drm/i915/uncore: add intel_uncore_regs() helper
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_execlists_submission.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 /**
7  * DOC: Logical Rings, Logical Ring Contexts and Execlists
8  *
9  * Motivation:
10  * GEN8 brings an expansion of the HW contexts: "Logical Ring Contexts".
11  * These expanded contexts enable a number of new abilities, especially
12  * "Execlists" (also implemented in this file).
13  *
14  * One of the main differences with the legacy HW contexts is that logical
15  * ring contexts incorporate many more things to the context's state, like
16  * PDPs or ringbuffer control registers:
17  *
18  * The reason why PDPs are included in the context is straightforward: as
19  * PPGTTs (per-process GTTs) are actually per-context, having the PDPs
20  * contained there mean you don't need to do a ppgtt->switch_mm yourself,
21  * instead, the GPU will do it for you on the context switch.
22  *
23  * But, what about the ringbuffer control registers (head, tail, etc..)?
24  * shouldn't we just need a set of those per engine command streamer? This is
25  * where the name "Logical Rings" starts to make sense: by virtualizing the
26  * rings, the engine cs shifts to a new "ring buffer" with every context
27  * switch. When you want to submit a workload to the GPU you: A) choose your
28  * context, B) find its appropriate virtualized ring, C) write commands to it
29  * and then, finally, D) tell the GPU to switch to that context.
30  *
31  * Instead of the legacy MI_SET_CONTEXT, the way you tell the GPU to switch
32  * to a contexts is via a context execution list, ergo "Execlists".
33  *
34  * LRC implementation:
35  * Regarding the creation of contexts, we have:
36  *
37  * - One global default context.
38  * - One local default context for each opened fd.
39  * - One local extra context for each context create ioctl call.
40  *
41  * Now that ringbuffers belong per-context (and not per-engine, like before)
42  * and that contexts are uniquely tied to a given engine (and not reusable,
43  * like before) we need:
44  *
45  * - One ringbuffer per-engine inside each context.
46  * - One backing object per-engine inside each context.
47  *
48  * The global default context starts its life with these new objects fully
49  * allocated and populated. The local default context for each opened fd is
50  * more complex, because we don't know at creation time which engine is going
51  * to use them. To handle this, we have implemented a deferred creation of LR
52  * contexts:
53  *
54  * The local context starts its life as a hollow or blank holder, that only
55  * gets populated for a given engine once we receive an execbuffer. If later
56  * on we receive another execbuffer ioctl for the same context but a different
57  * engine, we allocate/populate a new ringbuffer and context backing object and
58  * so on.
59  *
60  * Finally, regarding local contexts created using the ioctl call: as they are
61  * only allowed with the render ring, we can allocate & populate them right
62  * away (no need to defer anything, at least for now).
63  *
64  * Execlists implementation:
65  * Execlists are the new method by which, on gen8+ hardware, workloads are
66  * submitted for execution (as opposed to the legacy, ringbuffer-based, method).
67  * This method works as follows:
68  *
69  * When a request is committed, its commands (the BB start and any leading or
70  * trailing commands, like the seqno breadcrumbs) are placed in the ringbuffer
71  * for the appropriate context. The tail pointer in the hardware context is not
72  * updated at this time, but instead, kept by the driver in the ringbuffer
73  * structure. A structure representing this request is added to a request queue
74  * for the appropriate engine: this structure contains a copy of the context's
75  * tail after the request was written to the ring buffer and a pointer to the
76  * context itself.
77  *
78  * If the engine's request queue was empty before the request was added, the
79  * queue is processed immediately. Otherwise the queue will be processed during
80  * a context switch interrupt. In any case, elements on the queue will get sent
81  * (in pairs) to the GPU's ExecLists Submit Port (ELSP, for short) with a
82  * globally unique 20-bits submission ID.
83  *
84  * When execution of a request completes, the GPU updates the context status
85  * buffer with a context complete event and generates a context switch interrupt.
86  * During the interrupt handling, the driver examines the events in the buffer:
87  * for each context complete event, if the announced ID matches that on the head
88  * of the request queue, then that request is retired and removed from the queue.
89  *
90  * After processing, if any requests were retired and the queue is not empty
91  * then a new execution list can be submitted. The two requests at the front of
92  * the queue are next to be submitted but since a context may not occur twice in
93  * an execution list, if subsequent requests have the same ID as the first then
94  * the two requests must be combined. This is done simply by discarding requests
95  * at the head of the queue until either only one requests is left (in which case
96  * we use a NULL second context) or the first two requests have unique IDs.
97  *
98  * By always executing the first two requests in the queue the driver ensures
99  * that the GPU is kept as busy as possible. In the case where a single context
100  * completes but a second context is still executing, the request for this second
101  * context will be at the head of the queue when we remove the first one. This
102  * request will then be resubmitted along with a new request for a different context,
103  * which will cause the hardware to continue executing the second request and queue
104  * the new request (the GPU detects the condition of a context getting preempted
105  * with the same context and optimizes the context switch flow by not doing
106  * preemption, but just sampling the new tail pointer).
107  *
108  */
109 #include <linux/interrupt.h>
110 #include <linux/string_helpers.h>
111
112 #include "i915_drv.h"
113 #include "i915_reg.h"
114 #include "i915_trace.h"
115 #include "i915_vgpu.h"
116 #include "gen8_engine_cs.h"
117 #include "intel_breadcrumbs.h"
118 #include "intel_context.h"
119 #include "intel_engine_heartbeat.h"
120 #include "intel_engine_pm.h"
121 #include "intel_engine_regs.h"
122 #include "intel_engine_stats.h"
123 #include "intel_execlists_submission.h"
124 #include "intel_gt.h"
125 #include "intel_gt_irq.h"
126 #include "intel_gt_pm.h"
127 #include "intel_gt_regs.h"
128 #include "intel_gt_requests.h"
129 #include "intel_lrc.h"
130 #include "intel_lrc_reg.h"
131 #include "intel_mocs.h"
132 #include "intel_reset.h"
133 #include "intel_ring.h"
134 #include "intel_workarounds.h"
135 #include "shmem_utils.h"
136
137 #define RING_EXECLIST_QFULL             (1 << 0x2)
138 #define RING_EXECLIST1_VALID            (1 << 0x3)
139 #define RING_EXECLIST0_VALID            (1 << 0x4)
140 #define RING_EXECLIST_ACTIVE_STATUS     (3 << 0xE)
141 #define RING_EXECLIST1_ACTIVE           (1 << 0x11)
142 #define RING_EXECLIST0_ACTIVE           (1 << 0x12)
143
144 #define GEN8_CTX_STATUS_IDLE_ACTIVE     (1 << 0)
145 #define GEN8_CTX_STATUS_PREEMPTED       (1 << 1)
146 #define GEN8_CTX_STATUS_ELEMENT_SWITCH  (1 << 2)
147 #define GEN8_CTX_STATUS_ACTIVE_IDLE     (1 << 3)
148 #define GEN8_CTX_STATUS_COMPLETE        (1 << 4)
149 #define GEN8_CTX_STATUS_LITE_RESTORE    (1 << 15)
150
151 #define GEN8_CTX_STATUS_COMPLETED_MASK \
152          (GEN8_CTX_STATUS_COMPLETE | GEN8_CTX_STATUS_PREEMPTED)
153
154 #define GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE  (0x1) /* lower csb dword */
155 #define GEN12_CTX_SWITCH_DETAIL(csb_dw) ((csb_dw) & 0xF) /* upper csb dword */
156 #define GEN12_CSB_SW_CTX_ID_MASK                GENMASK(25, 15)
157 #define GEN12_IDLE_CTX_ID               0x7FF
158 #define GEN12_CSB_CTX_VALID(csb_dw) \
159         (FIELD_GET(GEN12_CSB_SW_CTX_ID_MASK, csb_dw) != GEN12_IDLE_CTX_ID)
160
161 #define XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE   BIT(1) /* upper csb dword */
162 #define XEHP_CSB_SW_CTX_ID_MASK                 GENMASK(31, 10)
163 #define XEHP_IDLE_CTX_ID                        0xFFFF
164 #define XEHP_CSB_CTX_VALID(csb_dw) \
165         (FIELD_GET(XEHP_CSB_SW_CTX_ID_MASK, csb_dw) != XEHP_IDLE_CTX_ID)
166
167 /* Typical size of the average request (2 pipecontrols and a MI_BB) */
168 #define EXECLISTS_REQUEST_SIZE 64 /* bytes */
169
170 struct virtual_engine {
171         struct intel_engine_cs base;
172         struct intel_context context;
173         struct rcu_work rcu;
174
175         /*
176          * We allow only a single request through the virtual engine at a time
177          * (each request in the timeline waits for the completion fence of
178          * the previous before being submitted). By restricting ourselves to
179          * only submitting a single request, each request is placed on to a
180          * physical to maximise load spreading (by virtue of the late greedy
181          * scheduling -- each real engine takes the next available request
182          * upon idling).
183          */
184         struct i915_request *request;
185
186         /*
187          * We keep a rbtree of available virtual engines inside each physical
188          * engine, sorted by priority. Here we preallocate the nodes we need
189          * for the virtual engine, indexed by physical_engine->id.
190          */
191         struct ve_node {
192                 struct rb_node rb;
193                 int prio;
194         } nodes[I915_NUM_ENGINES];
195
196         /* And finally, which physical engines this virtual engine maps onto. */
197         unsigned int num_siblings;
198         struct intel_engine_cs *siblings[];
199 };
200
201 static struct virtual_engine *to_virtual_engine(struct intel_engine_cs *engine)
202 {
203         GEM_BUG_ON(!intel_engine_is_virtual(engine));
204         return container_of(engine, struct virtual_engine, base);
205 }
206
207 static struct intel_context *
208 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
209                          unsigned long flags);
210
211 static struct i915_request *
212 __active_request(const struct intel_timeline * const tl,
213                  struct i915_request *rq,
214                  int error)
215 {
216         struct i915_request *active = rq;
217
218         list_for_each_entry_from_reverse(rq, &tl->requests, link) {
219                 if (__i915_request_is_complete(rq))
220                         break;
221
222                 if (error) {
223                         i915_request_set_error_once(rq, error);
224                         __i915_request_skip(rq);
225                 }
226                 active = rq;
227         }
228
229         return active;
230 }
231
232 static struct i915_request *
233 active_request(const struct intel_timeline * const tl, struct i915_request *rq)
234 {
235         return __active_request(tl, rq, 0);
236 }
237
238 static void ring_set_paused(const struct intel_engine_cs *engine, int state)
239 {
240         /*
241          * We inspect HWS_PREEMPT with a semaphore inside
242          * engine->emit_fini_breadcrumb. If the dword is true,
243          * the ring is paused as the semaphore will busywait
244          * until the dword is false.
245          */
246         engine->status_page.addr[I915_GEM_HWS_PREEMPT] = state;
247         if (state)
248                 wmb();
249 }
250
251 static struct i915_priolist *to_priolist(struct rb_node *rb)
252 {
253         return rb_entry(rb, struct i915_priolist, node);
254 }
255
256 static int rq_prio(const struct i915_request *rq)
257 {
258         return READ_ONCE(rq->sched.attr.priority);
259 }
260
261 static int effective_prio(const struct i915_request *rq)
262 {
263         int prio = rq_prio(rq);
264
265         /*
266          * If this request is special and must not be interrupted at any
267          * cost, so be it. Note we are only checking the most recent request
268          * in the context and so may be masking an earlier vip request. It
269          * is hoped that under the conditions where nopreempt is used, this
270          * will not matter (i.e. all requests to that context will be
271          * nopreempt for as long as desired).
272          */
273         if (i915_request_has_nopreempt(rq))
274                 prio = I915_PRIORITY_UNPREEMPTABLE;
275
276         return prio;
277 }
278
279 static int queue_prio(const struct i915_sched_engine *sched_engine)
280 {
281         struct rb_node *rb;
282
283         rb = rb_first_cached(&sched_engine->queue);
284         if (!rb)
285                 return INT_MIN;
286
287         return to_priolist(rb)->priority;
288 }
289
290 static int virtual_prio(const struct intel_engine_execlists *el)
291 {
292         struct rb_node *rb = rb_first_cached(&el->virtual);
293
294         return rb ? rb_entry(rb, struct ve_node, rb)->prio : INT_MIN;
295 }
296
297 static bool need_preempt(const struct intel_engine_cs *engine,
298                          const struct i915_request *rq)
299 {
300         int last_prio;
301
302         if (!intel_engine_has_semaphores(engine))
303                 return false;
304
305         /*
306          * Check if the current priority hint merits a preemption attempt.
307          *
308          * We record the highest value priority we saw during rescheduling
309          * prior to this dequeue, therefore we know that if it is strictly
310          * less than the current tail of ESLP[0], we do not need to force
311          * a preempt-to-idle cycle.
312          *
313          * However, the priority hint is a mere hint that we may need to
314          * preempt. If that hint is stale or we may be trying to preempt
315          * ourselves, ignore the request.
316          *
317          * More naturally we would write
318          *      prio >= max(0, last);
319          * except that we wish to prevent triggering preemption at the same
320          * priority level: the task that is running should remain running
321          * to preserve FIFO ordering of dependencies.
322          */
323         last_prio = max(effective_prio(rq), I915_PRIORITY_NORMAL - 1);
324         if (engine->sched_engine->queue_priority_hint <= last_prio)
325                 return false;
326
327         /*
328          * Check against the first request in ELSP[1], it will, thanks to the
329          * power of PI, be the highest priority of that context.
330          */
331         if (!list_is_last(&rq->sched.link, &engine->sched_engine->requests) &&
332             rq_prio(list_next_entry(rq, sched.link)) > last_prio)
333                 return true;
334
335         /*
336          * If the inflight context did not trigger the preemption, then maybe
337          * it was the set of queued requests? Pick the highest priority in
338          * the queue (the first active priolist) and see if it deserves to be
339          * running instead of ELSP[0].
340          *
341          * The highest priority request in the queue can not be either
342          * ELSP[0] or ELSP[1] as, thanks again to PI, if it was the same
343          * context, it's priority would not exceed ELSP[0] aka last_prio.
344          */
345         return max(virtual_prio(&engine->execlists),
346                    queue_prio(engine->sched_engine)) > last_prio;
347 }
348
349 __maybe_unused static bool
350 assert_priority_queue(const struct i915_request *prev,
351                       const struct i915_request *next)
352 {
353         /*
354          * Without preemption, the prev may refer to the still active element
355          * which we refuse to let go.
356          *
357          * Even with preemption, there are times when we think it is better not
358          * to preempt and leave an ostensibly lower priority request in flight.
359          */
360         if (i915_request_is_active(prev))
361                 return true;
362
363         return rq_prio(prev) >= rq_prio(next);
364 }
365
366 static struct i915_request *
367 __unwind_incomplete_requests(struct intel_engine_cs *engine)
368 {
369         struct i915_request *rq, *rn, *active = NULL;
370         struct list_head *pl;
371         int prio = I915_PRIORITY_INVALID;
372
373         lockdep_assert_held(&engine->sched_engine->lock);
374
375         list_for_each_entry_safe_reverse(rq, rn,
376                                          &engine->sched_engine->requests,
377                                          sched.link) {
378                 if (__i915_request_is_complete(rq)) {
379                         list_del_init(&rq->sched.link);
380                         continue;
381                 }
382
383                 __i915_request_unsubmit(rq);
384
385                 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
386                 if (rq_prio(rq) != prio) {
387                         prio = rq_prio(rq);
388                         pl = i915_sched_lookup_priolist(engine->sched_engine,
389                                                         prio);
390                 }
391                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
392
393                 list_move(&rq->sched.link, pl);
394                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
395
396                 /* Check in case we rollback so far we wrap [size/2] */
397                 if (intel_ring_direction(rq->ring,
398                                          rq->tail,
399                                          rq->ring->tail + 8) > 0)
400                         rq->context->lrc.desc |= CTX_DESC_FORCE_RESTORE;
401
402                 active = rq;
403         }
404
405         return active;
406 }
407
408 struct i915_request *
409 execlists_unwind_incomplete_requests(struct intel_engine_execlists *execlists)
410 {
411         struct intel_engine_cs *engine =
412                 container_of(execlists, typeof(*engine), execlists);
413
414         return __unwind_incomplete_requests(engine);
415 }
416
417 static void
418 execlists_context_status_change(struct i915_request *rq, unsigned long status)
419 {
420         /*
421          * Only used when GVT-g is enabled now. When GVT-g is disabled,
422          * The compiler should eliminate this function as dead-code.
423          */
424         if (!IS_ENABLED(CONFIG_DRM_I915_GVT))
425                 return;
426
427         atomic_notifier_call_chain(&rq->engine->context_status_notifier,
428                                    status, rq);
429 }
430
431 static void reset_active(struct i915_request *rq,
432                          struct intel_engine_cs *engine)
433 {
434         struct intel_context * const ce = rq->context;
435         u32 head;
436
437         /*
438          * The executing context has been cancelled. We want to prevent
439          * further execution along this context and propagate the error on
440          * to anything depending on its results.
441          *
442          * In __i915_request_submit(), we apply the -EIO and remove the
443          * requests' payloads for any banned requests. But first, we must
444          * rewind the context back to the start of the incomplete request so
445          * that we do not jump back into the middle of the batch.
446          *
447          * We preserve the breadcrumbs and semaphores of the incomplete
448          * requests so that inter-timeline dependencies (i.e other timelines)
449          * remain correctly ordered. And we defer to __i915_request_submit()
450          * so that all asynchronous waits are correctly handled.
