f8113bc756c66304972ab4f5b96a8aa99742915f
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "gt/intel_gt.h"
32
33 #include "intel_engine.h"
34 #include "intel_engine_pm.h"
35 #include "intel_engine_pool.h"
36 #include "intel_engine_user.h"
37 #include "intel_context.h"
38 #include "intel_lrc.h"
39 #include "intel_reset.h"
40 #include "intel_ring.h"
41
42 /* Haswell does have the CXT_SIZE register however it does not appear to be
43  * valid. Now, docs explain in dwords what is in the context object. The full
44  * size is 70720 bytes, however, the power context and execlist context will
45  * never be saved (power context is stored elsewhere, and execlists don't work
46  * on HSW) - so the final size, including the extra state required for the
47  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
48  */
49 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
50
51 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
52 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
53 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
54 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
55 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
56
57 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
58
59 #define MAX_MMIO_BASES 3
60 struct engine_info {
61         unsigned int hw_id;
62         u8 class;
63         u8 instance;
64         /* mmio bases table *must* be sorted in reverse gen order */
65         struct engine_mmio_base {
66                 u32 gen : 8;
67                 u32 base : 24;
68         } mmio_bases[MAX_MMIO_BASES];
69 };
70
71 static const struct engine_info intel_engines[] = {
72         [RCS0] = {
73                 .hw_id = RCS0_HW,
74                 .class = RENDER_CLASS,
75                 .instance = 0,
76                 .mmio_bases = {
77                         { .gen = 1, .base = RENDER_RING_BASE }
78                 },
79         },
80         [BCS0] = {
81                 .hw_id = BCS0_HW,
82                 .class = COPY_ENGINE_CLASS,
83                 .instance = 0,
84                 .mmio_bases = {
85                         { .gen = 6, .base = BLT_RING_BASE }
86                 },
87         },
88         [VCS0] = {
89                 .hw_id = VCS0_HW,
90                 .class = VIDEO_DECODE_CLASS,
91                 .instance = 0,
92                 .mmio_bases = {
93                         { .gen = 11, .base = GEN11_BSD_RING_BASE },
94                         { .gen = 6, .base = GEN6_BSD_RING_BASE },
95                         { .gen = 4, .base = BSD_RING_BASE }
96                 },
97         },
98         [VCS1] = {
99                 .hw_id = VCS1_HW,
100                 .class = VIDEO_DECODE_CLASS,
101                 .instance = 1,
102                 .mmio_bases = {
103                         { .gen = 11, .base = GEN11_BSD2_RING_BASE },
104                         { .gen = 8, .base = GEN8_BSD2_RING_BASE }
105                 },
106         },
107         [VCS2] = {
108                 .hw_id = VCS2_HW,
109                 .class = VIDEO_DECODE_CLASS,
110                 .instance = 2,
111                 .mmio_bases = {
112                         { .gen = 11, .base = GEN11_BSD3_RING_BASE }
113                 },
114         },
115         [VCS3] = {
116                 .hw_id = VCS3_HW,
117                 .class = VIDEO_DECODE_CLASS,
118                 .instance = 3,
119                 .mmio_bases = {
120                         { .gen = 11, .base = GEN11_BSD4_RING_BASE }
121                 },
122         },
123         [VECS0] = {
124                 .hw_id = VECS0_HW,
125                 .class = VIDEO_ENHANCEMENT_CLASS,
126                 .instance = 0,
127                 .mmio_bases = {
128                         { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
129                         { .gen = 7, .base = VEBOX_RING_BASE }
130                 },
131         },
132         [VECS1] = {
133                 .hw_id = VECS1_HW,
134                 .class = VIDEO_ENHANCEMENT_CLASS,
135                 .instance = 1,
136                 .mmio_bases = {
137                         { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
138                 },
139         },
140 };
141
142 /**
143  * intel_engine_context_size() - return the size of the context for an engine
144  * @dev_priv: i915 device private
145  * @class: engine class
146  *
147  * Each engine class may require a different amount of space for a context
148  * image.
149  *
150  * Return: size (in bytes) of an engine class specific context image
151  *
152  * Note: this size includes the HWSP, which is part of the context image
153  * in LRC mode, but does not include the "shared data page" used with
154  * GuC submission. The caller should account for this if using the GuC.
155  */
156 u32 intel_engine_context_size(struct drm_i915_private *dev_priv, u8 class)
157 {
158         u32 cxt_size;
159
160         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
161
162         switch (class) {
163         case RENDER_CLASS:
164                 switch (INTEL_GEN(dev_priv)) {
165                 default:
166                         MISSING_CASE(INTEL_GEN(dev_priv));
167                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
168                 case 12:
169                 case 11:
170                         return GEN11_LR_CONTEXT_RENDER_SIZE;
171                 case 10:
172                         return GEN10_LR_CONTEXT_RENDER_SIZE;
173                 case 9:
174                         return GEN9_LR_CONTEXT_RENDER_SIZE;
175                 case 8:
176                         return GEN8_LR_CONTEXT_RENDER_SIZE;
177                 case 7:
178                         if (IS_HASWELL(dev_priv))
179                                 return HSW_CXT_TOTAL_SIZE;
180
181                         cxt_size = I915_READ(GEN7_CXT_SIZE);
182                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
183                                         PAGE_SIZE);
184                 case 6:
185                         cxt_size = I915_READ(CXT_SIZE);
186                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
187                                         PAGE_SIZE);
188                 case 5:
189                 case 4:
190                         /*
191                          * There is a discrepancy here between the size reported
192                          * by the register and the size of the context layout
193                          * in the docs. Both are described as authorative!
194                          *
195                          * The discrepancy is on the order of a few cachelines,
196                          * but the total is under one page (4k), which is our
197                          * minimum allocation anyway so it should all come
198                          * out in the wash.
