);
554 }
555
556 static u64 execlists_update_context(struct i915_request *rq)
557 {
558         struct intel_context *ce = rq->hw_context;
559
560         ce->lrc_reg_state[CTX_RING_TAIL + 1] =
561                 intel_ring_set_tail(rq->ring, rq->tail);
562
563         /*
564          * Make sure the context image is complete before we submit it to HW.
565          *
566          * Ostensibly, writes (including the WCB) should be flushed prior to
567          * an uncached write such as our mmio register access, the empirical
568          * evidence (esp. on Braswell) suggests that the WC write into memory
569          * may not be visible to the HW prior to the completion of the UC
570          * register write and that we may begin execution from the context
571          * before its image is complete leading to invalid PD chasing.
572          *
573          * Furthermore, Braswell, at least, wants a full mb to be sure that
574          * the writes are coherent in memory (visible to the GPU) prior to
575          * execution, and not just visible to other CPUs (as is the result of
576          * wmb).
577          */
578         mb();
579         return ce->lrc_desc;
580 }
581
582 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
583 {
584         if (execlists->ctrl_reg) {
585                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
586                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
587         } else {
588                 writel(upper_32_bits(desc), execlists->submit_reg);
589                 writel(lower_32_bits(desc), execlists->submit_reg);
590         }
591 }
592
593 static void execlists_submit_ports(struct intel_engine_cs *engine)
594 {
595         struct intel_engine_execlists *execlists = &engine->execlists;
596         struct execlist_port *port = execlists->port;
597         unsigned int n;
598
599         /*
600          * We can skip acquiring intel_runtime_pm_get() here as it was taken
601          * on our behalf by the request (see i915_gem_mark_busy()) and it will
602          * not be relinquished until the device is idle (see
603          * i915_gem_idle_work_handler()). As a precaution, we make sure
604          * that all ELSP are drained i.e. we have processed the CSB,
605          * before allowing ourselves to idle and calling intel_runtime_pm_put().
606          */
607         GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
608
609         /*
610          * ELSQ note: the submit queue is not cleared after being submitted
611          * to the HW so we need to make sure we always clean it up. This is
612          * currently ensured by the fact that we always write the same number
613          * of elsq entries, keep this in mind before changing the loop below.
614          */
615         for (n = execlists_num_ports(execlists); n--; ) {
616                 struct i915_request *rq;
617                 unsigned int count;
618                 u64 desc;
619
620                 rq = port_unpack(&port[n], &count);
621                 if (rq) {
622                         GEM_BUG_ON(count > !n);
623                         if (!count++)
624                                 execlists_context_schedule_in(rq);
625                         port_set(&port[n], port_pack(rq, count));
626                         desc = execlists_update_context(rq);
627                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
628
629                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
630                                   engine->name, n,
631                                   port[n].context_id, count,
632                                   rq->fence.context, rq->fence.seqno,
633                                   hwsp_seqno(rq),
634                                   rq_prio(rq));
635                 } else {
636                         GEM_BUG_ON(!n);
637                         desc = 0;
638                 }
639
640                 write_desc(execlists, desc, n);
641         }
642
643         /* we need to manually load the submit queue */
644         if (execlists->ctrl_reg)
645                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
646
647         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
648 }
649
650 static bool ctx_single_port_submission(const struct intel_context *ce)
651 {
652         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
653                 i915_gem_context_force_single_submission(ce->gem_context));
654 }
655
656 static bool can_merge_ctx(const struct intel_context *prev,
657                           const struct intel_context *next)
658 {
659         if (prev != next)
660                 return false;
661
662         if (ctx_single_port_submission(prev))
663                 return false;
664
665         return true;
666 }
667
668 static bool can_merge_rq(const struct i915_request *prev,
669                          const struct i915_request *next)
670 {
671         GEM_BUG_ON(!assert_priority_queue(prev, next));
672
673         if (!can_merge_ctx(prev->hw_context, next->hw_context))
674                 return false;
675
676         return true;
677 }
678
679 static void port_assign(struct execlist_port *port, struct i915_request *rq)
680 {
681         GEM_BUG_ON(rq == port_request(port));
682
683         if (port_isset(port))
684                 i915_request_put(port_request(port));
685
686         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
687 }
688
689 static void inject_preempt_context(struct intel_engine_cs *engine)
690 {
691         struct intel_engine_execlists *execlists = &engine->execlists;
692         struct intel_context *ce = engine->preempt_context;
693         unsigned int n;
694
695         GEM_BUG_ON(execlists->preempt_complete_status !=
696                    upper_32_bits(ce->lrc_desc));
697
698         /*
699          * Switch to our empty preempt context so
700          * the state of the GPU is known (idle).
701          */
702         GEM_TRACE("%s\n", engine->name);
703         for (n = execlists_num_ports(execlists); --n; )
704                 write_desc(execlists, 0, n);
705
706         write_desc(execlists, ce->lrc_desc, n);
707
708         /* we need to manually load the submit queue */
709         if (execlists->ctrl_reg)
710                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
711
712         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
713         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
714
715         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
716 }
717
718 static void complete_preempt_context(struct intel_engine_execlists *execlists)
719 {
720         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
721
722         if (inject_preempt_hang(execlists))
723                 return;
724
725         execlists_cancel_port_requests(execlists);
726         __unwind_incomplete_requests(container_of(execlists,
727                                                   struct intel_engine_cs,
728                                                   execlists));
729 }
730
731 static void virtual_update_register_offsets(u32 *regs,
732                                             struct intel_engine_cs *engine)
733 {
734         u32 base = engine->mmio_base;
735
736         /* Must match execlists_init_reg_state()! */
737
738         regs[CTX_CONTEXT_CONTROL] =
739                 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
740         regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
741         regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
742         regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
743         regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
744
745         regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
746         regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
747         regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
748         regs[CTX_SECOND_BB_HEAD_U] =
749                 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
750         regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
751         regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
752
753         regs[CTX_CTX_TIMESTAMP] =
754                 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
755         regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
756         regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
757         regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
758         regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
759         regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
760         regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
761         regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
762         regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
763
764         if (engine->class == RENDER_CLASS) {
765                 regs[CTX_RCS_INDIRECT_CTX] =
766                         i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
767                 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
768                         i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
769                 regs[CTX_BB_PER_CTX_PTR] =
770                         i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
771
772                 regs[CTX_R_PWR_CLK_STATE] =
773                         i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
774         }
775 }
776
777 static bool virtual_matches(const struct virtual_engine *ve,
778                             const struct i915_request *rq,
779                             const struct intel_engine_cs *engine)
780 {
781         const struct intel_engine_cs *inflight;
782
783         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
784                 return false;
785
786         /*
787          * We track when the HW has completed saving the context image
788          * (i.e. when we have seen the final CS event switching out of
789          * the context) and must not overwrite the context image before
790          * then. This restricts us to only using the active engine
791          * while the previous virtualized request is inflight (so
792          * we reuse the register offsets). This is a very small
793          * hystersis on the greedy seelction algorithm.
794          */
795         inflight = READ_ONCE(ve->context.inflight);
796         if (inflight && inflight != engine)
797                 return false;
798
799         return true;
800 }
801
802 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
803                                      struct intel_engine_cs *engine)
804 {
805         struct intel_engine_cs *old = ve->siblings[0];
806
807         /* All unattached (rq->engine == old) must already be completed */
808
809         spin_lock(&old->breadcrumbs.irq_lock);
810         if (!list_empty(&ve->context.signal_link)) {
811                 list_move_tail(&ve->context.signal_link,
812                                &engine->breadcrumbs.signalers);
813                 intel_engine_queue_breadcrumbs(engine);
814         }
815         spin_unlock(&old->breadcrumbs.irq_lock);
816 }
817
818 static void execlists_dequeue(struct intel_engine_cs *engine)
819 {
820         struct intel_engine_execlists * const execlists = &engine->execlists;
821         struct execlist_port *port = execlists->port;
822         const struct execlist_port * const last_port =
823                 &execlists->port[execlists->port_mask];
824         struct i915_request *last = port_request(port);
825         struct rb_node *rb;
826         bool submit = false;
827
828         /*
829          * Hardware submission is through 2 ports. Conceptually each port
830          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
831          * static for a context, and unique to each, so we only execute
832          * requests belonging to a single context from each ring. RING_HEAD
833          * is maintained by the CS in the context image, it marks the place
834          * where it got up to last time, and through RING_TAIL we tell the CS
835          * where we want to execute up to this time.
836          *
837          * In this list the requests are in order of execution. Consecutive
838          * requests from the same context are adjacent in the ringbuffer. We
839          * can combine these requests into a single RING_TAIL update:
840          *
841          *              RING_HEAD...req1...req2
842          *                                    ^- RING_TAIL
843          * since to execute req2 the CS must first execute req1.
844          *
845          * Our goal then is to point each port to the end of a consecutive
846          * sequence of requests as being the most optimal (fewest wake ups
847          * and context switches) submission.
848          */
849
850         for (rb = rb_first_cached(&execlists->virtual); rb; ) {
851                 struct virtual_engine *ve =
852                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
853                 struct i915_request *rq = READ_ONCE(ve->request);
854
855                 if (!rq) { /* lazily cleanup after another engine handled rq */
856                         rb_erase_cached(rb, &execlists->virtual);
857                         RB_CLEAR_NODE(rb);
858                         rb = rb_first_cached(&execlists->virtual);
859                         continue;
860                 }
861
862                 if (!virtual_matches(ve, rq, engine)) {
863                         rb = rb_next(rb);
864                         continue;
865                 }
866
867                 break;
868         }
869
870         if (last) {
871                 /*
872                  * Don't resubmit or switch until all outstanding
873                  * preemptions (lite-restore) are seen. Then we
874                  * know the next preemption status we see corresponds
875                  * to this ELSP update.
876                  */
877                 GEM_BUG_ON(!execlists_is_active(execlists,
878                                                 EXECLISTS_ACTIVE_USER));
879                 GEM_BUG_ON(!port_count(&port[0]));
880
881                 /*
882                  * If we write to ELSP a second time before the HW has had
883                  * a chance to respond to the previous write, we can confuse
884                  * the HW and hit "undefined behaviour". After writing to ELSP,
885                  * we must then wait until we see a context-switch event from
886                  * the HW to indicate that it has had a chance to respond.
887                  */
888                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
889                         return;
890
891                 if (need_preempt(engine, last, rb)) {
892                         inject_preempt_context(engine);
893                         return;
894                 }
895
896                 /*
897                  * In theory, we could coalesce more requests onto
898                  * the second port (the first port is active, with
899                  * no preemptions pending). However, that means we
900                  * then have to deal with the possible lite-restore
901                  * of the second port (as we submit the ELSP, there
902                  * may be a context-switch) but also we may complete
903                  * the resubmission before the context-switch. Ergo,
904                  * coalescing onto the second port will cause a
905                  * preemption event, but we cannot predict whether
906                  * that will affect port[0] or port[1].
907                  *
908                  * If the second port is already active, we can wait
909                  * until the next context-switch before contemplating
910                  * new requests. The GPU will be busy and we should be
911                  * able to resubmit the new ELSP before it idles,
912                  * avoiding pipeline bubbles (momentary pauses where
913                  * the driver is unable to keep up the supply of new
914                  * work). However, we have to double check that the
915                  * priorities of the ports haven't been switch.
916                  */
917                 if (port_count(&port[1]))
918                         return;
919
920                 /*
921                  * WaIdleLiteRestore:bdw,skl
922                  * Apply the wa NOOPs to prevent
923                  * ring:HEAD == rq:TAIL as we resubmit the
924                  * request. See gen8_emit_fini_breadcrumb() for
925                  * where we prepare the padding after the
926                  * end of the request.
