drm/i915/gt: Move submission_method into intel_gt
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016 Intel Corporation
4  */
5
6 #include <drm/drm_print.h>
7
8 #include "gem/i915_gem_context.h"
9
10 #include "i915_drv.h"
11
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine.h"
15 #include "intel_engine_pm.h"
16 #include "intel_engine_user.h"
17 #include "intel_execlists_submission.h"
18 #include "intel_gt.h"
19 #include "intel_gt_requests.h"
20 #include "intel_gt_pm.h"
21 #include "intel_lrc_reg.h"
22 #include "intel_reset.h"
23 #include "intel_ring.h"
24 #include "uc/intel_guc_submission.h"
25
26 /* Haswell does have the CXT_SIZE register however it does not appear to be
27  * valid. Now, docs explain in dwords what is in the context object. The full
28  * size is 70720 bytes, however, the power context and execlist context will
29  * never be saved (power context is stored elsewhere, and execlists don't work
30  * on HSW) - so the final size, including the extra state required for the
31  * Resource Streamer, is 66944 bytes, which rounds to 17 pages.
32  */
33 #define HSW_CXT_TOTAL_SIZE              (17 * PAGE_SIZE)
34
35 #define DEFAULT_LR_CONTEXT_RENDER_SIZE  (22 * PAGE_SIZE)
36 #define GEN8_LR_CONTEXT_RENDER_SIZE     (20 * PAGE_SIZE)
37 #define GEN9_LR_CONTEXT_RENDER_SIZE     (22 * PAGE_SIZE)
38 #define GEN10_LR_CONTEXT_RENDER_SIZE    (18 * PAGE_SIZE)
39 #define GEN11_LR_CONTEXT_RENDER_SIZE    (14 * PAGE_SIZE)
40
41 #define GEN8_LR_CONTEXT_OTHER_SIZE      ( 2 * PAGE_SIZE)
42
43 #define MAX_MMIO_BASES 3
44 struct engine_info {
45         unsigned int hw_id;
46         u8 class;
47         u8 instance;
48         /* mmio bases table *must* be sorted in reverse graphics_ver order */
49         struct engine_mmio_base {
50                 u32 graphics_ver : 8;
51                 u32 base : 24;
52         } mmio_bases[MAX_MMIO_BASES];
53 };
54
55 static const struct engine_info intel_engines[] = {
56         [RCS0] = {
57                 .hw_id = RCS0_HW,
58                 .class = RENDER_CLASS,
59                 .instance = 0,
60                 .mmio_bases = {
61                         { .graphics_ver = 1, .base = RENDER_RING_BASE }
62                 },
63         },
64         [BCS0] = {
65                 .hw_id = BCS0_HW,
66                 .class = COPY_ENGINE_CLASS,
67                 .instance = 0,
68                 .mmio_bases = {
69                         { .graphics_ver = 6, .base = BLT_RING_BASE }
70                 },
71         },
72         [VCS0] = {
73                 .hw_id = VCS0_HW,
74                 .class = VIDEO_DECODE_CLASS,
75                 .instance = 0,
76                 .mmio_bases = {
77                         { .graphics_ver = 11, .base = GEN11_BSD_RING_BASE },
78                         { .graphics_ver = 6, .base = GEN6_BSD_RING_BASE },
79                         { .graphics_ver = 4, .base = BSD_RING_BASE }
80                 },
81         },
82         [VCS1] = {
83                 .hw_id = VCS1_HW,
84                 .class = VIDEO_DECODE_CLASS,
85                 .instance = 1,
86                 .mmio_bases = {
87                         { .graphics_ver = 11, .base = GEN11_BSD2_RING_BASE },
88                         { .graphics_ver = 8, .base = GEN8_BSD2_RING_BASE }
89                 },
90         },
91         [VCS2] = {
92                 .hw_id = VCS2_HW,
93                 .class = VIDEO_DECODE_CLASS,
94                 .instance = 2,
95                 .mmio_bases = {
96                         { .graphics_ver = 11, .base = GEN11_BSD3_RING_BASE }
97                 },
98         },
99         [VCS3] = {
100                 .hw_id = VCS3_HW,
101                 .class = VIDEO_DECODE_CLASS,
102                 .instance = 3,
103                 .mmio_bases = {
104                         { .graphics_ver = 11, .base = GEN11_BSD4_RING_BASE }
105                 },
106         },
107         [VECS0] = {
108                 .hw_id = VECS0_HW,
109                 .class = VIDEO_ENHANCEMENT_CLASS,
110                 .instance = 0,
111                 .mmio_bases = {
112                         { .graphics_ver = 11, .base = GEN11_VEBOX_RING_BASE },
113                         { .graphics_ver = 7, .base = VEBOX_RING_BASE }
114                 },
115         },
116         [VECS1] = {
117                 .hw_id = VECS1_HW,
118                 .class = VIDEO_ENHANCEMENT_CLASS,
119                 .instance = 1,
120                 .mmio_bases = {
121                         { .graphics_ver = 11, .base = GEN11_VEBOX2_RING_BASE }
122                 },
123         },
124 };
125
126 /**
127  * intel_engine_context_size() - return the size of the context for an engine
128  * @gt: the gt
129  * @class: engine class
130  *
131  * Each engine class may require a different amount of space for a context
132  * image.
133  *
134  * Return: size (in bytes) of an engine class specific context image
135  *
136  * Note: this size includes the HWSP, which is part of the context image
137  * in LRC mode, but does not include the "shared data page" used with
138  * GuC submission. The caller should account for this if using the GuC.
139  */
140 u32 intel_engine_context_size(struct intel_gt *gt, u8 class)
141 {
142         struct intel_uncore *uncore = gt->uncore;
143         u32 cxt_size;
144
145         BUILD_BUG_ON(I915_GTT_PAGE_SIZE != PAGE_SIZE);
146
147         switch (class) {
148         case RENDER_CLASS:
149                 switch (GRAPHICS_VER(gt->i915)) {
150                 default:
151                         MISSING_CASE(GRAPHICS_VER(gt->i915));
152                         return DEFAULT_LR_CONTEXT_RENDER_SIZE;
153                 case 12:
154                 case 11:
155                         return GEN11_LR_CONTEXT_RENDER_SIZE;
156                 case 10:
157                         return GEN10_LR_CONTEXT_RENDER_SIZE;
158                 case 9:
159                         return GEN9_LR_CONTEXT_RENDER_SIZE;
160                 case 8:
161                         return GEN8_LR_CONTEXT_RENDER_SIZE;
162                 case 7:
163                         if (IS_HASWELL(gt->i915))
164                                 return HSW_CXT_TOTAL_SIZE;
165
166                         cxt_size = intel_uncore_read(uncore, GEN7_CXT_SIZE);
167                         return round_up(GEN7_CXT_TOTAL_SIZE(cxt_size) * 64,
168                                         PAGE_SIZE);
169                 case 6:
170                         cxt_size = intel_uncore_read(uncore, CXT_SIZE);
171                         return round_up(GEN6_CXT_TOTAL_SIZE(cxt_size) * 64,
172                                         PAGE_SIZE);
173                 case 5:
174                 case 4:
175                         /*
176                          * There is a discrepancy here between the size reported
177                          * by the register and the size of the context layout
178                          * in the docs. Both are described as authorative!
179                          *
180                          * The discrepancy is on the order of a few cachelines,
181                          * but the total is under one page (4k), which is our
182                          * minimum allocation anyway so it should all come
183                          * out in the wash.
184                          */
185                         cxt_size = intel_uncore_read(uncore, CXT_SIZE) + 1;
186                         drm_dbg(&gt->i915->drm,
187                                 "graphics_ver = %d CXT_SIZE = %d bytes [0x%08x]\n",
188                                 GRAPHICS_VER(gt->i915), cxt_size * 64,
189                                 cxt_size - 1);
190                         return round_up(cxt_size * 64, PAGE_SIZE);
191                 case 3:
192                 case 2:
193                 /* For the special day when i810 gets merged. */
194                 case 1:
195                         return 0;
196                 }
197                 break;
198         default:
199                 MISSING_CASE(class);
200                 fallthrough;
201         case VIDEO_DECODE_CLASS:
202         case VIDEO_ENHANCEMENT_CLASS:
203         case COPY_ENGINE_CLASS:
204                 if (GRAPHICS_VER(gt->i915) < 8)
205                         return 0;
206                 return GEN8_LR_CONTEXT_OTHER_SIZE;
207         }
208 }
209
210 static u32 __engine_mmio_base(struct drm_i915_private *i915,
211                               const struct engine_mmio_base *bases)
212 {
213         int i;
214
215         for (i = 0; i < MAX_MMIO_BASES; i++)
216                 if (GRAPHICS_VER(i915) >= bases[i].graphics_ver)
217                         break;
218
219         GEM_BUG_ON(i == MAX_MMIO_BASES);
220         GEM_BUG_ON(!bases[i].base);
221
222         return bases[i].base;
223 }
224
225 static void __sprint_engine_name(struct intel_engine_cs *engine)
226 {
227         /*
228          * Before we know what the uABI name for this engine will be,
229          * we still would like to keep track of this engine in the debug logs.
