Merge branches 'acpi-pm' and 'acpi-docs'
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_ggtt_fencing.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23
24 #include "i915_drv.h"
25 #include "i915_scatterlist.h"
26 #include "i915_pvinfo.h"
27 #include "i915_vgpu.h"
28
29 /**
30  * DOC: fence register handling
31  *
32  * Important to avoid confusions: "fences" in the i915 driver are not execution
33  * fences used to track command completion but hardware detiler objects which
34  * wrap a given range of the global GTT. Each platform has only a fairly limited
35  * set of these objects.
36  *
37  * Fences are used to detile GTT memory mappings. They're also connected to the
38  * hardware frontbuffer render tracking and hence interact with frontbuffer
39  * compression. Furthermore on older platforms fences are required for tiled
40  * objects used by the display engine. They can also be used by the render
41  * engine - they're required for blitter commands and are optional for render
42  * commands. But on gen4+ both display (with the exception of fbc) and rendering
43  * have their own tiling state bits and don't need fences.
44  *
45  * Also note that fences only support X and Y tiling and hence can't be used for
46  * the fancier new tiling formats like W, Ys and Yf.
47  *
48  * Finally note that because fences are such a restricted resource they're
49  * dynamically associated with objects. Furthermore fence state is committed to
50  * the hardware lazily to avoid unnecessary stalls on gen2/3. Therefore code must
51  * explicitly call i915_gem_object_get_fence() to synchronize fencing status
52  * for cpu access. Also note that some code wants an unfenced view, for those
53  * cases the fence can be removed forcefully with i915_gem_object_put_fence().
54  *
55  * Internally these functions will synchronize with userspace access by removing
56  * CPU ptes into GTT mmaps (not the GTT ptes themselves) as needed.
57  */
58
59 #define pipelined 0
60
61 static struct drm_i915_private *fence_to_i915(struct i915_fence_reg *fence)
62 {
63         return fence->ggtt->vm.i915;
64 }
65
66 static struct intel_uncore *fence_to_uncore(struct i915_fence_reg *fence)
67 {
68         return fence->ggtt->vm.gt->uncore;
69 }
70
71 static void i965_write_fence_reg(struct i915_fence_reg *fence)
72 {
73         i915_reg_t fence_reg_lo, fence_reg_hi;
74         int fence_pitch_shift;
75         u64 val;
76
77         if (INTEL_GEN(fence_to_i915(fence)) >= 6) {
78                 fence_reg_lo = FENCE_REG_GEN6_LO(fence->id);
79                 fence_reg_hi = FENCE_REG_GEN6_HI(fence->id);
80                 fence_pitch_shift = GEN6_FENCE_PITCH_SHIFT;
81
82         } else {
83                 fence_reg_lo = FENCE_REG_965_LO(fence->id);
84                 fence_reg_hi = FENCE_REG_965_HI(fence->id);
85                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
86         }
87
88         val = 0;
89         if (fence->tiling) {
90                 unsigned int stride = fence->stride;
91
92                 GEM_BUG_ON(!IS_ALIGNED(stride, 128));
93
94                 val = fence->start + fence->size - I965_FENCE_PAGE;
95                 val <<= 32;
96                 val |= fence->start;
97                 val |= (u64)((stride / 128) - 1) << fence_pitch_shift;
98                 if (fence->tiling == I915_TILING_Y)
99                         val |= BIT(I965_FENCE_TILING_Y_SHIFT);
100                 val |= I965_FENCE_REG_VALID;
101         }
102
103         if (!pipelined) {
104                 struct intel_uncore *uncore = fence_to_uncore(fence);
105
106                 /*
107                  * To w/a incoherency with non-atomic 64-bit register updates,
108                  * we split the 64-bit update into two 32-bit writes. In order
109                  * for a partial fence not to be evaluated between writes, we
110                  * precede the update with write to turn off the fence register,
111                  * and only enable the fence as the last step.
112                  *
113                  * For extra levels of paranoia, we make sure each step lands
114                  * before applying the next step.
