drm/i915/gtt: split up i915_gem_gtt
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_gtt.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5
6 #include <linux/slab.h> /* fault-inject.h is not standalone! */
7
8 #include <linux/fault-inject.h>
9
10 #include "i915_trace.h"
11 #include "intel_gt.h"
12 #include "intel_gtt.h"
13
14 void stash_init(struct pagestash *stash)
15 {
16         pagevec_init(&stash->pvec);
17         spin_lock_init(&stash->lock);
18 }
19
20 static struct page *stash_pop_page(struct pagestash *stash)
21 {
22         struct page *page = NULL;
23
24         spin_lock(&stash->lock);
25         if (likely(stash->pvec.nr))
26                 page = stash->pvec.pages[--stash->pvec.nr];
27         spin_unlock(&stash->lock);
28
29         return page;
30 }
31
32 static void stash_push_pagevec(struct pagestash *stash, struct pagevec *pvec)
33 {
34         unsigned int nr;
35
36         spin_lock_nested(&stash->lock, SINGLE_DEPTH_NESTING);
37
38         nr = min_t(typeof(nr), pvec->nr, pagevec_space(&stash->pvec));
39         memcpy(stash->pvec.pages + stash->pvec.nr,
40                pvec->pages + pvec->nr - nr,
41                sizeof(pvec->pages[0]) * nr);
42         stash->pvec.nr += nr;
43
44         spin_unlock(&stash->lock);
45
46         pvec->nr -= nr;
47 }
48
49 static struct page *vm_alloc_page(struct i915_address_space *vm, gfp_t gfp)
50 {
51         struct pagevec stack;
52         struct page *page;
53
54         if (I915_SELFTEST_ONLY(should_fail(&vm->fault_attr, 1)))
55                 i915_gem_shrink_all(vm->i915);
56
57         page = stash_pop_page(&vm->free_pages);
58         if (page)
59                 return page;
60
61         if (!vm->pt_kmap_wc)
62                 return alloc_page(gfp);
63
64         /* Look in our global stash of WC pages... */
65         page = stash_pop_page(&vm->i915->mm.wc_stash);
66         if (page)
67                 return page;
68
69         /*
70          * Otherwise batch allocate pages to amortize cost of set_pages_wc.
71          *
72          * We have to be careful as page allocation may trigger the shrinker
73          * (via direct reclaim) which will fill up the WC stash underneath us.
74          * So we add our WB pages into a temporary pvec on the stack and merge
75          * them into the WC stash after all the allocations are complete.
76          */
77         pagevec_init(&stack);
78         do {
79                 struct page *page;
80
81                 page = alloc_page(gfp);
82                 if (unlikely(!page))
83                         break;
84
85                 stack.pages[stack.nr++] = page;
86         } while (pagevec_space(&stack));
87
88         if (stack.nr && !set_pages_array_wc(stack.pages, stack.nr)) {
89                 page = stack.pages[--stack.nr];
90
91                 /* Merge spare WC pages to the global stash */
92                 if (stack.nr)
93                         stash_push_pagevec(&vm->i915->mm.wc_stash, &stack);
94
95                 /* Push any surplus WC pages onto the local VM stash */
96                 if (stack.nr)
97                         stash_push_pagevec(&vm->free_pages, &stack);
98         }
99
100         /* Return unwanted leftovers */
101         if (unlikely(stack.nr)) {
102                 WARN_ON_ONCE(set_pages_array_wb(stack.pages, stack.nr));
103                 __pagevec_release(&stack);
104         }
105
106         return page;
107 }
108
109 static void vm_free_pages_release(struct i915_address_space *vm,
110                                   bool immediate)
111 {
112         struct pagevec *pvec = &vm->free_pages.pvec;
113         struct pagevec stack;
114
115         lockdep_assert_held(&vm->free_pages.lock);
116         GEM_BUG_ON(!pagevec_count(pvec));
117
118         if (vm->pt_kmap_wc) {
119                 /*
120                  * When we use WC, first fill up the global stash and then
121                  * only if full immediately free the overflow.