927                  */
928                 last->tail = last->wa_tail;
929         }
930
931         while (rb) { /* XXX virtual is always taking precedence */
932                 struct virtual_engine *ve =
933                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
934                 struct i915_request *rq;
935
936                 spin_lock(&ve->base.active.lock);
937
938                 rq = ve->request;
939                 if (unlikely(!rq)) { /* lost the race to a sibling */
940                         spin_unlock(&ve->base.active.lock);
941                         rb_erase_cached(rb, &execlists->virtual);
942                         RB_CLEAR_NODE(rb);
943                         rb = rb_first_cached(&execlists->virtual);
944                         continue;
945                 }
946
947                 GEM_BUG_ON(rq != ve->request);
948                 GEM_BUG_ON(rq->engine != &ve->base);
949                 GEM_BUG_ON(rq->hw_context != &ve->context);
950
951                 if (rq_prio(rq) >= queue_prio(execlists)) {
952                         if (!virtual_matches(ve, rq, engine)) {
953                                 spin_unlock(&ve->base.active.lock);
954                                 rb = rb_next(rb);
955                                 continue;
956                         }
957
958                         if (last && !can_merge_rq(last, rq)) {
959                                 spin_unlock(&ve->base.active.lock);
960                                 return; /* leave this rq for another engine */
961                         }
962
963                         GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
964                                   engine->name,
965                                   rq->fence.context,
966                                   rq->fence.seqno,
967                                   i915_request_completed(rq) ? "!" :
968                                   i915_request_started(rq) ? "*" :
969                                   "",
970                                   yesno(engine != ve->siblings[0]));
971
972                         ve->request = NULL;
973                         ve->base.execlists.queue_priority_hint = INT_MIN;
974                         rb_erase_cached(rb, &execlists->virtual);
975                         RB_CLEAR_NODE(rb);
976
977                         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
978                         rq->engine = engine;
979
980                         if (engine != ve->siblings[0]) {
981                                 u32 *regs = ve->context.lrc_reg_state;
982                                 unsigned int n;
983
984                                 GEM_BUG_ON(READ_ONCE(ve->context.inflight));
985                                 virtual_update_register_offsets(regs, engine);
986
987                                 if (!list_empty(&ve->context.signals))
988                                         virtual_xfer_breadcrumbs(ve, engine);
989
990                                 /*
991                                  * Move the bound engine to the top of the list
992                                  * for future execution. We then kick this
993                                  * tasklet first before checking others, so that
994                                  * we preferentially reuse this set of bound
995                                  * registers.
996                                  */
997                                 for (n = 1; n < ve->num_siblings; n++) {
998                                         if (ve->siblings[n] == engine) {
999                                                 swap(ve->siblings[n],
1000                                                      ve->siblings[0]);
1001                                                 break;
1002                                         }
1003                                 }
1004
1005                                 GEM_BUG_ON(ve->siblings[0] != engine);
1006                         }
1007
1008                         __i915_request_submit(rq);
1009                         trace_i915_request_in(rq, port_index(port, execlists));
1010                         submit = true;
1011                         last = rq;
1012                 }
1013
1014                 spin_unlock(&ve->base.active.lock);
1015                 break;
1016         }
1017
1018         while ((rb = rb_first_cached(&execlists->queue))) {
1019                 struct i915_priolist *p = to_priolist(rb);
1020                 struct i915_request *rq, *rn;
1021                 int i;
1022
1023                 priolist_for_each_request_consume(rq, rn, p, i) {
1024                         /*
1025                          * Can we combine this request with the current port?
1026                          * It has to be the same context/ringbuffer and not
1027                          * have any exceptions (e.g. GVT saying never to
1028                          * combine contexts).
1029                          *
1030                          * If we can combine the requests, we can execute both
1031                          * by updating the RING_TAIL to point to the end of the
1032                          * second request, and so we never need to tell the
1033                          * hardware about the first.
1034                          */
1035                         if (last && !can_merge_rq(last, rq)) {
1036                                 /*
1037                                  * If we are on the second port and cannot
1038                                  * combine this request with the last, then we
1039                                  * are done.
1040                                  */
1041                                 if (port == last_port)
1042                                         goto done;
1043
1044                                 /*
1045                                  * We must not populate both ELSP[] with the
1046                                  * same LRCA, i.e. we must submit 2 different
1047                                  * contexts if we submit 2 ELSP.
1048                                  */
1049                                 if (last->hw_context == rq->hw_context)
1050                                         goto done;
1051
1052                                 /*
1053                                  * If GVT overrides us we only ever submit
1054                                  * port[0], leaving port[1] empty. Note that we
1055                                  * also have to be careful that we don't queue
1056                                  * the same context (even though a different
1057                                  * request) to the second port.
1058                                  */
1059                                 if (ctx_single_port_submission(last->hw_context) ||
1060                                     ctx_single_port_submission(rq->hw_context))
1061                                         goto done;
1062
1063
1064                                 if (submit)
1065                                         port_assign(port, last);
1066                                 port++;
1067
1068                                 GEM_BUG_ON(port_isset(port));
1069                         }
1070
1071                         __i915_request_submit(rq);
1072                         trace_i915_request_in(rq, port_index(port, execlists));
1073
1074                         last = rq;
1075                         submit = true;
1076                 }
1077
1078                 rb_erase_cached(&p->node, &execlists->queue);
1079                 i915_priolist_free(p);
1080         }
1081
1082 done:
1083         /*
1084          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1085          *
1086          * We choose the priority hint such that if we add a request of greater
1087          * priority than this, we kick the submission tasklet to decide on
1088          * the right order of submitting the requests to hardware. We must
1089          * also be prepared to reorder requests as they are in-flight on the
1090          * HW. We derive the priority hint then as the first "hole" in
1091          * the HW submission ports and if there are no available slots,
1092          * the priority of the lowest executing request, i.e. last.
1093          *
1094          * When we do receive a higher priority request ready to run from the
1095          * user, see queue_request(), the priority hint is bumped to that
1096          * request triggering preemption on the next dequeue (or subsequent
1097          * interrupt for secondary ports).
1098          */
1099         execlists->queue_priority_hint = queue_prio(execlists);
1100
1101         if (submit) {
1102                 port_assign(port, last);
1103                 execlists_submit_ports(engine);
1104         }
1105
1106         /* We must always keep the beast fed if we have work piled up */
1107         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1108                    !port_isset(execlists->port));
1109
1110         /* Re-evaluate the executing context setup after each preemptive kick */
1111         if (last)
1112                 execlists_user_begin(execlists, execlists->port);
1113
1114         /* If the engine is now idle, so should be the flag; and vice versa. */
1115         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1116                                        EXECLISTS_ACTIVE_USER) ==
1117                    !port_isset(engine->execlists.port));
1118 }
1119
1120 void
1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122 {
1123         struct execlist_port *port = execlists->port;
1124         unsigned int num_ports = execlists_num_ports(execlists);
1125
1126         while (num_ports-- && port_isset(port)) {
1127                 struct i915_request *rq = port_request(port);
1128
1129                 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130                           rq->engine->name,
1131                           (unsigned int)(port - execlists->port),
1132                           rq->fence.context, rq->fence.seqno,
1133                           hwsp_seqno(rq));
1134
1135                 GEM_BUG_ON(!execlists->active);
1136                 execlists_context_schedule_out(rq,
1137                                                i915_request_completed(rq) ?
1138                                                INTEL_CONTEXT_SCHEDULE_OUT :
1139                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140
1141                 i915_request_put(rq);
1142
1143                 memset(port, 0, sizeof(*port));
1144                 port++;
1145         }
1146
1147         execlists_clear_all_active(execlists);
1148 }
1149
1150 static inline void
1151 invalidate_csb_entries(const u32 *first, const u32 *last)
1152 {
1153         clflush((void *)first);
1154         clflush((void *)last);
1155 }
1156
1157 static inline bool
1158 reset_in_progress(const struct intel_engine_execlists *execlists)
1159 {
1160         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1161 }
1162
1163 static void process_csb(struct intel_engine_cs *engine)
1164 {
1165         struct intel_engine_execlists * const execlists = &engine->execlists;
1166         struct execlist_port *port = execlists->port;
1167         const u32 * const buf = execlists->csb_status;
1168         const u8 num_entries = execlists->csb_size;
1169         u8 head, tail;
1170
1171         lockdep_assert_held(&engine->active.lock);
1172         GEM_BUG_ON(USES_GUC_SUBMISSION(engine->i915));
1173
1174         /*
1175          * Note that csb_write, csb_status may be either in HWSP or mmio.
1176          * When reading from the csb_write mmio register, we have to be
1177          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1178          * the low 4bits. As it happens we know the next 4bits are always
1179          * zero and so we can simply masked off the low u8 of the register
1180          * and treat it identically to reading from the HWSP (without having
1181          * to use explicit shifting and masking, and probably bifurcating
1182          * the code to handle the legacy mmio read).
1183          */
1184         head = execlists->csb_head;
1185         tail = READ_ONCE(*execlists->csb_write);
1186         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1187         if (unlikely(head == tail))
1188                 return;
1189
1190         /*
1191          * Hopefully paired with a wmb() in HW!
1192          *
1193          * We must complete the read of the write pointer before any reads
1194          * from the CSB, so that we do not see stale values. Without an rmb
1195          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1196          * we perform the READ_ONCE(*csb_write).
1197          */
1198         rmb();
1199
1200         do {
1201                 struct i915_request *rq;
1202                 unsigned int status;
1203                 unsigned int count;
1204
1205                 if (++head == num_entries)
1206                         head = 0;
1207
1208                 /*
1209                  * We are flying near dragons again.
1210                  *
1211                  * We hold a reference to the request in execlist_port[]
1212                  * but no more than that. We are operating in softirq
1213                  * context and so cannot hold any mutex or sleep. That
1214                  * prevents us stopping the requests we are processing
1215                  * in port[] from being retired simultaneously (the
1216                  * breadcrumb will be complete before we see the
1217                  * context-switch). As we only hold the reference to the
1218                  * request, any pointer chasing underneath the request
1219                  * is subject to a potential use-after-free. Thus we
1220                  * store all of the bookkeeping within port[] as
1221                  * required, and avoid using unguarded pointers beneath
1222                  * request itself. The same applies to the atomic
1223                  * status notifier.
1224                  */
1225
1226                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1227                           engine->name, head,
1228                           buf[2 * head + 0], buf[2 * head + 1],
1229                           execlists->active);
1230
1231                 status = buf[2 * head];
1232                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1233                               GEN8_CTX_STATUS_PREEMPTED))
1234                         execlists_set_active(execlists,
1235                                              EXECLISTS_ACTIVE_HWACK);
1236                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1237                         execlists_clear_active(execlists,
1238                                                EXECLISTS_ACTIVE_HWACK);
1239
1240                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1241                         continue;
1242
1243                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1244                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1245
1246                 if (status & GEN8_CTX_STATUS_COMPLETE &&
1247                     buf[2*head + 1] == execlists->preempt_complete_status) {
1248                         GEM_TRACE("%s preempt-idle\n", engine->name);
1249                         complete_preempt_context(execlists);
1250                         continue;
1251                 }
1252
1253                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1254                     execlists_is_active(execlists,
1255                                         EXECLISTS_ACTIVE_PREEMPT))
1256                         continue;
1257
1258                 GEM_BUG_ON(!execlists_is_active(execlists,
1259                                                 EXECLISTS_ACTIVE_USER));
1260
1261                 rq = port_unpack(port, &count);
1262                 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1263                           engine->name,
1264                           port->context_id, count,
1265                           rq ? rq->fence.context : 0,
1266                           rq ? rq->fence.seqno : 0,
1267                           rq ? hwsp_seqno(rq) : 0,
1268                           rq ? rq_prio(rq) : 0);
1269
1270                 /* Check the context/desc id for this event matches */
1271                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1272
1273                 GEM_BUG_ON(count == 0);
1274                 if (--count == 0) {
1275                         /*
1276                          * On the final event corresponding to the
1277                          * submission of this context, we expect either
1278                          * an element-switch event or a completion
1279                          * event (and on completion, the active-idle
1280                          * marker). No more preemptions, lite-restore
1281                          * or otherwise.