115                  */
116                 intel_uncore_write_fw(uncore, fence_reg_lo, 0);
117                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
118
119                 intel_uncore_write_fw(uncore, fence_reg_hi, upper_32_bits(val));
120                 intel_uncore_write_fw(uncore, fence_reg_lo, lower_32_bits(val));
121                 intel_uncore_posting_read_fw(uncore, fence_reg_lo);
122         }
123 }
124
125 static void i915_write_fence_reg(struct i915_fence_reg *fence)
126 {
127         u32 val;
128
129         val = 0;
130         if (fence->tiling) {
131                 unsigned int stride = fence->stride;
132                 unsigned int tiling = fence->tiling;
133                 bool is_y_tiled = tiling == I915_TILING_Y;
134
135                 if (is_y_tiled && HAS_128_BYTE_Y_TILING(fence_to_i915(fence)))
136                         stride /= 128;
137                 else
138                         stride /= 512;
139                 GEM_BUG_ON(!is_power_of_2(stride));
140
141                 val = fence->start;
142                 if (is_y_tiled)
143                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
144                 val |= I915_FENCE_SIZE_BITS(fence->size);
145                 val |= ilog2(stride) << I830_FENCE_PITCH_SHIFT;
146
147                 val |= I830_FENCE_REG_VALID;
148         }
149
150         if (!pipelined) {
151                 struct intel_uncore *uncore = fence_to_uncore(fence);
152                 i915_reg_t reg = FENCE_REG(fence->id);
153
154                 intel_uncore_write_fw(uncore, reg, val);
155                 intel_uncore_posting_read_fw(uncore, reg);
156         }
157 }
158
159 static void i830_write_fence_reg(struct i915_fence_reg *fence)
160 {
161         u32 val;
162
163         val = 0;
164         if (fence->tiling) {
165                 unsigned int stride = fence->stride;
166
167                 val = fence->start;
168                 if (fence->tiling == I915_TILING_Y)
169                         val |= BIT(I830_FENCE_TILING_Y_SHIFT);
170                 val |= I830_FENCE_SIZE_BITS(fence->size);
171                 val |= ilog2(stride / 128) << I830_FENCE_PITCH_SHIFT;
172                 val |= I830_FENCE_REG_VALID;
173         }
174
175         if (!pipelined) {
176                 struct intel_uncore *uncore = fence_to_uncore(fence);
177                 i915_reg_t reg = FENCE_REG(fence->id);
178
179                 intel_uncore_write_fw(uncore, reg, val);
180                 intel_uncore_posting_read_fw(uncore, reg);
181         }
182 }
183
184 static void fence_write(struct i915_fence_reg *fence)
185 {
186         struct drm_i915_private *i915 = fence_to_i915(fence);
187
188         /*
189          * Previous access through the fence register is marshalled by
190          * the mb() inside the fault handlers (i915_gem_release_mmaps)
191          * and explicitly managed for internal users.
192          */
193
194         if (IS_GEN(i915, 2))
195                 i830_write_fence_reg(fence);
196         else if (IS_GEN(i915, 3))
197                 i915_write_fence_reg(fence);
198         else
199                 i965_write_fence_reg(fence);
200
201         /*
202          * Access through the fenced region afterwards is
203          * ordered by the posting reads whilst writing the registers.
204          */
205 }
206
207 static bool gpu_uses_fence_registers(struct i915_fence_reg *fence)
208 {
209         return INTEL_GEN(fence_to_i915(fence)) < 4;
210 }
211
212 static int fence_update(struct i915_fence_reg *fence,
213                         struct i915_vma *vma)
214 {
215         struct i915_ggtt *ggtt = fence->ggtt;
216         struct intel_uncore *uncore = fence_to_uncore(fence);
217         intel_wakeref_t wakeref;
218         struct i915_vma *old;
219         int ret;
220
221         fence->tiling = 0;
222         if (vma) {
223                 GEM_BUG_ON(!i915_gem_object_get_stride(vma->obj) ||
224                            !i915_gem_object_get_tiling(vma->obj));
225
226                 if (!i915_vma_is_map_and_fenceable(vma))
227                         return -EINVAL;
228
229                 if (gpu_uses_fence_registers(fence)) {
230                         /* implicit 'unfenced' GPU blits */
231                         ret = i915_vma_sync(vma);
232                         if (ret)
233                                 return ret;
234                 }
235
236                 fence->start = vma->node.start;
237                 fence->size = vma->fence_size;
238                 fence->stride = i915_gem_object_get_stride(vma->obj);
239                 fence->tiling = i915_gem_object_get_tiling(vma->obj);
240         }
241         WRITE_ONCE(fence->dirty, false);
242
243         old = xchg(&fence->vma, NULL);
244         if (old) {
245                 /* XXX Ideally we would move the waiting to outside the mutex */
246                 ret = i915_active_wait(&fence->active);
247                 if (ret) {
248                         fence->vma = old;
249                         return ret;
250                 }
251
252                 i915_vma_flush_writes(old);
253
254                 /*
255                  * Ensure that all userspace CPU access is completed before
256                  * stealing the fence.
