drm/i915/gt: Support multiple pinned timelines
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_user.h"
35 #include "intel_gt.h"
36 #include "intel_gt_requests.h"
37 #include "intel_gt_pm.h"
38 #include "intel_lrc.h"
39 #include "intel_reset.h"
40 #include "intel_ring.h"
41
42 /* Haswell does have the CXT_SIZE register however it does not appear to be
43  * valid. Now, docs explain in dwords what is in the context object. The full
44  * size is 70720 bytes, however, the power context and execlist context will
45  * never be saved (power context is stored elsewhere, and execlists don't work
46  * on HSW) - so the final size, including the extra state required for the
47  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
48  */
49 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
50
51 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
52 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
53 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
54 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
55 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
56
57 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
58
59 #define MAX_MMIO_BASES 3
60 struct engine_info {
61         unsigned int hw_id;
62         u8 class;
63         u8 instance;
64         /* mmio bases table *must* be sorted in reverse gen order */
65         struct engine_mmio_base {
66                 u32 gen : 8;
67                 u32 base : 24;
68         } mmio_bases[MAX_MMIO_BASES];
69 };
70
71 static const struct engine_info intel_engines[] = {
72         [RCS0] = {
73                 .hw_id = RCS0_HW,
74                 .class = RENDER_CLASS,
75                 .instance = 0,
76                 .mmio_bases = {
77                         { .gen = 1, .base = RENDER_RING_BASE }
78                 },
79         },
80         [BCS0] = {
81                 .hw_id = BCS0_HW,
82                 .class = COPY_ENGINE_CLASS,
83                 .instance = 0,
84                 .mmio_bases = {
85                         { .gen = 6, .base = BLT_RING_BASE }
86                 },
87         },
88         [VCS0] = {
89                 .hw_id = VCS0_HW,
90                 .class = VIDEO_DECODE_CLASS,
91                 .instance = 0,
92                 .mmio_bases = {
93                         { .gen = 11, .base = GEN11_BSD_RING_BASE },
94                         { .gen = 6, .base = GEN6_BSD_RING_BASE },
95                         { .gen = 4, .base = BSD_RING_BASE }
96                 },
97         },
98         [VCS1] = {
99                 .hw_id = VCS1_HW,
100                 .class = VIDEO_DECODE_CLASS,
101                 .instance = 1,
102                 .mmio_bases = {
103                         { .gen = 11, .base = GEN11_BSD2_RING_BASE },
104                         { .gen = 8, .base = GEN8_BSD2_RING_BASE }
105                 },
106         },
107         [VCS2] = {
108                 .hw_id = VCS2_HW,
109                 .class = VIDEO_DECODE_CLASS,
110                 .instance = 2,
111                 .mmio_bases = {
112                         { .gen = 11, .base = GEN11_BSD3_RING_BASE }
113                 },
114         },
115         [VCS3] = {
116                 .hw_id = VCS3_HW,
117                 .class = VIDEO_DECODE_CLASS,
118                 .instance = 3,
119                 .mmio_bases = {
120                         { .gen = 11, .base = GEN11_BSD4_RING_BASE }
121                 },
122         },
123         [VECS0] = {
124                 .hw_id = VECS0_HW,
125                 .class = VIDEO_ENHANCEMENT_CLASS,
126                 .instance = 0,
127                 .mmio_bases = {
128                         { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
129                         { .gen = 7, .base = VEBOX_RING_BASE }
130                 },
131         },
132         [VECS1] = {
133                 .hw_id = VECS1_HW,
134                 .class = VIDEO_ENHANCEMENT_CLASS,
135                 .instance = 1,
136                 .mmio_bases = {
137                         { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
138                 },
139         },
140 };
141
142 /**
143  * intel_engine_context_size() - return the size of the context for an engine
144  * @gt: the gt
145  * @class: engine class
146  *
147  * Each engine class may require a different amount of space for a context
148  * image.
149  *
150  * Return: size (in bytes) of an engine class specific context image
151  *
152  * Note: this size includes the HWSP, which is part of the context image
153  * in LRC mode, but does not include the "shared data page" used with
154  * GuC submission. The caller should account for this if using the GuC.
155  */
156 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157 {
158         struct intel_uncore *uncore = gt->uncore;
159         u32 cxt_size;
160
161         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
162
163         switch (class) {
164         case RENDER_CLASS:
165                 switch (INTEL_GEN(gt->i915)) {
166                 default:
167                         MISSING_CASE(INTEL_GEN(gt->i915));
168                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169                 case 12:
170                 case 11:
171                         return GEN11_LR_CONTEXT_RENDER_SIZE;
172                 case 10:
173                         return GEN10_LR_CONTEXT_RENDER_SIZE;
174                 case 9:
175                         return GEN9_LR_CONTEXT_RENDER_SIZE;
176                 case 8:
177                         return GEN8_LR_CONTEXT_RENDER_SIZE;
178                 case 7:
179                         if (IS_HASWELL(gt->i915))
180                                 return HSW_CXT_TOTAL_SIZE;
181
182                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
184                                         PAGE_SIZE);
185                 case 6:
186                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
188                                         PAGE_SIZE);
189                 case 5:
190                 case 4:
191                         /*
192                          * There is a discrepancy here between the size reported
193                          * by the register and the size of the context layout
194                          * in the docs. Both are described as authorative!
195                          *
196                          * The discrepancy is on the order of a few cachelines,
197                          * but the total is under one page (4k), which is our
198                          * minimum allocation anyway so it should all come
199                          * out in the wash.
200                          */
201                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202                         drm_dbg(&gt->i915->drm,
203                                 "gen%d CXT_SIZE = %d bytes [0x%08x]\n",
204                                 INTEL_GEN(gt->i915), cxt_size * 64,
205                                 cxt_size - 1);
206                         return round_up(cxt_size * 64, PAGE_SIZE);
207                 case 3:
208                 case 2:
209                 /* For the special day when i810 gets merged. */
210                 case 1:
211                         return 0;
212                 }
213                 break;
214         default:
215                 MISSING_CASE(class);
216                 /* fall through */
217         case VIDEO_DECODE_CLASS:
218         case VIDEO_ENHANCEMENT_CLASS:
219         case COPY_ENGINE_CLASS:
220                 if (INTEL_GEN(gt->i915) < 8)
221                         return 0;
222                 return GEN8_LR_CONTEXT_OTHER_SIZE;
223         }
224 }
225
226 static u32 __engine_mmio_base(struct drm_i915_private *i915,
227                               const struct engine_mmio_base *bases)
228 {
229         int i;
230
231         for (i = 0; i < MAX_MMIO_BASES; i++)
232                 if (INTEL_GEN(i915) >= bases[i].gen)
233                         break;
234
235         GEM_BUG_ON(i == MAX_MMIO_BASES);
236         GEM_BUG_ON(!bases[i].base);
237
238         return bases[i].base;
239 }
240
241 static void __sprint_engine_name(struct intel_engine_cs *engine)
242 {
243         /*
244          * Before we know what the uABI name for this engine will be,
245          * we still would like to keep track of this engine in the debug logs.
