drm/i915: Start chopping up the GPU error capture
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 /*
2  * Copyright © 2016 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <drm/drm_print.h>
26
27 #include "gem/i915_gem_context.h"
28
29 #include "i915_drv.h"
30
31 #include "intel_context.h"
32 #include "intel_engine.h"
33 #include "intel_engine_pm.h"
34 #include "intel_engine_pool.h"
35 #include "intel_engine_user.h"
36 #include "intel_gt.h"
37 #include "intel_gt_requests.h"
38 #include "intel_lrc.h"
39 #include "intel_reset.h"
40 #include "intel_ring.h"
41
42 /* Haswell does have the CXT_SIZE register however it does not appear to be
43  * valid. Now, docs explain in dwords what is in the context object. The full
44  * size is 70720 bytes, however, the power context and execlist context will
45  * never be saved (power context is stored elsewhere, and execlists don't work
46  * on HSW) - so the final size, including the extra state required for the
47  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
48  */
49 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
50
51 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
52 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
53 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
54 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
55 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
56
57 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
58
59 #define MAX_MMIO_BASES 3
60 struct engine_info {
61         unsigned int hw_id;
62         u8 class;
63         u8 instance;
64         /* mmio bases table *must* be sorted in reverse gen order */
65         struct engine_mmio_base {
66                 u32 gen : 8;
67                 u32 base : 24;
68         } mmio_bases[MAX_MMIO_BASES];
69 };
70
71 static const struct engine_info intel_engines[] = {
72         [RCS0] = {
73                 .hw_id = RCS0_HW,
74                 .class = RENDER_CLASS,
75                 .instance = 0,
76                 .mmio_bases = {
77                         { .gen = 1, .base = RENDER_RING_BASE }
78                 },
79         },
80         [BCS0] = {
81                 .hw_id = BCS0_HW,
82                 .class = COPY_ENGINE_CLASS,
83                 .instance = 0,
84                 .mmio_bases = {
85                         { .gen = 6, .base = BLT_RING_BASE }
86                 },
87         },
88         [VCS0] = {
89                 .hw_id = VCS0_HW,
90                 .class = VIDEO_DECODE_CLASS,
91                 .instance = 0,
92                 .mmio_bases = {
93                         { .gen = 11, .base = GEN11_BSD_RING_BASE },
94                         { .gen = 6, .base = GEN6_BSD_RING_BASE },
95                         { .gen = 4, .base = BSD_RING_BASE }
96                 },
97         },
98         [VCS1] = {
99                 .hw_id = VCS1_HW,
100                 .class = VIDEO_DECODE_CLASS,
101                 .instance = 1,
102                 .mmio_bases = {
103                         { .gen = 11, .base = GEN11_BSD2_RING_BASE },
104                         { .gen = 8, .base = GEN8_BSD2_RING_BASE }
105                 },
106         },
107         [VCS2] = {
108                 .hw_id = VCS2_HW,
109                 .class = VIDEO_DECODE_CLASS,
110                 .instance = 2,
111                 .mmio_bases = {
112                         { .gen = 11, .base = GEN11_BSD3_RING_BASE }
113                 },
114         },
115         [VCS3] = {
116                 .hw_id = VCS3_HW,
117                 .class = VIDEO_DECODE_CLASS,
118                 .instance = 3,
119                 .mmio_bases = {
120                         { .gen = 11, .base = GEN11_BSD4_RING_BASE }
121                 },
122         },
123         [VECS0] = {
124                 .hw_id = VECS0_HW,
125                 .class = VIDEO_ENHANCEMENT_CLASS,
126                 .instance = 0,
127                 .mmio_bases = {
128                         { .gen = 11, .base = GEN11_VEBOX_RING_BASE },
129                         { .gen = 7, .base = VEBOX_RING_BASE }
130                 },
131         },
132         [VECS1] = {
133                 .hw_id = VECS1_HW,
134                 .class = VIDEO_ENHANCEMENT_CLASS,
135                 .instance = 1,
136                 .mmio_bases = {
137                         { .gen = 11, .base = GEN11_VEBOX2_RING_BASE }
138                 },
139         },
140 };
141
142 /**
143  * intel_engine_context_size() - return the size of the context for an engine
144  * @gt: the gt
145  * @class: engine class
146  *
147  * Each engine class may require a different amount of space for a context
148  * image.
149  *
150  * Return: size (in bytes) of an engine class specific context image
151  *
152  * Note: this size includes the HWSP, which is part of the context image
153  * in LRC mode, but does not include the "shared data page" used with
154  * GuC submission. The caller should account for this if using the GuC.
155  */
156 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
157 {
158         struct intel_uncore *uncore = gt->uncore;
159         u32 cxt_size;
160
161         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
162
163         switch (class) {
164         case RENDER_CLASS:
165                 switch (INTEL_GEN(gt->i915)) {
166                 default:
167                         MISSING_CASE(INTEL_GEN(gt->i915));
168                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
169                 case 12:
170                 case 11:
171                         return GEN11_LR_CONTEXT_RENDER_SIZE;
172                 case 10:
173                         return GEN10_LR_CONTEXT_RENDER_SIZE;
174                 case 9:
175                         return GEN9_LR_CONTEXT_RENDER_SIZE;
176                 case 8:
177                         return GEN8_LR_CONTEXT_RENDER_SIZE;
178                 case 7:
179                         if (IS_HASWELL(gt->i915))
180                                 return HSW_CXT_TOTAL_SIZE;
181
182                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
183                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
184                                         PAGE_SIZE);
185                 case 6:
186                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
187                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
188                                         PAGE_SIZE);
189                 case 5:
190                 case 4:
191                         /*
192                          * There is a discrepancy here between the size reported
193                          * by the register and the size of the context layout
194                          * in the docs. Both are described as authorative!
195                          *
196                          * The discrepancy is on the order of a few cachelines,
197                          * but the total is under one page (4k), which is our
198                          * minimum allocation anyway so it should all come
199                          * out in the wash.