257                  */
258                 if (old != vma) {
259                         GEM_BUG_ON(old->fence != fence);
260                         i915_vma_revoke_mmap(old);
261                         old->fence = NULL;
262                 }
263
264                 list_move(&fence->link, &ggtt->fence_list);
265         }
266
267         /*
268          * We only need to update the register itself if the device is awake.
269          * If the device is currently powered down, we will defer the write
270          * to the runtime resume, see intel_ggtt_restore_fences().
271          *
272          * This only works for removing the fence register, on acquisition
273          * the caller must hold the rpm wakeref. The fence register must
274          * be cleared before we can use any other fences to ensure that
275          * the new fences do not overlap the elided clears, confusing HW.
276          */
277         wakeref = intel_runtime_pm_get_if_in_use(uncore->rpm);
278         if (!wakeref) {
279                 GEM_BUG_ON(vma);
280                 return 0;
281         }
282
283         WRITE_ONCE(fence->vma, vma);
284         fence_write(fence);
285
286         if (vma) {
287                 vma->fence = fence;
288                 list_move_tail(&fence->link, &ggtt->fence_list);
289         }
290
291         intel_runtime_pm_put(uncore->rpm, wakeref);
292         return 0;
293 }
294
295 /**
296  * i915_vma_revoke_fence - force-remove fence for a VMA
297  * @vma: vma to map linearly (not through a fence reg)
298  *
299  * This function force-removes any fence from the given object, which is useful
300  * if the kernel wants to do untiled GTT access.
301  */
302 void i915_vma_revoke_fence(struct i915_vma *vma)
303 {
304         struct i915_fence_reg *fence = vma->fence;
305         intel_wakeref_t wakeref;
306
307         lockdep_assert_held(&vma->vm->mutex);
308         if (!fence)
309                 return;
310
311         GEM_BUG_ON(fence->vma != vma);
312         GEM_BUG_ON(!i915_active_is_idle(&fence->active));
313         GEM_BUG_ON(atomic_read(&fence->pin_count));
314
315         fence->tiling = 0;
316         WRITE_ONCE(fence->vma, NULL);
317         vma->fence = NULL;
318
319         /*
320          * Skip the write to HW if and only if the device is currently
321          * suspended.
322          *
323          * If the driver does not currently hold a wakeref (if_in_use == 0),
324          * the device may currently be runtime suspended, or it may be woken
325          * up before the suspend takes place. If the device is not suspended
326          * (powered down) and we skip clearing the fence register, the HW is
327          * left in an undefined state where we may end up with multiple
328          * registers overlapping.
329          */
330         with_intel_runtime_pm_if_active(fence_to_uncore(fence)->rpm, wakeref)
331                 fence_write(fence);
332 }
333
334 static bool fence_is_active(const struct i915_fence_reg *fence)
335 {
336         return fence->vma && i915_vma_is_active(fence->vma);
337 }
338
339 static struct i915_fence_reg *fence_find(struct i915_ggtt *ggtt)
340 {
341         struct i915_fence_reg *active = NULL;
342         struct i915_fence_reg *fence, *fn;
343
344         list_for_each_entry_safe(fence, fn, &ggtt->fence_list, link) {
345                 GEM_BUG_ON(fence->vma && fence->vma->fence != fence);
346
347                 if (fence == active) /* now seen this fence twice */
348                         active = ERR_PTR(-EAGAIN);
349
350                 /* Prefer idle fences so we do not have to wait on the GPU */
351                 if (active != ERR_PTR(-EAGAIN) && fence_is_active(fence)) {
352                         if (!active)
353                                 active = fence;
354
355                         list_move_tail(&fence->link, &ggtt->fence_list);
356                         continue;
357                 }
358
359                 if (atomic_read(&fence->pin_count))
360                         continue;
361
362                 return fence;
363         }
364
365         /* Wait for completion of pending flips which consume fences */
366         if (intel_has_pending_fb_unpin(ggtt->vm.i915))
367                 return ERR_PTR(-EAGAIN);
368