199                          */
200                         cxt_size = I915_READ(CXT_SIZE) + 1;
201                         DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
202                                          INTEL_GEN(dev_priv),
203                                          cxt_size * 64,
204                                          cxt_size - 1);
205                         return round_up(cxt_size * 64, PAGE_SIZE);
206                 case 3:
207                 case 2:
208                 /* For the special day when i810 gets merged. */
209                 case 1:
210                         return 0;
211                 }
212                 break;
213         default:
214                 MISSING_CASE(class);
215                 /* fall through */
216         case VIDEO_DECODE_CLASS:
217         case VIDEO_ENHANCEMENT_CLASS:
218         case COPY_ENGINE_CLASS:
219                 if (INTEL_GEN(dev_priv) < 8)
220                         return 0;
221                 return GEN8_LR_CONTEXT_OTHER_SIZE;
222         }
223 }
224
225 static u32 __engine_mmio_base(struct drm_i915_private *i915,
226                               const struct engine_mmio_base *bases)
227 {
228         int i;
229
230         for (i = 0; i < MAX_MMIO_BASES; i++)
231                 if (INTEL_GEN(i915) >= bases[i].gen)
232                         break;
233
234         GEM_BUG_ON(i == MAX_MMIO_BASES);
235         GEM_BUG_ON(!bases[i].base);
236
237         return bases[i].base;
238 }
239
240 static void __sprint_engine_name(struct intel_engine_cs *engine)
241 {
242         /*
243          * Before we know what the uABI name for this engine will be,
244          * we still would like to keep track of this engine in the debug logs.
245          * We throw in a ' here as a reminder that this isn't its final name.
246          */
247         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
248                              intel_engine_class_repr(engine->class),
249                              engine->instance) >= sizeof(engine->name));
250 }
251
252 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
253 {
254         /*
255          * Though they added more rings on g4x/ilk, they did not add
256          * per-engine HWSTAM until gen6.
257          */
258         if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
259                 return;
260
261         if (INTEL_GEN(engine->i915) >= 3)
262                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
263         else
264                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
265 }
266
267 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
268 {
269         /* Mask off all writes into the unknown HWSP */
270         intel_engine_set_hwsp_writemask(engine, ~0u);
271 }
272
273 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
274 {
275         const struct engine_info *info = &intel_engines[id];
276         struct intel_engine_cs *engine;
277
278         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
279         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
280
281         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
282                 return -EINVAL;
283
284         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
285                 return -EINVAL;
286
287         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
288                 return -EINVAL;
289
290         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
291                 return -EINVAL;
292
293         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
294         if (!engine)
295                 return -ENOMEM;
296
297         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
298
299         engine->id = id;
300         engine->legacy_idx = INVALID_ENGINE;
301         engine->mask = BIT(id);
302         engine->i915 = gt->i915;
303         engine->gt = gt;
304         engine->uncore = gt->uncore;
305         engine->hw_id = engine->guc_id = info->hw_id;
306         engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
307
308         engine->class = info->class;
309         engine->instance = info->instance;
310         __sprint_engine_name(engine);
311
312         engine->props.heartbeat_interval_ms =
313                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
314         engine->props.preempt_timeout_ms =
315                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
316         engine->props.stop_timeout_ms =
317                 CONFIG_DRM_I915_STOP_TIMEOUT;
318         engine->props.timeslice_duration_ms =
319                 CONFIG_DRM_I915_TIMESLICE_DURATION;
320
321         /*
322          * To be overridden by the backend on setup. However to facilitate
323          * cleanup on error during setup, we always provide the destroy vfunc.
324          */
325         engine->destroy = (typeof(engine->destroy))kfree;
326
327         engine->context_size = intel_engine_context_size(gt->i915,
328                                                          engine->class);
329         if (WARN_ON(engine->context_size > BIT(20)))
330                 engine->context_size = 0;
331         if (engine->context_size)
332                 DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
333
334         /* Nothing to do here, execute in order of dependencies */
335         engine->schedule = NULL;
336
337         seqlock_init(&engine->stats.lock);
338
339         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
340
341         /* Scrub mmio state on takeover */
342         intel_engine_sanitize_mmio(engine);
343
344         gt->engine_class[info->class][info->instance] = engine;
345         gt->engine[id] = engine;
346
347         intel_engine_add_user(engine);
348         gt->i915->engine[id] = engine;
349
350         return 0;
351 }
352
353 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
354 {
355         struct drm_i915_private *i915 = engine->i915;
356
357         if (engine->class == VIDEO_DECODE_CLASS) {
358                 /*
359                  * HEVC support is present on first engine instance
360                  * before Gen11 and on all instances afterwards.
361                  */
362                 if (INTEL_GEN(i915) >= 11 ||
363                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
364                         engine->uabi_capabilities |=
365                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
366
367                 /*
368                  * SFC block is present only on even logical engine
369                  * instances.
370                  */
371                 if ((INTEL_GEN(i915) >= 11 &&
372                      RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
373                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
374                         engine->uabi_capabilities |=
375                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
376         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
377                 if (INTEL_GEN(i915) >= 9)
378                         engine->uabi_capabilities |=
379                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
380         }
381 }
382
383 static void intel_setup_engine_capabilities(struct intel_gt *gt)
384 {
385         struct intel_engine_cs *engine;
386         enum intel_engine_id id;
387
388         for_each_engine(engine, gt, id)
389                 __setup_engine_capabilities(engine);
390 }
391
392 /**
393  * intel_engines_cleanup() - free the resources allocated for Command Streamers
394  * @gt: pointer to struct intel_gt
395  */
396 void intel_engines_cleanup(struct intel_gt *gt)
397 {
398         struct intel_engine_cs *engine;
399         enum intel_engine_id id;
400
401         for_each_engine(engine, gt, id) {
402                 engine->destroy(engine);
403                 gt->engine[id] = NULL;
404                 gt->i915->engine[id] = NULL;
405         }
406 }
407
408 /**
409  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
410  * @gt: pointer to struct intel_gt
411  *
412  * Return: non-zero if the initialization failed.
413  */
414 int intel_engines_init_mmio(struct intel_gt *gt)
415 {
416         struct drm_i915_private *i915 = gt->i915;
417         struct intel_device_info *device_info = mkwrite_device_info(i915);
418         const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
419         unsigned int mask = 0;
420         unsigned int i;
421         int err;
422
423         WARN_ON(engine_mask == 0);
424         WARN_ON(engine_mask &
425                 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
426
427         if (i915_inject_probe_failure(i915))
428                 return -ENODEV;
429
430         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
431                 if (!HAS_ENGINE(i915, i))
432                         continue;
433
434                 err = intel_engine_setup(gt, i);
435                 if (err)
436                         goto cleanup;
437
438                 mask |= BIT(i);
439         }
440
441         /*
442          * Catch failures to update intel_engines table when the new engines
443          * are added to the driver by a warning and disabling the forgotten
444          * engines.