246          * We throw in a ' here as a reminder that this isn't its final name.
247          */
248         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
249                              intel_engine_class_repr(engine->class),
250                              engine->instance) >= sizeof(engine->name));
251 }
252
253 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
254 {
255         /*
256          * Though they added more rings on g4x/ilk, they did not add
257          * per-engine HWSTAM until gen6.
258          */
259         if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260                 return;
261
262         if (INTEL_GEN(engine->i915) >= 3)
263                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
264         else
265                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 }
267
268 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
269 {
270         /* Mask off all writes into the unknown HWSP */
271         intel_engine_set_hwsp_writemask(engine, ~0u);
272 }
273
274 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 {
276         const struct engine_info *info = &intel_engines[id];
277         struct drm_i915_private *i915 = gt->i915;
278         struct intel_engine_cs *engine;
279
280         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
281         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
282
283         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
284                 return -EINVAL;
285
286         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
287                 return -EINVAL;
288
289         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
290                 return -EINVAL;
291
292         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
293                 return -EINVAL;
294
295         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
296         if (!engine)
297                 return -ENOMEM;
298
299         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
300
301         engine->id = id;
302         engine->legacy_idx = INVALID_ENGINE;
303         engine->mask = BIT(id);
304         engine->i915 = i915;
305         engine->gt = gt;
306         engine->uncore = gt->uncore;
307         engine->hw_id = engine->guc_id = info->hw_id;
308         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
309
310         engine->class = info->class;
311         engine->instance = info->instance;
312         __sprint_engine_name(engine);
313
314         engine->props.heartbeat_interval_ms =
315                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
316         engine->props.max_busywait_duration_ns =
317                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
318         engine->props.preempt_timeout_ms =
319                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
320         engine->props.stop_timeout_ms =
321                 CONFIG_DRM_I915_STOP_TIMEOUT;
322         engine->props.timeslice_duration_ms =
323                 CONFIG_DRM_I915_TIMESLICE_DURATION;
324
325         /* Override to uninterruptible for OpenCL workloads. */
326         if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
327                 engine->props.preempt_timeout_ms = 0;
328
329         engine->defaults = engine->props; /* never to change again */
330
331         engine->context_size = intel_engine_context_size(gt, engine->class);
332         if (WARN_ON(engine->context_size > BIT(20)))
333                 engine->context_size = 0;
334         if (engine->context_size)
335                 DRIVER_CAPS(i915)->has_logical_contexts = true;
336
337         /* Nothing to do here, execute in order of dependencies */
338         engine->schedule = NULL;
339
340         ewma__engine_latency_init(&engine->latency);
341         seqlock_init(&engine->stats.lock);
342
343         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
344
345         /* Scrub mmio state on takeover */
346         intel_engine_sanitize_mmio(engine);
347
348         gt->engine_class[info->class][info->instance] = engine;
349         gt->engine[id] = engine;
350
351         return 0;
352 }
353
354 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
355 {
356         struct drm_i915_private *i915 = engine->i915;
357
358         if (engine->class == VIDEO_DECODE_CLASS) {
359                 /*
360                  * HEVC support is present on first engine instance
361                  * before Gen11 and on all instances afterwards.
362                  */
363                 if (INTEL_GEN(i915) >= 11 ||
364                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
365                         engine->uabi_capabilities |=
366                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
367
368                 /*
369                  * SFC block is present only on even logical engine
370                  * instances.
371                  */
372                 if ((INTEL_GEN(i915) >= 11 &&
373                      engine->gt->info.vdbox_sfc_access & engine->mask) ||
374                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
375                         engine->uabi_capabilities |=
376                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
377         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
378                 if (INTEL_GEN(i915) >= 9)
379                         engine->uabi_capabilities |=
380                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
381         }
382 }
383
384 static void intel_setup_engine_capabilities(struct intel_gt *gt)
385 {
386         struct intel_engine_cs *engine;
387         enum intel_engine_id id;
388
389         for_each_engine(engine, gt, id)
390                 __setup_engine_capabilities(engine);
391 }
392
393 /**
394  * intel_engines_release() - free the resources allocated for Command Streamers
395  * @gt: pointer to struct intel_gt
396  */
397 void intel_engines_release(struct intel_gt *gt)
398 {
399         struct intel_engine_cs *engine;
400         enum intel_engine_id id;
401
402         /*
403          * Before we release the resources held by engine, we must be certain
404          * that the HW is no longer accessing them -- having the GPU scribble
405          * to or read from a page being used for something else causes no end
406          * of fun.
407          *
408          * The GPU should be reset by this point, but assume the worst just
409          * in case we aborted before completely initialising the engines.
410          */
411         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
412         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
413                 __intel_gt_reset(gt, ALL_ENGINES);
414
415         /* Decouple the backend; but keep the layout for late GPU resets */
416         for_each_engine(engine, gt, id) {
417                 if (!engine->release)
418                         continue;
419
420                 intel_wakeref_wait_for_idle(&engine->wakeref);
421                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
422
423                 engine->release(engine);
424                 engine->release = NULL;
425
426                 memset(&engine->reset, 0, sizeof(engine->reset));
427         }
428 }
429
430 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
431 {
432         if (!engine->request_pool)
433                 return;
434
435         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
436 }
437
438 void intel_engines_free(struct intel_gt *gt)
439 {
440         struct intel_engine_cs *engine;
441         enum intel_engine_id id;
442
443         /* Free the requests! dma-resv keeps fences around for an eternity */
444         rcu_barrier();
445
446         for_each_engine(engine, gt, id) {
447                 intel_engine_free_request_pool(engine);
448                 kfree(engine);
449                 gt->engine[id] = NULL;
450         }
451 }
452
453 /*
454  * Determine which engines are fused off in our particular hardware.