369         return ERR_PTR(-EDEADLK);
370 }
371
372 int __i915_vma_pin_fence(struct i915_vma *vma)
373 {
374         struct i915_ggtt *ggtt = i915_vm_to_ggtt(vma->vm);
375         struct i915_fence_reg *fence;
376         struct i915_vma *set = i915_gem_object_is_tiled(vma->obj) ? vma : NULL;
377         int err;
378
379         lockdep_assert_held(&vma->vm->mutex);
380
381         /* Just update our place in the LRU if our fence is getting reused. */
382         if (vma->fence) {
383                 fence = vma->fence;
384                 GEM_BUG_ON(fence->vma != vma);
385                 atomic_inc(&fence->pin_count);
386                 if (!fence->dirty) {
387                         list_move_tail(&fence->link, &ggtt->fence_list);
388                         return 0;
389                 }
390         } else if (set) {
391                 fence = fence_find(ggtt);
392                 if (IS_ERR(fence))
393                         return PTR_ERR(fence);
394
395                 GEM_BUG_ON(atomic_read(&fence->pin_count));
396                 atomic_inc(&fence->pin_count);
397         } else {
398                 return 0;
399         }
400
401         err = fence_update(fence, set);
402         if (err)
403                 goto out_unpin;
404
405         GEM_BUG_ON(fence->vma != set);
406         GEM_BUG_ON(vma->fence != (set ? fence : NULL));
407
408         if (set)
409                 return 0;
410
411 out_unpin:
412         atomic_dec(&fence->pin_count);
413         return err;
414 }
415
416 /**
417  * i915_vma_pin_fence - set up fencing for a vma
418  * @vma: vma to map through a fence reg
419  *
420  * When mapping objects through the GTT, userspace wants to be able to write
421  * to them without having to worry about swizzling if the object is tiled.
422  * This function walks the fence regs looking for a free one for @obj,
423  * stealing one if it can't find any.
424  *
425  * It then sets up the reg based on the object's properties: address, pitch
426  * and tiling format.
427  *
428  * For an untiled surface, this removes any existing fence.
429  *
430  * Returns:
431  *
432  * 0 on success, negative error code on failure.
433  */
434 int i915_vma_pin_fence(struct i915_vma *vma)
435 {
436         int err;
437
438         if (!vma->fence && !i915_gem_object_is_tiled(vma->obj))
439                 return 0;
440
441         /*
442          * Note that we revoke fences on runtime suspend. Therefore the user
443          * must keep the device awake whilst using the fence.
444          */
445         assert_rpm_wakelock_held(vma->vm->gt->uncore->rpm);
446         GEM_BUG_ON(!i915_vma_is_pinned(vma));
447         GEM_BUG_ON(!i915_vma_is_ggtt(vma));
448
449         err = mutex_lock_interruptible(&vma->vm->mutex);
450         if (err)
451                 return err;
452
453         err = __i915_vma_pin_fence(vma);
454         mutex_unlock(&vma->vm->mutex);
455
456         return err;
457 }
458
459 /**
460  * i915_reserve_fence - Reserve a fence for vGPU
461  * @ggtt: Global GTT
462  *
463  * This function walks the fence regs looking for a free one and remove
464  * it from the fence_list. It is used to reserve fence for vGPU to use.
465  */
466 struct i915_fence_reg *i915_reserve_fence(struct i915_ggtt *ggtt)
467 {
468         struct i915_fence_reg *fence;
469         int count;
470         int ret;
471
472         lockdep_assert_held(&ggtt->vm.mutex);
473
474         /* Keep at least one fence available for the display engine. */
475         count = 0;
476         list_for_each_entry(fence, &ggtt->fence_list, link)
477                 count += !atomic_read(&fence->pin_count);
478         if (count <= 1)
479                 return ERR_PTR(-ENOSPC);
480
481         fence = fence_find(ggtt);
482         if (IS_ERR(fence))
483                 return fence;
484
485         if (fence->vma) {
486                 /* Force-remove fence from VMA */
487                 ret = fence_update(fence, NULL);
488                 if (ret)
489                         return ERR_PTR(ret);
490         }
491
492         list_del(&fence->link);
493
494         return fence;
495 }
496
497 /**
498  * i915_unreserve_fence - Reclaim a reserved fence
499  * @fence: the fence reg
500  *
501  * This function add a reserved fence register from vGPU to the fence_list.