230          * We throw in a ' here as a reminder that this isn't its final name.
231          */
232         GEM_WARN_ON(snprintf(engine->name, sizeof(engine->name), "%s'%u",
233                              intel_engine_class_repr(engine->class),
234                              engine->instance) >= sizeof(engine->name));
235 }
236
237 void intel_engine_set_hwsp_writemask(struct intel_engine_cs *engine, u32 mask)
238 {
239         /*
240          * Though they added more rings on g4x/ilk, they did not add
241          * per-engine HWSTAM until gen6.
242          */
243         if (INTEL_GEN(engine->i915) < 6 && engine->class != RENDER_CLASS)
244                 return;
245
246         if (INTEL_GEN(engine->i915) >= 3)
247                 ENGINE_WRITE(engine, RING_HWSTAM, mask);
248         else
249                 ENGINE_WRITE16(engine, RING_HWSTAM, mask);
250 }
251
252 static void intel_engine_sanitize_mmio(struct intel_engine_cs *engine)
253 {
254         /* Mask off all writes into the unknown HWSP */
255         intel_engine_set_hwsp_writemask(engine, ~0u);
256 }
257
258 static int intel_engine_setup(struct intel_gt *gt, enum intel_engine_id id)
259 {
260         const struct engine_info *info = &intel_engines[id];
261         struct drm_i915_private *i915 = gt->i915;
262         struct intel_engine_cs *engine;
263
264         BUILD_BUG_ON(MAX_ENGINE_CLASS >= BIT(GEN11_ENGINE_CLASS_WIDTH));
265         BUILD_BUG_ON(MAX_ENGINE_INSTANCE >= BIT(GEN11_ENGINE_INSTANCE_WIDTH));
266
267         if (GEM_DEBUG_WARN_ON(id >= ARRAY_SIZE(gt->engine)))
268                 return -EINVAL;
269
270         if (GEM_DEBUG_WARN_ON(info->class > MAX_ENGINE_CLASS))
271                 return -EINVAL;
272
273         if (GEM_DEBUG_WARN_ON(info->instance > MAX_ENGINE_INSTANCE))
274                 return -EINVAL;
275
276         if (GEM_DEBUG_WARN_ON(gt->engine_class[info->class][info->instance]))
277                 return -EINVAL;
278
279         engine = kzalloc(sizeof(*engine), GFP_KERNEL);
280         if (!engine)
281                 return -ENOMEM;
282
283         BUILD_BUG_ON(BITS_PER_TYPE(engine->mask) < I915_NUM_ENGINES);
284
285         engine->id = id;
286         engine->legacy_idx = INVALID_ENGINE;
287         engine->mask = BIT(id);
288         engine->i915 = i915;
289         engine->gt = gt;
290         engine->uncore = gt->uncore;
291         engine->mmio_base = __engine_mmio_base(i915, info->mmio_bases);
292         engine->hw_id = info->hw_id;
293         engine->guc_id = MAKE_GUC_ID(info->class, info->instance);
294
295         engine->class = info->class;
296         engine->instance = info->instance;
297         __sprint_engine_name(engine);
298
299         engine->props.heartbeat_interval_ms =
300                 CONFIG_DRM_I915_HEARTBEAT_INTERVAL;
301         engine->props.max_busywait_duration_ns =
302                 CONFIG_DRM_I915_MAX_REQUEST_BUSYWAIT;
303         engine->props.preempt_timeout_ms =
304                 CONFIG_DRM_I915_PREEMPT_TIMEOUT;
305         engine->props.stop_timeout_ms =
306                 CONFIG_DRM_I915_STOP_TIMEOUT;
307         engine->props.timeslice_duration_ms =
308                 CONFIG_DRM_I915_TIMESLICE_DURATION;
309
310         /* Override to uninterruptible for OpenCL workloads. */
311         if (INTEL_GEN(i915) == 12 && engine->class == RENDER_CLASS)
312                 engine->props.preempt_timeout_ms = 0;
313
314         engine->defaults = engine->props; /* never to change again */
315
316         engine->context_size = intel_engine_context_size(gt, engine->class);
317         if (WARN_ON(engine->context_size > BIT(20)))
318                 engine->context_size = 0;
319         if (engine->context_size)
320                 DRIVER_CAPS(i915)->has_logical_contexts = true;
321
322         /* Nothing to do here, execute in order of dependencies */
323         engine->schedule = NULL;
324
325         ewma__engine_latency_init(&engine->latency);
326         seqcount_init(&engine->stats.lock);
327
328         ATOMIC_INIT_NOTIFIER_HEAD(&engine->context_status_notifier);
329
330         /* Scrub mmio state on takeover */
331         intel_engine_sanitize_mmio(engine);
332
333         gt->engine_class[info->class][info->instance] = engine;
334         gt->engine[id] = engine;
335
336         return 0;
337 }
338
339 static void __setup_engine_capabilities(struct intel_engine_cs *engine)
340 {
341         struct drm_i915_private *i915 = engine->i915;
342
343         if (engine->class == VIDEO_DECODE_CLASS) {
344                 /*
345                  * HEVC support is present on first engine instance
346                  * before Gen11 and on all instances afterwards.
347                  */
348                 if (INTEL_GEN(i915) >= 11 ||
349                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
350                         engine->uabi_capabilities |=
351                                 I915_VIDEO_CLASS_CAPABILITY_HEVC;
352
353                 /*
354                  * SFC block is present only on even logical engine
355                  * instances.
356                  */
357                 if ((INTEL_GEN(i915) >= 11 &&
358                      (engine->gt->info.vdbox_sfc_access &
359                       BIT(engine->instance))) ||
360                     (INTEL_GEN(i915) >= 9 && engine->instance == 0))
361                         engine->uabi_capabilities |=
362                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
363         } else if (engine->class == VIDEO_ENHANCEMENT_CLASS) {
364                 if (INTEL_GEN(i915) >= 9)
365                         engine->uabi_capabilities |=
366                                 I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC;
367         }
368 }
369
370 static void intel_setup_engine_capabilities(struct intel_gt *gt)
371 {
372         struct intel_engine_cs *engine;
373         enum intel_engine_id id;
374
375         for_each_engine(engine, gt, id)
376                 __setup_engine_capabilities(engine);
377 }
378
379 /**
380  * intel_engines_release() - free the resources allocated for Command Streamers
381  * @gt: pointer to struct intel_gt
382  */
383 void intel_engines_release(struct intel_gt *gt)
384 {
385         struct intel_engine_cs *engine;
386         enum intel_engine_id id;
387
388         /*
389          * Before we release the resources held by engine, we must be certain
390          * that the HW is no longer accessing them -- having the GPU scribble
391          * to or read from a page being used for something else causes no end
392          * of fun.
393          *
394          * The GPU should be reset by this point, but assume the worst just
395          * in case we aborted before completely initialising the engines.
396          */
397         GEM_BUG_ON(intel_gt_pm_is_awake(gt));
398         if (!INTEL_INFO(gt->i915)->gpu_reset_clobbers_display)
399                 __intel_gt_reset(gt, ALL_ENGINES);
400
401         /* Decouple the backend; but keep the layout for late GPU resets */
402         for_each_engine(engine, gt, id) {
403                 if (!engine->release)
404                         continue;
405
406                 intel_wakeref_wait_for_idle(&engine->wakeref);
407                 GEM_BUG_ON(intel_engine_pm_is_awake(engine));
408
409                 engine->release(engine);
410                 engine->release = NULL;
411
412                 memset(&engine->reset, 0, sizeof(engine->reset));
413         }
414 }
415
416 void intel_engine_free_request_pool(struct intel_engine_cs *engine)
417 {
418         if (!engine->request_pool)
419                 return;
420
421         kmem_cache_free(i915_request_slab_cache(), engine->request_pool);
422 }
423
424 void intel_engines_free(struct intel_gt *gt)
425 {
426         struct intel_engine_cs *engine;
427         enum intel_engine_id id;
428
429         /* Free the requests! dma-resv keeps fences around for an eternity */
430         rcu_barrier();
431
432         for_each_engine(engine, gt, id) {
433                 intel_engine_free_request_pool(engine);
434                 kfree(engine);
435                 gt->engine[id] = NULL;
436         }
437 }
438
439 /*
440  * Determine which engines are fused off in our particular hardware.
441  * Note that we have a catch-22 situation where we need to be able to access
442  * the blitter forcewake domain to read the engine fuses, but at the same time
443  * we need to know which engines are available on the system to know which
444  * forcewake domains are present. We solve this by intializing the forcewake
445  * domains based on the full engine mask in the platform capabilities before
446  * calling this function and pruning the domains for fused-off engines
447  * afterwards.