455  * Note that we have a catch-22 situation where we need to be able to access
456  * the blitter forcewake domain to read the engine fuses, but at the same time
457  * we need to know which engines are available on the system to know which
458  * forcewake domains are present. We solve this by intializing the forcewake
459  * domains based on the full engine mask in the platform capabilities before
460  * calling this function and pruning the domains for fused-off engines
461  * afterwards.
462  */
463 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
464 {
465         struct drm_i915_private *i915 = gt->i915;
466         struct intel_gt_info *info = &gt->info;
467         struct intel_uncore *uncore = gt->uncore;
468         unsigned int logical_vdbox = 0;
469         unsigned int i;
470         u32 media_fuse;
471         u16 vdbox_mask;
472         u16 vebox_mask;
473
474         info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
475
476         if (INTEL_GEN(i915) < 11)
477                 return info->engine_mask;
478
479         media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
480
481         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
482         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
483                       GEN11_GT_VEBOX_DISABLE_SHIFT;
484
485         for (i = 0; i < I915_MAX_VCS; i++) {
486                 if (!HAS_ENGINE(gt, _VCS(i))) {
487                         vdbox_mask &= ~BIT(i);
488                         continue;
489                 }
490
491                 if (!(BIT(i) & vdbox_mask)) {
492                         info->engine_mask &= ~BIT(_VCS(i));
493                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
494                         continue;
495                 }
496
497                 /*
498                  * In Gen11, only even numbered logical VDBOXes are
499                  * hooked up to an SFC (Scaler & Format Converter) unit.
500                  * In TGL each VDBOX has access to an SFC.
501                  */
502                 if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
503                         gt->info.vdbox_sfc_access |= BIT(i);
504         }
505         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
506                 vdbox_mask, VDBOX_MASK(gt));
507         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
508
509         for (i = 0; i < I915_MAX_VECS; i++) {
510                 if (!HAS_ENGINE(gt, _VECS(i))) {
511                         vebox_mask &= ~BIT(i);
512                         continue;
513                 }
514
515                 if (!(BIT(i) & vebox_mask)) {
516                         info->engine_mask &= ~BIT(_VECS(i));
517                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
518                 }
519         }
520         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
521                 vebox_mask, VEBOX_MASK(gt));
522         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
523
524         return info->engine_mask;
525 }
526
527 /**
528  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
529  * @gt: pointer to struct intel_gt
530  *
531  * Return: non-zero if the initialization failed.
532  */
533 int intel_engines_init_mmio(struct intel_gt *gt)
534 {
535         struct drm_i915_private *i915 = gt->i915;
536         const unsigned int engine_mask = init_engine_mask(gt);
537         unsigned int mask = 0;
538         unsigned int i;
539         int err;
540
541         drm_WARN_ON(&i915->drm, engine_mask == 0);
542         drm_WARN_ON(&i915->drm, engine_mask &
543                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
544
545         if (i915_inject_probe_failure(i915))
546                 return -ENODEV;
547
548         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
549                 if (!HAS_ENGINE(gt, i))
550                         continue;
551
552                 err = intel_engine_setup(gt, i);
553                 if (err)
554                         goto cleanup;
555
556                 mask |= BIT(i);
557         }
558
559         /*
560          * Catch failures to update intel_engines table when the new engines
561          * are added to the driver by a warning and disabling the forgotten
562          * engines.
563          */
564         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
565                 gt->info.engine_mask = mask;
566
567         gt->info.num_engines = hweight32(mask);
568
569         intel_gt_check_and_clear_faults(gt);
570
571         intel_setup_engine_capabilities(gt);
572
573         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
574
575         return 0;
576
577 cleanup:
578         intel_engines_free(gt);
579         return err;
580 }
581
582 void intel_engine_init_execlists(struct intel_engine_cs *engine)
583 {
584         struct intel_engine_execlists * const execlists = &engine->execlists;
585
586         execlists->port_mask = 1;
587         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
588         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
589
590         memset(execlists->pending, 0, sizeof(execlists->pending));
591         execlists->active =
592                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
593
594         execlists->queue_priority_hint = INT_MIN;
595         execlists->queue = RB_ROOT_CACHED;
596 }
597
598 static void cleanup_status_page(struct intel_engine_cs *engine)
599 {
600         struct i915_vma *vma;
601
602         /* Prevent writes into HWSP after returning the page to the system */
603         intel_engine_set_hwsp_writemask(engine, ~0u);
604
605         vma = fetch_and_zero(&engine->status_page.vma);
606         if (!vma)
607                 return;
608
609         if (!HWS_NEEDS_PHYSICAL(engine->i915))
610                 i915_vma_unpin(vma);
611
612         i915_gem_object_unpin_map(vma->obj);
613         i915_gem_object_put(vma->obj);
614 }
615
616 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
617                                 struct i915_vma *vma)
618 {
619         unsigned int flags;
620
621         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
622                 /*
623                  * On g33, we cannot place HWS above 256MiB, so
624                  * restrict its pinning to the low mappable arena.
625                  * Though this restriction is not documented for
626                  * gen4, gen5, or byt, they also behave similarly
627                  * and hang if the HWS is placed at the top of the
628                  * GTT. To generalise, it appears that all !llc
629                  * platforms have issues with us placing the HWS
630                  * above the mappable region (even though we never
631                  * actually map it).
632                  */
633                 flags = PIN_MAPPABLE;
634         else
635                 flags = PIN_HIGH;
636
637         return i915_ggtt_pin(vma, 0, flags);
638 }
639
640 static int init_status_page(struct intel_engine_cs *engine)
641 {
642         struct drm_i915_gem_object *obj;
643         struct i915_vma *vma;
644         void *vaddr;
645         int ret;
646
647         /*
648          * Though the HWS register does support 36bit addresses, historically
649          * we have had hangs and corruption reported due to wild writes if
650          * the HWS is placed above 4G. We only allow objects to be allocated
651          * in GFP_DMA32 for i965, and no earlier physical address users had
652          * access to more than 4G.