502  */
503 void i915_unreserve_fence(struct i915_fence_reg *fence)
504 {
505         struct i915_ggtt *ggtt = fence->ggtt;
506
507         lockdep_assert_held(&ggtt->vm.mutex);
508
509         list_add(&fence->link, &ggtt->fence_list);
510 }
511
512 /**
513  * intel_ggtt_restore_fences - restore fence state
514  * @ggtt: Global GTT
515  *
516  * Restore the hw fence state to match the software tracking again, to be called
517  * after a gpu reset and on resume. Note that on runtime suspend we only cancel
518  * the fences, to be reacquired by the user later.
519  */
520 void intel_ggtt_restore_fences(struct i915_ggtt *ggtt)
521 {
522         int i;
523
524         for (i = 0; i < ggtt->num_fences; i++)
525                 fence_write(&ggtt->fence_regs[i]);
526 }
527
528 /**
529  * DOC: tiling swizzling details
530  *
531  * The idea behind tiling is to increase cache hit rates by rearranging
532  * pixel data so that a group of pixel accesses are in the same cacheline.
533  * Performance improvement from doing this on the back/depth buffer are on
534  * the order of 30%.
535  *
536  * Intel architectures make this somewhat more complicated, though, by
537  * adjustments made to addressing of data when the memory is in interleaved
538  * mode (matched pairs of DIMMS) to improve memory bandwidth.
539  * For interleaved memory, the CPU sends every sequential 64 bytes
540  * to an alternate memory channel so it can get the bandwidth from both.
541  *
542  * The GPU also rearranges its accesses for increased bandwidth to interleaved
543  * memory, and it matches what the CPU does for non-tiled.  However, when tiled
544  * it does it a little differently, since one walks addresses not just in the
545  * X direction but also Y.  So, along with alternating channels when bit
546  * 6 of the address flips, it also alternates when other bits flip --  Bits 9
547  * (every 512 bytes, an X tile scanline) and 10 (every two X tile scanlines)
548  * are common to both the 915 and 965-class hardware.
549  *
550  * The CPU also sometimes XORs in higher bits as well, to improve
551  * bandwidth doing strided access like we do so frequently in graphics.  This
552  * is called "Channel XOR Randomization" in the MCH documentation.  The result
553  * is that the CPU is XORing in either bit 11 or bit 17 to bit 6 of its address
554  * decode.
555  *
556  * All of this bit 6 XORing has an effect on our memory management,
557  * as we need to make sure that the 3d driver can correctly address object
558  * contents.
559  *
560  * If we don't have interleaved memory, all tiling is safe and no swizzling is
561  * required.
562  *
563  * When bit 17 is XORed in, we simply refuse to tile at all.  Bit
564  * 17 is not just a page offset, so as we page an object out and back in,
565  * individual pages in it will have different bit 17 addresses, resulting in
566  * each 64 bytes being swapped with its neighbor!
567  *
568  * Otherwise, if interleaved, we have to tell the 3d driver what the address
569  * swizzling it needs to do is, since it's writing with the CPU to the pages
570  * (bit 6 and potentially bit 11 XORed in), and the GPU is reading from the
571  * pages (bit 6, 9, and 10 XORed in), resulting in a cumulative bit swizzling
572  * required by the CPU of XORing in bit 6, 9, 10, and potentially 11, in order
573  * to match what the GPU expects.
574  */
575
576 /**
577  * detect_bit_6_swizzle - detect bit 6 swizzling pattern
578  * @ggtt: Global GGTT
579  *
580  * Detects bit 6 swizzling of address lookup between IGD access and CPU
581  * access through main memory.
582  */
583 static void detect_bit_6_swizzle(struct i915_ggtt *ggtt)
584 {
585         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
586         struct drm_i915_private *i915 = ggtt->vm.i915;
587         u32 swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
588         u32 swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
589
590         if (INTEL_GEN(i915) >= 8 || IS_VALLEYVIEW(i915)) {
591                 /*
592                  * On BDW+, swizzling is not used. We leave the CPU memory
593                  * controller in charge of optimizing memory accesses without
594                  * the extra address manipulation GPU side.
595                  *
596                  * VLV and CHV don't have GPU swizzling.