1282                          */
1283                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1284                         GEM_BUG_ON(port_isset(&port[1]) &&
1285                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1286                         GEM_BUG_ON(!port_isset(&port[1]) &&
1287                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1288
1289                         /*
1290                          * We rely on the hardware being strongly
1291                          * ordered, that the breadcrumb write is
1292                          * coherent (visible from the CPU) before the
1293                          * user interrupt and CSB is processed.
1294                          */
1295                         GEM_BUG_ON(!i915_request_completed(rq));
1296
1297                         execlists_context_schedule_out(rq,
1298                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1299                         i915_request_put(rq);
1300
1301                         GEM_TRACE("%s completed ctx=%d\n",
1302                                   engine->name, port->context_id);
1303
1304                         port = execlists_port_complete(execlists, port);
1305                         if (port_isset(port))
1306                                 execlists_user_begin(execlists, port);
1307                         else
1308                                 execlists_user_end(execlists);
1309                 } else {
1310                         port_set(port, port_pack(rq, count));
1311                 }
1312         } while (head != tail);
1313
1314         execlists->csb_head = head;
1315
1316         /*
1317          * Gen11 has proven to fail wrt global observation point between
1318          * entry and tail update, failing on the ordering and thus
1319          * we see an old entry in the context status buffer.
1320          *
1321          * Forcibly evict out entries for the next gpu csb update,
1322          * to increase the odds that we get a fresh entries with non
1323          * working hardware. The cost for doing so comes out mostly with
1324          * the wash as hardware, working or not, will need to do the
1325          * invalidation before.
1326          */
1327         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1328 }
1329
1330 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1331 {
1332         lockdep_assert_held(&engine->active.lock);
1333
1334         process_csb(engine);
1335         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1336                 execlists_dequeue(engine);
1337 }
1338
1339 /*
1340  * Check the unread Context Status Buffers and manage the submission of new
1341  * contexts to the ELSP accordingly.
1342  */
1343 static void execlists_submission_tasklet(unsigned long data)
1344 {
1345         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1346         unsigned long flags;
1347
1348         GEM_TRACE("%s awake?=%d, active=%x\n",
1349                   engine->name,
1350                   !!intel_wakeref_active(&engine->wakeref),
1351                   engine->execlists.active);
1352
1353         spin_lock_irqsave(&engine->active.lock, flags);
1354         __execlists_submission_tasklet(engine);
1355         spin_unlock_irqrestore(&engine->active.lock, flags);
1356 }
1357
1358 static void queue_request(struct intel_engine_cs *engine,
1359                           struct i915_sched_node *node,
1360                           int prio)
1361 {
1362         GEM_BUG_ON(!list_empty(&node->link));
1363         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1364 }
1365
1366 static void __submit_queue_imm(struct intel_engine_cs *engine)
1367 {
1368         struct intel_engine_execlists * const execlists = &engine->execlists;
1369
1370         if (reset_in_progress(execlists))
1371                 return; /* defer until we restart the engine following reset */
1372
1373         if (execlists->tasklet.func == execlists_submission_tasklet)
1374                 __execlists_submission_tasklet(engine);
1375         else
1376                 tasklet_hi_schedule(&execlists->tasklet);
1377 }
1378
1379 static void submit_queue(struct intel_engine_cs *engine, int prio)
1380 {
1381         if (prio > engine->execlists.queue_priority_hint) {
1382                 engine->execlists.queue_priority_hint = prio;
1383                 __submit_queue_imm(engine);
1384         }
1385 }
1386
1387 static void execlists_submit_request(struct i915_request *request)
1388 {
1389         struct intel_engine_cs *engine = request->engine;
1390         unsigned long flags;
1391
1392         /* Will be called from irq-context when using foreign fences. */
1393         spin_lock_irqsave(&engine->active.lock, flags);
1394
1395         queue_request(engine, &request->sched, rq_prio(request));
1396
1397         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1398         GEM_BUG_ON(list_empty(&request->sched.link));
1399
1400         submit_queue(engine, rq_prio(request));
1401
1402         spin_unlock_irqrestore(&engine->active.lock, flags);
1403 }
1404
1405 static void __execlists_context_fini(struct intel_context *ce)
1406 {
1407         intel_ring_put(ce->ring);
1408
1409         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1410         i915_gem_object_put(ce->state->obj);
1411 }
1412
1413 static void execlists_context_destroy(struct kref *kref)
1414 {
1415         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1416
1417         GEM_BUG_ON(!i915_active_is_idle(&ce->active));
1418         GEM_BUG_ON(intel_context_is_pinned(ce));
1419
1420         if (ce->state)
1421                 __execlists_context_fini(ce);
1422
1423         intel_context_free(ce);
1424 }
1425
1426 static void execlists_context_unpin(struct intel_context *ce)
1427 {
1428         i915_gem_context_unpin_hw_id(ce->gem_context);
1429         i915_gem_object_unpin_map(ce->state->obj);
1430 }
1431
1432 static void
1433 __execlists_update_reg_state(struct intel_context *ce,
1434                              struct intel_engine_cs *engine)
1435 {
1436         struct intel_ring *ring = ce->ring;
1437         u32 *regs = ce->lrc_reg_state;
1438
1439         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1440         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1441
1442         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1443         regs[CTX_RING_HEAD + 1] = ring->head;
1444         regs[CTX_RING_TAIL + 1] = ring->tail;
1445
1446         /* RPCS */
1447         if (engine->class == RENDER_CLASS)
1448                 regs[CTX_R_PWR_CLK_STATE + 1] =
1449                         intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1450 }
1451
1452 static int
1453 __execlists_context_pin(struct intel_context *ce,
1454                         struct intel_engine_cs *engine)
1455 {
1456         void *vaddr;
1457         int ret;
1458
1459         GEM_BUG_ON(!ce->gem_context->vm);
1460
1461         ret = execlists_context_deferred_alloc(ce, engine);
1462         if (ret)
1463                 goto err;
1464         GEM_BUG_ON(!ce->state);
1465
1466         ret = intel_context_active_acquire(ce,
1467                                            engine->i915->ggtt.pin_bias |
1468                                            PIN_OFFSET_BIAS |
1469                                            PIN_HIGH);
1470         if (ret)
1471                 goto err;
1472
1473         vaddr = i915_gem_object_pin_map(ce->state->obj,
1474                                         i915_coherent_map_type(engine->i915) |
1475                                         I915_MAP_OVERRIDE);
1476         if (IS_ERR(vaddr)) {
1477                 ret = PTR_ERR(vaddr);
1478                 goto unpin_active;
1479         }
1480
1481         ret = i915_gem_context_pin_hw_id(ce->gem_context);
1482         if (ret)
1483                 goto unpin_map;
1484
1485         ce->lrc_desc = lrc_descriptor(ce, engine);
1486         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1487         __execlists_update_reg_state(ce, engine);
1488
1489         return 0;
1490
1491 unpin_map:
1492         i915_gem_object_unpin_map(ce->state->obj);
1493 unpin_active:
1494         intel_context_active_release(ce);
1495 err:
1496         return ret;
1497 }
1498
1499 static int execlists_context_pin(struct intel_context *ce)
1500 {
1501         return __execlists_context_pin(ce, ce->engine);
1502 }
1503
1504 static void execlists_context_reset(struct intel_context *ce)
1505 {
1506         /*
1507          * Because we emit WA_TAIL_DWORDS there may be a disparity
1508          * between our bookkeeping in ce->ring->head and ce->ring->tail and
1509          * that stored in context. As we only write new commands from
1510          * ce->ring->tail onwards, everything before that is junk. If the GPU
1511          * starts reading from its RING_HEAD from the context, it may try to
1512          * execute that junk and die.
1513          *
1514          * The contexts that are stilled pinned on resume belong to the
1515          * kernel, and are local to each engine. All other contexts will
1516          * have their head/tail sanitized upon pinning before use, so they
1517          * will never see garbage,
1518          *
1519          * So to avoid that we reset the context images upon resume. For
1520          * simplicity, we just zero everything out.
1521          */
1522         intel_ring_reset(ce->ring, 0);
1523         __execlists_update_reg_state(ce, ce->engine);
1524 }
1525
1526 static const struct intel_context_ops execlists_context_ops = {
1527         .pin = execlists_context_pin,
1528         .unpin = execlists_context_unpin,
1529
1530         .enter = intel_context_enter_engine,
1531         .exit = intel_context_exit_engine,
1532
1533         .reset = execlists_context_reset,
1534         .destroy = execlists_context_destroy,
1535 };
1536
1537 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1538 {
1539         u32 *cs;
1540
1541         GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1542
1543         cs = intel_ring_begin(rq, 6);
1544         if (IS_ERR(cs))
1545                 return PTR_ERR(cs);
1546
1547         /*
1548          * Check if we have been preempted before we even get started.
1549          *
1550          * After this point i915_request_started() reports true, even if
1551          * we get preempted and so are no longer running.
1552          */
1553         *cs++ = MI_ARB_CHECK;
1554         *cs++ = MI_NOOP;
1555
1556         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1557         *cs++ = rq->timeline->hwsp_offset;
1558         *cs++ = 0;
1559         *cs++ = rq->fence.seqno - 1;
1560
1561         intel_ring_advance(rq, cs);
1562
1563         /* Record the updated position of the request's payload */
1564         rq->infix = intel_ring_offset(rq, cs);
1565
1566         return 0;
1567 }
1568
1569 static int emit_pdps(struct i915_request *rq)
1570 {
1571         const struct intel_engine_cs * const engine = rq->engine;
1572         struct i915_ppgtt * const ppgtt =
1573                 i915_vm_to_ppgtt(rq->gem_context->vm);
1574         int err, i;
1575         u32 *cs;
1576
1577         GEM_BUG_ON(intel_vgpu_active(rq->i915));
1578
1579         /*
1580          * Beware ye of the dragons, this sequence is magic!
1581          *
1582          * Small changes to this sequence can cause anything from
1583          * GPU hangs to forcewake errors and machine lockups!
1584          */
1585
1586         /* Flush any residual operations from the context load */
1587         err = engine->emit_flush(rq, EMIT_FLUSH);
1588         if (err)
1589                 return err;
1590
1591         /* Magic required to prevent forcewake errors! */
1592         err = engine->emit_flush(rq, EMIT_INVALIDATE);
1593         if (err)
1594                 return err;
1595
1596         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1597         if (IS_ERR(cs))
1598                 return PTR_ERR(cs);
1599
1600         /* Ensure the LRI have landed before we invalidate & continue */
1601         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1602         for (i = GEN8_3LVL_PDPES; i--; ) {
1603                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1604                 u32 base = engine->mmio_base;
1605
1606                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1607                 *cs++ = upper_32_bits(pd_daddr);
1608                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1609                 *cs++ = lower_32_bits(pd_daddr);
1610         }
1611         *cs++ = MI_NOOP;
1612
1613         intel_ring_advance(rq, cs);
1614
1615         /* Be doubly sure the LRI have landed before proceeding */
1616         err = engine->emit_flush(rq, EMIT_FLUSH);
1617         if (err)
1618                 return err;
1619
1620         /* Re-invalidate the TLB for luck */
1621         return engine->emit_flush(rq, EMIT_INVALIDATE);
1622 }
1623
1624 static int execlists_request_alloc(struct i915_request *request)
1625 {
1626         int ret;
1627
1628         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1629
1630         /*
1631          * Flush enough space to reduce the likelihood of waiting after
1632          * we start building the request - in which case we will just
1633          * have to repeat work.
1634          */
1635         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1636
1637         /*
1638          * Note that after this point, we have committed to using
1639          * this request as it is being used to both track the
1640          * state of engine initialisation and liveness of the
1641          * golden renderstate above. Think twice before you try
1642          * to cancel/unwind this request now.
