1 // SPDX-License-Identifier: MIT
3 * Copyright © 2019 Intel Corporation
6 #include <drm/drm_managed.h>
7 #include <drm/intel-gtt.h>
9 #include "gem/i915_gem_internal.h"
10 #include "gem/i915_gem_lmem.h"
13 #include "i915_perf_oa_regs.h"
15 #include "intel_context.h"
16 #include "intel_engine_pm.h"
17 #include "intel_engine_regs.h"
18 #include "intel_ggtt_gmch.h"
20 #include "intel_gt_buffer_pool.h"
21 #include "intel_gt_clock_utils.h"
22 #include "intel_gt_debugfs.h"
23 #include "intel_gt_mcr.h"
24 #include "intel_gt_pm.h"
25 #include "intel_gt_print.h"
26 #include "intel_gt_regs.h"
27 #include "intel_gt_requests.h"
28 #include "intel_migrate.h"
29 #include "intel_mocs.h"
30 #include "intel_pci_config.h"
31 #include "intel_rc6.h"
32 #include "intel_renderstate.h"
33 #include "intel_rps.h"
34 #include "intel_sa_media.h"
35 #include "intel_gt_sysfs.h"
36 #include "intel_tlb.h"
37 #include "intel_uncore.h"
38 #include "shmem_utils.h"
40 void intel_gt_common_init_early(struct intel_gt *gt)
42 spin_lock_init(gt->irq_lock);
44 INIT_LIST_HEAD(>->closed_vma);
45 spin_lock_init(>->closed_lock);
47 init_llist_head(>->watchdog.list);
48 INIT_WORK(>->watchdog.work, intel_gt_watchdog_work);
50 intel_gt_init_buffer_pool(gt);
51 intel_gt_init_reset(gt);
52 intel_gt_init_requests(gt);
53 intel_gt_init_timelines(gt);
54 intel_gt_init_tlb(gt);
55 intel_gt_pm_init_early(gt);
57 intel_wopcm_init_early(>->wopcm);
58 intel_uc_init_early(>->uc);
59 intel_rps_init_early(>->rps);
62 /* Preliminary initialization of Tile 0 */
63 int intel_root_gt_init_early(struct drm_i915_private *i915)
67 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
74 gt->uncore = &i915->uncore;
75 gt->irq_lock = drmm_kzalloc(&i915->drm, sizeof(*gt->irq_lock), GFP_KERNEL);
79 intel_gt_common_init_early(gt);
84 static int intel_gt_probe_lmem(struct intel_gt *gt)
86 struct drm_i915_private *i915 = gt->i915;
87 unsigned int instance = gt->info.id;
88 int id = INTEL_REGION_LMEM_0 + instance;
89 struct intel_memory_region *mem;
92 mem = intel_gt_setup_lmem(gt);
98 gt_err(gt, "Failed to setup region(%d) type=%d\n",
99 err, INTEL_MEMORY_LOCAL);
104 mem->instance = instance;
106 intel_memory_region_set_name(mem, "local%u", mem->instance);
108 GEM_BUG_ON(!HAS_REGION(i915, id));
109 GEM_BUG_ON(i915->mm.regions[id]);
110 i915->mm.regions[id] = mem;
115 int intel_gt_assign_ggtt(struct intel_gt *gt)
117 /* Media GT shares primary GT's GGTT */
118 if (gt->type == GT_MEDIA) {
119 gt->ggtt = to_gt(gt->i915)->ggtt;
121 gt->ggtt = i915_ggtt_create(gt->i915);
122 if (IS_ERR(gt->ggtt))
123 return PTR_ERR(gt->ggtt);
126 list_add_tail(>->ggtt_link, >->ggtt->gt_list);
131 int intel_gt_init_mmio(struct intel_gt *gt)
133 intel_gt_init_clock_frequency(gt);
135 intel_uc_init_mmio(>->uc);
136 intel_sseu_info_init(gt);
137 intel_gt_mcr_init(gt);
139 return intel_engines_init_mmio(gt);
142 static void init_unused_ring(struct intel_gt *gt, u32 base)
144 struct intel_uncore *uncore = gt->uncore;
146 intel_uncore_write(uncore, RING_CTL(base), 0);
147 intel_uncore_write(uncore, RING_HEAD(base), 0);
148 intel_uncore_write(uncore, RING_TAIL(base), 0);