445          */
446         if (WARN_ON(mask != engine_mask))
447                 device_info->engine_mask = mask;
448
449         RUNTIME_INFO(i915)->num_engines = hweight32(mask);
450
451         intel_gt_check_and_clear_faults(gt);
452
453         intel_setup_engine_capabilities(gt);
454
455         return 0;
456
457 cleanup:
458         intel_engines_cleanup(gt);
459         return err;
460 }
461
462 /**
463  * intel_engines_init() - init the Engine Command Streamers
464  * @gt: pointer to struct intel_gt
465  *
466  * Return: non-zero if the initialization failed.
467  */
468 int intel_engines_init(struct intel_gt *gt)
469 {
470         int (*init)(struct intel_engine_cs *engine);
471         struct intel_engine_cs *engine;
472         enum intel_engine_id id;
473         int err;
474
475         if (HAS_EXECLISTS(gt->i915))
476                 init = intel_execlists_submission_init;
477         else
478                 init = intel_ring_submission_init;
479
480         for_each_engine(engine, gt, id) {
481                 err = init(engine);
482                 if (err)
483                         goto cleanup;
484         }
485
486         return 0;
487
488 cleanup:
489         intel_engines_cleanup(gt);
490         return err;
491 }
492
493 void intel_engine_init_execlists(struct intel_engine_cs *engine)
494 {
495         struct intel_engine_execlists * const execlists = &engine->execlists;
496
497         execlists->port_mask = 1;
498         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
499         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
500
501         memset(execlists->pending, 0, sizeof(execlists->pending));
502         execlists->active =
503                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
504
505         execlists->queue_priority_hint = INT_MIN;
506         execlists->queue = RB_ROOT_CACHED;
507 }
508
509 static void cleanup_status_page(struct intel_engine_cs *engine)
510 {
511         struct i915_vma *vma;
512
513         /* Prevent writes into HWSP after returning the page to the system */
514         intel_engine_set_hwsp_writemask(engine, ~0u);
515
516         vma = fetch_and_zero(&engine->status_page.vma);
517         if (!vma)
518                 return;
519
520         if (!HWS_NEEDS_PHYSICAL(engine->i915))
521                 i915_vma_unpin(vma);
522
523         i915_gem_object_unpin_map(vma->obj);
524         i915_gem_object_put(vma->obj);
525 }
526
527 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
528                                 struct i915_vma *vma)
529 {
530         unsigned int flags;
531
532         flags = PIN_GLOBAL;
533         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
534                 /*
535                  * On g33, we cannot place HWS above 256MiB, so
536                  * restrict its pinning to the low mappable arena.
537                  * Though this restriction is not documented for
538                  * gen4, gen5, or byt, they also behave similarly
539                  * and hang if the HWS is placed at the top of the
540                  * GTT. To generalise, it appears that all !llc
541                  * platforms have issues with us placing the HWS
542                  * above the mappable region (even though we never
543                  * actually map it).
544                  */
545                 flags |= PIN_MAPPABLE;
546         else
547                 flags |= PIN_HIGH;
548
549         return i915_vma_pin(vma, 0, 0, flags);
550 }
551
552 static int init_status_page(struct intel_engine_cs *engine)
553 {
554         struct drm_i915_gem_object *obj;
555         struct i915_vma *vma;
556         void *vaddr;
557         int ret;
558
559         /*
560          * Though the HWS register does support 36bit addresses, historically
561          * we have had hangs and corruption reported due to wild writes if
562          * the HWS is placed above 4G. We only allow objects to be allocated
563          * in GFP_DMA32 for i965, and no earlier physical address users had
564          * access to more than 4G.
565          */
566         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
567         if (IS_ERR(obj)) {
568                 DRM_ERROR("Failed to allocate status page\n");
569                 return PTR_ERR(obj);
570         }
571
572         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
573
574         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
575         if (IS_ERR(vma)) {
576                 ret = PTR_ERR(vma);
577                 goto err;
578         }
579
580         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
581         if (IS_ERR(vaddr)) {
582                 ret = PTR_ERR(vaddr);
583                 goto err;
584         }
585
586         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
587         engine->status_page.vma = vma;
588
589         if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
590                 ret = pin_ggtt_status_page(engine, vma);
591                 if (ret)
592                         goto err_unpin;
593         }
594
595         return 0;
596
597 err_unpin:
598         i915_gem_object_unpin_map(obj);
599 err:
600         i915_gem_object_put(obj);
601         return ret;
602 }
603
604 static int intel_engine_setup_common(struct intel_engine_cs *engine)
605 {
606         int err;
607
608         init_llist_head(&engine->barrier_tasks);
609
610         err = init_status_page(engine);
611         if (err)
612                 return err;
613
614         intel_engine_init_active(engine, ENGINE_PHYSICAL);
615         intel_engine_init_breadcrumbs(engine);
616         intel_engine_init_execlists(engine);
617         intel_engine_init_cmd_parser(engine);
618         intel_engine_init__pm(engine);
619
620         intel_engine_pool_init(&engine->pool);
621
622         /* Use the whole device by default */
623         engine->sseu =
624                 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
625
626         intel_engine_init_workarounds(engine);
627         intel_engine_init_whitelist(engine);
628         intel_engine_init_ctx_wa(engine);
629
630         return 0;
631 }
632
633 /**
634  * intel_engines_setup- setup engine state not requiring hw access
635  * @gt: pointer to struct intel_gt
636  *
637  * Initializes engine structure members shared between legacy and execlists
638  * submission modes which do not require hardware access.
639  *
640  * Typically done early in the submission mode specific engine setup stage.