1643          */
1644
1645         /* Unconditionally invalidate GPU caches and TLBs. */
1646         if (i915_vm_is_4lvl(request->gem_context->vm))
1647                 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1648         else
1649                 ret = emit_pdps(request);
1650         if (ret)
1651                 return ret;
1652
1653         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1654         return 0;
1655 }
1656
1657 /*
1658  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1659  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1660  * but there is a slight complication as this is applied in WA batch where the
1661  * values are only initialized once so we cannot take register value at the
1662  * beginning and reuse it further; hence we save its value to memory, upload a
1663  * constant value with bit21 set and then we restore it back with the saved value.
1664  * To simplify the WA, a constant value is formed by using the default value
1665  * of this register. This shouldn't be a problem because we are only modifying
1666  * it for a short period and this batch in non-premptible. We can ofcourse
1667  * use additional instructions that read the actual value of the register
1668  * at that time and set our bit of interest but it makes the WA complicated.
1669  *
1670  * This WA is also required for Gen9 so extracting as a function avoids
1671  * code duplication.
1672  */
1673 static u32 *
1674 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1675 {
1676         /* NB no one else is allowed to scribble over scratch + 256! */
1677         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1678         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1679         *batch++ = i915_scratch_offset(engine->i915) + 256;
1680         *batch++ = 0;
1681
1682         *batch++ = MI_LOAD_REGISTER_IMM(1);
1683         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1684         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1685
1686         batch = gen8_emit_pipe_control(batch,
1687                                        PIPE_CONTROL_CS_STALL |
1688                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1689                                        0);
1690
1691         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1692         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1693         *batch++ = i915_scratch_offset(engine->i915) + 256;
1694         *batch++ = 0;
1695
1696         return batch;
1697 }
1698
1699 /*
1700  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1701  * initialized at the beginning and shared across all contexts but this field
1702  * helps us to have multiple batches at different offsets and select them based
1703  * on a criteria. At the moment this batch always start at the beginning of the page
1704  * and at this point we don't have multiple wa_ctx batch buffers.
1705  *
1706  * The number of WA applied are not known at the beginning; we use this field
1707  * to return the no of DWORDS written.
1708  *
1709  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1710  * so it adds NOOPs as padding to make it cacheline aligned.
1711  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1712  * makes a complete batch buffer.
1713  */
1714 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1715 {
1716         /* WaDisableCtxRestoreArbitration:bdw,chv */
1717         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1718
1719         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1720         if (IS_BROADWELL(engine->i915))
1721                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1722
1723         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1724         /* Actual scratch location is at 128 bytes offset */
1725         batch = gen8_emit_pipe_control(batch,
1726                                        PIPE_CONTROL_FLUSH_L3 |
1727                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1728                                        PIPE_CONTROL_CS_STALL |
1729                                        PIPE_CONTROL_QW_WRITE,
1730                                        i915_scratch_offset(engine->i915) +
1731                                        2 * CACHELINE_BYTES);
1732
1733         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1734
1735         /* Pad to end of cacheline */
1736         while ((unsigned long)batch % CACHELINE_BYTES)
1737                 *batch++ = MI_NOOP;
1738
1739         /*
1740          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1741          * execution depends on the length specified in terms of cache lines
1742          * in the register CTX_RCS_INDIRECT_CTX
1743          */
1744
1745         return batch;
1746 }
1747
1748 struct lri {
1749         i915_reg_t reg;
1750         u32 value;
1751 };
1752
1753 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1754 {
1755         GEM_BUG_ON(!count || count > 63);
1756
1757         *batch++ = MI_LOAD_REGISTER_IMM(count);
1758         do {
1759                 *batch++ = i915_mmio_reg_offset(lri->reg);
1760                 *batch++ = lri->value;
1761         } while (lri++, --count);
1762         *batch++ = MI_NOOP;
1763
1764         return batch;
1765 }
1766
1767 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1768 {
1769         static const struct lri lri[] = {
1770                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1771                 {
1772                         COMMON_SLICE_CHICKEN2,
1773                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1774                                        0),
1775                 },
1776
1777                 /* BSpec: 11391 */
1778                 {
1779                         FF_SLICE_CHICKEN,
1780                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1781                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1782                 },
1783
1784                 /* BSpec: 11299 */
1785                 {
1786                         _3D_CHICKEN3,
1787                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1788                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1789                 }
1790         };
1791
1792         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1793
1794         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1795         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1796
1797         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1798
1799         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1800         if (HAS_POOLED_EU(engine->i915)) {
1801                 /*
1802                  * EU pool configuration is setup along with golden context
1803                  * during context initialization. This value depends on
1804                  * device type (2x6 or 3x6) and needs to be updated based
1805                  * on which subslice is disabled especially for 2x6
1806                  * devices, however it is safe to load default
1807                  * configuration of 3x6 device instead of masking off
1808                  * corresponding bits because HW ignores bits of a disabled
1809                  * subslice and drops down to appropriate config. Please
1810                  * see render_state_setup() in i915_gem_render_state.c for
1811                  * possible configurations, to avoid duplication they are
1812                  * not shown here again.
1813                  */
1814                 *batch++ = GEN9_MEDIA_POOL_STATE;
1815                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1816                 *batch++ = 0x00777000;
1817                 *batch++ = 0;
1818                 *batch++ = 0;
1819                 *batch++ = 0;
1820         }
1821
1822         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1823
1824         /* Pad to end of cacheline */
1825         while ((unsigned long)batch % CACHELINE_BYTES)
1826                 *batch++ = MI_NOOP;
1827
1828         return batch;
1829 }
1830
1831 static u32 *
1832 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1833 {
1834         int i;
1835
1836         /*
1837          * WaPipeControlBefore3DStateSamplePattern: cnl
1838          *
1839          * Ensure the engine is idle prior to programming a
1840          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1841          */
1842         batch = gen8_emit_pipe_control(batch,
1843                                        PIPE_CONTROL_CS_STALL,
1844                                        0);
1845         /*
1846          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1847          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1848          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1849          * confusing. Since gen8_emit_pipe_control() already advances the
1850          * batch by 6 dwords, we advance the other 10 here, completing a
1851          * cacheline. It's not clear if the workaround requires this padding
1852          * before other commands, or if it's just the regular padding we would
1853          * already have for the workaround bb, so leave it here for now.
1854          */
1855         for (i = 0; i < 10; i++)
1856                 *batch++ = MI_NOOP;
1857
1858         /* Pad to end of cacheline */
1859         while ((unsigned long)batch % CACHELINE_BYTES)
1860                 *batch++ = MI_NOOP;
1861
1862         return batch;
1863 }
1864
1865 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1866
1867 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1868 {
1869         struct drm_i915_gem_object *obj;
1870         struct i915_vma *vma;
1871         int err;
1872
1873         obj = i915_gem_object_create_shmem(engine->i915, CTX_WA_BB_OBJ_SIZE);
1874         if (IS_ERR(obj))
1875                 return PTR_ERR(obj);
1876
1877         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1878         if (IS_ERR(vma)) {
1879                 err = PTR_ERR(vma);
1880                 goto err;
1881         }
1882
1883         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1884         if (err)
1885                 goto err;
1886
1887         engine->wa_ctx.vma = vma;
1888         return 0;
1889
1890 err:
1891         i915_gem_object_put(obj);
1892         return err;
1893 }
1894
1895 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1896 {
1897         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1898 }
1899
1900 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1901
1902 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1903 {
1904         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1905         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1906                                             &wa_ctx->per_ctx };
1907         wa_bb_func_t wa_bb_fn[2];
1908         struct page *page;
1909         void *batch, *batch_ptr;
1910         unsigned int i;
1911         int ret;
1912
1913         if (engine->class != RENDER_CLASS)
1914                 return 0;
1915
1916         switch (INTEL_GEN(engine->i915)) {
1917         case 11:
1918                 return 0;
1919         case 10:
1920                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1921                 wa_bb_fn[1] = NULL;
1922                 break;
1923         case 9:
1924                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1925                 wa_bb_fn[1] = NULL;
1926                 break;
1927         case 8:
1928                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1929                 wa_bb_fn[1] = NULL;
1930                 break;
1931         default:
1932                 MISSING_CASE(INTEL_GEN(engine->i915));
1933                 return 0;
1934         }
1935
1936         ret = lrc_setup_wa_ctx(engine);
1937         if (ret) {
1938                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1939                 return ret;
1940         }
1941
1942         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1943         batch = batch_ptr = kmap_atomic(page);
1944
1945         /*
1946          * Emit the two workaround batch buffers, recording the offset from the
1947          * start of the workaround batch buffer object for each and their
1948          * respective sizes.
1949          */
1950         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
1951                 wa_bb[i]->offset = batch_ptr - batch;
1952                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
1953                                                   CACHELINE_BYTES))) {
1954                         ret = -EINVAL;
1955                         break;
1956                 }
1957                 if (wa_bb_fn[i])
1958                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
1959                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
1960         }
1961
1962         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
1963
1964         kunmap_atomic(batch);
1965         if (ret)
1966                 lrc_destroy_wa_ctx(engine);
1967
1968         return ret;
1969 }
1970
1971 static void enable_execlists(struct intel_engine_cs *engine)
1972 {
1973         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
1974
1975         if (INTEL_GEN(engine->i915) >= 11)
1976                 ENGINE_WRITE(engine,
1977                              RING_MODE_GEN7,
1978                              _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
1979         else
1980                 ENGINE_WRITE(engine,
1981                              RING_MODE_GEN7,
1982                              _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
1983
1984         ENGINE_WRITE(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1985
1986         ENGINE_WRITE(engine,
1987                      RING_HWS_PGA,
1988                      i915_ggtt_offset(engine->status_page.vma));
1989         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
1990 }
1991
1992 static bool unexpected_starting_state(struct intel_engine_cs *engine)
1993 {
1994         bool unexpected = false;
1995
1996         if (ENGINE_READ(engine, RING_MI_MODE) & STOP_RING) {
1997                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
1998                 unexpected = true;
1999         }
2000
2001         return unexpected;
2002 }
2003
2004 static int execlists_resume(struct intel_engine_cs *engine)
2005 {
2006         intel_engine_apply_workarounds(engine);
2007         intel_engine_apply_whitelist(engine);
2008
2009         intel_mocs_init_engine(engine);
2010
2011         intel_engine_reset_breadcrumbs(engine);
2012
2013         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2014                 struct drm_printer p = drm_debug_printer(__func__);
2015
2016                 intel_engine_dump(engine, &p, NULL);
2017         }
2018
2019         enable_execlists(engine);
2020
2021         return 0;
2022 }
2023
2024 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2025 {
2026         struct intel_engine_execlists * const execlists = &engine->execlists;
2027         unsigned long flags;
2028
2029         GEM_TRACE("%s: depth<-%d\n", engine->name,
2030                   atomic_read(&execlists->tasklet.count));
2031
2032         /*
2033          * Prevent request submission to the hardware until we have
2034          * completed the reset in i915_gem_reset_finish(). If a request
2035          * is completed by one engine, it may then queue a request
2036          * to a second via its execlists->tasklet *just* as we are
2037          * calling engine->resume() and also writing the ELSP.
2038          * Turning off the execlists->tasklet until the reset is over
2039          * prevents the race.
2040          */
2041         __tasklet_disable_sync_once(&execlists->tasklet);
2042         GEM_BUG_ON(!reset_in_progress(execlists));
2043
2044         intel_engine_stop_cs(engine);
2045
2046         /* And flush any current direct submission. */
2047         spin_lock_irqsave(&engine->active.lock, flags);
2048         spin_unlock_irqrestore(&engine->active.lock, flags);
2049 }
2050
2051 static bool lrc_regs_ok(const struct i915_request *rq)
2052 {
2053         const struct intel_ring *ring = rq->ring;
2054         const u32 *regs = rq->hw_context->lrc_reg_state;
2055
2056         /* Quick spot check for the common signs of context corruption */
2057
2058         if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2059             (RING_CTL_SIZE(ring->size) | RING_VALID))
2060                 return false;
2061
2062         if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2063                 return false;
2064
2065         return true;
2066 }
2067
2068 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2069 {
2070         const unsigned int reset_value = execlists->csb_size - 1;
2071
2072         /*
2073          * After a reset, the HW starts writing into CSB entry [0]. We
2074          * therefore have to set our HEAD pointer back one entry so that
2075          * the *first* entry we check is entry 0. To complicate this further,
2076          * as we don't wait for the first interrupt after reset, we have to
2077          * fake the HW write to point back to the last entry so that our
2078          * inline comparison of our cached head position against the last HW
2079          * write works even before the first interrupt.