149 intel_uncore_write(uncore, RING_START(base), 0);
152 static void init_unused_rings(struct intel_gt *gt)
154 struct drm_i915_private *i915 = gt->i915;
157 init_unused_ring(gt, PRB1_BASE);
158 init_unused_ring(gt, SRB0_BASE);
159 init_unused_ring(gt, SRB1_BASE);
160 init_unused_ring(gt, SRB2_BASE);
161 init_unused_ring(gt, SRB3_BASE);
162 } else if (GRAPHICS_VER(i915) == 2) {
163 init_unused_ring(gt, SRB0_BASE);
164 init_unused_ring(gt, SRB1_BASE);
165 } else if (GRAPHICS_VER(i915) == 3) {
166 init_unused_ring(gt, PRB1_BASE);
167 init_unused_ring(gt, PRB2_BASE);
171 int intel_gt_init_hw(struct intel_gt *gt)
173 struct drm_i915_private *i915 = gt->i915;
174 struct intel_uncore *uncore = gt->uncore;
177 gt->last_init_time = ktime_get();
179 /* Double layer security blanket, see i915_gem_init() */
180 intel_uncore_forcewake_get(uncore, FORCEWAKE_ALL);
182 if (HAS_EDRAM(i915) && GRAPHICS_VER(i915) < 9)
183 intel_uncore_rmw(uncore, HSW_IDICR, 0, IDIHASHMSK(0xf));
185 if (IS_HASWELL(i915))
186 intel_uncore_write(uncore,
187 HSW_MI_PREDICATE_RESULT_2,
188 IS_HASWELL_GT3(i915) ?
189 LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
191 /* Apply the GT workarounds... */
192 intel_gt_apply_workarounds(gt);
193 /* ...and determine whether they are sticking. */
194 intel_gt_verify_workarounds(gt, "init");
196 intel_gt_init_swizzling(gt);
199 * At least 830 can leave some of the unused rings
200 * "active" (ie. head != tail) after resume which
201 * will prevent c3 entry. Makes sure all unused rings
204 init_unused_rings(gt);
206 ret = i915_ppgtt_init_hw(gt);
208 gt_err(gt, "Enabling PPGTT failed (%d)\n", ret);
212 /* We can't enable contexts until all firmware is loaded */
213 ret = intel_uc_init_hw(>->uc);
215 gt_probe_error(gt, "Enabling uc failed (%d)\n", ret);
222 intel_uncore_forcewake_put(uncore, FORCEWAKE_ALL);
226 static void gen6_clear_engine_error_register(struct intel_engine_cs *engine)
228 GEN6_RING_FAULT_REG_RMW(engine, RING_FAULT_VALID, 0);
229 GEN6_RING_FAULT_REG_POSTING_READ(engine);
232 i915_reg_t intel_gt_perf_limit_reasons_reg(struct intel_gt *gt)
234 /* GT0_PERF_LIMIT_REASONS is available only for Gen11+ */
235 if (GRAPHICS_VER(gt->i915) < 11)
236 return INVALID_MMIO_REG;
238 return gt->type == GT_MEDIA ?
239 MTL_MEDIA_PERF_LIMIT_REASONS : GT0_PERF_LIMIT_REASONS;
243 intel_gt_clear_error_registers(struct intel_gt *gt,
244 intel_engine_mask_t engine_mask)
246 struct drm_i915_private *i915 = gt->i915;
247 struct intel_uncore *uncore = gt->uncore;
250 if (GRAPHICS_VER(i915) != 2)
251 intel_uncore_write(uncore, PGTBL_ER, 0);
253 if (GRAPHICS_VER(i915) < 4)
254 intel_uncore_write(uncore, IPEIR(RENDER_RING_BASE), 0);
256 intel_uncore_write(uncore, IPEIR_I965, 0);
258 intel_uncore_write(uncore, EIR, 0);
259 eir = intel_uncore_read(uncore, EIR);
262 * some errors might have become stuck,
265 gt_dbg(gt, "EIR stuck: 0x%08x, masking\n", eir);
266 intel_uncore_rmw(uncore, EMR, 0, eir);
267 intel_uncore_write(uncore, GEN2_IIR,
268 I915_MASTER_ERROR_INTERRUPT);
272 * For the media GT, this ring fault register is not replicated,
273 * so don't do multicast/replicated register read/write operation on it.