597                  */
598                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
599                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
600         } else if (INTEL_GEN(i915) >= 6) {
601                 if (i915->preserve_bios_swizzle) {
602                         if (intel_uncore_read(uncore, DISP_ARB_CTL) &
603                             DISP_TILE_SURFACE_SWIZZLING) {
604                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
605                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
606                         } else {
607                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
608                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
609                         }
610                 } else {
611                         u32 dimm_c0, dimm_c1;
612                         dimm_c0 = intel_uncore_read(uncore, MAD_DIMM_C0);
613                         dimm_c1 = intel_uncore_read(uncore, MAD_DIMM_C1);
614                         dimm_c0 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
615                         dimm_c1 &= MAD_DIMM_A_SIZE_MASK | MAD_DIMM_B_SIZE_MASK;
616                         /*
617                          * Enable swizzling when the channels are populated
618                          * with identically sized dimms. We don't need to check
619                          * the 3rd channel because no cpu with gpu attached
620                          * ships in that configuration. Also, swizzling only
621                          * makes sense for 2 channels anyway.
622                          */
623                         if (dimm_c0 == dimm_c1) {
624                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
625                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
626                         } else {
627                                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
628                                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
629                         }
630                 }
631         } else if (IS_GEN(i915, 5)) {
632                 /*
633                  * On Ironlake whatever DRAM config, GPU always do
634                  * same swizzling setup.
635                  */
636                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
637                 swizzle_y = I915_BIT_6_SWIZZLE_9;
638         } else if (IS_GEN(i915, 2)) {
639                 /*
640                  * As far as we know, the 865 doesn't have these bit 6
641                  * swizzling issues.
642                  */
643                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
644                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
645         } else if (IS_G45(i915) || IS_I965G(i915) || IS_G33(i915)) {
646                 /*
647                  * The 965, G33, and newer, have a very flexible memory
648                  * configuration.  It will enable dual-channel mode
649                  * (interleaving) on as much memory as it can, and the GPU
650                  * will additionally sometimes enable different bit 6
651                  * swizzling for tiled objects from the CPU.
652                  *
653                  * Here's what I found on the G965:
654                  *    slot fill         memory size  swizzling
655                  * 0A   0B   1A   1B    1-ch   2-ch
656                  * 512  0    0    0     512    0     O
657                  * 512  0    512  0     16     1008  X
658                  * 512  0    0    512   16     1008  X
659                  * 0    512  0    512   16     1008  X
660                  * 1024 1024 1024 0     2048   1024  O
661                  *
662                  * We could probably detect this based on either the DRB
663                  * matching, which was the case for the swizzling required in
664                  * the table above, or from the 1-ch value being less than
665                  * the minimum size of a rank.
666                  *
667                  * Reports indicate that the swizzling actually
668                  * varies depending upon page placement inside the
669                  * channels, i.e. we see swizzled pages where the
670                  * banks of memory are paired and unswizzled on the
671                  * uneven portion, so leave that as unknown.
672                  */
673                 if (intel_uncore_read(uncore, C0DRB3) ==
674                     intel_uncore_read(uncore, C1DRB3)) {
675                         swizzle_x = I915_BIT_6_SWIZZLE_9_10;
676                         swizzle_y = I915_BIT_6_SWIZZLE_9;
677                 }
678         } else {
679                 u32 dcc = intel_uncore_read(uncore, DCC);
680
681                 /*
682                  * On 9xx chipsets, channel interleave by the CPU is
683                  * determined by DCC.  For single-channel, neither the CPU
684                  * nor the GPU do swizzling.  For dual channel interleaved,
685                  * the GPU's interleave is bit 9 and 10 for X tiled, and bit
686                  * 9 for Y tiled.  The CPU's interleave is independent, and
687                  * can be based on either bit 11 (haven't seen this yet) or
688                  * bit 17 (common).
689                  */
690                 switch (dcc & DCC_ADDRESSING_MODE_MASK) {
691                 case DCC_ADDRESSING_MODE_SINGLE_CHANNEL:
692                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_ASYMMETRIC:
693                         swizzle_x = I915_BIT_6_SWIZZLE_NONE;
694                         swizzle_y = I915_BIT_6_SWIZZLE_NONE;
695                         break;
696                 case DCC_ADDRESSING_MODE_DUAL_CHANNEL_INTERLEAVED:
697                         if (dcc & DCC_CHANNEL_XOR_DISABLE) {
698                                 /*
699                                  * This is the base swizzling by the GPU for
700                                  * tiled buffers.
