Merge tag 'drm-intel-next-2019-05-24' of git://anongit.freedesktop.org/drm/drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_lrc.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Ben Widawsky <ben@bwidawsk.net>
25  *    Michel Thierry <michel.thierry@intel.com>
26  *    Thomas Daniel <thomas.daniel@intel.com>
27  *    Oscar Mateo <oscar.mateo@intel.com>
28  *
29  */
30
31 /**
32  * DOC: Logical Rings, Logical Ring Contexts and Execlists
33  *
34  * Motivation:
35  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
36  * These expanded contexts enable a number of new abilities, especially
37  * "Execlists" (also implemented in this file).
38  *
39  * One of the main differences with the legacy HW contexts is that logical
40  * ring contexts incorporate many more things to the context's state, like
41  * PDPs or ringbuffer control registers:
42  *
43  * The reason why PDPs are included in the context is straightforward: as
44  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
45  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
46  * instead, the GPU will do it for you on the context switch.
47  *
48  * But, what about the ringbuffer control registers (head, tail, etc..)?
49  * shouldn't we just need a set of those per engine command streamer? This is
50  * where the name "Logical Rings" starts to make sense: by virtualizing the
51  * rings, the engine cs shifts to a new "ring buffer" with every context
52  * switch. When you want to submit a workload to the GPU you: A) choose your
53  * context, B) find its appropriate virtualized ring, C) write commands to it
54  * and then, finally, D) tell the GPU to switch to that context.
55  *
56  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
57  * to a contexts is via a context execution list, ergo "Execlists".
58  *
59  * LRC implementation:
60  * Regarding the creation of contexts, we have:
61  *
62  * - One global default context.
63  * - One local default context for each opened fd.
64  * - One local extra context for each context create ioctl call.
65  *
66  * Now that ringbuffers belong per-context (and not per-engine, like before)
67  * and that contexts are uniquely tied to a given engine (and not reusable,
68  * like before) we need:
69  *
70  * - One ringbuffer per-engine inside each context.
71  * - One backing object per-engine inside each context.
72  *
73  * The global default context starts its life with these new objects fully
74  * allocated and populated. The local default context for each opened fd is
75  * more complex, because we don't know at creation time which engine is going
76  * to use them. To handle this, we have implemented a deferred creation of LR
77  * contexts:
78  *
79  * The local context starts its life as a hollow or blank holder, that only
80  * gets populated for a given engine once we receive an execbuffer. If later
81  * on we receive another execbuffer ioctl for the same context but a different
82  * engine, we allocate/populate a new ringbuffer and context backing object and
83  * so on.
84  *
85  * Finally, regarding local contexts created using the ioctl call: as they are
86  * only allowed with the render ring, we can allocate & populate them right
87  * away (no need to defer anything, at least for now).
88  *
89  * Execlists implementation:
90  * Execlists are the new method by which, on gen8+ hardware, workloads are
91  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
92  * This method works as follows:
93  *
94  * When a request is committed, its commands (the BB start and any leading or
95  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
96  * for the appropriate context. The tail pointer in the hardware context is not
97  * updated at this time, but instead, kept by the driver in the ringbuffer
98  * structure. A structure representing this request is added to a request queue
99  * for the appropriate engine: this structure contains a copy of the context's
100  * tail after the request was written to the ring buffer and a pointer to the
101  * context itself.
102  *
103  * If the engine's request queue was empty before the request was added, the
104  * queue is processed immediately. Otherwise the queue will be processed during
105  * a context switch interrupt. In any case, elements on the queue will get sent
106  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
107  * globally unique 20-bits submission ID.
108  *
109  * When execution of a request completes, the GPU updates the context status
110  * buffer with a context complete event and generates a context switch interrupt.
111  * During the interrupt handling, the driver examines the events in the buffer:
112  * for each context complete event, if the announced ID matches that on the head
113  * of the request queue, then that request is retired and removed from the queue.
114  *
115  * After processing, if any requests were retired and the queue is not empty
116  * then a new execution list can be submitted. The two requests at the front of
117  * the queue are next to be submitted but since a context may not occur twice in
118  * an execution list, if subsequent requests have the same ID as the first then
119  * the two requests must be combined. This is done simply by discarding requests
120  * at the head of the queue until either only one requests is left (in which case
121  * we use a NULL second context) or the first two requests have unique IDs.
122  *
123  * By always executing the first two requests in the queue the driver ensures
124  * that the GPU is kept as busy as possible. In the case where a single context
125  * completes but a second context is still executing, the request for this second
126  * context will be at the head of the queue when we remove the first one. This
127  * request will then be resubmitted along with a new request for a different context,
128  * which will cause the hardware to continue executing the second request and queue
129  * the new request (the GPU detects the condition of a context getting preempted
130  * with the same context and optimizes the context switch flow by not doing
131  * preemption, but just sampling the new tail pointer).
132  *
133  */
134 #include <linux/interrupt.h>
135
136 #include "i915_drv.h"
137 #include "i915_gem_render_state.h"
138 #include "i915_vgpu.h"
139 #include "intel_engine_pm.h"
140 #include "intel_lrc_reg.h"
141 #include "intel_mocs.h"
142 #include "intel_reset.h"
143 #include "intel_workarounds.h"
144
145 #define RING_EXECLIST_QFULL             (1 << 0x2)
146 #define RING_EXECLIST1_VALID            (1 << 0x3)
147 #define RING_EXECLIST0_VALID            (1 << 0x4)
148 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
149 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
150 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
151
152 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
153 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
154 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
155 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
156 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
157 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
158
159 #define GEN8_CTX_STATUS_COMPLETED_MASK \
160          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
161
162 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
163 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
164 #define WA_TAIL_DWORDS 2
165 #define WA_TAIL_BYTES (sizeof(u32) * WA_TAIL_DWORDS)
166
167 struct virtual_engine {
168         struct intel_engine_cs base;
169         struct intel_context context;
170
171         /*
172          * We allow only a single request through the virtual engine at a time
173          * (each request in the timeline waits for the completion fence of
174          * the previous before being submitted). By restricting ourselves to
175          * only submitting a single request, each request is placed on to a
176          * physical to maximise load spreading (by virtue of the late greedy
177          * scheduling -- each real engine takes the next available request
178          * upon idling).
179          */
180         struct i915_request *request;
181
182         /*
183          * We keep a rbtree of available virtual engines inside each physical
184          * engine, sorted by priority. Here we preallocate the nodes we need
185          * for the virtual engine, indexed by physical_engine->id.
186          */
187         struct ve_node {
188                 struct rb_node rb;
189                 int prio;
190         } nodes[I915_NUM_ENGINES];
191
192         /*
193          * Keep track of bonded pairs -- restrictions upon on our selection
194          * of physical engines any particular request may be submitted to.
195          * If we receive a submit-fence from a master engine, we will only
196          * use one of sibling_mask physical engines.
197          */
198         struct ve_bond {
199                 const struct intel_engine_cs *master;
200                 intel_engine_mask_t sibling_mask;
201         } *bonds;
202         unsigned int num_bonds;
203
204         /* And finally, which physical engines this virtual engine maps onto. */
205         unsigned int num_siblings;
206         struct intel_engine_cs *siblings[0];
207 };
208
209 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
210 {
211         GEM_BUG_ON(!intel_engine_is_virtual(engine));
212         return container_of(engine, struct virtual_engine, base);
213 }
214
215 static int execlists_context_deferred_alloc(struct intel_context *ce,
216                                             struct intel_engine_cs *engine);
217 static void execlists_init_reg_state(u32 *reg_state,
218                                      struct intel_context *ce,
219                                      struct intel_engine_cs *engine,
220                                      struct intel_ring *ring);
221
222 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
223 {
224         return rb_entry(rb, struct i915_priolist, node);
225 }
226
227 static inline int rq_prio(const struct i915_request *rq)
228 {
229         return rq->sched.attr.priority;
230 }
231
232 static int effective_prio(const struct i915_request *rq)
233 {
234         int prio = rq_prio(rq);
235
236         /*
237          * On unwinding the active request, we give it a priority bump
238          * if it has completed waiting on any semaphore. If we know that
239          * the request has already started, we can prevent an unwanted
240          * preempt-to-idle cycle by taking that into account now.
241          */
242         if (__i915_request_has_started(rq))
243                 prio |= I915_PRIORITY_NOSEMAPHORE;
244
245         /* Restrict mere WAIT boosts from triggering preemption */
246         return prio | __NO_PREEMPTION;
247 }
248
249 static int queue_prio(const struct intel_engine_execlists *execlists)
250 {
251         struct i915_priolist *p;
252         struct rb_node *rb;
253
254         rb = rb_first_cached(&execlists->queue);
255         if (!rb)
256                 return INT_MIN;
257
258         /*
259          * As the priolist[] are inverted, with the highest priority in [0],
260          * we have to flip the index value to become priority.
261          */
262         p = to_priolist(rb);
263         return ((p->priority + 1) << I915_USER_PRIORITY_SHIFT) - ffs(p->used);
264 }
265
266 static inline bool need_preempt(const struct intel_engine_cs *engine,
267                                 const struct i915_request *rq,
268                                 struct rb_node *rb)
269 {
270         int last_prio;
271
272         if (!engine->preempt_context)
273                 return false;
274
275         if (i915_request_completed(rq))
276                 return false;
277
278         /*
279          * Check if the current priority hint merits a preemption attempt.
280          *
281          * We record the highest value priority we saw during rescheduling
282          * prior to this dequeue, therefore we know that if it is strictly
283          * less than the current tail of ESLP[0], we do not need to force
284          * a preempt-to-idle cycle.
285          *
286          * However, the priority hint is a mere hint that we may need to
287          * preempt. If that hint is stale or we may be trying to preempt
288          * ourselves, ignore the request.
289          */
290         last_prio = effective_prio(rq);
291         if (!i915_scheduler_need_preempt(engine->execlists.queue_priority_hint,
292                                          last_prio))
293                 return false;
294
295         /*
296          * Check against the first request in ELSP[1], it will, thanks to the
297          * power of PI, be the highest priority of that context.
298          */
299         if (!list_is_last(&rq->link, &engine->timeline.requests) &&
300             rq_prio(list_next_entry(rq, link)) > last_prio)
301                 return true;
302
303         if (rb) {
304                 struct virtual_engine *ve =
305                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
306                 bool preempt = false;
307
308                 if (engine == ve->siblings[0]) { /* only preempt one sibling */
309                         struct i915_request *next;
310
311                         rcu_read_lock();
312                         next = READ_ONCE(ve->request);
313                         if (next)
314                                 preempt = rq_prio(next) > last_prio;
315                         rcu_read_unlock();
316                 }
317
318                 if (preempt)
319                         return preempt;
320         }
321
322         /*
323          * If the inflight context did not trigger the preemption, then maybe
324          * it was the set of queued requests? Pick the highest priority in
325          * the queue (the first active priolist) and see if it deserves to be
326          * running instead of ELSP[0].
327          *
328          * The highest priority request in the queue can not be either
329          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
330          * context, it's priority would not exceed ELSP[0] aka last_prio.
331          */
332         return queue_prio(&engine->execlists) > last_prio;
333 }
334
335 __maybe_unused static inline bool
336 assert_priority_queue(const struct i915_request *prev,
337                       const struct i915_request *next)
338 {
339         const struct intel_engine_execlists *execlists =
340                 &prev->engine->execlists;
341
342         /*
343          * Without preemption, the prev may refer to the still active element
344          * which we refuse to let go.
345          *
346          * Even with preemption, there are times when we think it is better not
347          * to preempt and leave an ostensibly lower priority request in flight.
348          */
349         if (port_request(execlists->port) == prev)
350                 return true;
351
352         return rq_prio(prev) >= rq_prio(next);
353 }
354
355 /*
356  * The context descriptor encodes various attributes of a context,
357  * including its GTT address and some flags. Because it's fairly
358  * expensive to calculate, we'll just do it once and cache the result,
359  * which remains valid until the context is unpinned.
360  *
361  * This is what a descriptor looks like, from LSB to MSB::
362  *
363  *      bits  0-11:    flags, GEN8_CTX_* (cached in ctx->desc_template)
364  *      bits 12-31:    LRCA, GTT address of (the HWSP of) this context
365  *      bits 32-52:    ctx ID, a globally unique tag (highest bit used by GuC)
366  *      bits 53-54:    mbz, reserved for use by hardware
367  *      bits 55-63:    group ID, currently unused and set to 0
368  *
369  * Starting from Gen11, the upper dword of the descriptor has a new format:
370  *
371  *      bits 32-36:    reserved
372  *      bits 37-47:    SW context ID
373  *      bits 48:53:    engine instance
374  *      bit 54:        mbz, reserved for use by hardware
375  *      bits 55-60:    SW counter
376  *      bits 61-63:    engine class
377  *
378  * engine info, SW context ID and SW counter need to form a unique number
379  * (Context ID) per lrc.
380  */
381 static u64
382 lrc_descriptor(struct intel_context *ce, struct intel_engine_cs *engine)
383 {
384         struct i915_gem_context *ctx = ce->gem_context;
385         u64 desc;
386
387         BUILD_BUG_ON(MAX_CONTEXT_HW_ID > (BIT(GEN8_CTX_ID_WIDTH)));
388         BUILD_BUG_ON(GEN11_MAX_CONTEXT_HW_ID > (BIT(GEN11_SW_CTX_ID_WIDTH)));
389
390         desc = ctx->desc_template;                              /* bits  0-11 */
391         GEM_BUG_ON(desc & GENMASK_ULL(63, 12));
392
393         desc |= i915_ggtt_offset(ce->state) + LRC_HEADER_PAGES * PAGE_SIZE;
394                                                                 /* bits 12-31 */
395         GEM_BUG_ON(desc & GENMASK_ULL(63, 32));
396
397         /*
398          * The following 32bits are copied into the OA reports (dword 2).
399          * Consider updating oa_get_render_ctx_id in i915_perf.c when changing
400          * anything below.
401          */
402         if (INTEL_GEN(engine->i915) >= 11) {
403                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN11_SW_CTX_ID_WIDTH));
404                 desc |= (u64)ctx->hw_id << GEN11_SW_CTX_ID_SHIFT;
405                                                                 /* bits 37-47 */
406
407                 desc |= (u64)engine->instance << GEN11_ENGINE_INSTANCE_SHIFT;
408                                                                 /* bits 48-53 */
409
410                 /* TODO: decide what to do with SW counter (bits 55-60) */
411
412                 desc |= (u64)engine->class << GEN11_ENGINE_CLASS_SHIFT;
413                                                                 /* bits 61-63 */
414         } else {
415                 GEM_BUG_ON(ctx->hw_id >= BIT(GEN8_CTX_ID_WIDTH));
416                 desc |= (u64)ctx->hw_id << GEN8_CTX_ID_SHIFT;   /* bits 32-52 */
417         }
418
419         return desc;
420 }
421
422 static void unwind_wa_tail(struct i915_request *rq)
423 {
424         rq->tail = intel_ring_wrap(rq->ring, rq->wa_tail - WA_TAIL_BYTES);
425         assert_ring_tail_valid(rq->ring, rq->tail);
426 }
427
428 static struct i915_request *
429 __unwind_incomplete_requests(struct intel_engine_cs *engine)
430 {
431         struct i915_request *rq, *rn, *active = NULL;
432         struct list_head *uninitialized_var(pl);
433         int prio = I915_PRIORITY_INVALID;
434
435         lockdep_assert_held(&engine->timeline.lock);
436
437         list_for_each_entry_safe_reverse(rq, rn,
438                                          &engine->timeline.requests,
439                                          link) {
440                 struct intel_engine_cs *owner;
441
442                 if (i915_request_completed(rq))
443                         break;
444
445                 __i915_request_unsubmit(rq);
446                 unwind_wa_tail(rq);
447
448                 GEM_BUG_ON(rq->hw_context->active);
449
450                 /*
451                  * Push the request back into the queue for later resubmission.
452                  * If this request is not native to this physical engine (i.e.
453                  * it came from a virtual source), push it back onto the virtual
454                  * engine so that it can be moved across onto another physical
455                  * engine as load dictates.
456                  */
457                 owner = rq->hw_context->engine;
458                 if (likely(owner == engine)) {
459                         GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
460                         if (rq_prio(rq) != prio) {
461                                 prio = rq_prio(rq);
462                                 pl = i915_sched_lookup_priolist(engine, prio);
463                         }
464                         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
465
466                         list_add(&rq->sched.link, pl);
467                         active = rq;
468                 } else {
469                         rq->engine = owner;
470                         owner->submit_request(rq);
471                         active = NULL;
472                 }
473         }
474
475         return active;
476 }
477
478 struct i915_request *
479 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
480 {
481         struct intel_engine_cs *engine =
482                 container_of(execlists, typeof(*engine), execlists);
483
484         return __unwind_incomplete_requests(engine);
485 }
486
487 static inline void
488 execlists_context_status_change(struct i915_request *rq, unsigned long status)
489 {
490         /*
491          * Only used when GVT-g is enabled now. When GVT-g is disabled,
492          * The compiler should eliminate this function as dead-code.