275 if (MEDIA_VER(i915) >= 13 && gt->type == GT_MEDIA) {
276 intel_uncore_rmw(uncore, XELPMP_RING_FAULT_REG,
277 RING_FAULT_VALID, 0);
278 intel_uncore_posting_read(uncore,
279 XELPMP_RING_FAULT_REG);
281 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
282 intel_gt_mcr_multicast_rmw(gt, XEHP_RING_FAULT_REG,
283 RING_FAULT_VALID, 0);
284 intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
286 } else if (GRAPHICS_VER(i915) >= 12) {
287 intel_uncore_rmw(uncore, GEN12_RING_FAULT_REG, RING_FAULT_VALID, 0);
288 intel_uncore_posting_read(uncore, GEN12_RING_FAULT_REG);
289 } else if (GRAPHICS_VER(i915) >= 8) {
290 intel_uncore_rmw(uncore, GEN8_RING_FAULT_REG, RING_FAULT_VALID, 0);
291 intel_uncore_posting_read(uncore, GEN8_RING_FAULT_REG);
292 } else if (GRAPHICS_VER(i915) >= 6) {
293 struct intel_engine_cs *engine;
294 enum intel_engine_id id;
296 for_each_engine_masked(engine, gt, engine_mask, id)
297 gen6_clear_engine_error_register(engine);
301 static void gen6_check_faults(struct intel_gt *gt)
303 struct intel_engine_cs *engine;
304 enum intel_engine_id id;
307 for_each_engine(engine, gt, id) {
308 fault = GEN6_RING_FAULT_REG_READ(engine);
309 if (fault & RING_FAULT_VALID) {
310 gt_dbg(gt, "Unexpected fault\n"
312 "\tAddress space: %s\n"
316 fault & RING_FAULT_GTTSEL_MASK ?
318 RING_FAULT_SRCID(fault),
319 RING_FAULT_FAULT_TYPE(fault));
324 static void xehp_check_faults(struct intel_gt *gt)
329 * Although the fault register now lives in an MCR register range,
330 * the GAM registers are special and we only truly need to read
331 * the "primary" GAM instance rather than handling each instance
332 * individually. intel_gt_mcr_read_any() will automatically steer
333 * toward the primary instance.
335 fault = intel_gt_mcr_read_any(gt, XEHP_RING_FAULT_REG);
336 if (fault & RING_FAULT_VALID) {
337 u32 fault_data0, fault_data1;
340 fault_data0 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA0);
341 fault_data1 = intel_gt_mcr_read_any(gt, XEHP_FAULT_TLB_DATA1);
343 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
344 ((u64)fault_data0 << 12);
346 gt_dbg(gt, "Unexpected fault\n"
347 "\tAddr: 0x%08x_%08x\n"
348 "\tAddress space: %s\n"
352 upper_32_bits(fault_addr), lower_32_bits(fault_addr),
353 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
354 GEN8_RING_FAULT_ENGINE_ID(fault),
355 RING_FAULT_SRCID(fault),
356 RING_FAULT_FAULT_TYPE(fault));
360 static void gen8_check_faults(struct intel_gt *gt)
362 struct intel_uncore *uncore = gt->uncore;
363 i915_reg_t fault_reg, fault_data0_reg, fault_data1_reg;
366 if (GRAPHICS_VER(gt->i915) >= 12) {
367 fault_reg = GEN12_RING_FAULT_REG;
368 fault_data0_reg = GEN12_FAULT_TLB_DATA0;
369 fault_data1_reg = GEN12_FAULT_TLB_DATA1;
371 fault_reg = GEN8_RING_FAULT_REG;
372 fault_data0_reg = GEN8_FAULT_TLB_DATA0;
373 fault_data1_reg = GEN8_FAULT_TLB_DATA1;
376 fault = intel_uncore_read(uncore, fault_reg);
377 if (fault & RING_FAULT_VALID) {
378 u32 fault_data0, fault_data1;
381 fault_data0 = intel_uncore_read(uncore, fault_data0_reg);
382 fault_data1 = intel_uncore_read(uncore, fault_data1_reg);
384 fault_addr = ((u64)(fault_data1 & FAULT_VA_HIGH_BITS) << 44) |
385 ((u64)fault_data0 << 12);
387 gt_dbg(gt, "Unexpected fault\n"
388 "\tAddr: 0x%08x_%08x\n"
389 "\tAddress space: %s\n"
393 upper_32_bits(fault_addr), lower_32_bits(fault_addr),
394 fault_data1 & FAULT_GTT_SEL ? "GGTT" : "PPGTT",
395 GEN8_RING_FAULT_ENGINE_ID(fault),
396 RING_FAULT_SRCID(fault),
397 RING_FAULT_FAULT_TYPE(fault));
401 void intel_gt_check_and_clear_faults(struct intel_gt *gt)
403 struct drm_i915_private *i915 = gt->i915;
405 /* From GEN8 onwards we only have one 'All Engine Fault Register' */
406 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
407 xehp_check_faults(gt);
408 else if (GRAPHICS_VER(i915) >= 8)
409 gen8_check_faults(gt);
410 else if (GRAPHICS_VER(i915) >= 6)
411 gen6_check_faults(gt);
415 intel_gt_clear_error_registers(gt, ALL_ENGINES);
418 void intel_gt_flush_ggtt_writes(struct intel_gt *gt)
420 struct intel_uncore *uncore = gt->uncore;
421 intel_wakeref_t wakeref;
424 * No actual flushing is required for the GTT write domain for reads
425 * from the GTT domain. Writes to it "immediately" go to main memory
426 * as far as we know, so there's no chipset flush. It also doesn't
427 * land in the GPU render cache.