451          */
452         ENGINE_TRACE(engine, "{ reset rq=%llx:%lld }\n",
453                      rq->fence.context, rq->fence.seqno);
454
455         /* On resubmission of the active request, payload will be scrubbed */
456         if (__i915_request_is_complete(rq))
457                 head = rq->tail;
458         else
459                 head = __active_request(ce->timeline, rq, -EIO)->head;
460         head = intel_ring_wrap(ce->ring, head);
461
462         /* Scrub the context image to prevent replaying the previous batch */
463         lrc_init_regs(ce, engine, true);
464
465         /* We've switched away, so this should be a no-op, but intent matters */
466         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
467 }
468
469 static bool bad_request(const struct i915_request *rq)
470 {
471         return rq->fence.error && i915_request_started(rq);
472 }
473
474 static struct intel_engine_cs *
475 __execlists_schedule_in(struct i915_request *rq)
476 {
477         struct intel_engine_cs * const engine = rq->engine;
478         struct intel_context * const ce = rq->context;
479
480         intel_context_get(ce);
481
482         if (unlikely(intel_context_is_closed(ce) &&
483                      !intel_engine_has_heartbeat(engine)))
484                 intel_context_set_exiting(ce);
485
486         if (unlikely(!intel_context_is_schedulable(ce) || bad_request(rq)))
487                 reset_active(rq, engine);
488
489         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
490                 lrc_check_regs(ce, engine, "before");
491
492         if (ce->tag) {
493                 /* Use a fixed tag for OA and friends */
494                 GEM_BUG_ON(ce->tag <= BITS_PER_LONG);
495                 ce->lrc.ccid = ce->tag;
496         } else if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
497                 /* We don't need a strict matching tag, just different values */
498                 unsigned int tag = ffs(READ_ONCE(engine->context_tag));
499
500                 GEM_BUG_ON(tag == 0 || tag >= BITS_PER_LONG);
501                 clear_bit(tag - 1, &engine->context_tag);
502                 ce->lrc.ccid = tag << (XEHP_SW_CTX_ID_SHIFT - 32);
503
504                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
505
506         } else {
507                 /* We don't need a strict matching tag, just different values */
508                 unsigned int tag = __ffs(engine->context_tag);
509
510                 GEM_BUG_ON(tag >= BITS_PER_LONG);
511                 __clear_bit(tag, &engine->context_tag);
512                 ce->lrc.ccid = (1 + tag) << (GEN11_SW_CTX_ID_SHIFT - 32);
513
514                 BUILD_BUG_ON(BITS_PER_LONG > GEN12_MAX_CONTEXT_HW_ID);
515         }
516
517         ce->lrc.ccid |= engine->execlists.ccid;
518
519         __intel_gt_pm_get(engine->gt);
520         if (engine->fw_domain && !engine->fw_active++)
521                 intel_uncore_forcewake_get(engine->uncore, engine->fw_domain);
522         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_IN);
523         intel_engine_context_in(engine);
524
525         CE_TRACE(ce, "schedule-in, ccid:%x\n", ce->lrc.ccid);
526
527         return engine;
528 }
529
530 static void execlists_schedule_in(struct i915_request *rq, int idx)
531 {
532         struct intel_context * const ce = rq->context;
533         struct intel_engine_cs *old;
534
535         GEM_BUG_ON(!intel_engine_pm_is_awake(rq->engine));
536         trace_i915_request_in(rq, idx);
537
538         old = ce->inflight;
539         if (!old)
540                 old = __execlists_schedule_in(rq);
541         WRITE_ONCE(ce->inflight, ptr_inc(old));
542
543         GEM_BUG_ON(intel_context_inflight(ce) != rq->engine);
544 }
545
546 static void
547 resubmit_virtual_request(struct i915_request *rq, struct virtual_engine *ve)
548 {
549         struct intel_engine_cs *engine = rq->engine;
550
551         spin_lock_irq(&engine->sched_engine->lock);
552
553         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
554         WRITE_ONCE(rq->engine, &ve->base);
555         ve->base.submit_request(rq);
556
557         spin_unlock_irq(&engine->sched_engine->lock);
558 }
559
560 static void kick_siblings(struct i915_request *rq, struct intel_context *ce)
561 {
562         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
563         struct intel_engine_cs *engine = rq->engine;
564
565         /*
566          * After this point, the rq may be transferred to a new sibling, so
567          * before we clear ce->inflight make sure that the context has been
568          * removed from the b->signalers and furthermore we need to make sure
569          * that the concurrent iterator in signal_irq_work is no longer
570          * following ce->signal_link.
571          */
572         if (!list_empty(&ce->signals))
573                 intel_context_remove_breadcrumbs(ce, engine->breadcrumbs);
574
575         /*
576          * This engine is now too busy to run this virtual request, so
577          * see if we can find an alternative engine for it to execute on.
578          * Once a request has become bonded to this engine, we treat it the
579          * same as other native request.
580          */
581         if (i915_request_in_priority_queue(rq) &&
582             rq->execution_mask != engine->mask)
583                 resubmit_virtual_request(rq, ve);
584
585         if (READ_ONCE(ve->request))
586                 tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
587 }
588
589 static void __execlists_schedule_out(struct i915_request * const rq,
590                                      struct intel_context * const ce)
591 {
592         struct intel_engine_cs * const engine = rq->engine;
593         unsigned int ccid;
594
595         /*
596          * NB process_csb() is not under the engine->sched_engine->lock and hence
597          * schedule_out can race with schedule_in meaning that we should
598          * refrain from doing non-trivial work here.
599          */
600
601         CE_TRACE(ce, "schedule-out, ccid:%x\n", ce->lrc.ccid);
602         GEM_BUG_ON(ce->inflight != engine);
603
604         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
605                 lrc_check_regs(ce, engine, "after");
606
607         /*
608          * If we have just completed this context, the engine may now be
609          * idle and we want to re-enter powersaving.
610          */
611         if (intel_timeline_is_last(ce->timeline, rq) &&
612             __i915_request_is_complete(rq))
613                 intel_engine_add_retire(engine, ce->timeline);
614
615         ccid = ce->lrc.ccid;
616         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
617                 ccid >>= XEHP_SW_CTX_ID_SHIFT - 32;
618                 ccid &= XEHP_MAX_CONTEXT_HW_ID;
619         } else {
620                 ccid >>= GEN11_SW_CTX_ID_SHIFT - 32;
621                 ccid &= GEN12_MAX_CONTEXT_HW_ID;
622         }
623
624         if (ccid < BITS_PER_LONG) {
625                 GEM_BUG_ON(ccid == 0);
626                 GEM_BUG_ON(test_bit(ccid - 1, &engine->context_tag));
627                 __set_bit(ccid - 1, &engine->context_tag);
628         }
629         intel_engine_context_out(engine);
630         execlists_context_status_change(rq, INTEL_CONTEXT_SCHEDULE_OUT);
631         if (engine->fw_domain && !--engine->fw_active)
632                 intel_uncore_forcewake_put(engine->uncore, engine->fw_domain);
633         intel_gt_pm_put_async(engine->gt);
634
635         /*
636          * If this is part of a virtual engine, its next request may
637          * have been blocked waiting for access to the active context.
638          * We have to kick all the siblings again in case we need to
639          * switch (e.g. the next request is not runnable on this
640          * engine). Hopefully, we will already have submitted the next
641          * request before the tasklet runs and do not need to rebuild
642          * each virtual tree and kick everyone again.
643          */
644         if (ce->engine != engine)
645                 kick_siblings(rq, ce);
646
647         WRITE_ONCE(ce->inflight, NULL);
648         intel_context_put(ce);
649 }
650
651 static inline void execlists_schedule_out(struct i915_request *rq)
652 {
653         struct intel_context * const ce = rq->context;
654
655         trace_i915_request_out(rq);
656
657         GEM_BUG_ON(!ce->inflight);
658         ce->inflight = ptr_dec(ce->inflight);
659         if (!__intel_context_inflight_count(ce->inflight))
660                 __execlists_schedule_out(rq, ce);
661
662         i915_request_put(rq);
663 }
664
665 static u32 map_i915_prio_to_lrc_desc_prio(int prio)
666 {
667         if (prio > I915_PRIORITY_NORMAL)
668                 return GEN12_CTX_PRIORITY_HIGH;
669         else if (prio < I915_PRIORITY_NORMAL)
670                 return GEN12_CTX_PRIORITY_LOW;
671         else
672                 return GEN12_CTX_PRIORITY_NORMAL;
673 }
674
675 static u64 execlists_update_context(struct i915_request *rq)
676 {
677         struct intel_context *ce = rq->context;
678         u64 desc;
679         u32 tail, prev;
680
681         desc = ce->lrc.desc;
682         if (rq->engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
683                 desc |= map_i915_prio_to_lrc_desc_prio(rq_prio(rq));
684
685         /*
686          * WaIdleLiteRestore:bdw,skl
687          *
688          * We should never submit the context with the same RING_TAIL twice
689          * just in case we submit an empty ring, which confuses the HW.
690          *
691          * We append a couple of NOOPs (gen8_emit_wa_tail) after the end of
692          * the normal request to be able to always advance the RING_TAIL on
693          * subsequent resubmissions (for lite restore). Should that fail us,
694          * and we try and submit the same tail again, force the context
695          * reload.
696          *
697          * If we need to return to a preempted context, we need to skip the
698          * lite-restore and force it to reload the RING_TAIL. Otherwise, the
699          * HW has a tendency to ignore us rewinding the TAIL to the end of
700          * an earlier request.
701          */
702         GEM_BUG_ON(ce->lrc_reg_state[CTX_RING_TAIL] != rq->ring->tail);
703         prev = rq->ring->tail;
704         tail = intel_ring_set_tail(rq->ring, rq->tail);
705         if (unlikely(intel_ring_direction(rq->ring, tail, prev) <= 0))
706                 desc |= CTX_DESC_FORCE_RESTORE;
707         ce->lrc_reg_state[CTX_RING_TAIL] = tail;
708         rq->tail = rq->wa_tail;
709
710         /*
711          * Make sure the context image is complete before we submit it to HW.
712          *
713          * Ostensibly, writes (including the WCB) should be flushed prior to
714          * an uncached write such as our mmio register access, the empirical
715          * evidence (esp. on Braswell) suggests that the WC write into memory
716          * may not be visible to the HW prior to the completion of the UC
717          * register write and that we may begin execution from the context
718          * before its image is complete leading to invalid PD chasing.
719          */
720         wmb();
721
722         ce->lrc.desc &= ~CTX_DESC_FORCE_RESTORE;
723         return desc;
724 }
725
726 static void write_desc(struct intel_engine_execlists *execlists, u64 desc, u32 port)
727 {
728         if (execlists->ctrl_reg) {
729                 writel(lower_32_bits(desc), execlists->submit_reg + port * 2);
730                 writel(upper_32_bits(desc), execlists->submit_reg + port * 2 + 1);
731         } else {
732                 writel(upper_32_bits(desc), execlists->submit_reg);
733                 writel(lower_32_bits(desc), execlists->submit_reg);
734         }
735 }
736
737 static __maybe_unused char *
738 dump_port(char *buf, int buflen, const char *prefix, struct i915_request *rq)
739 {
740         if (!rq)
741                 return "";
742
743         snprintf(buf, buflen, "%sccid:%x %llx:%lld%s prio %d",
744                  prefix,
745                  rq->context->lrc.ccid,
746                  rq->fence.context, rq->fence.seqno,
747                  __i915_request_is_complete(rq) ? "!" :
748                  __i915_request_has_started(rq) ? "*" :
749                  "",
750                  rq_prio(rq));
751
752         return buf;
753 }
754
755 static __maybe_unused noinline void
756 trace_ports(const struct intel_engine_execlists *execlists,
757             const char *msg,
758             struct i915_request * const *ports)
759 {
760         const struct intel_engine_cs *engine =
761                 container_of(execlists, typeof(*engine), execlists);
762         char __maybe_unused p0[40], p1[40];
763
764         if (!ports[0])
765                 return;
766
767         ENGINE_TRACE(engine, "%s { %s%s }\n", msg,
768                      dump_port(p0, sizeof(p0), "", ports[0]),
769                      dump_port(p1, sizeof(p1), ", ", ports[1]));
770 }
771
772 static bool
773 reset_in_progress(const struct intel_engine_cs *engine)
774 {
775         return unlikely(!__tasklet_is_enabled(&engine->sched_engine->tasklet));
776 }
777
778 static __maybe_unused noinline bool
779 assert_pending_valid(const struct intel_engine_execlists *execlists,
780                      const char *msg)
781 {
782         struct intel_engine_cs *engine =
783                 container_of(execlists, typeof(*engine), execlists);
784         struct i915_request * const *port, *rq, *prev = NULL;
785         struct intel_context *ce = NULL;
786         u32 ccid = -1;
787
788         trace_ports(execlists, msg, execlists->pending);
789
790         /* We may be messing around with the lists during reset, lalala */
791         if (reset_in_progress(engine))
792                 return true;
793
794         if (!execlists->pending[0]) {
795                 GEM_TRACE_ERR("%s: Nothing pending for promotion!\n",
796                               engine->name);
797                 return false;
798         }
799
800         if (execlists->pending[execlists_num_ports(execlists)]) {
801                 GEM_TRACE_ERR("%s: Excess pending[%d] for promotion!\n",
802                               engine->name, execlists_num_ports(execlists));
803                 return false;
804         }
805
806         for (port = execlists->pending; (rq = *port); port++) {
807                 unsigned long flags;
808                 bool ok = true;
809
810                 GEM_BUG_ON(!kref_read(&rq->fence.refcount));
811                 GEM_BUG_ON(!i915_request_is_active(rq));
812
813                 if (ce == rq->context) {
814                         GEM_TRACE_ERR("%s: Dup context:%llx in pending[%zd]\n",
815                                       engine->name,
816                                       ce->timeline->fence_context,
817                                       port - execlists->pending);
818                         return false;
819                 }
820                 ce = rq->context;
821
822                 if (ccid == ce->lrc.ccid) {
823                         GEM_TRACE_ERR("%s: Dup ccid:%x context:%llx in pending[%zd]\n",
824                                       engine->name,
825                                       ccid, ce->timeline->fence_context,
826                                       port - execlists->pending);
827                         return false;
828                 }
829                 ccid = ce->lrc.ccid;
830
831                 /*
832                  * Sentinels are supposed to be the last request so they flush
833                  * the current execution off the HW. Check that they are the only
834                  * request in the pending submission.
835                  *
836                  * NB: Due to the async nature of preempt-to-busy and request
837                  * cancellation we need to handle the case where request
838                  * becomes a sentinel in parallel to CSB processing.
839                  */
840                 if (prev && i915_request_has_sentinel(prev) &&
841                     !READ_ONCE(prev->fence.error)) {
842                         GEM_TRACE_ERR("%s: context:%llx after sentinel in pending[%zd]\n",
843                                       engine->name,
844                                       ce->timeline->fence_context,
845                                       port - execlists->pending);
846                         return false;
847                 }
848                 prev = rq;
849
850                 /*
851                  * We want virtual requests to only be in the first slot so
852                  * that they are never stuck behind a hog and can be immediately
853                  * transferred onto the next idle engine.
854                  */
855                 if (rq->execution_mask != engine->mask &&
856                     port != execlists->pending) {
857                         GEM_TRACE_ERR("%s: virtual engine:%llx not in prime position[%zd]\n",
858                                       engine->name,
859                                       ce->timeline->fence_context,
860                                       port - execlists->pending);
861                         return false;
862                 }
863
864                 /* Hold tightly onto the lock to prevent concurrent retires! */
865                 if (!spin_trylock_irqsave(&rq->lock, flags))
866                         continue;
867
868                 if (__i915_request_is_complete(rq))
869                         goto unlock;
870
871                 if (i915_active_is_idle(&ce->active) &&
872                     !intel_context_is_barrier(ce)) {
873                         GEM_TRACE_ERR("%s: Inactive context:%llx in pending[%zd]\n",
874                                       engine->name,
875                                       ce->timeline->fence_context,
876                                       port - execlists->pending);
877                         ok = false;
878                         goto unlock;
879                 }
880
881                 if (!i915_vma_is_pinned(ce->state)) {
882                         GEM_TRACE_ERR("%s: Unpinned context:%llx in pending[%zd]\n",
883                                       engine->name,
884                                       ce->timeline->fence_context,
885                                       port - execlists->pending);
886                         ok = false;
887                         goto unlock;
888                 }
889
890                 if (!i915_vma_is_pinned(ce->ring->vma)) {
891                         GEM_TRACE_ERR("%s: Unpinned ring:%llx in pending[%zd]\n",
892                                       engine->name,
893                                       ce->timeline->fence_context,
894                                       port - execlists->pending);
895                         ok = false;
896                         goto unlock;
897                 }
898
899 unlock:
900                 spin_unlock_irqrestore(&rq->lock, flags);
901                 if (!ok)
902                         return false;
903         }
904
905         return ce;
906 }
907
908 static void execlists_submit_ports(struct intel_engine_cs *engine)
909 {
910         struct intel_engine_execlists *execlists = &engine->execlists;
911         unsigned int n;
912
913         GEM_BUG_ON(!assert_pending_valid(execlists, "submit"));
914
915         /*
916          * We can skip acquiring intel_runtime_pm_get() here as it was taken
917          * on our behalf by the request (see i915_gem_mark_busy()) and it will
918          * not be relinquished until the device is idle (see
919          * i915_gem_idle_work_handler()). As a precaution, we make sure
920          * that all ELSP are drained i.e. we have processed the CSB,
921          * before allowing ourselves to idle and calling intel_runtime_pm_put().
922          */
923         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
924
925         /*
926          * ELSQ note: the submit queue is not cleared after being submitted
927          * to the HW so we need to make sure we always clean it up. This is
928          * currently ensured by the fact that we always write the same number
929          * of elsq entries, keep this in mind before changing the loop below.
930          */
931         for (n = execlists_num_ports(execlists); n--; ) {
932                 struct i915_request *rq = execlists->pending[n];
933
934                 write_desc(execlists,
935                            rq ? execlists_update_context(rq) : 0,
936                            n);
937         }
938
939         /* we need to manually load the submit queue */
940         if (execlists->ctrl_reg)
941                 writel(EL_CTRL_LOAD, execlists->ctrl_reg);
942 }
943
944 static bool ctx_single_port_submission(const struct intel_context *ce)
945 {
946         return (IS_ENABLED(CONFIG_DRM_I915_GVT) &&
947                 intel_context_force_single_submission(ce));
948 }
949
950 static bool can_merge_ctx(const struct intel_context *prev,
951                           const struct intel_context *next)
952 {
953         if (prev != next)
954                 return false;
955
956         if (ctx_single_port_submission(prev))
957                 return false;
958
959         return true;
960 }
961
962 static unsigned long i915_request_flags(const struct i915_request *rq)
963 {
964         return READ_ONCE(rq->fence.flags);
965 }
966
967 static bool can_merge_rq(const struct i915_request *prev,
968                          const struct i915_request *next)
969 {
970         GEM_BUG_ON(prev == next);
971         GEM_BUG_ON(!assert_priority_queue(prev, next));
972
973         /*
974          * We do not submit known completed requests. Therefore if the next
975          * request is already completed, we can pretend to merge it in
976          * with the previous context (and we will skip updating the ELSP
977          * and tracking). Thus hopefully keeping the ELSP full with active
978          * contexts, despite the best efforts of preempt-to-busy to confuse
979          * us.
980          */
981         if (__i915_request_is_complete(next))
982                 return true;
983
984         if (unlikely((i915_request_flags(prev) | i915_request_flags(next)) &
985                      (BIT(I915_FENCE_FLAG_NOPREEMPT) |
986                       BIT(I915_FENCE_FLAG_SENTINEL))))
987                 return false;
988
989         if (!can_merge_ctx(prev->context, next->context))
990                 return false;
991
992         GEM_BUG_ON(i915_seqno_passed(prev->fence.seqno, next->fence.seqno));
993         return true;
994 }
995
996 static bool virtual_matches(const struct virtual_engine *ve,
997                             const struct i915_request *rq,
998                             const struct intel_engine_cs *engine)
999 {
1000         const struct intel_engine_cs *inflight;
1001
1002         if (!rq)
1003                 return false;
1004
1005         if (!(rq->execution_mask & engine->mask)) /* We peeked too soon! */
1006                 return false;
1007
1008         /*
1009          * We track when the HW has completed saving the context image
1010          * (i.e. when we have seen the final CS event switching out of
1011          * the context) and must not overwrite the context image before
1012          * then. This restricts us to only using the active engine
1013          * while the previous virtualized request is inflight (so
1014          * we reuse the register offsets). This is a very small
1015          * hystersis on the greedy seelction algorithm.
1016          */
1017         inflight = intel_context_inflight(&ve->context);
1018         if (inflight && inflight != engine)
1019                 return false;
1020
1021         return true;
1022 }
1023
1024 static struct virtual_engine *
1025 first_virtual_engine(struct intel_engine_cs *engine)
1026 {
1027         struct intel_engine_execlists *el = &engine->execlists;
1028         struct rb_node *rb = rb_first_cached(&el->virtual);
1029
1030         while (rb) {
1031                 struct virtual_engine *ve =
1032                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
1033                 struct i915_request *rq = READ_ONCE(ve->request);
1034
1035                 /* lazily cleanup after another engine handled rq */
1036                 if (!rq || !virtual_matches(ve, rq, engine)) {
1037                         rb_erase_cached(rb, &el->virtual);
1038                         RB_CLEAR_NODE(rb);
1039                         rb = rb_first_cached(&el->virtual);
1040                         continue;
1041                 }
1042
1043                 return ve;
1044         }
1045
1046         return NULL;
1047 }
1048
1049 static void virtual_xfer_context(struct virtual_engine *ve,
1050                                  struct intel_engine_cs *engine)
1051 {
1052         unsigned int n;
1053
1054         if (likely(engine == ve->siblings[0]))
1055                 return;
1056
1057         GEM_BUG_ON(READ_ONCE(ve->context.inflight));
1058         if (!intel_engine_has_relative_mmio(engine))
1059                 lrc_update_offsets(&ve->context, engine);
1060
1061         /*
1062          * Move the bound engine to the top of the list for
1063          * future execution. We then kick this tasklet first
1064          * before checking others, so that we preferentially
1065          * reuse this set of bound registers.