493          */
494         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
495                 return;
496
497         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
498                                    status, rq);
499 }
500
501 inline void
502 execlists_user_begin(struct intel_engine_execlists *execlists,
503                      const struct execlist_port *port)
504 {
505         execlists_set_active_once(execlists, EXECLISTS_ACTIVE_USER);
506 }
507
508 inline void
509 execlists_user_end(struct intel_engine_execlists *execlists)
510 {
511         execlists_clear_active(execlists, EXECLISTS_ACTIVE_USER);
512 }
513
514 static inline void
515 execlists_context_schedule_in(struct i915_request *rq)
516 {
517         GEM_BUG_ON(rq->hw_context->active);
518
519         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
520         intel_engine_context_in(rq->engine);
521         rq->hw_context->active = rq->engine;
522 }
523
524 static void kick_siblings(struct i915_request *rq)
525 {
526         struct virtual_engine *ve = to_virtual_engine(rq->hw_context->engine);
527         struct i915_request *next = READ_ONCE(ve->request);
528
529         if (next && next->execution_mask & ~rq->execution_mask)
530                 tasklet_schedule(&ve->base.execlists.tasklet);
531 }
532
533 static inline void
534 execlists_context_schedule_out(struct i915_request *rq, unsigned long status)
535 {
536         rq->hw_context->active = NULL;
537         intel_engine_context_out(rq->engine);
538         execlists_context_status_change(rq, status);
539         trace_i915_request_out(rq);
540
541         /*
542          * If this is part of a virtual engine, its next request may have
543          * been blocked waiting for access to the active context. We have
544          * to kick all the siblings again in case we need to switch (e.g.
545          * the next request is not runnable on this engine). Hopefully,
546          * we will already have submitted the next request before the
547          * tasklet runs and do not need to rebuild each virtual tree
548          * and kick everyone again.
549          */
550         if (rq->engine != rq->hw_context->engine)
551                 kick_siblings(rq);
552 }
553
554 static u64 execlists_update_context(struct i915_request *rq)
555 {
556         struct intel_context *ce = rq->hw_context;
557
558         ce->lrc_reg_state[CTX_RING_TAIL + 1] =
559                 intel_ring_set_tail(rq->ring, rq->tail);
560
561         /*
562          * Make sure the context image is complete before we submit it to HW.
563          *
564          * Ostensibly, writes (including the WCB) should be flushed prior to
565          * an uncached write such as our mmio register access, the empirical
566          * evidence (esp. on Braswell) suggests that the WC write into memory
567          * may not be visible to the HW prior to the completion of the UC
568          * register write and that we may begin execution from the context
569          * before its image is complete leading to invalid PD chasing.
570          *
571          * Furthermore, Braswell, at least, wants a full mb to be sure that
572          * the writes are coherent in memory (visible to the GPU) prior to
573          * execution, and not just visible to other CPUs (as is the result of
574          * wmb).
575          */
576         mb();
577         return ce->lrc_desc;
578 }
579
580 static inline void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
581 {
582         if (execlists->ctrl_reg) {
583                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
584                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
585         } else {
586                 writel(upper_32_bits(desc), execlists->submit_reg);
587                 writel(lower_32_bits(desc), execlists->submit_reg);
588         }
589 }
590
591 static void execlists_submit_ports(struct intel_engine_cs *engine)
592 {
593         struct intel_engine_execlists *execlists = &engine->execlists;
594         struct execlist_port *port = execlists->port;
595         unsigned int n;
596
597         /*
598          * We can skip acquiring intel_runtime_pm_get() here as it was taken
599          * on our behalf by the request (see i915_gem_mark_busy()) and it will
600          * not be relinquished until the device is idle (see
601          * i915_gem_idle_work_handler()). As a precaution, we make sure
602          * that all ELSP are drained i.e. we have processed the CSB,
603          * before allowing ourselves to idle and calling intel_runtime_pm_put().
604          */
605         GEM_BUG_ON(!intel_wakeref_active(&engine->wakeref));
606
607         /*
608          * ELSQ note: the submit queue is not cleared after being submitted
609          * to the HW so we need to make sure we always clean it up. This is
610          * currently ensured by the fact that we always write the same number
611          * of elsq entries, keep this in mind before changing the loop below.
612          */
613         for (n = execlists_num_ports(execlists); n--; ) {
614                 struct i915_request *rq;
615                 unsigned int count;
616                 u64 desc;
617
618                 rq = port_unpack(&port[n], &count);
619                 if (rq) {
620                         GEM_BUG_ON(count > !n);
621                         if (!count++)
622                                 execlists_context_schedule_in(rq);
623                         port_set(&port[n], port_pack(rq, count));
624                         desc = execlists_update_context(rq);
625                         GEM_DEBUG_EXEC(port[n].context_id = upper_32_bits(desc));
626
627                         GEM_TRACE("%s in[%d]:  ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
628                                   engine->name, n,
629                                   port[n].context_id, count,
630                                   rq->fence.context, rq->fence.seqno,
631                                   hwsp_seqno(rq),
632                                   rq_prio(rq));
633                 } else {
634                         GEM_BUG_ON(!n);
635                         desc = 0;
636                 }
637
638                 write_desc(execlists, desc, n);
639         }
640
641         /* we need to manually load the submit queue */
642         if (execlists->ctrl_reg)
643                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
644
645         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
646 }
647
648 static bool ctx_single_port_submission(const struct intel_context *ce)
649 {
650         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
651                 i915_gem_context_force_single_submission(ce->gem_context));
652 }
653
654 static bool can_merge_ctx(const struct intel_context *prev,
655                           const struct intel_context *next)
656 {
657         if (prev != next)
658                 return false;
659
660         if (ctx_single_port_submission(prev))
661                 return false;
662
663         return true;
664 }
665
666 static bool can_merge_rq(const struct i915_request *prev,
667                          const struct i915_request *next)
668 {
669         GEM_BUG_ON(!assert_priority_queue(prev, next));
670
671         if (!can_merge_ctx(prev->hw_context, next->hw_context))
672                 return false;
673
674         return true;
675 }
676
677 static void port_assign(struct execlist_port *port, struct i915_request *rq)
678 {
679         GEM_BUG_ON(rq == port_request(port));
680
681         if (port_isset(port))
682                 i915_request_put(port_request(port));
683
684         port_set(port, port_pack(i915_request_get(rq), port_count(port)));
685 }
686
687 static void inject_preempt_context(struct intel_engine_cs *engine)
688 {
689         struct intel_engine_execlists *execlists = &engine->execlists;
690         struct intel_context *ce = engine->preempt_context;
691         unsigned int n;
692
693         GEM_BUG_ON(execlists->preempt_complete_status !=
694                    upper_32_bits(ce->lrc_desc));
695
696         /*
697          * Switch to our empty preempt context so
698          * the state of the GPU is known (idle).
699          */
700         GEM_TRACE("%s\n", engine->name);
701         for (n = execlists_num_ports(execlists); --n; )
702                 write_desc(execlists, 0, n);
703
704         write_desc(execlists, ce->lrc_desc, n);
705
706         /* we need to manually load the submit queue */
707         if (execlists->ctrl_reg)
708                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
709
710         execlists_clear_active(execlists, EXECLISTS_ACTIVE_HWACK);
711         execlists_set_active(execlists, EXECLISTS_ACTIVE_PREEMPT);
712
713         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
714 }
715
716 static void complete_preempt_context(struct intel_engine_execlists *execlists)
717 {
718         GEM_BUG_ON(!execlists_is_active(execlists, EXECLISTS_ACTIVE_PREEMPT));
719
720         if (inject_preempt_hang(execlists))
721                 return;
722
723         execlists_cancel_port_requests(execlists);
724         __unwind_incomplete_requests(container_of(execlists,
725                                                   struct intel_engine_cs,
726                                                   execlists));
727 }
728
729 static void virtual_update_register_offsets(u32 *regs,
730                                             struct intel_engine_cs *engine)
731 {
732         u32 base = engine->mmio_base;
733
734         /* Must match execlists_init_reg_state()! */
735
736         regs[CTX_CONTEXT_CONTROL] =
737                 i915_mmio_reg_offset(RING_CONTEXT_CONTROL(base));
738         regs[CTX_RING_HEAD] = i915_mmio_reg_offset(RING_HEAD(base));
739         regs[CTX_RING_TAIL] = i915_mmio_reg_offset(RING_TAIL(base));
740         regs[CTX_RING_BUFFER_START] = i915_mmio_reg_offset(RING_START(base));
741         regs[CTX_RING_BUFFER_CONTROL] = i915_mmio_reg_offset(RING_CTL(base));
742
743         regs[CTX_BB_HEAD_U] = i915_mmio_reg_offset(RING_BBADDR_UDW(base));
744         regs[CTX_BB_HEAD_L] = i915_mmio_reg_offset(RING_BBADDR(base));
745         regs[CTX_BB_STATE] = i915_mmio_reg_offset(RING_BBSTATE(base));
746         regs[CTX_SECOND_BB_HEAD_U] =
747                 i915_mmio_reg_offset(RING_SBBADDR_UDW(base));
748         regs[CTX_SECOND_BB_HEAD_L] = i915_mmio_reg_offset(RING_SBBADDR(base));
749         regs[CTX_SECOND_BB_STATE] = i915_mmio_reg_offset(RING_SBBSTATE(base));
750
751         regs[CTX_CTX_TIMESTAMP] =
752                 i915_mmio_reg_offset(RING_CTX_TIMESTAMP(base));
753         regs[CTX_PDP3_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 3));
754         regs[CTX_PDP3_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 3));
755         regs[CTX_PDP2_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 2));
756         regs[CTX_PDP2_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 2));
757         regs[CTX_PDP1_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 1));
758         regs[CTX_PDP1_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 1));
759         regs[CTX_PDP0_UDW] = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, 0));
760         regs[CTX_PDP0_LDW] = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, 0));
761
762         if (engine->class == RENDER_CLASS) {
763                 regs[CTX_RCS_INDIRECT_CTX] =
764                         i915_mmio_reg_offset(RING_INDIRECT_CTX(base));
765                 regs[CTX_RCS_INDIRECT_CTX_OFFSET] =
766                         i915_mmio_reg_offset(RING_INDIRECT_CTX_OFFSET(base));
767                 regs[CTX_BB_PER_CTX_PTR] =
768                         i915_mmio_reg_offset(RING_BB_PER_CTX_PTR(base));
769
770                 regs[CTX_R_PWR_CLK_STATE] =
771                         i915_mmio_reg_offset(GEN8_R_PWR_CLK_STATE);
772         }
773 }
774
775 static bool virtual_matches(const struct virtual_engine *ve,
776                             const struct i915_request *rq,
777                             const struct intel_engine_cs *engine)
778 {
779         const struct intel_engine_cs *active;
780
781         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
782                 return false;
783
784         /*
785          * We track when the HW has completed saving the context image
786          * (i.e. when we have seen the final CS event switching out of
787          * the context) and must not overwrite the context image before
788          * then. This restricts us to only using the active engine
789          * while the previous virtualized request is inflight (so
790          * we reuse the register offsets). This is a very small
791          * hystersis on the greedy seelction algorithm.
792          */
793         active = READ_ONCE(ve->context.active);
794         if (active && active != engine)
795                 return false;
796
797         return true;
798 }
799
800 static void virtual_xfer_breadcrumbs(struct virtual_engine *ve,
801                                      struct intel_engine_cs *engine)
802 {
803         struct intel_engine_cs *old = ve->siblings[0];
804
805         /* All unattached (rq->engine == old) must already be completed */
806
807         spin_lock(&old->breadcrumbs.irq_lock);
808         if (!list_empty(&ve->context.signal_link)) {
809                 list_move_tail(&ve->context.signal_link,
810                                &engine->breadcrumbs.signalers);
811                 intel_engine_queue_breadcrumbs(engine);
812         }
813         spin_unlock(&old->breadcrumbs.irq_lock);
814 }
815
816 static void execlists_dequeue(struct intel_engine_cs *engine)
817 {
818         struct intel_engine_execlists * const execlists = &engine->execlists;
819         struct execlist_port *port = execlists->port;
820         const struct execlist_port * const last_port =
821                 &execlists->port[execlists->port_mask];
822         struct i915_request *last = port_request(port);
823         struct rb_node *rb;
824         bool submit = false;
825
826         /*
827          * Hardware submission is through 2 ports. Conceptually each port
828          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
829          * static for a context, and unique to each, so we only execute
830          * requests belonging to a single context from each ring. RING_HEAD
831          * is maintained by the CS in the context image, it marks the place
832          * where it got up to last time, and through RING_TAIL we tell the CS
833          * where we want to execute up to this time.
834          *
835          * In this list the requests are in order of execution. Consecutive
836          * requests from the same context are adjacent in the ringbuffer. We
837          * can combine these requests into a single RING_TAIL update:
838          *
839          *              RING_HEAD...req1...req2
840          *                                    ^- RING_TAIL
841          * since to execute req2 the CS must first execute req1.
842          *
843          * Our goal then is to point each port to the end of a consecutive
844          * sequence of requests as being the most optimal (fewest wake ups
845          * and context switches) submission.
846          */
847
848         for (rb = rb_first_cached(&execlists->virtual); rb; ) {
849                 struct virtual_engine *ve =
850                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
851                 struct i915_request *rq = READ_ONCE(ve->request);
852
853                 if (!rq) { /* lazily cleanup after another engine handled rq */
854                         rb_erase_cached(rb, &execlists->virtual);
855                         RB_CLEAR_NODE(rb);
856                         rb = rb_first_cached(&execlists->virtual);
857                         continue;
858                 }
859
860                 if (!virtual_matches(ve, rq, engine)) {
861                         rb = rb_next(rb);
862                         continue;
863                 }
864
865                 break;
866         }
867
868         if (last) {
869                 /*
870                  * Don't resubmit or switch until all outstanding
871                  * preemptions (lite-restore) are seen. Then we
872                  * know the next preemption status we see corresponds
873                  * to this ELSP update.
874                  */
875                 GEM_BUG_ON(!execlists_is_active(execlists,
876                                                 EXECLISTS_ACTIVE_USER));
877                 GEM_BUG_ON(!port_count(&port[0]));
878
879                 /*
880                  * If we write to ELSP a second time before the HW has had
881                  * a chance to respond to the previous write, we can confuse
882                  * the HW and hit "undefined behaviour". After writing to ELSP,
883                  * we must then wait until we see a context-switch event from
884                  * the HW to indicate that it has had a chance to respond.
885                  */
886                 if (!execlists_is_active(execlists, EXECLISTS_ACTIVE_HWACK))
887                         return;
888
889                 if (need_preempt(engine, last, rb)) {
890                         inject_preempt_context(engine);
891                         return;
892                 }
893
894                 /*
895                  * In theory, we could coalesce more requests onto
896                  * the second port (the first port is active, with
897                  * no preemptions pending). However, that means we
898                  * then have to deal with the possible lite-restore
899                  * of the second port (as we submit the ELSP, there
900                  * may be a context-switch) but also we may complete
901                  * the resubmission before the context-switch. Ergo,
902                  * coalescing onto the second port will cause a
903                  * preemption event, but we cannot predict whether
904                  * that will affect port[0] or port[1].
905                  *
906                  * If the second port is already active, we can wait
907                  * until the next context-switch before contemplating
908                  * new requests. The GPU will be busy and we should be
909                  * able to resubmit the new ELSP before it idles,
910                  * avoiding pipeline bubbles (momentary pauses where
911                  * the driver is unable to keep up the supply of new
912                  * work). However, we have to double check that the
913                  * priorities of the ports haven't been switch.
914                  */
915                 if (port_count(&port[1]))
916                         return;
917
918                 /*
919                  * WaIdleLiteRestore:bdw,skl
920                  * Apply the wa NOOPs to prevent
921                  * ring:HEAD == rq:TAIL as we resubmit the
922                  * request. See gen8_emit_fini_breadcrumb() for
923                  * where we prepare the padding after the
924                  * end of the request.