448  */
449 static intel_engine_mask_t init_engine_mask(struct intel_gt *gt)
450 {
451         struct drm_i915_private *i915 = gt->i915;
452         struct intel_gt_info *info = &gt->info;
453         struct intel_uncore *uncore = gt->uncore;
454         unsigned int logical_vdbox = 0;
455         unsigned int i;
456         u32 media_fuse;
457         u16 vdbox_mask;
458         u16 vebox_mask;
459
460         info->engine_mask = INTEL_INFO(i915)->platform_engine_mask;
461
462         if (INTEL_GEN(i915) < 11)
463                 return info->engine_mask;
464
465         media_fuse = ~intel_uncore_read(uncore, GEN11_GT_VEBOX_VDBOX_DISABLE);
466
467         vdbox_mask = media_fuse & GEN11_GT_VDBOX_DISABLE_MASK;
468         vebox_mask = (media_fuse & GEN11_GT_VEBOX_DISABLE_MASK) >>
469                       GEN11_GT_VEBOX_DISABLE_SHIFT;
470
471         for (i = 0; i < I915_MAX_VCS; i++) {
472                 if (!HAS_ENGINE(gt, _VCS(i))) {
473                         vdbox_mask &= ~BIT(i);
474                         continue;
475                 }
476
477                 if (!(BIT(i) & vdbox_mask)) {
478                         info->engine_mask &= ~BIT(_VCS(i));
479                         drm_dbg(&i915->drm, "vcs%u fused off\n", i);
480                         continue;
481                 }
482
483                 /*
484                  * In Gen11, only even numbered logical VDBOXes are
485                  * hooked up to an SFC (Scaler & Format Converter) unit.
486                  * In TGL each VDBOX has access to an SFC.
487                  */
488                 if (INTEL_GEN(i915) >= 12 || logical_vdbox++ % 2 == 0)
489                         gt->info.vdbox_sfc_access |= BIT(i);
490         }
491         drm_dbg(&i915->drm, "vdbox enable: %04x, instances: %04lx\n",
492                 vdbox_mask, VDBOX_MASK(gt));
493         GEM_BUG_ON(vdbox_mask != VDBOX_MASK(gt));
494
495         for (i = 0; i < I915_MAX_VECS; i++) {
496                 if (!HAS_ENGINE(gt, _VECS(i))) {
497                         vebox_mask &= ~BIT(i);
498                         continue;
499                 }
500
501                 if (!(BIT(i) & vebox_mask)) {
502                         info->engine_mask &= ~BIT(_VECS(i));
503                         drm_dbg(&i915->drm, "vecs%u fused off\n", i);
504                 }
505         }
506         drm_dbg(&i915->drm, "vebox enable: %04x, instances: %04lx\n",
507                 vebox_mask, VEBOX_MASK(gt));
508         GEM_BUG_ON(vebox_mask != VEBOX_MASK(gt));
509
510         return info->engine_mask;
511 }
512
513 /**
514  * intel_engines_init_mmio() - allocate and prepare the Engine Command Streamers
515  * @gt: pointer to struct intel_gt
516  *
517  * Return: non-zero if the initialization failed.
518  */
519 int intel_engines_init_mmio(struct intel_gt *gt)
520 {
521         struct drm_i915_private *i915 = gt->i915;
522         const unsigned int engine_mask = init_engine_mask(gt);
523         unsigned int mask = 0;
524         unsigned int i;
525         int err;
526
527         drm_WARN_ON(&i915->drm, engine_mask == 0);
528         drm_WARN_ON(&i915->drm, engine_mask &
529                     GENMASK(BITS_PER_TYPE(mask) - 1, I915_NUM_ENGINES));
530
531         if (i915_inject_probe_failure(i915))
532                 return -ENODEV;
533
534         for (i = 0; i < ARRAY_SIZE(intel_engines); i++) {
535                 if (!HAS_ENGINE(gt, i))
536                         continue;
537
538                 err = intel_engine_setup(gt, i);
539                 if (err)
540                         goto cleanup;
541
542                 mask |= BIT(i);
543         }
544
545         /*
546          * Catch failures to update intel_engines table when the new engines
547          * are added to the driver by a warning and disabling the forgotten
548          * engines.
549          */
550         if (drm_WARN_ON(&i915->drm, mask != engine_mask))
551                 gt->info.engine_mask = mask;
552
553         gt->info.num_engines = hweight32(mask);
554
555         intel_gt_check_and_clear_faults(gt);
556
557         intel_setup_engine_capabilities(gt);
558
559         intel_uncore_prune_engine_fw_domains(gt->uncore, gt);
560
561         return 0;
562
563 cleanup:
564         intel_engines_free(gt);
565         return err;
566 }
567
568 void intel_engine_init_execlists(struct intel_engine_cs *engine)
569 {
570         struct intel_engine_execlists * const execlists = &engine->execlists;
571
572         execlists->port_mask = 1;
573         GEM_BUG_ON(!is_power_of_2(execlists_num_ports(execlists)));
574         GEM_BUG_ON(execlists_num_ports(execlists) > EXECLIST_MAX_PORTS);
575
576         memset(execlists->pending, 0, sizeof(execlists->pending));
577         execlists->active =
578                 memset(execlists->inflight, 0, sizeof(execlists->inflight));
579
580         execlists->queue_priority_hint = INT_MIN;
581         execlists->queue = RB_ROOT_CACHED;
582 }
583
584 static void cleanup_status_page(struct intel_engine_cs *engine)
585 {
586         struct i915_vma *vma;
587
588         /* Prevent writes into HWSP after returning the page to the system */
589         intel_engine_set_hwsp_writemask(engine, ~0u);
590
591         vma = fetch_and_zero(&engine->status_page.vma);
592         if (!vma)
593                 return;
594
595         if (!HWS_NEEDS_PHYSICAL(engine->i915))
596                 i915_vma_unpin(vma);
597
598         i915_gem_object_unpin_map(vma->obj);
599         i915_gem_object_put(vma->obj);
600 }
601
602 static int pin_ggtt_status_page(struct intel_engine_cs *engine,
603                                 struct i915_gem_ww_ctx *ww,
604                                 struct i915_vma *vma)
605 {
606         unsigned int flags;
607
608         if (!HAS_LLC(engine->i915) && i915_ggtt_has_aperture(engine->gt->ggtt))
609                 /*
610                  * On g33, we cannot place HWS above 256MiB, so
611                  * restrict its pinning to the low mappable arena.
612                  * Though this restriction is not documented for
613                  * gen4, gen5, or byt, they also behave similarly
614                  * and hang if the HWS is placed at the top of the
615                  * GTT. To generalise, it appears that all !llc
616                  * platforms have issues with us placing the HWS
617                  * above the mappable region (even though we never
618                  * actually map it).
619                  */
620                 flags = PIN_MAPPABLE;
621         else
622                 flags = PIN_HIGH;
623
624         return i915_ggtt_pin(vma, ww, 0, flags);
625 }
626
627 static int init_status_page(struct intel_engine_cs *engine)
628 {
629         struct drm_i915_gem_object *obj;
630         struct i915_gem_ww_ctx ww;
631         struct i915_vma *vma;
632         void *vaddr;
633         int ret;
634
635         INIT_LIST_HEAD(&engine->status_page.timelines);
636
637         /*
638          * Though the HWS register does support 36bit addresses, historically
639          * we have had hangs and corruption reported due to wild writes if
640          * the HWS is placed above 4G. We only allow objects to be allocated
641          * in GFP_DMA32 for i965, and no earlier physical address users had
642          * access to more than 4G.