1066          */
1067         for (n = 1; n < ve->num_siblings; n++) {
1068                 if (ve->siblings[n] == engine) {
1069                         swap(ve->siblings[n], ve->siblings[0]);
1070                         break;
1071                 }
1072         }
1073 }
1074
1075 static void defer_request(struct i915_request *rq, struct list_head * const pl)
1076 {
1077         LIST_HEAD(list);
1078
1079         /*
1080          * We want to move the interrupted request to the back of
1081          * the round-robin list (i.e. its priority level), but
1082          * in doing so, we must then move all requests that were in
1083          * flight and were waiting for the interrupted request to
1084          * be run after it again.
1085          */
1086         do {
1087                 struct i915_dependency *p;
1088
1089                 GEM_BUG_ON(i915_request_is_active(rq));
1090                 list_move_tail(&rq->sched.link, pl);
1091
1092                 for_each_waiter(p, rq) {
1093                         struct i915_request *w =
1094                                 container_of(p->waiter, typeof(*w), sched);
1095
1096                         if (p->flags & I915_DEPENDENCY_WEAK)
1097                                 continue;
1098
1099                         /* Leave semaphores spinning on the other engines */
1100                         if (w->engine != rq->engine)
1101                                 continue;
1102
1103                         /* No waiter should start before its signaler */
1104                         GEM_BUG_ON(i915_request_has_initial_breadcrumb(w) &&
1105                                    __i915_request_has_started(w) &&
1106                                    !__i915_request_is_complete(rq));
1107
1108                         if (!i915_request_is_ready(w))
1109                                 continue;
1110
1111                         if (rq_prio(w) < rq_prio(rq))
1112                                 continue;
1113
1114                         GEM_BUG_ON(rq_prio(w) > rq_prio(rq));
1115                         GEM_BUG_ON(i915_request_is_active(w));
1116                         list_move_tail(&w->sched.link, &list);
1117                 }
1118
1119                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
1120         } while (rq);
1121 }
1122
1123 static void defer_active(struct intel_engine_cs *engine)
1124 {
1125         struct i915_request *rq;
1126
1127         rq = __unwind_incomplete_requests(engine);
1128         if (!rq)
1129                 return;
1130
1131         defer_request(rq, i915_sched_lookup_priolist(engine->sched_engine,
1132                                                      rq_prio(rq)));
1133 }
1134
1135 static bool
1136 timeslice_yield(const struct intel_engine_execlists *el,
1137                 const struct i915_request *rq)
1138 {
1139         /*
1140          * Once bitten, forever smitten!
1141          *
1142          * If the active context ever busy-waited on a semaphore,
1143          * it will be treated as a hog until the end of its timeslice (i.e.
1144          * until it is scheduled out and replaced by a new submission,
1145          * possibly even its own lite-restore). The HW only sends an interrupt
1146          * on the first miss, and we do know if that semaphore has been
1147          * signaled, or even if it is now stuck on another semaphore. Play
1148          * safe, yield if it might be stuck -- it will be given a fresh
1149          * timeslice in the near future.
1150          */
1151         return rq->context->lrc.ccid == READ_ONCE(el->yield);
1152 }
1153
1154 static bool needs_timeslice(const struct intel_engine_cs *engine,
1155                             const struct i915_request *rq)
1156 {
1157         if (!intel_engine_has_timeslices(engine))
1158                 return false;
1159
1160         /* If not currently active, or about to switch, wait for next event */
1161         if (!rq || __i915_request_is_complete(rq))
1162                 return false;
1163
1164         /* We do not need to start the timeslice until after the ACK */
1165         if (READ_ONCE(engine->execlists.pending[0]))
1166                 return false;
1167
1168         /* If ELSP[1] is occupied, always check to see if worth slicing */
1169         if (!list_is_last_rcu(&rq->sched.link,
1170                               &engine->sched_engine->requests)) {
1171                 ENGINE_TRACE(engine, "timeslice required for second inflight context\n");
1172                 return true;
1173         }
1174
1175         /* Otherwise, ELSP[0] is by itself, but may be waiting in the queue */
1176         if (!i915_sched_engine_is_empty(engine->sched_engine)) {
1177                 ENGINE_TRACE(engine, "timeslice required for queue\n");
1178                 return true;
1179         }
1180
1181         if (!RB_EMPTY_ROOT(&engine->execlists.virtual.rb_root)) {
1182                 ENGINE_TRACE(engine, "timeslice required for virtual\n");
1183                 return true;
1184         }
1185
1186         return false;
1187 }
1188
1189 static bool
1190 timeslice_expired(struct intel_engine_cs *engine, const struct i915_request *rq)
1191 {
1192         const struct intel_engine_execlists *el = &engine->execlists;
1193
1194         if (i915_request_has_nopreempt(rq) && __i915_request_has_started(rq))
1195                 return false;
1196
1197         if (!needs_timeslice(engine, rq))
1198                 return false;
1199
1200         return timer_expired(&el->timer) || timeslice_yield(el, rq);
1201 }
1202
1203 static unsigned long timeslice(const struct intel_engine_cs *engine)
1204 {
1205         return READ_ONCE(engine->props.timeslice_duration_ms);
1206 }
1207
1208 static void start_timeslice(struct intel_engine_cs *engine)
1209 {
1210         struct intel_engine_execlists *el = &engine->execlists;
1211         unsigned long duration;
1212
1213         /* Disable the timer if there is nothing to switch to */
1214         duration = 0;
1215         if (needs_timeslice(engine, *el->active)) {
1216                 /* Avoid continually prolonging an active timeslice */
1217                 if (timer_active(&el->timer)) {
1218                         /*
1219                          * If we just submitted a new ELSP after an old
1220                          * context, that context may have already consumed
1221                          * its timeslice, so recheck.
1222                          */
1223                         if (!timer_pending(&el->timer))
1224                                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
1225                         return;
1226                 }
1227
1228                 duration = timeslice(engine);
1229         }
1230
1231         set_timer_ms(&el->timer, duration);
1232 }
1233
1234 static void record_preemption(struct intel_engine_execlists *execlists)
1235 {
1236         (void)I915_SELFTEST_ONLY(execlists->preempt_hang.count++);
1237 }
1238
1239 static unsigned long active_preempt_timeout(struct intel_engine_cs *engine,
1240                                             const struct i915_request *rq)
1241 {
1242         if (!rq)
1243                 return 0;
1244
1245         /* Only allow ourselves to force reset the currently active context */
1246         engine->execlists.preempt_target = rq;
1247
1248         /* Force a fast reset for terminated contexts (ignoring sysfs!) */
1249         if (unlikely(intel_context_is_banned(rq->context) || bad_request(rq)))
1250                 return INTEL_CONTEXT_BANNED_PREEMPT_TIMEOUT_MS;
1251
1252         return READ_ONCE(engine->props.preempt_timeout_ms);
1253 }
1254
1255 static void set_preempt_timeout(struct intel_engine_cs *engine,
1256                                 const struct i915_request *rq)
1257 {
1258         if (!intel_engine_has_preempt_reset(engine))
1259                 return;
1260
1261         set_timer_ms(&engine->execlists.preempt,
1262                      active_preempt_timeout(engine, rq));
1263 }
1264
1265 static bool completed(const struct i915_request *rq)
1266 {
1267         if (i915_request_has_sentinel(rq))
1268                 return false;
1269
1270         return __i915_request_is_complete(rq);
1271 }
1272
1273 static void execlists_dequeue(struct intel_engine_cs *engine)
1274 {
1275         struct intel_engine_execlists * const execlists = &engine->execlists;
1276         struct i915_sched_engine * const sched_engine = engine->sched_engine;
1277         struct i915_request **port = execlists->pending;
1278         struct i915_request ** const last_port = port + execlists->port_mask;
1279         struct i915_request *last, * const *active;
1280         struct virtual_engine *ve;
1281         struct rb_node *rb;
1282         bool submit = false;
1283
1284         /*
1285          * Hardware submission is through 2 ports. Conceptually each port
1286          * has a (RING_START, RING_HEAD, RING_TAIL) tuple. RING_START is
1287          * static for a context, and unique to each, so we only execute
1288          * requests belonging to a single context from each ring. RING_HEAD
1289          * is maintained by the CS in the context image, it marks the place
1290          * where it got up to last time, and through RING_TAIL we tell the CS
1291          * where we want to execute up to this time.
1292          *
1293          * In this list the requests are in order of execution. Consecutive
1294          * requests from the same context are adjacent in the ringbuffer. We
1295          * can combine these requests into a single RING_TAIL update:
1296          *
1297          *              RING_HEAD...req1...req2
1298          *                                    ^- RING_TAIL
1299          * since to execute req2 the CS must first execute req1.
1300          *
1301          * Our goal then is to point each port to the end of a consecutive
1302          * sequence of requests as being the most optimal (fewest wake ups
1303          * and context switches) submission.
1304          */
1305
1306         spin_lock(&sched_engine->lock);
1307
1308         /*
1309          * If the queue is higher priority than the last
1310          * request in the currently active context, submit afresh.
1311          * We will resubmit again afterwards in case we need to split
1312          * the active context to interject the preemption request,
1313          * i.e. we will retrigger preemption following the ack in case
1314          * of trouble.
1315          *
1316          */
1317         active = execlists->active;
1318         while ((last = *active) && completed(last))
1319                 active++;
1320
1321         if (last) {
1322                 if (need_preempt(engine, last)) {
1323                         ENGINE_TRACE(engine,
1324                                      "preempting last=%llx:%lld, prio=%d, hint=%d\n",
1325                                      last->fence.context,
1326                                      last->fence.seqno,
1327                                      last->sched.attr.priority,
1328                                      sched_engine->queue_priority_hint);
1329                         record_preemption(execlists);
1330
1331                         /*
1332                          * Don't let the RING_HEAD advance past the breadcrumb
1333                          * as we unwind (and until we resubmit) so that we do
1334                          * not accidentally tell it to go backwards.
1335                          */
1336                         ring_set_paused(engine, 1);
1337
1338                         /*
1339                          * Note that we have not stopped the GPU at this point,
1340                          * so we are unwinding the incomplete requests as they
1341                          * remain inflight and so by the time we do complete
1342                          * the preemption, some of the unwound requests may
1343                          * complete!
1344                          */
1345                         __unwind_incomplete_requests(engine);
1346
1347                         last = NULL;
1348                 } else if (timeslice_expired(engine, last)) {
1349                         ENGINE_TRACE(engine,
1350                                      "expired:%s last=%llx:%lld, prio=%d, hint=%d, yield?=%s\n",
1351                                      str_yes_no(timer_expired(&execlists->timer)),
1352                                      last->fence.context, last->fence.seqno,
1353                                      rq_prio(last),
1354                                      sched_engine->queue_priority_hint,
1355                                      str_yes_no(timeslice_yield(execlists, last)));
1356
1357                         /*
1358                          * Consume this timeslice; ensure we start a new one.
1359                          *
1360                          * The timeslice expired, and we will unwind the
1361                          * running contexts and recompute the next ELSP.
1362                          * If that submit will be the same pair of contexts
1363                          * (due to dependency ordering), we will skip the
1364                          * submission. If we don't cancel the timer now,
1365                          * we will see that the timer has expired and
1366                          * reschedule the tasklet; continually until the
1367                          * next context switch or other preemption event.
1368                          *
1369                          * Since we have decided to reschedule based on
1370                          * consumption of this timeslice, if we submit the
1371                          * same context again, grant it a full timeslice.
1372                          */
1373                         cancel_timer(&execlists->timer);
1374                         ring_set_paused(engine, 1);
1375                         defer_active(engine);
1376
1377                         /*
1378                          * Unlike for preemption, if we rewind and continue
1379                          * executing the same context as previously active,
1380                          * the order of execution will remain the same and
1381                          * the tail will only advance. We do not need to
1382                          * force a full context restore, as a lite-restore
1383                          * is sufficient to resample the monotonic TAIL.
1384                          *
1385                          * If we switch to any other context, similarly we
1386                          * will not rewind TAIL of current context, and
1387                          * normal save/restore will preserve state and allow
1388                          * us to later continue executing the same request.
1389                          */
1390                         last = NULL;
1391                 } else {
1392                         /*
1393                          * Otherwise if we already have a request pending
1394                          * for execution after the current one, we can
1395                          * just wait until the next CS event before
1396                          * queuing more. In either case we will force a
1397                          * lite-restore preemption event, but if we wait
1398                          * we hopefully coalesce several updates into a single
1399                          * submission.
1400                          */
1401                         if (active[1]) {
1402                                 /*
1403                                  * Even if ELSP[1] is occupied and not worthy
1404                                  * of timeslices, our queue might be.
1405                                  */
1406                                 spin_unlock(&sched_engine->lock);
1407                                 return;
1408                         }
1409                 }
1410         }
1411
1412         /* XXX virtual is always taking precedence */
1413         while ((ve = first_virtual_engine(engine))) {
1414                 struct i915_request *rq;
1415
1416                 spin_lock(&ve->base.sched_engine->lock);
1417
1418                 rq = ve->request;
1419                 if (unlikely(!virtual_matches(ve, rq, engine)))
1420                         goto unlock; /* lost the race to a sibling */
1421
1422                 GEM_BUG_ON(rq->engine != &ve->base);
1423                 GEM_BUG_ON(rq->context != &ve->context);
1424
1425                 if (unlikely(rq_prio(rq) < queue_prio(sched_engine))) {
1426                         spin_unlock(&ve->base.sched_engine->lock);
1427                         break;
1428                 }
1429
1430                 if (last && !can_merge_rq(last, rq)) {
1431                         spin_unlock(&ve->base.sched_engine->lock);
1432                         spin_unlock(&engine->sched_engine->lock);
1433                         return; /* leave this for another sibling */
1434                 }
1435
1436                 ENGINE_TRACE(engine,
1437                              "virtual rq=%llx:%lld%s, new engine? %s\n",
1438                              rq->fence.context,
1439                              rq->fence.seqno,
1440                              __i915_request_is_complete(rq) ? "!" :
1441                              __i915_request_has_started(rq) ? "*" :
1442                              "",
1443                              str_yes_no(engine != ve->siblings[0]));
1444
1445                 WRITE_ONCE(ve->request, NULL);
1446                 WRITE_ONCE(ve->base.sched_engine->queue_priority_hint, INT_MIN);
1447
1448                 rb = &ve->nodes[engine->id].rb;
1449                 rb_erase_cached(rb, &execlists->virtual);
1450                 RB_CLEAR_NODE(rb);
1451
1452                 GEM_BUG_ON(!(rq->execution_mask & engine->mask));
1453                 WRITE_ONCE(rq->engine, engine);
1454
1455                 if (__i915_request_submit(rq)) {
1456                         /*
1457                          * Only after we confirm that we will submit
1458                          * this request (i.e. it has not already
1459                          * completed), do we want to update the context.
1460                          *
1461                          * This serves two purposes. It avoids
1462                          * unnecessary work if we are resubmitting an
1463                          * already completed request after timeslicing.
1464                          * But more importantly, it prevents us altering
1465                          * ve->siblings[] on an idle context, where
1466                          * we may be using ve->siblings[] in
1467                          * virtual_context_enter / virtual_context_exit.
1468                          */
1469                         virtual_xfer_context(ve, engine);
1470                         GEM_BUG_ON(ve->siblings[0] != engine);
1471
1472                         submit = true;
1473                         last = rq;
1474                 }
1475
1476                 i915_request_put(rq);
1477 unlock:
1478                 spin_unlock(&ve->base.sched_engine->lock);
1479
1480                 /*
1481                  * Hmm, we have a bunch of virtual engine requests,
1482                  * but the first one was already completed (thanks
1483                  * preempt-to-busy!). Keep looking at the veng queue
1484                  * until we have no more relevant requests (i.e.
1485                  * the normal submit queue has higher priority).
1486                  */
1487                 if (submit)
1488                         break;
1489         }
1490
1491         while ((rb = rb_first_cached(&sched_engine->queue))) {
1492                 struct i915_priolist *p = to_priolist(rb);
1493                 struct i915_request *rq, *rn;
1494
1495                 priolist_for_each_request_consume(rq, rn, p) {
1496                         bool merge = true;
1497
1498                         /*
1499                          * Can we combine this request with the current port?
1500                          * It has to be the same context/ringbuffer and not
1501                          * have any exceptions (e.g. GVT saying never to
1502                          * combine contexts).
1503                          *
1504                          * If we can combine the requests, we can execute both
1505                          * by updating the RING_TAIL to point to the end of the
1506                          * second request, and so we never need to tell the
1507                          * hardware about the first.
1508                          */
1509                         if (last && !can_merge_rq(last, rq)) {
1510                                 /*
1511                                  * If we are on the second port and cannot
1512                                  * combine this request with the last, then we
1513                                  * are done.
1514                                  */
1515                                 if (port == last_port)
1516                                         goto done;
1517
1518                                 /*
1519                                  * We must not populate both ELSP[] with the
1520                                  * same LRCA, i.e. we must submit 2 different
1521                                  * contexts if we submit 2 ELSP.
1522                                  */
1523                                 if (last->context == rq->context)
1524                                         goto done;
1525
1526                                 if (i915_request_has_sentinel(last))
1527                                         goto done;
1528
1529                                 /*
1530                                  * We avoid submitting virtual requests into
1531                                  * the secondary ports so that we can migrate
1532                                  * the request immediately to another engine
1533                                  * rather than wait for the primary request.
1534                                  */
1535                                 if (rq->execution_mask != engine->mask)
1536                                         goto done;
1537
1538                                 /*
1539                                  * If GVT overrides us we only ever submit
1540                                  * port[0], leaving port[1] empty. Note that we
1541                                  * also have to be careful that we don't queue
1542                                  * the same context (even though a different
1543                                  * request) to the second port.
1544                                  */
1545                                 if (ctx_single_port_submission(last->context) ||
1546                                     ctx_single_port_submission(rq->context))
1547                                         goto done;
1548
1549                                 merge = false;
1550                         }
1551
1552                         if (__i915_request_submit(rq)) {
1553                                 if (!merge) {
1554                                         *port++ = i915_request_get(last);
1555                                         last = NULL;
1556                                 }
1557
1558                                 GEM_BUG_ON(last &&
1559                                            !can_merge_ctx(last->context,
1560                                                           rq->context));
1561                                 GEM_BUG_ON(last &&
1562                                            i915_seqno_passed(last->fence.seqno,
1563                                                              rq->fence.seqno));
1564
1565                                 submit = true;
1566                                 last = rq;
1567                         }
1568                 }
1569
1570                 rb_erase_cached(&p->node, &sched_engine->queue);
1571                 i915_priolist_free(p);
1572         }
1573 done:
1574         *port++ = i915_request_get(last);
1575
1576         /*
1577          * Here be a bit of magic! Or sleight-of-hand, whichever you prefer.
1578          *
1579          * We choose the priority hint such that if we add a request of greater
1580          * priority than this, we kick the submission tasklet to decide on
1581          * the right order of submitting the requests to hardware. We must
1582          * also be prepared to reorder requests as they are in-flight on the
1583          * HW. We derive the priority hint then as the first "hole" in
1584          * the HW submission ports and if there are no available slots,
1585          * the priority of the lowest executing request, i.e. last.