653          */
654         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
655         if (IS_ERR(obj)) {
656                 drm_err(&engine->i915->drm,
657                         "Failed to allocate status page\n");
658                 return PTR_ERR(obj);
659         }
660
661         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
662
663         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
664         if (IS_ERR(vma)) {
665                 ret = PTR_ERR(vma);
666                 goto err;
667         }
668
669         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
670         if (IS_ERR(vaddr)) {
671                 ret = PTR_ERR(vaddr);
672                 goto err;
673         }
674
675         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
676         engine->status_page.vma = vma;
677
678         if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
679                 ret = pin_ggtt_status_page(engine, vma);
680                 if (ret)
681                         goto err_unpin;
682         }
683
684         return 0;
685
686 err_unpin:
687         i915_gem_object_unpin_map(obj);
688 err:
689         i915_gem_object_put(obj);
690         return ret;
691 }
692
693 static int engine_setup_common(struct intel_engine_cs *engine)
694 {
695         int err;
696
697         init_llist_head(&engine->barrier_tasks);
698
699         err = init_status_page(engine);
700         if (err)
701                 return err;
702
703         intel_engine_init_active(engine, ENGINE_PHYSICAL);
704         intel_engine_init_breadcrumbs(engine);
705         intel_engine_init_execlists(engine);
706         intel_engine_init_cmd_parser(engine);
707         intel_engine_init__pm(engine);
708         intel_engine_init_retire(engine);
709
710         /* Use the whole device by default */
711         engine->sseu =
712                 intel_sseu_from_device_info(&engine->gt->info.sseu);
713
714         intel_engine_init_workarounds(engine);
715         intel_engine_init_whitelist(engine);
716         intel_engine_init_ctx_wa(engine);
717
718         return 0;
719 }
720
721 struct measure_breadcrumb {
722         struct i915_request rq;
723         struct intel_ring ring;
724         u32 cs[2048];
725 };
726
727 static int measure_breadcrumb_dw(struct intel_context *ce)
728 {
729         struct intel_engine_cs *engine = ce->engine;
730         struct measure_breadcrumb *frame;
731         int dw;
732
733         GEM_BUG_ON(!engine->gt->scratch);
734
735         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
736         if (!frame)
737                 return -ENOMEM;
738
739         frame->rq.engine = engine;
740         frame->rq.context = ce;
741         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
742
743         frame->ring.vaddr = frame->cs;
744         frame->ring.size = sizeof(frame->cs);
745         frame->ring.wrap =
746                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
747         frame->ring.effective_size = frame->ring.size;
748         intel_ring_update_space(&frame->ring);
749         frame->rq.ring = &frame->ring;
750
751         mutex_lock(&ce->timeline->mutex);
752         spin_lock_irq(&engine->active.lock);
753
754         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
755
756         spin_unlock_irq(&engine->active.lock);
757         mutex_unlock(&ce->timeline->mutex);
758
759         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
760
761         kfree(frame);
762         return dw;
763 }
764
765 void
766 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
767 {
768         INIT_LIST_HEAD(&engine->active.requests);
769         INIT_LIST_HEAD(&engine->active.hold);
770
771         spin_lock_init(&engine->active.lock);
772         lockdep_set_subclass(&engine->active.lock, subclass);
773
774         /*
775          * Due to an interesting quirk in lockdep's internal debug tracking,
776          * after setting a subclass we must ensure the lock is used. Otherwise,
777          * nr_unused_locks is incremented once too often.
778          */
779 #ifdef CONFIG_DEBUG_LOCK_ALLOC
780         local_irq_disable();
781         lock_map_acquire(&engine->active.lock.dep_map);
782         lock_map_release(&engine->active.lock.dep_map);
783         local_irq_enable();
784 #endif
785 }
786
787 static struct intel_context *
788 create_pinned_context(struct intel_engine_cs *engine,
789                       unsigned int hwsp,
790                       struct lock_class_key *key,
791                       const char *name)
792 {
793         struct intel_context *ce;
794         int err;
795
796         ce = intel_context_create(engine);
797         if (IS_ERR(ce))
798                 return ce;
799
800         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
801         ce->timeline = page_pack_bits(NULL, hwsp);
802
803         err = intel_context_pin(ce); /* perma-pin so it is always available */
804         if (err) {
805                 intel_context_put(ce);
806                 return ERR_PTR(err);
807         }
808
809         /*
810          * Give our perma-pinned kernel timelines a separate lockdep class,
811          * so that we can use them from within the normal user timelines
812          * should we need to inject GPU operations during their request
813          * construction.
814          */
815         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
816
817         return ce;
818 }
819
820 static struct intel_context *
821 create_kernel_context(struct intel_engine_cs *engine)
822 {
823         static struct lock_class_key kernel;
824
825         return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
826                                      &kernel, "kernel_context");
827 }
828
829 /**
830  * intel_engines_init_common - initialize cengine state which might require hw access
831  * @engine: Engine to initialize.
832  *
833  * Initializes @engine@ structure members shared between legacy and execlists
834  * submission modes which do require hardware access.
835  *
836  * Typcally done at later stages of submission mode specific engine setup.
837  *
838  * Returns zero on success or an error code on failure.
839  */
840 static int engine_init_common(struct intel_engine_cs *engine)
841 {
842         struct intel_context *ce;
843         int ret;
844
845         engine->set_default_submission(engine);
846
847         /*
848          * We may need to do things with the shrinker which
849          * require us to immediately switch back to the default
850          * context. This can cause a problem as pinning the
851          * default context also requires GTT space which may not
852          * be available. To avoid this we always pin the default
853          * context.
854          */
855         ce = create_kernel_context(engine);
856         if (IS_ERR(ce))
857                 return PTR_ERR(ce);
858
859         ret = measure_breadcrumb_dw(ce);
860         if (ret < 0)
861                 goto err_context;
862
863         engine->emit_fini_breadcrumb_dw = ret;
864         engine->kernel_context = ce;
865
866         return 0;
867
868 err_context:
869         intel_context_put(ce);
870         return ret;
871 }
872
873 int intel_engines_init(struct intel_gt *gt)
874 {
875         int (*setup)(struct intel_engine_cs *engine);
876         struct intel_engine_cs *engine;
877         enum intel_engine_id id;
878         int err;
879
880         if (HAS_EXECLISTS(gt->i915))
881                 setup = intel_execlists_submission_setup;
882         else
883                 setup = intel_ring_submission_setup;
884
885         for_each_engine(engine, gt, id) {
886                 err = engine_setup_common(engine);
887                 if (err)
888                         return err;
889
890                 err = setup(engine);
891                 if (err)
892                         return err;
893
894                 err = engine_init_common(engine);
895                 if (err)
896                         return err;
897
898                 intel_engine_add_user(engine);
899         }
900
901         return 0;
902 }
903
904 /**
905  * intel_engines_cleanup_common - cleans up the engine state created by
906  *                                the common initiailizers.