925                  */
926                 last->tail = last->wa_tail;
927         }
928
929         while (rb) { /* XXX virtual is always taking precedence */
930                 struct virtual_engine *ve =
931                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
932                 struct i915_request *rq;
933
934                 spin_lock(&ve->base.timeline.lock);
935
936                 rq = ve->request;
937                 if (unlikely(!rq)) { /* lost the race to a sibling */
938                         spin_unlock(&ve->base.timeline.lock);
939                         rb_erase_cached(rb, &execlists->virtual);
940                         RB_CLEAR_NODE(rb);
941                         rb = rb_first_cached(&execlists->virtual);
942                         continue;
943                 }
944
945                 GEM_BUG_ON(rq != ve->request);
946                 GEM_BUG_ON(rq->engine != &ve->base);
947                 GEM_BUG_ON(rq->hw_context != &ve->context);
948
949                 if (rq_prio(rq) >= queue_prio(execlists)) {
950                         if (!virtual_matches(ve, rq, engine)) {
951                                 spin_unlock(&ve->base.timeline.lock);
952                                 rb = rb_next(rb);
953                                 continue;
954                         }
955
956                         if (last && !can_merge_rq(last, rq)) {
957                                 spin_unlock(&ve->base.timeline.lock);
958                                 return; /* leave this rq for another engine */
959                         }
960
961                         GEM_TRACE("%s: virtual rq=%llx:%lld%s, new engine? %s\n",
962                                   engine->name,
963                                   rq->fence.context,
964                                   rq->fence.seqno,
965                                   i915_request_completed(rq) ? "!" :
966                                   i915_request_started(rq) ? "*" :
967                                   "",
968                                   yesno(engine != ve->siblings[0]));
969
970                         ve->request = NULL;
971                         ve->base.execlists.queue_priority_hint = INT_MIN;
972                         rb_erase_cached(rb, &execlists->virtual);
973                         RB_CLEAR_NODE(rb);
974
975                         GEM_BUG_ON(!(rq->execution_mask & engine->mask));
976                         rq->engine = engine;
977
978                         if (engine != ve->siblings[0]) {
979                                 u32 *regs = ve->context.lrc_reg_state;
980                                 unsigned int n;
981
982                                 GEM_BUG_ON(READ_ONCE(ve->context.active));
983                                 virtual_update_register_offsets(regs, engine);
984
985                                 if (!list_empty(&ve->context.signals))
986                                         virtual_xfer_breadcrumbs(ve, engine);
987
988                                 /*
989                                  * Move the bound engine to the top of the list
990                                  * for future execution. We then kick this
991                                  * tasklet first before checking others, so that
992                                  * we preferentially reuse this set of bound
993                                  * registers.
994                                  */
995                                 for (n = 1; n < ve->num_siblings; n++) {
996                                         if (ve->siblings[n] == engine) {
997                                                 swap(ve->siblings[n],
998                                                      ve->siblings[0]);
999                                                 break;
1000                                         }
1001                                 }
1002
1003                                 GEM_BUG_ON(ve->siblings[0] != engine);
1004                         }
1005
1006                         __i915_request_submit(rq);
1007                         trace_i915_request_in(rq, port_index(port, execlists));
1008                         submit = true;
1009                         last = rq;
1010                 }
1011
1012                 spin_unlock(&ve->base.timeline.lock);
1013                 break;
1014         }
1015
1016         while ((rb = rb_first_cached(&execlists->queue))) {
1017                 struct i915_priolist *p = to_priolist(rb);
1018                 struct i915_request *rq, *rn;
1019                 int i;
1020
1021                 priolist_for_each_request_consume(rq, rn, p, i) {
1022                         /*
1023                          * Can we combine this request with the current port?
1024                          * It has to be the same context/ringbuffer and not
1025                          * have any exceptions (e.g. GVT saying never to
1026                          * combine contexts).
1027                          *
1028                          * If we can combine the requests, we can execute both
1029                          * by updating the RING_TAIL to point to the end of the
1030                          * second request, and so we never need to tell the
1031                          * hardware about the first.
1032                          */
1033                         if (last && !can_merge_rq(last, rq)) {
1034                                 /*
1035                                  * If we are on the second port and cannot
1036                                  * combine this request with the last, then we
1037                                  * are done.
1038                                  */
1039                                 if (port == last_port)
1040                                         goto done;
1041
1042                                 /*
1043                                  * We must not populate both ELSP[] with the
1044                                  * same LRCA, i.e. we must submit 2 different
1045                                  * contexts if we submit 2 ELSP.
1046                                  */
1047                                 if (last->hw_context == rq->hw_context)
1048                                         goto done;
1049
1050                                 /*
1051                                  * If GVT overrides us we only ever submit
1052                                  * port[0], leaving port[1] empty. Note that we
1053                                  * also have to be careful that we don't queue
1054                                  * the same context (even though a different
1055                                  * request) to the second port.
1056                                  */
1057                                 if (ctx_single_port_submission(last->hw_context) ||
1058                                     ctx_single_port_submission(rq->hw_context))
1059                                         goto done;
1060
1061
1062                                 if (submit)
1063                                         port_assign(port, last);
1064                                 port++;
1065
1066                                 GEM_BUG_ON(port_isset(port));
1067                         }
1068
1069                         list_del_init(&rq->sched.link);
1070
1071                         __i915_request_submit(rq);
1072                         trace_i915_request_in(rq, port_index(port, execlists));
1073
1074                         last = rq;
1075                         submit = true;
1076                 }
1077
1078                 rb_erase_cached(&p->node, &execlists->queue);
1079                 i915_priolist_free(p);
1080         }
1081
1082 done:
1083         /*
1084          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1085          *
1086          * We choose the priority hint such that if we add a request of greater
1087          * priority than this, we kick the submission tasklet to decide on
1088          * the right order of submitting the requests to hardware. We must
1089          * also be prepared to reorder requests as they are in-flight on the
1090          * HW. We derive the priority hint then as the first "hole" in
1091          * the HW submission ports and if there are no available slots,
1092          * the priority of the lowest executing request, i.e. last.
1093          *
1094          * When we do receive a higher priority request ready to run from the
1095          * user, see queue_request(), the priority hint is bumped to that
1096          * request triggering preemption on the next dequeue (or subsequent
1097          * interrupt for secondary ports).
1098          */
1099         execlists->queue_priority_hint = queue_prio(execlists);
1100
1101         if (submit) {
1102                 port_assign(port, last);
1103                 execlists_submit_ports(engine);
1104         }
1105
1106         /* We must always keep the beast fed if we have work piled up */
1107         GEM_BUG_ON(rb_first_cached(&execlists->queue) &&
1108                    !port_isset(execlists->port));
1109
1110         /* Re-evaluate the executing context setup after each preemptive kick */
1111         if (last)
1112                 execlists_user_begin(execlists, execlists->port);
1113
1114         /* If the engine is now idle, so should be the flag; and vice versa. */
1115         GEM_BUG_ON(execlists_is_active(&engine->execlists,
1116                                        EXECLISTS_ACTIVE_USER) ==
1117                    !port_isset(engine->execlists.port));
1118 }
1119
1120 void
1121 execlists_cancel_port_requests(struct intel_engine_execlists * const execlists)
1122 {
1123         struct execlist_port *port = execlists->port;
1124         unsigned int num_ports = execlists_num_ports(execlists);
1125
1126         while (num_ports-- && port_isset(port)) {
1127                 struct i915_request *rq = port_request(port);
1128
1129                 GEM_TRACE("%s:port%u fence %llx:%lld, (current %d)\n",
1130                           rq->engine->name,
1131                           (unsigned int)(port - execlists->port),
1132                           rq->fence.context, rq->fence.seqno,
1133                           hwsp_seqno(rq));
1134
1135                 GEM_BUG_ON(!execlists->active);
1136                 execlists_context_schedule_out(rq,
1137                                                i915_request_completed(rq) ?
1138                                                INTEL_CONTEXT_SCHEDULE_OUT :
1139                                                INTEL_CONTEXT_SCHEDULE_PREEMPTED);
1140
1141                 i915_request_put(rq);
1142
1143                 memset(port, 0, sizeof(*port));
1144                 port++;
1145         }
1146
1147         execlists_clear_all_active(execlists);
1148 }
1149
1150 static inline void
1151 invalidate_csb_entries(const u32 *first, const u32 *last)
1152 {
1153         clflush((void *)first);
1154         clflush((void *)last);
1155 }
1156
1157 static inline bool
1158 reset_in_progress(const struct intel_engine_execlists *execlists)
1159 {
1160         return unlikely(!__tasklet_is_enabled(&execlists->tasklet));
1161 }
1162
1163 static void process_csb(struct intel_engine_cs *engine)
1164 {
1165         struct intel_engine_execlists * const execlists = &engine->execlists;
1166         struct execlist_port *port = execlists->port;
1167         const u32 * const buf = execlists->csb_status;
1168         const u8 num_entries = execlists->csb_size;
1169         u8 head, tail;
1170
1171         lockdep_assert_held(&engine->timeline.lock);
1172
1173         /*
1174          * Note that csb_write, csb_status may be either in HWSP or mmio.
1175          * When reading from the csb_write mmio register, we have to be
1176          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1177          * the low 4bits. As it happens we know the next 4bits are always
1178          * zero and so we can simply masked off the low u8 of the register
1179          * and treat it identically to reading from the HWSP (without having
1180          * to use explicit shifting and masking, and probably bifurcating
1181          * the code to handle the legacy mmio read).
1182          */
1183         head = execlists->csb_head;
1184         tail = READ_ONCE(*execlists->csb_write);
1185         GEM_TRACE("%s cs-irq head=%d, tail=%d\n", engine->name, head, tail);
1186         if (unlikely(head == tail))
1187                 return;
1188
1189         /*
1190          * Hopefully paired with a wmb() in HW!
1191          *
1192          * We must complete the read of the write pointer before any reads
1193          * from the CSB, so that we do not see stale values. Without an rmb
1194          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1195          * we perform the READ_ONCE(*csb_write).
1196          */
1197         rmb();
1198
1199         do {
1200                 struct i915_request *rq;
1201                 unsigned int status;
1202                 unsigned int count;
1203
1204                 if (++head == num_entries)
1205                         head = 0;
1206
1207                 /*
1208                  * We are flying near dragons again.
1209                  *
1210                  * We hold a reference to the request in execlist_port[]
1211                  * but no more than that. We are operating in softirq
1212                  * context and so cannot hold any mutex or sleep. That
1213                  * prevents us stopping the requests we are processing
1214                  * in port[] from being retired simultaneously (the
1215                  * breadcrumb will be complete before we see the
1216                  * context-switch). As we only hold the reference to the
1217                  * request, any pointer chasing underneath the request
1218                  * is subject to a potential use-after-free. Thus we
1219                  * store all of the bookkeeping within port[] as
1220                  * required, and avoid using unguarded pointers beneath
1221                  * request itself. The same applies to the atomic
1222                  * status notifier.
1223                  */
1224
1225                 GEM_TRACE("%s csb[%d]: status=0x%08x:0x%08x, active=0x%x\n",
1226                           engine->name, head,
1227                           buf[2 * head + 0], buf[2 * head + 1],
1228                           execlists->active);
1229
1230                 status = buf[2 * head];
1231                 if (status & (GEN8_CTX_STATUS_IDLE_ACTIVE |
1232                               GEN8_CTX_STATUS_PREEMPTED))
1233                         execlists_set_active(execlists,
1234                                              EXECLISTS_ACTIVE_HWACK);
1235                 if (status & GEN8_CTX_STATUS_ACTIVE_IDLE)
1236                         execlists_clear_active(execlists,
1237                                                EXECLISTS_ACTIVE_HWACK);
1238
1239                 if (!(status & GEN8_CTX_STATUS_COMPLETED_MASK))
1240                         continue;
1241
1242                 /* We should never get a COMPLETED | IDLE_ACTIVE! */
1243                 GEM_BUG_ON(status & GEN8_CTX_STATUS_IDLE_ACTIVE);
1244
1245                 if (status & GEN8_CTX_STATUS_COMPLETE &&
1246                     buf[2*head + 1] == execlists->preempt_complete_status) {
1247                         GEM_TRACE("%s preempt-idle\n", engine->name);
1248                         complete_preempt_context(execlists);
1249                         continue;
1250                 }
1251
1252                 if (status & GEN8_CTX_STATUS_PREEMPTED &&
1253                     execlists_is_active(execlists,
1254                                         EXECLISTS_ACTIVE_PREEMPT))
1255                         continue;
1256
1257                 GEM_BUG_ON(!execlists_is_active(execlists,
1258                                                 EXECLISTS_ACTIVE_USER));
1259
1260                 rq = port_unpack(port, &count);
1261                 GEM_TRACE("%s out[0]: ctx=%d.%d, fence %llx:%lld (current %d), prio=%d\n",
1262                           engine->name,
1263                           port->context_id, count,
1264                           rq ? rq->fence.context : 0,
1265                           rq ? rq->fence.seqno : 0,
1266                           rq ? hwsp_seqno(rq) : 0,
1267                           rq ? rq_prio(rq) : 0);
1268
1269                 /* Check the context/desc id for this event matches */
1270                 GEM_DEBUG_BUG_ON(buf[2 * head + 1] != port->context_id);
1271
1272                 GEM_BUG_ON(count == 0);
1273                 if (--count == 0) {
1274                         /*
1275                          * On the final event corresponding to the
1276                          * submission of this context, we expect either
1277                          * an element-switch event or a completion
1278                          * event (and on completion, the active-idle
1279                          * marker). No more preemptions, lite-restore
1280                          * or otherwise.
1281                          */
1282                         GEM_BUG_ON(status & GEN8_CTX_STATUS_PREEMPTED);
1283                         GEM_BUG_ON(port_isset(&port[1]) &&
1284                                    !(status & GEN8_CTX_STATUS_ELEMENT_SWITCH));
1285                         GEM_BUG_ON(!port_isset(&port[1]) &&
1286                                    !(status & GEN8_CTX_STATUS_ACTIVE_IDLE));
1287
1288                         /*
1289                          * We rely on the hardware being strongly
1290                          * ordered, that the breadcrumb write is
1291                          * coherent (visible from the CPU) before the
1292                          * user interrupt and CSB is processed.
1293                          */
1294                         GEM_BUG_ON(!i915_request_completed(rq));
1295
1296                         execlists_context_schedule_out(rq,
1297                                                        INTEL_CONTEXT_SCHEDULE_OUT);
1298                         i915_request_put(rq);
1299
1300                         GEM_TRACE("%s completed ctx=%d\n",
1301                                   engine->name, port->context_id);
1302
1303                         port = execlists_port_complete(execlists, port);
1304                         if (port_isset(port))
1305                                 execlists_user_begin(execlists, port);
1306                         else
1307                                 execlists_user_end(execlists);
1308                 } else {
1309                         port_set(port, port_pack(rq, count));
1310                 }
1311         } while (head != tail);
1312
1313         execlists->csb_head = head;
1314
1315         /*
1316          * Gen11 has proven to fail wrt global observation point between
1317          * entry and tail update, failing on the ordering and thus
1318          * we see an old entry in the context status buffer.
1319          *
1320          * Forcibly evict out entries for the next gpu csb update,
1321          * to increase the odds that we get a fresh entries with non
1322          * working hardware. The cost for doing so comes out mostly with
1323          * the wash as hardware, working or not, will need to do the
1324          * invalidation before.
1325          */
1326         invalidate_csb_entries(&buf[0], &buf[num_entries - 1]);
1327 }
1328
1329 static void __execlists_submission_tasklet(struct intel_engine_cs *const engine)
1330 {
1331         lockdep_assert_held(&engine->timeline.lock);
1332
1333         process_csb(engine);
1334         if (!execlists_is_active(&engine->execlists, EXECLISTS_ACTIVE_PREEMPT))
1335                 execlists_dequeue(engine);
1336 }
1337
1338 /*
1339  * Check the unread Context Status Buffers and manage the submission of new
1340  * contexts to the ELSP accordingly.