1586          *
1587          * When we do receive a higher priority request ready to run from the
1588          * user, see queue_request(), the priority hint is bumped to that
1589          * request triggering preemption on the next dequeue (or subsequent
1590          * interrupt for secondary ports).
1591          */
1592         sched_engine->queue_priority_hint = queue_prio(sched_engine);
1593         i915_sched_engine_reset_on_empty(sched_engine);
1594         spin_unlock(&sched_engine->lock);
1595
1596         /*
1597          * We can skip poking the HW if we ended up with exactly the same set
1598          * of requests as currently running, e.g. trying to timeslice a pair
1599          * of ordered contexts.
1600          */
1601         if (submit &&
1602             memcmp(active,
1603                    execlists->pending,
1604                    (port - execlists->pending) * sizeof(*port))) {
1605                 *port = NULL;
1606                 while (port-- != execlists->pending)
1607                         execlists_schedule_in(*port, port - execlists->pending);
1608
1609                 WRITE_ONCE(execlists->yield, -1);
1610                 set_preempt_timeout(engine, *active);
1611                 execlists_submit_ports(engine);
1612         } else {
1613                 ring_set_paused(engine, 0);
1614                 while (port-- != execlists->pending)
1615                         i915_request_put(*port);
1616                 *execlists->pending = NULL;
1617         }
1618 }
1619
1620 static void execlists_dequeue_irq(struct intel_engine_cs *engine)
1621 {
1622         local_irq_disable(); /* Suspend interrupts across request submission */
1623         execlists_dequeue(engine);
1624         local_irq_enable(); /* flush irq_work (e.g. breadcrumb enabling) */
1625 }
1626
1627 static void clear_ports(struct i915_request **ports, int count)
1628 {
1629         memset_p((void **)ports, NULL, count);
1630 }
1631
1632 static void
1633 copy_ports(struct i915_request **dst, struct i915_request **src, int count)
1634 {
1635         /* A memcpy_p() would be very useful here! */
1636         while (count--)
1637                 WRITE_ONCE(*dst++, *src++); /* avoid write tearing */
1638 }
1639
1640 static struct i915_request **
1641 cancel_port_requests(struct intel_engine_execlists * const execlists,
1642                      struct i915_request **inactive)
1643 {
1644         struct i915_request * const *port;
1645
1646         for (port = execlists->pending; *port; port++)
1647                 *inactive++ = *port;
1648         clear_ports(execlists->pending, ARRAY_SIZE(execlists->pending));
1649
1650         /* Mark the end of active before we overwrite *active */
1651         for (port = xchg(&execlists->active, execlists->pending); *port; port++)
1652                 *inactive++ = *port;
1653         clear_ports(execlists->inflight, ARRAY_SIZE(execlists->inflight));
1654
1655         smp_wmb(); /* complete the seqlock for execlists_active() */
1656         WRITE_ONCE(execlists->active, execlists->inflight);
1657
1658         /* Having cancelled all outstanding process_csb(), stop their timers */
1659         GEM_BUG_ON(execlists->pending[0]);
1660         cancel_timer(&execlists->timer);
1661         cancel_timer(&execlists->preempt);
1662
1663         return inactive;
1664 }
1665
1666 /*
1667  * Starting with Gen12, the status has a new format:
1668  *
1669  *     bit  0:     switched to new queue
1670  *     bit  1:     reserved
1671  *     bit  2:     semaphore wait mode (poll or signal), only valid when
1672  *                 switch detail is set to "wait on semaphore"
1673  *     bits 3-5:   engine class
1674  *     bits 6-11:  engine instance
1675  *     bits 12-14: reserved
1676  *     bits 15-25: sw context id of the lrc the GT switched to
1677  *     bits 26-31: sw counter of the lrc the GT switched to
1678  *     bits 32-35: context switch detail
1679  *                  - 0: ctx complete
1680  *                  - 1: wait on sync flip
1681  *                  - 2: wait on vblank
1682  *                  - 3: wait on scanline
1683  *                  - 4: wait on semaphore
1684  *                  - 5: context preempted (not on SEMAPHORE_WAIT or
1685  *                       WAIT_FOR_EVENT)
1686  *     bit  36:    reserved
1687  *     bits 37-43: wait detail (for switch detail 1 to 4)
1688  *     bits 44-46: reserved
1689  *     bits 47-57: sw context id of the lrc the GT switched away from
1690  *     bits 58-63: sw counter of the lrc the GT switched away from
1691  *
1692  * Xe_HP csb shuffles things around compared to TGL:
1693  *
1694  *     bits 0-3:   context switch detail (same possible values as TGL)
1695  *     bits 4-9:   engine instance
1696  *     bits 10-25: sw context id of the lrc the GT switched to
1697  *     bits 26-31: sw counter of the lrc the GT switched to
1698  *     bit  32:    semaphore wait mode (poll or signal), Only valid when
1699  *                 switch detail is set to "wait on semaphore"
1700  *     bit  33:    switched to new queue
1701  *     bits 34-41: wait detail (for switch detail 1 to 4)
1702  *     bits 42-57: sw context id of the lrc the GT switched away from
1703  *     bits 58-63: sw counter of the lrc the GT switched away from
1704  */
1705 static inline bool
1706 __gen12_csb_parse(bool ctx_to_valid, bool ctx_away_valid, bool new_queue,
1707                   u8 switch_detail)
1708 {
1709         /*
1710          * The context switch detail is not guaranteed to be 5 when a preemption
1711          * occurs, so we can't just check for that. The check below works for
1712          * all the cases we care about, including preemptions of WAIT
1713          * instructions and lite-restore. Preempt-to-idle via the CTRL register
1714          * would require some extra handling, but we don't support that.
1715          */
1716         if (!ctx_away_valid || new_queue) {
1717                 GEM_BUG_ON(!ctx_to_valid);
1718                 return true;
1719         }
1720
1721         /*
1722          * switch detail = 5 is covered by the case above and we do not expect a
1723          * context switch on an unsuccessful wait instruction since we always
1724          * use polling mode.
1725          */
1726         GEM_BUG_ON(switch_detail);
1727         return false;
1728 }
1729
1730 static bool xehp_csb_parse(const u64 csb)
1731 {
1732         return __gen12_csb_parse(XEHP_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1733                                  XEHP_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1734                                  upper_32_bits(csb) & XEHP_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1735                                  GEN12_CTX_SWITCH_DETAIL(lower_32_bits(csb)));
1736 }
1737
1738 static bool gen12_csb_parse(const u64 csb)
1739 {
1740         return __gen12_csb_parse(GEN12_CSB_CTX_VALID(lower_32_bits(csb)), /* cxt to */
1741                                  GEN12_CSB_CTX_VALID(upper_32_bits(csb)), /* cxt away */
1742                                  lower_32_bits(csb) & GEN12_CTX_STATUS_SWITCHED_TO_NEW_QUEUE,
1743                                  GEN12_CTX_SWITCH_DETAIL(upper_32_bits(csb)));
1744 }
1745
1746 static bool gen8_csb_parse(const u64 csb)
1747 {
1748         return csb & (GEN8_CTX_STATUS_IDLE_ACTIVE | GEN8_CTX_STATUS_PREEMPTED);
1749 }
1750
1751 static noinline u64
1752 wa_csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1753 {
1754         u64 entry;
1755
1756         /*
1757          * Reading from the HWSP has one particular advantage: we can detect
1758          * a stale entry. Since the write into HWSP is broken, we have no reason
1759          * to trust the HW at all, the mmio entry may equally be unordered, so
1760          * we prefer the path that is self-checking and as a last resort,
1761          * return the mmio value.
1762          *
1763          * tgl,dg1:HSDES#22011327657
1764          */
1765         preempt_disable();
1766         if (wait_for_atomic_us((entry = READ_ONCE(*csb)) != -1, 10)) {
1767                 int idx = csb - engine->execlists.csb_status;
1768                 int status;
1769
1770                 status = GEN8_EXECLISTS_STATUS_BUF;
1771                 if (idx >= 6) {
1772                         status = GEN11_EXECLISTS_STATUS_BUF2;
1773                         idx -= 6;
1774                 }
1775                 status += sizeof(u64) * idx;
1776
1777                 entry = intel_uncore_read64(engine->uncore,
1778                                             _MMIO(engine->mmio_base + status));
1779         }
1780         preempt_enable();
1781
1782         return entry;
1783 }
1784
1785 static u64 csb_read(const struct intel_engine_cs *engine, u64 * const csb)
1786 {
1787         u64 entry = READ_ONCE(*csb);
1788
1789         /*
1790          * Unfortunately, the GPU does not always serialise its write
1791          * of the CSB entries before its write of the CSB pointer, at least
1792          * from the perspective of the CPU, using what is known as a Global
1793          * Observation Point. We may read a new CSB tail pointer, but then
1794          * read the stale CSB entries, causing us to misinterpret the
1795          * context-switch events, and eventually declare the GPU hung.
1796          *
1797          * icl:HSDES#1806554093
1798          * tgl:HSDES#22011248461
1799          */
1800         if (unlikely(entry == -1))
1801                 entry = wa_csb_read(engine, csb);
1802
1803         /* Consume this entry so that we can spot its future reuse. */
1804         WRITE_ONCE(*csb, -1);
1805
1806         /* ELSP is an implicit wmb() before the GPU wraps and overwrites csb */
1807         return entry;
1808 }
1809
1810 static void new_timeslice(struct intel_engine_execlists *el)
1811 {
1812         /* By cancelling, we will start afresh in start_timeslice() */
1813         cancel_timer(&el->timer);
1814 }
1815
1816 static struct i915_request **
1817 process_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
1818 {
1819         struct intel_engine_execlists * const execlists = &engine->execlists;
1820         u64 * const buf = execlists->csb_status;
1821         const u8 num_entries = execlists->csb_size;
1822         struct i915_request **prev;
1823         u8 head, tail;
1824
1825         /*
1826          * As we modify our execlists state tracking we require exclusive
1827          * access. Either we are inside the tasklet, or the tasklet is disabled
1828          * and we assume that is only inside the reset paths and so serialised.
1829          */
1830         GEM_BUG_ON(!tasklet_is_locked(&engine->sched_engine->tasklet) &&
1831                    !reset_in_progress(engine));
1832
1833         /*
1834          * Note that csb_write, csb_status may be either in HWSP or mmio.
1835          * When reading from the csb_write mmio register, we have to be
1836          * careful to only use the GEN8_CSB_WRITE_PTR portion, which is
1837          * the low 4bits. As it happens we know the next 4bits are always
1838          * zero and so we can simply masked off the low u8 of the register
1839          * and treat it identically to reading from the HWSP (without having
1840          * to use explicit shifting and masking, and probably bifurcating
1841          * the code to handle the legacy mmio read).
1842          */
1843         head = execlists->csb_head;
1844         tail = READ_ONCE(*execlists->csb_write);
1845         if (unlikely(head == tail))
1846                 return inactive;
1847
1848         /*
1849          * We will consume all events from HW, or at least pretend to.
1850          *
1851          * The sequence of events from the HW is deterministic, and derived
1852          * from our writes to the ELSP, with a smidgen of variability for
1853          * the arrival of the asynchronous requests wrt to the inflight
1854          * execution. If the HW sends an event that does not correspond with
1855          * the one we are expecting, we have to abandon all hope as we lose
1856          * all tracking of what the engine is actually executing. We will
1857          * only detect we are out of sequence with the HW when we get an
1858          * 'impossible' event because we have already drained our own
1859          * preemption/promotion queue. If this occurs, we know that we likely
1860          * lost track of execution earlier and must unwind and restart, the
1861          * simplest way is by stop processing the event queue and force the
1862          * engine to reset.
1863          */
1864         execlists->csb_head = tail;
1865         ENGINE_TRACE(engine, "cs-irq head=%d, tail=%d\n", head, tail);
1866
1867         /*
1868          * Hopefully paired with a wmb() in HW!
1869          *
1870          * We must complete the read of the write pointer before any reads
1871          * from the CSB, so that we do not see stale values. Without an rmb
1872          * (lfence) the HW may speculatively perform the CSB[] reads *before*
1873          * we perform the READ_ONCE(*csb_write).
1874          */
1875         rmb();
1876
1877         /* Remember who was last running under the timer */
1878         prev = inactive;
1879         *prev = NULL;
1880
1881         do {
1882                 bool promote;
1883                 u64 csb;
1884
1885                 if (++head == num_entries)
1886                         head = 0;
1887
1888                 /*
1889                  * We are flying near dragons again.
1890                  *
1891                  * We hold a reference to the request in execlist_port[]
1892                  * but no more than that. We are operating in softirq
1893                  * context and so cannot hold any mutex or sleep. That
1894                  * prevents us stopping the requests we are processing
1895                  * in port[] from being retired simultaneously (the
1896                  * breadcrumb will be complete before we see the
1897                  * context-switch). As we only hold the reference to the
1898                  * request, any pointer chasing underneath the request
1899                  * is subject to a potential use-after-free. Thus we
1900                  * store all of the bookkeeping within port[] as
1901                  * required, and avoid using unguarded pointers beneath
1902                  * request itself. The same applies to the atomic
1903                  * status notifier.
1904                  */
1905
1906                 csb = csb_read(engine, buf + head);
1907                 ENGINE_TRACE(engine, "csb[%d]: status=0x%08x:0x%08x\n",
1908                              head, upper_32_bits(csb), lower_32_bits(csb));
1909
1910                 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
1911                         promote = xehp_csb_parse(csb);
1912                 else if (GRAPHICS_VER(engine->i915) >= 12)
1913                         promote = gen12_csb_parse(csb);
1914                 else
1915                         promote = gen8_csb_parse(csb);
1916                 if (promote) {
1917                         struct i915_request * const *old = execlists->active;
1918
1919                         if (GEM_WARN_ON(!*execlists->pending)) {
1920                                 execlists->error_interrupt |= ERROR_CSB;
1921                                 break;
1922                         }
1923
1924                         ring_set_paused(engine, 0);
1925
1926                         /* Point active to the new ELSP; prevent overwriting */
1927                         WRITE_ONCE(execlists->active, execlists->pending);
1928                         smp_wmb(); /* notify execlists_active() */
1929
1930                         /* cancel old inflight, prepare for switch */
1931                         trace_ports(execlists, "preempted", old);
1932                         while (*old)
1933                                 *inactive++ = *old++;
1934
1935                         /* switch pending to inflight */
1936                         GEM_BUG_ON(!assert_pending_valid(execlists, "promote"));
1937                         copy_ports(execlists->inflight,
1938                                    execlists->pending,
1939                                    execlists_num_ports(execlists));
1940                         smp_wmb(); /* complete the seqlock */
1941                         WRITE_ONCE(execlists->active, execlists->inflight);
1942
1943                         /* XXX Magic delay for tgl */
1944                         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
1945
1946                         WRITE_ONCE(execlists->pending[0], NULL);
1947                 } else {
1948                         if (GEM_WARN_ON(!*execlists->active)) {
1949                                 execlists->error_interrupt |= ERROR_CSB;
1950                                 break;
1951                         }
1952
1953                         /* port0 completed, advanced to port1 */
1954                         trace_ports(execlists, "completed", execlists->active);
1955
1956                         /*
1957                          * We rely on the hardware being strongly
1958                          * ordered, that the breadcrumb write is
1959                          * coherent (visible from the CPU) before the
1960                          * user interrupt is processed. One might assume
1961                          * that the breadcrumb write being before the
1962                          * user interrupt and the CS event for the context
1963                          * switch would therefore be before the CS event
1964                          * itself...
1965                          */
1966                         if (GEM_SHOW_DEBUG() &&
1967                             !__i915_request_is_complete(*execlists->active)) {
1968                                 struct i915_request *rq = *execlists->active;
1969                                 const u32 *regs __maybe_unused =
1970                                         rq->context->lrc_reg_state;
1971
1972                                 ENGINE_TRACE(engine,
1973                                              "context completed before request!\n");
1974                                 ENGINE_TRACE(engine,
1975                                              "ring:{start:0x%08x, head:%04x, tail:%04x, ctl:%08x, mode:%08x}\n",
1976                                              ENGINE_READ(engine, RING_START),
1977                                              ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR,
1978                                              ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR,
1979                                              ENGINE_READ(engine, RING_CTL),
1980                                              ENGINE_READ(engine, RING_MI_MODE));
1981                                 ENGINE_TRACE(engine,
1982                                              "rq:{start:%08x, head:%04x, tail:%04x, seqno:%llx:%d, hwsp:%d}, ",
1983                                              i915_ggtt_offset(rq->ring->vma),
1984                                              rq->head, rq->tail,
1985                                              rq->fence.context,
1986                                              lower_32_bits(rq->fence.seqno),
1987                                              hwsp_seqno(rq));
1988                                 ENGINE_TRACE(engine,
1989                                              "ctx:{start:%08x, head:%04x, tail:%04x}, ",
1990                                              regs[CTX_RING_START],
1991                                              regs[CTX_RING_HEAD],
1992                                              regs[CTX_RING_TAIL]);
1993                         }
1994
1995                         *inactive++ = *execlists->active++;
1996
1997                         GEM_BUG_ON(execlists->active - execlists->inflight >
1998                                    execlists_num_ports(execlists));
1999                 }
2000         } while (head != tail);
2001
2002         /*
2003          * Gen11 has proven to fail wrt global observation point between
2004          * entry and tail update, failing on the ordering and thus
2005          * we see an old entry in the context status buffer.
2006          *
2007          * Forcibly evict out entries for the next gpu csb update,
2008          * to increase the odds that we get a fresh entries with non
2009          * working hardware. The cost for doing so comes out mostly with
2010          * the wash as hardware, working or not, will need to do the
2011          * invalidation before.
2012          */
2013         drm_clflush_virt_range(&buf[0], num_entries * sizeof(buf[0]));
2014
2015         /*
2016          * We assume that any event reflects a change in context flow
2017          * and merits a fresh timeslice. We reinstall the timer after
2018          * inspecting the queue to see if we need to resumbit.
2019          */
2020         if (*prev != *execlists->active) { /* elide lite-restores */
2021                 struct intel_context *prev_ce = NULL, *active_ce = NULL;
2022
2023                 /*
2024                  * Note the inherent discrepancy between the HW runtime,
2025                  * recorded as part of the context switch, and the CPU
2026                  * adjustment for active contexts. We have to hope that
2027                  * the delay in processing the CS event is very small
2028                  * and consistent. It works to our advantage to have
2029                  * the CPU adjustment _undershoot_ (i.e. start later than)
2030                  * the CS timestamp so we never overreport the runtime
2031                  * and correct overselves later when updating from HW.