907  * @engine: Engine to cleanup.
908  *
909  * This cleans up everything created by the common helpers.
910  */
911 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
912 {
913         GEM_BUG_ON(!list_empty(&engine->active.requests));
914         tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
915
916         cleanup_status_page(engine);
917
918         intel_engine_fini_retire(engine);
919         intel_engine_fini_breadcrumbs(engine);
920         intel_engine_cleanup_cmd_parser(engine);
921
922         if (engine->default_state)
923                 fput(engine->default_state);
924
925         if (engine->kernel_context) {
926                 intel_context_unpin(engine->kernel_context);
927                 intel_context_put(engine->kernel_context);
928         }
929         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
930
931         intel_wa_list_free(&engine->ctx_wa_list);
932         intel_wa_list_free(&engine->wa_list);
933         intel_wa_list_free(&engine->whitelist);
934 }
935
936 /**
937  * intel_engine_resume - re-initializes the HW state of the engine
938  * @engine: Engine to resume.
939  *
940  * Returns zero on success or an error code on failure.
941  */
942 int intel_engine_resume(struct intel_engine_cs *engine)
943 {
944         intel_engine_apply_workarounds(engine);
945         intel_engine_apply_whitelist(engine);
946
947         return engine->resume(engine);
948 }
949
950 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
951 {
952         struct drm_i915_private *i915 = engine->i915;
953
954         u64 acthd;
955
956         if (INTEL_GEN(i915) >= 8)
957                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
958         else if (INTEL_GEN(i915) >= 4)
959                 acthd = ENGINE_READ(engine, RING_ACTHD);
960         else
961                 acthd = ENGINE_READ(engine, ACTHD);
962
963         return acthd;
964 }
965
966 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
967 {
968         u64 bbaddr;
969
970         if (INTEL_GEN(engine->i915) >= 8)
971                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
972         else
973                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
974
975         return bbaddr;
976 }
977
978 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
979 {
980         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
981                 return 0;
982
983         /*
984          * If we are doing a normal GPU reset, we can take our time and allow
985          * the engine to quiesce. We've stopped submission to the engine, and
986          * if we wait long enough an innocent context should complete and
987          * leave the engine idle. So they should not be caught unaware by
988          * the forthcoming GPU reset (which usually follows the stop_cs)!
989          */
990         return READ_ONCE(engine->props.stop_timeout_ms);
991 }
992
993 int intel_engine_stop_cs(struct intel_engine_cs *engine)
994 {
995         struct intel_uncore *uncore = engine->uncore;
996         const u32 base = engine->mmio_base;
997         const i915_reg_t mode = RING_MI_MODE(base);
998         int err;
999
1000         if (INTEL_GEN(engine->i915) < 3)
1001                 return -ENODEV;
1002
1003         ENGINE_TRACE(engine, "\n");
1004
1005         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1006
1007         err = 0;
1008         if (__intel_wait_for_register_fw(uncore,
1009                                          mode, MODE_IDLE, MODE_IDLE,
1010                                          1000, stop_timeout(engine),
1011                                          NULL)) {
1012                 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
1013                 err = -ETIMEDOUT;
1014         }
1015
1016         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1017         intel_uncore_posting_read_fw(uncore, mode);
1018
1019         return err;
1020 }
1021
1022 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1023 {
1024         ENGINE_TRACE(engine, "\n");
1025
1026         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1027 }
1028
1029 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1030 {
1031         switch (type) {
1032         case I915_CACHE_NONE: return " uncached";
1033         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1034         case I915_CACHE_L3_LLC: return " L3+LLC";
1035         case I915_CACHE_WT: return " WT";
1036         default: return "";
1037         }
1038 }
1039
1040 static u32
1041 read_subslice_reg(const struct intel_engine_cs *engine,
1042                   int slice, int subslice, i915_reg_t reg)
1043 {
1044         struct drm_i915_private *i915 = engine->i915;
1045         struct intel_uncore *uncore = engine->uncore;
1046         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1047         enum forcewake_domains fw_domains;
1048
1049         if (INTEL_GEN(i915) >= 11) {
1050                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1051                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1052         } else {
1053                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1054                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1055         }
1056
1057         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1058                                                     FW_REG_READ);
1059         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1060                                                      GEN8_MCR_SELECTOR,
1061                                                      FW_REG_READ | FW_REG_WRITE);
1062
1063         spin_lock_irq(&uncore->lock);
1064         intel_uncore_forcewake_get__locked(uncore, fw_domains);
1065
1066         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1067
1068         mcr &= ~mcr_mask;
1069         mcr |= mcr_ss;
1070         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1071
1072         val = intel_uncore_read_fw(uncore, reg);
1073
1074         mcr &= ~mcr_mask;
1075         mcr |= old_mcr & mcr_mask;
1076
1077         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1078
1079         intel_uncore_forcewake_put__locked(uncore, fw_domains);
1080         spin_unlock_irq(&uncore->lock);
1081
1082         return val;
1083 }
1084
1085 /* NB: please notice the memset */
1086 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1087                                struct intel_instdone *instdone)
1088 {
1089         struct drm_i915_private *i915 = engine->i915;
1090         const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1091         struct intel_uncore *uncore = engine->uncore;
1092         u32 mmio_base = engine->mmio_base;
1093         int slice;
1094         int subslice;
1095
1096         memset(instdone, 0, sizeof(*instdone));
1097
1098         switch (INTEL_GEN(i915)) {
1099         default:
1100                 instdone->instdone =
1101                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1102
1103                 if (engine->id != RCS0)
1104                         break;
1105
1106                 instdone->slice_common =
1107                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1108                 if (INTEL_GEN(i915) >= 12) {
1109                         instdone->slice_common_extra[0] =
1110                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1111                         instdone->slice_common_extra[1] =
1112                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1113                 }
1114                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1115                         instdone->sampler[slice][subslice] =
1116                                 read_subslice_reg(engine, slice, subslice,
1117                                                   GEN7_SAMPLER_INSTDONE);
1118                         instdone->row[slice][subslice] =
1119                                 read_subslice_reg(engine, slice, subslice,