122                  */
123                 stash_push_pagevec(&vm->i915->mm.wc_stash, pvec);
124
125                 /*
126                  * As we have made some room in the VM's free_pages,
127                  * we can wait for it to fill again. Unless we are
128                  * inside i915_address_space_fini() and must
129                  * immediately release the pages!
130                  */
131                 if (pvec->nr <= (immediate ? 0 : PAGEVEC_SIZE - 1))
132                         return;
133
134                 /*
135                  * We have to drop the lock to allow ourselves to sleep,
136                  * so take a copy of the pvec and clear the stash for
137                  * others to use it as we sleep.
138                  */
139                 stack = *pvec;
140                 pagevec_reinit(pvec);
141                 spin_unlock(&vm->free_pages.lock);
142
143                 pvec = &stack;
144                 set_pages_array_wb(pvec->pages, pvec->nr);
145
146                 spin_lock(&vm->free_pages.lock);
147         }
148
149         __pagevec_release(pvec);
150 }
151
152 static void vm_free_page(struct i915_address_space *vm, struct page *page)
153 {
154         /*
155          * On !llc, we need to change the pages back to WB. We only do so
156          * in bulk, so we rarely need to change the page attributes here,
157          * but doing so requires a stop_machine() from deep inside arch/x86/mm.
158          * To make detection of the possible sleep more likely, use an
159          * unconditional might_sleep() for everybody.
160          */
161         might_sleep();
162         spin_lock(&vm->free_pages.lock);
163         while (!pagevec_space(&vm->free_pages.pvec))
164                 vm_free_pages_release(vm, false);
165         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec) >= PAGEVEC_SIZE);
166         pagevec_add(&vm->free_pages.pvec, page);
167         spin_unlock(&vm->free_pages.lock);
168 }
169
170 void __i915_vm_close(struct i915_address_space *vm)
171 {
172         struct i915_vma *vma, *vn;
173
174         mutex_lock(&vm->mutex);
175         list_for_each_entry_safe(vma, vn, &vm->bound_list, vm_link) {
176                 struct drm_i915_gem_object *obj = vma->obj;
177
178                 /* Keep the obj (and hence the vma) alive as _we_ destroy it */
179                 if (!kref_get_unless_zero(&obj->base.refcount))
180                         continue;
181
182                 atomic_and(~I915_VMA_PIN_MASK, &vma->flags);
183                 WARN_ON(__i915_vma_unbind(vma));
184                 __i915_vma_put(vma);
185
186                 i915_gem_object_put(obj);
187         }
188         GEM_BUG_ON(!list_empty(&vm->bound_list));
189         mutex_unlock(&vm->mutex);
190 }
191
192 void i915_address_space_fini(struct i915_address_space *vm)
193 {
194         spin_lock(&vm->free_pages.lock);
195         if (pagevec_count(&vm->free_pages.pvec))
196                 vm_free_pages_release(vm, true);
197         GEM_BUG_ON(pagevec_count(&vm->free_pages.pvec));
198         spin_unlock(&vm->free_pages.lock);
199
200         drm_mm_takedown(&vm->mm);
201
202         mutex_destroy(&vm->mutex);
203 }
204
205 static void __i915_vm_release(struct work_struct *work)
206 {
207         struct i915_address_space *vm =
208                 container_of(work, struct i915_address_space, rcu.work);
209
210         vm->cleanup(vm);
211         i915_address_space_fini(vm);
212
213         kfree(vm);
214 }
215
216 void i915_vm_release(struct kref *kref)
217 {
218         struct i915_address_space *vm =
219                 container_of(kref, struct i915_address_space, ref);
220
221         GEM_BUG_ON(i915_is_ggtt(vm));
222         trace_i915_ppgtt_release(vm);
223
224         queue_rcu_work(vm->i915->wq, &vm->rcu);
225 }
226
227 void i915_address_space_init(struct i915_address_space *vm, int subclass)
228 {
229         kref_init(&vm->ref);
230         INIT_RCU_WORK(&vm->rcu, __i915_vm_release);
231         atomic_set(&vm->open, 1);
232
233         /*
234          * The vm->mutex must be reclaim safe (for use in the shrinker).