1341  */
1342 static void execlists_submission_tasklet(unsigned long data)
1343 {
1344         struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
1345         unsigned long flags;
1346
1347         GEM_TRACE("%s awake?=%d, active=%x\n",
1348                   engine->name,
1349                   !!intel_wakeref_active(&engine->wakeref),
1350                   engine->execlists.active);
1351
1352         spin_lock_irqsave(&engine->timeline.lock, flags);
1353         __execlists_submission_tasklet(engine);
1354         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1355 }
1356
1357 static void queue_request(struct intel_engine_cs *engine,
1358                           struct i915_sched_node *node,
1359                           int prio)
1360 {
1361         list_add_tail(&node->link, i915_sched_lookup_priolist(engine, prio));
1362 }
1363
1364 static void __submit_queue_imm(struct intel_engine_cs *engine)
1365 {
1366         struct intel_engine_execlists * const execlists = &engine->execlists;
1367
1368         if (reset_in_progress(execlists))
1369                 return; /* defer until we restart the engine following reset */
1370
1371         if (execlists->tasklet.func == execlists_submission_tasklet)
1372                 __execlists_submission_tasklet(engine);
1373         else
1374                 tasklet_hi_schedule(&execlists->tasklet);
1375 }
1376
1377 static void submit_queue(struct intel_engine_cs *engine, int prio)
1378 {
1379         if (prio > engine->execlists.queue_priority_hint) {
1380                 engine->execlists.queue_priority_hint = prio;
1381                 __submit_queue_imm(engine);
1382         }
1383 }
1384
1385 static void execlists_submit_request(struct i915_request *request)
1386 {
1387         struct intel_engine_cs *engine = request->engine;
1388         unsigned long flags;
1389
1390         /* Will be called from irq-context when using foreign fences. */
1391         spin_lock_irqsave(&engine->timeline.lock, flags);
1392
1393         queue_request(engine, &request->sched, rq_prio(request));
1394
1395         GEM_BUG_ON(RB_EMPTY_ROOT(&engine->execlists.queue.rb_root));
1396         GEM_BUG_ON(list_empty(&request->sched.link));
1397
1398         submit_queue(engine, rq_prio(request));
1399
1400         spin_unlock_irqrestore(&engine->timeline.lock, flags);
1401 }
1402
1403 static void __execlists_context_fini(struct intel_context *ce)
1404 {
1405         intel_ring_put(ce->ring);
1406
1407         GEM_BUG_ON(i915_gem_object_is_active(ce->state->obj));
1408         i915_gem_object_put(ce->state->obj);
1409 }
1410
1411 static void execlists_context_destroy(struct kref *kref)
1412 {
1413         struct intel_context *ce = container_of(kref, typeof(*ce), ref);
1414
1415         GEM_BUG_ON(intel_context_is_pinned(ce));
1416
1417         if (ce->state)
1418                 __execlists_context_fini(ce);
1419
1420         intel_context_free(ce);
1421 }
1422
1423 static int __context_pin(struct i915_vma *vma)
1424 {
1425         unsigned int flags;
1426         int err;
1427
1428         flags = PIN_GLOBAL | PIN_HIGH;
1429         flags |= PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
1430
1431         err = i915_vma_pin(vma, 0, 0, flags);
1432         if (err)
1433                 return err;
1434
1435         vma->obj->pin_global++;
1436         vma->obj->mm.dirty = true;
1437
1438         return 0;
1439 }
1440
1441 static void __context_unpin(struct i915_vma *vma)
1442 {
1443         vma->obj->pin_global--;
1444         __i915_vma_unpin(vma);
1445 }
1446
1447 static void execlists_context_unpin(struct intel_context *ce)
1448 {
1449         struct intel_engine_cs *engine;
1450
1451         /*
1452          * The tasklet may still be using a pointer to our state, via an
1453          * old request. However, since we know we only unpin the context
1454          * on retirement of the following request, we know that the last
1455          * request referencing us will have had a completion CS interrupt.
1456          * If we see that it is still active, it means that the tasklet hasn't
1457          * had the chance to run yet; let it run before we teardown the
1458          * reference it may use.
1459          */
1460         engine = READ_ONCE(ce->active);
1461         if (unlikely(engine)) {
1462                 unsigned long flags;
1463
1464                 spin_lock_irqsave(&engine->timeline.lock, flags);
1465                 process_csb(engine);
1466                 spin_unlock_irqrestore(&engine->timeline.lock, flags);
1467
1468                 GEM_BUG_ON(READ_ONCE(ce->active));
1469         }
1470
1471         i915_gem_context_unpin_hw_id(ce->gem_context);
1472
1473         intel_ring_unpin(ce->ring);
1474
1475         i915_gem_object_unpin_map(ce->state->obj);
1476         __context_unpin(ce->state);
1477 }
1478
1479 static void
1480 __execlists_update_reg_state(struct intel_context *ce,
1481                              struct intel_engine_cs *engine)
1482 {
1483         struct intel_ring *ring = ce->ring;
1484         u32 *regs = ce->lrc_reg_state;
1485
1486         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->head));
1487         GEM_BUG_ON(!intel_ring_offset_valid(ring, ring->tail));
1488
1489         regs[CTX_RING_BUFFER_START + 1] = i915_ggtt_offset(ring->vma);
1490         regs[CTX_RING_HEAD + 1] = ring->head;
1491         regs[CTX_RING_TAIL + 1] = ring->tail;
1492
1493         /* RPCS */
1494         if (engine->class == RENDER_CLASS)
1495                 regs[CTX_R_PWR_CLK_STATE + 1] =
1496                         intel_sseu_make_rpcs(engine->i915, &ce->sseu);
1497 }
1498
1499 static int
1500 __execlists_context_pin(struct intel_context *ce,
1501                         struct intel_engine_cs *engine)
1502 {
1503         void *vaddr;
1504         int ret;
1505
1506         GEM_BUG_ON(!ce->gem_context->ppgtt);
1507
1508         ret = execlists_context_deferred_alloc(ce, engine);
1509         if (ret)
1510                 goto err;
1511         GEM_BUG_ON(!ce->state);
1512
1513         ret = __context_pin(ce->state);
1514         if (ret)
1515                 goto err;
1516
1517         vaddr = i915_gem_object_pin_map(ce->state->obj,
1518                                         i915_coherent_map_type(engine->i915) |
1519                                         I915_MAP_OVERRIDE);
1520         if (IS_ERR(vaddr)) {
1521                 ret = PTR_ERR(vaddr);
1522                 goto unpin_vma;
1523         }
1524
1525         ret = intel_ring_pin(ce->ring);
1526         if (ret)
1527                 goto unpin_map;
1528
1529         ret = i915_gem_context_pin_hw_id(ce->gem_context);
1530         if (ret)
1531                 goto unpin_ring;
1532
1533         ce->lrc_desc = lrc_descriptor(ce, engine);
1534         ce->lrc_reg_state = vaddr + LRC_STATE_PN * PAGE_SIZE;
1535         __execlists_update_reg_state(ce, engine);
1536
1537         return 0;
1538
1539 unpin_ring:
1540         intel_ring_unpin(ce->ring);
1541 unpin_map:
1542         i915_gem_object_unpin_map(ce->state->obj);
1543 unpin_vma:
1544         __context_unpin(ce->state);
1545 err:
1546         return ret;
1547 }
1548
1549 static int execlists_context_pin(struct intel_context *ce)
1550 {
1551         return __execlists_context_pin(ce, ce->engine);
1552 }
1553
1554 static void execlists_context_reset(struct intel_context *ce)
1555 {
1556         /*
1557          * Because we emit WA_TAIL_DWORDS there may be a disparity
1558          * between our bookkeeping in ce->ring->head and ce->ring->tail and
1559          * that stored in context. As we only write new commands from
1560          * ce->ring->tail onwards, everything before that is junk. If the GPU
1561          * starts reading from its RING_HEAD from the context, it may try to
1562          * execute that junk and die.
1563          *
1564          * The contexts that are stilled pinned on resume belong to the
1565          * kernel, and are local to each engine. All other contexts will
1566          * have their head/tail sanitized upon pinning before use, so they
1567          * will never see garbage,
1568          *
1569          * So to avoid that we reset the context images upon resume. For
1570          * simplicity, we just zero everything out.
1571          */
1572         intel_ring_reset(ce->ring, 0);
1573         __execlists_update_reg_state(ce, ce->engine);
1574 }
1575
1576 static const struct intel_context_ops execlists_context_ops = {
1577         .pin = execlists_context_pin,
1578         .unpin = execlists_context_unpin,
1579
1580         .enter = intel_context_enter_engine,
1581         .exit = intel_context_exit_engine,
1582
1583         .reset = execlists_context_reset,
1584         .destroy = execlists_context_destroy,
1585 };
1586
1587 static int gen8_emit_init_breadcrumb(struct i915_request *rq)
1588 {
1589         u32 *cs;
1590
1591         GEM_BUG_ON(!rq->timeline->has_initial_breadcrumb);
1592
1593         cs = intel_ring_begin(rq, 6);
1594         if (IS_ERR(cs))
1595                 return PTR_ERR(cs);
1596
1597         /*
1598          * Check if we have been preempted before we even get started.
1599          *
1600          * After this point i915_request_started() reports true, even if
1601          * we get preempted and so are no longer running.
1602          */
1603         *cs++ = MI_ARB_CHECK;
1604         *cs++ = MI_NOOP;
1605
1606         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1607         *cs++ = rq->timeline->hwsp_offset;
1608         *cs++ = 0;
1609         *cs++ = rq->fence.seqno - 1;
1610
1611         intel_ring_advance(rq, cs);
1612
1613         /* Record the updated position of the request's payload */
1614         rq->infix = intel_ring_offset(rq, cs);
1615
1616         return 0;
1617 }
1618
1619 static int emit_pdps(struct i915_request *rq)
1620 {
1621         const struct intel_engine_cs * const engine = rq->engine;
1622         struct i915_hw_ppgtt * const ppgtt = rq->gem_context->ppgtt;
1623         int err, i;
1624         u32 *cs;
1625
1626         GEM_BUG_ON(intel_vgpu_active(rq->i915));
1627
1628         /*
1629          * Beware ye of the dragons, this sequence is magic!
1630          *
1631          * Small changes to this sequence can cause anything from
1632          * GPU hangs to forcewake errors and machine lockups!
1633          */
1634
1635         /* Flush any residual operations from the context load */
1636         err = engine->emit_flush(rq, EMIT_FLUSH);
1637         if (err)
1638                 return err;
1639
1640         /* Magic required to prevent forcewake errors! */
1641         err = engine->emit_flush(rq, EMIT_INVALIDATE);
1642         if (err)
1643                 return err;
1644
1645         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
1646         if (IS_ERR(cs))
1647                 return PTR_ERR(cs);
1648
1649         /* Ensure the LRI have landed before we invalidate & continue */
1650         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
1651         for (i = GEN8_3LVL_PDPES; i--; ) {
1652                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
1653                 u32 base = engine->mmio_base;
1654
1655                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
1656                 *cs++ = upper_32_bits(pd_daddr);
1657                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
1658                 *cs++ = lower_32_bits(pd_daddr);
1659         }
1660         *cs++ = MI_NOOP;
1661
1662         intel_ring_advance(rq, cs);
1663
1664         /* Be doubly sure the LRI have landed before proceeding */
1665         err = engine->emit_flush(rq, EMIT_FLUSH);
1666         if (err)
1667                 return err;
1668
1669         /* Re-invalidate the TLB for luck */
1670         return engine->emit_flush(rq, EMIT_INVALIDATE);
1671 }
1672
1673 static int execlists_request_alloc(struct i915_request *request)
1674 {
1675         int ret;
1676
1677         GEM_BUG_ON(!intel_context_is_pinned(request->hw_context));
1678
1679         /*
1680          * Flush enough space to reduce the likelihood of waiting after
1681          * we start building the request - in which case we will just
1682          * have to repeat work.
1683          */
1684         request->reserved_space += EXECLISTS_REQUEST_SIZE;
1685
1686         /*
1687          * Note that after this point, we have committed to using
1688          * this request as it is being used to both track the
1689          * state of engine initialisation and liveness of the
1690          * golden renderstate above. Think twice before you try
1691          * to cancel/unwind this request now.
1692          */
1693
1694         /* Unconditionally invalidate GPU caches and TLBs. */
1695         if (i915_vm_is_4lvl(&request->gem_context->ppgtt->vm))
1696                 ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
1697         else
1698                 ret = emit_pdps(request);
1699         if (ret)
1700                 return ret;
1701
1702         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
1703         return 0;
1704 }
1705
1706 /*
1707  * In this WA we need to set GEN8_L3SQCREG4[21:21] and reset it after
1708  * PIPE_CONTROL instruction. This is required for the flush to happen correctly
1709  * but there is a slight complication as this is applied in WA batch where the
1710  * values are only initialized once so we cannot take register value at the
1711  * beginning and reuse it further; hence we save its value to memory, upload a
1712  * constant value with bit21 set and then we restore it back with the saved value.
1713  * To simplify the WA, a constant value is formed by using the default value
1714  * of this register. This shouldn't be a problem because we are only modifying
1715  * it for a short period and this batch in non-premptible. We can ofcourse
1716  * use additional instructions that read the actual value of the register
1717  * at that time and set our bit of interest but it makes the WA complicated.
1718  *
1719  * This WA is also required for Gen9 so extracting as a function avoids
1720  * code duplication.
1721  */
1722 static u32 *
1723 gen8_emit_flush_coherentl3_wa(struct intel_engine_cs *engine, u32 *batch)
1724 {
1725         /* NB no one else is allowed to scribble over scratch + 256! */
1726         *batch++ = MI_STORE_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1727         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1728         *batch++ = i915_scratch_offset(engine->i915) + 256;
1729         *batch++ = 0;
1730
1731         *batch++ = MI_LOAD_REGISTER_IMM(1);
1732         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1733         *batch++ = 0x40400000 | GEN8_LQSC_FLUSH_COHERENT_LINES;
1734
1735         batch = gen8_emit_pipe_control(batch,
1736                                        PIPE_CONTROL_CS_STALL |
1737                                        PIPE_CONTROL_DC_FLUSH_ENABLE,
1738                                        0);
1739
1740         *batch++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_SRM_LRM_GLOBAL_GTT;
1741         *batch++ = i915_mmio_reg_offset(GEN8_L3SQCREG4);
1742         *batch++ = i915_scratch_offset(engine->i915) + 256;
1743         *batch++ = 0;
1744
1745         return batch;
1746 }
1747
1748 /*
1749  * Typically we only have one indirect_ctx and per_ctx batch buffer which are
1750  * initialized at the beginning and shared across all contexts but this field
1751  * helps us to have multiple batches at different offsets and select them based
1752  * on a criteria. At the moment this batch always start at the beginning of the page
1753  * and at this point we don't have multiple wa_ctx batch buffers.
1754  *
1755  * The number of WA applied are not known at the beginning; we use this field
1756  * to return the no of DWORDS written.
1757  *
1758  * It is to be noted that this batch does not contain MI_BATCH_BUFFER_END
1759  * so it adds NOOPs as padding to make it cacheline aligned.
1760  * MI_BATCH_BUFFER_END will be added to perctx batch and both of them together
1761  * makes a complete batch buffer.
1762  */
1763 static u32 *gen8_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1764 {
1765         /* WaDisableCtxRestoreArbitration:bdw,chv */
1766         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1767
1768         /* WaFlushCoherentL3CacheLinesAtContextSwitch:bdw */
1769         if (IS_BROADWELL(engine->i915))
1770                 batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1771
1772         /* WaClearSlmSpaceAtContextSwitch:bdw,chv */
1773         /* Actual scratch location is at 128 bytes offset */
1774         batch = gen8_emit_pipe_control(batch,
1775                                        PIPE_CONTROL_FLUSH_L3 |
1776                                        PIPE_CONTROL_GLOBAL_GTT_IVB |
1777                                        PIPE_CONTROL_CS_STALL |
1778                                        PIPE_CONTROL_QW_WRITE,
1779                                        i915_scratch_offset(engine->i915) +
1780                                        2 * CACHELINE_BYTES);
1781
1782         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1783
1784         /* Pad to end of cacheline */
1785         while ((unsigned long)batch % CACHELINE_BYTES)
1786                 *batch++ = MI_NOOP;
1787
1788         /*
1789          * MI_BATCH_BUFFER_END is not required in Indirect ctx BB because
1790          * execution depends on the length specified in terms of cache lines
1791          * in the register CTX_RCS_INDIRECT_CTX
1792          */
1793
1794         return batch;
1795 }
1796
1797 struct lri {
1798         i915_reg_t reg;
1799         u32 value;
1800 };
1801
1802 static u32 *emit_lri(u32 *batch, const struct lri *lri, unsigned int count)
1803 {
1804         GEM_BUG_ON(!count || count > 63);
1805
1806         *batch++ = MI_LOAD_REGISTER_IMM(count);
1807         do {
1808                 *batch++ = i915_mmio_reg_offset(lri->reg);
1809                 *batch++ = lri->value;
1810         } while (lri++, --count);
1811         *batch++ = MI_NOOP;
1812
1813         return batch;
1814 }
1815
1816 static u32 *gen9_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1817 {
1818         static const struct lri lri[] = {
1819                 /* WaDisableGatherAtSetShaderCommonSlice:skl,bxt,kbl,glk */
1820                 {
1821                         COMMON_SLICE_CHICKEN2,
1822                         __MASKED_FIELD(GEN9_DISABLE_GATHER_AT_SET_SHADER_COMMON_SLICE,
1823                                        0),
1824                 },
1825
1826                 /* BSpec: 11391 */
1827                 {
1828                         FF_SLICE_CHICKEN,
1829                         __MASKED_FIELD(FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX,
1830                                        FF_SLICE_CHICKEN_CL_PROVOKING_VERTEX_FIX),
1831                 },
1832
1833                 /* BSpec: 11299 */
1834                 {
1835                         _3D_CHICKEN3,
1836                         __MASKED_FIELD(_3D_CHICKEN_SF_PROVOKING_VERTEX_FIX,
1837                                        _3D_CHICKEN_SF_PROVOKING_VERTEX_FIX),
1838                 }
1839         };
1840
1841         *batch++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
1842
1843         /* WaFlushCoherentL3CacheLinesAtContextSwitch:skl,bxt,glk */
1844         batch = gen8_emit_flush_coherentl3_wa(engine, batch);
1845
1846         batch = emit_lri(batch, lri, ARRAY_SIZE(lri));
1847
1848         /* WaMediaPoolStateCmdInWABB:bxt,glk */
1849         if (HAS_POOLED_EU(engine->i915)) {
1850                 /*
1851                  * EU pool configuration is setup along with golden context
1852                  * during context initialization. This value depends on
1853                  * device type (2x6 or 3x6) and needs to be updated based
1854                  * on which subslice is disabled especially for 2x6
1855                  * devices, however it is safe to load default
1856                  * configuration of 3x6 device instead of masking off
1857                  * corresponding bits because HW ignores bits of a disabled
1858                  * subslice and drops down to appropriate config. Please
1859                  * see render_state_setup() in i915_gem_render_state.c for
1860                  * possible configurations, to avoid duplication they are
1861                  * not shown here again.