1120                                                   GEN7_ROW_INSTDONE);
1121                 }
1122                 break;
1123         case 7:
1124                 instdone->instdone =
1125                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1126
1127                 if (engine->id != RCS0)
1128                         break;
1129
1130                 instdone->slice_common =
1131                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1132                 instdone->sampler[0][0] =
1133                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1134                 instdone->row[0][0] =
1135                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1136
1137                 break;
1138         case 6:
1139         case 5:
1140         case 4:
1141                 instdone->instdone =
1142                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1143                 if (engine->id == RCS0)
1144                         /* HACK: Using the wrong struct member */
1145                         instdone->slice_common =
1146                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1147                 break;
1148         case 3:
1149         case 2:
1150                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1151                 break;
1152         }
1153 }
1154
1155 static bool ring_is_idle(struct intel_engine_cs *engine)
1156 {
1157         bool idle = true;
1158
1159         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1160                 return true;
1161
1162         if (!intel_engine_pm_get_if_awake(engine))
1163                 return true;
1164
1165         /* First check that no commands are left in the ring */
1166         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1167             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1168                 idle = false;
1169
1170         /* No bit for gen2, so assume the CS parser is idle */
1171         if (INTEL_GEN(engine->i915) > 2 &&
1172             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1173                 idle = false;
1174
1175         intel_engine_pm_put(engine);
1176
1177         return idle;
1178 }
1179
1180 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1181 {
1182         struct tasklet_struct *t = &engine->execlists.tasklet;
1183
1184         if (!t->func)
1185                 return;
1186
1187         /* Synchronise and wait for the tasklet on another CPU */
1188         tasklet_kill(t);
1189
1190         /* Having cancelled the tasklet, ensure that is run */
1191         local_bh_disable();
1192         if (tasklet_trylock(t)) {
1193                 /* Must wait for any GPU reset in progress. */
1194                 if (__tasklet_is_enabled(t))
1195                         t->func(t->data);
1196                 tasklet_unlock(t);
1197         }
1198         local_bh_enable();
1199 }
1200
1201 /**
1202  * intel_engine_is_idle() - Report if the engine has finished process all work
1203  * @engine: the intel_engine_cs
1204  *
1205  * Return true if there are no requests pending, nothing left to be submitted
1206  * to hardware, and that the engine is idle.
1207  */
1208 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1209 {
1210         /* More white lies, if wedged, hw state is inconsistent */
1211         if (intel_gt_is_wedged(engine->gt))
1212                 return true;
1213
1214         if (!intel_engine_pm_is_awake(engine))
1215                 return true;
1216
1217         /* Waiting to drain ELSP? */
1218         if (execlists_active(&engine->execlists)) {
1219                 synchronize_hardirq(engine->i915->drm.pdev->irq);
1220
1221                 intel_engine_flush_submission(engine);
1222
1223                 if (execlists_active(&engine->execlists))
1224                         return false;
1225         }
1226
1227         /* ELSP is empty, but there are ready requests? E.g. after reset */
1228         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1229                 return false;
1230
1231         /* Ring stopped? */
1232         return ring_is_idle(engine);
1233 }
1234
1235 bool intel_engines_are_idle(struct intel_gt *gt)
1236 {
1237         struct intel_engine_cs *engine;
1238         enum intel_engine_id id;
1239
1240         /*
1241          * If the driver is wedged, HW state may be very inconsistent and
1242          * report that it is still busy, even though we have stopped using it.
1243          */
1244         if (intel_gt_is_wedged(gt))
1245                 return true;
1246
1247         /* Already parked (and passed an idleness test); must still be idle */
1248         if (!READ_ONCE(gt->awake))
1249                 return true;
1250
1251         for_each_engine(engine, gt, id) {
1252                 if (!intel_engine_is_idle(engine))
1253                         return false;
1254         }
1255
1256         return true;
1257 }
1258
1259 void intel_engines_reset_default_submission(struct intel_gt *gt)
1260 {
1261         struct intel_engine_cs *engine;
1262         enum intel_engine_id id;
1263
1264         for_each_engine(engine, gt, id)
1265                 engine->set_default_submission(engine);
1266 }
1267
1268 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1269 {
1270         switch (INTEL_GEN(engine->i915)) {
1271         case 2:
1272                 return false; /* uses physical not virtual addresses */
1273         case 3:
1274                 /* maybe only uses physical not virtual addresses */
1275                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1276         case 4:
1277                 return !IS_I965G(engine->i915); /* who knows! */
1278         case 6:
1279                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1280         default:
1281                 return true;
1282         }
1283 }
1284
1285 static int print_sched_attr(const struct i915_sched_attr *attr,
1286                             char *buf, int x, int len)
1287 {
1288         if (attr->priority == I915_PRIORITY_INVALID)
1289                 return x;
1290
1291         x += snprintf(buf + x, len - x,
1292                       " prio=%d", attr->priority);
1293
1294         return x;
1295 }
1296
1297 static void print_request(struct drm_printer *m,
1298                           struct i915_request *rq,
1299                           const char *prefix)
1300 {
1301         const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1302         char buf[80] = "";
1303         int x = 0;
1304
1305         x = print_sched_attr(&rq->sched.attr, buf, x, sizeof(buf));
1306
1307         drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1308                    prefix,
1309                    rq->fence.context, rq->fence.seqno,
1310                    i915_request_completed(rq) ? "!" :
1311                    i915_request_started(rq) ? "*" :
1312                    "",
1313                    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1314                             &rq->fence.flags) ? "+" :
1315                    test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1316                             &rq->fence.flags) ? "-" :
1317                    "",
1318                    buf,
1319                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1320                    name);
1321 }
1322
1323 static struct intel_timeline *get_timeline(struct i915_request *rq)
1324 {
1325         struct intel_timeline *tl;
1326
1327         /*
1328          * Even though we are holding the engine->active.lock here, there
1329          * is no control over the submission queue per-se and we are
1330          * inspecting the active state at a random point in time, with an
1331          * unknown queue. Play safe and make sure the timeline remains valid.
1332          * (Only being used for pretty printing, one extra kref shouldn't
1333          * cause a camel stampede!)