643          */
644         obj = i915_gem_object_create_internal(engine->i915, PAGE_SIZE);
645         if (IS_ERR(obj)) {
646                 drm_err(&engine->i915->drm,
647                         "Failed to allocate status page\n");
648                 return PTR_ERR(obj);
649         }
650
651         i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
652
653         vma = i915_vma_instance(obj, &engine->gt->ggtt->vm, NULL);
654         if (IS_ERR(vma)) {
655                 ret = PTR_ERR(vma);
656                 goto err_put;
657         }
658
659         i915_gem_ww_ctx_init(&ww, true);
660 retry:
661         ret = i915_gem_object_lock(obj, &ww);
662         if (!ret && !HWS_NEEDS_PHYSICAL(engine->i915))
663                 ret = pin_ggtt_status_page(engine, &ww, vma);
664         if (ret)
665                 goto err;
666
667         vaddr = i915_gem_object_pin_map(obj, I915_MAP_WB);
668         if (IS_ERR(vaddr)) {
669                 ret = PTR_ERR(vaddr);
670                 goto err_unpin;
671         }
672
673         engine->status_page.addr = memset(vaddr, 0, PAGE_SIZE);
674         engine->status_page.vma = vma;
675
676 err_unpin:
677         if (ret)
678                 i915_vma_unpin(vma);
679 err:
680         if (ret == -EDEADLK) {
681                 ret = i915_gem_ww_ctx_backoff(&ww);
682                 if (!ret)
683                         goto retry;
684         }
685         i915_gem_ww_ctx_fini(&ww);
686 err_put:
687         if (ret)
688                 i915_gem_object_put(obj);
689         return ret;
690 }
691
692 static int engine_setup_common(struct intel_engine_cs *engine)
693 {
694         int err;
695
696         init_llist_head(&engine->barrier_tasks);
697
698         err = init_status_page(engine);
699         if (err)
700                 return err;
701
702         engine->breadcrumbs = intel_breadcrumbs_create(engine);
703         if (!engine->breadcrumbs) {
704                 err = -ENOMEM;
705                 goto err_status;
706         }
707
708         err = intel_engine_init_cmd_parser(engine);
709         if (err)
710                 goto err_cmd_parser;
711
712         intel_engine_init_active(engine, ENGINE_PHYSICAL);
713         intel_engine_init_execlists(engine);
714         intel_engine_init__pm(engine);
715         intel_engine_init_retire(engine);
716
717         /* Use the whole device by default */
718         engine->sseu =
719                 intel_sseu_from_device_info(&engine->gt->info.sseu);
720
721         intel_engine_init_workarounds(engine);
722         intel_engine_init_whitelist(engine);
723         intel_engine_init_ctx_wa(engine);
724
725         if (INTEL_GEN(engine->i915) >= 12)
726                 engine->flags |= I915_ENGINE_HAS_RELATIVE_MMIO;
727
728         return 0;
729
730 err_cmd_parser:
731         intel_breadcrumbs_free(engine->breadcrumbs);
732 err_status:
733         cleanup_status_page(engine);
734         return err;
735 }
736
737 struct measure_breadcrumb {
738         struct i915_request rq;
739         struct intel_ring ring;
740         u32 cs[2048];
741 };
742
743 static int measure_breadcrumb_dw(struct intel_context *ce)
744 {
745         struct intel_engine_cs *engine = ce->engine;
746         struct measure_breadcrumb *frame;
747         int dw;
748
749         GEM_BUG_ON(!engine->gt->scratch);
750
751         frame = kzalloc(sizeof(*frame), GFP_KERNEL);
752         if (!frame)
753                 return -ENOMEM;
754
755         frame->rq.engine = engine;
756         frame->rq.context = ce;
757         rcu_assign_pointer(frame->rq.timeline, ce->timeline);
758         frame->rq.hwsp_seqno = ce->timeline->hwsp_seqno;
759
760         frame->ring.vaddr = frame->cs;
761         frame->ring.size = sizeof(frame->cs);
762         frame->ring.wrap =
763                 BITS_PER_TYPE(frame->ring.size) - ilog2(frame->ring.size);
764         frame->ring.effective_size = frame->ring.size;
765         intel_ring_update_space(&frame->ring);
766         frame->rq.ring = &frame->ring;
767
768         mutex_lock(&ce->timeline->mutex);
769         spin_lock_irq(&engine->active.lock);
770
771         dw = engine->emit_fini_breadcrumb(&frame->rq, frame->cs) - frame->cs;
772
773         spin_unlock_irq(&engine->active.lock);
774         mutex_unlock(&ce->timeline->mutex);
775
776         GEM_BUG_ON(dw & 1); /* RING_TAIL must be qword aligned */
777
778         kfree(frame);
779         return dw;
780 }
781
782 void
783 intel_engine_init_active(struct intel_engine_cs *engine, unsigned int subclass)
784 {
785         INIT_LIST_HEAD(&engine->active.requests);
786         INIT_LIST_HEAD(&engine->active.hold);
787
788         spin_lock_init(&engine->active.lock);
789         lockdep_set_subclass(&engine->active.lock, subclass);
790
791         /*
792          * Due to an interesting quirk in lockdep's internal debug tracking,
793          * after setting a subclass we must ensure the lock is used. Otherwise,
794          * nr_unused_locks is incremented once too often.
795          */
796 #ifdef CONFIG_DEBUG_LOCK_ALLOC
797         local_irq_disable();
798         lock_map_acquire(&engine->active.lock.dep_map);
799         lock_map_release(&engine->active.lock.dep_map);
800         local_irq_enable();
801 #endif
802 }
803
804 static struct intel_context *
805 create_pinned_context(struct intel_engine_cs *engine,
806                       unsigned int hwsp,
807                       struct lock_class_key *key,
808                       const char *name)
809 {
810         struct intel_context *ce;
811         int err;
812
813         ce = intel_context_create(engine);
814         if (IS_ERR(ce))
815                 return ce;
816
817         __set_bit(CONTEXT_BARRIER_BIT, &ce->flags);
818         ce->timeline = page_pack_bits(NULL, hwsp);
819
820         err = intel_context_pin(ce); /* perma-pin so it is always available */
821         if (err) {
822                 intel_context_put(ce);
823                 return ERR_PTR(err);
824         }
825
826         /*
827          * Give our perma-pinned kernel timelines a separate lockdep class,
828          * so that we can use them from within the normal user timelines
829          * should we need to inject GPU operations during their request
830          * construction.
831          */
832         lockdep_set_class_and_name(&ce->timeline->mutex, key, name);
833
834         return ce;
835 }
836
837 static void destroy_pinned_context(struct intel_context *ce)
838 {
839         struct intel_engine_cs *engine = ce->engine;
840         struct i915_vma *hwsp = engine->status_page.vma;
841
842         GEM_BUG_ON(ce->timeline->hwsp_ggtt != hwsp);
843
844         mutex_lock(&hwsp->vm->mutex);
845         list_del(&ce->timeline->engine_link);
846         mutex_unlock(&hwsp->vm->mutex);
847
848         intel_context_unpin(ce);
849         intel_context_put(ce);
850 }
851
852 static struct intel_context *
853 create_kernel_context(struct intel_engine_cs *engine)
854 {
855         static struct lock_class_key kernel;
856
857         return create_pinned_context(engine, I915_GEM_HWS_SEQNO_ADDR,
858                                      &kernel, "kernel_context");
859 }
860
861 /**
862  * intel_engines_init_common - initialize cengine state which might require hw access
863  * @engine: Engine to initialize.
864  *
865  * Initializes @engine@ structure members shared between legacy and execlists
866  * submission modes which do require hardware access.
867  *
868  * Typcally done at later stages of submission mode specific engine setup.
869  *
870  * Returns zero on success or an error code on failure.
871  */
872 static int engine_init_common(struct intel_engine_cs *engine)
873 {
874         struct intel_context *ce;
875         int ret;
876
877         engine->set_default_submission(engine);
878
879         /*
880          * We may need to do things with the shrinker which
881          * require us to immediately switch back to the default
882          * context. This can cause a problem as pinning the
883          * default context also requires GTT space which may not
884          * be available. To avoid this we always pin the default
885          * context.
886          */
887         ce = create_kernel_context(engine);
888         if (IS_ERR(ce))
889                 return PTR_ERR(ce);
890
891         ret = measure_breadcrumb_dw(ce);
892         if (ret < 0)
893                 goto err_context;
894
895         engine->emit_fini_breadcrumb_dw = ret;
896         engine->kernel_context = ce;
897
898         return 0;
899
900 err_context:
901         destroy_pinned_context(ce);
902         return ret;
903 }
904
905 int intel_engines_init(struct intel_gt *gt)
906 {
907         int (*setup)(struct intel_engine_cs *engine);
908         struct intel_engine_cs *engine;
909         enum intel_engine_id id;
910         int err;
911
912         if (intel_uc_uses_guc_submission(&gt->uc)) {
913                 gt->submission_method = INTEL_SUBMISSION_GUC;
914                 setup = intel_guc_submission_setup;
915         } else if (HAS_EXECLISTS(gt->i915)) {
916                 gt->submission_method = INTEL_SUBMISSION_ELSP;
917                 setup = intel_execlists_submission_setup;
918         } else {
919                 gt->submission_method = INTEL_SUBMISSION_RING;
920                 setup = intel_ring_submission_setup;
921         }
922
923         for_each_engine(engine, gt, id) {
924                 err = engine_setup_common(engine);
925                 if (err)
926                         return err;
927
928                 err = setup(engine);
929                 if (err)
930                         return err;
931
932                 err = engine_init_common(engine);
933                 if (err)
934                         return err;
935
936                 intel_engine_add_user(engine);
937         }
938
939         return 0;
940 }
941
942 /**
943  * intel_engines_cleanup_common - cleans up the engine state created by
944  *                                the common initiailizers.
945  * @engine: Engine to cleanup.
946  *
947  * This cleans up everything created by the common helpers.