2080          */
2081         execlists->csb_head = reset_value;
2082         WRITE_ONCE(*execlists->csb_write, reset_value);
2083         wmb(); /* Make sure this is visible to HW (paranoia?) */
2084
2085         invalidate_csb_entries(&execlists->csb_status[0],
2086                                &execlists->csb_status[reset_value]);
2087 }
2088
2089 static struct i915_request *active_request(struct i915_request *rq)
2090 {
2091         const struct list_head * const list = &rq->engine->active.requests;
2092         const struct intel_context * const context = rq->hw_context;
2093         struct i915_request *active = NULL;
2094
2095         list_for_each_entry_from_reverse(rq, list, sched.link) {
2096                 if (i915_request_completed(rq))
2097                         break;
2098
2099                 if (rq->hw_context != context)
2100                         break;
2101
2102                 active = rq;
2103         }
2104
2105         return active;
2106 }
2107
2108 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2109 {
2110         struct intel_engine_execlists * const execlists = &engine->execlists;
2111         struct intel_context *ce;
2112         struct i915_request *rq;
2113         u32 *regs;
2114
2115         process_csb(engine); /* drain preemption events */
2116
2117         /* Following the reset, we need to reload the CSB read/write pointers */
2118         reset_csb_pointers(&engine->execlists);
2119
2120         /*
2121          * Save the currently executing context, even if we completed
2122          * its request, it was still running at the time of the
2123          * reset and will have been clobbered.
2124          */
2125         if (!port_isset(execlists->port))
2126                 goto out_clear;
2127
2128         rq = port_request(execlists->port);
2129         ce = rq->hw_context;
2130
2131         /*
2132          * Catch up with any missed context-switch interrupts.
2133          *
2134          * Ideally we would just read the remaining CSB entries now that we
2135          * know the gpu is idle. However, the CSB registers are sometimes^W
2136          * often trashed across a GPU reset! Instead we have to rely on
2137          * guessing the missed context-switch events by looking at what
2138          * requests were completed.
2139          */
2140         execlists_cancel_port_requests(execlists);
2141
2142         rq = active_request(rq);
2143         if (!rq)
2144                 goto out_replay;
2145
2146         /*
2147          * If this request hasn't started yet, e.g. it is waiting on a
2148          * semaphore, we need to avoid skipping the request or else we
2149          * break the signaling chain. However, if the context is corrupt
2150          * the request will not restart and we will be stuck with a wedged
2151          * device. It is quite often the case that if we issue a reset
2152          * while the GPU is loading the context image, that the context
2153          * image becomes corrupt.
2154          *
2155          * Otherwise, if we have not started yet, the request should replay
2156          * perfectly and we do not need to flag the result as being erroneous.
2157          */
2158         if (!i915_request_started(rq) && lrc_regs_ok(rq))
2159                 goto out_replay;
2160
2161         /*
2162          * If the request was innocent, we leave the request in the ELSP
2163          * and will try to replay it on restarting. The context image may
2164          * have been corrupted by the reset, in which case we may have
2165          * to service a new GPU hang, but more likely we can continue on
2166          * without impact.
2167          *
2168          * If the request was guilty, we presume the context is corrupt
2169          * and have to at least restore the RING register in the context
2170          * image back to the expected values to skip over the guilty request.
2171          */
2172         i915_reset_request(rq, stalled);
2173         if (!stalled && lrc_regs_ok(rq))
2174                 goto out_replay;
2175
2176         /*
2177          * We want a simple context + ring to execute the breadcrumb update.
2178          * We cannot rely on the context being intact across the GPU hang,
2179          * so clear it and rebuild just what we need for the breadcrumb.
2180          * All pending requests for this context will be zapped, and any
2181          * future request will be after userspace has had the opportunity
2182          * to recreate its own state.
2183          */
2184         regs = ce->lrc_reg_state;
2185         if (engine->pinned_default_state) {
2186                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2187                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2188                        engine->context_size - PAGE_SIZE);
2189         }
2190         execlists_init_reg_state(regs, ce, engine, ce->ring);
2191
2192 out_replay:
2193         /* Rerun the request; its payload has been neutered (if guilty). */
2194         ce->ring->head =
2195                 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2196         intel_ring_update_space(ce->ring);
2197         __execlists_update_reg_state(ce, engine);
2198
2199         /* Push back any incomplete requests for replay after the reset. */
2200         __unwind_incomplete_requests(engine);
2201
2202 out_clear:
2203         execlists_clear_all_active(execlists);
2204 }
2205
2206 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2207 {
2208         unsigned long flags;
2209
2210         GEM_TRACE("%s\n", engine->name);
2211
2212         spin_lock_irqsave(&engine->active.lock, flags);
2213
2214         __execlists_reset(engine, stalled);
2215
2216         spin_unlock_irqrestore(&engine->active.lock, flags);
2217 }
2218
2219 static void nop_submission_tasklet(unsigned long data)
2220 {
2221         /* The driver is wedged; don't process any more events. */
2222 }
2223
2224 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2225 {
2226         struct intel_engine_execlists * const execlists = &engine->execlists;
2227         struct i915_request *rq, *rn;
2228         struct rb_node *rb;
2229         unsigned long flags;
2230
2231         GEM_TRACE("%s\n", engine->name);
2232
2233         /*
2234          * Before we call engine->cancel_requests(), we should have exclusive
2235          * access to the submission state. This is arranged for us by the
2236          * caller disabling the interrupt generation, the tasklet and other
2237          * threads that may then access the same state, giving us a free hand
2238          * to reset state. However, we still need to let lockdep be aware that
2239          * we know this state may be accessed in hardirq context, so we
2240          * disable the irq around this manipulation and we want to keep
2241          * the spinlock focused on its duties and not accidentally conflate
2242          * coverage to the submission's irq state. (Similarly, although we
2243          * shouldn't need to disable irq around the manipulation of the
2244          * submission's irq state, we also wish to remind ourselves that
2245          * it is irq state.)
2246          */
2247         spin_lock_irqsave(&engine->active.lock, flags);
2248
2249         __execlists_reset(engine, true);
2250
2251         /* Mark all executing requests as skipped. */
2252         list_for_each_entry(rq, &engine->active.requests, sched.link) {
2253                 if (!i915_request_signaled(rq))
2254                         dma_fence_set_error(&rq->fence, -EIO);
2255
2256                 i915_request_mark_complete(rq);
2257         }
2258
2259         /* Flush the queued requests to the timeline list (for retiring). */
2260         while ((rb = rb_first_cached(&execlists->queue))) {
2261                 struct i915_priolist *p = to_priolist(rb);
2262                 int i;
2263
2264                 priolist_for_each_request_consume(rq, rn, p, i) {
2265                         list_del_init(&rq->sched.link);
2266                         __i915_request_submit(rq);
2267                         dma_fence_set_error(&rq->fence, -EIO);
2268                         i915_request_mark_complete(rq);
2269                 }
2270
2271                 rb_erase_cached(&p->node, &execlists->queue);
2272                 i915_priolist_free(p);
2273         }
2274
2275         /* Cancel all attached virtual engines */
2276         while ((rb = rb_first_cached(&execlists->virtual))) {
2277                 struct virtual_engine *ve =
2278                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2279
2280                 rb_erase_cached(rb, &execlists->virtual);
2281                 RB_CLEAR_NODE(rb);
2282
2283                 spin_lock(&ve->base.active.lock);
2284                 if (ve->request) {
2285                         ve->request->engine = engine;
2286                         __i915_request_submit(ve->request);
2287                         dma_fence_set_error(&ve->request->fence, -EIO);
2288                         i915_request_mark_complete(ve->request);
2289                         ve->base.execlists.queue_priority_hint = INT_MIN;
2290                         ve->request = NULL;
2291                 }
2292                 spin_unlock(&ve->base.active.lock);
2293         }
2294
2295         /* Remaining _unready_ requests will be nop'ed when submitted */
2296
2297         execlists->queue_priority_hint = INT_MIN;
2298         execlists->queue = RB_ROOT_CACHED;
2299         GEM_BUG_ON(port_isset(execlists->port));
2300
2301         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2302         execlists->tasklet.func = nop_submission_tasklet;
2303
2304         spin_unlock_irqrestore(&engine->active.lock, flags);
2305 }
2306
2307 static void execlists_reset_finish(struct intel_engine_cs *engine)
2308 {
2309         struct intel_engine_execlists * const execlists = &engine->execlists;
2310
2311         /*
2312          * After a GPU reset, we may have requests to replay. Do so now while
2313          * we still have the forcewake to be sure that the GPU is not allowed
2314          * to sleep before we restart and reload a context.
2315          */
2316         GEM_BUG_ON(!reset_in_progress(execlists));
2317         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2318                 execlists->tasklet.func(execlists->tasklet.data);
2319
2320         if (__tasklet_enable(&execlists->tasklet))
2321                 /* And kick in case we missed a new request submission. */
2322                 tasklet_hi_schedule(&execlists->tasklet);
2323         GEM_TRACE("%s: depth->%d\n", engine->name,
2324                   atomic_read(&execlists->tasklet.count));
2325 }
2326
2327 static int gen8_emit_bb_start(struct i915_request *rq,
2328                               u64 offset, u32 len,
2329                               const unsigned int flags)
2330 {
2331         u32 *cs;
2332
2333         cs = intel_ring_begin(rq, 4);
2334         if (IS_ERR(cs))
2335                 return PTR_ERR(cs);
2336
2337         /*
2338          * WaDisableCtxRestoreArbitration:bdw,chv
2339          *
2340          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2341          * particular all the gen that do not need the w/a at all!), if we
2342          * took care to make sure that on every switch into this context
2343          * (both ordinary and for preemption) that arbitrartion was enabled
2344          * we would be fine.  However, for gen8 there is another w/a that
2345          * requires us to not preempt inside GPGPU execution, so we keep
2346          * arbitration disabled for gen8 batches. Arbitration will be
2347          * re-enabled before we close the request
2348          * (engine->emit_fini_breadcrumb).
2349          */
2350         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2351
2352         /* FIXME(BDW+): Address space and security selectors. */
2353         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2354                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2355         *cs++ = lower_32_bits(offset);
2356         *cs++ = upper_32_bits(offset);
2357
2358         intel_ring_advance(rq, cs);
2359
2360         return 0;
2361 }
2362
2363 static int gen9_emit_bb_start(struct i915_request *rq,
2364                               u64 offset, u32 len,
2365                               const unsigned int flags)
2366 {
2367         u32 *cs;
2368
2369         cs = intel_ring_begin(rq, 6);
2370         if (IS_ERR(cs))
2371                 return PTR_ERR(cs);
2372
2373         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2374
2375         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2376                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2377         *cs++ = lower_32_bits(offset);
2378         *cs++ = upper_32_bits(offset);
2379
2380         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2381         *cs++ = MI_NOOP;
2382
2383         intel_ring_advance(rq, cs);
2384
2385         return 0;
2386 }
2387
2388 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2389 {
2390         ENGINE_WRITE(engine, RING_IMR,
2391                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
2392         ENGINE_POSTING_READ(engine, RING_IMR);
2393 }
2394
2395 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2396 {
2397         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2398 }
2399
2400 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2401 {
2402         u32 cmd, *cs;
2403
2404         cs = intel_ring_begin(request, 4);
2405         if (IS_ERR(cs))
2406                 return PTR_ERR(cs);
2407
2408         cmd = MI_FLUSH_DW + 1;
2409
2410         /* We always require a command barrier so that subsequent
2411          * commands, such as breadcrumb interrupts, are strictly ordered
2412          * wrt the contents of the write cache being flushed to memory
2413          * (and thus being coherent from the CPU).