235          * Do a dummy acquire now under fs_reclaim so that any allocation
236          * attempt holding the lock is immediately reported by lockdep.
237          */
238         mutex_init(&vm->mutex);
239         lockdep_set_subclass(&vm->mutex, subclass);
240         i915_gem_shrinker_taints_mutex(vm->i915, &vm->mutex);
241
242         GEM_BUG_ON(!vm->total);
243         drm_mm_init(&vm->mm, 0, vm->total);
244         vm->mm.head_node.color = I915_COLOR_UNEVICTABLE;
245
246         stash_init(&vm->free_pages);
247
248         INIT_LIST_HEAD(&vm->bound_list);
249 }
250
251 void clear_pages(struct i915_vma *vma)
252 {
253         GEM_BUG_ON(!vma->pages);
254
255         if (vma->pages != vma->obj->mm.pages) {
256                 sg_free_table(vma->pages);
257                 kfree(vma->pages);
258         }
259         vma->pages = NULL;
260
261         memset(&vma->page_sizes, 0, sizeof(vma->page_sizes));
262 }
263
264 static int __setup_page_dma(struct i915_address_space *vm,
265                             struct i915_page_dma *p,
266                             gfp_t gfp)
267 {
268         p->page = vm_alloc_page(vm, gfp | I915_GFP_ALLOW_FAIL);
269         if (unlikely(!p->page))
270                 return -ENOMEM;
271
272         p->daddr = dma_map_page_attrs(vm->dma,
273                                       p->page, 0, PAGE_SIZE,
274                                       PCI_DMA_BIDIRECTIONAL,
275                                       DMA_ATTR_SKIP_CPU_SYNC |
276                                       DMA_ATTR_NO_WARN);
277         if (unlikely(dma_mapping_error(vm->dma, p->daddr))) {
278                 vm_free_page(vm, p->page);
279                 return -ENOMEM;
280         }
281
282         return 0;
283 }
284
285 int setup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
286 {
287         return __setup_page_dma(vm, p, __GFP_HIGHMEM);
288 }
289
290 void cleanup_page_dma(struct i915_address_space *vm, struct i915_page_dma *p)
291 {
292         dma_unmap_page(vm->dma, p->daddr, PAGE_SIZE, PCI_DMA_BIDIRECTIONAL);
293         vm_free_page(vm, p->page);
294 }
295
296 void
297 fill_page_dma(const struct i915_page_dma *p, const u64 val, unsigned int count)
298 {
299         kunmap_atomic(memset64(kmap_atomic(p->page), val, count));
300 }
301
302 int setup_scratch_page(struct i915_address_space *vm, gfp_t gfp)
303 {
304         unsigned long size;
305
306         /*
307          * In order to utilize 64K pages for an object with a size < 2M, we will
308          * need to support a 64K scratch page, given that every 16th entry for a
309          * page-table operating in 64K mode must point to a properly aligned 64K
310          * region, including any PTEs which happen to point to scratch.
311          *
312          * This is only relevant for the 48b PPGTT where we support
313          * huge-gtt-pages, see also i915_vma_insert(). However, as we share the
314          * scratch (read-only) between all vm, we create one 64k scratch page
315          * for all.