429 * However, we do have to enforce the order so that all writes through
430 * the GTT land before any writes to the device, such as updates to
433 * We also have to wait a bit for the writes to land from the GTT.
434 * An uncached read (i.e. mmio) seems to be ideal for the round-trip
435 * timing. This issue has only been observed when switching quickly
436 * between GTT writes and CPU reads from inside the kernel on recent hw,
437 * and it appears to only affect discrete GTT blocks (i.e. on LLC
438 * system agents we cannot reproduce this behaviour, until Cannonlake
444 if (INTEL_INFO(gt->i915)->has_coherent_ggtt)
447 intel_gt_chipset_flush(gt);
449 with_intel_runtime_pm_if_in_use(uncore->rpm, wakeref) {
452 spin_lock_irqsave(&uncore->lock, flags);
453 intel_uncore_posting_read_fw(uncore,
454 RING_HEAD(RENDER_RING_BASE));
455 spin_unlock_irqrestore(&uncore->lock, flags);
459 void intel_gt_chipset_flush(struct intel_gt *gt)
462 if (GRAPHICS_VER(gt->i915) < 6)
463 intel_ggtt_gmch_flush();
466 void intel_gt_driver_register(struct intel_gt *gt)
468 intel_gsc_init(>->gsc, gt->i915);
470 intel_rps_driver_register(>->rps);
472 intel_gt_debugfs_register(gt);
473 intel_gt_sysfs_register(gt);
476 static int intel_gt_init_scratch(struct intel_gt *gt, unsigned int size)
478 struct drm_i915_private *i915 = gt->i915;
479 struct drm_i915_gem_object *obj;
480 struct i915_vma *vma;
483 obj = i915_gem_object_create_lmem(i915, size,
484 I915_BO_ALLOC_VOLATILE |
485 I915_BO_ALLOC_GPU_ONLY);
486 if (IS_ERR(obj) && !IS_METEORLAKE(i915)) /* Wa_22018444074 */
487 obj = i915_gem_object_create_stolen(i915, size);
489 obj = i915_gem_object_create_internal(i915, size);
491 gt_err(gt, "Failed to allocate scratch page\n");
495 vma = i915_vma_instance(obj, >->ggtt->vm, NULL);
501 ret = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
505 gt->scratch = i915_vma_make_unshrinkable(vma);
510 i915_gem_object_put(obj);
514 static void intel_gt_fini_scratch(struct intel_gt *gt)
516 i915_vma_unpin_and_release(>->scratch, 0);
519 static struct i915_address_space *kernel_vm(struct intel_gt *gt)
521 if (INTEL_PPGTT(gt->i915) > INTEL_PPGTT_ALIASING)
522 return &i915_ppgtt_create(gt, I915_BO_ALLOC_PM_EARLY)->vm;
524 return i915_vm_get(>->ggtt->vm);
527 static int __engines_record_defaults(struct intel_gt *gt)
529 struct i915_request *requests[I915_NUM_ENGINES] = {};
530 struct intel_engine_cs *engine;
531 enum intel_engine_id id;
535 * As we reset the gpu during very early sanitisation, the current
536 * register state on the GPU should reflect its defaults values.