1862                  */
1863                 *batch++ = GEN9_MEDIA_POOL_STATE;
1864                 *batch++ = GEN9_MEDIA_POOL_ENABLE;
1865                 *batch++ = 0x00777000;
1866                 *batch++ = 0;
1867                 *batch++ = 0;
1868                 *batch++ = 0;
1869         }
1870
1871         *batch++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
1872
1873         /* Pad to end of cacheline */
1874         while ((unsigned long)batch % CACHELINE_BYTES)
1875                 *batch++ = MI_NOOP;
1876
1877         return batch;
1878 }
1879
1880 static u32 *
1881 gen10_init_indirectctx_bb(struct intel_engine_cs *engine, u32 *batch)
1882 {
1883         int i;
1884
1885         /*
1886          * WaPipeControlBefore3DStateSamplePattern: cnl
1887          *
1888          * Ensure the engine is idle prior to programming a
1889          * 3DSTATE_SAMPLE_PATTERN during a context restore.
1890          */
1891         batch = gen8_emit_pipe_control(batch,
1892                                        PIPE_CONTROL_CS_STALL,
1893                                        0);
1894         /*
1895          * WaPipeControlBefore3DStateSamplePattern says we need 4 dwords for
1896          * the PIPE_CONTROL followed by 12 dwords of 0x0, so 16 dwords in
1897          * total. However, a PIPE_CONTROL is 6 dwords long, not 4, which is
1898          * confusing. Since gen8_emit_pipe_control() already advances the
1899          * batch by 6 dwords, we advance the other 10 here, completing a
1900          * cacheline. It's not clear if the workaround requires this padding
1901          * before other commands, or if it's just the regular padding we would
1902          * already have for the workaround bb, so leave it here for now.
1903          */
1904         for (i = 0; i < 10; i++)
1905                 *batch++ = MI_NOOP;
1906
1907         /* Pad to end of cacheline */
1908         while ((unsigned long)batch % CACHELINE_BYTES)
1909                 *batch++ = MI_NOOP;
1910
1911         return batch;
1912 }
1913
1914 #define CTX_WA_BB_OBJ_SIZE (PAGE_SIZE)
1915
1916 static int lrc_setup_wa_ctx(struct intel_engine_cs *engine)
1917 {
1918         struct drm_i915_gem_object *obj;
1919         struct i915_vma *vma;
1920         int err;
1921
1922         obj = i915_gem_object_create(engine->i915, CTX_WA_BB_OBJ_SIZE);
1923         if (IS_ERR(obj))
1924                 return PTR_ERR(obj);
1925
1926         vma = i915_vma_instance(obj, &engine->i915->ggtt.vm, NULL);
1927         if (IS_ERR(vma)) {
1928                 err = PTR_ERR(vma);
1929                 goto err;
1930         }
1931
1932         err = i915_vma_pin(vma, 0, 0, PIN_GLOBAL | PIN_HIGH);
1933         if (err)
1934                 goto err;
1935
1936         engine->wa_ctx.vma = vma;
1937         return 0;
1938
1939 err:
1940         i915_gem_object_put(obj);
1941         return err;
1942 }
1943
1944 static void lrc_destroy_wa_ctx(struct intel_engine_cs *engine)
1945 {
1946         i915_vma_unpin_and_release(&engine->wa_ctx.vma, 0);
1947 }
1948
1949 typedef u32 *(*wa_bb_func_t)(struct intel_engine_cs *engine, u32 *batch);
1950
1951 static int intel_init_workaround_bb(struct intel_engine_cs *engine)
1952 {
1953         struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
1954         struct i915_wa_ctx_bb *wa_bb[2] = { &wa_ctx->indirect_ctx,
1955                                             &wa_ctx->per_ctx };
1956         wa_bb_func_t wa_bb_fn[2];
1957         struct page *page;
1958         void *batch, *batch_ptr;
1959         unsigned int i;
1960         int ret;
1961
1962         if (engine->class != RENDER_CLASS)
1963                 return 0;
1964
1965         switch (INTEL_GEN(engine->i915)) {
1966         case 11:
1967                 return 0;
1968         case 10:
1969                 wa_bb_fn[0] = gen10_init_indirectctx_bb;
1970                 wa_bb_fn[1] = NULL;
1971                 break;
1972         case 9:
1973                 wa_bb_fn[0] = gen9_init_indirectctx_bb;
1974                 wa_bb_fn[1] = NULL;
1975                 break;
1976         case 8:
1977                 wa_bb_fn[0] = gen8_init_indirectctx_bb;
1978                 wa_bb_fn[1] = NULL;
1979                 break;
1980         default:
1981                 MISSING_CASE(INTEL_GEN(engine->i915));
1982                 return 0;
1983         }
1984
1985         ret = lrc_setup_wa_ctx(engine);
1986         if (ret) {
1987                 DRM_DEBUG_DRIVER("Failed to setup context WA page: %d\n", ret);
1988                 return ret;
1989         }
1990
1991         page = i915_gem_object_get_dirty_page(wa_ctx->vma->obj, 0);
1992         batch = batch_ptr = kmap_atomic(page);
1993
1994         /*
1995          * Emit the two workaround batch buffers, recording the offset from the
1996          * start of the workaround batch buffer object for each and their
1997          * respective sizes.
1998          */
1999         for (i = 0; i < ARRAY_SIZE(wa_bb_fn); i++) {
2000                 wa_bb[i]->offset = batch_ptr - batch;
2001                 if (GEM_DEBUG_WARN_ON(!IS_ALIGNED(wa_bb[i]->offset,
2002                                                   CACHELINE_BYTES))) {
2003                         ret = -EINVAL;
2004                         break;
2005                 }
2006                 if (wa_bb_fn[i])
2007                         batch_ptr = wa_bb_fn[i](engine, batch_ptr);
2008                 wa_bb[i]->size = batch_ptr - (batch + wa_bb[i]->offset);
2009         }
2010
2011         BUG_ON(batch_ptr - batch > CTX_WA_BB_OBJ_SIZE);
2012
2013         kunmap_atomic(batch);
2014         if (ret)
2015                 lrc_destroy_wa_ctx(engine);
2016
2017         return ret;
2018 }
2019
2020 static void enable_execlists(struct intel_engine_cs *engine)
2021 {
2022         struct drm_i915_private *dev_priv = engine->i915;
2023
2024         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2025
2026         if (INTEL_GEN(dev_priv) >= 11)
2027                 I915_WRITE(RING_MODE_GEN7(engine),
2028                            _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
2029         else
2030                 I915_WRITE(RING_MODE_GEN7(engine),
2031                            _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE));
2032
2033         I915_WRITE(RING_MI_MODE(engine->mmio_base),
2034                    _MASKED_BIT_DISABLE(STOP_RING));
2035
2036         I915_WRITE(RING_HWS_PGA(engine->mmio_base),
2037                    i915_ggtt_offset(engine->status_page.vma));
2038         POSTING_READ(RING_HWS_PGA(engine->mmio_base));
2039 }
2040
2041 static bool unexpected_starting_state(struct intel_engine_cs *engine)
2042 {
2043         struct drm_i915_private *dev_priv = engine->i915;
2044         bool unexpected = false;
2045
2046         if (I915_READ(RING_MI_MODE(engine->mmio_base)) & STOP_RING) {
2047                 DRM_DEBUG_DRIVER("STOP_RING still set in RING_MI_MODE\n");
2048                 unexpected = true;
2049         }
2050
2051         return unexpected;
2052 }
2053
2054 static int execlists_resume(struct intel_engine_cs *engine)
2055 {
2056         intel_engine_apply_workarounds(engine);
2057         intel_engine_apply_whitelist(engine);
2058
2059         intel_mocs_init_engine(engine);
2060
2061         intel_engine_reset_breadcrumbs(engine);
2062
2063         if (GEM_SHOW_DEBUG() && unexpected_starting_state(engine)) {
2064                 struct drm_printer p = drm_debug_printer(__func__);
2065
2066                 intel_engine_dump(engine, &p, NULL);
2067         }
2068
2069         enable_execlists(engine);
2070
2071         return 0;
2072 }
2073
2074 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2075 {
2076         struct intel_engine_execlists * const execlists = &engine->execlists;
2077         unsigned long flags;
2078
2079         GEM_TRACE("%s: depth<-%d\n", engine->name,
2080                   atomic_read(&execlists->tasklet.count));
2081
2082         /*
2083          * Prevent request submission to the hardware until we have
2084          * completed the reset in i915_gem_reset_finish(). If a request
2085          * is completed by one engine, it may then queue a request
2086          * to a second via its execlists->tasklet *just* as we are
2087          * calling engine->resume() and also writing the ELSP.
2088          * Turning off the execlists->tasklet until the reset is over
2089          * prevents the race.
2090          */
2091         __tasklet_disable_sync_once(&execlists->tasklet);
2092         GEM_BUG_ON(!reset_in_progress(execlists));
2093
2094         intel_engine_stop_cs(engine);
2095
2096         /* And flush any current direct submission. */
2097         spin_lock_irqsave(&engine->timeline.lock, flags);
2098         spin_unlock_irqrestore(&engine->timeline.lock, flags);
2099 }
2100
2101 static bool lrc_regs_ok(const struct i915_request *rq)
2102 {
2103         const struct intel_ring *ring = rq->ring;
2104         const u32 *regs = rq->hw_context->lrc_reg_state;
2105
2106         /* Quick spot check for the common signs of context corruption */
2107
2108         if (regs[CTX_RING_BUFFER_CONTROL + 1] !=
2109             (RING_CTL_SIZE(ring->size) | RING_VALID))
2110                 return false;
2111
2112         if (regs[CTX_RING_BUFFER_START + 1] != i915_ggtt_offset(ring->vma))
2113                 return false;
2114
2115         return true;
2116 }
2117
2118 static void reset_csb_pointers(struct intel_engine_execlists *execlists)
2119 {
2120         const unsigned int reset_value = execlists->csb_size - 1;
2121
2122         /*
2123          * After a reset, the HW starts writing into CSB entry [0]. We
2124          * therefore have to set our HEAD pointer back one entry so that
2125          * the *first* entry we check is entry 0. To complicate this further,
2126          * as we don't wait for the first interrupt after reset, we have to
2127          * fake the HW write to point back to the last entry so that our
2128          * inline comparison of our cached head position against the last HW
2129          * write works even before the first interrupt.
2130          */
2131         execlists->csb_head = reset_value;
2132         WRITE_ONCE(*execlists->csb_write, reset_value);
2133         wmb(); /* Make sure this is visible to HW (paranoia?) */
2134
2135         invalidate_csb_entries(&execlists->csb_status[0],
2136                                &execlists->csb_status[reset_value]);
2137 }
2138
2139 static struct i915_request *active_request(struct i915_request *rq)
2140 {
2141         const struct list_head * const list = &rq->engine->timeline.requests;
2142         const struct intel_context * const context = rq->hw_context;
2143         struct i915_request *active = NULL;
2144
2145         list_for_each_entry_from_reverse(rq, list, link) {
2146                 if (i915_request_completed(rq))
2147                         break;
2148
2149                 if (rq->hw_context != context)
2150                         break;
2151
2152                 active = rq;
2153         }
2154
2155         return active;
2156 }
2157
2158 static void __execlists_reset(struct intel_engine_cs *engine, bool stalled)
2159 {
2160         struct intel_engine_execlists * const execlists = &engine->execlists;
2161         struct intel_context *ce;
2162         struct i915_request *rq;
2163         u32 *regs;
2164
2165         process_csb(engine); /* drain preemption events */
2166
2167         /* Following the reset, we need to reload the CSB read/write pointers */
2168         reset_csb_pointers(&engine->execlists);
2169
2170         /*
2171          * Save the currently executing context, even if we completed
2172          * its request, it was still running at the time of the
2173          * reset and will have been clobbered.
2174          */
2175         if (!port_isset(execlists->port))
2176                 goto out_clear;
2177
2178         rq = port_request(execlists->port);
2179         ce = rq->hw_context;
2180
2181         /*
2182          * Catch up with any missed context-switch interrupts.
2183          *
2184          * Ideally we would just read the remaining CSB entries now that we
2185          * know the gpu is idle. However, the CSB registers are sometimes^W
2186          * often trashed across a GPU reset! Instead we have to rely on
2187          * guessing the missed context-switch events by looking at what
2188          * requests were completed.
2189          */
2190         execlists_cancel_port_requests(execlists);
2191
2192         rq = active_request(rq);
2193         if (!rq)
2194                 goto out_replay;
2195
2196         /*
2197          * If this request hasn't started yet, e.g. it is waiting on a
2198          * semaphore, we need to avoid skipping the request or else we
2199          * break the signaling chain. However, if the context is corrupt
2200          * the request will not restart and we will be stuck with a wedged
2201          * device. It is quite often the case that if we issue a reset
2202          * while the GPU is loading the context image, that the context
2203          * image becomes corrupt.
2204          *
2205          * Otherwise, if we have not started yet, the request should replay
2206          * perfectly and we do not need to flag the result as being erroneous.
2207          */
2208         if (!i915_request_started(rq) && lrc_regs_ok(rq))
2209                 goto out_replay;
2210
2211         /*
2212          * If the request was innocent, we leave the request in the ELSP
2213          * and will try to replay it on restarting. The context image may
2214          * have been corrupted by the reset, in which case we may have
2215          * to service a new GPU hang, but more likely we can continue on
2216          * without impact.
2217          *
2218          * If the request was guilty, we presume the context is corrupt
2219          * and have to at least restore the RING register in the context
2220          * image back to the expected values to skip over the guilty request.
2221          */
2222         i915_reset_request(rq, stalled);
2223         if (!stalled && lrc_regs_ok(rq))
2224                 goto out_replay;
2225
2226         /*
2227          * We want a simple context + ring to execute the breadcrumb update.
2228          * We cannot rely on the context being intact across the GPU hang,
2229          * so clear it and rebuild just what we need for the breadcrumb.
2230          * All pending requests for this context will be zapped, and any
2231          * future request will be after userspace has had the opportunity
2232          * to recreate its own state.