316          */
317         size = I915_GTT_PAGE_SIZE_4K;
318         if (i915_vm_is_4lvl(vm) &&
319             HAS_PAGE_SIZES(vm->i915, I915_GTT_PAGE_SIZE_64K)) {
320                 size = I915_GTT_PAGE_SIZE_64K;
321                 gfp |= __GFP_NOWARN;
322         }
323         gfp |= __GFP_ZERO | __GFP_RETRY_MAYFAIL;
324
325         do {
326                 unsigned int order = get_order(size);
327                 struct page *page;
328                 dma_addr_t addr;
329
330                 page = alloc_pages(gfp, order);
331                 if (unlikely(!page))
332                         goto skip;
333
334                 addr = dma_map_page_attrs(vm->dma,
335                                           page, 0, size,
336                                           PCI_DMA_BIDIRECTIONAL,
337                                           DMA_ATTR_SKIP_CPU_SYNC |
338                                           DMA_ATTR_NO_WARN);
339                 if (unlikely(dma_mapping_error(vm->dma, addr)))
340                         goto free_page;
341
342                 if (unlikely(!IS_ALIGNED(addr, size)))
343                         goto unmap_page;
344
345                 vm->scratch[0].base.page = page;
346                 vm->scratch[0].base.daddr = addr;
347                 vm->scratch_order = order;
348                 return 0;
349
350 unmap_page:
351                 dma_unmap_page(vm->dma, addr, size, PCI_DMA_BIDIRECTIONAL);
352 free_page:
353                 __free_pages(page, order);
354 skip:
355                 if (size == I915_GTT_PAGE_SIZE_4K)
356                         return -ENOMEM;
357
358                 size = I915_GTT_PAGE_SIZE_4K;
359                 gfp &= ~__GFP_NOWARN;
360         } while (1);
361 }
362
363 void cleanup_scratch_page(struct i915_address_space *vm)
364 {
365         struct i915_page_dma *p = px_base(&vm->scratch[0]);
366         unsigned int order = vm->scratch_order;
367
368         dma_unmap_page(vm->dma, p->daddr, BIT(order) << PAGE_SHIFT,
369                        PCI_DMA_BIDIRECTIONAL);
370         __free_pages(p->page, order);
371 }
372
373 void free_scratch(struct i915_address_space *vm)
374 {
375         int i;
376
377         if (!px_dma(&vm->scratch[0])) /* set to 0 on clones */
378                 return;
379
380         for (i = 1; i <= vm->top; i++) {
381                 if (!px_dma(&vm->scratch[i]))
382                         break;
383                 cleanup_page_dma(vm, px_base(&vm->scratch[i]));
384         }
385
386         cleanup_scratch_page(vm);
387 }
388
389 void gtt_write_workarounds(struct intel_gt *gt)
390 {
391         struct drm_i915_private *i915 = gt->i915;
392         struct intel_uncore *uncore = gt->uncore;
393
394         /*
395          * This function is for gtt related workarounds. This function is
396          * called on driver load and after a GPU reset, so you can place
397          * workarounds here even if they get overwritten by GPU reset.
398          */
399         /* WaIncreaseDefaultTLBEntries:chv,bdw,skl,bxt,kbl,glk,cfl,cnl,icl */
400         if (IS_BROADWELL(i915))
401                 intel_uncore_write(uncore,
402                                    GEN8_L3_LRA_1_GPGPU,
403                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_BDW);
404         else if (IS_CHERRYVIEW(i915))
405                 intel_uncore_write(uncore,
406                                    GEN8_L3_LRA_1_GPGPU,
407                                    GEN8_L3_LRA_1_GPGPU_DEFAULT_VALUE_CHV);
408         else if (IS_GEN9_LP(i915))
409                 intel_uncore_write(uncore,
410                                    GEN8_L3_LRA_1_GPGPU,
411                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_BXT);
412         else if (INTEL_GEN(i915) >= 9 && INTEL_GEN(i915) <= 11)
413                 intel_uncore_write(uncore,
414                                    GEN8_L3_LRA_1_GPGPU,
415                                    GEN9_L3_LRA_1_GPGPU_DEFAULT_VALUE_SKL);
416
417         /*
418          * To support 64K PTEs we need to first enable the use of the
419          * Intermediate-Page-Size(IPS) bit of the PDE field via some magical
420          * mmio, otherwise the page-walker will simply ignore the IPS bit. This
421          * shouldn't be needed after GEN10.