641  */
642 int intel_engines_setup(struct intel_gt *gt)
643 {
644         int (*setup)(struct intel_engine_cs *engine);
645         struct intel_engine_cs *engine;
646         enum intel_engine_id id;
647         int err;
648
649         if (HAS_EXECLISTS(gt->i915))
650                 setup = intel_execlists_submission_setup;
651         else
652                 setup = intel_ring_submission_setup;
653
654         for_each_engine(engine, gt, id) {
655                 err = intel_engine_setup_common(engine);
656                 if (err)
657                         goto cleanup;
658
659                 err = setup(engine);
660                 if (err)
661                         goto cleanup;
662
663                 /* We expect the backend to take control over its state */
664                 GEM_BUG_ON(engine->destroy == (typeof(engine->destroy))kfree);
665
666                 GEM_BUG_ON(!engine->cops);
667         }
668
669         return 0;
670
671 cleanup:
672         intel_engines_cleanup(gt);
673         return err;
674 }
675
676 struct measure_breadcrumb {
677         struct i915_request rq;
678         struct intel_timeline timeline;
679         struct intel_ring ring;
680         u32 cs[1024];
681 };
682
683 static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
684 {
685         struct measure_breadcrumb *frame;
686         int dw = -ENOMEM;
687
688         GEM_BUG_ON(!engine->gt->scratch);
689
690         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
691         if (!frame)
692                 return -ENOMEM;
693
694         if (intel_timeline_init(&frame->timeline,
695                                 engine->gt,
696                                 engine->status_page.vma))
697                 goto out_frame;
698
699         mutex_lock(&frame->timeline.mutex);
700
701         frame->ring.vaddr = frame->cs;
702         frame->ring.size = sizeof(frame->cs);
703         frame->ring.effective_size = frame->ring.size;
704         intel_ring_update_space(&frame->ring);
705
706         frame->rq.i915 = engine->i915;
707         frame->rq.engine = engine;
708         frame->rq.ring = &frame->ring;
709         rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
710
711         dw = intel_timeline_pin(&frame->timeline);
712         if (dw < 0)
713                 goto out_timeline;
714
715         spin_lock_irq(&engine->active.lock);
716         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
717         spin_unlock_irq(&engine->active.lock);
718
719         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
720
721         intel_timeline_unpin(&frame->timeline);
722
723 out_timeline:
724         mutex_unlock(&frame->timeline.mutex);
725         intel_timeline_fini(&frame->timeline);
726 out_frame:
727         kfree(frame);
728         return dw;
729 }
730
731 void
732 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
733 {
734         INIT_LIST_HEAD(&engine->active.requests);
735
736         spin_lock_init(&engine->active.lock);
737         lockdep_set_subclass(&engine->active.lock, subclass);
738
739         /*
740          * Due to an interesting quirk in lockdep's internal debug tracking,
741          * after setting a subclass we must ensure the lock is used. Otherwise,
742          * nr_unused_locks is incremented once too often.
743          */
744 #ifdef CONFIG_DEBUG_LOCK_ALLOC
745         local_irq_disable();
746         lock_map_acquire(&engine->active.lock.dep_map);
747         lock_map_release(&engine->active.lock.dep_map);
748         local_irq_enable();
749 #endif
750 }
751
752 static struct intel_context *
753 create_kernel_context(struct intel_engine_cs *engine)
754 {
755         static struct lock_class_key kernel;
756         struct intel_context *ce;
757         int err;
758
759         ce = intel_context_create(engine->i915->kernel_context, engine);
760         if (IS_ERR(ce))
761                 return ce;
762
763         ce->ring = __intel_context_ring_size(SZ_4K);
764
765         err = intel_context_pin(ce);
766         if (err) {
767                 intel_context_put(ce);
768                 return ERR_PTR(err);
769         }
770
771         /*
772          * Give our perma-pinned kernel timelines a separate lockdep class,
773          * so that we can use them from within the normal user timelines
774          * should we need to inject GPU operations during their request
775          * construction.
776          */
777         lockdep_set_class(&ce->timeline->mutex, &kernel);
778
779         return ce;
780 }
781
782 /**
783  * intel_engines_init_common - initialize cengine state which might require hw access
784  * @engine: Engine to initialize.
785  *
786  * Initializes @engine@ structure members shared between legacy and execlists
787  * submission modes which do require hardware access.
788  *
789  * Typcally done at later stages of submission mode specific engine setup.
790  *
791  * Returns zero on success or an error code on failure.
792  */
793 int intel_engine_init_common(struct intel_engine_cs *engine)
794 {
795         struct intel_context *ce;
796         int ret;
797
798         engine->set_default_submission(engine);
799
800         /*
801          * We may need to do things with the shrinker which
802          * require us to immediately switch back to the default
803          * context. This can cause a problem as pinning the
804          * default context also requires GTT space which may not
805          * be available. To avoid this we always pin the default
806          * context.
807          */
808         ce = create_kernel_context(engine);
809         if (IS_ERR(ce))
810                 return PTR_ERR(ce);
811
812         engine->kernel_context = ce;
813
814         ret = measure_breadcrumb_dw(engine);
815         if (ret < 0)
816                 goto err_unpin;
817
818         engine->emit_fini_breadcrumb_dw = ret;
819
820         return 0;
821
822 err_unpin:
823         intel_context_unpin(ce);
824         intel_context_put(ce);
825         return ret;
826 }
827
828 /**
829  * intel_engines_cleanup_common - cleans up the engine state created by
830  *                                the common initiailizers.
831  * @engine: Engine to cleanup.
832  *
833  * This cleans up everything created by the common helpers.