2414          */
2415         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2416
2417         if (mode & EMIT_INVALIDATE) {
2418                 cmd |= MI_INVALIDATE_TLB;
2419                 if (request->engine->class == VIDEO_DECODE_CLASS)
2420                         cmd |= MI_INVALIDATE_BSD;
2421         }
2422
2423         *cs++ = cmd;
2424         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2425         *cs++ = 0; /* upper addr */
2426         *cs++ = 0; /* value */
2427         intel_ring_advance(request, cs);
2428
2429         return 0;
2430 }
2431
2432 static int gen8_emit_flush_render(struct i915_request *request,
2433                                   u32 mode)
2434 {
2435         struct intel_engine_cs *engine = request->engine;
2436         u32 scratch_addr =
2437                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2438         bool vf_flush_wa = false, dc_flush_wa = false;
2439         u32 *cs, flags = 0;
2440         int len;
2441
2442         flags |= PIPE_CONTROL_CS_STALL;
2443
2444         if (mode & EMIT_FLUSH) {
2445                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2446                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2447                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2448                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2449         }
2450
2451         if (mode & EMIT_INVALIDATE) {
2452                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2453                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2454                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2455                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2456                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2457                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2458                 flags |= PIPE_CONTROL_QW_WRITE;
2459                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2460
2461                 /*
2462                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2463                  * pipe control.
2464                  */
2465                 if (IS_GEN(request->i915, 9))
2466                         vf_flush_wa = true;
2467
2468                 /* WaForGAMHang:kbl */
2469                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2470                         dc_flush_wa = true;
2471         }
2472
2473         len = 6;
2474
2475         if (vf_flush_wa)
2476                 len += 6;
2477
2478         if (dc_flush_wa)
2479                 len += 12;
2480
2481         cs = intel_ring_begin(request, len);
2482         if (IS_ERR(cs))
2483                 return PTR_ERR(cs);
2484
2485         if (vf_flush_wa)
2486                 cs = gen8_emit_pipe_control(cs, 0, 0);
2487
2488         if (dc_flush_wa)
2489                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2490                                             0);
2491
2492         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2493
2494         if (dc_flush_wa)
2495                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2496
2497         intel_ring_advance(request, cs);
2498
2499         return 0;
2500 }
2501
2502 /*
2503  * Reserve space for 2 NOOPs at the end of each request to be
2504  * used as a workaround for not being allowed to do lite
2505  * restore with HEAD==TAIL (WaIdleLiteRestore).
2506  */
2507 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2508 {
2509         /* Ensure there's always at least one preemption point per-request. */
2510         *cs++ = MI_ARB_CHECK;
2511         *cs++ = MI_NOOP;
2512         request->wa_tail = intel_ring_offset(request, cs);
2513
2514         return cs;
2515 }
2516
2517 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2518 {
2519         cs = gen8_emit_ggtt_write(cs,
2520                                   request->fence.seqno,
2521                                   request->timeline->hwsp_offset,
2522                                   0);
2523
2524         *cs++ = MI_USER_INTERRUPT;
2525         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2526
2527         request->tail = intel_ring_offset(request, cs);
2528         assert_ring_tail_valid(request->ring, request->tail);
2529
2530         return gen8_emit_wa_tail(request, cs);
2531 }
2532
2533 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2534 {
2535         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2536         cs = gen8_emit_ggtt_write_rcs(cs,
2537                                       request->fence.seqno,
2538                                       request->timeline->hwsp_offset,
2539                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2540                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2541                                       PIPE_CONTROL_DC_FLUSH_ENABLE);
2542         cs = gen8_emit_pipe_control(cs,
2543                                     PIPE_CONTROL_FLUSH_ENABLE |
2544                                     PIPE_CONTROL_CS_STALL,
2545                                     0);
2546
2547         *cs++ = MI_USER_INTERRUPT;
2548         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2549
2550         request->tail = intel_ring_offset(request, cs);
2551         assert_ring_tail_valid(request->ring, request->tail);
2552
2553         return gen8_emit_wa_tail(request, cs);
2554 }
2555
2556 static int gen8_init_rcs_context(struct i915_request *rq)
2557 {
2558         int ret;
2559
2560         ret = intel_engine_emit_ctx_wa(rq);
2561         if (ret)
2562                 return ret;
2563
2564         ret = intel_rcs_context_init_mocs(rq);
2565         /*
2566          * Failing to program the MOCS is non-fatal.The system will not
2567          * run at peak performance. So generate an error and carry on.
2568          */
2569         if (ret)
2570                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2571
2572         return i915_gem_render_state_emit(rq);
2573 }
2574
2575 static void execlists_park(struct intel_engine_cs *engine)
2576 {
2577         intel_engine_park(engine);
2578 }
2579
2580 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2581 {
2582         engine->submit_request = execlists_submit_request;
2583         engine->cancel_requests = execlists_cancel_requests;
2584         engine->schedule = i915_schedule;
2585         engine->execlists.tasklet.func = execlists_submission_tasklet;
2586
2587         engine->reset.prepare = execlists_reset_prepare;
2588         engine->reset.reset = execlists_reset;
2589         engine->reset.finish = execlists_reset_finish;
2590
2591         engine->park = execlists_park;
2592         engine->unpark = NULL;
2593
2594         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2595         if (!intel_vgpu_active(engine->i915))
2596                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2597         if (engine->preempt_context &&
2598             HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2599                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2600 }
2601
2602 static void execlists_destroy(struct intel_engine_cs *engine)
2603 {
2604         intel_engine_cleanup_common(engine);
2605         lrc_destroy_wa_ctx(engine);
2606         kfree(engine);
2607 }
2608
2609 static void
2610 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2611 {
2612         /* Default vfuncs which can be overriden by each engine. */
2613
2614         engine->destroy = execlists_destroy;
2615         engine->resume = execlists_resume;
2616
2617         engine->reset.prepare = execlists_reset_prepare;
2618         engine->reset.reset = execlists_reset;
2619         engine->reset.finish = execlists_reset_finish;
2620
2621         engine->cops = &execlists_context_ops;
2622         engine->request_alloc = execlists_request_alloc;
2623
2624         engine->emit_flush = gen8_emit_flush;
2625         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2626         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2627
2628         engine->set_default_submission = intel_execlists_set_default_submission;
2629
2630         if (INTEL_GEN(engine->i915) < 11) {
2631                 engine->irq_enable = gen8_logical_ring_enable_irq;
2632                 engine->irq_disable = gen8_logical_ring_disable_irq;
2633         } else {
2634                 /*
2635                  * TODO: On Gen11 interrupt masks need to be clear
2636                  * to allow C6 entry. Keep interrupts enabled at
2637                  * and take the hit of generating extra interrupts
2638                  * until a more refined solution exists.
2639                  */
2640         }
2641         if (IS_GEN(engine->i915, 8))
2642                 engine->emit_bb_start = gen8_emit_bb_start;
2643         else
2644                 engine->emit_bb_start = gen9_emit_bb_start;
2645 }
2646
2647 static inline void
2648 logical_ring_default_irqs(struct intel_engine_cs *engine)
2649 {
2650         unsigned int shift = 0;
2651
2652         if (INTEL_GEN(engine->i915) < 11) {
2653                 const u8 irq_shifts[] = {
2654                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2655                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2656                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2657                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2658                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
2659                 };
2660
2661                 shift = irq_shifts[engine->id];
2662         }
2663
2664         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2665         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2666 }
2667
2668 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2669 {
2670         /* Intentionally left blank. */
2671         engine->buffer = NULL;
2672
2673         tasklet_init(&engine->execlists.tasklet,
2674                      execlists_submission_tasklet, (unsigned long)engine);
2675
2676         logical_ring_default_vfuncs(engine);
2677         logical_ring_default_irqs(engine);
2678
2679         if (engine->class == RENDER_CLASS) {
2680                 engine->init_context = gen8_init_rcs_context;
2681                 engine->emit_flush = gen8_emit_flush_render;
2682                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2683         }
2684
2685         return 0;
2686 }
2687
2688 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2689 {
2690         struct intel_engine_execlists * const execlists = &engine->execlists;
2691         struct drm_i915_private *i915 = engine->i915;
2692         struct intel_uncore *uncore = engine->uncore;
2693         u32 base = engine->mmio_base;
2694         int ret;
2695
2696         ret = intel_engine_init_common(engine);
2697         if (ret)
2698                 return ret;
2699
2700         intel_engine_init_workarounds(engine);
2701         intel_engine_init_whitelist(engine);
2702
2703         if (intel_init_workaround_bb(engine))
2704                 /*
2705                  * We continue even if we fail to initialize WA batch
2706                  * because we only expect rare glitches but nothing
2707                  * critical to prevent us from using GPU
2708                  */
2709                 DRM_ERROR("WA batch buffer initialization failed\n");
2710
2711         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2712                 execlists->submit_reg = uncore->regs +
2713                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2714                 execlists->ctrl_reg = uncore->regs +
2715                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2716         } else {
2717                 execlists->submit_reg = uncore->regs +
2718                         i915_mmio_reg_offset(RING_ELSP(base));
2719         }
2720
2721         execlists->preempt_complete_status = ~0u;
2722         if (engine->preempt_context)
2723                 execlists->preempt_complete_status =
2724                         upper_32_bits(engine->preempt_context->lrc_desc);
2725
2726         execlists->csb_status =
2727                 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2728
2729         execlists->csb_write =
2730                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2731
2732         if (INTEL_GEN(i915) < 11)
2733                 execlists->csb_size = GEN8_CSB_ENTRIES;
2734         else
2735                 execlists->csb_size = GEN11_CSB_ENTRIES;
2736
2737         reset_csb_pointers(execlists);
2738
2739         return 0;
2740 }
2741
2742 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2743 {
2744         u32 indirect_ctx_offset;
2745
2746         switch (INTEL_GEN(engine->i915)) {
2747         default:
2748                 MISSING_CASE(INTEL_GEN(engine->i915));
2749                 /* fall through */
2750         case 11:
2751                 indirect_ctx_offset =
2752                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2753                 break;
2754         case 10:
2755                 indirect_ctx_offset =
2756                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2757                 break;
2758         case 9:
2759                 indirect_ctx_offset =
2760                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2761                 break;
2762         case 8:
2763                 indirect_ctx_offset =
2764                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2765                 break;
2766         }
2767
2768         return indirect_ctx_offset;
2769 }
2770
2771 static void execlists_init_reg_state(u32 *regs,
2772                                      struct intel_context *ce,
2773                                      struct intel_engine_cs *engine,
2774                                      struct intel_ring *ring)
2775 {
2776         struct i915_ppgtt *ppgtt = i915_vm_to_ppgtt(ce->gem_context->vm);
2777         bool rcs = engine->class == RENDER_CLASS;
2778         u32 base = engine->mmio_base;
2779
2780         /*
2781          * A context is actually a big batch buffer with several
2782          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2783          * values we are setting here are only for the first context restore:
2784          * on a subsequent save, the GPU will recreate this batchbuffer with new
2785          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2786          * we are not initializing here).
2787          *
2788          * Must keep consistent with virtual_update_register_offsets().
2789          */
2790         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2791                                  MI_LRI_FORCE_POSTED;
2792
2793         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2794                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2795                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2796         if (INTEL_GEN(engine->i915) < 11) {
2797                 regs[CTX_CONTEXT_CONTROL + 1] |=
2798                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2799                                             CTX_CTRL_RS_CTX_ENABLE);
2800         }
2801         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2802         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2803         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2804         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2805                 RING_CTL_SIZE(ring->size) | RING_VALID);
2806         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2807         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2808         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2809         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2810         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2811         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2812         if (rcs) {
2813                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2814
2815                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2816                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2817                         RING_INDIRECT_CTX_OFFSET(base), 0);
2818                 if (wa_ctx->indirect_ctx.size) {
2819                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2820
2821                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2822                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2823                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2824
2825                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2826                                 intel_lr_indirect_ctx_offset(engine) << 6;
2827                 }
2828
2829                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2830                 if (wa_ctx->per_ctx.size) {
2831                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2832
2833                         regs[CTX_BB_PER_CTX_PTR + 1] =
2834                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2835                 }
2836         }
2837
2838         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2839
2840         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2841         /* PDP values well be assigned later if needed */
2842         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2843         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2844         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2845         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2846         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2847         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2848         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2849         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2850
2851         if (i915_vm_is_4lvl(&ppgtt->vm)) {
2852                 /* 64b PPGTT (48bit canonical)
2853                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2854                  * other PDP Descriptors are ignored.