200                          */
201                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
202                         DRM_DEBUG_DRIVER("gen%d CXT_SIZE = %d bytes [0x%08x]\n",
203                                          INTEL_GEN(gt->i915),
204                                          cxt_size * 64,
205                                          cxt_size - 1);
206                         return round_up(cxt_size * 64, PAGE_SIZE);
207                 case 3:
208                 case 2:
209                 /* For the special day when i810 gets merged. */
210                 case 1:
211                         return 0;
212                 }
213                 break;
214         default:
215                 MISSING_CASE(class);
216                 /* fall through */
217         case VIDEO_DECODE_CLASS:
218         case VIDEO_ENHANCEMENT_CLASS:
219         case COPY_ENGINE_CLASS:
220                 if (INTEL_GEN(gt->i915) < 8)
221                         return 0;
222                 return GEN8_LR_CONTEXT_OTHER_SIZE;
223         }
224 }
225
226 static u32 __engine_mmio_base(struct drm_i915_private *i915,
227                               const struct engine_mmio_base *bases)
228 {
229         int i;
230
231         for (i = 0; i < MAX_MMIO_BASES; i++)
232                 if (INTEL_GEN(i915) >= bases[i].gen)
233                         break;
234
235         GEM_BUG_ON(i == MAX_MMIO_BASES);
236         GEM_BUG_ON(!bases[i].base);
237
238         return bases[i].base;
239 }
240
241 static void __sprint_engine_name(struct intel_engine_cs *engine)
242 {
243         /*
244          * Before we know what the uABI name for this engine will be,
245          * we still would like to keep track of this engine in the debug logs.
246          * We throw in a ' here as a reminder that this isn't its final name.
247          */
248         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
249                              intel_engine_class_repr(engine->class),
250                              engine->instance) >= sizeof(engine->name));
251 }
252
253 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
254 {
255         /*
256          * Though they added more rings on g4x/ilk, they did not add
257          * per-engine HWSTAM until gen6.
258          */
259         if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
260                 return;
261
262         if (INTEL_GEN(engine->i915) >= 3)
263                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
264         else
265                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
266 }
267
268 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
269 {
270         /* Mask off all writes into the unknown HWSP */
271         intel_engine_set_hwsp_writemask(engine, ~0u);
272 }
273
274 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
275 {
276         const struct engine_info *info = &intel_engines[id];
277         struct intel_engine_cs *engine;
278
279         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
280         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
281
282         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
283                 return -EINVAL;
284
285         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
286                 return -EINVAL;
287
288         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
289                 return -EINVAL;
290
291         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
292                 return -EINVAL;
293
294         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
295         if (!engine)
296                 return -ENOMEM;
297
298         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
299
300         engine->id = id;
301         engine->legacy_idx = INVALID_ENGINE;
302         engine->mask = BIT(id);
303         engine->i915 = gt->i915;
304         engine->gt = gt;
305         engine->uncore = gt->uncore;
306         engine->hw_id = engine->guc_id = info->hw_id;
307         engine->mmio_base = __engine_mmio_base(gt->i915, info->mmio_bases);
308
309         engine->class = info->class;
310         engine->instance = info->instance;
311         __sprint_engine_name(engine);
312
313         engine->props.heartbeat_interval_ms =
314                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
315         engine->props.preempt_timeout_ms =
316                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
317         engine->props.stop_timeout_ms =
318                 CONFIG_DRM_I915_STOP_TIMEOUT;
319         engine->props.timeslice_duration_ms =
320                 CONFIG_DRM_I915_TIMESLICE_DURATION;
321
322         engine->context_size = intel_engine_context_size(gt, engine->class);
323         if (WARN_ON(engine->context_size > BIT(20)))
324                 engine->context_size = 0;
325         if (engine->context_size)
326                 DRIVER_CAPS(gt->i915)->has_logical_contexts = true;
327
328         /* Nothing to do here, execute in order of dependencies */
329         engine->schedule = NULL;
330
331         ewma__engine_latency_init(&engine->latency);
332         seqlock_init(&engine->stats.lock);
333
334         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
335
336         /* Scrub mmio state on takeover */
337         intel_engine_sanitize_mmio(engine);
338
339         gt->engine_class[info->class][info->instance] = engine;
340         gt->engine[id] = engine;
341
342         gt->i915->engine[id] = engine;
343
344         return 0;
345 }
346
347 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
348 {
349         struct drm_i915_private *i915 = engine->i915;
350
351         if (engine->class == VIDEO_DECODE_CLASS) {
352                 /*
353                  * HEVC support is present on first engine instance
354                  * before Gen11 and on all instances afterwards.
355                  */
356                 if (INTEL_GEN(i915) >= 11 ||
357                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
358                         engine->uabi_capabilities |=
359                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
360
361                 /*
362                  * SFC block is present only on even logical engine
363                  * instances.
364                  */
365                 if ((INTEL_GEN(i915) >= 11 &&
366                      RUNTIME_INFO(i915)->vdbox_sfc_access & engine->mask) ||
367                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
368                         engine->uabi_capabilities |=
369                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
370         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
371                 if (INTEL_GEN(i915) >= 9)
372                         engine->uabi_capabilities |=
373                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
374         }
375 }
376
377 static void intel_setup_engine_capabilities(struct intel_gt *gt)
378 {
379         struct intel_engine_cs *engine;
380         enum intel_engine_id id;
381
382         for_each_engine(engine, gt, id)
383                 __setup_engine_capabilities(engine);
384 }
385
386 /**
387  * intel_engines_release() - free the resources allocated for Command Streamers
388  * @gt: pointer to struct intel_gt
389  */
390 void intel_engines_release(struct intel_gt *gt)
391 {
392         struct intel_engine_cs *engine;
393         enum intel_engine_id id;
394
395         /* Decouple the backend; but keep the layout for late GPU resets */
396         for_each_engine(engine, gt, id) {
397                 if (!engine->release)
398                         continue;
399
400                 engine->release(engine);
401                 engine->release = NULL;
402
403                 memset(&engine->reset, 0, sizeof(engine->reset));
404
405                 gt->i915->engine[id] = NULL;
406         }
407 }
408
409 void intel_engines_free(struct intel_gt *gt)
410 {
411         struct intel_engine_cs *engine;
412         enum intel_engine_id id;
413
414         for_each_engine(engine, gt, id) {
415                 kfree(engine);
416                 gt->engine[id] = NULL;
417         }
418 }
419
420 /**
421  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
422  * @gt: pointer to struct intel_gt
423  *
424  * Return: non-zero if the initialization failed.