834  */
835 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
836 {
837         GEM_BUG_ON(!list_empty(&engine->active.requests));
838
839         cleanup_status_page(engine);
840
841         intel_engine_pool_fini(&engine->pool);
842         intel_engine_fini_breadcrumbs(engine);
843         intel_engine_cleanup_cmd_parser(engine);
844
845         if (engine->default_state)
846                 i915_gem_object_put(engine->default_state);
847
848         if (engine->kernel_context) {
849                 intel_context_unpin(engine->kernel_context);
850                 intel_context_put(engine->kernel_context);
851         }
852         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
853
854         intel_wa_list_free(&engine->ctx_wa_list);
855         intel_wa_list_free(&engine->wa_list);
856         intel_wa_list_free(&engine->whitelist);
857 }
858
859 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
860 {
861         struct drm_i915_private *i915 = engine->i915;
862
863         u64 acthd;
864
865         if (INTEL_GEN(i915) >= 8)
866                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
867         else if (INTEL_GEN(i915) >= 4)
868                 acthd = ENGINE_READ(engine, RING_ACTHD);
869         else
870                 acthd = ENGINE_READ(engine, ACTHD);
871
872         return acthd;
873 }
874
875 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
876 {
877         u64 bbaddr;
878
879         if (INTEL_GEN(engine->i915) >= 8)
880                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
881         else
882                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
883
884         return bbaddr;
885 }
886
887 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
888 {
889         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
890                 return 0;
891
892         /*
893          * If we are doing a normal GPU reset, we can take our time and allow
894          * the engine to quiesce. We've stopped submission to the engine, and
895          * if we wait long enough an innocent context should complete and
896          * leave the engine idle. So they should not be caught unaware by
897          * the forthcoming GPU reset (which usually follows the stop_cs)!
898          */
899         return READ_ONCE(engine->props.stop_timeout_ms);
900 }
901
902 int intel_engine_stop_cs(struct intel_engine_cs *engine)
903 {
904         struct intel_uncore *uncore = engine->uncore;
905         const u32 base = engine->mmio_base;
906         const i915_reg_t mode = RING_MI_MODE(base);
907         int err;
908
909         if (INTEL_GEN(engine->i915) < 3)
910                 return -ENODEV;
911
912         GEM_TRACE("%s\n", engine->name);
913
914         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
915
916         err = 0;
917         if (__intel_wait_for_register_fw(uncore,
918                                          mode, MODE_IDLE, MODE_IDLE,
919                                          1000, stop_timeout(engine),
920                                          NULL)) {
921                 GEM_TRACE("%s: timed out on STOP_RING -> IDLE\n", engine->name);
922                 err = -ETIMEDOUT;
923         }
924
925         /* A final mmio read to let GPU writes be hopefully flushed to memory */
926         intel_uncore_posting_read_fw(uncore, mode);
927
928         return err;
929 }
930
931 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
932 {
933         GEM_TRACE("%s\n", engine->name);
934
935         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
936 }
937
938 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
939 {
940         switch (type) {
941         case I915_CACHE_NONE: return " uncached";
942         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
943         case I915_CACHE_L3_LLC: return " L3+LLC";
944         case I915_CACHE_WT: return " WT";
945         default: return "";
946         }
947 }
948
949 static u32
950 read_subslice_reg(struct intel_engine_cs *engine, int slice, int subslice,
951                   i915_reg_t reg)
952 {
953         struct drm_i915_private *i915 = engine->i915;
954         struct intel_uncore *uncore = engine->uncore;
955         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
956         enum forcewake_domains fw_domains;
957
958         if (INTEL_GEN(i915) >= 11) {
959                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
960                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
961         } else {
962                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
963                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
964         }
965
966         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
967                                                     FW_REG_READ);
968         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
969                                                      GEN8_MCR_SELECTOR,
970                                                      FW_REG_READ | FW_REG_WRITE);
971
972         spin_lock_irq(&uncore->lock);
973         intel_uncore_forcewake_get__locked(uncore, fw_domains);
974
975         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
976
977         mcr &= ~mcr_mask;
978         mcr |= mcr_ss;
979         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
980
981         val = intel_uncore_read_fw(uncore, reg);
982
983         mcr &= ~mcr_mask;
984         mcr |= old_mcr & mcr_mask;
985
986         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
987
988         intel_uncore_forcewake_put__locked(uncore, fw_domains);
989         spin_unlock_irq(&uncore->lock);
990
991         return val;
992 }
993
994 /* NB: please notice the memset */
995 void intel_engine_get_instdone(struct intel_engine_cs *engine,
996                                struct intel_instdone *instdone)
997 {
998         struct drm_i915_private *i915 = engine->i915;
999         const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
1000         struct intel_uncore *uncore = engine->uncore;
1001         u32 mmio_base = engine->mmio_base;
1002         int slice;
1003         int subslice;
1004
1005         memset(instdone, 0, sizeof(*instdone));
1006
1007         switch (INTEL_GEN(i915)) {
1008         default:
1009                 instdone->instdone =
1010                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1011
1012                 if (engine->id != RCS0)
1013                         break;
1014
1015                 instdone->slice_common =
1016                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1017                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1018                         instdone->sampler[slice][subslice] =
1019                                 read_subslice_reg(engine, slice, subslice,
1020                                                   GEN7_SAMPLER_INSTDONE);
1021                         instdone->row[slice][subslice] =
1022                                 read_subslice_reg(engine, slice, subslice,
1023                                                   GEN7_ROW_INSTDONE);
1024                 }
1025                 break;
1026         case 7:
1027                 instdone->instdone =
1028                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1029
1030                 if (engine->id != RCS0)
1031                         break;
1032
1033                 instdone->slice_common =
1034                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1035                 instdone->sampler[0][0] =
1036                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1037                 instdone->row[0][0] =
1038                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1039
1040                 break;
1041         case 6:
1042         case 5:
1043         case 4:
1044                 instdone->instdone =
1045                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1046                 if (engine->id == RCS0)
1047                         /* HACK: Using the wrong struct member */
1048                         instdone->slice_common =
1049                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1050                 break;
1051         case 3:
1052         case 2:
1053                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1054                 break;
1055         }
1056 }
1057
1058 static bool ring_is_idle(struct intel_engine_cs *engine)
1059 {
1060         bool idle = true;
1061
1062         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1063                 return true;
1064
1065         if (!intel_engine_pm_get_if_awake(engine))
1066                 return true;
1067
1068         /* First check that no commands are left in the ring */
1069         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1070             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1071                 idle = false;
1072
1073         /* No bit for gen2, so assume the CS parser is idle */
1074         if (INTEL_GEN(engine->i915) > 2 &&
1075             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1076                 idle = false;
1077
1078         intel_engine_pm_put(engine);
1079
1080         return idle;
1081 }
1082
1083 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1084 {
1085         struct tasklet_struct *t = &engine->execlists.tasklet;
1086
1087         if (__tasklet_is_scheduled(t)) {
1088                 local_bh_disable();
1089                 if (tasklet_trylock(t)) {
1090                         /* Must wait for any GPU reset in progress. */
1091                         if (__tasklet_is_enabled(t))
1092                                 t->func(t->data);
1093                         tasklet_unlock(t);
1094                 }
1095                 local_bh_enable();
1096         }
1097
1098         /* Otherwise flush the tasklet if it was running on another cpu */
1099         tasklet_unlock_wait(t);
1100 }
1101
1102 /**
1103  * intel_engine_is_idle() - Report if the engine has finished process all work
1104  * @engine: the intel_engine_cs
1105  *
1106  * Return true if there are no requests pending, nothing left to be submitted
1107  * to hardware, and that the engine is idle.