537 * We load a context onto the hw (with restore-inhibit), then switch
538 * over to a second context to save that default register state. We
539 * can then prime every new context with that state so they all start
540 * from the same default HW values.
543 for_each_engine(engine, gt, id) {
544 struct intel_renderstate so;
545 struct intel_context *ce;
546 struct i915_request *rq;
548 /* We must be able to switch to something! */
549 GEM_BUG_ON(!engine->kernel_context);
551 ce = intel_context_create(engine);
557 err = intel_renderstate_init(&so, ce);
561 rq = i915_request_create(ce);
567 err = intel_engine_emit_ctx_wa(rq);
571 err = intel_renderstate_emit(&so, rq);
576 requests[id] = i915_request_get(rq);
577 i915_request_add(rq);
579 intel_renderstate_fini(&so, ce);
582 intel_context_put(ce);
587 /* Flush the default context image to memory, and enable powersaving. */
588 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME) {
593 for (id = 0; id < ARRAY_SIZE(requests); id++) {
594 struct i915_request *rq;
601 if (rq->fence.error) {
606 GEM_BUG_ON(!test_bit(CONTEXT_ALLOC_BIT, &rq->context->flags));
607 if (!rq->context->state)
610 /* Keep a copy of the state's backing pages; free the obj */
611 state = shmem_create_from_object(rq->context->state->obj);
613 err = PTR_ERR(state);
616 rq->engine->default_state = state;
621 * If we have to abandon now, we expect the engines to be idle
622 * and ready to be torn-down. The quickest way we can accomplish
623 * this is by declaring ourselves wedged.
626 intel_gt_set_wedged(gt);
628 for (id = 0; id < ARRAY_SIZE(requests); id++) {
629 struct intel_context *ce;
630 struct i915_request *rq;
637 i915_request_put(rq);
638 intel_context_put(ce);
643 static int __engines_verify_workarounds(struct intel_gt *gt)
645 struct intel_engine_cs *engine;
646 enum intel_engine_id id;
649 if (!IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
652 for_each_engine(engine, gt, id) {
653 if (intel_engine_verify_workarounds(engine, "load"))
657 /* Flush and restore the kernel context for safety */
658 if (intel_gt_wait_for_idle(gt, I915_GEM_IDLE_TIMEOUT) == -ETIME)
664 static void __intel_gt_disable(struct intel_gt *gt)
666 intel_gt_set_wedged_on_fini(gt);
668 intel_gt_suspend_prepare(gt);
669 intel_gt_suspend_late(gt);
671 GEM_BUG_ON(intel_gt_pm_is_awake(gt));
674 int intel_gt_wait_for_idle(struct intel_gt *gt, long timeout)
676 long remaining_timeout;
678 /* If the device is asleep, we have no requests outstanding */
679 if (!intel_gt_pm_is_awake(gt))
682 while ((timeout = intel_gt_retire_requests_timeout(gt, timeout,
683 &remaining_timeout)) > 0) {
685 if (signal_pending(current))
692 if (remaining_timeout < 0)
693 remaining_timeout = 0;
695 return intel_uc_wait_for_idle(>->uc, remaining_timeout);
698 int intel_gt_init(struct intel_gt *gt)
702 err = i915_inject_probe_error(gt->i915, -ENODEV);
706 intel_gt_init_workarounds(gt);
709 * This is just a security blanket to placate dragons.
710 * On some systems, we very sporadically observe that the first TLBs
711 * used by the CS may be stale, despite us poking the TLB reset. If
712 * we hold the forcewake during initialisation these problems
713 * just magically go away.