2855                  */
2856                 ASSIGN_CTX_PML4(ppgtt, regs);
2857         } else {
2858                 ASSIGN_CTX_PDP(ppgtt, regs, 3);
2859                 ASSIGN_CTX_PDP(ppgtt, regs, 2);
2860                 ASSIGN_CTX_PDP(ppgtt, regs, 1);
2861                 ASSIGN_CTX_PDP(ppgtt, regs, 0);
2862         }
2863
2864         if (rcs) {
2865                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2866                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2867
2868                 i915_oa_init_reg_state(engine, ce, regs);
2869         }
2870
2871         regs[CTX_END] = MI_BATCH_BUFFER_END;
2872         if (INTEL_GEN(engine->i915) >= 10)
2873                 regs[CTX_END] |= BIT(0);
2874 }
2875
2876 static int
2877 populate_lr_context(struct intel_context *ce,
2878                     struct drm_i915_gem_object *ctx_obj,
2879                     struct intel_engine_cs *engine,
2880                     struct intel_ring *ring)
2881 {
2882         void *vaddr;
2883         u32 *regs;
2884         int ret;
2885
2886         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2887         if (IS_ERR(vaddr)) {
2888                 ret = PTR_ERR(vaddr);
2889                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2890                 return ret;
2891         }
2892
2893         if (engine->default_state) {
2894                 /*
2895                  * We only want to copy over the template context state;
2896                  * skipping over the headers reserved for GuC communication,
2897                  * leaving those as zero.
2898                  */
2899                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2900                 void *defaults;
2901
2902                 defaults = i915_gem_object_pin_map(engine->default_state,
2903                                                    I915_MAP_WB);
2904                 if (IS_ERR(defaults)) {
2905                         ret = PTR_ERR(defaults);
2906                         goto err_unpin_ctx;
2907                 }
2908
2909                 memcpy(vaddr + start, defaults + start, engine->context_size);
2910                 i915_gem_object_unpin_map(engine->default_state);
2911         }
2912
2913         /* The second page of the context object contains some fields which must
2914          * be set up prior to the first execution. */
2915         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2916         execlists_init_reg_state(regs, ce, engine, ring);
2917         if (!engine->default_state)
2918                 regs[CTX_CONTEXT_CONTROL + 1] |=
2919                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2920         if (ce->gem_context == engine->i915->preempt_context &&
2921             INTEL_GEN(engine->i915) < 11)
2922                 regs[CTX_CONTEXT_CONTROL + 1] |=
2923                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2924                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2925
2926         ret = 0;
2927 err_unpin_ctx:
2928         __i915_gem_object_flush_map(ctx_obj,
2929                                     LRC_HEADER_PAGES * PAGE_SIZE,
2930                                     engine->context_size);
2931         i915_gem_object_unpin_map(ctx_obj);
2932         return ret;
2933 }
2934
2935 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2936 {
2937         if (ctx->timeline)
2938                 return i915_timeline_get(ctx->timeline);
2939         else
2940                 return i915_timeline_create(ctx->i915, NULL);
2941 }
2942
2943 static int execlists_context_deferred_alloc(struct intel_context *ce,
2944                                             struct intel_engine_cs *engine)
2945 {
2946         struct drm_i915_gem_object *ctx_obj;
2947         struct i915_vma *vma;
2948         u32 context_size;
2949         struct intel_ring *ring;
2950         struct i915_timeline *timeline;
2951         int ret;
2952
2953         if (ce->state)
2954                 return 0;
2955
2956         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
2957
2958         /*
2959          * Before the actual start of the context image, we insert a few pages
2960          * for our own use and for sharing with the GuC.
2961          */
2962         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
2963
2964         ctx_obj = i915_gem_object_create_shmem(engine->i915, context_size);
2965         if (IS_ERR(ctx_obj))
2966                 return PTR_ERR(ctx_obj);
2967
2968         vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
2969         if (IS_ERR(vma)) {
2970                 ret = PTR_ERR(vma);
2971                 goto error_deref_obj;
2972         }
2973
2974         timeline = get_timeline(ce->gem_context);
2975         if (IS_ERR(timeline)) {
2976                 ret = PTR_ERR(timeline);
2977                 goto error_deref_obj;
2978         }
2979
2980         ring = intel_engine_create_ring(engine,
2981                                         timeline,
2982                                         ce->gem_context->ring_size);
2983         i915_timeline_put(timeline);
2984         if (IS_ERR(ring)) {
2985                 ret = PTR_ERR(ring);
2986                 goto error_deref_obj;
2987         }
2988
2989         ret = populate_lr_context(ce, ctx_obj, engine, ring);
2990         if (ret) {
2991                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
2992                 goto error_ring_free;
2993         }
2994
2995         ce->ring = ring;
2996         ce->state = vma;
2997
2998         return 0;
2999
3000 error_ring_free:
3001         intel_ring_put(ring);
3002 error_deref_obj:
3003         i915_gem_object_put(ctx_obj);
3004         return ret;
3005 }
3006
3007 static struct list_head *virtual_queue(struct virtual_engine *ve)
3008 {
3009         return &ve->base.execlists.default_priolist.requests[0];
3010 }
3011
3012 static void virtual_context_destroy(struct kref *kref)
3013 {
3014         struct virtual_engine *ve =
3015                 container_of(kref, typeof(*ve), context.ref);
3016         unsigned int n;
3017
3018         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3019         GEM_BUG_ON(ve->request);
3020         GEM_BUG_ON(ve->context.inflight);
3021
3022         for (n = 0; n < ve->num_siblings; n++) {
3023                 struct intel_engine_cs *sibling = ve->siblings[n];
3024                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3025
3026                 if (RB_EMPTY_NODE(node))
3027                         continue;
3028
3029                 spin_lock_irq(&sibling->active.lock);
3030
3031                 /* Detachment is lazily performed in the execlists tasklet */
3032                 if (!RB_EMPTY_NODE(node))
3033                         rb_erase_cached(node, &sibling->execlists.virtual);
3034
3035                 spin_unlock_irq(&sibling->active.lock);
3036         }
3037         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3038
3039         if (ve->context.state)
3040                 __execlists_context_fini(&ve->context);
3041
3042         kfree(ve->bonds);
3043         kfree(ve);
3044 }
3045
3046 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3047 {
3048         int swp;
3049
3050         /*
3051          * Pick a random sibling on starting to help spread the load around.
3052          *
3053          * New contexts are typically created with exactly the same order
3054          * of siblings, and often started in batches. Due to the way we iterate
3055          * the array of sibling when submitting requests, sibling[0] is
3056          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3057          * randomised across the system, we also help spread the load by the
3058          * first engine we inspect being different each time.
3059          *
3060          * NB This does not force us to execute on this engine, it will just
3061          * typically be the first we inspect for submission.
3062          */
3063         swp = prandom_u32_max(ve->num_siblings);
3064         if (!swp)
3065                 return;
3066
3067         swap(ve->siblings[swp], ve->siblings[0]);
3068         virtual_update_register_offsets(ve->context.lrc_reg_state,
3069                                         ve->siblings[0]);
3070 }
3071
3072 static int virtual_context_pin(struct intel_context *ce)
3073 {
3074         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3075         int err;
3076
3077         /* Note: we must use a real engine class for setting up reg state */
3078         err = __execlists_context_pin(ce, ve->siblings[0]);
3079         if (err)
3080                 return err;
3081
3082         virtual_engine_initial_hint(ve);
3083         return 0;
3084 }
3085
3086 static void virtual_context_enter(struct intel_context *ce)
3087 {
3088         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3089         unsigned int n;
3090
3091         for (n = 0; n < ve->num_siblings; n++)
3092                 intel_engine_pm_get(ve->siblings[n]);
3093 }
3094
3095 static void virtual_context_exit(struct intel_context *ce)
3096 {
3097         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3098         unsigned int n;
3099
3100         for (n = 0; n < ve->num_siblings; n++)
3101                 intel_engine_pm_put(ve->siblings[n]);
3102 }
3103
3104 static const struct intel_context_ops virtual_context_ops = {
3105         .pin = virtual_context_pin,
3106         .unpin = execlists_context_unpin,
3107
3108         .enter = virtual_context_enter,
3109         .exit = virtual_context_exit,
3110
3111         .destroy = virtual_context_destroy,
3112 };
3113
3114 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3115 {
3116         struct i915_request *rq;
3117         intel_engine_mask_t mask;
3118
3119         rq = READ_ONCE(ve->request);
3120         if (!rq)
3121                 return 0;
3122
3123         /* The rq is ready for submission; rq->execution_mask is now stable. */
3124         mask = rq->execution_mask;
3125         if (unlikely(!mask)) {
3126                 /* Invalid selection, submit to a random engine in error */
3127                 i915_request_skip(rq, -ENODEV);
3128                 mask = ve->siblings[0]->mask;
3129         }
3130
3131         GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3132                   ve->base.name,
3133                   rq->fence.context, rq->fence.seqno,
3134                   mask, ve->base.execlists.queue_priority_hint);
3135
3136         return mask;
3137 }
3138
3139 static void virtual_submission_tasklet(unsigned long data)
3140 {
3141         struct virtual_engine * const ve = (struct virtual_engine *)data;
3142         const int prio = ve->base.execlists.queue_priority_hint;
3143         intel_engine_mask_t mask;
3144         unsigned int n;
3145
3146         rcu_read_lock();
3147         mask = virtual_submission_mask(ve);
3148         rcu_read_unlock();
3149         if (unlikely(!mask))
3150                 return;
3151
3152         local_irq_disable();
3153         for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3154                 struct intel_engine_cs *sibling = ve->siblings[n];
3155                 struct ve_node * const node = &ve->nodes[sibling->id];
3156                 struct rb_node **parent, *rb;
3157                 bool first;
3158
3159                 if (unlikely(!(mask & sibling->mask))) {
3160                         if (!RB_EMPTY_NODE(&node->rb)) {
3161                                 spin_lock(&sibling->active.lock);
3162                                 rb_erase_cached(&node->rb,
3163                                                 &sibling->execlists.virtual);
3164                                 RB_CLEAR_NODE(&node->rb);
3165                                 spin_unlock(&sibling->active.lock);
3166                         }
3167                         continue;
3168                 }
3169
3170                 spin_lock(&sibling->active.lock);
3171
3172                 if (!RB_EMPTY_NODE(&node->rb)) {
3173                         /*
3174                          * Cheat and avoid rebalancing the tree if we can
3175                          * reuse this node in situ.