425  */
426 int intel_engines_init_mmio(struct intel_gt *gt)
427 {
428         struct drm_i915_private *i915 = gt->i915;
429         struct intel_device_info *device_info = mkwrite_device_info(i915);
430         const unsigned int engine_mask = INTEL_INFO(i915)->engine_mask;
431         unsigned int mask = 0;
432         unsigned int i;
433         int err;
434
435         WARN_ON(engine_mask == 0);
436         WARN_ON(engine_mask &
437                 GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
438
439         if (i915_inject_probe_failure(i915))
440                 return -ENODEV;
441
442         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
443                 if (!HAS_ENGINE(i915, i))
444                         continue;
445
446                 err = intel_engine_setup(gt, i);
447                 if (err)
448                         goto cleanup;
449
450                 mask |= BIT(i);
451         }
452
453         /*
454          * Catch failures to update intel_engines table when the new engines
455          * are added to the driver by a warning and disabling the forgotten
456          * engines.
457          */
458         if (WARN_ON(mask != engine_mask))
459                 device_info->engine_mask = mask;
460
461         RUNTIME_INFO(i915)->num_engines = hweight32(mask);
462
463         intel_gt_check_and_clear_faults(gt);
464
465         intel_setup_engine_capabilities(gt);
466
467         return 0;
468
469 cleanup:
470         intel_engines_free(gt);
471         return err;
472 }
473
474 void intel_engine_init_execlists(struct intel_engine_cs *engine)
475 {
476         struct intel_engine_execlists * const execlists = &engine->execlists;
477
478         execlists->port_mask = 1;
479         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
480         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
481
482         memset(execlists->pending, 0, sizeof(execlists->pending));
483         execlists->active =
484                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
485
486         execlists->queue_priority_hint = INT_MIN;
487         execlists->queue = RB_ROOT_CACHED;
488 }
489
490 static void cleanup_status_page(struct intel_engine_cs *engine)
491 {
492         struct i915_vma *vma;
493
494         /* Prevent writes into HWSP after returning the page to the system */
495         intel_engine_set_hwsp_writemask(engine, ~0u);
496
497         vma = fetch_and_zero(&engine->status_page.vma);
498         if (!vma)
499                 return;
500
501         if (!HWS_NEEDS_PHYSICAL(engine->i915))
502                 i915_vma_unpin(vma);
503
504         i915_gem_object_unpin_map(vma->obj);
505         i915_gem_object_put(vma->obj);
506 }
507
508 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
509                                 struct i915_vma *vma)
510 {
511         unsigned int flags;
512
513         flags = PIN_GLOBAL;
514         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
515                 /*
516                  * On g33, we cannot place HWS above 256MiB, so
517                  * restrict its pinning to the low mappable arena.
518                  * Though this restriction is not documented for
519                  * gen4, gen5, or byt, they also behave similarly
520                  * and hang if the HWS is placed at the top of the
521                  * GTT. To generalise, it appears that all !llc
522                  * platforms have issues with us placing the HWS
523                  * above the mappable region (even though we never
524                  * actually map it).
525                  */
526                 flags |= PIN_MAPPABLE;
527         else
528                 flags |= PIN_HIGH;
529
530         return i915_vma_pin(vma, 0, 0, flags);
531 }
532
533 static int init_status_page(struct intel_engine_cs *engine)
534 {
535         struct drm_i915_gem_object *obj;
536         struct i915_vma *vma;
537         void *vaddr;
538         int ret;
539
540         /*
541          * Though the HWS register does support 36bit addresses, historically
542          * we have had hangs and corruption reported due to wild writes if
543          * the HWS is placed above 4G. We only allow objects to be allocated
544          * in GFP_DMA32 for i965, and no earlier physical address users had
545          * access to more than 4G.
546          */
547         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
548         if (IS_ERR(obj)) {
549                 DRM_ERROR("Failed to allocate status page\n");
550                 return PTR_ERR(obj);
551         }
552
553         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
554
555         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
556         if (IS_ERR(vma)) {
557                 ret = PTR_ERR(vma);
558                 goto err;
559         }
560
561         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
562         if (IS_ERR(vaddr)) {
563                 ret = PTR_ERR(vaddr);
564                 goto err;
565         }
566
567         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
568         engine->status_page.vma = vma;
569
570         if (!HWS_NEEDS_PHYSICAL(engine->i915)) {
571                 ret = pin_ggtt_status_page(engine, vma);
572                 if (ret)
573                         goto err_unpin;
574         }
575
576         return 0;
577
578 err_unpin:
579         i915_gem_object_unpin_map(obj);
580 err:
581         i915_gem_object_put(obj);
582         return ret;
583 }
584
585 static int engine_setup_common(struct intel_engine_cs *engine)
586 {
587         int err;
588
589         init_llist_head(&engine->barrier_tasks);
590
591         err = init_status_page(engine);
592         if (err)
593                 return err;
594
595         intel_engine_init_active(engine, ENGINE_PHYSICAL);
596         intel_engine_init_breadcrumbs(engine);
597         intel_engine_init_execlists(engine);
598         intel_engine_init_cmd_parser(engine);
599         intel_engine_init__pm(engine);
600         intel_engine_init_retire(engine);
601
602         intel_engine_pool_init(&engine->pool);
603
604         /* Use the whole device by default */
605         engine->sseu =
606                 intel_sseu_from_device_info(&RUNTIME_INFO(engine->i915)->sseu);
607
608         intel_engine_init_workarounds(engine);
609         intel_engine_init_whitelist(engine);
610         intel_engine_init_ctx_wa(engine);
611
612         return 0;
613 }
614
615 struct measure_breadcrumb {
616         struct i915_request rq;
617         struct intel_timeline timeline;
618         struct intel_ring ring;
619         u32 cs[1024];
620 };
621
622 static int measure_breadcrumb_dw(struct intel_engine_cs *engine)
623 {
624         struct measure_breadcrumb *frame;
625         int dw = -ENOMEM;
626
627         GEM_BUG_ON(!engine->gt->scratch);
628
629         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
630         if (!frame)
631                 return -ENOMEM;
632
633         if (intel_timeline_init(&frame->timeline,
634                                 engine->gt,
635                                 engine->status_page.vma))
636                 goto out_frame;
637
638         mutex_lock(&frame->timeline.mutex);
639
640         frame->ring.vaddr = frame->cs;
641         frame->ring.size = sizeof(frame->cs);
642         frame->ring.effective_size = frame->ring.size;
643         intel_ring_update_space(&frame->ring);
644
645         frame->rq.i915 = engine->i915;
646         frame->rq.engine = engine;
647         frame->rq.ring = &frame->ring;
648         rcu_assign_pointer(frame->rq.timeline, &frame->timeline);
649
650         dw = intel_timeline_pin(&frame->timeline);
651         if (dw < 0)
652                 goto out_timeline;
653
654         spin_lock_irq(&engine->active.lock);
655         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
656         spin_unlock_irq(&engine->active.lock);
657
658         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
659
660         intel_timeline_unpin(&frame->timeline);
661
662 out_timeline:
663         mutex_unlock(&frame->timeline.mutex);
664         intel_timeline_fini(&frame->timeline);
665 out_frame:
666         kfree(frame);
667         return dw;
668 }
669
670 void
671 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
672 {
673         INIT_LIST_HEAD(&engine->active.requests);
674
675         spin_lock_init(&engine->active.lock);
676         lockdep_set_subclass(&engine->active.lock, subclass);
677
678         /*
679          * Due to an interesting quirk in lockdep's internal debug tracking,
680          * after setting a subclass we must ensure the lock is used. Otherwise,
681          * nr_unused_locks is incremented once too often.