948  */
949 void intel_engine_cleanup_common(struct intel_engine_cs *engine)
950 {
951         GEM_BUG_ON(!list_empty(&engine->active.requests));
952         tasklet_kill(&engine->execlists.tasklet); /* flush the callback */
953
954         intel_breadcrumbs_free(engine->breadcrumbs);
955
956         intel_engine_fini_retire(engine);
957         intel_engine_cleanup_cmd_parser(engine);
958
959         if (engine->default_state)
960                 fput(engine->default_state);
961
962         if (engine->kernel_context)
963                 destroy_pinned_context(engine->kernel_context);
964
965         GEM_BUG_ON(!llist_empty(&engine->barrier_tasks));
966         cleanup_status_page(engine);
967
968         intel_wa_list_free(&engine->ctx_wa_list);
969         intel_wa_list_free(&engine->wa_list);
970         intel_wa_list_free(&engine->whitelist);
971 }
972
973 /**
974  * intel_engine_resume - re-initializes the HW state of the engine
975  * @engine: Engine to resume.
976  *
977  * Returns zero on success or an error code on failure.
978  */
979 int intel_engine_resume(struct intel_engine_cs *engine)
980 {
981         intel_engine_apply_workarounds(engine);
982         intel_engine_apply_whitelist(engine);
983
984         return engine->resume(engine);
985 }
986
987 u64 intel_engine_get_active_head(const struct intel_engine_cs *engine)
988 {
989         struct drm_i915_private *i915 = engine->i915;
990
991         u64 acthd;
992
993         if (INTEL_GEN(i915) >= 8)
994                 acthd = ENGINE_READ64(engine, RING_ACTHD, RING_ACTHD_UDW);
995         else if (INTEL_GEN(i915) >= 4)
996                 acthd = ENGINE_READ(engine, RING_ACTHD);
997         else
998                 acthd = ENGINE_READ(engine, ACTHD);
999
1000         return acthd;
1001 }
1002
1003 u64 intel_engine_get_last_batch_head(const struct intel_engine_cs *engine)
1004 {
1005         u64 bbaddr;
1006
1007         if (INTEL_GEN(engine->i915) >= 8)
1008                 bbaddr = ENGINE_READ64(engine, RING_BBADDR, RING_BBADDR_UDW);
1009         else
1010                 bbaddr = ENGINE_READ(engine, RING_BBADDR);
1011
1012         return bbaddr;
1013 }
1014
1015 static unsigned long stop_timeout(const struct intel_engine_cs *engine)
1016 {
1017         if (in_atomic() || irqs_disabled()) /* inside atomic preempt-reset? */
1018                 return 0;
1019
1020         /*
1021          * If we are doing a normal GPU reset, we can take our time and allow
1022          * the engine to quiesce. We've stopped submission to the engine, and
1023          * if we wait long enough an innocent context should complete and
1024          * leave the engine idle. So they should not be caught unaware by
1025          * the forthcoming GPU reset (which usually follows the stop_cs)!
1026          */
1027         return READ_ONCE(engine->props.stop_timeout_ms);
1028 }
1029
1030 static int __intel_engine_stop_cs(struct intel_engine_cs *engine,
1031                                   int fast_timeout_us,
1032                                   int slow_timeout_ms)
1033 {
1034         struct intel_uncore *uncore = engine->uncore;
1035         const i915_reg_t mode = RING_MI_MODE(engine->mmio_base);
1036         int err;
1037
1038         intel_uncore_write_fw(uncore, mode, _MASKED_BIT_ENABLE(STOP_RING));
1039         err = __intel_wait_for_register_fw(engine->uncore, mode,
1040                                            MODE_IDLE, MODE_IDLE,
1041                                            fast_timeout_us,
1042                                            slow_timeout_ms,
1043                                            NULL);
1044
1045         /* A final mmio read to let GPU writes be hopefully flushed to memory */
1046         intel_uncore_posting_read_fw(uncore, mode);
1047         return err;
1048 }
1049
1050 int intel_engine_stop_cs(struct intel_engine_cs *engine)
1051 {
1052         int err = 0;
1053
1054         if (INTEL_GEN(engine->i915) < 3)
1055                 return -ENODEV;
1056
1057         ENGINE_TRACE(engine, "\n");
1058         if (__intel_engine_stop_cs(engine, 1000, stop_timeout(engine))) {
1059                 ENGINE_TRACE(engine,
1060                              "timed out on STOP_RING -> IDLE; HEAD:%04x, TAIL:%04x\n",
1061                              ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR,
1062                              ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR);
1063
1064                 /*
1065                  * Sometimes we observe that the idle flag is not
1066                  * set even though the ring is empty. So double
1067                  * check before giving up.
1068                  */
1069                 if ((ENGINE_READ_FW(engine, RING_HEAD) & HEAD_ADDR) !=
1070                     (ENGINE_READ_FW(engine, RING_TAIL) & TAIL_ADDR))
1071                         err = -ETIMEDOUT;
1072         }
1073
1074         return err;
1075 }
1076
1077 void intel_engine_cancel_stop_cs(struct intel_engine_cs *engine)
1078 {
1079         ENGINE_TRACE(engine, "\n");
1080
1081         ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
1082 }
1083
1084 const char *i915_cache_level_str(struct drm_i915_private *i915, int type)
1085 {
1086         switch (type) {
1087         case I915_CACHE_NONE: return " uncached";
1088         case I915_CACHE_LLC: return HAS_LLC(i915) ? " LLC" : " snooped";
1089         case I915_CACHE_L3_LLC: return " L3+LLC";
1090         case I915_CACHE_WT: return " WT";
1091         default: return "";
1092         }
1093 }
1094
1095 static u32
1096 read_subslice_reg(const struct intel_engine_cs *engine,
1097                   int slice, int subslice, i915_reg_t reg)
1098 {
1099         struct drm_i915_private *i915 = engine->i915;
1100         struct intel_uncore *uncore = engine->uncore;
1101         u32 mcr_mask, mcr_ss, mcr, old_mcr, val;
1102         enum forcewake_domains fw_domains;
1103
1104         if (INTEL_GEN(i915) >= 11) {
1105                 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1106                 mcr_ss = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1107         } else {
1108                 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1109                 mcr_ss = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1110         }
1111
1112         fw_domains = intel_uncore_forcewake_for_reg(uncore, reg,
1113                                                     FW_REG_READ);
1114         fw_domains |= intel_uncore_forcewake_for_reg(uncore,
1115                                                      GEN8_MCR_SELECTOR,
1116                                                      FW_REG_READ | FW_REG_WRITE);
1117
1118         spin_lock_irq(&uncore->lock);
1119         intel_uncore_forcewake_get__locked(uncore, fw_domains);
1120
1121         old_mcr = mcr = intel_uncore_read_fw(uncore, GEN8_MCR_SELECTOR);
1122
1123         mcr &= ~mcr_mask;
1124         mcr |= mcr_ss;
1125         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1126
1127         val = intel_uncore_read_fw(uncore, reg);
1128
1129         mcr &= ~mcr_mask;
1130         mcr |= old_mcr & mcr_mask;
1131
1132         intel_uncore_write_fw(uncore, GEN8_MCR_SELECTOR, mcr);
1133
1134         intel_uncore_forcewake_put__locked(uncore, fw_domains);
1135         spin_unlock_irq(&uncore->lock);
1136
1137         return val;
1138 }
1139
1140 /* NB: please notice the memset */
1141 void intel_engine_get_instdone(const struct intel_engine_cs *engine,
1142                                struct intel_instdone *instdone)
1143 {
1144         struct drm_i915_private *i915 = engine->i915;
1145         const struct sseu_dev_info *sseu = &engine->gt->info.sseu;
1146         struct intel_uncore *uncore = engine->uncore;
1147         u32 mmio_base = engine->mmio_base;
1148         int slice;
1149         int subslice;
1150
1151         memset(instdone, 0, sizeof(*instdone));
1152
1153         switch (INTEL_GEN(i915)) {
1154         default:
1155                 instdone->instdone =
1156                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1157
1158                 if (engine->id != RCS0)
1159                         break;
1160
1161                 instdone->slice_common =
1162                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1163                 if (INTEL_GEN(i915) >= 12) {
1164                         instdone->slice_common_extra[0] =
1165                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA);
1166                         instdone->slice_common_extra[1] =
1167                                 intel_uncore_read(uncore, GEN12_SC_INSTDONE_EXTRA2);
1168                 }
1169                 for_each_instdone_slice_subslice(i915, sseu, slice, subslice) {
1170                         instdone->sampler[slice][subslice] =
1171                                 read_subslice_reg(engine, slice, subslice,
1172                                                   GEN7_SAMPLER_INSTDONE);
1173                         instdone->row[slice][subslice] =
1174                                 read_subslice_reg(engine, slice, subslice,
1175                                                   GEN7_ROW_INSTDONE);
1176                 }
1177                 break;
1178         case 7:
1179                 instdone->instdone =
1180                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1181
1182                 if (engine->id != RCS0)
1183                         break;
1184
1185                 instdone->slice_common =
1186                         intel_uncore_read(uncore, GEN7_SC_INSTDONE);
1187                 instdone->sampler[0][0] =
1188                         intel_uncore_read(uncore, GEN7_SAMPLER_INSTDONE);
1189                 instdone->row[0][0] =
1190                         intel_uncore_read(uncore, GEN7_ROW_INSTDONE);
1191
1192                 break;
1193         case 6:
1194         case 5:
1195         case 4:
1196                 instdone->instdone =
1197                         intel_uncore_read(uncore, RING_INSTDONE(mmio_base));
1198                 if (engine->id == RCS0)
1199                         /* HACK: Using the wrong struct member */
1200                         instdone->slice_common =
1201                                 intel_uncore_read(uncore, GEN4_INSTDONE1);
1202                 break;
1203         case 3:
1204         case 2:
1205                 instdone->instdone = intel_uncore_read(uncore, GEN2_INSTDONE);
1206                 break;
1207         }
1208 }
1209
1210 static bool ring_is_idle(struct intel_engine_cs *engine)
1211 {
1212         bool idle = true;
1213
1214         if (I915_SELFTEST_ONLY(!engine->mmio_base))
1215                 return true;
1216
1217         if (!intel_engine_pm_get_if_awake(engine))
1218                 return true;
1219
1220         /* First check that no commands are left in the ring */
1221         if ((ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR) !=
1222             (ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR))
1223                 idle = false;
1224
1225         /* No bit for gen2, so assume the CS parser is idle */
1226         if (INTEL_GEN(engine->i915) > 2 &&
1227             !(ENGINE_READ(engine, RING_MI_MODE) & MODE_IDLE))
1228                 idle = false;
1229
1230         intel_engine_pm_put(engine);
1231
1232         return idle;
1233 }
1234
1235 void __intel_engine_flush_submission(struct intel_engine_cs *engine, bool sync)
1236 {
1237         struct tasklet_struct *t = &engine->execlists.tasklet;
1238
1239         if (!t->callback)
1240                 return;
1241
1242         local_bh_disable();
1243         if (tasklet_trylock(t)) {
1244                 /* Must wait for any GPU reset in progress. */
1245                 if (__tasklet_is_enabled(t))
1246                         t->callback(t);
1247                 tasklet_unlock(t);
1248         }
1249         local_bh_enable();
1250
1251         /* Synchronise and wait for the tasklet on another CPU */
1252         if (sync)
1253                 tasklet_unlock_wait(t);
1254 }
1255
1256 /**
1257  * intel_engine_is_idle() - Report if the engine has finished process all work
1258  * @engine: the intel_engine_cs
1259  *
1260  * Return true if there are no requests pending, nothing left to be submitted
1261  * to hardware, and that the engine is idle.