715 intel_uncore_forcewake_get(gt->uncore, FORCEWAKE_ALL);
717 err = intel_gt_init_scratch(gt,
718 GRAPHICS_VER(gt->i915) == 2 ? SZ_256K : SZ_4K);
722 intel_gt_pm_init(gt);
724 gt->vm = kernel_vm(gt);
730 intel_set_mocs_index(gt);
732 err = intel_engines_init(gt);
736 err = intel_uc_init(>->uc);
740 err = intel_gt_resume(gt);
744 err = intel_gt_init_hwconfig(gt);
746 gt_err(gt, "Failed to retrieve hwconfig table: %pe\n", ERR_PTR(err));
748 err = __engines_record_defaults(gt);
752 err = __engines_verify_workarounds(gt);
756 err = i915_inject_probe_error(gt->i915, -EIO);
760 intel_uc_init_late(>->uc);
762 intel_migrate_init(>->migrate, gt);
766 __intel_gt_disable(gt);
767 intel_uc_fini_hw(>->uc);
769 intel_uc_fini(>->uc);
771 intel_engines_release(gt);
772 i915_vm_put(fetch_and_zero(>->vm));
774 intel_gt_pm_fini(gt);
775 intel_gt_fini_scratch(gt);
778 intel_gt_set_wedged_on_init(gt);
779 intel_uncore_forcewake_put(gt->uncore, FORCEWAKE_ALL);
783 void intel_gt_driver_remove(struct intel_gt *gt)
785 __intel_gt_disable(gt);
787 intel_migrate_fini(>->migrate);
788 intel_uc_driver_remove(>->uc);
790 intel_engines_release(gt);
792 intel_gt_flush_buffer_pool(gt);
795 void intel_gt_driver_unregister(struct intel_gt *gt)
797 intel_wakeref_t wakeref;
799 intel_gt_sysfs_unregister(gt);
800 intel_rps_driver_unregister(>->rps);
801 intel_gsc_fini(>->gsc);
804 * If we unload the driver and wedge before the GSC worker is complete,
805 * the worker will hit an error on its submission to the GSC engine and
806 * then exit. This is hard to hit for a user, but it is reproducible
807 * with skipping selftests. The error is handled gracefully by the
808 * worker, so there are no functional issues, but we still end up with
809 * an error message in dmesg, which is something we want to avoid as
810 * this is a supported scenario. We could modify the worker to better
811 * handle a wedging occurring during its execution, but that gets
812 * complicated for a couple of reasons:
813 * - We do want the error on runtime wedging, because there are
814 * implications for subsystems outside of GT (i.e., PXP, HDCP), it's
815 * only the error on driver unload that we want to silence.
816 * - The worker is responsible for multiple submissions (GSC FW load,
817 * HuC auth, SW proxy), so all of those will have to be adapted to
818 * handle the wedged_on_fini scenario.
819 * Therefore, it's much simpler to just wait for the worker to be done
820 * before wedging on driver removal, also considering that the worker
821 * will likely already be idle in the great majority of non-selftest
824 intel_gsc_uc_flush_work(>->uc.gsc);
827 * Upon unregistering the device to prevent any new users, cancel
828 * all in-flight requests so that we can quickly unbind the active
831 intel_gt_set_wedged_on_fini(gt);
833 /* Scrub all HW state upon release */
834 with_intel_runtime_pm(gt->uncore->rpm, wakeref)
835 __intel_gt_reset(gt, ALL_ENGINES);
838 void intel_gt_driver_release(struct intel_gt *gt)
840 struct i915_address_space *vm;
842 vm = fetch_and_zero(>->vm);
843 if (vm) /* FIXME being called twice on error paths :( */
846 intel_wa_list_free(>->wa_list);
847 intel_gt_pm_fini(gt);
848 intel_gt_fini_scratch(gt);
849 intel_gt_fini_buffer_pool(gt);
850 intel_gt_fini_hwconfig(gt);
853 void intel_gt_driver_late_release_all(struct drm_i915_private *i915)
858 /* We need to wait for inflight RCU frees to release their grip */
861 for_each_gt(gt, i915, id) {
862 intel_uc_driver_late_release(>->uc);
863 intel_gt_fini_requests(gt);
864 intel_gt_fini_reset(gt);
865 intel_gt_fini_timelines(gt);
866 intel_gt_fini_tlb(gt);
867 intel_engines_free(gt);
871 static int intel_gt_tile_setup(struct intel_gt *gt, phys_addr_t phys_addr)
875 if (!gt_is_root(gt)) {
876 struct intel_uncore *uncore;
877 spinlock_t *irq_lock;