422          *
423          * 64K pages were first introduced from BDW+, although technically they
424          * only *work* from gen9+. For pre-BDW we instead have the option for
425          * 32K pages, but we don't currently have any support for it in our
426          * driver.
427          */
428         if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_64K) &&
429             INTEL_GEN(i915) <= 10)
430                 intel_uncore_rmw(uncore,
431                                  GEN8_GAMW_ECO_DEV_RW_IA,
432                                  0,
433                                  GAMW_ECO_ENABLE_64K_IPS_FIELD);
434
435         if (IS_GEN_RANGE(i915, 8, 11)) {
436                 bool can_use_gtt_cache = true;
437
438                 /*
439                  * According to the BSpec if we use 2M/1G pages then we also
440                  * need to disable the GTT cache. At least on BDW we can see
441                  * visual corruption when using 2M pages, and not disabling the
442                  * GTT cache.
443                  */
444                 if (HAS_PAGE_SIZES(i915, I915_GTT_PAGE_SIZE_2M))
445                         can_use_gtt_cache = false;
446
447                 /* WaGttCachingOffByDefault */
448                 intel_uncore_write(uncore,
449                                    HSW_GTT_CACHE_EN,
450                                    can_use_gtt_cache ? GTT_CACHE_EN_ALL : 0);
451                 WARN_ON_ONCE(can_use_gtt_cache &&
452                              intel_uncore_read(uncore,
453                                                HSW_GTT_CACHE_EN) == 0);
454         }
455 }
456
457 u64 gen8_pte_encode(dma_addr_t addr,
458                     enum i915_cache_level level,
459                     u32 flags)
460 {
461         gen8_pte_t pte = addr | _PAGE_PRESENT | _PAGE_RW;
462
463         if (unlikely(flags & PTE_READ_ONLY))
464                 pte &= ~_PAGE_RW;
465
466         switch (level) {
467         case I915_CACHE_NONE:
468                 pte |= PPAT_UNCACHED;
469                 break;
470         case I915_CACHE_WT:
471                 pte |= PPAT_DISPLAY_ELLC;
472                 break;
473         default:
474                 pte |= PPAT_CACHED;
475                 break;
476         }
477
478         return pte;
479 }
480
481 static void tgl_setup_private_ppat(struct intel_uncore *uncore)
482 {
483         /* TGL doesn't support LLC or AGE settings */
484         intel_uncore_write(uncore, GEN12_PAT_INDEX(0), GEN8_PPAT_WB);
485         intel_uncore_write(uncore, GEN12_PAT_INDEX(1), GEN8_PPAT_WC);
486         intel_uncore_write(uncore, GEN12_PAT_INDEX(2), GEN8_PPAT_WT);
487         intel_uncore_write(uncore, GEN12_PAT_INDEX(3), GEN8_PPAT_UC);
488         intel_uncore_write(uncore, GEN12_PAT_INDEX(4), GEN8_PPAT_WB);
489         intel_uncore_write(uncore, GEN12_PAT_INDEX(5), GEN8_PPAT_WB);
490         intel_uncore_write(uncore, GEN12_PAT_INDEX(6), GEN8_PPAT_WB);
491         intel_uncore_write(uncore, GEN12_PAT_INDEX(7), GEN8_PPAT_WB);
492 }
493
494 static void cnl_setup_private_ppat(struct intel_uncore *uncore)
495 {
496         intel_uncore_write(uncore,
497                            GEN10_PAT_INDEX(0),
498                            GEN8_PPAT_WB | GEN8_PPAT_LLC);
499         intel_uncore_write(uncore,
500                            GEN10_PAT_INDEX(1),
501                            GEN8_PPAT_WC | GEN8_PPAT_LLCELLC);
502         intel_uncore_write(uncore,
503                            GEN10_PAT_INDEX(2),
504                            GEN8_PPAT_WT | GEN8_PPAT_LLCELLC);
505         intel_uncore_write(uncore,
506                            GEN10_PAT_INDEX(3),
507                            GEN8_PPAT_UC);
508         intel_uncore_write(uncore,
509                            GEN10_PAT_INDEX(4),
510                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0));
511         intel_uncore_write(uncore,
512                            GEN10_PAT_INDEX(5),
513                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1));
514         intel_uncore_write(uncore,
515                            GEN10_PAT_INDEX(6),
516                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2));
517         intel_uncore_write(uncore,
518                            GEN10_PAT_INDEX(7),
519                            GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
520 }
521
522 /*
523  * The GGTT and PPGTT need a private PPAT setup in order to handle cacheability
524  * bits. When using advanced contexts each context stores its own PAT, but
525  * writing this data shouldn't be harmful even in those cases.