701                                  */
702                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10;
703                                 swizzle_y = I915_BIT_6_SWIZZLE_9;
704                         } else if ((dcc & DCC_CHANNEL_XOR_BIT_17) == 0) {
705                                 /* Bit 11 swizzling by the CPU in addition. */
706                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_11;
707                                 swizzle_y = I915_BIT_6_SWIZZLE_9_11;
708                         } else {
709                                 /* Bit 17 swizzling by the CPU in addition. */
710                                 swizzle_x = I915_BIT_6_SWIZZLE_9_10_17;
711                                 swizzle_y = I915_BIT_6_SWIZZLE_9_17;
712                         }
713                         break;
714                 }
715
716                 /* check for L-shaped memory aka modified enhanced addressing */
717                 if (IS_GEN(i915, 4) &&
718                     !(intel_uncore_read(uncore, DCC2) & DCC2_MODIFIED_ENHANCED_DISABLE)) {
719                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
720                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
721                 }
722
723                 if (dcc == 0xffffffff) {
724                         drm_err(&i915->drm, "Couldn't read from MCHBAR.  "
725                                   "Disabling tiling.\n");
726                         swizzle_x = I915_BIT_6_SWIZZLE_UNKNOWN;
727                         swizzle_y = I915_BIT_6_SWIZZLE_UNKNOWN;
728                 }
729         }
730
731         if (swizzle_x == I915_BIT_6_SWIZZLE_UNKNOWN ||
732             swizzle_y == I915_BIT_6_SWIZZLE_UNKNOWN) {
733                 /*
734                  * Userspace likes to explode if it sees unknown swizzling,
735                  * so lie. We will finish the lie when reporting through
736                  * the get-tiling-ioctl by reporting the physical swizzle
737                  * mode as unknown instead.
738                  *
739                  * As we don't strictly know what the swizzling is, it may be
740                  * bit17 dependent, and so we need to also prevent the pages
741                  * from being moved.
742                  */
743                 i915->quirks |= QUIRK_PIN_SWIZZLED_PAGES;
744                 swizzle_x = I915_BIT_6_SWIZZLE_NONE;
745                 swizzle_y = I915_BIT_6_SWIZZLE_NONE;
746         }
747
748         i915->ggtt.bit_6_swizzle_x = swizzle_x;
749         i915->ggtt.bit_6_swizzle_y = swizzle_y;
750 }
751
752 /*
753  * Swap every 64 bytes of this page around, to account for it having a new
754  * bit 17 of its physical address and therefore being interpreted differently
755  * by the GPU.
756  */
757 static void swizzle_page(struct page *page)
758 {
759         char temp[64];
760         char *vaddr;
761         int i;
762
763         vaddr = kmap(page);
764
765         for (i = 0; i < PAGE_SIZE; i += 128) {
766                 memcpy(temp, &vaddr[i], 64);
767                 memcpy(&vaddr[i], &vaddr[i + 64], 64);
768                 memcpy(&vaddr[i + 64], temp, 64);
769         }
770
771         kunmap(page);
772 }
773
774 /**
775  * i915_gem_object_do_bit_17_swizzle - fixup bit 17 swizzling
776  * @obj: i915 GEM buffer object
777  * @pages: the scattergather list of physical pages
778  *
779  * This function fixes up the swizzling in case any page frame number for this
780  * object has changed in bit 17 since that state has been saved with
781  * i915_gem_object_save_bit_17_swizzle().
782  *
783  * This is called when pinning backing storage again, since the kernel is free
784  * to move unpinned backing storage around (either by directly moving pages or
785  * by swapping them out and back in again).
786  */
787 void
788 i915_gem_object_do_bit_17_swizzle(struct drm_i915_gem_object *obj,
789                                   struct sg_table *pages)
790 {
791         struct sgt_iter sgt_iter;
792         struct page *page;
793         int i;
794
795         if (obj->bit_17 == NULL)
796                 return;
797
798         i = 0;
799         for_each_sgt_page(page, sgt_iter, pages) {
800                 char new_bit_17 = page_to_phys(page) >> 17;
801                 if ((new_bit_17 & 0x1) != (test_bit(i, obj->bit_17) != 0)) {
802                         swizzle_page(page);
803                         set_page_dirty(page);
804                 }
805                 i++;
806         }
807 }
808
809 /**
810  * i915_gem_object_save_bit_17_swizzle - save bit 17 swizzling
811  * @obj: i915 GEM buffer object
812  * @pages: the scattergather list of physical pages
813  *
814  * This function saves the bit 17 of each page frame number so that swizzling
815  * can be fixed up later on with i915_gem_object_do_bit_17_swizzle(). This must
816  * be called before the backing storage can be unpinned.