1108  */
1109 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1110 {
1111         /* More white lies, if wedged, hw state is inconsistent */
1112         if (intel_gt_is_wedged(engine->gt))
1113                 return true;
1114
1115         if (!intel_engine_pm_is_awake(engine))
1116                 return true;
1117
1118         /* Waiting to drain ELSP? */
1119         if (execlists_active(&engine->execlists)) {
1120                 synchronize_hardirq(engine->i915->drm.pdev->irq);
1121
1122                 intel_engine_flush_submission(engine);
1123
1124                 if (execlists_active(&engine->execlists))
1125                         return false;
1126         }
1127
1128         /* ELSP is empty, but there are ready requests? E.g. after reset */
1129         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1130                 return false;
1131
1132         /* Ring stopped? */
1133         return ring_is_idle(engine);
1134 }
1135
1136 bool intel_engines_are_idle(struct intel_gt *gt)
1137 {
1138         struct intel_engine_cs *engine;
1139         enum intel_engine_id id;
1140
1141         /*
1142          * If the driver is wedged, HW state may be very inconsistent and
1143          * report that it is still busy, even though we have stopped using it.
1144          */
1145         if (intel_gt_is_wedged(gt))
1146                 return true;
1147
1148         /* Already parked (and passed an idleness test); must still be idle */
1149         if (!READ_ONCE(gt->awake))
1150                 return true;
1151
1152         for_each_engine(engine, gt, id) {
1153                 if (!intel_engine_is_idle(engine))
1154                         return false;
1155         }
1156
1157         return true;
1158 }
1159
1160 void intel_engines_reset_default_submission(struct intel_gt *gt)
1161 {
1162         struct intel_engine_cs *engine;
1163         enum intel_engine_id id;
1164
1165         for_each_engine(engine, gt, id)
1166                 engine->set_default_submission(engine);
1167 }
1168
1169 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1170 {
1171         switch (INTEL_GEN(engine->i915)) {
1172         case 2:
1173                 return false; /* uses physical not virtual addresses */
1174         case 3:
1175                 /* maybe only uses physical not virtual addresses */
1176                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1177         case 4:
1178                 return !IS_I965G(engine->i915); /* who knows! */
1179         case 6:
1180                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1181         default:
1182                 return true;
1183         }
1184 }
1185
1186 static int print_sched_attr(struct drm_i915_private *i915,
1187                             const struct i915_sched_attr *attr,
1188                             char *buf, int x, int len)
1189 {
1190         if (attr->priority == I915_PRIORITY_INVALID)
1191                 return x;
1192
1193         x += snprintf(buf + x, len - x,
1194                       " prio=%d", attr->priority);
1195
1196         return x;
1197 }
1198
1199 static void print_request(struct drm_printer *m,
1200                           struct i915_request *rq,
1201                           const char *prefix)
1202 {
1203         const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1204         char buf[80] = "";
1205         int x = 0;
1206
1207         x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1208
1209         drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1210                    prefix,
1211                    rq->fence.context, rq->fence.seqno,
1212                    i915_request_completed(rq) ? "!" :
1213                    i915_request_started(rq) ? "*" :
1214                    "",
1215                    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1216                             &rq->fence.flags) ? "+" :
1217                    test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1218                             &rq->fence.flags) ? "-" :
1219                    "",
1220                    buf,
1221                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1222                    name);
1223 }
1224
1225 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1226 {
1227         const size_t rowsize = 8 * sizeof(u32);
1228         const void *prev = NULL;
1229         bool skip = false;
1230         size_t pos;
1231
1232         for (pos = 0; pos < len; pos += rowsize) {
1233                 char line[128];
1234
1235                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1236                         if (!skip) {
1237                                 drm_printf(m, "*\n");
1238                                 skip = true;
1239                         }
1240                         continue;
1241                 }
1242
1243                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1244                                                 rowsize, sizeof(u32),
1245                                                 line, sizeof(line),
1246                                                 false) >= sizeof(line));
1247                 drm_printf(m, "[%04zx] %s\n", pos, line);
1248
1249                 prev = buf + pos;
1250                 skip = false;
1251         }
1252 }
1253
1254 static struct intel_timeline *get_timeline(struct i915_request *rq)
1255 {
1256         struct intel_timeline *tl;
1257
1258         /*
1259          * Even though we are holding the engine->active.lock here, there
1260          * is no control over the submission queue per-se and we are
1261          * inspecting the active state at a random point in time, with an
1262          * unknown queue. Play safe and make sure the timeline remains valid.
1263          * (Only being used for pretty printing, one extra kref shouldn't
1264          * cause a camel stampede!)