1262  */
1263 bool intel_engine_is_idle(struct intel_engine_cs *engine)
1264 {
1265         /* More white lies, if wedged, hw state is inconsistent */
1266         if (intel_gt_is_wedged(engine->gt))
1267                 return true;
1268
1269         if (!intel_engine_pm_is_awake(engine))
1270                 return true;
1271
1272         /* Waiting to drain ELSP? */
1273         synchronize_hardirq(to_pci_dev(engine->i915->drm.dev)->irq);
1274         intel_engine_flush_submission(engine);
1275
1276         /* ELSP is empty, but there are ready requests? E.g. after reset */
1277         if (!RB_EMPTY_ROOT(&engine->execlists.queue.rb_root))
1278                 return false;
1279
1280         /* Ring stopped? */
1281         return ring_is_idle(engine);
1282 }
1283
1284 bool intel_engines_are_idle(struct intel_gt *gt)
1285 {
1286         struct intel_engine_cs *engine;
1287         enum intel_engine_id id;
1288
1289         /*
1290          * If the driver is wedged, HW state may be very inconsistent and
1291          * report that it is still busy, even though we have stopped using it.
1292          */
1293         if (intel_gt_is_wedged(gt))
1294                 return true;
1295
1296         /* Already parked (and passed an idleness test); must still be idle */
1297         if (!READ_ONCE(gt->awake))
1298                 return true;
1299
1300         for_each_engine(engine, gt, id) {
1301                 if (!intel_engine_is_idle(engine))
1302                         return false;
1303         }
1304
1305         return true;
1306 }
1307
1308 void intel_engines_reset_default_submission(struct intel_gt *gt)
1309 {
1310         struct intel_engine_cs *engine;
1311         enum intel_engine_id id;
1312
1313         for_each_engine(engine, gt, id) {
1314                 if (engine->sanitize)
1315                         engine->sanitize(engine);
1316
1317                 engine->set_default_submission(engine);
1318         }
1319 }
1320
1321 bool intel_engine_can_store_dword(struct intel_engine_cs *engine)
1322 {
1323         switch (INTEL_GEN(engine->i915)) {
1324         case 2:
1325                 return false; /* uses physical not virtual addresses */
1326         case 3:
1327                 /* maybe only uses physical not virtual addresses */
1328                 return !(IS_I915G(engine->i915) || IS_I915GM(engine->i915));
1329         case 4:
1330                 return !IS_I965G(engine->i915); /* who knows! */
1331         case 6:
1332                 return engine->class != VIDEO_DECODE_CLASS; /* b0rked */
1333         default:
1334                 return true;
1335         }
1336 }
1337
1338 static struct intel_timeline *get_timeline(struct i915_request *rq)
1339 {
1340         struct intel_timeline *tl;
1341
1342         /*
1343          * Even though we are holding the engine->active.lock here, there
1344          * is no control over the submission queue per-se and we are
1345          * inspecting the active state at a random point in time, with an
1346          * unknown queue. Play safe and make sure the timeline remains valid.
1347          * (Only being used for pretty printing, one extra kref shouldn't
1348          * cause a camel stampede!)
1349          */
1350         rcu_read_lock();
1351         tl = rcu_dereference(rq->timeline);
1352         if (!kref_get_unless_zero(&tl->kref))
1353                 tl = NULL;
1354         rcu_read_unlock();
1355
1356         return tl;
1357 }
1358
1359 static int print_ring(char *buf, int sz, struct i915_request *rq)
1360 {
1361         int len = 0;
1362
1363         if (!i915_request_signaled(rq)) {
1364                 struct intel_timeline *tl = get_timeline(rq);
1365
1366                 len = scnprintf(buf, sz,
1367                                 "ring:{start:%08x, hwsp:%08x, seqno:%08x, runtime:%llums}, ",
1368                                 i915_ggtt_offset(rq->ring->vma),
1369                                 tl ? tl->hwsp_offset : 0,
1370                                 hwsp_seqno(rq),
1371                                 DIV_ROUND_CLOSEST_ULL(intel_context_get_total_runtime_ns(rq->context),
1372                                                       1000 * 1000));
1373
1374                 if (tl)
1375                         intel_timeline_put(tl);
1376         }
1377
1378         return len;
1379 }
1380
1381 static void hexdump(struct drm_printer *m, const void *buf, size_t len)
1382 {
1383         const size_t rowsize = 8 * sizeof(u32);
1384         const void *prev = NULL;
1385         bool skip = false;
1386         size_t pos;
1387
1388         for (pos = 0; pos < len; pos += rowsize) {
1389                 char line[128];
1390
1391                 if (prev && !memcmp(prev, buf + pos, rowsize)) {
1392                         if (!skip) {
1393                                 drm_printf(m, "*\n");
1394                                 skip = true;
1395                         }
1396                         continue;
1397                 }
1398
1399                 WARN_ON_ONCE(hex_dump_to_buffer(buf + pos, len - pos,
1400                                                 rowsize, sizeof(u32),
1401                                                 line, sizeof(line),
1402                                                 false) >= sizeof(line));
1403                 drm_printf(m, "[%04zx] %s\n", pos, line);
1404
1405                 prev = buf + pos;
1406                 skip = false;
1407         }
1408 }
1409
1410 static const char *repr_timer(const struct timer_list *t)
1411 {
1412         if (!READ_ONCE(t->expires))
1413                 return "inactive";
1414
1415         if (timer_pending(t))
1416                 return "active";
1417
1418         return "expired";
1419 }
1420
1421 static void intel_engine_print_registers(struct intel_engine_cs *engine,
1422                                          struct drm_printer *m)
1423 {
1424         struct drm_i915_private *dev_priv = engine->i915;
1425         struct intel_engine_execlists * const execlists = &engine->execlists;
1426         u64 addr;
1427
1428         if (engine->id == RENDER_CLASS && IS_GEN_RANGE(dev_priv, 4, 7))
1429                 drm_printf(m, "\tCCID: 0x%08x\n", ENGINE_READ(engine, CCID));
1430         if (HAS_EXECLISTS(dev_priv)) {
1431                 drm_printf(m, "\tEL_STAT_HI: 0x%08x\n",
1432                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI));
1433                 drm_printf(m, "\tEL_STAT_LO: 0x%08x\n",
1434                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO));
1435         }
1436         drm_printf(m, "\tRING_START: 0x%08x\n",
1437                    ENGINE_READ(engine, RING_START));
1438         drm_printf(m, "\tRING_HEAD:  0x%08x\n",
1439                    ENGINE_READ(engine, RING_HEAD) & HEAD_ADDR);
1440         drm_printf(m, "\tRING_TAIL:  0x%08x\n",
1441                    ENGINE_READ(engine, RING_TAIL) & TAIL_ADDR);
1442         drm_printf(m, "\tRING_CTL:   0x%08x%s\n",
1443                    ENGINE_READ(engine, RING_CTL),
1444                    ENGINE_READ(engine, RING_CTL) & (RING_WAIT | RING_WAIT_SEMAPHORE) ? " [waiting]" : "");
1445         if (INTEL_GEN(engine->i915) > 2) {
1446                 drm_printf(m, "\tRING_MODE:  0x%08x%s\n",
1447                            ENGINE_READ(engine, RING_MI_MODE),
1448                            ENGINE_READ(engine, RING_MI_MODE) & (MODE_IDLE) ? " [idle]" : "");
1449         }
1450
1451         if (INTEL_GEN(dev_priv) >= 6) {
1452                 drm_printf(m, "\tRING_IMR:   0x%08x\n",
1453                            ENGINE_READ(engine, RING_IMR));
1454                 drm_printf(m, "\tRING_ESR:   0x%08x\n",
1455                            ENGINE_READ(engine, RING_ESR));
1456                 drm_printf(m, "\tRING_EMR:   0x%08x\n",
1457                            ENGINE_READ(engine, RING_EMR));
1458                 drm_printf(m, "\tRING_EIR:   0x%08x\n",
1459                            ENGINE_READ(engine, RING_EIR));
1460         }
1461
1462         addr = intel_engine_get_active_head(engine);
1463         drm_printf(m, "\tACTHD:  0x%08x_%08x\n",
1464                    upper_32_bits(addr), lower_32_bits(addr));
1465         addr = intel_engine_get_last_batch_head(engine);
1466         drm_printf(m, "\tBBADDR: 0x%08x_%08x\n",