2032                  */
2033                 if (*prev)
2034                         prev_ce = (*prev)->context;
2035                 if (*execlists->active)
2036                         active_ce = (*execlists->active)->context;
2037                 if (prev_ce != active_ce) {
2038                         if (prev_ce)
2039                                 lrc_runtime_stop(prev_ce);
2040                         if (active_ce)
2041                                 lrc_runtime_start(active_ce);
2042                 }
2043                 new_timeslice(execlists);
2044         }
2045
2046         return inactive;
2047 }
2048
2049 static void post_process_csb(struct i915_request **port,
2050                              struct i915_request **last)
2051 {
2052         while (port != last)
2053                 execlists_schedule_out(*port++);
2054 }
2055
2056 static void __execlists_hold(struct i915_request *rq)
2057 {
2058         LIST_HEAD(list);
2059
2060         do {
2061                 struct i915_dependency *p;
2062
2063                 if (i915_request_is_active(rq))
2064                         __i915_request_unsubmit(rq);
2065
2066                 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2067                 list_move_tail(&rq->sched.link,
2068                                &rq->engine->sched_engine->hold);
2069                 i915_request_set_hold(rq);
2070                 RQ_TRACE(rq, "on hold\n");
2071
2072                 for_each_waiter(p, rq) {
2073                         struct i915_request *w =
2074                                 container_of(p->waiter, typeof(*w), sched);
2075
2076                         if (p->flags & I915_DEPENDENCY_WEAK)
2077                                 continue;
2078
2079                         /* Leave semaphores spinning on the other engines */
2080                         if (w->engine != rq->engine)
2081                                 continue;
2082
2083                         if (!i915_request_is_ready(w))
2084                                 continue;
2085
2086                         if (__i915_request_is_complete(w))
2087                                 continue;
2088
2089                         if (i915_request_on_hold(w))
2090                                 continue;
2091
2092                         list_move_tail(&w->sched.link, &list);
2093                 }
2094
2095                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2096         } while (rq);
2097 }
2098
2099 static bool execlists_hold(struct intel_engine_cs *engine,
2100                            struct i915_request *rq)
2101 {
2102         if (i915_request_on_hold(rq))
2103                 return false;
2104
2105         spin_lock_irq(&engine->sched_engine->lock);
2106
2107         if (__i915_request_is_complete(rq)) { /* too late! */
2108                 rq = NULL;
2109                 goto unlock;
2110         }
2111
2112         /*
2113          * Transfer this request onto the hold queue to prevent it
2114          * being resumbitted to HW (and potentially completed) before we have
2115          * released it. Since we may have already submitted following
2116          * requests, we need to remove those as well.
2117          */
2118         GEM_BUG_ON(i915_request_on_hold(rq));
2119         GEM_BUG_ON(rq->engine != engine);
2120         __execlists_hold(rq);
2121         GEM_BUG_ON(list_empty(&engine->sched_engine->hold));
2122
2123 unlock:
2124         spin_unlock_irq(&engine->sched_engine->lock);
2125         return rq;
2126 }
2127
2128 static bool hold_request(const struct i915_request *rq)
2129 {
2130         struct i915_dependency *p;
2131         bool result = false;
2132
2133         /*
2134          * If one of our ancestors is on hold, we must also be on hold,
2135          * otherwise we will bypass it and execute before it.
2136          */
2137         rcu_read_lock();
2138         for_each_signaler(p, rq) {
2139                 const struct i915_request *s =
2140                         container_of(p->signaler, typeof(*s), sched);
2141
2142                 if (s->engine != rq->engine)
2143                         continue;
2144
2145                 result = i915_request_on_hold(s);
2146                 if (result)
2147                         break;
2148         }
2149         rcu_read_unlock();
2150
2151         return result;
2152 }
2153
2154 static void __execlists_unhold(struct i915_request *rq)
2155 {
2156         LIST_HEAD(list);
2157
2158         do {
2159                 struct i915_dependency *p;
2160
2161                 RQ_TRACE(rq, "hold release\n");
2162
2163                 GEM_BUG_ON(!i915_request_on_hold(rq));
2164                 GEM_BUG_ON(!i915_sw_fence_signaled(&rq->submit));
2165
2166                 i915_request_clear_hold(rq);
2167                 list_move_tail(&rq->sched.link,
2168                                i915_sched_lookup_priolist(rq->engine->sched_engine,
2169                                                           rq_prio(rq)));
2170                 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2171
2172                 /* Also release any children on this engine that are ready */
2173                 for_each_waiter(p, rq) {
2174                         struct i915_request *w =
2175                                 container_of(p->waiter, typeof(*w), sched);
2176
2177                         if (p->flags & I915_DEPENDENCY_WEAK)
2178                                 continue;
2179
2180                         if (w->engine != rq->engine)
2181                                 continue;
2182
2183                         if (!i915_request_on_hold(w))
2184                                 continue;
2185
2186                         /* Check that no other parents are also on hold */
2187                         if (hold_request(w))
2188                                 continue;
2189
2190                         list_move_tail(&w->sched.link, &list);
2191                 }
2192
2193                 rq = list_first_entry_or_null(&list, typeof(*rq), sched.link);
2194         } while (rq);
2195 }
2196
2197 static void execlists_unhold(struct intel_engine_cs *engine,
2198                              struct i915_request *rq)
2199 {
2200         spin_lock_irq(&engine->sched_engine->lock);
2201
2202         /*
2203          * Move this request back to the priority queue, and all of its
2204          * children and grandchildren that were suspended along with it.
2205          */
2206         __execlists_unhold(rq);
2207
2208         if (rq_prio(rq) > engine->sched_engine->queue_priority_hint) {
2209                 engine->sched_engine->queue_priority_hint = rq_prio(rq);
2210                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2211         }
2212
2213         spin_unlock_irq(&engine->sched_engine->lock);
2214 }
2215
2216 struct execlists_capture {
2217         struct work_struct work;
2218         struct i915_request *rq;
2219         struct i915_gpu_coredump *error;
2220 };
2221
2222 static void execlists_capture_work(struct work_struct *work)
2223 {
2224         struct execlists_capture *cap = container_of(work, typeof(*cap), work);
2225         const gfp_t gfp = __GFP_KSWAPD_RECLAIM | __GFP_RETRY_MAYFAIL |
2226                 __GFP_NOWARN;
2227         struct intel_engine_cs *engine = cap->rq->engine;
2228         struct intel_gt_coredump *gt = cap->error->gt;
2229         struct intel_engine_capture_vma *vma;
2230
2231         /* Compress all the objects attached to the request, slow! */
2232         vma = intel_engine_coredump_add_request(gt->engine, cap->rq, gfp);
2233         if (vma) {
2234                 struct i915_vma_compress *compress =
2235                         i915_vma_capture_prepare(gt);
2236
2237                 intel_engine_coredump_add_vma(gt->engine, vma, compress);
2238                 i915_vma_capture_finish(gt, compress);
2239         }
2240
2241         gt->simulated = gt->engine->simulated;
2242         cap->error->simulated = gt->simulated;
2243
2244         /* Publish the error state, and announce it to the world */
2245         i915_error_state_store(cap->error);
2246         i915_gpu_coredump_put(cap->error);
2247
2248         /* Return this request and all that depend upon it for signaling */
2249         execlists_unhold(engine, cap->rq);
2250         i915_request_put(cap->rq);
2251
2252         kfree(cap);
2253 }
2254
2255 static struct execlists_capture *capture_regs(struct intel_engine_cs *engine)
2256 {
2257         const gfp_t gfp = GFP_ATOMIC | __GFP_NOWARN;
2258         struct execlists_capture *cap;
2259
2260         cap = kmalloc(sizeof(*cap), gfp);
2261         if (!cap)
2262                 return NULL;
2263
2264         cap->error = i915_gpu_coredump_alloc(engine->i915, gfp);
2265         if (!cap->error)
2266                 goto err_cap;
2267
2268         cap->error->gt = intel_gt_coredump_alloc(engine->gt, gfp, CORE_DUMP_FLAG_NONE);
2269         if (!cap->error->gt)
2270                 goto err_gpu;
2271
2272         cap->error->gt->engine = intel_engine_coredump_alloc(engine, gfp, CORE_DUMP_FLAG_NONE);
2273         if (!cap->error->gt->engine)
2274                 goto err_gt;
2275
2276         cap->error->gt->engine->hung = true;
2277
2278         return cap;
2279
2280 err_gt:
2281         kfree(cap->error->gt);
2282 err_gpu:
2283         kfree(cap->error);
2284 err_cap:
2285         kfree(cap);
2286         return NULL;
2287 }
2288
2289 static struct i915_request *
2290 active_context(struct intel_engine_cs *engine, u32 ccid)
2291 {
2292         const struct intel_engine_execlists * const el = &engine->execlists;
2293         struct i915_request * const *port, *rq;
2294
2295         /*
2296          * Use the most recent result from process_csb(), but just in case
2297          * we trigger an error (via interrupt) before the first CS event has
2298          * been written, peek at the next submission.
2299          */
2300
2301         for (port = el->active; (rq = *port); port++) {
2302                 if (rq->context->lrc.ccid == ccid) {
2303                         ENGINE_TRACE(engine,
2304                                      "ccid:%x found at active:%zd\n",
2305                                      ccid, port - el->active);
2306                         return rq;
2307                 }
2308         }
2309
2310         for (port = el->pending; (rq = *port); port++) {
2311                 if (rq->context->lrc.ccid == ccid) {
2312                         ENGINE_TRACE(engine,
2313                                      "ccid:%x found at pending:%zd\n",
2314                                      ccid, port - el->pending);
2315                         return rq;
2316                 }
2317         }
2318
2319         ENGINE_TRACE(engine, "ccid:%x not found\n", ccid);
2320         return NULL;
2321 }
2322
2323 static u32 active_ccid(struct intel_engine_cs *engine)
2324 {
2325         return ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI);
2326 }
2327
2328 static void execlists_capture(struct intel_engine_cs *engine)
2329 {
2330         struct drm_i915_private *i915 = engine->i915;
2331         struct execlists_capture *cap;
2332
2333         if (!IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR))
2334                 return;
2335
2336         /*
2337          * We need to _quickly_ capture the engine state before we reset.
2338          * We are inside an atomic section (softirq) here and we are delaying
2339          * the forced preemption event.
2340          */
2341         cap = capture_regs(engine);
2342         if (!cap)
2343                 return;
2344
2345         spin_lock_irq(&engine->sched_engine->lock);
2346         cap->rq = active_context(engine, active_ccid(engine));
2347         if (cap->rq) {
2348                 cap->rq = active_request(cap->rq->context->timeline, cap->rq);
2349                 cap->rq = i915_request_get_rcu(cap->rq);
2350         }
2351         spin_unlock_irq(&engine->sched_engine->lock);
2352         if (!cap->rq)
2353                 goto err_free;
2354
2355         /*
2356          * Remove the request from the execlists queue, and take ownership
2357          * of the request. We pass it to our worker who will _slowly_ compress
2358          * all the pages the _user_ requested for debugging their batch, after
2359          * which we return it to the queue for signaling.
2360          *
2361          * By removing them from the execlists queue, we also remove the
2362          * requests from being processed by __unwind_incomplete_requests()
2363          * during the intel_engine_reset(), and so they will *not* be replayed
2364          * afterwards.
2365          *
2366          * Note that because we have not yet reset the engine at this point,
2367          * it is possible for the request that we have identified as being
2368          * guilty, did in fact complete and we will then hit an arbitration
2369          * point allowing the outstanding preemption to succeed. The likelihood
2370          * of that is very low (as capturing of the engine registers should be
2371          * fast enough to run inside an irq-off atomic section!), so we will
2372          * simply hold that request accountable for being non-preemptible
2373          * long enough to force the reset.
2374          */
2375         if (!execlists_hold(engine, cap->rq))
2376                 goto err_rq;
2377
2378         INIT_WORK(&cap->work, execlists_capture_work);
2379         queue_work(i915->unordered_wq, &cap->work);
2380         return;
2381
2382 err_rq:
2383         i915_request_put(cap->rq);
2384 err_free:
2385         i915_gpu_coredump_put(cap->error);
2386         kfree(cap);
2387 }
2388
2389 static void execlists_reset(struct intel_engine_cs *engine, const char *msg)
2390 {
2391         const unsigned int bit = I915_RESET_ENGINE + engine->id;
2392         unsigned long *lock = &engine->gt->reset.flags;
2393
2394         if (!intel_has_reset_engine(engine->gt))
2395                 return;
2396
2397         if (test_and_set_bit(bit, lock))
2398                 return;
2399
2400         ENGINE_TRACE(engine, "reset for %s\n", msg);
2401
2402         /* Mark this tasklet as disabled to avoid waiting for it to complete */
2403         tasklet_disable_nosync(&engine->sched_engine->tasklet);
2404
2405         ring_set_paused(engine, 1); /* Freeze the current request in place */
2406         execlists_capture(engine);
2407         intel_engine_reset(engine, msg);
2408
2409         tasklet_enable(&engine->sched_engine->tasklet);
2410         clear_and_wake_up_bit(bit, lock);
2411 }
2412
2413 static bool preempt_timeout(const struct intel_engine_cs *const engine)
2414 {
2415         const struct timer_list *t = &engine->execlists.preempt;
2416
2417         if (!CONFIG_DRM_I915_PREEMPT_TIMEOUT)
2418                 return false;
2419
2420         if (!timer_expired(t))
2421                 return false;
2422
2423         return engine->execlists.pending[0];
2424 }
2425
2426 /*
2427  * Check the unread Context Status Buffers and manage the submission of new
2428  * contexts to the ELSP accordingly.
2429  */
2430 static void execlists_submission_tasklet(struct tasklet_struct *t)
2431 {
2432         struct i915_sched_engine *sched_engine =
2433                 from_tasklet(sched_engine, t, tasklet);
2434         struct intel_engine_cs * const engine = sched_engine->private_data;
2435         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
2436         struct i915_request **inactive;
2437
2438         rcu_read_lock();
2439         inactive = process_csb(engine, post);
2440         GEM_BUG_ON(inactive - post > ARRAY_SIZE(post));
2441
2442         if (unlikely(preempt_timeout(engine))) {
2443                 const struct i915_request *rq = *engine->execlists.active;
2444
2445                 /*
2446                  * If after the preempt-timeout expired, we are still on the
2447                  * same active request/context as before we initiated the
2448                  * preemption, reset the engine.
2449                  *
2450                  * However, if we have processed a CS event to switch contexts,
2451                  * but not yet processed the CS event for the pending
2452                  * preemption, reset the timer allowing the new context to
2453                  * gracefully exit.
2454                  */
2455                 cancel_timer(&engine->execlists.preempt);
2456                 if (rq == engine->execlists.preempt_target)
2457                         engine->execlists.error_interrupt |= ERROR_PREEMPT;
2458                 else
2459                         set_timer_ms(&engine->execlists.preempt,
2460                                      active_preempt_timeout(engine, rq));
2461         }
2462
2463         if (unlikely(READ_ONCE(engine->execlists.error_interrupt))) {
2464                 const char *msg;
2465
2466                 /* Generate the error message in priority wrt to the user! */
2467                 if (engine->execlists.error_interrupt & GENMASK(15, 0))
2468                         msg = "CS error"; /* thrown by a user payload */
2469                 else if (engine->execlists.error_interrupt & ERROR_CSB)
2470                         msg = "invalid CSB event";
2471                 else if (engine->execlists.error_interrupt & ERROR_PREEMPT)
2472                         msg = "preemption time out";
2473                 else
2474                         msg = "internal error";
2475
2476                 engine->execlists.error_interrupt = 0;
2477                 execlists_reset(engine, msg);
2478         }
2479
2480         if (!engine->execlists.pending[0]) {
2481                 execlists_dequeue_irq(engine);
2482                 start_timeslice(engine);
2483         }
2484
2485         post_process_csb(post, inactive);
2486         rcu_read_unlock();
2487 }
2488
2489 static void execlists_irq_handler(struct intel_engine_cs *engine, u16 iir)
2490 {
2491         bool tasklet = false;
2492
2493         if (unlikely(iir & GT_CS_MASTER_ERROR_INTERRUPT)) {
2494                 u32 eir;
2495
2496                 /* Upper 16b are the enabling mask, rsvd for internal errors */
2497                 eir = ENGINE_READ(engine, RING_EIR) & GENMASK(15, 0);
2498                 ENGINE_TRACE(engine, "CS error: %x\n", eir);
2499
2500                 /* Disable the error interrupt until after the reset */
2501                 if (likely(eir)) {
2502                         ENGINE_WRITE(engine, RING_EMR, ~0u);
2503                         ENGINE_WRITE(engine, RING_EIR, eir);
2504                         WRITE_ONCE(engine->execlists.error_interrupt, eir);
2505                         tasklet = true;
2506                 }
2507         }
2508
2509         if (iir & GT_WAIT_SEMAPHORE_INTERRUPT) {
2510                 WRITE_ONCE(engine->execlists.yield,
2511                            ENGINE_READ_FW(engine, RING_EXECLIST_STATUS_HI));
2512                 ENGINE_TRACE(engine, "semaphore yield: %08x\n",
2513                              engine->execlists.yield);
2514                 if (del_timer(&engine->execlists.timer))
2515                         tasklet = true;
2516         }
2517
2518         if (iir & GT_CONTEXT_SWITCH_INTERRUPT)
2519                 tasklet = true;
2520
2521         if (iir & GT_RENDER_USER_INTERRUPT)
2522                 intel_engine_signal_breadcrumbs(engine);
2523
2524         if (tasklet)
2525                 tasklet_hi_schedule(&engine->sched_engine->tasklet);
2526 }
2527
2528 static void __execlists_kick(struct intel_engine_execlists *execlists)
2529 {
2530         struct intel_engine_cs *engine =
2531                 container_of(execlists, typeof(*engine), execlists);
2532
2533         /* Kick the tasklet for some interrupt coalescing and reset handling */
2534         tasklet_hi_schedule(&engine->sched_engine->tasklet);
2535 }
2536
2537 #define execlists_kick(t, member) \
2538         __execlists_kick(container_of(t, struct intel_engine_execlists, member))
2539
2540 static void execlists_timeslice(struct timer_list *timer)
2541 {
2542         execlists_kick(timer, timer);
2543 }
2544
2545 static void execlists_preempt(struct timer_list *timer)
2546 {
2547         execlists_kick(timer, preempt);
2548 }
2549
2550 static void queue_request(struct intel_engine_cs *engine,
2551                           struct i915_request *rq)
2552 {
2553         GEM_BUG_ON(!list_empty(&rq->sched.link));
2554         list_add_tail(&rq->sched.link,
2555                       i915_sched_lookup_priolist(engine->sched_engine,
2556                                                  rq_prio(rq)));
2557         set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2558 }
2559
2560 static bool submit_queue(struct intel_engine_cs *engine,
2561                          const struct i915_request *rq)
2562 {
2563         struct i915_sched_engine *sched_engine = engine->sched_engine;
2564
2565         if (rq_prio(rq) <= sched_engine->queue_priority_hint)
2566                 return false;
2567
2568         sched_engine->queue_priority_hint = rq_prio(rq);
2569         return true;
2570 }
2571
2572 static bool ancestor_on_hold(const struct intel_engine_cs *engine,
2573                              const struct i915_request *rq)
2574 {
2575         GEM_BUG_ON(i915_request_on_hold(rq));
2576         return !list_empty(&engine->sched_engine->hold) && hold_request(rq);
2577 }
2578
2579 static void execlists_submit_request(struct i915_request *request)
2580 {
2581         struct intel_engine_cs *engine = request->engine;
2582         unsigned long flags;
2583
2584         /* Will be called from irq-context when using foreign fences. */
2585         spin_lock_irqsave(&engine->sched_engine->lock, flags);
2586
2587         if (unlikely(ancestor_on_hold(engine, request))) {
2588                 RQ_TRACE(request, "ancestor on hold\n");
2589                 list_add_tail(&request->sched.link,
2590                               &engine->sched_engine->hold);
2591                 i915_request_set_hold(request);
2592         } else {
2593                 queue_request(engine, request);
2594
2595                 GEM_BUG_ON(i915_sched_engine_is_empty(engine->sched_engine));
2596                 GEM_BUG_ON(list_empty(&request->sched.link));
2597
2598                 if (submit_queue(engine, request))
2599                         __execlists_kick(&engine->execlists);
2600         }
2601
2602         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
2603 }
2604
2605 static int
2606 __execlists_context_pre_pin(struct intel_context *ce,
2607                             struct intel_engine_cs *engine,
2608                             struct i915_gem_ww_ctx *ww, void **vaddr)
2609 {
2610         int err;
2611
2612         err = lrc_pre_pin(ce, engine, ww, vaddr);
2613         if (err)
2614                 return err;
2615
2616         if (!__test_and_set_bit(CONTEXT_INIT_BIT, &ce->flags)) {
2617                 lrc_init_state(ce, engine, *vaddr);
2618
2619                 __i915_gem_object_flush_map(ce->state->obj, 0, engine->context_size);
2620         }
2621
2622         return 0;
2623 }
2624
2625 static int execlists_context_pre_pin(struct intel_context *ce,
2626                                      struct i915_gem_ww_ctx *ww,
2627                                      void **vaddr)
2628 {
2629         return __execlists_context_pre_pin(ce, ce->engine, ww, vaddr);
2630 }
2631
2632 static int execlists_context_pin(struct intel_context *ce, void *vaddr)
2633 {
2634         return lrc_pin(ce, ce->engine, vaddr);
2635 }
2636
2637 static int execlists_context_alloc(struct intel_context *ce)
2638 {
2639         return lrc_alloc(ce, ce->engine);
2640 }
2641
2642 static void execlists_context_cancel_request(struct intel_context *ce,
2643                                              struct i915_request *rq)
2644 {
2645         struct intel_engine_cs *engine = NULL;
2646
2647         i915_request_active_engine(rq, &engine);
2648
2649         if (engine && intel_engine_pulse(engine))
2650                 intel_gt_handle_error(engine->gt, engine->mask, 0,
2651                                       "request cancellation by %s",
2652                                       current->comm);
2653 }
2654
2655 static struct intel_context *
2656 execlists_create_parallel(struct intel_engine_cs **engines,
2657                           unsigned int num_siblings,
2658                           unsigned int width)
2659 {
2660         struct intel_context *parent = NULL, *ce, *err;
2661         int i;
2662
2663         GEM_BUG_ON(num_siblings != 1);
2664
2665         for (i = 0; i < width; ++i) {
2666                 ce = intel_context_create(engines[i]);
2667                 if (IS_ERR(ce)) {
2668                         err = ce;
2669                         goto unwind;
2670                 }
2671
2672                 if (i == 0)
2673                         parent = ce;
2674                 else
2675                         intel_context_bind_parent_child(parent, ce);
2676         }
2677
2678         parent->parallel.fence_context = dma_fence_context_alloc(1);
2679
2680         intel_context_set_nopreempt(parent);
2681         for_each_child(parent, ce)
2682                 intel_context_set_nopreempt(ce);
2683
2684         return parent;
2685
2686 unwind:
2687         if (parent)
2688                 intel_context_put(parent);
2689         return err;
2690 }
2691
2692 static const struct intel_context_ops execlists_context_ops = {
2693         .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
2694
2695         .alloc = execlists_context_alloc,
2696
2697         .cancel_request = execlists_context_cancel_request,
2698
2699         .pre_pin = execlists_context_pre_pin,
2700         .pin = execlists_context_pin,
2701         .unpin = lrc_unpin,
2702         .post_unpin = lrc_post_unpin,
2703
2704         .enter = intel_context_enter_engine,
2705         .exit = intel_context_exit_engine,
2706
2707         .reset = lrc_reset,
2708         .destroy = lrc_destroy,
2709
2710         .create_parallel = execlists_create_parallel,
2711         .create_virtual = execlists_create_virtual,
2712 };
2713
2714 static int emit_pdps(struct i915_request *rq)
2715 {
2716         const struct intel_engine_cs * const engine = rq->engine;
2717         struct i915_ppgtt * const ppgtt = i915_vm_to_ppgtt(rq->context->vm);
2718         int err, i;
2719         u32 *cs;
2720
2721         GEM_BUG_ON(intel_vgpu_active(rq->engine->i915));
2722
2723         /*
2724          * Beware ye of the dragons, this sequence is magic!