1265          */
1266         rcu_read_lock();
1267         tl = rcu_dereference(rq->timeline);
1268         if (!kref_get_unless_zero(&tl->kref))
1269                 tl = NULL;
1270         rcu_read_unlock();
1271
1272         return tl;
1273 }
1274
1275 static const char *repr_timer(const struct timer_list *t)
1276 {
1277         if (!READ_ONCE(t->expires))
1278                 return "inactive";
1279
1280         if (timer_pending(t))
1281                 return "active";
1282
1283         return "expired";
1284 }
1285
1286 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1287                                          struct drm_printer *m)
1288 {
1289         struct drm_i915_private *dev_priv = engine->i915;
1290         struct intel_engine_execlists * const execlists = &engine->execlists;
1291         u64 addr;
1292
1293         if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1294                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1295         drm_printf(m, "\tRING_START: 0x%08x\n",
1296                    ENGINE_READ(engine, RING_START));
1297         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1298                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1299         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1300                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1301         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1302                    ENGINE_READ(engine, RING_CTL),
1303                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1304         if (INTEL_GEN(engine->i915) > 2) {
1305                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1306                            ENGINE_READ(engine, RING_MI_MODE),
1307                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1308         }
1309
1310         if (INTEL_GEN(dev_priv) >= 6) {
1311                 drm_printf(m, "\tRING_IMR: %08x\n",
1312                            ENGINE_READ(engine, RING_IMR));
1313         }
1314
1315         addr = intel_engine_get_active_head(engine);
1316         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1317                    upper_32_bits(addr), lower_32_bits(addr));
1318         addr = intel_engine_get_last_batch_head(engine);
1319         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1320                    upper_32_bits(addr), lower_32_bits(addr));
1321         if (INTEL_GEN(dev_priv) >= 8)
1322                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1323         else if (INTEL_GEN(dev_priv) >= 4)
1324                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1325         else
1326                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1327         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1328                    upper_32_bits(addr), lower_32_bits(addr));
1329         if (INTEL_GEN(dev_priv) >= 4) {
1330                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1331                            ENGINE_READ(engine, RING_IPEIR));
1332                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1333                            ENGINE_READ(engine, RING_IPEHR));
1334         } else {
1335                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1336                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1337         }
1338
1339         if (HAS_EXECLISTS(dev_priv)) {
1340                 struct i915_request * const *port, *rq;
1341                 const u32 *hws =
1342                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1343                 const u8 num_entries = execlists->csb_size;
1344                 unsigned int idx;
1345                 u8 read, write;
1346
1347                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1348                            yesno(test_bit(TASKLET_STATE_SCHED,
1349                                           &engine->execlists.tasklet.state)),
1350                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1351                            repr_timer(&engine->execlists.preempt),
1352                            repr_timer(&engine->execlists.timer));
1353
1354                 read = execlists->csb_head;
1355                 write = READ_ONCE(*execlists->csb_write);
1356
1357                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1358                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1359                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1360                            read, write, num_entries);
1361
1362                 if (read >= num_entries)
1363                         read = 0;
1364                 if (write >= num_entries)
1365                         write = 0;
1366                 if (read > write)
1367                         write += num_entries;
1368                 while (read < write) {
1369                         idx = ++read % num_entries;
1370                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1371                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1372                 }
1373
1374                 execlists_active_lock_bh(execlists);
1375                 for (port = execlists->active; (rq = *port); port++) {
1376                         char hdr[80];
1377                         int len;
1378
1379                         len = snprintf(hdr, sizeof(hdr),
1380                                        "\t\tActive[%d]: ",
1381                                        (int)(port - execlists->active));
1382                         if (!i915_request_signaled(rq)) {
1383                                 struct intel_timeline *tl = get_timeline(rq);
1384
1385                                 len += snprintf(hdr + len, sizeof(hdr) - len,
1386                                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
1387                                                 i915_ggtt_offset(rq->ring->vma),
1388                                                 tl ? tl->hwsp_offset : 0,
1389                                                 hwsp_seqno(rq));
1390
1391                                 if (tl)
1392                                         intel_timeline_put(tl);
1393                         }
1394                         snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1395                         print_request(m, rq, hdr);
1396                 }
1397                 for (port = execlists->pending; (rq = *port); port++) {
1398                         struct intel_timeline *tl = get_timeline(rq);
1399                         char hdr[80];
1400
1401                         snprintf(hdr, sizeof(hdr),
1402                                  "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1403                                  (int)(port - execlists->pending),
1404                                  i915_ggtt_offset(rq->ring->vma),
1405                                  tl ? tl->hwsp_offset : 0,
1406                                  hwsp_seqno(rq));
1407                         print_request(m, rq, hdr);
1408
1409                         if (tl)
1410                                 intel_timeline_put(tl);
1411                 }
1412                 execlists_active_unlock_bh(execlists);
1413         } else if (INTEL_GEN(dev_priv) > 6) {
1414                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1415                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1416                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1417                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1418                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1419                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1420         }
1421 }
1422
1423 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1424 {
1425         void *ring;
1426         int size;
1427
1428         drm_printf(m,
1429                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1430                    rq->head, rq->postfix, rq->tail,
1431                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1432                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1433
1434         size = rq->tail - rq->head;
1435         if (rq->tail < rq->head)
1436                 size += rq->ring->size;
1437
1438         ring = kmalloc(size, GFP_ATOMIC);
1439         if (ring) {
1440                 const void *vaddr = rq->ring->vaddr;
1441                 unsigned int head = rq->head;
1442                 unsigned int len = 0;
1443
1444                 if (rq->tail < head) {
1445                         len = rq->ring->size - head;
1446                         memcpy(ring, vaddr + head, len);
1447                         head = 0;
1448                 }
1449                 memcpy(ring + len, vaddr + head, size - len);
1450
1451                 hexdump(m, ring, size);
1452                 kfree(ring);
1453         }
1454 }
1455
1456 void intel_engine_dump(struct intel_engine_cs *engine,
1457                        struct drm_printer *m,
1458                        const char *header, ...)