2233          */
2234         regs = ce->lrc_reg_state;
2235         if (engine->pinned_default_state) {
2236                 memcpy(regs, /* skip restoring the vanilla PPHWSP */
2237                        engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
2238                        engine->context_size - PAGE_SIZE);
2239         }
2240         execlists_init_reg_state(regs, ce, engine, ce->ring);
2241
2242 out_replay:
2243         /* Rerun the request; its payload has been neutered (if guilty). */
2244         ce->ring->head =
2245                 rq ? intel_ring_wrap(ce->ring, rq->head) : ce->ring->tail;
2246         intel_ring_update_space(ce->ring);
2247         __execlists_update_reg_state(ce, engine);
2248
2249         /* Push back any incomplete requests for replay after the reset. */
2250         __unwind_incomplete_requests(engine);
2251
2252 out_clear:
2253         execlists_clear_all_active(execlists);
2254 }
2255
2256 static void execlists_reset(struct intel_engine_cs *engine, bool stalled)
2257 {
2258         unsigned long flags;
2259
2260         GEM_TRACE("%s\n", engine->name);
2261
2262         spin_lock_irqsave(&engine->timeline.lock, flags);
2263
2264         __execlists_reset(engine, stalled);
2265
2266         spin_unlock_irqrestore(&engine->timeline.lock, flags);
2267 }
2268
2269 static void nop_submission_tasklet(unsigned long data)
2270 {
2271         /* The driver is wedged; don't process any more events. */
2272 }
2273
2274 static void execlists_cancel_requests(struct intel_engine_cs *engine)
2275 {
2276         struct intel_engine_execlists * const execlists = &engine->execlists;
2277         struct i915_request *rq, *rn;
2278         struct rb_node *rb;
2279         unsigned long flags;
2280
2281         GEM_TRACE("%s\n", engine->name);
2282
2283         /*
2284          * Before we call engine->cancel_requests(), we should have exclusive
2285          * access to the submission state. This is arranged for us by the
2286          * caller disabling the interrupt generation, the tasklet and other
2287          * threads that may then access the same state, giving us a free hand
2288          * to reset state. However, we still need to let lockdep be aware that
2289          * we know this state may be accessed in hardirq context, so we
2290          * disable the irq around this manipulation and we want to keep
2291          * the spinlock focused on its duties and not accidentally conflate
2292          * coverage to the submission's irq state. (Similarly, although we
2293          * shouldn't need to disable irq around the manipulation of the
2294          * submission's irq state, we also wish to remind ourselves that
2295          * it is irq state.)
2296          */
2297         spin_lock_irqsave(&engine->timeline.lock, flags);
2298
2299         __execlists_reset(engine, true);
2300
2301         /* Mark all executing requests as skipped. */
2302         list_for_each_entry(rq, &engine->timeline.requests, link) {
2303                 if (!i915_request_signaled(rq))
2304                         dma_fence_set_error(&rq->fence, -EIO);
2305
2306                 i915_request_mark_complete(rq);
2307         }
2308
2309         /* Flush the queued requests to the timeline list (for retiring). */
2310         while ((rb = rb_first_cached(&execlists->queue))) {
2311                 struct i915_priolist *p = to_priolist(rb);
2312                 int i;
2313
2314                 priolist_for_each_request_consume(rq, rn, p, i) {
2315                         list_del_init(&rq->sched.link);
2316                         __i915_request_submit(rq);
2317                         dma_fence_set_error(&rq->fence, -EIO);
2318                         i915_request_mark_complete(rq);
2319                 }
2320
2321                 rb_erase_cached(&p->node, &execlists->queue);
2322                 i915_priolist_free(p);
2323         }
2324
2325         /* Cancel all attached virtual engines */
2326         while ((rb = rb_first_cached(&execlists->virtual))) {
2327                 struct virtual_engine *ve =
2328                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
2329
2330                 rb_erase_cached(rb, &execlists->virtual);
2331                 RB_CLEAR_NODE(rb);
2332
2333                 spin_lock(&ve->base.timeline.lock);
2334                 if (ve->request) {
2335                         ve->request->engine = engine;
2336                         __i915_request_submit(ve->request);
2337                         dma_fence_set_error(&ve->request->fence, -EIO);
2338                         i915_request_mark_complete(ve->request);
2339                         ve->base.execlists.queue_priority_hint = INT_MIN;
2340                         ve->request = NULL;
2341                 }
2342                 spin_unlock(&ve->base.timeline.lock);
2343         }
2344
2345         /* Remaining _unready_ requests will be nop'ed when submitted */
2346
2347         execlists->queue_priority_hint = INT_MIN;
2348         execlists->queue = RB_ROOT_CACHED;
2349         GEM_BUG_ON(port_isset(execlists->port));
2350
2351         GEM_BUG_ON(__tasklet_is_enabled(&execlists->tasklet));
2352         execlists->tasklet.func = nop_submission_tasklet;
2353
2354         spin_unlock_irqrestore(&engine->timeline.lock, flags);
2355 }
2356
2357 static void execlists_reset_finish(struct intel_engine_cs *engine)
2358 {
2359         struct intel_engine_execlists * const execlists = &engine->execlists;
2360
2361         /*
2362          * After a GPU reset, we may have requests to replay. Do so now while
2363          * we still have the forcewake to be sure that the GPU is not allowed
2364          * to sleep before we restart and reload a context.
2365          */
2366         GEM_BUG_ON(!reset_in_progress(execlists));
2367         if (!RB_EMPTY_ROOT(&execlists->queue.rb_root))
2368                 execlists->tasklet.func(execlists->tasklet.data);
2369
2370         if (__tasklet_enable(&execlists->tasklet))
2371                 /* And kick in case we missed a new request submission. */
2372                 tasklet_hi_schedule(&execlists->tasklet);
2373         GEM_TRACE("%s: depth->%d\n", engine->name,
2374                   atomic_read(&execlists->tasklet.count));
2375 }
2376
2377 static int gen8_emit_bb_start(struct i915_request *rq,
2378                               u64 offset, u32 len,
2379                               const unsigned int flags)
2380 {
2381         u32 *cs;
2382
2383         cs = intel_ring_begin(rq, 4);
2384         if (IS_ERR(cs))
2385                 return PTR_ERR(cs);
2386
2387         /*
2388          * WaDisableCtxRestoreArbitration:bdw,chv
2389          *
2390          * We don't need to perform MI_ARB_ENABLE as often as we do (in
2391          * particular all the gen that do not need the w/a at all!), if we
2392          * took care to make sure that on every switch into this context
2393          * (both ordinary and for preemption) that arbitrartion was enabled
2394          * we would be fine.  However, for gen8 there is another w/a that
2395          * requires us to not preempt inside GPGPU execution, so we keep
2396          * arbitration disabled for gen8 batches. Arbitration will be
2397          * re-enabled before we close the request
2398          * (engine->emit_fini_breadcrumb).
2399          */
2400         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2401
2402         /* FIXME(BDW+): Address space and security selectors. */
2403         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2404                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2405         *cs++ = lower_32_bits(offset);
2406         *cs++ = upper_32_bits(offset);
2407
2408         intel_ring_advance(rq, cs);
2409
2410         return 0;
2411 }
2412
2413 static int gen9_emit_bb_start(struct i915_request *rq,
2414                               u64 offset, u32 len,
2415                               const unsigned int flags)
2416 {
2417         u32 *cs;
2418
2419         cs = intel_ring_begin(rq, 6);
2420         if (IS_ERR(cs))
2421                 return PTR_ERR(cs);
2422
2423         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2424
2425         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
2426                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
2427         *cs++ = lower_32_bits(offset);
2428         *cs++ = upper_32_bits(offset);
2429
2430         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2431         *cs++ = MI_NOOP;
2432
2433         intel_ring_advance(rq, cs);
2434
2435         return 0;
2436 }
2437
2438 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
2439 {
2440         ENGINE_WRITE(engine, RING_IMR,
2441                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
2442         ENGINE_POSTING_READ(engine, RING_IMR);
2443 }
2444
2445 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
2446 {
2447         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
2448 }
2449
2450 static int gen8_emit_flush(struct i915_request *request, u32 mode)
2451 {
2452         u32 cmd, *cs;
2453
2454         cs = intel_ring_begin(request, 4);
2455         if (IS_ERR(cs))
2456                 return PTR_ERR(cs);
2457
2458         cmd = MI_FLUSH_DW + 1;
2459
2460         /* We always require a command barrier so that subsequent
2461          * commands, such as breadcrumb interrupts, are strictly ordered
2462          * wrt the contents of the write cache being flushed to memory
2463          * (and thus being coherent from the CPU).
2464          */
2465         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
2466
2467         if (mode & EMIT_INVALIDATE) {
2468                 cmd |= MI_INVALIDATE_TLB;
2469                 if (request->engine->class == VIDEO_DECODE_CLASS)
2470                         cmd |= MI_INVALIDATE_BSD;
2471         }
2472
2473         *cs++ = cmd;
2474         *cs++ = I915_GEM_HWS_SCRATCH_ADDR | MI_FLUSH_DW_USE_GTT;
2475         *cs++ = 0; /* upper addr */
2476         *cs++ = 0; /* value */
2477         intel_ring_advance(request, cs);
2478
2479         return 0;
2480 }
2481
2482 static int gen8_emit_flush_render(struct i915_request *request,
2483                                   u32 mode)
2484 {
2485         struct intel_engine_cs *engine = request->engine;
2486         u32 scratch_addr =
2487                 i915_scratch_offset(engine->i915) + 2 * CACHELINE_BYTES;
2488         bool vf_flush_wa = false, dc_flush_wa = false;
2489         u32 *cs, flags = 0;
2490         int len;
2491
2492         flags |= PIPE_CONTROL_CS_STALL;
2493
2494         if (mode & EMIT_FLUSH) {
2495                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
2496                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
2497                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
2498                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
2499         }
2500
2501         if (mode & EMIT_INVALIDATE) {
2502                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
2503                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
2504                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
2505                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
2506                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
2507                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
2508                 flags |= PIPE_CONTROL_QW_WRITE;
2509                 flags |= PIPE_CONTROL_GLOBAL_GTT_IVB;
2510
2511                 /*
2512                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
2513                  * pipe control.
2514                  */
2515                 if (IS_GEN(request->i915, 9))
2516                         vf_flush_wa = true;
2517
2518                 /* WaForGAMHang:kbl */
2519                 if (IS_KBL_REVID(request->i915, 0, KBL_REVID_B0))
2520                         dc_flush_wa = true;
2521         }
2522
2523         len = 6;
2524
2525         if (vf_flush_wa)
2526                 len += 6;
2527
2528         if (dc_flush_wa)
2529                 len += 12;
2530
2531         cs = intel_ring_begin(request, len);
2532         if (IS_ERR(cs))
2533                 return PTR_ERR(cs);
2534
2535         if (vf_flush_wa)
2536                 cs = gen8_emit_pipe_control(cs, 0, 0);
2537
2538         if (dc_flush_wa)
2539                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
2540                                             0);
2541
2542         cs = gen8_emit_pipe_control(cs, flags, scratch_addr);
2543
2544         if (dc_flush_wa)
2545                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
2546
2547         intel_ring_advance(request, cs);
2548
2549         return 0;
2550 }
2551
2552 /*
2553  * Reserve space for 2 NOOPs at the end of each request to be
2554  * used as a workaround for not being allowed to do lite
2555  * restore with HEAD==TAIL (WaIdleLiteRestore).
2556  */
2557 static u32 *gen8_emit_wa_tail(struct i915_request *request, u32 *cs)
2558 {
2559         /* Ensure there's always at least one preemption point per-request. */
2560         *cs++ = MI_ARB_CHECK;
2561         *cs++ = MI_NOOP;
2562         request->wa_tail = intel_ring_offset(request, cs);
2563
2564         return cs;
2565 }
2566
2567 static u32 *gen8_emit_fini_breadcrumb(struct i915_request *request, u32 *cs)
2568 {
2569         cs = gen8_emit_ggtt_write(cs,
2570                                   request->fence.seqno,
2571                                   request->timeline->hwsp_offset,
2572                                   0);
2573
2574         *cs++ = MI_USER_INTERRUPT;
2575         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2576
2577         request->tail = intel_ring_offset(request, cs);
2578         assert_ring_tail_valid(request->ring, request->tail);
2579
2580         return gen8_emit_wa_tail(request, cs);
2581 }
2582
2583 static u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *request, u32 *cs)
2584 {
2585         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
2586         cs = gen8_emit_ggtt_write_rcs(cs,
2587                                       request->fence.seqno,
2588                                       request->timeline->hwsp_offset,
2589                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
2590                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
2591                                       PIPE_CONTROL_DC_FLUSH_ENABLE);
2592         cs = gen8_emit_pipe_control(cs,
2593                                     PIPE_CONTROL_FLUSH_ENABLE |
2594                                     PIPE_CONTROL_CS_STALL,
2595                                     0);
2596
2597         *cs++ = MI_USER_INTERRUPT;
2598         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2599
2600         request->tail = intel_ring_offset(request, cs);
2601         assert_ring_tail_valid(request->ring, request->tail);
2602
2603         return gen8_emit_wa_tail(request, cs);
2604 }
2605
2606 static int gen8_init_rcs_context(struct i915_request *rq)
2607 {
2608         int ret;
2609
2610         ret = intel_engine_emit_ctx_wa(rq);
2611         if (ret)
2612                 return ret;
2613
2614         ret = intel_rcs_context_init_mocs(rq);
2615         /*
2616          * Failing to program the MOCS is non-fatal.The system will not
2617          * run at peak performance. So generate an error and carry on.
2618          */
2619         if (ret)
2620                 DRM_ERROR("MOCS failed to program: expect performance issues.\n");
2621
2622         return i915_gem_render_state_emit(rq);
2623 }
2624
2625 static void execlists_park(struct intel_engine_cs *engine)
2626 {
2627         intel_engine_park(engine);
2628 }
2629
2630 void intel_execlists_set_default_submission(struct intel_engine_cs *engine)
2631 {
2632         engine->submit_request = execlists_submit_request;
2633         engine->cancel_requests = execlists_cancel_requests;
2634         engine->schedule = i915_schedule;
2635         engine->execlists.tasklet.func = execlists_submission_tasklet;
2636
2637         engine->reset.prepare = execlists_reset_prepare;
2638         engine->reset.reset = execlists_reset;
2639         engine->reset.finish = execlists_reset_finish;
2640
2641         engine->park = execlists_park;
2642         engine->unpark = NULL;
2643
2644         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
2645         if (!intel_vgpu_active(engine->i915))
2646                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
2647         if (engine->preempt_context &&
2648             HAS_LOGICAL_RING_PREEMPTION(engine->i915))
2649                 engine->flags |= I915_ENGINE_HAS_PREEMPTION;
2650 }
2651
2652 static void execlists_destroy(struct intel_engine_cs *engine)
2653 {
2654         intel_engine_cleanup_common(engine);
2655         lrc_destroy_wa_ctx(engine);
2656         kfree(engine);
2657 }
2658
2659 static void
2660 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
2661 {
2662         /* Default vfuncs which can be overriden by each engine. */
2663
2664         engine->destroy = execlists_destroy;
2665         engine->resume = execlists_resume;
2666
2667         engine->reset.prepare = execlists_reset_prepare;
2668         engine->reset.reset = execlists_reset;
2669         engine->reset.finish = execlists_reset_finish;
2670
2671         engine->cops = &execlists_context_ops;
2672         engine->request_alloc = execlists_request_alloc;
2673
2674         engine->emit_flush = gen8_emit_flush;
2675         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
2676         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb;
2677
2678         engine->set_default_submission = intel_execlists_set_default_submission;
2679
2680         if (INTEL_GEN(engine->i915) < 11) {
2681                 engine->irq_enable = gen8_logical_ring_enable_irq;
2682                 engine->irq_disable = gen8_logical_ring_disable_irq;
2683         } else {
2684                 /*
2685                  * TODO: On Gen11 interrupt masks need to be clear
2686                  * to allow C6 entry. Keep interrupts enabled at
2687                  * and take the hit of generating extra interrupts
2688                  * until a more refined solution exists.