2725          *
2726          * Small changes to this sequence can cause anything from
2727          * GPU hangs to forcewake errors and machine lockups!
2728          */
2729
2730         cs = intel_ring_begin(rq, 2);
2731         if (IS_ERR(cs))
2732                 return PTR_ERR(cs);
2733
2734         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
2735         *cs++ = MI_NOOP;
2736         intel_ring_advance(rq, cs);
2737
2738         /* Flush any residual operations from the context load */
2739         err = engine->emit_flush(rq, EMIT_FLUSH);
2740         if (err)
2741                 return err;
2742
2743         /* Magic required to prevent forcewake errors! */
2744         err = engine->emit_flush(rq, EMIT_INVALIDATE);
2745         if (err)
2746                 return err;
2747
2748         cs = intel_ring_begin(rq, 4 * GEN8_3LVL_PDPES + 2);
2749         if (IS_ERR(cs))
2750                 return PTR_ERR(cs);
2751
2752         /* Ensure the LRI have landed before we invalidate & continue */
2753         *cs++ = MI_LOAD_REGISTER_IMM(2 * GEN8_3LVL_PDPES) | MI_LRI_FORCE_POSTED;
2754         for (i = GEN8_3LVL_PDPES; i--; ) {
2755                 const dma_addr_t pd_daddr = i915_page_dir_dma_addr(ppgtt, i);
2756                 u32 base = engine->mmio_base;
2757
2758                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_UDW(base, i));
2759                 *cs++ = upper_32_bits(pd_daddr);
2760                 *cs++ = i915_mmio_reg_offset(GEN8_RING_PDP_LDW(base, i));
2761                 *cs++ = lower_32_bits(pd_daddr);
2762         }
2763         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
2764         intel_ring_advance(rq, cs);
2765
2766         intel_ring_advance(rq, cs);
2767
2768         return 0;
2769 }
2770
2771 static int execlists_request_alloc(struct i915_request *request)
2772 {
2773         int ret;
2774
2775         GEM_BUG_ON(!intel_context_is_pinned(request->context));
2776
2777         /*
2778          * Flush enough space to reduce the likelihood of waiting after
2779          * we start building the request - in which case we will just
2780          * have to repeat work.
2781          */
2782         request->reserved_space += EXECLISTS_REQUEST_SIZE;
2783
2784         /*
2785          * Note that after this point, we have committed to using
2786          * this request as it is being used to both track the
2787          * state of engine initialisation and liveness of the
2788          * golden renderstate above. Think twice before you try
2789          * to cancel/unwind this request now.
2790          */
2791
2792         if (!i915_vm_is_4lvl(request->context->vm)) {
2793                 ret = emit_pdps(request);
2794                 if (ret)
2795                         return ret;
2796         }
2797
2798         /* Unconditionally invalidate GPU caches and TLBs. */
2799         ret = request->engine->emit_flush(request, EMIT_INVALIDATE);
2800         if (ret)
2801                 return ret;
2802
2803         request->reserved_space -= EXECLISTS_REQUEST_SIZE;
2804         return 0;
2805 }
2806
2807 static void reset_csb_pointers(struct intel_engine_cs *engine)
2808 {
2809         struct intel_engine_execlists * const execlists = &engine->execlists;
2810         const unsigned int reset_value = execlists->csb_size - 1;
2811
2812         ring_set_paused(engine, 0);
2813
2814         /*
2815          * Sometimes Icelake forgets to reset its pointers on a GPU reset.
2816          * Bludgeon them with a mmio update to be sure.
2817          */
2818         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2819                      0xffff << 16 | reset_value << 8 | reset_value);
2820         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2821
2822         /*
2823          * After a reset, the HW starts writing into CSB entry [0]. We
2824          * therefore have to set our HEAD pointer back one entry so that
2825          * the *first* entry we check is entry 0. To complicate this further,
2826          * as we don't wait for the first interrupt after reset, we have to
2827          * fake the HW write to point back to the last entry so that our
2828          * inline comparison of our cached head position against the last HW
2829          * write works even before the first interrupt.
2830          */
2831         execlists->csb_head = reset_value;
2832         WRITE_ONCE(*execlists->csb_write, reset_value);
2833         wmb(); /* Make sure this is visible to HW (paranoia?) */
2834
2835         /* Check that the GPU does indeed update the CSB entries! */
2836         memset(execlists->csb_status, -1, (reset_value + 1) * sizeof(u64));
2837         drm_clflush_virt_range(execlists->csb_status,
2838                                execlists->csb_size *
2839                                sizeof(execlists->csb_status));
2840
2841         /* Once more for luck and our trusty paranoia */
2842         ENGINE_WRITE(engine, RING_CONTEXT_STATUS_PTR,
2843                      0xffff << 16 | reset_value << 8 | reset_value);
2844         ENGINE_POSTING_READ(engine, RING_CONTEXT_STATUS_PTR);
2845
2846         GEM_BUG_ON(READ_ONCE(*execlists->csb_write) != reset_value);
2847 }
2848
2849 static void sanitize_hwsp(struct intel_engine_cs *engine)
2850 {
2851         struct intel_timeline *tl;
2852
2853         list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
2854                 intel_timeline_reset_seqno(tl);
2855 }
2856
2857 static void execlists_sanitize(struct intel_engine_cs *engine)
2858 {
2859         GEM_BUG_ON(execlists_active(&engine->execlists));
2860
2861         /*
2862          * Poison residual state on resume, in case the suspend didn't!
2863          *
2864          * We have to assume that across suspend/resume (or other loss
2865          * of control) that the contents of our pinned buffers has been
2866          * lost, replaced by garbage. Since this doesn't always happen,
2867          * let's poison such state so that we more quickly spot when
2868          * we falsely assume it has been preserved.
2869          */
2870         if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
2871                 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
2872
2873         reset_csb_pointers(engine);
2874
2875         /*
2876          * The kernel_context HWSP is stored in the status_page. As above,
2877          * that may be lost on resume/initialisation, and so we need to
2878          * reset the value in the HWSP.
2879          */
2880         sanitize_hwsp(engine);
2881
2882         /* And scrub the dirty cachelines for the HWSP */
2883         drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
2884
2885         intel_engine_reset_pinned_contexts(engine);
2886 }
2887
2888 static void enable_error_interrupt(struct intel_engine_cs *engine)
2889 {
2890         u32 status;
2891
2892         engine->execlists.error_interrupt = 0;
2893         ENGINE_WRITE(engine, RING_EMR, ~0u);
2894         ENGINE_WRITE(engine, RING_EIR, ~0u); /* clear all existing errors */
2895
2896         status = ENGINE_READ(engine, RING_ESR);
2897         if (unlikely(status)) {
2898                 drm_err(&engine->i915->drm,
2899                         "engine '%s' resumed still in error: %08x\n",
2900                         engine->name, status);
2901                 __intel_gt_reset(engine->gt, engine->mask);
2902         }
2903
2904         /*
2905          * On current gen8+, we have 2 signals to play with
2906          *
2907          * - I915_ERROR_INSTUCTION (bit 0)
2908          *
2909          *    Generate an error if the command parser encounters an invalid
2910          *    instruction
2911          *
2912          *    This is a fatal error.
2913          *
2914          * - CP_PRIV (bit 2)
2915          *
2916          *    Generate an error on privilege violation (where the CP replaces
2917          *    the instruction with a no-op). This also fires for writes into
2918          *    read-only scratch pages.
2919          *
2920          *    This is a non-fatal error, parsing continues.
2921          *
2922          * * there are a few others defined for odd HW that we do not use
2923          *
2924          * Since CP_PRIV fires for cases where we have chosen to ignore the
2925          * error (as the HW is validating and suppressing the mistakes), we
2926          * only unmask the instruction error bit.
2927          */
2928         ENGINE_WRITE(engine, RING_EMR, ~I915_ERROR_INSTRUCTION);
2929 }
2930
2931 static void enable_execlists(struct intel_engine_cs *engine)
2932 {
2933         u32 mode;
2934
2935         assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
2936
2937         intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
2938
2939         if (GRAPHICS_VER(engine->i915) >= 11)
2940                 mode = _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE);
2941         else
2942                 mode = _MASKED_BIT_ENABLE(GFX_RUN_LIST_ENABLE);
2943         ENGINE_WRITE_FW(engine, RING_MODE_GEN7, mode);
2944
2945         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
2946
2947         ENGINE_WRITE_FW(engine,
2948                         RING_HWS_PGA,
2949                         i915_ggtt_offset(engine->status_page.vma));
2950         ENGINE_POSTING_READ(engine, RING_HWS_PGA);
2951
2952         enable_error_interrupt(engine);
2953 }
2954
2955 static int execlists_resume(struct intel_engine_cs *engine)
2956 {
2957         intel_mocs_init_engine(engine);
2958         intel_breadcrumbs_reset(engine->breadcrumbs);
2959
2960         enable_execlists(engine);
2961
2962         if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
2963                 xehp_enable_ccs_engines(engine);
2964
2965         return 0;
2966 }
2967
2968 static void execlists_reset_prepare(struct intel_engine_cs *engine)
2969 {
2970         ENGINE_TRACE(engine, "depth<-%d\n",
2971                      atomic_read(&engine->sched_engine->tasklet.count));
2972
2973         /*
2974          * Prevent request submission to the hardware until we have
2975          * completed the reset in i915_gem_reset_finish(). If a request
2976          * is completed by one engine, it may then queue a request
2977          * to a second via its execlists->tasklet *just* as we are
2978          * calling engine->resume() and also writing the ELSP.
2979          * Turning off the execlists->tasklet until the reset is over
2980          * prevents the race.
2981          */
2982         __tasklet_disable_sync_once(&engine->sched_engine->tasklet);
2983         GEM_BUG_ON(!reset_in_progress(engine));
2984
2985         /*
2986          * We stop engines, otherwise we might get failed reset and a
2987          * dead gpu (on elk). Also as modern gpu as kbl can suffer
2988          * from system hang if batchbuffer is progressing when
2989          * the reset is issued, regardless of READY_TO_RESET ack.
2990          * Thus assume it is best to stop engines on all gens
2991          * where we have a gpu reset.
2992          *
2993          * WaKBLVECSSemaphoreWaitPoll:kbl (on ALL_ENGINES)
2994          *
2995          * FIXME: Wa for more modern gens needs to be validated
2996          */
2997         ring_set_paused(engine, 1);
2998         intel_engine_stop_cs(engine);
2999
3000         /*
3001          * Wa_22011802037: In addition to stopping the cs, we need
3002          * to wait for any pending mi force wakeups
3003          */
3004         if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
3005             (GRAPHICS_VER(engine->i915) >= 11 &&
3006             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70)))
3007                 intel_engine_wait_for_pending_mi_fw(engine);
3008
3009         engine->execlists.reset_ccid = active_ccid(engine);
3010 }
3011
3012 static struct i915_request **
3013 reset_csb(struct intel_engine_cs *engine, struct i915_request **inactive)
3014 {
3015         struct intel_engine_execlists * const execlists = &engine->execlists;
3016
3017         drm_clflush_virt_range(execlists->csb_write,
3018                                sizeof(execlists->csb_write[0]));
3019
3020         inactive = process_csb(engine, inactive); /* drain preemption events */
3021
3022         /* Following the reset, we need to reload the CSB read/write pointers */
3023         reset_csb_pointers(engine);
3024
3025         return inactive;
3026 }
3027
3028 static void
3029 execlists_reset_active(struct intel_engine_cs *engine, bool stalled)
3030 {
3031         struct intel_context *ce;
3032         struct i915_request *rq;
3033         u32 head;
3034
3035         /*
3036          * Save the currently executing context, even if we completed
3037          * its request, it was still running at the time of the
3038          * reset and will have been clobbered.
3039          */
3040         rq = active_context(engine, engine->execlists.reset_ccid);
3041         if (!rq)
3042                 return;
3043
3044         ce = rq->context;
3045         GEM_BUG_ON(!i915_vma_is_pinned(ce->state));
3046
3047         if (__i915_request_is_complete(rq)) {
3048                 /* Idle context; tidy up the ring so we can restart afresh */
3049                 head = intel_ring_wrap(ce->ring, rq->tail);
3050                 goto out_replay;
3051         }
3052
3053         /* We still have requests in-flight; the engine should be active */
3054         GEM_BUG_ON(!intel_engine_pm_is_awake(engine));
3055
3056         /* Context has requests still in-flight; it should not be idle! */
3057         GEM_BUG_ON(i915_active_is_idle(&ce->active));
3058
3059         rq = active_request(ce->timeline, rq);
3060         head = intel_ring_wrap(ce->ring, rq->head);
3061         GEM_BUG_ON(head == ce->ring->tail);
3062
3063         /*
3064          * If this request hasn't started yet, e.g. it is waiting on a
3065          * semaphore, we need to avoid skipping the request or else we
3066          * break the signaling chain. However, if the context is corrupt
3067          * the request will not restart and we will be stuck with a wedged
3068          * device. It is quite often the case that if we issue a reset
3069          * while the GPU is loading the context image, that the context
3070          * image becomes corrupt.
3071          *
3072          * Otherwise, if we have not started yet, the request should replay
3073          * perfectly and we do not need to flag the result as being erroneous.
3074          */
3075         if (!__i915_request_has_started(rq))
3076                 goto out_replay;
3077
3078         /*
3079          * If the request was innocent, we leave the request in the ELSP
3080          * and will try to replay it on restarting. The context image may
3081          * have been corrupted by the reset, in which case we may have
3082          * to service a new GPU hang, but more likely we can continue on
3083          * without impact.
3084          *
3085          * If the request was guilty, we presume the context is corrupt
3086          * and have to at least restore the RING register in the context
3087          * image back to the expected values to skip over the guilty request.
3088          */
3089         __i915_request_reset(rq, stalled);
3090
3091         /*
3092          * We want a simple context + ring to execute the breadcrumb update.
3093          * We cannot rely on the context being intact across the GPU hang,
3094          * so clear it and rebuild just what we need for the breadcrumb.
3095          * All pending requests for this context will be zapped, and any
3096          * future request will be after userspace has had the opportunity
3097          * to recreate its own state.
3098          */
3099 out_replay:
3100         ENGINE_TRACE(engine, "replay {head:%04x, tail:%04x}\n",
3101                      head, ce->ring->tail);
3102         lrc_reset_regs(ce, engine);
3103         ce->lrc.lrca = lrc_update_regs(ce, engine, head);
3104 }
3105
3106 static void execlists_reset_csb(struct intel_engine_cs *engine, bool stalled)
3107 {
3108         struct intel_engine_execlists * const execlists = &engine->execlists;
3109         struct i915_request *post[2 * EXECLIST_MAX_PORTS];
3110         struct i915_request **inactive;
3111
3112         rcu_read_lock();
3113         inactive = reset_csb(engine, post);
3114
3115         execlists_reset_active(engine, true);
3116
3117         inactive = cancel_port_requests(execlists, inactive);
3118         post_process_csb(post, inactive);
3119         rcu_read_unlock();
3120 }
3121
3122 static void execlists_reset_rewind(struct intel_engine_cs *engine, bool stalled)
3123 {
3124         unsigned long flags;
3125
3126         ENGINE_TRACE(engine, "\n");
3127
3128         /* Process the csb, find the guilty context and throw away */
3129         execlists_reset_csb(engine, stalled);
3130
3131         /* Push back any incomplete requests for replay after the reset. */
3132         rcu_read_lock();
3133         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3134         __unwind_incomplete_requests(engine);
3135         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3136         rcu_read_unlock();
3137 }
3138
3139 static void nop_submission_tasklet(struct tasklet_struct *t)
3140 {
3141         struct i915_sched_engine *sched_engine =
3142                 from_tasklet(sched_engine, t, tasklet);
3143         struct intel_engine_cs * const engine = sched_engine->private_data;
3144
3145         /* The driver is wedged; don't process any more events. */
3146         WRITE_ONCE(engine->sched_engine->queue_priority_hint, INT_MIN);
3147 }
3148
3149 static void execlists_reset_cancel(struct intel_engine_cs *engine)
3150 {
3151         struct intel_engine_execlists * const execlists = &engine->execlists;
3152         struct i915_sched_engine * const sched_engine = engine->sched_engine;
3153         struct i915_request *rq, *rn;
3154         struct rb_node *rb;
3155         unsigned long flags;
3156
3157         ENGINE_TRACE(engine, "\n");
3158
3159         /*
3160          * Before we call engine->cancel_requests(), we should have exclusive
3161          * access to the submission state. This is arranged for us by the
3162          * caller disabling the interrupt generation, the tasklet and other
3163          * threads that may then access the same state, giving us a free hand
3164          * to reset state. However, we still need to let lockdep be aware that
3165          * we know this state may be accessed in hardirq context, so we
3166          * disable the irq around this manipulation and we want to keep
3167          * the spinlock focused on its duties and not accidentally conflate
3168          * coverage to the submission's irq state. (Similarly, although we
3169          * shouldn't need to disable irq around the manipulation of the
3170          * submission's irq state, we also wish to remind ourselves that
3171          * it is irq state.)