1459 {
1460         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1461         struct i915_request *rq;
1462         intel_wakeref_t wakeref;
1463         unsigned long flags;
1464
1465         if (header) {
1466                 va_list ap;
1467
1468                 va_start(ap, header);
1469                 drm_vprintf(m, header, &ap);
1470                 va_end(ap);
1471         }
1472
1473         if (intel_gt_is_wedged(engine->gt))
1474                 drm_printf(m, "*** WEDGED ***\n");
1475
1476         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1477
1478         rcu_read_lock();
1479         rq = READ_ONCE(engine->heartbeat.systole);
1480         if (rq)
1481                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1482                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1483         rcu_read_unlock();
1484         drm_printf(m, "\tReset count: %d (global %d)\n",
1485                    i915_reset_engine_count(error, engine),
1486                    i915_reset_count(error));
1487
1488         drm_printf(m, "\tRequests:\n");
1489
1490         spin_lock_irqsave(&engine->active.lock, flags);
1491         rq = intel_engine_find_active_request(engine);
1492         if (rq) {
1493                 struct intel_timeline *tl = get_timeline(rq);
1494
1495                 print_request(m, rq, "\t\tactive ");
1496
1497                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1498                            i915_ggtt_offset(rq->ring->vma));
1499                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1500                            rq->ring->head);
1501                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1502                            rq->ring->tail);
1503                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1504                            rq->ring->emit);
1505                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1506                            rq->ring->space);
1507
1508                 if (tl) {
1509                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1510                                    tl->hwsp_offset);
1511                         intel_timeline_put(tl);
1512                 }
1513
1514                 print_request_ring(m, rq);
1515
1516                 if (rq->hw_context->lrc_reg_state) {
1517                         drm_printf(m, "Logical Ring Context:\n");
1518                         hexdump(m, rq->hw_context->lrc_reg_state, PAGE_SIZE);
1519                 }
1520         }
1521         spin_unlock_irqrestore(&engine->active.lock, flags);
1522
1523         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1524         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1525         if (wakeref) {
1526                 intel_engine_print_registers(engine, m);
1527                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1528         } else {
1529                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1530         }
1531
1532         intel_execlists_show_requests(engine, m, print_request, 8);
1533
1534         drm_printf(m, "HWSP:\n");
1535         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1536
1537         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1538
1539         intel_engine_print_breadcrumbs(engine, m);
1540 }
1541
1542 /**
1543  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1544  * @engine: engine to enable stats collection
1545  *
1546  * Start collecting the engine busyness data for @engine.
1547  *
1548  * Returns 0 on success or a negative error code.
1549  */
1550 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1551 {
1552         struct intel_engine_execlists *execlists = &engine->execlists;
1553         unsigned long flags;
1554         int err = 0;
1555
1556         if (!intel_engine_supports_stats(engine))
1557                 return -ENODEV;
1558
1559         execlists_active_lock_bh(execlists);
1560         write_seqlock_irqsave(&engine->stats.lock, flags);
1561
1562         if (unlikely(engine->stats.enabled == ~0)) {
1563                 err = -EBUSY;
1564                 goto unlock;
1565         }
1566
1567         if (engine->stats.enabled++ == 0) {
1568                 struct i915_request * const *port;
1569                 struct i915_request *rq;
1570
1571                 engine->stats.enabled_at = ktime_get();
1572
1573                 /* XXX submission method oblivious? */
1574                 for (port = execlists->active; (rq = *port); port++)
1575                         engine->stats.active++;
1576
1577                 for (port = execlists->pending; (rq = *port); port++) {
1578                         /* Exclude any contexts already counted in active */
1579                         if (!intel_context_inflight_count(rq->hw_context))
1580                                 engine->stats.active++;
1581                 }
1582
1583                 if (engine->stats.active)
1584                         engine->stats.start = engine->stats.enabled_at;
1585         }
1586
1587 unlock:
1588         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1589         execlists_active_unlock_bh(execlists);
1590
1591         return err;
1592 }
1593
1594 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1595 {
1596         ktime_t total = engine->stats.total;
1597
1598         /*
1599          * If the engine is executing something at the moment
1600          * add it to the total.
1601          */
1602         if (engine->stats.active)
1603                 total = ktime_add(total,
1604                                   ktime_sub(ktime_get(), engine->stats.start));
1605
1606         return total;
1607 }
1608
1609 /**
1610  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1611  * @engine: engine to report on
1612  *
1613  * Returns accumulated time @engine was busy since engine stats were enabled.
1614  */
1615 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1616 {
1617         unsigned int seq;
1618         ktime_t total;
1619
1620         do {
1621                 seq = read_seqbegin(&engine->stats.lock);
1622                 total = __intel_engine_get_busy_time(engine);
1623         } while (read_seqretry(&engine->stats.lock, seq));
1624
1625         return total;
1626 }
1627
1628 /**
1629  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1630  * @engine: engine to disable stats collection
1631  *
1632  * Stops collecting the engine busyness data for @engine.
1633  */
1634 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1635 {
1636         unsigned long flags;
1637
1638         if (!intel_engine_supports_stats(engine))
1639                 return;
1640
1641         write_seqlock_irqsave(&engine->stats.lock, flags);
1642         WARN_ON_ONCE(engine->stats.enabled == 0);
1643         if (--engine->stats.enabled == 0) {
1644                 engine->stats.total = __intel_engine_get_busy_time(engine);
1645                 engine->stats.active = 0;
1646         }
1647         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1648 }
1649
1650 static bool match_ring(struct i915_request *rq)
1651 {
1652         u32 ring = ENGINE_READ(rq->engine, RING_START);
1653
1654         return ring == i915_ggtt_offset(rq->ring->vma);
1655 }
1656
1657 struct i915_request *
1658 intel_engine_find_active_request(struct intel_engine_cs *engine)
1659 {
1660         struct i915_request *request, *active = NULL;
1661
1662         /*
1663          * We are called by the error capture, reset and to dump engine
1664          * state at random points in time. In particular, note that neither is
1665          * crucially ordered with an interrupt. After a hang, the GPU is dead
1666          * and we assume that no more writes can happen (we waited long enough
1667          * for all writes that were in transaction to be flushed) - adding an
1668          * extra delay for a recent interrupt is pointless. Hence, we do
1669          * not need an engine->irq_seqno_barrier() before the seqno reads.
1670          * At all other times, we must assume the GPU is still running, but
1671          * we only care about the snapshot of this moment.
1672          */
1673         lockdep_assert_held(&engine->active.lock);
1674         list_for_each_entry(request, &engine->active.requests, sched.link) {
1675                 if (i915_request_completed(request))
1676                         continue;
1677
1678                 if (!i915_request_started(request))
1679                         continue;
1680
1681                 /* More than one preemptible request may match! */
1682                 if (!match_ring(request))
1683                         continue;
1684
1685                 active = request;
1686                 break;
1687         }
1688
1689         return active;
1690 }
1691
1692 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1693 #include "mock_engine.c"
1694 #include "selftest_engine.c"
1695 #include "selftest_engine_cs.c"
1696 #endif