2689                  */
2690         }
2691         if (IS_GEN(engine->i915, 8))
2692                 engine->emit_bb_start = gen8_emit_bb_start;
2693         else
2694                 engine->emit_bb_start = gen9_emit_bb_start;
2695 }
2696
2697 static inline void
2698 logical_ring_default_irqs(struct intel_engine_cs *engine)
2699 {
2700         unsigned int shift = 0;
2701
2702         if (INTEL_GEN(engine->i915) < 11) {
2703                 const u8 irq_shifts[] = {
2704                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
2705                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
2706                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
2707                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
2708                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
2709                 };
2710
2711                 shift = irq_shifts[engine->id];
2712         }
2713
2714         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
2715         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
2716 }
2717
2718 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
2719 {
2720         /* Intentionally left blank. */
2721         engine->buffer = NULL;
2722
2723         tasklet_init(&engine->execlists.tasklet,
2724                      execlists_submission_tasklet, (unsigned long)engine);
2725
2726         logical_ring_default_vfuncs(engine);
2727         logical_ring_default_irqs(engine);
2728
2729         if (engine->class == RENDER_CLASS) {
2730                 engine->init_context = gen8_init_rcs_context;
2731                 engine->emit_flush = gen8_emit_flush_render;
2732                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
2733         }
2734
2735         return 0;
2736 }
2737
2738 int intel_execlists_submission_init(struct intel_engine_cs *engine)
2739 {
2740         struct drm_i915_private *i915 = engine->i915;
2741         struct intel_engine_execlists * const execlists = &engine->execlists;
2742         u32 base = engine->mmio_base;
2743         int ret;
2744
2745         ret = intel_engine_init_common(engine);
2746         if (ret)
2747                 return ret;
2748
2749         intel_engine_init_workarounds(engine);
2750         intel_engine_init_whitelist(engine);
2751
2752         if (intel_init_workaround_bb(engine))
2753                 /*
2754                  * We continue even if we fail to initialize WA batch
2755                  * because we only expect rare glitches but nothing
2756                  * critical to prevent us from using GPU
2757                  */
2758                 DRM_ERROR("WA batch buffer initialization failed\n");
2759
2760         if (HAS_LOGICAL_RING_ELSQ(i915)) {
2761                 execlists->submit_reg = i915->uncore.regs +
2762                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
2763                 execlists->ctrl_reg = i915->uncore.regs +
2764                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
2765         } else {
2766                 execlists->submit_reg = i915->uncore.regs +
2767                         i915_mmio_reg_offset(RING_ELSP(base));
2768         }
2769
2770         execlists->preempt_complete_status = ~0u;
2771         if (engine->preempt_context)
2772                 execlists->preempt_complete_status =
2773                         upper_32_bits(engine->preempt_context->lrc_desc);
2774
2775         execlists->csb_status =
2776                 &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
2777
2778         execlists->csb_write =
2779                 &engine->status_page.addr[intel_hws_csb_write_index(i915)];
2780
2781         if (INTEL_GEN(engine->i915) < 11)
2782                 execlists->csb_size = GEN8_CSB_ENTRIES;
2783         else
2784                 execlists->csb_size = GEN11_CSB_ENTRIES;
2785
2786         reset_csb_pointers(execlists);
2787
2788         return 0;
2789 }
2790
2791 static u32 intel_lr_indirect_ctx_offset(struct intel_engine_cs *engine)
2792 {
2793         u32 indirect_ctx_offset;
2794
2795         switch (INTEL_GEN(engine->i915)) {
2796         default:
2797                 MISSING_CASE(INTEL_GEN(engine->i915));
2798                 /* fall through */
2799         case 11:
2800                 indirect_ctx_offset =
2801                         GEN11_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2802                 break;
2803         case 10:
2804                 indirect_ctx_offset =
2805                         GEN10_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2806                 break;
2807         case 9:
2808                 indirect_ctx_offset =
2809                         GEN9_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2810                 break;
2811         case 8:
2812                 indirect_ctx_offset =
2813                         GEN8_CTX_RCS_INDIRECT_CTX_OFFSET_DEFAULT;
2814                 break;
2815         }
2816
2817         return indirect_ctx_offset;
2818 }
2819
2820 static void execlists_init_reg_state(u32 *regs,
2821                                      struct intel_context *ce,
2822                                      struct intel_engine_cs *engine,
2823                                      struct intel_ring *ring)
2824 {
2825         struct i915_hw_ppgtt *ppgtt = ce->gem_context->ppgtt;
2826         bool rcs = engine->class == RENDER_CLASS;
2827         u32 base = engine->mmio_base;
2828
2829         /*
2830          * A context is actually a big batch buffer with several
2831          * MI_LOAD_REGISTER_IMM commands followed by (reg, value) pairs. The
2832          * values we are setting here are only for the first context restore:
2833          * on a subsequent save, the GPU will recreate this batchbuffer with new
2834          * values (including all the missing MI_LOAD_REGISTER_IMM commands that
2835          * we are not initializing here).
2836          *
2837          * Must keep consistent with virtual_update_register_offsets().
2838          */
2839         regs[CTX_LRI_HEADER_0] = MI_LOAD_REGISTER_IMM(rcs ? 14 : 11) |
2840                                  MI_LRI_FORCE_POSTED;
2841
2842         CTX_REG(regs, CTX_CONTEXT_CONTROL, RING_CONTEXT_CONTROL(base),
2843                 _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT) |
2844                 _MASKED_BIT_ENABLE(CTX_CTRL_INHIBIT_SYN_CTX_SWITCH));
2845         if (INTEL_GEN(engine->i915) < 11) {
2846                 regs[CTX_CONTEXT_CONTROL + 1] |=
2847                         _MASKED_BIT_DISABLE(CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT |
2848                                             CTX_CTRL_RS_CTX_ENABLE);
2849         }
2850         CTX_REG(regs, CTX_RING_HEAD, RING_HEAD(base), 0);
2851         CTX_REG(regs, CTX_RING_TAIL, RING_TAIL(base), 0);
2852         CTX_REG(regs, CTX_RING_BUFFER_START, RING_START(base), 0);
2853         CTX_REG(regs, CTX_RING_BUFFER_CONTROL, RING_CTL(base),
2854                 RING_CTL_SIZE(ring->size) | RING_VALID);
2855         CTX_REG(regs, CTX_BB_HEAD_U, RING_BBADDR_UDW(base), 0);
2856         CTX_REG(regs, CTX_BB_HEAD_L, RING_BBADDR(base), 0);
2857         CTX_REG(regs, CTX_BB_STATE, RING_BBSTATE(base), RING_BB_PPGTT);
2858         CTX_REG(regs, CTX_SECOND_BB_HEAD_U, RING_SBBADDR_UDW(base), 0);
2859         CTX_REG(regs, CTX_SECOND_BB_HEAD_L, RING_SBBADDR(base), 0);
2860         CTX_REG(regs, CTX_SECOND_BB_STATE, RING_SBBSTATE(base), 0);
2861         if (rcs) {
2862                 struct i915_ctx_workarounds *wa_ctx = &engine->wa_ctx;
2863
2864                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX, RING_INDIRECT_CTX(base), 0);
2865                 CTX_REG(regs, CTX_RCS_INDIRECT_CTX_OFFSET,
2866                         RING_INDIRECT_CTX_OFFSET(base), 0);
2867                 if (wa_ctx->indirect_ctx.size) {
2868                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2869
2870                         regs[CTX_RCS_INDIRECT_CTX + 1] =
2871                                 (ggtt_offset + wa_ctx->indirect_ctx.offset) |
2872                                 (wa_ctx->indirect_ctx.size / CACHELINE_BYTES);
2873
2874                         regs[CTX_RCS_INDIRECT_CTX_OFFSET + 1] =
2875                                 intel_lr_indirect_ctx_offset(engine) << 6;
2876                 }
2877
2878                 CTX_REG(regs, CTX_BB_PER_CTX_PTR, RING_BB_PER_CTX_PTR(base), 0);
2879                 if (wa_ctx->per_ctx.size) {
2880                         u32 ggtt_offset = i915_ggtt_offset(wa_ctx->vma);
2881
2882                         regs[CTX_BB_PER_CTX_PTR + 1] =
2883                                 (ggtt_offset + wa_ctx->per_ctx.offset) | 0x01;
2884                 }
2885         }
2886
2887         regs[CTX_LRI_HEADER_1] = MI_LOAD_REGISTER_IMM(9) | MI_LRI_FORCE_POSTED;
2888
2889         CTX_REG(regs, CTX_CTX_TIMESTAMP, RING_CTX_TIMESTAMP(base), 0);
2890         /* PDP values well be assigned later if needed */
2891         CTX_REG(regs, CTX_PDP3_UDW, GEN8_RING_PDP_UDW(base, 3), 0);
2892         CTX_REG(regs, CTX_PDP3_LDW, GEN8_RING_PDP_LDW(base, 3), 0);
2893         CTX_REG(regs, CTX_PDP2_UDW, GEN8_RING_PDP_UDW(base, 2), 0);
2894         CTX_REG(regs, CTX_PDP2_LDW, GEN8_RING_PDP_LDW(base, 2), 0);
2895         CTX_REG(regs, CTX_PDP1_UDW, GEN8_RING_PDP_UDW(base, 1), 0);
2896         CTX_REG(regs, CTX_PDP1_LDW, GEN8_RING_PDP_LDW(base, 1), 0);
2897         CTX_REG(regs, CTX_PDP0_UDW, GEN8_RING_PDP_UDW(base, 0), 0);
2898         CTX_REG(regs, CTX_PDP0_LDW, GEN8_RING_PDP_LDW(base, 0), 0);
2899
2900         if (i915_vm_is_4lvl(&ppgtt->vm)) {
2901                 /* 64b PPGTT (48bit canonical)
2902                  * PDP0_DESCRIPTOR contains the base address to PML4 and
2903                  * other PDP Descriptors are ignored.
2904                  */
2905                 ASSIGN_CTX_PML4(ppgtt, regs);
2906         } else {
2907                 ASSIGN_CTX_PDP(ppgtt, regs, 3);
2908                 ASSIGN_CTX_PDP(ppgtt, regs, 2);
2909                 ASSIGN_CTX_PDP(ppgtt, regs, 1);
2910                 ASSIGN_CTX_PDP(ppgtt, regs, 0);
2911         }
2912
2913         if (rcs) {
2914                 regs[CTX_LRI_HEADER_2] = MI_LOAD_REGISTER_IMM(1);
2915                 CTX_REG(regs, CTX_R_PWR_CLK_STATE, GEN8_R_PWR_CLK_STATE, 0);
2916
2917                 i915_oa_init_reg_state(engine, ce, regs);
2918         }
2919
2920         regs[CTX_END] = MI_BATCH_BUFFER_END;
2921         if (INTEL_GEN(engine->i915) >= 10)
2922                 regs[CTX_END] |= BIT(0);
2923 }
2924
2925 static int
2926 populate_lr_context(struct intel_context *ce,
2927                     struct drm_i915_gem_object *ctx_obj,
2928                     struct intel_engine_cs *engine,
2929                     struct intel_ring *ring)
2930 {
2931         void *vaddr;
2932         u32 *regs;
2933         int ret;
2934
2935         vaddr = i915_gem_object_pin_map(ctx_obj, I915_MAP_WB);
2936         if (IS_ERR(vaddr)) {
2937                 ret = PTR_ERR(vaddr);
2938                 DRM_DEBUG_DRIVER("Could not map object pages! (%d)\n", ret);
2939                 return ret;
2940         }
2941
2942         if (engine->default_state) {
2943                 /*
2944                  * We only want to copy over the template context state;
2945                  * skipping over the headers reserved for GuC communication,
2946                  * leaving those as zero.
2947                  */
2948                 const unsigned long start = LRC_HEADER_PAGES * PAGE_SIZE;
2949                 void *defaults;
2950
2951                 defaults = i915_gem_object_pin_map(engine->default_state,
2952                                                    I915_MAP_WB);
2953                 if (IS_ERR(defaults)) {
2954                         ret = PTR_ERR(defaults);
2955                         goto err_unpin_ctx;
2956                 }
2957
2958                 memcpy(vaddr + start, defaults + start, engine->context_size);
2959                 i915_gem_object_unpin_map(engine->default_state);
2960         }
2961
2962         /* The second page of the context object contains some fields which must
2963          * be set up prior to the first execution. */
2964         regs = vaddr + LRC_STATE_PN * PAGE_SIZE;
2965         execlists_init_reg_state(regs, ce, engine, ring);
2966         if (!engine->default_state)
2967                 regs[CTX_CONTEXT_CONTROL + 1] |=
2968                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT);
2969         if (ce->gem_context == engine->i915->preempt_context &&
2970             INTEL_GEN(engine->i915) < 11)
2971                 regs[CTX_CONTEXT_CONTROL + 1] |=
2972                         _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT |
2973                                            CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT);
2974
2975         ret = 0;
2976 err_unpin_ctx:
2977         __i915_gem_object_flush_map(ctx_obj,
2978                                     LRC_HEADER_PAGES * PAGE_SIZE,
2979                                     engine->context_size);
2980         i915_gem_object_unpin_map(ctx_obj);
2981         return ret;
2982 }
2983
2984 static struct i915_timeline *get_timeline(struct i915_gem_context *ctx)
2985 {
2986         if (ctx->timeline)
2987                 return i915_timeline_get(ctx->timeline);
2988         else
2989                 return i915_timeline_create(ctx->i915, NULL);
2990 }
2991
2992 static int execlists_context_deferred_alloc(struct intel_context *ce,
2993                                             struct intel_engine_cs *engine)
2994 {
2995         struct drm_i915_gem_object *ctx_obj;
2996         struct i915_vma *vma;
2997         u32 context_size;
2998         struct intel_ring *ring;
2999         struct i915_timeline *timeline;
3000         int ret;
3001
3002         if (ce->state)
3003                 return 0;
3004
3005         context_size = round_up(engine->context_size, I915_GTT_PAGE_SIZE);
3006
3007         /*
3008          * Before the actual start of the context image, we insert a few pages
3009          * for our own use and for sharing with the GuC.
3010          */
3011         context_size += LRC_HEADER_PAGES * PAGE_SIZE;
3012
3013         ctx_obj = i915_gem_object_create(engine->i915, context_size);
3014         if (IS_ERR(ctx_obj))
3015                 return PTR_ERR(ctx_obj);
3016
3017         vma = i915_vma_instance(ctx_obj, &engine->i915->ggtt.vm, NULL);
3018         if (IS_ERR(vma)) {
3019                 ret = PTR_ERR(vma);
3020                 goto error_deref_obj;
3021         }
3022
3023         timeline = get_timeline(ce->gem_context);
3024         if (IS_ERR(timeline)) {
3025                 ret = PTR_ERR(timeline);
3026                 goto error_deref_obj;
3027         }
3028
3029         ring = intel_engine_create_ring(engine,
3030                                         timeline,
3031                                         ce->gem_context->ring_size);
3032         i915_timeline_put(timeline);
3033         if (IS_ERR(ring)) {
3034                 ret = PTR_ERR(ring);
3035                 goto error_deref_obj;
3036         }
3037
3038         ret = populate_lr_context(ce, ctx_obj, engine, ring);
3039         if (ret) {
3040                 DRM_DEBUG_DRIVER("Failed to populate LRC: %d\n", ret);
3041                 goto error_ring_free;
3042         }
3043
3044         ce->ring = ring;
3045         ce->state = vma;
3046
3047         return 0;
3048
3049 error_ring_free:
3050         intel_ring_put(ring);
3051 error_deref_obj:
3052         i915_gem_object_put(ctx_obj);
3053         return ret;
3054 }
3055
3056 static void virtual_context_destroy(struct kref *kref)
3057 {
3058         struct virtual_engine *ve =
3059                 container_of(kref, typeof(*ve), context.ref);
3060         unsigned int n;
3061
3062         GEM_BUG_ON(ve->request);
3063         GEM_BUG_ON(ve->context.active);
3064
3065         for (n = 0; n < ve->num_siblings; n++) {
3066                 struct intel_engine_cs *sibling = ve->siblings[n];
3067                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3068
3069                 if (RB_EMPTY_NODE(node))
3070                         continue;
3071
3072                 spin_lock_irq(&sibling->timeline.lock);
3073
3074                 /* Detachment is lazily performed in the execlists tasklet */
3075                 if (!RB_EMPTY_NODE(node))
3076                         rb_erase_cached(node, &sibling->execlists.virtual);
3077
3078                 spin_unlock_irq(&sibling->timeline.lock);
3079         }
3080         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.execlists.tasklet));
3081
3082         if (ve->context.state)
3083                 __execlists_context_fini(&ve->context);
3084
3085         kfree(ve->bonds);
3086
3087         i915_timeline_fini(&ve->base.timeline);
3088         kfree(ve);
3089 }
3090
3091 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3092 {
3093         int swp;
3094
3095         /*
3096          * Pick a random sibling on starting to help spread the load around.
3097          *
3098          * New contexts are typically created with exactly the same order
3099          * of siblings, and often started in batches. Due to the way we iterate
3100          * the array of sibling when submitting requests, sibling[0] is
3101          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3102          * randomised across the system, we also help spread the load by the
3103          * first engine we inspect being different each time.
3104          *
3105          * NB This does not force us to execute on this engine, it will just
3106          * typically be the first we inspect for submission.