3172          */
3173         execlists_reset_csb(engine, true);
3174
3175         rcu_read_lock();
3176         spin_lock_irqsave(&engine->sched_engine->lock, flags);
3177
3178         /* Mark all executing requests as skipped. */
3179         list_for_each_entry(rq, &engine->sched_engine->requests, sched.link)
3180                 i915_request_put(i915_request_mark_eio(rq));
3181         intel_engine_signal_breadcrumbs(engine);
3182
3183         /* Flush the queued requests to the timeline list (for retiring). */
3184         while ((rb = rb_first_cached(&sched_engine->queue))) {
3185                 struct i915_priolist *p = to_priolist(rb);
3186
3187                 priolist_for_each_request_consume(rq, rn, p) {
3188                         if (i915_request_mark_eio(rq)) {
3189                                 __i915_request_submit(rq);
3190                                 i915_request_put(rq);
3191                         }
3192                 }
3193
3194                 rb_erase_cached(&p->node, &sched_engine->queue);
3195                 i915_priolist_free(p);
3196         }
3197
3198         /* On-hold requests will be flushed to timeline upon their release */
3199         list_for_each_entry(rq, &sched_engine->hold, sched.link)
3200                 i915_request_put(i915_request_mark_eio(rq));
3201
3202         /* Cancel all attached virtual engines */
3203         while ((rb = rb_first_cached(&execlists->virtual))) {
3204                 struct virtual_engine *ve =
3205                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
3206
3207                 rb_erase_cached(rb, &execlists->virtual);
3208                 RB_CLEAR_NODE(rb);
3209
3210                 spin_lock(&ve->base.sched_engine->lock);
3211                 rq = fetch_and_zero(&ve->request);
3212                 if (rq) {
3213                         if (i915_request_mark_eio(rq)) {
3214                                 rq->engine = engine;
3215                                 __i915_request_submit(rq);
3216                                 i915_request_put(rq);
3217                         }
3218                         i915_request_put(rq);
3219
3220                         ve->base.sched_engine->queue_priority_hint = INT_MIN;
3221                 }
3222                 spin_unlock(&ve->base.sched_engine->lock);
3223         }
3224
3225         /* Remaining _unready_ requests will be nop'ed when submitted */
3226
3227         sched_engine->queue_priority_hint = INT_MIN;
3228         sched_engine->queue = RB_ROOT_CACHED;
3229
3230         GEM_BUG_ON(__tasklet_is_enabled(&engine->sched_engine->tasklet));
3231         engine->sched_engine->tasklet.callback = nop_submission_tasklet;
3232
3233         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
3234         rcu_read_unlock();
3235 }
3236
3237 static void execlists_reset_finish(struct intel_engine_cs *engine)
3238 {
3239         struct intel_engine_execlists * const execlists = &engine->execlists;
3240
3241         /*
3242          * After a GPU reset, we may have requests to replay. Do so now while
3243          * we still have the forcewake to be sure that the GPU is not allowed
3244          * to sleep before we restart and reload a context.
3245          *
3246          * If the GPU reset fails, the engine may still be alive with requests
3247          * inflight. We expect those to complete, or for the device to be
3248          * reset as the next level of recovery, and as a final resort we
3249          * will declare the device wedged.
3250          */
3251         GEM_BUG_ON(!reset_in_progress(engine));
3252
3253         /* And kick in case we missed a new request submission. */
3254         if (__tasklet_enable(&engine->sched_engine->tasklet))
3255                 __execlists_kick(execlists);
3256
3257         ENGINE_TRACE(engine, "depth->%d\n",
3258                      atomic_read(&engine->sched_engine->tasklet.count));
3259 }
3260
3261 static void gen8_logical_ring_enable_irq(struct intel_engine_cs *engine)
3262 {
3263         ENGINE_WRITE(engine, RING_IMR,
3264                      ~(engine->irq_enable_mask | engine->irq_keep_mask));
3265         ENGINE_POSTING_READ(engine, RING_IMR);
3266 }
3267
3268 static void gen8_logical_ring_disable_irq(struct intel_engine_cs *engine)
3269 {
3270         ENGINE_WRITE(engine, RING_IMR, ~engine->irq_keep_mask);
3271 }
3272
3273 static void execlists_park(struct intel_engine_cs *engine)
3274 {
3275         cancel_timer(&engine->execlists.timer);
3276         cancel_timer(&engine->execlists.preempt);
3277 }
3278
3279 static void add_to_engine(struct i915_request *rq)
3280 {
3281         lockdep_assert_held(&rq->engine->sched_engine->lock);
3282         list_move_tail(&rq->sched.link, &rq->engine->sched_engine->requests);
3283 }
3284
3285 static void remove_from_engine(struct i915_request *rq)
3286 {
3287         struct intel_engine_cs *engine, *locked;
3288
3289         /*
3290          * Virtual engines complicate acquiring the engine timeline lock,
3291          * as their rq->engine pointer is not stable until under that
3292          * engine lock. The simple ploy we use is to take the lock then
3293          * check that the rq still belongs to the newly locked engine.
3294          */
3295         locked = READ_ONCE(rq->engine);
3296         spin_lock_irq(&locked->sched_engine->lock);
3297         while (unlikely(locked != (engine = READ_ONCE(rq->engine)))) {
3298                 spin_unlock(&locked->sched_engine->lock);
3299                 spin_lock(&engine->sched_engine->lock);
3300                 locked = engine;
3301         }
3302         list_del_init(&rq->sched.link);
3303
3304         clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3305         clear_bit(I915_FENCE_FLAG_HOLD, &rq->fence.flags);
3306
3307         /* Prevent further __await_execution() registering a cb, then flush */
3308         set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3309
3310         spin_unlock_irq(&locked->sched_engine->lock);
3311
3312         i915_request_notify_execute_cb_imm(rq);
3313 }
3314
3315 static bool can_preempt(struct intel_engine_cs *engine)
3316 {
3317         if (GRAPHICS_VER(engine->i915) > 8)
3318                 return true;
3319
3320         /* GPGPU on bdw requires extra w/a; not implemented */
3321         return engine->class != RENDER_CLASS;
3322 }
3323
3324 static void kick_execlists(const struct i915_request *rq, int prio)
3325 {
3326         struct intel_engine_cs *engine = rq->engine;
3327         struct i915_sched_engine *sched_engine = engine->sched_engine;
3328         const struct i915_request *inflight;
3329
3330         /*
3331          * We only need to kick the tasklet once for the high priority
3332          * new context we add into the queue.
3333          */
3334         if (prio <= sched_engine->queue_priority_hint)
3335                 return;
3336
3337         rcu_read_lock();
3338
3339         /* Nothing currently active? We're overdue for a submission! */
3340         inflight = execlists_active(&engine->execlists);
3341         if (!inflight)
3342                 goto unlock;
3343
3344         /*
3345          * If we are already the currently executing context, don't
3346          * bother evaluating if we should preempt ourselves.
3347          */
3348         if (inflight->context == rq->context)
3349                 goto unlock;
3350
3351         ENGINE_TRACE(engine,
3352                      "bumping queue-priority-hint:%d for rq:%llx:%lld, inflight:%llx:%lld prio %d\n",
3353                      prio,
3354                      rq->fence.context, rq->fence.seqno,
3355                      inflight->fence.context, inflight->fence.seqno,
3356                      inflight->sched.attr.priority);
3357
3358         sched_engine->queue_priority_hint = prio;
3359
3360         /*
3361          * Allow preemption of low -> normal -> high, but we do
3362          * not allow low priority tasks to preempt other low priority
3363          * tasks under the impression that latency for low priority
3364          * tasks does not matter (as much as background throughput),
3365          * so kiss.
3366          */
3367         if (prio >= max(I915_PRIORITY_NORMAL, rq_prio(inflight)))
3368                 tasklet_hi_schedule(&sched_engine->tasklet);
3369
3370 unlock:
3371         rcu_read_unlock();
3372 }
3373
3374 static void execlists_set_default_submission(struct intel_engine_cs *engine)
3375 {
3376         engine->submit_request = execlists_submit_request;
3377         engine->sched_engine->schedule = i915_schedule;
3378         engine->sched_engine->kick_backend = kick_execlists;
3379         engine->sched_engine->tasklet.callback = execlists_submission_tasklet;
3380 }
3381
3382 static void execlists_shutdown(struct intel_engine_cs *engine)
3383 {
3384         /* Synchronise with residual timers and any softirq they raise */
3385         del_timer_sync(&engine->execlists.timer);
3386         del_timer_sync(&engine->execlists.preempt);
3387         tasklet_kill(&engine->sched_engine->tasklet);
3388 }
3389
3390 static void execlists_release(struct intel_engine_cs *engine)
3391 {
3392         engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3393
3394         execlists_shutdown(engine);
3395
3396         intel_engine_cleanup_common(engine);
3397         lrc_fini_wa_ctx(engine);
3398 }
3399
3400 static ktime_t __execlists_engine_busyness(struct intel_engine_cs *engine,
3401                                            ktime_t *now)
3402 {
3403         struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3404         ktime_t total = stats->total;
3405
3406         /*
3407          * If the engine is executing something at the moment
3408          * add it to the total.
3409          */
3410         *now = ktime_get();
3411         if (READ_ONCE(stats->active))
3412                 total = ktime_add(total, ktime_sub(*now, stats->start));
3413
3414         return total;
3415 }
3416
3417 static ktime_t execlists_engine_busyness(struct intel_engine_cs *engine,
3418                                          ktime_t *now)
3419 {
3420         struct intel_engine_execlists_stats *stats = &engine->stats.execlists;
3421         unsigned int seq;
3422         ktime_t total;
3423
3424         do {
3425                 seq = read_seqcount_begin(&stats->lock);
3426                 total = __execlists_engine_busyness(engine, now);
3427         } while (read_seqcount_retry(&stats->lock, seq));
3428
3429         return total;
3430 }
3431
3432 static void
3433 logical_ring_default_vfuncs(struct intel_engine_cs *engine)
3434 {
3435         /* Default vfuncs which can be overridden by each engine. */
3436
3437         engine->resume = execlists_resume;
3438
3439         engine->cops = &execlists_context_ops;
3440         engine->request_alloc = execlists_request_alloc;
3441         engine->add_active_request = add_to_engine;
3442         engine->remove_active_request = remove_from_engine;
3443
3444         engine->reset.prepare = execlists_reset_prepare;
3445         engine->reset.rewind = execlists_reset_rewind;
3446         engine->reset.cancel = execlists_reset_cancel;
3447         engine->reset.finish = execlists_reset_finish;
3448
3449         engine->park = execlists_park;
3450         engine->unpark = NULL;
3451
3452         engine->emit_flush = gen8_emit_flush_xcs;
3453         engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3454         engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3455         if (GRAPHICS_VER(engine->i915) >= 12) {
3456                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3457                 engine->emit_flush = gen12_emit_flush_xcs;
3458         }
3459         engine->set_default_submission = execlists_set_default_submission;
3460
3461         if (GRAPHICS_VER(engine->i915) < 11) {
3462                 engine->irq_enable = gen8_logical_ring_enable_irq;
3463                 engine->irq_disable = gen8_logical_ring_disable_irq;
3464         } else {
3465                 /*
3466                  * TODO: On Gen11 interrupt masks need to be clear
3467                  * to allow C6 entry. Keep interrupts enabled at
3468                  * and take the hit of generating extra interrupts
3469                  * until a more refined solution exists.
3470                  */
3471         }
3472         intel_engine_set_irq_handler(engine, execlists_irq_handler);
3473
3474         engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3475         if (!intel_vgpu_active(engine->i915)) {
3476                 engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3477                 if (can_preempt(engine)) {
3478                         engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3479                         if (CONFIG_DRM_I915_TIMESLICE_DURATION)
3480                                 engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3481                 }
3482         }
3483
3484         if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) {
3485                 if (intel_engine_has_preemption(engine))
3486                         engine->emit_bb_start = xehp_emit_bb_start;
3487                 else
3488                         engine->emit_bb_start = xehp_emit_bb_start_noarb;
3489         } else {
3490                 if (intel_engine_has_preemption(engine))
3491                         engine->emit_bb_start = gen8_emit_bb_start;
3492                 else
3493                         engine->emit_bb_start = gen8_emit_bb_start_noarb;
3494         }
3495
3496         engine->busyness = execlists_engine_busyness;
3497 }
3498
3499 static void logical_ring_default_irqs(struct intel_engine_cs *engine)
3500 {
3501         unsigned int shift = 0;
3502
3503         if (GRAPHICS_VER(engine->i915) < 11) {
3504                 const u8 irq_shifts[] = {
3505                         [RCS0]  = GEN8_RCS_IRQ_SHIFT,
3506                         [BCS0]  = GEN8_BCS_IRQ_SHIFT,
3507                         [VCS0]  = GEN8_VCS0_IRQ_SHIFT,
3508                         [VCS1]  = GEN8_VCS1_IRQ_SHIFT,
3509                         [VECS0] = GEN8_VECS_IRQ_SHIFT,
3510                 };
3511
3512                 shift = irq_shifts[engine->id];
3513         }
3514
3515         engine->irq_enable_mask = GT_RENDER_USER_INTERRUPT << shift;
3516         engine->irq_keep_mask = GT_CONTEXT_SWITCH_INTERRUPT << shift;
3517         engine->irq_keep_mask |= GT_CS_MASTER_ERROR_INTERRUPT << shift;
3518         engine->irq_keep_mask |= GT_WAIT_SEMAPHORE_INTERRUPT << shift;
3519 }
3520
3521 static void rcs_submission_override(struct intel_engine_cs *engine)
3522 {
3523         switch (GRAPHICS_VER(engine->i915)) {
3524         case 12:
3525                 engine->emit_flush = gen12_emit_flush_rcs;
3526                 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3527                 break;
3528         case 11:
3529                 engine->emit_flush = gen11_emit_flush_rcs;
3530                 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3531                 break;
3532         default:
3533                 engine->emit_flush = gen8_emit_flush_rcs;
3534                 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3535                 break;
3536         }
3537 }
3538
3539 int intel_execlists_submission_setup(struct intel_engine_cs *engine)
3540 {
3541         struct intel_engine_execlists * const execlists = &engine->execlists;
3542         struct drm_i915_private *i915 = engine->i915;
3543         struct intel_uncore *uncore = engine->uncore;
3544         u32 base = engine->mmio_base;
3545
3546         tasklet_setup(&engine->sched_engine->tasklet, execlists_submission_tasklet);
3547         timer_setup(&engine->execlists.timer, execlists_timeslice, 0);
3548         timer_setup(&engine->execlists.preempt, execlists_preempt, 0);
3549
3550         logical_ring_default_vfuncs(engine);
3551         logical_ring_default_irqs(engine);
3552
3553         if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3554                 rcs_submission_override(engine);
3555
3556         lrc_init_wa_ctx(engine);
3557
3558         if (HAS_LOGICAL_RING_ELSQ(i915)) {
3559                 execlists->submit_reg = intel_uncore_regs(uncore) +
3560                         i915_mmio_reg_offset(RING_EXECLIST_SQ_CONTENTS(base));
3561                 execlists->ctrl_reg = intel_uncore_regs(uncore) +
3562                         i915_mmio_reg_offset(RING_EXECLIST_CONTROL(base));
3563
3564                 engine->fw_domain = intel_uncore_forcewake_for_reg(engine->uncore,
3565                                     RING_EXECLIST_CONTROL(engine->mmio_base),
3566                                     FW_REG_WRITE);
3567         } else {
3568                 execlists->submit_reg = intel_uncore_regs(uncore) +
3569                         i915_mmio_reg_offset(RING_ELSP(base));
3570         }
3571
3572         execlists->csb_status =
3573                 (u64 *)&engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
3574
3575         execlists->csb_write =
3576                 &engine->status_page.addr[INTEL_HWS_CSB_WRITE_INDEX(i915)];
3577
3578         if (GRAPHICS_VER(i915) < 11)
3579                 execlists->csb_size = GEN8_CSB_ENTRIES;
3580         else
3581                 execlists->csb_size = GEN11_CSB_ENTRIES;
3582
3583         engine->context_tag = GENMASK(BITS_PER_LONG - 2, 0);
3584         if (GRAPHICS_VER(engine->i915) >= 11 &&
3585             GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 50)) {
3586                 execlists->ccid |= engine->instance << (GEN11_ENGINE_INSTANCE_SHIFT - 32);
3587                 execlists->ccid |= engine->class << (GEN11_ENGINE_CLASS_SHIFT - 32);
3588         }
3589
3590         /* Finally, take ownership and responsibility for cleanup! */
3591         engine->sanitize = execlists_sanitize;
3592         engine->release = execlists_release;
3593
3594         return 0;
3595 }
3596
3597 static struct list_head *virtual_queue(struct virtual_engine *ve)
3598 {
3599         return &ve->base.sched_engine->default_priolist.requests;
3600 }
3601
3602 static void rcu_virtual_context_destroy(struct work_struct *wrk)
3603 {
3604         struct virtual_engine *ve =
3605                 container_of(wrk, typeof(*ve), rcu.work);
3606         unsigned int n;
3607
3608         GEM_BUG_ON(ve->context.inflight);
3609
3610         /* Preempt-to-busy may leave a stale request behind. */
3611         if (unlikely(ve->request)) {
3612                 struct i915_request *old;
3613
3614                 spin_lock_irq(&ve->base.sched_engine->lock);
3615
3616                 old = fetch_and_zero(&ve->request);
3617                 if (old) {
3618                         GEM_BUG_ON(!__i915_request_is_complete(old));
3619                         __i915_request_submit(old);
3620                         i915_request_put(old);
3621                 }
3622
3623                 spin_unlock_irq(&ve->base.sched_engine->lock);
3624         }
3625
3626         /*
3627          * Flush the tasklet in case it is still running on another core.
3628          *
3629          * This needs to be done before we remove ourselves from the siblings'
3630          * rbtrees as in the case it is running in parallel, it may reinsert
3631          * the rb_node into a sibling.