1467                    upper_32_bits(addr), lower_32_bits(addr));
1468         if (INTEL_GEN(dev_priv) >= 8)
1469                 addr = ENGINE_READ64(engine, RING_DMA_FADD, RING_DMA_FADD_UDW);
1470         else if (INTEL_GEN(dev_priv) >= 4)
1471                 addr = ENGINE_READ(engine, RING_DMA_FADD);
1472         else
1473                 addr = ENGINE_READ(engine, DMA_FADD_I8XX);
1474         drm_printf(m, "\tDMA_FADDR: 0x%08x_%08x\n",
1475                    upper_32_bits(addr), lower_32_bits(addr));
1476         if (INTEL_GEN(dev_priv) >= 4) {
1477                 drm_printf(m, "\tIPEIR: 0x%08x\n",
1478                            ENGINE_READ(engine, RING_IPEIR));
1479                 drm_printf(m, "\tIPEHR: 0x%08x\n",
1480                            ENGINE_READ(engine, RING_IPEHR));
1481         } else {
1482                 drm_printf(m, "\tIPEIR: 0x%08x\n", ENGINE_READ(engine, IPEIR));
1483                 drm_printf(m, "\tIPEHR: 0x%08x\n", ENGINE_READ(engine, IPEHR));
1484         }
1485
1486         if (intel_engine_uses_guc(engine)) {
1487                 /* nothing to print yet */
1488         } else if (HAS_EXECLISTS(dev_priv)) {
1489                 struct i915_request * const *port, *rq;
1490                 const u32 *hws =
1491                         &engine->status_page.addr[I915_HWS_CSB_BUF0_INDEX];
1492                 const u8 num_entries = execlists->csb_size;
1493                 unsigned int idx;
1494                 u8 read, write;
1495
1496                 drm_printf(m, "\tExeclist tasklet queued? %s (%s), preempt? %s, timeslice? %s\n",
1497                            yesno(test_bit(TASKLET_STATE_SCHED,
1498                                           &engine->execlists.tasklet.state)),
1499                            enableddisabled(!atomic_read(&engine->execlists.tasklet.count)),
1500                            repr_timer(&engine->execlists.preempt),
1501                            repr_timer(&engine->execlists.timer));
1502
1503                 read = execlists->csb_head;
1504                 write = READ_ONCE(*execlists->csb_write);
1505
1506                 drm_printf(m, "\tExeclist status: 0x%08x %08x; CSB read:%d, write:%d, entries:%d\n",
1507                            ENGINE_READ(engine, RING_EXECLIST_STATUS_LO),
1508                            ENGINE_READ(engine, RING_EXECLIST_STATUS_HI),
1509                            read, write, num_entries);
1510
1511                 if (read >= num_entries)
1512                         read = 0;
1513                 if (write >= num_entries)
1514                         write = 0;
1515                 if (read > write)
1516                         write += num_entries;
1517                 while (read < write) {
1518                         idx = ++read % num_entries;
1519                         drm_printf(m, "\tExeclist CSB[%d]: 0x%08x, context: %d\n",
1520                                    idx, hws[idx * 2], hws[idx * 2 + 1]);
1521                 }
1522
1523                 execlists_active_lock_bh(execlists);
1524                 rcu_read_lock();
1525                 for (port = execlists->active; (rq = *port); port++) {
1526                         char hdr[160];
1527                         int len;
1528
1529                         len = scnprintf(hdr, sizeof(hdr),
1530                                         "\t\tActive[%d]:  ccid:%08x%s%s, ",
1531                                         (int)(port - execlists->active),
1532                                         rq->context->lrc.ccid,
1533                                         intel_context_is_closed(rq->context) ? "!" : "",
1534                                         intel_context_is_banned(rq->context) ? "*" : "");
1535                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1536                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1537                         i915_request_show(m, rq, hdr, 0);
1538                 }
1539                 for (port = execlists->pending; (rq = *port); port++) {
1540                         char hdr[160];
1541                         int len;
1542
1543                         len = scnprintf(hdr, sizeof(hdr),
1544                                         "\t\tPending[%d]: ccid:%08x%s%s, ",
1545                                         (int)(port - execlists->pending),
1546                                         rq->context->lrc.ccid,
1547                                         intel_context_is_closed(rq->context) ? "!" : "",
1548                                         intel_context_is_banned(rq->context) ? "*" : "");
1549                         len += print_ring(hdr + len, sizeof(hdr) - len, rq);
1550                         scnprintf(hdr + len, sizeof(hdr) - len, "rq: ");
1551                         i915_request_show(m, rq, hdr, 0);
1552                 }
1553                 rcu_read_unlock();
1554                 execlists_active_unlock_bh(execlists);
1555         } else if (INTEL_GEN(dev_priv) > 6) {
1556                 drm_printf(m, "\tPP_DIR_BASE: 0x%08x\n",
1557                            ENGINE_READ(engine, RING_PP_DIR_BASE));
1558                 drm_printf(m, "\tPP_DIR_BASE_READ: 0x%08x\n",
1559                            ENGINE_READ(engine, RING_PP_DIR_BASE_READ));
1560                 drm_printf(m, "\tPP_DIR_DCLV: 0x%08x\n",
1561                            ENGINE_READ(engine, RING_PP_DIR_DCLV));
1562         }
1563 }
1564
1565 static void print_request_ring(struct drm_printer *m, struct i915_request *rq)
1566 {
1567         void *ring;
1568         int size;
1569
1570         drm_printf(m,
1571                    "[head %04x, postfix %04x, tail %04x, batch 0x%08x_%08x]:\n",
1572                    rq->head, rq->postfix, rq->tail,
1573                    rq->batch ? upper_32_bits(rq->batch->node.start) : ~0u,
1574                    rq->batch ? lower_32_bits(rq->batch->node.start) : ~0u);
1575
1576         size = rq->tail - rq->head;
1577         if (rq->tail < rq->head)
1578                 size += rq->ring->size;
1579
1580         ring = kmalloc(size, GFP_ATOMIC);
1581         if (ring) {
1582                 const void *vaddr = rq->ring->vaddr;
1583                 unsigned int head = rq->head;
1584                 unsigned int len = 0;
1585
1586                 if (rq->tail < head) {
1587                         len = rq->ring->size - head;
1588                         memcpy(ring, vaddr + head, len);
1589                         head = 0;
1590                 }
1591                 memcpy(ring + len, vaddr + head, size - len);
1592
1593                 hexdump(m, ring, size);
1594                 kfree(ring);
1595         }
1596 }
1597
1598 static unsigned long list_count(struct list_head *list)
1599 {
1600         struct list_head *pos;
1601         unsigned long count = 0;
1602
1603         list_for_each(pos, list)
1604                 count++;
1605
1606         return count;
1607 }
1608
1609 static unsigned long read_ul(void *p, size_t x)
1610 {
1611         return *(unsigned long *)(p + x);
1612 }
1613
1614 static void print_properties(struct intel_engine_cs *engine,
1615                              struct drm_printer *m)
1616 {
1617         static const struct pmap {
1618                 size_t offset;
1619                 const char *name;
1620         } props[] = {
1621 #define P(x) { \
1622         .offset = offsetof(typeof(engine->props), x), \
1623         .name = #x \
1624 }
1625                 P(heartbeat_interval_ms),
1626                 P(max_busywait_duration_ns),
1627                 P(preempt_timeout_ms),
1628                 P(stop_timeout_ms),
1629                 P(timeslice_duration_ms),
1630
1631                 {},
1632 #undef P
1633         };
1634         const struct pmap *p;
1635
1636         drm_printf(m, "\tProperties:\n");
1637         for (p = props; p->name; p++)
1638                 drm_printf(m, "\t\t%s: %lu [default %lu]\n",
1639                            p->name,
1640                            read_ul(&engine->props, p->offset),
1641                            read_ul(&engine->defaults, p->offset));
1642 }
1643
1644 void intel_engine_dump(struct intel_engine_cs *engine,
1645                        struct drm_printer *m,
1646                        const char *header, ...)