817  */
818 void
819 i915_gem_object_save_bit_17_swizzle(struct drm_i915_gem_object *obj,
820                                     struct sg_table *pages)
821 {
822         const unsigned int page_count = obj->base.size >> PAGE_SHIFT;
823         struct sgt_iter sgt_iter;
824         struct page *page;
825         int i;
826
827         if (obj->bit_17 == NULL) {
828                 obj->bit_17 = bitmap_zalloc(page_count, GFP_KERNEL);
829                 if (obj->bit_17 == NULL) {
830                         DRM_ERROR("Failed to allocate memory for bit 17 "
831                                   "record\n");
832                         return;
833                 }
834         }
835
836         i = 0;
837
838         for_each_sgt_page(page, sgt_iter, pages) {
839                 if (page_to_phys(page) & (1 << 17))
840                         __set_bit(i, obj->bit_17);
841                 else
842                         __clear_bit(i, obj->bit_17);
843                 i++;
844         }
845 }
846
847 void intel_ggtt_init_fences(struct i915_ggtt *ggtt)
848 {
849         struct drm_i915_private *i915 = ggtt->vm.i915;
850         struct intel_uncore *uncore = ggtt->vm.gt->uncore;
851         int num_fences;
852         int i;
853
854         INIT_LIST_HEAD(&ggtt->fence_list);
855         INIT_LIST_HEAD(&ggtt->userfault_list);
856         intel_wakeref_auto_init(&ggtt->userfault_wakeref, uncore->rpm);
857
858         detect_bit_6_swizzle(ggtt);
859
860         if (!i915_ggtt_has_aperture(ggtt))
861                 num_fences = 0;
862         else if (INTEL_GEN(i915) >= 7 &&
863                  !(IS_VALLEYVIEW(i915) || IS_CHERRYVIEW(i915)))
864                 num_fences = 32;
865         else if (INTEL_GEN(i915) >= 4 ||
866                  IS_I945G(i915) || IS_I945GM(i915) ||
867                  IS_G33(i915) || IS_PINEVIEW(i915))
868                 num_fences = 16;
869         else
870                 num_fences = 8;
871
872         if (intel_vgpu_active(i915))
873                 num_fences = intel_uncore_read(uncore,
874                                                vgtif_reg(avail_rs.fence_num));
875         ggtt->fence_regs = kcalloc(num_fences,
876                                    sizeof(*ggtt->fence_regs),
877                                    GFP_KERNEL);
878         if (!ggtt->fence_regs)
879                 num_fences = 0;
880
881         /* Initialize fence registers to zero */
882         for (i = 0; i < num_fences; i++) {
883                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
884
885                 i915_active_init(&fence->active, NULL, NULL);
886                 fence->ggtt = ggtt;
887                 fence->id = i;
888                 list_add_tail(&fence->link, &ggtt->fence_list);
889         }
890         ggtt->num_fences = num_fences;
891
892         intel_ggtt_restore_fences(ggtt);
893 }
894
895 void intel_ggtt_fini_fences(struct i915_ggtt *ggtt)
896 {
897         int i;
898
899         for (i = 0; i < ggtt->num_fences; i++) {
900                 struct i915_fence_reg *fence = &ggtt->fence_regs[i];
901
902                 i915_active_fini(&fence->active);
903         }
904
905         kfree(ggtt->fence_regs);
906 }
907
908 void intel_gt_init_swizzling(struct intel_gt *gt)
909 {
910         struct drm_i915_private *i915 = gt->i915;
911         struct intel_uncore *uncore = gt->uncore;
912
913         if (INTEL_GEN(i915) < 5 ||
914             i915->ggtt.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
915                 return;
916
917         intel_uncore_rmw(uncore, DISP_ARB_CTL, 0, DISP_TILE_SURFACE_SWIZZLING);
918
919         if (IS_GEN(i915, 5))
920                 return;
921
922         intel_uncore_rmw(uncore, TILECTL, 0, TILECTL_SWZCTL);
923
924         if (IS_GEN(i915, 6))
925                 intel_uncore_write(uncore,
926                                    ARB_MODE,
927                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
928         else if (IS_GEN(i915, 7))
929                 intel_uncore_write(uncore,
930                                    ARB_MODE,
931                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
932         else if (IS_GEN(i915, 8))
933                 intel_uncore_write(uncore,
934                                    GAMTARBMODE,
935                                    _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
936         else
937                 MISSING_CASE(INTEL_GEN(i915));
938 }