3176                          */
3177                         first = rb_first_cached(&sibling->execlists.virtual) ==
3178                                 &node->rb;
3179                         if (prio == node->prio || (prio > node->prio && first))
3180                                 goto submit_engine;
3181
3182                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3183                 }
3184
3185                 rb = NULL;
3186                 first = true;
3187                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3188                 while (*parent) {
3189                         struct ve_node *other;
3190
3191                         rb = *parent;
3192                         other = rb_entry(rb, typeof(*other), rb);
3193                         if (prio > other->prio) {
3194                                 parent = &rb->rb_left;
3195                         } else {
3196                                 parent = &rb->rb_right;
3197                                 first = false;
3198                         }
3199                 }
3200
3201                 rb_link_node(&node->rb, rb, parent);
3202                 rb_insert_color_cached(&node->rb,
3203                                        &sibling->execlists.virtual,
3204                                        first);
3205
3206 submit_engine:
3207                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3208                 node->prio = prio;
3209                 if (first && prio > sibling->execlists.queue_priority_hint) {
3210                         sibling->execlists.queue_priority_hint = prio;
3211                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3212                 }
3213
3214                 spin_unlock(&sibling->active.lock);
3215         }
3216         local_irq_enable();
3217 }
3218
3219 static void virtual_submit_request(struct i915_request *rq)
3220 {
3221         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3222
3223         GEM_TRACE("%s: rq=%llx:%lld\n",
3224                   ve->base.name,
3225                   rq->fence.context,
3226                   rq->fence.seqno);
3227
3228         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3229
3230         GEM_BUG_ON(ve->request);
3231         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3232
3233         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3234         WRITE_ONCE(ve->request, rq);
3235
3236         list_move_tail(&rq->sched.link, virtual_queue(ve));
3237
3238         tasklet_schedule(&ve->base.execlists.tasklet);
3239 }
3240
3241 static struct ve_bond *
3242 virtual_find_bond(struct virtual_engine *ve,
3243                   const struct intel_engine_cs *master)
3244 {
3245         int i;
3246
3247         for (i = 0; i < ve->num_bonds; i++) {
3248                 if (ve->bonds[i].master == master)
3249                         return &ve->bonds[i];
3250         }
3251
3252         return NULL;
3253 }
3254
3255 static void
3256 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3257 {
3258         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3259         struct ve_bond *bond;
3260
3261         bond = virtual_find_bond(ve, to_request(signal)->engine);
3262         if (bond) {
3263                 intel_engine_mask_t old, new, cmp;
3264
3265                 cmp = READ_ONCE(rq->execution_mask);
3266                 do {
3267                         old = cmp;
3268                         new = cmp & bond->sibling_mask;
3269                 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3270         }
3271 }
3272
3273 struct intel_context *
3274 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3275                                struct intel_engine_cs **siblings,
3276                                unsigned int count)
3277 {
3278         struct virtual_engine *ve;
3279         unsigned int n;
3280         int err;
3281
3282         if (count == 0)
3283                 return ERR_PTR(-EINVAL);
3284
3285         if (count == 1)
3286                 return intel_context_create(ctx, siblings[0]);
3287
3288         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3289         if (!ve)
3290                 return ERR_PTR(-ENOMEM);
3291
3292         ve->base.i915 = ctx->i915;
3293         ve->base.id = -1;
3294         ve->base.class = OTHER_CLASS;
3295         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3296         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3297         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3298
3299         /*
3300          * The decision on whether to submit a request using semaphores
3301          * depends on the saturated state of the engine. We only compute
3302          * this during HW submission of the request, and we need for this
3303          * state to be globally applied to all requests being submitted
3304          * to this engine. Virtual engines encompass more than one physical
3305          * engine and so we cannot accurately tell in advance if one of those
3306          * engines is already saturated and so cannot afford to use a semaphore
3307          * and be pessimized in priority for doing so -- if we are the only
3308          * context using semaphores after all other clients have stopped, we
3309          * will be starved on the saturated system. Such a global switch for
3310          * semaphores is less than ideal, but alas is the current compromise.
3311          */
3312         ve->base.saturated = ALL_ENGINES;
3313
3314         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3315
3316         intel_engine_init_active(&ve->base, ENGINE_VIRTUAL);
3317
3318         intel_engine_init_execlists(&ve->base);
3319
3320         ve->base.cops = &virtual_context_ops;
3321         ve->base.request_alloc = execlists_request_alloc;
3322
3323         ve->base.schedule = i915_schedule;
3324         ve->base.submit_request = virtual_submit_request;
3325         ve->base.bond_execute = virtual_bond_execute;
3326
3327         INIT_LIST_HEAD(virtual_queue(ve));
3328         ve->base.execlists.queue_priority_hint = INT_MIN;
3329         tasklet_init(&ve->base.execlists.tasklet,
3330                      virtual_submission_tasklet,
3331                      (unsigned long)ve);
3332
3333         intel_context_init(&ve->context, ctx, &ve->base);
3334
3335         for (n = 0; n < count; n++) {
3336                 struct intel_engine_cs *sibling = siblings[n];
3337
3338                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3339                 if (sibling->mask & ve->base.mask) {
3340                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3341                                   sibling->name);
3342                         err = -EINVAL;
3343                         goto err_put;
3344                 }
3345
3346                 /*
3347                  * The virtual engine implementation is tightly coupled to
3348                  * the execlists backend -- we push out request directly
3349                  * into a tree inside each physical engine. We could support
3350                  * layering if we handle cloning of the requests and
3351                  * submitting a copy into each backend.
3352                  */
3353                 if (sibling->execlists.tasklet.func !=
3354                     execlists_submission_tasklet) {
3355                         err = -ENODEV;
3356                         goto err_put;
3357                 }
3358
3359                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3360                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3361
3362                 ve->siblings[ve->num_siblings++] = sibling;
3363                 ve->base.mask |= sibling->mask;
3364
3365                 /*
3366                  * All physical engines must be compatible for their emission
3367                  * functions (as we build the instructions during request
3368                  * construction and do not alter them before submission
3369                  * on the physical engine). We use the engine class as a guide
3370                  * here, although that could be refined.
3371                  */
3372                 if (ve->base.class != OTHER_CLASS) {
3373                         if (ve->base.class != sibling->class) {
3374                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3375                                           sibling->class, ve->base.class);
3376                                 err = -EINVAL;
3377                                 goto err_put;
3378                         }
3379                         continue;
3380                 }
3381
3382                 ve->base.class = sibling->class;
3383                 ve->base.uabi_class = sibling->uabi_class;
3384                 snprintf(ve->base.name, sizeof(ve->base.name),
3385                          "v%dx%d", ve->base.class, count);
3386                 ve->base.context_size = sibling->context_size;
3387
3388                 ve->base.emit_bb_start = sibling->emit_bb_start;
3389                 ve->base.emit_flush = sibling->emit_flush;
3390                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3391                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3392                 ve->base.emit_fini_breadcrumb_dw =
3393                         sibling->emit_fini_breadcrumb_dw;
3394         }
3395
3396         return &ve->context;
3397
3398 err_put:
3399         intel_context_put(&ve->context);
3400         return ERR_PTR(err);
3401 }
3402
3403 struct intel_context *
3404 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3405                               struct intel_engine_cs *src)
3406 {
3407         struct virtual_engine *se = to_virtual_engine(src);
3408         struct intel_context *dst;
3409
3410         dst = intel_execlists_create_virtual(ctx,
3411                                              se->siblings,
3412                                              se->num_siblings);
3413         if (IS_ERR(dst))
3414                 return dst;
3415
3416         if (se->num_bonds) {
3417                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3418
3419                 de->bonds = kmemdup(se->bonds,
3420                                     sizeof(*se->bonds) * se->num_bonds,
3421                                     GFP_KERNEL);
3422                 if (!de->bonds) {
3423                         intel_context_put(dst);
3424                         return ERR_PTR(-ENOMEM);
3425                 }
3426
3427                 de->num_bonds = se->num_bonds;
3428         }
3429
3430         return dst;
3431 }
3432
3433 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3434                                      const struct intel_engine_cs *master,
3435                                      const struct intel_engine_cs *sibling)
3436 {
3437         struct virtual_engine *ve = to_virtual_engine(engine);
3438         struct ve_bond *bond;
3439         int n;
3440
3441         /* Sanity check the sibling is part of the virtual engine */
3442         for (n = 0; n < ve->num_siblings; n++)
3443                 if (sibling == ve->siblings[n])
3444                         break;
3445         if (n == ve->num_siblings)
3446                 return -EINVAL;
3447
3448         bond = virtual_find_bond(ve, master);
3449         if (bond) {
3450                 bond->sibling_mask |= sibling->mask;
3451                 return 0;
3452         }
3453
3454         bond = krealloc(ve->bonds,
3455                         sizeof(*bond) * (ve->num_bonds + 1),
3456                         GFP_KERNEL);
3457         if (!bond)
3458                 return -ENOMEM;
3459
3460         bond[ve->num_bonds].master = master;
3461         bond[ve->num_bonds].sibling_mask = sibling->mask;
3462
3463         ve->bonds = bond;
3464         ve->num_bonds++;
3465
3466         return 0;
3467 }
3468
3469 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3470                                    struct drm_printer *m,
3471                                    void (*show_request)(struct drm_printer *m,
3472                                                         struct i915_request *rq,
3473                                                         const char *prefix),
3474                                    unsigned int max)
3475 {
3476         const struct intel_engine_execlists *execlists = &engine->execlists;
3477         struct i915_request *rq, *last;
3478         unsigned long flags;
3479         unsigned int count;
3480         struct rb_node *rb;
3481
3482         spin_lock_irqsave(&engine->active.lock, flags);
3483
3484         last = NULL;
3485         count = 0;
3486         list_for_each_entry(rq, &engine->active.requests, sched.link) {
3487                 if (count++ < max - 1)
3488                         show_request(m, rq, "\t\tE ");
3489                 else
3490                         last = rq;
3491         }
3492         if (last) {
3493                 if (count > max) {
3494                         drm_printf(m,
3495                                    "\t\t...skipping %d executing requests...\n",
3496                                    count - max);
3497                 }
3498                 show_request(m, last, "\t\tE ");
3499         }
3500
3501         last = NULL;
3502         count = 0;
3503         if (execlists->queue_priority_hint != INT_MIN)
3504                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3505                            execlists->queue_priority_hint);
3506         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3507                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3508                 int i;
3509
3510                 priolist_for_each_request(rq, p, i) {
3511                         if (count++ < max - 1)
3512                                 show_request(m, rq, "\t\tQ ");
3513                         else
3514                                 last = rq;
3515                 }
3516         }
3517         if (last) {
3518                 if (count > max) {
3519                         drm_printf(m,
3520                                    "\t\t...skipping %d queued requests...\n",
3521                                    count - max);
3522                 }
3523                 show_request(m, last, "\t\tQ ");
3524         }
3525
3526         last = NULL;
3527         count = 0;
3528         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3529                 struct virtual_engine *ve =
3530                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3531                 struct i915_request *rq = READ_ONCE(ve->request);
3532
3533                 if (rq) {
3534                         if (count++ < max - 1)
3535                                 show_request(m, rq, "\t\tV ");
3536                         else
3537                                 last = rq;
3538                 }
3539         }
3540         if (last) {
3541                 if (count > max) {
3542                         drm_printf(m,
3543                                    "\t\t...skipping %d virtual requests...\n",
3544                                    count - max);
3545                 }
3546                 show_request(m, last, "\t\tV ");
3547         }
3548
3549         spin_unlock_irqrestore(&engine->active.lock, flags);
3550 }
3551
3552 void intel_lr_context_reset(struct intel_engine_cs *engine,
3553                             struct intel_context *ce,
3554                             u32 head,
3555                             bool scrub)
3556 {
3557         /*
3558          * We want a simple context + ring to execute the breadcrumb update.
3559          * We cannot rely on the context being intact across the GPU hang,
3560          * so clear it and rebuild just what we need for the breadcrumb.
3561          * All pending requests for this context will be zapped, and any
3562          * future request will be after userspace has had the opportunity
3563          * to recreate its own state.
3564          */
3565         if (scrub) {
3566                 u32 *regs = ce->lrc_reg_state;
3567
3568                 if (engine->pinned_default_state) {
3569                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
3570                                engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3571                                engine->context_size - PAGE_SIZE);
3572                 }
3573                 execlists_init_reg_state(regs, ce, engine, ce->ring);
3574         }
3575
3576         /* Rerun the request; its payload has been neutered (if guilty). */
3577         ce->ring->head = head;
3578         intel_ring_update_space(ce->ring);
3579
3580         __execlists_update_reg_state(ce, engine);
3581 }
3582
3583 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3584 #include "selftest_lrc.c"
3585 #endif