682          */
683 #ifdef CONFIG_DEBUG_LOCK_ALLOC
684         local_irq_disable();
685         lock_map_acquire(&engine->active.lock.dep_map);
686         lock_map_release(&engine->active.lock.dep_map);
687         local_irq_enable();
688 #endif
689 }
690
691 static struct intel_context *
692 create_kernel_context(struct intel_engine_cs *engine)
693 {
694         static struct lock_class_key kernel;
695         struct intel_context *ce;
696         int err;
697
698         ce = intel_context_create(engine);
699         if (IS_ERR(ce))
700                 return ce;
701
702         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
703
704         err = intel_context_pin(ce); /* perma-pin so it is always available */
705         if (err) {
706                 intel_context_put(ce);
707                 return ERR_PTR(err);
708         }
709
710         /*
711          * Give our perma-pinned kernel timelines a separate lockdep class,
712          * so that we can use them from within the normal user timelines
713          * should we need to inject GPU operations during their request
714          * construction.
715          */
716         lockdep_set_class(&ce->timeline->mutex, &kernel);
717
718         return ce;
719 }
720
721 /**
722  * intel_engines_init_common - initialize cengine state which might require hw access
723  * @engine: Engine to initialize.
724  *
725  * Initializes @engine@ structure members shared between legacy and execlists
726  * submission modes which do require hardware access.
727  *
728  * Typcally done at later stages of submission mode specific engine setup.
729  *
730  * Returns zero on success or an error code on failure.
731  */
732 static int engine_init_common(struct intel_engine_cs *engine)
733 {
734         struct intel_context *ce;
735         int ret;
736
737         engine->set_default_submission(engine);
738
739         ret = measure_breadcrumb_dw(engine);
740         if (ret < 0)
741                 return ret;
742
743         engine->emit_fini_breadcrumb_dw = ret;
744
745         /*
746          * We may need to do things with the shrinker which
747          * require us to immediately switch back to the default
748          * context. This can cause a problem as pinning the
749          * default context also requires GTT space which may not
750          * be available. To avoid this we always pin the default
751          * context.
752          */
753         ce = create_kernel_context(engine);
754         if (IS_ERR(ce))
755                 return PTR_ERR(ce);
756
757         engine->kernel_context = ce;
758
759         return 0;
760 }
761
762 int intel_engines_init(struct intel_gt *gt)
763 {
764         int (*setup)(struct intel_engine_cs *engine);
765         struct intel_engine_cs *engine;
766         enum intel_engine_id id;
767         int err;
768
769         if (HAS_EXECLISTS(gt->i915))
770                 setup = intel_execlists_submission_setup;
771         else
772                 setup = intel_ring_submission_setup;
773
774         for_each_engine(engine, gt, id) {
775                 err = engine_setup_common(engine);
776                 if (err)
777                         return err;
778
779                 err = setup(engine);
780                 if (err)
781                         return err;
782
783                 err = engine_init_common(engine);
784                 if (err)
785                         return err;
786
787                 intel_engine_add_user(engine);
788         }
789
790         return 0;
791 }
792
793 /**
794  * intel_engines_cleanup_common - cleans up the engine state created by
795  *                                the common initiailizers.
796  * @engine: Engine to cleanup.
797  *
798  * This cleans up everything created by the common helpers.
799  */
800 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
801 {
802         GEM_BUG_ON(!list_empty(&engine->active.requests));
803         tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
804
805         cleanup_status_page(engine);
806
807         intel_engine_fini_retire(engine);
808         intel_engine_pool_fini(&engine->pool);
809         intel_engine_fini_breadcrumbs(engine);
810         intel_engine_cleanup_cmd_parser(engine);
811
812         if (engine->default_state)
813                 i915_gem_object_put(engine->default_state);
814
815         if (engine->kernel_context) {
816                 intel_context_unpin(engine->kernel_context);
817                 intel_context_put(engine->kernel_context);
818         }
819         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
820
821         intel_wa_list_free(&engine->ctx_wa_list);
822         intel_wa_list_free(&engine->wa_list);
823         intel_wa_list_free(&engine->whitelist);
824 }
825
826 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
827 {
828         struct drm_i915_private *i915 = engine->i915;
829
830         u64 acthd;
831
832         if (INTEL_GEN(i915) >= 8)
833                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
834         else if (INTEL_GEN(i915) >= 4)
835                 acthd = ENGINE_READ(engine, RING_ACTHD);
836         else
837                 acthd = ENGINE_READ(engine, ACTHD);
838
839         return acthd;
840 }
841
842 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
843 {
844         u64 bbaddr;
845
846         if (INTEL_GEN(engine->i915) >= 8)
847                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
848         else
849                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
850
851         return bbaddr;
852 }
853
854 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
855 {
856         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
857                 return 0;
858
859         /*
860          * If we are doing a normal GPU reset, we can take our time and allow
861          * the engine to quiesce. We've stopped submission to the engine, and
862          * if we wait long enough an innocent context should complete and
863          * leave the engine idle. So they should not be caught unaware by
864          * the forthcoming GPU reset (which usually follows the stop_cs)!