1647 {
1648         struct i915_gpu_error * const error = &engine->i915->gpu_error;
1649         struct i915_request *rq;
1650         intel_wakeref_t wakeref;
1651         unsigned long flags;
1652         ktime_t dummy;
1653
1654         if (header) {
1655                 va_list ap;
1656
1657                 va_start(ap, header);
1658                 drm_vprintf(m, header, &ap);
1659                 va_end(ap);
1660         }
1661
1662         if (intel_gt_is_wedged(engine->gt))
1663                 drm_printf(m, "*** WEDGED ***\n");
1664
1665         drm_printf(m, "\tAwake? %d\n", atomic_read(&engine->wakeref.count));
1666         drm_printf(m, "\tBarriers?: %s\n",
1667                    yesno(!llist_empty(&engine->barrier_tasks)));
1668         drm_printf(m, "\tLatency: %luus\n",
1669                    ewma__engine_latency_read(&engine->latency));
1670         if (intel_engine_supports_stats(engine))
1671                 drm_printf(m, "\tRuntime: %llums\n",
1672                            ktime_to_ms(intel_engine_get_busy_time(engine,
1673                                                                   &dummy)));
1674         drm_printf(m, "\tForcewake: %x domains, %d active\n",
1675                    engine->fw_domain, READ_ONCE(engine->fw_active));
1676
1677         rcu_read_lock();
1678         rq = READ_ONCE(engine->heartbeat.systole);
1679         if (rq)
1680                 drm_printf(m, "\tHeartbeat: %d ms ago\n",
1681                            jiffies_to_msecs(jiffies - rq->emitted_jiffies));
1682         rcu_read_unlock();
1683         drm_printf(m, "\tReset count: %d (global %d)\n",
1684                    i915_reset_engine_count(error, engine),
1685                    i915_reset_count(error));
1686         print_properties(engine, m);
1687
1688         drm_printf(m, "\tRequests:\n");
1689
1690         spin_lock_irqsave(&engine->active.lock, flags);
1691         rq = intel_engine_find_active_request(engine);
1692         if (rq) {
1693                 struct intel_timeline *tl = get_timeline(rq);
1694
1695                 i915_request_show(m, rq, "\t\tactive ", 0);
1696
1697                 drm_printf(m, "\t\tring->start:  0x%08x\n",
1698                            i915_ggtt_offset(rq->ring->vma));
1699                 drm_printf(m, "\t\tring->head:   0x%08x\n",
1700                            rq->ring->head);
1701                 drm_printf(m, "\t\tring->tail:   0x%08x\n",
1702                            rq->ring->tail);
1703                 drm_printf(m, "\t\tring->emit:   0x%08x\n",
1704                            rq->ring->emit);
1705                 drm_printf(m, "\t\tring->space:  0x%08x\n",
1706                            rq->ring->space);
1707
1708                 if (tl) {
1709                         drm_printf(m, "\t\tring->hwsp:   0x%08x\n",
1710                                    tl->hwsp_offset);
1711                         intel_timeline_put(tl);
1712                 }
1713
1714                 print_request_ring(m, rq);
1715
1716                 if (rq->context->lrc_reg_state) {
1717                         drm_printf(m, "Logical Ring Context:\n");
1718                         hexdump(m, rq->context->lrc_reg_state, PAGE_SIZE);
1719                 }
1720         }
1721         drm_printf(m, "\tOn hold?: %lu\n", list_count(&engine->active.hold));
1722         spin_unlock_irqrestore(&engine->active.lock, flags);
1723
1724         drm_printf(m, "\tMMIO base:  0x%08x\n", engine->mmio_base);
1725         wakeref = intel_runtime_pm_get_if_in_use(engine->uncore->rpm);
1726         if (wakeref) {
1727                 intel_engine_print_registers(engine, m);
1728                 intel_runtime_pm_put(engine->uncore->rpm, wakeref);
1729         } else {
1730                 drm_printf(m, "\tDevice is asleep; skipping register dump\n");
1731         }
1732
1733         intel_execlists_show_requests(engine, m, i915_request_show, 8);
1734
1735         drm_printf(m, "HWSP:\n");
1736         hexdump(m, engine->status_page.addr, PAGE_SIZE);
1737
1738         drm_printf(m, "Idle? %s\n", yesno(intel_engine_is_idle(engine)));
1739
1740         intel_engine_print_breadcrumbs(engine, m);
1741 }
1742
1743 static ktime_t __intel_engine_get_busy_time(struct intel_engine_cs *engine,
1744                                             ktime_t *now)
1745 {
1746         ktime_t total = engine->stats.total;
1747
1748         /*
1749          * If the engine is executing something at the moment
1750          * add it to the total.
1751          */
1752         *now = ktime_get();
1753         if (READ_ONCE(engine->stats.active))
1754                 total = ktime_add(total, ktime_sub(*now, engine->stats.start));
1755
1756         return total;
1757 }
1758
1759 /**
1760  * intel_engine_get_busy_time() - Return current accumulated engine busyness
1761  * @engine: engine to report on
1762  * @now: monotonic timestamp of sampling
1763  *
1764  * Returns accumulated time @engine was busy since engine stats were enabled.
1765  */
1766 ktime_t intel_engine_get_busy_time(struct intel_engine_cs *engine, ktime_t *now)
1767 {
1768         unsigned int seq;
1769         ktime_t total;
1770
1771         do {
1772                 seq = read_seqcount_begin(&engine->stats.lock);
1773                 total = __intel_engine_get_busy_time(engine, now);
1774         } while (read_seqcount_retry(&engine->stats.lock, seq));
1775
1776         return total;
1777 }
1778
1779 static bool match_ring(struct i915_request *rq)
1780 {
1781         u32 ring = ENGINE_READ(rq->engine, RING_START);
1782
1783         return ring == i915_ggtt_offset(rq->ring->vma);
1784 }
1785
1786 struct i915_request *
1787 intel_engine_find_active_request(struct intel_engine_cs *engine)
1788 {
1789         struct i915_request *request, *active = NULL;
1790
1791         /*
1792          * We are called by the error capture, reset and to dump engine
1793          * state at random points in time. In particular, note that neither is
1794          * crucially ordered with an interrupt. After a hang, the GPU is dead
1795          * and we assume that no more writes can happen (we waited long enough
1796          * for all writes that were in transaction to be flushed) - adding an
1797          * extra delay for a recent interrupt is pointless. Hence, we do
1798          * not need an engine->irq_seqno_barrier() before the seqno reads.
1799          * At all other times, we must assume the GPU is still running, but
1800          * we only care about the snapshot of this moment.
1801          */
1802         lockdep_assert_held(&engine->active.lock);
1803
1804         rcu_read_lock();
1805         request = execlists_active(&engine->execlists);
1806         if (request) {
1807                 struct intel_timeline *tl = request->context->timeline;
1808
1809                 list_for_each_entry_from_reverse(request, &tl->requests, link) {
1810                         if (__i915_request_is_complete(request))
1811                                 break;
1812
1813                         active = request;
1814                 }
1815         }
1816         rcu_read_unlock();
1817         if (active)
1818                 return active;
1819
1820         list_for_each_entry(request, &engine->active.requests, sched.link) {
1821                 if (__i915_request_is_complete(request))
1822                         continue;
1823
1824                 if (!__i915_request_has_started(request))
1825                         continue;
1826
1827                 /* More than one preemptible request may match! */
1828                 if (!match_ring(request))
1829                         continue;
1830
1831                 active = request;
1832                 break;
1833         }
1834
1835         return active;
1836 }
1837
1838 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1839 #include "mock_engine.c"
1840 #include "selftest_engine.c"
1841 #include "selftest_engine_cs.c"
1842 #endif