879 uncore = drmm_kzalloc(>->i915->drm, sizeof(*uncore), GFP_KERNEL);
883 irq_lock = drmm_kzalloc(>->i915->drm, sizeof(*irq_lock), GFP_KERNEL);
888 gt->irq_lock = irq_lock;
890 intel_gt_common_init_early(gt);
893 intel_uncore_init_early(gt->uncore, gt);
895 ret = intel_uncore_setup_mmio(gt->uncore, phys_addr);
899 gt->phys_addr = phys_addr;
904 int intel_gt_probe_all(struct drm_i915_private *i915)
906 struct pci_dev *pdev = to_pci_dev(i915->drm.dev);
907 struct intel_gt *gt = to_gt(i915);
908 const struct intel_gt_definition *gtdef;
909 phys_addr_t phys_addr;
910 unsigned int mmio_bar;
914 mmio_bar = intel_mmio_bar(GRAPHICS_VER(i915));
915 phys_addr = pci_resource_start(pdev, mmio_bar);
918 * We always have at least one primary GT on any device
919 * and it has been already initialized early during probe
920 * in i915_driver_probe()
923 gt->name = "Primary GT";
924 gt->info.engine_mask = INTEL_INFO(i915)->platform_engine_mask;
926 gt_dbg(gt, "Setting up %s\n", gt->name);
927 ret = intel_gt_tile_setup(gt, phys_addr);
931 if (!HAS_EXTRA_GT_LIST(i915))
934 for (i = 1, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1];
936 i++, gtdef = &INTEL_INFO(i915)->extra_gt_list[i - 1]) {
937 gt = drmm_kzalloc(&i915->drm, sizeof(*gt), GFP_KERNEL);
944 gt->name = gtdef->name;
945 gt->type = gtdef->type;
946 gt->info.engine_mask = gtdef->engine_mask;
949 gt_dbg(gt, "Setting up %s\n", gt->name);
950 if (GEM_WARN_ON(range_overflows_t(resource_size_t,
953 pci_resource_len(pdev, mmio_bar)))) {
958 switch (gtdef->type) {
960 ret = intel_gt_tile_setup(gt, phys_addr + gtdef->mapping_base);
964 ret = intel_sa_mediagt_setup(gt, phys_addr + gtdef->mapping_base,
969 /* Primary GT should not appear in extra GT list */
971 MISSING_CASE(gtdef->type);
984 i915_probe_error(i915, "Failed to initialize %s! (%d)\n", gtdef->name, ret);
985 intel_gt_release_all(i915);
990 int intel_gt_tiles_init(struct drm_i915_private *i915)
996 for_each_gt(gt, i915, id) {
997 ret = intel_gt_probe_lmem(gt);
1005 void intel_gt_release_all(struct drm_i915_private *i915)
1007 struct intel_gt *gt;
1010 for_each_gt(gt, i915, id)
1011 i915->gt[id] = NULL;
1014 void intel_gt_info_print(const struct intel_gt_info *info,
1015 struct drm_printer *p)
1017 drm_printf(p, "available engines: %x\n", info->engine_mask);
1019 intel_sseu_dump(&info->sseu, p);
1022 enum i915_map_type intel_gt_coherent_map_type(struct intel_gt *gt,
1023 struct drm_i915_gem_object *obj,
1024 bool always_coherent)
1027 * Wa_22016122933: always return I915_MAP_WC for Media
1028 * version 13.0 when the object is on the Media GT
1030 if (i915_gem_object_is_lmem(obj) || intel_gt_needs_wa_22016122933(gt))
1032 if (HAS_LLC(gt->i915) || always_coherent)
1038 bool intel_gt_needs_wa_22016122933(struct intel_gt *gt)
1040 return MEDIA_VER_FULL(gt->i915) == IP_VER(13, 0) && gt->type == GT_MEDIA;
1043 static void __intel_gt_bind_context_set_ready(struct intel_gt *gt, bool ready)
1045 struct intel_engine_cs *engine = gt->engine[BCS0];
1047 if (engine && engine->bind_context)
1048 engine->bind_context_ready = ready;
1052 * intel_gt_bind_context_set_ready - Set the context binding as ready
1056 * This function marks the binder context as ready.
1058 void intel_gt_bind_context_set_ready(struct intel_gt *gt)
1060 __intel_gt_bind_context_set_ready(gt, true);
1064 * intel_gt_bind_context_set_unready - Set the context binding as ready
1067 * This function marks the binder context as not ready.
1070 void intel_gt_bind_context_set_unready(struct intel_gt *gt)
1072 __intel_gt_bind_context_set_ready(gt, false);
1076 * intel_gt_is_bind_context_ready - Check if context binding is ready
1080 * This function returns binder context's ready status.
1082 bool intel_gt_is_bind_context_ready(struct intel_gt *gt)
1084 struct intel_engine_cs *engine = gt->engine[BCS0];
1087 return engine->bind_context_ready;