865          */
866         return READ_ONCE(engine->props.stop_timeout_ms);
867 }
868
869 int intel_engine_stop_cs(struct intel_engine_cs *engine)
870 {
871         struct intel_uncore *uncore = engine->uncore;
872         const u32 base = engine->mmio_base;
873         const i915_reg_t mode = RING_MI_MODE(base);
874         int err;
875
876         if (INTEL_GEN(engine->i915) < 3)
877                 return -ENODEV;
878
879         ENGINE_TRACE(engine, "\n");
880
881         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
882
883         err = 0;
884         if (__intel_wait_for_register_fw(uncore,
885                                          mode, MODE_IDLE, MODE_IDLE,
886                                          1000, stop_timeout(engine),
887                                          NULL)) {
888                 ENGINE_TRACE(engine, "timed out on STOP_RING -> IDLE\n");
889                 err = -ETIMEDOUT;
890         }
891
892         /* A final mmio read to let GPU writes be hopefully flushed to memory */
893         intel_uncore_posting_read_fw(uncore, mode);
894
895         return err;
896 }
897
898 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
899 {
900         ENGINE_TRACE(engine, "\n");
901
902         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
903 }
904
905 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
906 {
907         switch (type) {
908         case I915_CACHE_NONE: return " uncached";
909         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
910         case I915_CACHE_L3_LLC: return " L3+LLC";
911         case I915_CACHE_WT: return " WT";
912         default: return "";
913         }
914 }
915
916 static u32
917 read_subslice_reg(const struct intel_engine_cs *engine,
918                   int slice, int subslice, i915_reg_t reg)
919 {
920         struct drm_i915_private *i915 = engine->i915;
921         struct intel_uncore *uncore = engine->uncore;
922         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
923         enum forcewake_domains fw_domains;
924
925         if (INTEL_GEN(i915) >= 11) {
926                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
927                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
928         } else {
929                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
930                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
931         }
932
933         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
934                                                     FW_REG_READ);
935         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
936                                                      GEN8_MCR_SELECTOR,
937                                                      FW_REG_READ | FW_REG_WRITE);
938
939         spin_lock_irq(&uncore->lock);
940         intel_uncore_forcewake_get__locked(uncore, fw_domains);
941
942         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
943
944         mcr &= ~mcr_mask;
945         mcr |= mcr_ss;
946         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
947
948         val = intel_uncore_read_fw(uncore, reg);
949
950         mcr &= ~mcr_mask;
951         mcr |= old_mcr & mcr_mask;
952
953         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
954
955         intel_uncore_forcewake_put__locked(uncore, fw_domains);
956         spin_unlock_irq(&uncore->lock);
957
958         return val;
959 }
960
961 /* NB: please notice the memset */
962 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
963                                struct intel_instdone *instdone)
964 {
965         struct drm_i915_private *i915 = engine->i915;
966         const struct sseu_dev_info *sseu = &RUNTIME_INFO(i915)->sseu;
967         struct intel_uncore *uncore = engine->uncore;
968         u32 mmio_base = engine->mmio_base;
969         int slice;
970         int subslice;
971
972         memset(instdone, 0, sizeof(*instdone));
973
974         switch (INTEL_GEN(i915)) {
975         default:
976                 instdone->instdone =
977                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
978
979                 if (engine->id != RCS0)
980                         break;
981
982                 instdone->slice_common =
983                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
984                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
985                         instdone->sampler[slice][subslice] =
986                                 read_subslice_reg(engine, slice, subslice,
987                                                   GEN7_SAMPLER_INSTDONE);
988                         instdone->row[slice][subslice] =
989                                 read_subslice_reg(engine, slice, subslice,
990                                                   GEN7_ROW_INSTDONE);
991                 }
992                 break;
993         case 7:
994                 instdone->instdone =
995                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
996
997                 if (engine->id != RCS0)
998                         break;
999
1000                 instdone->slice_common =
1001                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1002                 instdone->sampler[0][0] =
1003                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1004                 instdone->row[0][0] =
1005                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1006
1007                 break;
1008         case 6:
1009         case 5:
1010         case 4:
1011                 instdone->instdone =
1012                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1013                 if (engine->id == RCS0)
1014                         /* HACK: Using the wrong struct member */
1015                         instdone->slice_common =
1016                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1017                 break;
1018         case 3:
1019         case 2:
1020                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1021                 break;
1022         }
1023 }
1024
1025 static bool ring_is_idle(struct intel_engine_cs *engine)
1026 {
1027         bool idle = true;
1028
1029         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1030                 return true;
1031
1032         if (!intel_engine_pm_get_if_awake(engine))
1033                 return true;
1034
1035         /* First check that no commands are left in the ring */
1036         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1037             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1038                 idle = false;
1039
1040         /* No bit for gen2, so assume the CS parser is idle */
1041         if (INTEL_GEN(engine->i915) > 2 &&
1042             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1043                 idle = false;
1044
1045         intel_engine_pm_put(engine);
1046
1047         return idle;
1048 }
1049
1050 void intel_engine_flush_submission(struct intel_engine_cs *engine)
1051 {
1052         struct tasklet_struct *t = &engine->execlists.tasklet;
1053
1054         if (__tasklet_is_scheduled(t)) {
1055                 local_bh_disable();
1056                 if (tasklet_trylock(t)) {
1057                         /* Must wait for any GPU reset in progress. */
1058                         if (__tasklet_is_enabled(t))
1059                                 t->func(t->data);
1060                         tasklet_unlock(t);
1061                 }
1062                 local_bh_enable();
1063         }
1064
1065         /* Otherwise flush the tasklet if it was running on another cpu */
1066         tasklet_unlock_wait(t);
1067 }
1068
1069 /**
1070  * intel_engine_is_idle() - Report if the engine has finished process all work
1071  * @engine: the intel_engine_cs
1072  *
1073  * Return true if there are no requests pending, nothing left to be submitted
1074  * to hardware, and that the engine is idle.