3107          */
3108         swp = prandom_u32_max(ve->num_siblings);
3109         if (!swp)
3110                 return;
3111
3112         swap(ve->siblings[swp], ve->siblings[0]);
3113         virtual_update_register_offsets(ve->context.lrc_reg_state,
3114                                         ve->siblings[0]);
3115 }
3116
3117 static int virtual_context_pin(struct intel_context *ce)
3118 {
3119         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3120         int err;
3121
3122         /* Note: we must use a real engine class for setting up reg state */
3123         err = __execlists_context_pin(ce, ve->siblings[0]);
3124         if (err)
3125                 return err;
3126
3127         virtual_engine_initial_hint(ve);
3128         return 0;
3129 }
3130
3131 static void virtual_context_enter(struct intel_context *ce)
3132 {
3133         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3134         unsigned int n;
3135
3136         for (n = 0; n < ve->num_siblings; n++)
3137                 intel_engine_pm_get(ve->siblings[n]);
3138 }
3139
3140 static void virtual_context_exit(struct intel_context *ce)
3141 {
3142         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3143         unsigned int n;
3144
3145         ce->saturated = 0;
3146         for (n = 0; n < ve->num_siblings; n++)
3147                 intel_engine_pm_put(ve->siblings[n]);
3148 }
3149
3150 static const struct intel_context_ops virtual_context_ops = {
3151         .pin = virtual_context_pin,
3152         .unpin = execlists_context_unpin,
3153
3154         .enter = virtual_context_enter,
3155         .exit = virtual_context_exit,
3156
3157         .destroy = virtual_context_destroy,
3158 };
3159
3160 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3161 {
3162         struct i915_request *rq;
3163         intel_engine_mask_t mask;
3164
3165         rq = READ_ONCE(ve->request);
3166         if (!rq)
3167                 return 0;
3168
3169         /* The rq is ready for submission; rq->execution_mask is now stable. */
3170         mask = rq->execution_mask;
3171         if (unlikely(!mask)) {
3172                 /* Invalid selection, submit to a random engine in error */
3173                 i915_request_skip(rq, -ENODEV);
3174                 mask = ve->siblings[0]->mask;
3175         }
3176
3177         GEM_TRACE("%s: rq=%llx:%lld, mask=%x, prio=%d\n",
3178                   ve->base.name,
3179                   rq->fence.context, rq->fence.seqno,
3180                   mask, ve->base.execlists.queue_priority_hint);
3181
3182         return mask;
3183 }
3184
3185 static void virtual_submission_tasklet(unsigned long data)
3186 {
3187         struct virtual_engine * const ve = (struct virtual_engine *)data;
3188         const int prio = ve->base.execlists.queue_priority_hint;
3189         intel_engine_mask_t mask;
3190         unsigned int n;
3191
3192         rcu_read_lock();
3193         mask = virtual_submission_mask(ve);
3194         rcu_read_unlock();
3195         if (unlikely(!mask))
3196                 return;
3197
3198         local_irq_disable();
3199         for (n = 0; READ_ONCE(ve->request) && n < ve->num_siblings; n++) {
3200                 struct intel_engine_cs *sibling = ve->siblings[n];
3201                 struct ve_node * const node = &ve->nodes[sibling->id];
3202                 struct rb_node **parent, *rb;
3203                 bool first;
3204
3205                 if (unlikely(!(mask & sibling->mask))) {
3206                         if (!RB_EMPTY_NODE(&node->rb)) {
3207                                 spin_lock(&sibling->timeline.lock);
3208                                 rb_erase_cached(&node->rb,
3209                                                 &sibling->execlists.virtual);
3210                                 RB_CLEAR_NODE(&node->rb);
3211                                 spin_unlock(&sibling->timeline.lock);
3212                         }
3213                         continue;
3214                 }
3215
3216                 spin_lock(&sibling->timeline.lock);
3217
3218                 if (!RB_EMPTY_NODE(&node->rb)) {
3219                         /*
3220                          * Cheat and avoid rebalancing the tree if we can
3221                          * reuse this node in situ.
3222                          */
3223                         first = rb_first_cached(&sibling->execlists.virtual) ==
3224                                 &node->rb;
3225                         if (prio == node->prio || (prio > node->prio && first))
3226                                 goto submit_engine;
3227
3228                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3229                 }
3230
3231                 rb = NULL;
3232                 first = true;
3233                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3234                 while (*parent) {
3235                         struct ve_node *other;
3236
3237                         rb = *parent;
3238                         other = rb_entry(rb, typeof(*other), rb);
3239                         if (prio > other->prio) {
3240                                 parent = &rb->rb_left;
3241                         } else {
3242                                 parent = &rb->rb_right;
3243                                 first = false;
3244                         }
3245                 }
3246
3247                 rb_link_node(&node->rb, rb, parent);
3248                 rb_insert_color_cached(&node->rb,
3249                                        &sibling->execlists.virtual,
3250                                        first);
3251
3252 submit_engine:
3253                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3254                 node->prio = prio;
3255                 if (first && prio > sibling->execlists.queue_priority_hint) {
3256                         sibling->execlists.queue_priority_hint = prio;
3257                         tasklet_hi_schedule(&sibling->execlists.tasklet);
3258                 }
3259
3260                 spin_unlock(&sibling->timeline.lock);
3261         }
3262         local_irq_enable();
3263 }
3264
3265 static void virtual_submit_request(struct i915_request *rq)
3266 {
3267         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3268
3269         GEM_TRACE("%s: rq=%llx:%lld\n",
3270                   ve->base.name,
3271                   rq->fence.context,
3272                   rq->fence.seqno);
3273
3274         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3275
3276         GEM_BUG_ON(ve->request);
3277         ve->base.execlists.queue_priority_hint = rq_prio(rq);
3278         WRITE_ONCE(ve->request, rq);
3279
3280         tasklet_schedule(&ve->base.execlists.tasklet);
3281 }
3282
3283 static struct ve_bond *
3284 virtual_find_bond(struct virtual_engine *ve,
3285                   const struct intel_engine_cs *master)
3286 {
3287         int i;
3288
3289         for (i = 0; i < ve->num_bonds; i++) {
3290                 if (ve->bonds[i].master == master)
3291                         return &ve->bonds[i];
3292         }
3293
3294         return NULL;
3295 }
3296
3297 static void
3298 virtual_bond_execute(struct i915_request *rq, struct dma_fence *signal)
3299 {
3300         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3301         struct ve_bond *bond;
3302
3303         bond = virtual_find_bond(ve, to_request(signal)->engine);
3304         if (bond) {
3305                 intel_engine_mask_t old, new, cmp;
3306
3307                 cmp = READ_ONCE(rq->execution_mask);
3308                 do {
3309                         old = cmp;
3310                         new = cmp & bond->sibling_mask;
3311                 } while ((cmp = cmpxchg(&rq->execution_mask, old, new)) != old);
3312         }
3313 }
3314
3315 struct intel_context *
3316 intel_execlists_create_virtual(struct i915_gem_context *ctx,
3317                                struct intel_engine_cs **siblings,
3318                                unsigned int count)
3319 {
3320         struct virtual_engine *ve;
3321         unsigned int n;
3322         int err;
3323
3324         if (count == 0)
3325                 return ERR_PTR(-EINVAL);
3326
3327         if (count == 1)
3328                 return intel_context_create(ctx, siblings[0]);
3329
3330         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3331         if (!ve)
3332                 return ERR_PTR(-ENOMEM);
3333
3334         ve->base.i915 = ctx->i915;
3335         ve->base.id = -1;
3336         ve->base.class = OTHER_CLASS;
3337         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3338         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3339         ve->base.flags = I915_ENGINE_IS_VIRTUAL;
3340
3341         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3342
3343         err = i915_timeline_init(ctx->i915, &ve->base.timeline, NULL);
3344         if (err)
3345                 goto err_put;
3346         i915_timeline_set_subclass(&ve->base.timeline, TIMELINE_VIRTUAL);
3347
3348         intel_engine_init_execlists(&ve->base);
3349
3350         ve->base.cops = &virtual_context_ops;
3351         ve->base.request_alloc = execlists_request_alloc;
3352
3353         ve->base.schedule = i915_schedule;
3354         ve->base.submit_request = virtual_submit_request;
3355         ve->base.bond_execute = virtual_bond_execute;
3356
3357         ve->base.execlists.queue_priority_hint = INT_MIN;
3358         tasklet_init(&ve->base.execlists.tasklet,
3359                      virtual_submission_tasklet,
3360                      (unsigned long)ve);
3361
3362         intel_context_init(&ve->context, ctx, &ve->base);
3363
3364         for (n = 0; n < count; n++) {
3365                 struct intel_engine_cs *sibling = siblings[n];
3366
3367                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
3368                 if (sibling->mask & ve->base.mask) {
3369                         DRM_DEBUG("duplicate %s entry in load balancer\n",
3370                                   sibling->name);
3371                         err = -EINVAL;
3372                         goto err_put;
3373                 }
3374
3375                 /*
3376                  * The virtual engine implementation is tightly coupled to
3377                  * the execlists backend -- we push out request directly
3378                  * into a tree inside each physical engine. We could support
3379                  * layering if we handle cloning of the requests and
3380                  * submitting a copy into each backend.
3381                  */
3382                 if (sibling->execlists.tasklet.func !=
3383                     execlists_submission_tasklet) {
3384                         err = -ENODEV;
3385                         goto err_put;
3386                 }
3387
3388                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
3389                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
3390
3391                 ve->siblings[ve->num_siblings++] = sibling;
3392                 ve->base.mask |= sibling->mask;
3393
3394                 /*
3395                  * All physical engines must be compatible for their emission
3396                  * functions (as we build the instructions during request
3397                  * construction and do not alter them before submission
3398                  * on the physical engine). We use the engine class as a guide
3399                  * here, although that could be refined.
3400                  */
3401                 if (ve->base.class != OTHER_CLASS) {
3402                         if (ve->base.class != sibling->class) {
3403                                 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
3404                                           sibling->class, ve->base.class);
3405                                 err = -EINVAL;
3406                                 goto err_put;
3407                         }
3408                         continue;
3409                 }
3410
3411                 ve->base.class = sibling->class;
3412                 ve->base.uabi_class = sibling->uabi_class;
3413                 snprintf(ve->base.name, sizeof(ve->base.name),
3414                          "v%dx%d", ve->base.class, count);
3415                 ve->base.context_size = sibling->context_size;
3416
3417                 ve->base.emit_bb_start = sibling->emit_bb_start;
3418                 ve->base.emit_flush = sibling->emit_flush;
3419                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
3420                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
3421                 ve->base.emit_fini_breadcrumb_dw =
3422                         sibling->emit_fini_breadcrumb_dw;
3423         }
3424
3425         return &ve->context;
3426
3427 err_put:
3428         intel_context_put(&ve->context);
3429         return ERR_PTR(err);
3430 }
3431
3432 struct intel_context *
3433 intel_execlists_clone_virtual(struct i915_gem_context *ctx,
3434                               struct intel_engine_cs *src)
3435 {
3436         struct virtual_engine *se = to_virtual_engine(src);
3437         struct intel_context *dst;
3438
3439         dst = intel_execlists_create_virtual(ctx,
3440                                              se->siblings,
3441                                              se->num_siblings);
3442         if (IS_ERR(dst))
3443                 return dst;
3444
3445         if (se->num_bonds) {
3446                 struct virtual_engine *de = to_virtual_engine(dst->engine);
3447
3448                 de->bonds = kmemdup(se->bonds,
3449                                     sizeof(*se->bonds) * se->num_bonds,
3450                                     GFP_KERNEL);
3451                 if (!de->bonds) {
3452                         intel_context_put(dst);
3453                         return ERR_PTR(-ENOMEM);
3454                 }
3455
3456                 de->num_bonds = se->num_bonds;
3457         }
3458
3459         return dst;
3460 }
3461
3462 int intel_virtual_engine_attach_bond(struct intel_engine_cs *engine,
3463                                      const struct intel_engine_cs *master,
3464                                      const struct intel_engine_cs *sibling)
3465 {
3466         struct virtual_engine *ve = to_virtual_engine(engine);
3467         struct ve_bond *bond;
3468         int n;
3469
3470         /* Sanity check the sibling is part of the virtual engine */
3471         for (n = 0; n < ve->num_siblings; n++)
3472                 if (sibling == ve->siblings[n])
3473                         break;
3474         if (n == ve->num_siblings)
3475                 return -EINVAL;
3476
3477         bond = virtual_find_bond(ve, master);
3478         if (bond) {
3479                 bond->sibling_mask |= sibling->mask;
3480                 return 0;
3481         }
3482
3483         bond = krealloc(ve->bonds,
3484                         sizeof(*bond) * (ve->num_bonds + 1),
3485                         GFP_KERNEL);
3486         if (!bond)
3487                 return -ENOMEM;
3488
3489         bond[ve->num_bonds].master = master;
3490         bond[ve->num_bonds].sibling_mask = sibling->mask;
3491
3492         ve->bonds = bond;
3493         ve->num_bonds++;
3494
3495         return 0;
3496 }
3497
3498 void intel_execlists_show_requests(struct intel_engine_cs *engine,
3499                                    struct drm_printer *m,
3500                                    void (*show_request)(struct drm_printer *m,
3501                                                         struct i915_request *rq,
3502                                                         const char *prefix),
3503                                    unsigned int max)
3504 {
3505         const struct intel_engine_execlists *execlists = &engine->execlists;
3506         struct i915_request *rq, *last;
3507         unsigned long flags;
3508         unsigned int count;
3509         struct rb_node *rb;
3510
3511         spin_lock_irqsave(&engine->timeline.lock, flags);
3512
3513         last = NULL;
3514         count = 0;
3515         list_for_each_entry(rq, &engine->timeline.requests, link) {
3516                 if (count++ < max - 1)
3517                         show_request(m, rq, "\t\tE ");
3518                 else
3519                         last = rq;
3520         }
3521         if (last) {
3522                 if (count > max) {
3523                         drm_printf(m,
3524                                    "\t\t...skipping %d executing requests...\n",
3525                                    count - max);
3526                 }
3527                 show_request(m, last, "\t\tE ");
3528         }
3529
3530         last = NULL;
3531         count = 0;
3532         if (execlists->queue_priority_hint != INT_MIN)
3533                 drm_printf(m, "\t\tQueue priority hint: %d\n",
3534                            execlists->queue_priority_hint);
3535         for (rb = rb_first_cached(&execlists->queue); rb; rb = rb_next(rb)) {
3536                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
3537                 int i;
3538
3539                 priolist_for_each_request(rq, p, i) {
3540                         if (count++ < max - 1)
3541                                 show_request(m, rq, "\t\tQ ");
3542                         else
3543                                 last = rq;
3544                 }
3545         }
3546         if (last) {
3547                 if (count > max) {
3548                         drm_printf(m,
3549                                    "\t\t...skipping %d queued requests...\n",
3550                                    count - max);
3551                 }
3552                 show_request(m, last, "\t\tQ ");
3553         }
3554
3555         last = NULL;
3556         count = 0;
3557         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
3558                 struct virtual_engine *ve =
3559                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3560                 struct i915_request *rq = READ_ONCE(ve->request);
3561
3562                 if (rq) {
3563                         if (count++ < max - 1)
3564                                 show_request(m, rq, "\t\tV ");
3565                         else
3566                                 last = rq;
3567                 }
3568         }
3569         if (last) {
3570                 if (count > max) {
3571                         drm_printf(m,
3572                                    "\t\t...skipping %d virtual requests...\n",
3573                                    count - max);
3574                 }
3575                 show_request(m, last, "\t\tV ");
3576         }
3577
3578         spin_unlock_irqrestore(&engine->timeline.lock, flags);
3579 }
3580
3581 void intel_lr_context_reset(struct intel_engine_cs *engine,
3582                             struct intel_context *ce,
3583                             u32 head,
3584                             bool scrub)
3585 {
3586         /*
3587          * We want a simple context + ring to execute the breadcrumb update.
3588          * We cannot rely on the context being intact across the GPU hang,
3589          * so clear it and rebuild just what we need for the breadcrumb.
3590          * All pending requests for this context will be zapped, and any
3591          * future request will be after userspace has had the opportunity
3592          * to recreate its own state.
3593          */
3594         if (scrub) {
3595                 u32 *regs = ce->lrc_reg_state;
3596
3597                 if (engine->pinned_default_state) {
3598                         memcpy(regs, /* skip restoring the vanilla PPHWSP */
3599                                engine->pinned_default_state + LRC_STATE_PN * PAGE_SIZE,
3600                                engine->context_size - PAGE_SIZE);
3601                 }
3602                 execlists_init_reg_state(regs, ce, engine, ce->ring);
3603         }
3604
3605         /* Rerun the request; its payload has been neutered (if guilty). */
3606         ce->ring->head = head;
3607         intel_ring_update_space(ce->ring);
3608
3609         __execlists_update_reg_state(ce, engine);
3610 }
3611
3612 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3613 #include "selftest_lrc.c"
3614 #endif