3632          */
3633         tasklet_kill(&ve->base.sched_engine->tasklet);
3634
3635         /* Decouple ourselves from the siblings, no more access allowed. */
3636         for (n = 0; n < ve->num_siblings; n++) {
3637                 struct intel_engine_cs *sibling = ve->siblings[n];
3638                 struct rb_node *node = &ve->nodes[sibling->id].rb;
3639
3640                 if (RB_EMPTY_NODE(node))
3641                         continue;
3642
3643                 spin_lock_irq(&sibling->sched_engine->lock);
3644
3645                 /* Detachment is lazily performed in the sched_engine->tasklet */
3646                 if (!RB_EMPTY_NODE(node))
3647                         rb_erase_cached(node, &sibling->execlists.virtual);
3648
3649                 spin_unlock_irq(&sibling->sched_engine->lock);
3650         }
3651         GEM_BUG_ON(__tasklet_is_scheduled(&ve->base.sched_engine->tasklet));
3652         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3653
3654         lrc_fini(&ve->context);
3655         intel_context_fini(&ve->context);
3656
3657         if (ve->base.breadcrumbs)
3658                 intel_breadcrumbs_put(ve->base.breadcrumbs);
3659         if (ve->base.sched_engine)
3660                 i915_sched_engine_put(ve->base.sched_engine);
3661         intel_engine_free_request_pool(&ve->base);
3662
3663         kfree(ve);
3664 }
3665
3666 static void virtual_context_destroy(struct kref *kref)
3667 {
3668         struct virtual_engine *ve =
3669                 container_of(kref, typeof(*ve), context.ref);
3670
3671         GEM_BUG_ON(!list_empty(&ve->context.signals));
3672
3673         /*
3674          * When destroying the virtual engine, we have to be aware that
3675          * it may still be in use from an hardirq/softirq context causing
3676          * the resubmission of a completed request (background completion
3677          * due to preempt-to-busy). Before we can free the engine, we need
3678          * to flush the submission code and tasklets that are still potentially
3679          * accessing the engine. Flushing the tasklets requires process context,
3680          * and since we can guard the resubmit onto the engine with an RCU read
3681          * lock, we can delegate the free of the engine to an RCU worker.
3682          */
3683         INIT_RCU_WORK(&ve->rcu, rcu_virtual_context_destroy);
3684         queue_rcu_work(ve->context.engine->i915->unordered_wq, &ve->rcu);
3685 }
3686
3687 static void virtual_engine_initial_hint(struct virtual_engine *ve)
3688 {
3689         int swp;
3690
3691         /*
3692          * Pick a random sibling on starting to help spread the load around.
3693          *
3694          * New contexts are typically created with exactly the same order
3695          * of siblings, and often started in batches. Due to the way we iterate
3696          * the array of sibling when submitting requests, sibling[0] is
3697          * prioritised for dequeuing. If we make sure that sibling[0] is fairly
3698          * randomised across the system, we also help spread the load by the
3699          * first engine we inspect being different each time.
3700          *
3701          * NB This does not force us to execute on this engine, it will just
3702          * typically be the first we inspect for submission.
3703          */
3704         swp = get_random_u32_below(ve->num_siblings);
3705         if (swp)
3706                 swap(ve->siblings[swp], ve->siblings[0]);
3707 }
3708
3709 static int virtual_context_alloc(struct intel_context *ce)
3710 {
3711         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3712
3713         return lrc_alloc(ce, ve->siblings[0]);
3714 }
3715
3716 static int virtual_context_pre_pin(struct intel_context *ce,
3717                                    struct i915_gem_ww_ctx *ww,
3718                                    void **vaddr)
3719 {
3720         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3721
3722          /* Note: we must use a real engine class for setting up reg state */
3723         return __execlists_context_pre_pin(ce, ve->siblings[0], ww, vaddr);
3724 }
3725
3726 static int virtual_context_pin(struct intel_context *ce, void *vaddr)
3727 {
3728         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3729
3730         return lrc_pin(ce, ve->siblings[0], vaddr);
3731 }
3732
3733 static void virtual_context_enter(struct intel_context *ce)
3734 {
3735         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3736         unsigned int n;
3737
3738         for (n = 0; n < ve->num_siblings; n++)
3739                 intel_engine_pm_get(ve->siblings[n]);
3740
3741         intel_timeline_enter(ce->timeline);
3742 }
3743
3744 static void virtual_context_exit(struct intel_context *ce)
3745 {
3746         struct virtual_engine *ve = container_of(ce, typeof(*ve), context);
3747         unsigned int n;
3748
3749         intel_timeline_exit(ce->timeline);
3750
3751         for (n = 0; n < ve->num_siblings; n++)
3752                 intel_engine_pm_put(ve->siblings[n]);
3753 }
3754
3755 static struct intel_engine_cs *
3756 virtual_get_sibling(struct intel_engine_cs *engine, unsigned int sibling)
3757 {
3758         struct virtual_engine *ve = to_virtual_engine(engine);
3759
3760         if (sibling >= ve->num_siblings)
3761                 return NULL;
3762
3763         return ve->siblings[sibling];
3764 }
3765
3766 static const struct intel_context_ops virtual_context_ops = {
3767         .flags = COPS_HAS_INFLIGHT | COPS_RUNTIME_CYCLES,
3768
3769         .alloc = virtual_context_alloc,
3770
3771         .cancel_request = execlists_context_cancel_request,
3772
3773         .pre_pin = virtual_context_pre_pin,
3774         .pin = virtual_context_pin,
3775         .unpin = lrc_unpin,
3776         .post_unpin = lrc_post_unpin,
3777
3778         .enter = virtual_context_enter,
3779         .exit = virtual_context_exit,
3780
3781         .destroy = virtual_context_destroy,
3782
3783         .get_sibling = virtual_get_sibling,
3784 };
3785
3786 static intel_engine_mask_t virtual_submission_mask(struct virtual_engine *ve)
3787 {
3788         struct i915_request *rq;
3789         intel_engine_mask_t mask;
3790
3791         rq = READ_ONCE(ve->request);
3792         if (!rq)
3793                 return 0;
3794
3795         /* The rq is ready for submission; rq->execution_mask is now stable. */
3796         mask = rq->execution_mask;
3797         if (unlikely(!mask)) {
3798                 /* Invalid selection, submit to a random engine in error */
3799                 i915_request_set_error_once(rq, -ENODEV);
3800                 mask = ve->siblings[0]->mask;
3801         }
3802
3803         ENGINE_TRACE(&ve->base, "rq=%llx:%lld, mask=%x, prio=%d\n",
3804                      rq->fence.context, rq->fence.seqno,
3805                      mask, ve->base.sched_engine->queue_priority_hint);
3806
3807         return mask;
3808 }
3809
3810 static void virtual_submission_tasklet(struct tasklet_struct *t)
3811 {
3812         struct i915_sched_engine *sched_engine =
3813                 from_tasklet(sched_engine, t, tasklet);
3814         struct virtual_engine * const ve =
3815                 (struct virtual_engine *)sched_engine->private_data;
3816         const int prio = READ_ONCE(sched_engine->queue_priority_hint);
3817         intel_engine_mask_t mask;
3818         unsigned int n;
3819
3820         rcu_read_lock();
3821         mask = virtual_submission_mask(ve);
3822         rcu_read_unlock();
3823         if (unlikely(!mask))
3824                 return;
3825
3826         for (n = 0; n < ve->num_siblings; n++) {
3827                 struct intel_engine_cs *sibling = READ_ONCE(ve->siblings[n]);
3828                 struct ve_node * const node = &ve->nodes[sibling->id];
3829                 struct rb_node **parent, *rb;
3830                 bool first;
3831
3832                 if (!READ_ONCE(ve->request))
3833                         break; /* already handled by a sibling's tasklet */
3834
3835                 spin_lock_irq(&sibling->sched_engine->lock);
3836
3837                 if (unlikely(!(mask & sibling->mask))) {
3838                         if (!RB_EMPTY_NODE(&node->rb)) {
3839                                 rb_erase_cached(&node->rb,
3840                                                 &sibling->execlists.virtual);
3841                                 RB_CLEAR_NODE(&node->rb);
3842                         }
3843
3844                         goto unlock_engine;
3845                 }
3846
3847                 if (unlikely(!RB_EMPTY_NODE(&node->rb))) {
3848                         /*
3849                          * Cheat and avoid rebalancing the tree if we can
3850                          * reuse this node in situ.
3851                          */
3852                         first = rb_first_cached(&sibling->execlists.virtual) ==
3853                                 &node->rb;
3854                         if (prio == node->prio || (prio > node->prio && first))
3855                                 goto submit_engine;
3856
3857                         rb_erase_cached(&node->rb, &sibling->execlists.virtual);
3858                 }
3859
3860                 rb = NULL;
3861                 first = true;
3862                 parent = &sibling->execlists.virtual.rb_root.rb_node;
3863                 while (*parent) {
3864                         struct ve_node *other;
3865
3866                         rb = *parent;
3867                         other = rb_entry(rb, typeof(*other), rb);
3868                         if (prio > other->prio) {
3869                                 parent = &rb->rb_left;
3870                         } else {
3871                                 parent = &rb->rb_right;
3872                                 first = false;
3873                         }
3874                 }
3875
3876                 rb_link_node(&node->rb, rb, parent);
3877                 rb_insert_color_cached(&node->rb,
3878                                        &sibling->execlists.virtual,
3879                                        first);
3880
3881 submit_engine:
3882                 GEM_BUG_ON(RB_EMPTY_NODE(&node->rb));
3883                 node->prio = prio;
3884                 if (first && prio > sibling->sched_engine->queue_priority_hint)
3885                         tasklet_hi_schedule(&sibling->sched_engine->tasklet);
3886
3887 unlock_engine:
3888                 spin_unlock_irq(&sibling->sched_engine->lock);
3889
3890                 if (intel_context_inflight(&ve->context))
3891                         break;
3892         }
3893 }
3894
3895 static void virtual_submit_request(struct i915_request *rq)
3896 {
3897         struct virtual_engine *ve = to_virtual_engine(rq->engine);
3898         unsigned long flags;
3899
3900         ENGINE_TRACE(&ve->base, "rq=%llx:%lld\n",
3901                      rq->fence.context,
3902                      rq->fence.seqno);
3903
3904         GEM_BUG_ON(ve->base.submit_request != virtual_submit_request);
3905
3906         spin_lock_irqsave(&ve->base.sched_engine->lock, flags);
3907
3908         /* By the time we resubmit a request, it may be completed */
3909         if (__i915_request_is_complete(rq)) {
3910                 __i915_request_submit(rq);
3911                 goto unlock;
3912         }
3913
3914         if (ve->request) { /* background completion from preempt-to-busy */
3915                 GEM_BUG_ON(!__i915_request_is_complete(ve->request));
3916                 __i915_request_submit(ve->request);
3917                 i915_request_put(ve->request);
3918         }
3919
3920         ve->base.sched_engine->queue_priority_hint = rq_prio(rq);
3921         ve->request = i915_request_get(rq);
3922
3923         GEM_BUG_ON(!list_empty(virtual_queue(ve)));
3924         list_move_tail(&rq->sched.link, virtual_queue(ve));
3925
3926         tasklet_hi_schedule(&ve->base.sched_engine->tasklet);
3927
3928 unlock:
3929         spin_unlock_irqrestore(&ve->base.sched_engine->lock, flags);
3930 }
3931
3932 static struct intel_context *
3933 execlists_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
3934                          unsigned long flags)
3935 {
3936         struct drm_i915_private *i915 = siblings[0]->i915;
3937         struct virtual_engine *ve;
3938         unsigned int n;
3939         int err;
3940
3941         ve = kzalloc(struct_size(ve, siblings, count), GFP_KERNEL);
3942         if (!ve)
3943                 return ERR_PTR(-ENOMEM);
3944
3945         ve->base.i915 = i915;
3946         ve->base.gt = siblings[0]->gt;
3947         ve->base.uncore = siblings[0]->uncore;
3948         ve->base.id = -1;
3949
3950         ve->base.class = OTHER_CLASS;
3951         ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
3952         ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3953         ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
3954
3955         /*
3956          * The decision on whether to submit a request using semaphores
3957          * depends on the saturated state of the engine. We only compute
3958          * this during HW submission of the request, and we need for this
3959          * state to be globally applied to all requests being submitted
3960          * to this engine. Virtual engines encompass more than one physical
3961          * engine and so we cannot accurately tell in advance if one of those
3962          * engines is already saturated and so cannot afford to use a semaphore
3963          * and be pessimized in priority for doing so -- if we are the only
3964          * context using semaphores after all other clients have stopped, we
3965          * will be starved on the saturated system. Such a global switch for
3966          * semaphores is less than ideal, but alas is the current compromise.
3967          */
3968         ve->base.saturated = ALL_ENGINES;
3969
3970         snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
3971
3972         intel_engine_init_execlists(&ve->base);
3973
3974         ve->base.sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3975         if (!ve->base.sched_engine) {
3976                 err = -ENOMEM;
3977                 goto err_put;
3978         }
3979         ve->base.sched_engine->private_data = &ve->base;
3980
3981         ve->base.cops = &virtual_context_ops;
3982         ve->base.request_alloc = execlists_request_alloc;
3983
3984         ve->base.sched_engine->schedule = i915_schedule;
3985         ve->base.sched_engine->kick_backend = kick_execlists;
3986         ve->base.submit_request = virtual_submit_request;
3987
3988         INIT_LIST_HEAD(virtual_queue(ve));
3989         tasklet_setup(&ve->base.sched_engine->tasklet, virtual_submission_tasklet);
3990
3991         intel_context_init(&ve->context, &ve->base);
3992
3993         ve->base.breadcrumbs = intel_breadcrumbs_create(NULL);
3994         if (!ve->base.breadcrumbs) {
3995                 err = -ENOMEM;
3996                 goto err_put;
3997         }
3998
3999         for (n = 0; n < count; n++) {
4000                 struct intel_engine_cs *sibling = siblings[n];
4001
4002                 GEM_BUG_ON(!is_power_of_2(sibling->mask));
4003                 if (sibling->mask & ve->base.mask) {
4004                         drm_dbg(&i915->drm,
4005                                 "duplicate %s entry in load balancer\n",
4006                                 sibling->name);
4007                         err = -EINVAL;
4008                         goto err_put;
4009                 }
4010
4011                 /*
4012                  * The virtual engine implementation is tightly coupled to
4013                  * the execlists backend -- we push out request directly
4014                  * into a tree inside each physical engine. We could support
4015                  * layering if we handle cloning of the requests and
4016                  * submitting a copy into each backend.
4017                  */
4018                 if (sibling->sched_engine->tasklet.callback !=
4019                     execlists_submission_tasklet) {
4020                         err = -ENODEV;
4021                         goto err_put;
4022                 }
4023
4024                 GEM_BUG_ON(RB_EMPTY_NODE(&ve->nodes[sibling->id].rb));
4025                 RB_CLEAR_NODE(&ve->nodes[sibling->id].rb);
4026
4027                 ve->siblings[ve->num_siblings++] = sibling;
4028                 ve->base.mask |= sibling->mask;
4029                 ve->base.logical_mask |= sibling->logical_mask;
4030
4031                 /*
4032                  * All physical engines must be compatible for their emission
4033                  * functions (as we build the instructions during request
4034                  * construction and do not alter them before submission
4035                  * on the physical engine). We use the engine class as a guide
4036                  * here, although that could be refined.
4037                  */
4038                 if (ve->base.class != OTHER_CLASS) {
4039                         if (ve->base.class != sibling->class) {
4040                                 drm_dbg(&i915->drm,
4041                                         "invalid mixing of engine class, sibling %d, already %d\n",
4042                                         sibling->class, ve->base.class);
4043                                 err = -EINVAL;
4044                                 goto err_put;
4045                         }
4046                         continue;
4047                 }
4048
4049                 ve->base.class = sibling->class;
4050                 ve->base.uabi_class = sibling->uabi_class;
4051                 snprintf(ve->base.name, sizeof(ve->base.name),
4052                          "v%dx%d", ve->base.class, count);
4053                 ve->base.context_size = sibling->context_size;
4054
4055                 ve->base.add_active_request = sibling->add_active_request;
4056                 ve->base.remove_active_request = sibling->remove_active_request;
4057                 ve->base.emit_bb_start = sibling->emit_bb_start;
4058                 ve->base.emit_flush = sibling->emit_flush;
4059                 ve->base.emit_init_breadcrumb = sibling->emit_init_breadcrumb;
4060                 ve->base.emit_fini_breadcrumb = sibling->emit_fini_breadcrumb;
4061                 ve->base.emit_fini_breadcrumb_dw =
4062                         sibling->emit_fini_breadcrumb_dw;
4063
4064                 ve->base.flags = sibling->flags;
4065         }
4066
4067         ve->base.flags |= I915_ENGINE_IS_VIRTUAL;
4068
4069         virtual_engine_initial_hint(ve);
4070         return &ve->context;
4071
4072 err_put:
4073         intel_context_put(&ve->context);
4074         return ERR_PTR(err);
4075 }
4076
4077 void intel_execlists_show_requests(struct intel_engine_cs *engine,
4078                                    struct drm_printer *m,
4079                                    void (*show_request)(struct drm_printer *m,
4080                                                         const struct i915_request *rq,
4081                                                         const char *prefix,
4082                                                         int indent),
4083                                    unsigned int max)
4084 {
4085         const struct intel_engine_execlists *execlists = &engine->execlists;
4086         struct i915_sched_engine *sched_engine = engine->sched_engine;
4087         struct i915_request *rq, *last;
4088         unsigned long flags;
4089         unsigned int count;
4090         struct rb_node *rb;
4091
4092         spin_lock_irqsave(&sched_engine->lock, flags);
4093
4094         last = NULL;
4095         count = 0;
4096         list_for_each_entry(rq, &sched_engine->requests, sched.link) {
4097                 if (count++ < max - 1)
4098                         show_request(m, rq, "\t\t", 0);
4099                 else
4100                         last = rq;
4101         }
4102         if (last) {
4103                 if (count > max) {
4104                         drm_printf(m,
4105                                    "\t\t...skipping %d executing requests...\n",
4106                                    count - max);
4107                 }
4108                 show_request(m, last, "\t\t", 0);
4109         }
4110
4111         if (sched_engine->queue_priority_hint != INT_MIN)
4112                 drm_printf(m, "\t\tQueue priority hint: %d\n",
4113                            READ_ONCE(sched_engine->queue_priority_hint));
4114
4115         last = NULL;
4116         count = 0;
4117         for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4118                 struct i915_priolist *p = rb_entry(rb, typeof(*p), node);
4119
4120                 priolist_for_each_request(rq, p) {
4121                         if (count++ < max - 1)
4122                                 show_request(m, rq, "\t\t", 0);
4123                         else
4124                                 last = rq;
4125                 }
4126         }
4127         if (last) {
4128                 if (count > max) {
4129                         drm_printf(m,
4130                                    "\t\t...skipping %d queued requests...\n",
4131                                    count - max);
4132                 }
4133                 show_request(m, last, "\t\t", 0);
4134         }
4135
4136         last = NULL;
4137         count = 0;
4138         for (rb = rb_first_cached(&execlists->virtual); rb; rb = rb_next(rb)) {
4139                 struct virtual_engine *ve =
4140                         rb_entry(rb, typeof(*ve), nodes[engine->id].rb);
4141                 struct i915_request *rq = READ_ONCE(ve->request);
4142
4143                 if (rq) {
4144                         if (count++ < max - 1)
4145                                 show_request(m, rq, "\t\t", 0);
4146                         else
4147                                 last = rq;
4148                 }
4149         }
4150         if (last) {
4151                 if (count > max) {
4152                         drm_printf(m,
4153                                    "\t\t...skipping %d virtual requests...\n",
4154                                    count - max);
4155                 }
4156                 show_request(m, last, "\t\t", 0);
4157         }
4158
4159         spin_unlock_irqrestore(&sched_engine->lock, flags);
4160 }
4161
4162 void intel_execlists_dump_active_requests(struct intel_engine_cs *engine,
4163                                           struct i915_request *hung_rq,
4164                                           struct drm_printer *m)
4165 {
4166         unsigned long flags;
4167
4168         spin_lock_irqsave(&engine->sched_engine->lock, flags);
4169
4170         intel_engine_dump_active_requests(&engine->sched_engine->requests, hung_rq, m);
4171
4172         drm_printf(m, "\tOn hold?: %zu\n",
4173                    list_count_nodes(&engine->sched_engine->hold));
4174
4175         spin_unlock_irqrestore(&engine->sched_engine->lock, flags);
4176 }
4177
4178 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4179 #include "selftest_execlists.c"
4180 #endif