1075  */
1076 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1077 {
1078         /* More white lies, if wedged, hw state is inconsistent */
1079         if (intel_gt_is_wedged(engine->gt))
1080                 return true;
1081
1082         if (!intel_engine_pm_is_awake(engine))
1083                 return true;
1084
1085         /* Waiting to drain ELSP? */
1086         if (execlists_active(&engine->execlists)) {
1087                 synchronize_hardirq(engine->i915->drm.pdev->irq);
1088
1089                 intel_engine_flush_submission(engine);
1090
1091                 if (execlists_active(&engine->execlists))
1092                         return false;
1093         }
1094
1095         /* ELSP is empty, but there are ready requests? E.g. after reset */
1096         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1097                 return false;
1098
1099         /* Ring stopped? */
1100         return ring_is_idle(engine);
1101 }
1102
1103 bool intel_engines_are_idle(struct intel_gt *gt)
1104 {
1105         struct intel_engine_cs *engine;
1106         enum intel_engine_id id;
1107
1108         /*
1109          * If the driver is wedged, HW state may be very inconsistent and
1110          * report that it is still busy, even though we have stopped using it.
1111          */
1112         if (intel_gt_is_wedged(gt))
1113                 return true;
1114
1115         /* Already parked (and passed an idleness test); must still be idle */
1116         if (!READ_ONCE(gt->awake))
1117                 return true;
1118
1119         for_each_engine(engine, gt, id) {
1120                 if (!intel_engine_is_idle(engine))
1121                         return false;
1122         }
1123
1124         return true;
1125 }
1126
1127 void intel_engines_reset_default_submission(struct intel_gt *gt)
1128 {
1129         struct intel_engine_cs *engine;
1130         enum intel_engine_id id;
1131
1132         for_each_engine(engine, gt, id)
1133                 engine->set_default_submission(engine);
1134 }
1135
1136 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1137 {
1138         switch (INTEL_GEN(engine->i915)) {
1139         case 2:
1140                 return false; /* uses physical not virtual addresses */
1141         case 3:
1142                 /* maybe only uses physical not virtual addresses */
1143                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1144         case 4:
1145                 return !IS_I965G(engine->i915); /* who knows! */
1146         case 6:
1147                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1148         default:
1149                 return true;
1150         }
1151 }
1152
1153 static int print_sched_attr(struct drm_i915_private *i915,
1154                             const struct i915_sched_attr *attr,
1155                             char *buf, int x, int len)
1156 {
1157         if (attr->priority == I915_PRIORITY_INVALID)
1158                 return x;
1159
1160         x += snprintf(buf + x, len - x,
1161                       " prio=%d", attr->priority);
1162
1163         return x;
1164 }
1165
1166 static void print_request(struct drm_printer *m,
1167                           struct i915_request *rq,
1168                           const char *prefix)
1169 {
1170         const char *name = rq->fence.ops->get_timeline_name(&rq->fence);
1171         char buf[80] = "";
1172         int x = 0;
1173
1174         x = print_sched_attr(rq->i915, &rq->sched.attr, buf, x, sizeof(buf));
1175
1176         drm_printf(m, "%s %llx:%llx%s%s %s @ %dms: %s\n",
1177                    prefix,
1178                    rq->fence.context, rq->fence.seqno,
1179                    i915_request_completed(rq) ? "!" :
1180                    i915_request_started(rq) ? "*" :
1181                    "",
1182                    test_bit(DMA_FENCE_FLAG_SIGNALED_BIT,
1183                             &rq->fence.flags) ? "+" :
1184                    test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT,
1185                             &rq->fence.flags) ? "-" :
1186                    "",
1187                    buf,
1188                    jiffies_to_msecs(jiffies - rq->emitted_jiffies),
1189                    name);
1190 }
1191
1192 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1193 {
1194         const size_t rowsize = 8 * sizeof(u32);
1195         const void *prev = NULL;
1196         bool skip = false;
1197         size_t pos;
1198
1199         for (pos = 0; pos < len; pos += rowsize) {
1200                 char line[128];
1201
1202                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1203                         if (!skip) {
1204                                 drm_printf(m, "*\n");
1205                                 skip = true;
1206                         }
1207                         continue;
1208                 }
1209
1210                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1211                                                 rowsize, sizeof(u32),
1212                                                 line, sizeof(line),
1213                                                 false) >= sizeof(line));
1214                 drm_printf(m, "[%04zx] %s\n", pos, line);
1215
1216                 prev = buf + pos;
1217                 skip = false;
1218         }
1219 }
1220
1221 static struct intel_timeline *get_timeline(struct i915_request *rq)
1222 {
1223         struct intel_timeline *tl;
1224
1225         /*
1226          * Even though we are holding the engine->active.lock here, there
1227          * is no control over the submission queue per-se and we are
1228          * inspecting the active state at a random point in time, with an
1229          * unknown queue. Play safe and make sure the timeline remains valid.
1230          * (Only being used for pretty printing, one extra kref shouldn't
1231          * cause a camel stampede!)