526  */
527 static void bdw_setup_private_ppat(struct intel_uncore *uncore)
528 {
529         u64 pat;
530
531         pat = GEN8_PPAT(0, GEN8_PPAT_WB | GEN8_PPAT_LLC) |      /* for normal objects, no eLLC */
532               GEN8_PPAT(1, GEN8_PPAT_WC | GEN8_PPAT_LLCELLC) |  /* for something pointing to ptes? */
533               GEN8_PPAT(2, GEN8_PPAT_WT | GEN8_PPAT_LLCELLC) |  /* for scanout with eLLC */
534               GEN8_PPAT(3, GEN8_PPAT_UC) |                      /* Uncached objects, mostly for scanout */
535               GEN8_PPAT(4, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(0)) |
536               GEN8_PPAT(5, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(1)) |
537               GEN8_PPAT(6, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(2)) |
538               GEN8_PPAT(7, GEN8_PPAT_WB | GEN8_PPAT_LLCELLC | GEN8_PPAT_AGE(3));
539
540         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
541         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
542 }
543
544 static void chv_setup_private_ppat(struct intel_uncore *uncore)
545 {
546         u64 pat;
547
548         /*
549          * Map WB on BDW to snooped on CHV.
550          *
551          * Only the snoop bit has meaning for CHV, the rest is
552          * ignored.
553          *
554          * The hardware will never snoop for certain types of accesses:
555          * - CPU GTT (GMADR->GGTT->no snoop->memory)
556          * - PPGTT page tables
557          * - some other special cycles
558          *
559          * As with BDW, we also need to consider the following for GT accesses:
560          * "For GGTT, there is NO pat_sel[2:0] from the entry,
561          * so RTL will always use the value corresponding to
562          * pat_sel = 000".
563          * Which means we must set the snoop bit in PAT entry 0
564          * in order to keep the global status page working.
565          */
566
567         pat = GEN8_PPAT(0, CHV_PPAT_SNOOP) |
568               GEN8_PPAT(1, 0) |
569               GEN8_PPAT(2, 0) |
570               GEN8_PPAT(3, 0) |
571               GEN8_PPAT(4, CHV_PPAT_SNOOP) |
572               GEN8_PPAT(5, CHV_PPAT_SNOOP) |
573               GEN8_PPAT(6, CHV_PPAT_SNOOP) |
574               GEN8_PPAT(7, CHV_PPAT_SNOOP);
575
576         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_LO, lower_32_bits(pat));
577         intel_uncore_write(uncore, GEN8_PRIVATE_PAT_HI, upper_32_bits(pat));
578 }
579
580 void setup_private_pat(struct intel_uncore *uncore)
581 {
582         struct drm_i915_private *i915 = uncore->i915;
583
584         GEM_BUG_ON(INTEL_GEN(i915) < 8);
585
586         if (INTEL_GEN(i915) >= 12)
587                 tgl_setup_private_ppat(uncore);
588         else if (INTEL_GEN(i915) >= 10)
589                 cnl_setup_private_ppat(uncore);
590         else if (IS_CHERRYVIEW(i915) || IS_GEN9_LP(i915))
591                 chv_setup_private_ppat(uncore);
592         else
593                 bdw_setup_private_ppat(uncore);
594 }
595
596 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
597 #include "selftests/mock_gtt.c"
598 #endif