1334          */
1335         rcu_read_lock();
1336         tl = rcu_dereference(rq->timeline);
1337         if (!kref_get_unless_zero(&tl->kref))
1338                 tl = NULL;
1339         rcu_read_unlock();
1340
1341         return tl;
1342 }
1343
1344 static int print_ring(char *buf, int sz, struct i915_request *rq)
1345 {
1346         int len = 0;
1347
1348         if (!i915_request_signaled(rq)) {
1349                 struct intel_timeline *tl = get_timeline(rq);
1350
1351                 len = scnprintf(buf, sz,
1352                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1353                                 i915_ggtt_offset(rq->ring->vma),
1354                                 tl ? tl->hwsp_offset : 0,
1355                                 hwsp_seqno(rq),
1356                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1357                                                       1000 * 1000));
1358
1359                 if (tl)
1360                         intel_timeline_put(tl);
1361         }
1362
1363         return len;
1364 }
1365
1366 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1367 {
1368         const size_t rowsize = 8 * sizeof(u32);
1369         const void *prev = NULL;
1370         bool skip = false;
1371         size_t pos;
1372
1373         for (pos = 0; pos < len; pos += rowsize) {
1374                 char line[128];
1375
1376                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1377                         if (!skip) {
1378                                 drm_printf(m, "*\n");
1379                                 skip = true;
1380                         }
1381                         continue;
1382                 }
1383
1384                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1385                                                 rowsize, sizeof(u32),
1386                                                 line, sizeof(line),
1387                                                 false) >= sizeof(line));
1388                 drm_printf(m, "[%04zx] %s\n", pos, line);
1389
1390                 prev = buf + pos;
1391                 skip = false;
1392         }
1393 }
1394
1395 static const char *repr_timer(const struct timer_list *t)
1396 {
1397         if (!READ_ONCE(t->expires))
1398                 return "inactive";
1399
1400         if (timer_pending(t))
1401                 return "active";
1402
1403         return "expired";
1404 }
1405
1406 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1407                                          struct drm_printer *m)
1408 {
1409         struct drm_i915_private *dev_priv = engine->i915;
1410         struct intel_engine_execlists * const execlists = &engine->execlists;
1411         u64 addr;
1412
1413         if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1414                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1415         if (HAS_EXECLISTS(dev_priv)) {
1416                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1417                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1418                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1419                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1420         }
1421         drm_printf(m, "\tRING_START: 0x%08x\n",
1422                    ENGINE_READ(engine, RING_START));
1423         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1424                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1425         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1426                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1427         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1428                    ENGINE_READ(engine, RING_CTL),
1429                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1430         if (INTEL_GEN(engine->i915) > 2) {
1431                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1432                            ENGINE_READ(engine, RING_MI_MODE),
1433                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1434         }
1435
1436         if (INTEL_GEN(dev_priv) >= 6) {
1437                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
1438                            ENGINE_READ(engine, RING_IMR));
1439                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
1440                            ENGINE_READ(engine, RING_ESR));
1441                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
1442                            ENGINE_READ(engine, RING_EMR));
1443                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
1444                            ENGINE_READ(engine, RING_EIR));
1445         }
1446
1447         addr = intel_engine_get_active_head(engine);
1448         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1449                    upper_32_bits(addr), lower_32_bits(addr));
1450         addr = intel_engine_get_last_batch_head(engine);
1451         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1452                    upper_32_bits(addr), lower_32_bits(addr));
1453         if (INTEL_GEN(dev_priv) >= 8)
1454                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1455         else if (INTEL_GEN(dev_priv) >= 4)
1456                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1457         else
1458                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1459         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1460                    upper_32_bits(addr), lower_32_bits(addr));
1461         if (INTEL_GEN(dev_priv) >= 4) {
1462                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1463                            ENGINE_READ(engine, RING_IPEIR));
1464                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1465                            ENGINE_READ(engine, RING_IPEHR));
1466         } else {
1467                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1468                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1469         }
1470
1471         if (HAS_EXECLISTS(dev_priv)) {
1472                 struct i915_request * const *port, *rq;
1473                 const u32 *hws =
1474                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1475                 const u8 num_entries = execlists->csb_size;
1476                 unsigned int idx;
1477                 u8 read, write;
1478
1479                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1480                            yesno(test_bit(TASKLET_STATE_SCHED,
1481                                           &engine->execlists.tasklet.state)),
1482                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1483                            repr_timer(&engine->execlists.preempt),
1484                            repr_timer(&engine->execlists.timer));
1485
1486                 read = execlists->csb_head;
1487                 write = READ_ONCE(*execlists->csb_write);
1488
1489                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1490                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1491                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1492                            read, write, num_entries);
1493
1494                 if (read >= num_entries)
1495                         read = 0;
1496                 if (write >= num_entries)
1497                         write = 0;
1498                 if (read > write)
1499                         write += num_entries;
1500                 while (read < write) {
1501                         idx = ++read % num_entries;
1502                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1503                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1504                 }
1505
1506                 execlists_active_lock_bh(execlists);
1507                 rcu_read_lock();
1508                 for (port = execlists->active; (rq = *port); port++) {
1509                         char hdr[160];
1510                         int len;
1511
1512                         len = scnprintf(hdr, sizeof(hdr),
1513                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
1514                                         (int)(port - execlists->active),
1515                                         rq->context->lrc.ccid,
1516                                         intel_context_is_closed(rq->context) ? "!" : "",
1517                                         intel_context_is_banned(rq->context) ? "*" : "");
1518                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1519                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1520                         print_request(m, rq, hdr);
1521                 }
1522                 for (port = execlists->pending; (rq = *port); port++) {
1523                         char hdr[160];
1524                         int len;
1525
1526                         len = scnprintf(hdr, sizeof(hdr),
1527                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
1528                                         (int)(port - execlists->pending),
1529                                         rq->context->lrc.ccid,
1530                                         intel_context_is_closed(rq->context) ? "!" : "",
1531                                         intel_context_is_banned(rq->context) ? "*" : "");
1532                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1533                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1534                         print_request(m, rq, hdr);
1535                 }
1536                 rcu_read_unlock();
1537                 execlists_active_unlock_bh(execlists);
1538         } else if (INTEL_GEN(dev_priv) > 6) {
1539                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1540                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1541                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1542                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1543                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1544                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1545         }
1546 }
1547
1548 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1549 {
1550         void *ring;
1551         int size;
1552
1553         drm_printf(m,
1554                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1555                    rq->head, rq->postfix, rq->tail,
1556                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1557                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1558
1559         size = rq->tail - rq->head;
1560         if (rq->tail < rq->head)
1561                 size += rq->ring->size;
1562
1563         ring = kmalloc(size, GFP_ATOMIC);
1564         if (ring) {
1565                 const void *vaddr = rq->ring->vaddr;
1566                 unsigned int head = rq->head;
1567                 unsigned int len = 0;
1568
1569                 if (rq->tail < head) {
1570                         len = rq->ring->size - head;
1571                         memcpy(ring, vaddr + head, len);
1572                         head = 0;
1573                 }
1574                 memcpy(ring + len, vaddr + head, size - len);
1575
1576                 hexdump(m, ring, size);
1577                 kfree(ring);
1578         }
1579 }
1580
1581 static unsigned long list_count(struct list_head *list)
1582 {
1583         struct list_head *pos;
1584         unsigned long count = 0;
1585
1586         list_for_each(pos, list)
1587                 count++;
1588
1589         return count;
1590 }
1591
1592 void intel_engine_dump(struct intel_engine_cs *engine,
1593                        struct drm_printer *m,
1594                        const char *header, ...)