1232          */
1233         rcu_read_lock();
1234         tl = rcu_dereference(rq->timeline);
1235         if (!kref_get_unless_zero(&tl->kref))
1236                 tl = NULL;
1237         rcu_read_unlock();
1238
1239         return tl;
1240 }
1241
1242 static const char *repr_timer(const struct timer_list *t)
1243 {
1244         if (!READ_ONCE(t->expires))
1245                 return "inactive";
1246
1247         if (timer_pending(t))
1248                 return "active";
1249
1250         return "expired";
1251 }
1252
1253 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1254                                          struct drm_printer *m)
1255 {
1256         struct drm_i915_private *dev_priv = engine->i915;
1257         struct intel_engine_execlists * const execlists = &engine->execlists;
1258         u64 addr;
1259
1260         if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1261                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1262         drm_printf(m, "\tRING_START: 0x%08x\n",
1263                    ENGINE_READ(engine, RING_START));
1264         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1265                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1266         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1267                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1268         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1269                    ENGINE_READ(engine, RING_CTL),
1270                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1271         if (INTEL_GEN(engine->i915) > 2) {
1272                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1273                            ENGINE_READ(engine, RING_MI_MODE),
1274                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1275         }
1276
1277         if (INTEL_GEN(dev_priv) >= 6) {
1278                 drm_printf(m, "\tRING_IMR: %08x\n",
1279                            ENGINE_READ(engine, RING_IMR));
1280         }
1281
1282         addr = intel_engine_get_active_head(engine);
1283         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1284                    upper_32_bits(addr), lower_32_bits(addr));
1285         addr = intel_engine_get_last_batch_head(engine);
1286         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1287                    upper_32_bits(addr), lower_32_bits(addr));
1288         if (INTEL_GEN(dev_priv) >= 8)
1289                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1290         else if (INTEL_GEN(dev_priv) >= 4)
1291                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1292         else
1293                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1294         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1295                    upper_32_bits(addr), lower_32_bits(addr));
1296         if (INTEL_GEN(dev_priv) >= 4) {
1297                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1298                            ENGINE_READ(engine, RING_IPEIR));
1299                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1300                            ENGINE_READ(engine, RING_IPEHR));
1301         } else {
1302                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1303                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1304         }
1305
1306         if (HAS_EXECLISTS(dev_priv)) {
1307                 struct i915_request * const *port, *rq;
1308                 const u32 *hws =
1309                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1310                 const u8 num_entries = execlists->csb_size;
1311                 unsigned int idx;
1312                 u8 read, write;
1313
1314                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1315                            yesno(test_bit(TASKLET_STATE_SCHED,
1316                                           &engine->execlists.tasklet.state)),
1317                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1318                            repr_timer(&engine->execlists.preempt),
1319                            repr_timer(&engine->execlists.timer));
1320
1321                 read = execlists->csb_head;
1322                 write = READ_ONCE(*execlists->csb_write);
1323
1324                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1325                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1326                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1327                            read, write, num_entries);
1328
1329                 if (read >= num_entries)
1330                         read = 0;
1331                 if (write >= num_entries)
1332                         write = 0;
1333                 if (read > write)
1334                         write += num_entries;
1335                 while (read < write) {
1336                         idx = ++read % num_entries;
1337                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1338                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1339                 }
1340
1341                 execlists_active_lock_bh(execlists);
1342                 rcu_read_lock();
1343                 for (port = execlists->active; (rq = *port); port++) {
1344                         char hdr[80];
1345                         int len;
1346
1347                         len = snprintf(hdr, sizeof(hdr),
1348                                        "\t\tActive[%d]: ",
1349                                        (int)(port - execlists->active));
1350                         if (!i915_request_signaled(rq)) {
1351                                 struct intel_timeline *tl = get_timeline(rq);
1352
1353                                 len += snprintf(hdr + len, sizeof(hdr) - len,
1354                                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x}, ",
1355                                                 i915_ggtt_offset(rq->ring->vma),
1356                                                 tl ? tl->hwsp_offset : 0,
1357                                                 hwsp_seqno(rq));
1358
1359                                 if (tl)
1360                                         intel_timeline_put(tl);
1361                         }
1362                         snprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1363                         print_request(m, rq, hdr);
1364                 }
1365                 for (port = execlists->pending; (rq = *port); port++) {
1366                         struct intel_timeline *tl = get_timeline(rq);
1367                         char hdr[80];
1368
1369                         snprintf(hdr, sizeof(hdr),
1370                                  "\t\tPending[%d] ring:{start:%08x, hwsp:%08x, seqno:%08x}, rq: ",
1371                                  (int)(port - execlists->pending),
1372                                  i915_ggtt_offset(rq->ring->vma),
1373                                  tl ? tl->hwsp_offset : 0,
1374                                  hwsp_seqno(rq));
1375                         print_request(m, rq, hdr);
1376
1377                         if (tl)
1378                                 intel_timeline_put(tl);
1379                 }
1380                 rcu_read_unlock();
1381                 execlists_active_unlock_bh(execlists);
1382         } else if (INTEL_GEN(dev_priv) > 6) {
1383                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1384                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1385                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1386                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1387                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1388                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1389         }
1390 }
1391
1392 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1393 {
1394         void *ring;
1395         int size;
1396
1397         drm_printf(m,
1398                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1399                    rq->head, rq->postfix, rq->tail,
1400                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1401                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1402
1403         size = rq->tail - rq->head;
1404         if (rq->tail < rq->head)
1405                 size += rq->ring->size;
1406
1407         ring = kmalloc(size, GFP_ATOMIC);
1408         if (ring) {
1409                 const void *vaddr = rq->ring->vaddr;
1410                 unsigned int head = rq->head;
1411                 unsigned int len = 0;
1412
1413                 if (rq->tail < head) {
1414                         len = rq->ring->size - head;
1415                         memcpy(ring, vaddr + head, len);
1416                         head = 0;
1417                 }
1418                 memcpy(ring + len, vaddr + head, size - len);
1419
1420                 hexdump(m, ring, size);
1421                 kfree(ring);
1422         }
1423 }
1424
1425 void intel_engine_dump(struct intel_engine_cs *engine,
1426                        struct drm_printer *m,
1427                        const char *header, ...)
1428 {
1429         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1430         struct i915_request *rq;
1431         intel_wakeref_t wakeref;
1432         unsigned long flags;
1433
1434         if (header) {
1435                 va_list ap;
1436
1437                 va_start(ap, header);
1438                 drm_vprintf(m, header, &ap);
1439                 va_end(ap);
1440         }
1441
1442         if (intel_gt_is_wedged(engine->gt))
1443                 drm_printf(m, "*** WEDGED ***\n");
1444
1445         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1446         drm_printf(m, "\tBarriers?: %s\n",
1447                    yesno(!llist_empty(&engine->barrier_tasks)));
1448         drm_printf(m, "\tLatency: %luus\n",
1449                    ewma__engine_latency_read(&engine->latency));
1450
1451         rcu_read_lock();
1452         rq = READ_ONCE(engine->heartbeat.systole);
1453         if (rq)
1454                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1455                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1456         rcu_read_unlock();
1457         drm_printf(m, "\tReset count: %d (global %d)\n",
1458                    i915_reset_engine_count(error, engine),
1459                    i915_reset_count(error));
1460
1461         drm_printf(m, "\tRequests:\n");
1462
1463         spin_lock_irqsave(&engine->active.lock, flags);
1464         rq = intel_engine_find_active_request(engine);
1465         if (rq) {
1466                 struct intel_timeline *tl = get_timeline(rq);
1467
1468                 print_request(m, rq, "\t\tactive ");
1469
1470                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1471                            i915_ggtt_offset(rq->ring->vma));
1472                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1473                            rq->ring->head);
1474                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1475                            rq->ring->tail);
1476                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1477                            rq->ring->emit);
1478                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1479                            rq->ring->space);
1480
1481                 if (tl) {
1482                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1483                                    tl->hwsp_offset);
1484                         intel_timeline_put(tl);
1485                 }
1486
1487                 print_request_ring(m, rq);
1488
1489                 if (rq->context->lrc_reg_state) {
1490                         drm_printf(m, "Logical Ring Context:\n");
1491                         hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1492                 }
1493         }
1494         spin_unlock_irqrestore(&engine->active.lock, flags);
1495
1496         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1497         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1498         if (wakeref) {
1499                 intel_engine_print_registers(engine, m);
1500                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1501         } else {
1502                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1503         }
1504
1505         intel_execlists_show_requests(engine, m, print_request, 8);
1506
1507         drm_printf(m, "HWSP:\n");
1508         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1509
1510         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1511
1512         intel_engine_print_breadcrumbs(engine, m);
1513 }
1514
1515 /**
1516  * intel_enable_engine_stats() - Enable engine busy tracking on engine
1517  * @engine: engine to enable stats collection
1518  *
1519  * Start collecting the engine busyness data for @engine.
1520  *
1521  * Returns 0 on success or a negative error code.
1522  */
1523 int intel_enable_engine_stats(struct intel_engine_cs *engine)
1524 {
1525         struct intel_engine_execlists *execlists = &engine->execlists;
1526         unsigned long flags;
1527         int err = 0;
1528
1529         if (!intel_engine_supports_stats(engine))
1530                 return -ENODEV;
1531
1532         execlists_active_lock_bh(execlists);
1533         write_seqlock_irqsave(&engine->stats.lock, flags);
1534
1535         if (unlikely(engine->stats.enabled == ~0)) {
1536                 err = -EBUSY;
1537                 goto unlock;
1538         }
1539
1540         if (engine->stats.enabled++ == 0) {
1541                 struct i915_request * const *port;
1542                 struct i915_request *rq;
1543
1544                 engine->stats.enabled_at = ktime_get();
1545
1546                 /* XXX submission method oblivious? */
1547                 for (port = execlists->active; (rq = *port); port++)
1548                         engine->stats.active++;
1549
1550                 for (port = execlists->pending; (rq = *port); port++) {
1551                         /* Exclude any contexts already counted in active */
1552                         if (!intel_context_inflight_count(rq->context))
1553                                 engine->stats.active++;
1554                 }
1555
1556                 if (engine->stats.active)
1557                         engine->stats.start = engine->stats.enabled_at;
1558         }
1559
1560 unlock:
1561         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1562         execlists_active_unlock_bh(execlists);
1563
1564         return err;
1565 }
1566
1567 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine)
1568 {
1569         ktime_t total = engine->stats.total;
1570
1571         /*
1572          * If the engine is executing something at the moment
1573          * add it to the total.
1574          */
1575         if (engine->stats.active)
1576                 total = ktime_add(total,
1577                                   ktime_sub(ktime_get(), engine->stats.start));
1578
1579         return total;
1580 }
1581
1582 /**
1583  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1584  * @engine: engine to report on
1585  *
1586  * Returns accumulated time @engine was busy since engine stats were enabled.
1587  */
1588 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine)
1589 {
1590         unsigned int seq;
1591         ktime_t total;
1592
1593         do {
1594                 seq = read_seqbegin(&engine->stats.lock);
1595                 total = __intel_engine_get_busy_time(engine);
1596         } while (read_seqretry(&engine->stats.lock, seq));
1597
1598         return total;
1599 }
1600
1601 /**
1602  * intel_disable_engine_stats() - Disable engine busy tracking on engine
1603  * @engine: engine to disable stats collection
1604  *
1605  * Stops collecting the engine busyness data for @engine.
1606  */
1607 void intel_disable_engine_stats(struct intel_engine_cs *engine)
1608 {
1609         unsigned long flags;
1610
1611         if (!intel_engine_supports_stats(engine))
1612                 return;
1613
1614         write_seqlock_irqsave(&engine->stats.lock, flags);
1615         WARN_ON_ONCE(engine->stats.enabled == 0);
1616         if (--engine->stats.enabled == 0) {
1617                 engine->stats.total = __intel_engine_get_busy_time(engine);
1618                 engine->stats.active = 0;
1619         }
1620         write_sequnlock_irqrestore(&engine->stats.lock, flags);
1621 }
1622
1623 static bool match_ring(struct i915_request *rq)
1624 {
1625         u32 ring = ENGINE_READ(rq->engine, RING_START);
1626
1627         return ring == i915_ggtt_offset(rq->ring->vma);
1628 }
1629
1630 struct i915_request *
1631 intel_engine_find_active_request(struct intel_engine_cs *engine)
1632 {
1633         struct i915_request *request, *active = NULL;
1634
1635         /*
1636          * We are called by the error capture, reset and to dump engine
1637          * state at random points in time. In particular, note that neither is
1638          * crucially ordered with an interrupt. After a hang, the GPU is dead
1639          * and we assume that no more writes can happen (we waited long enough
1640          * for all writes that were in transaction to be flushed) - adding an
1641          * extra delay for a recent interrupt is pointless. Hence, we do
1642          * not need an engine->irq_seqno_barrier() before the seqno reads.
1643          * At all other times, we must assume the GPU is still running, but
1644          * we only care about the snapshot of this moment.
1645          */
1646         lockdep_assert_held(&engine->active.lock);
1647         list_for_each_entry(request, &engine->active.requests, sched.link) {
1648                 if (i915_request_completed(request))
1649                         continue;
1650
1651                 if (!i915_request_started(request))
1652                         continue;
1653
1654                 /* More than one preemptible request may match! */
1655                 if (!match_ring(request))
1656                         continue;
1657
1658                 active = request;
1659                 break;
1660         }
1661
1662         return active;
1663 }
1664
1665 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1666 #include "mock_engine.c"
1667 #include "selftest_engine.c"
1668 #include "selftest_engine_cs.c"
1669 #endif