1595 {
1596         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1597         struct i915_request *rq;
1598         intel_wakeref_t wakeref;
1599         unsigned long flags;
1600         ktime_t dummy;
1601
1602         if (header) {
1603                 va_list ap;
1604
1605                 va_start(ap, header);
1606                 drm_vprintf(m, header, &ap);
1607                 va_end(ap);
1608         }
1609
1610         if (intel_gt_is_wedged(engine->gt))
1611                 drm_printf(m, "*** WEDGED ***\n");
1612
1613         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1614         drm_printf(m, "\tBarriers?: %s\n",
1615                    yesno(!llist_empty(&engine->barrier_tasks)));
1616         drm_printf(m, "\tLatency: %luus\n",
1617                    ewma__engine_latency_read(&engine->latency));
1618         if (intel_engine_supports_stats(engine))
1619                 drm_printf(m, "\tRuntime: %llums\n",
1620                            ktime_to_ms(intel_engine_get_busy_time(engine,
1621                                                                   &dummy)));
1622         drm_printf(m, "\tForcewake: %x domains, %d active\n",
1623                    engine->fw_domain, atomic_read(&engine->fw_active));
1624
1625         rcu_read_lock();
1626         rq = READ_ONCE(engine->heartbeat.systole);
1627         if (rq)
1628                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1629                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1630         rcu_read_unlock();
1631         drm_printf(m, "\tReset count: %d (global %d)\n",
1632                    i915_reset_engine_count(error, engine),
1633                    i915_reset_count(error));
1634
1635         drm_printf(m, "\tRequests:\n");
1636
1637         spin_lock_irqsave(&engine->active.lock, flags);
1638         rq = intel_engine_find_active_request(engine);
1639         if (rq) {
1640                 struct intel_timeline *tl = get_timeline(rq);
1641
1642                 print_request(m, rq, "\t\tactive ");
1643
1644                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1645                            i915_ggtt_offset(rq->ring->vma));
1646                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1647                            rq->ring->head);
1648                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1649                            rq->ring->tail);
1650                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1651                            rq->ring->emit);
1652                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1653                            rq->ring->space);
1654
1655                 if (tl) {
1656                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1657                                    tl->hwsp_offset);
1658                         intel_timeline_put(tl);
1659                 }
1660
1661                 print_request_ring(m, rq);
1662
1663                 if (rq->context->lrc_reg_state) {
1664                         drm_printf(m, "Logical Ring Context:\n");
1665                         hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1666                 }
1667         }
1668         drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1669         spin_unlock_irqrestore(&engine->active.lock, flags);
1670
1671         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1672         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1673         if (wakeref) {
1674                 intel_engine_print_registers(engine, m);
1675                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1676         } else {
1677                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1678         }
1679
1680         intel_execlists_show_requests(engine, m, print_request, 8);
1681
1682         drm_printf(m, "HWSP:\n");
1683         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1684
1685         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1686
1687         intel_engine_print_breadcrumbs(engine, m);
1688 }
1689
1690 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1691                                             ktime_t *now)
1692 {
1693         ktime_t total = engine->stats.total;
1694
1695         /*
1696          * If the engine is executing something at the moment
1697          * add it to the total.
1698          */
1699         *now = ktime_get();
1700         if (atomic_read(&engine->stats.active))
1701                 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1702
1703         return total;
1704 }
1705
1706 /**
1707  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1708  * @engine: engine to report on
1709  * @now: monotonic timestamp of sampling
1710  *
1711  * Returns accumulated time @engine was busy since engine stats were enabled.
1712  */
1713 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1714 {
1715         unsigned int seq;
1716         ktime_t total;
1717
1718         do {
1719                 seq = read_seqbegin(&engine->stats.lock);
1720                 total = __intel_engine_get_busy_time(engine, now);
1721         } while (read_seqretry(&engine->stats.lock, seq));
1722
1723         return total;
1724 }
1725
1726 static bool match_ring(struct i915_request *rq)
1727 {
1728         u32 ring = ENGINE_READ(rq->engine, RING_START);
1729
1730         return ring == i915_ggtt_offset(rq->ring->vma);
1731 }
1732
1733 struct i915_request *
1734 intel_engine_find_active_request(struct intel_engine_cs *engine)
1735 {
1736         struct i915_request *request, *active = NULL;
1737
1738         /*
1739          * We are called by the error capture, reset and to dump engine
1740          * state at random points in time. In particular, note that neither is
1741          * crucially ordered with an interrupt. After a hang, the GPU is dead
1742          * and we assume that no more writes can happen (we waited long enough
1743          * for all writes that were in transaction to be flushed) - adding an
1744          * extra delay for a recent interrupt is pointless. Hence, we do
1745          * not need an engine->irq_seqno_barrier() before the seqno reads.
1746          * At all other times, we must assume the GPU is still running, but
1747          * we only care about the snapshot of this moment.
1748          */
1749         lockdep_assert_held(&engine->active.lock);
1750
1751         rcu_read_lock();
1752         request = execlists_active(&engine->execlists);
1753         if (request) {
1754                 struct intel_timeline *tl = request->context->timeline;
1755
1756                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1757                         if (i915_request_completed(request))
1758                                 break;
1759
1760                         active = request;
1761                 }
1762         }
1763         rcu_read_unlock();
1764         if (active)
1765                 return active;
1766
1767         list_for_each_entry(request, &engine->active.requests, sched.link) {
1768                 if (i915_request_completed(request))
1769                         continue;
1770
1771                 if (!i915_request_started(request))
1772                         continue;
1773
1774                 /* More than one preemptible request may match! */
1775                 if (!match_ring(request))
1776                         continue;
1777
1778                 active = request;
1779                 break;
1780         }
1781
1782         return active;
1783 }
1784
1785 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1786 #include "mock_engine.c"
1787 #include "selftest_engine.c"
1788 #include "selftest_engine_cs.c"
1789 #endif