Merge v5.14-rc3 into usb-next
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / intel_breadcrumbs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2015-2021 Intel Corporation
4  */
5
6 #include <linux/kthread.h>
7 #include <trace/events/dma_fence.h>
8 #include <uapi/linux/sched/types.h>
9
10 #include "i915_drv.h"
11 #include "i915_trace.h"
12 #include "intel_breadcrumbs.h"
13 #include "intel_context.h"
14 #include "intel_engine_pm.h"
15 #include "intel_gt_pm.h"
16 #include "intel_gt_requests.h"
17
18 static bool irq_enable(struct intel_engine_cs *engine)
19 {
20         if (!engine->irq_enable)
21                 return false;
22
23         /* Caller disables interrupts */
24         spin_lock(&engine->gt->irq_lock);
25         engine->irq_enable(engine);
26         spin_unlock(&engine->gt->irq_lock);
27
28         return true;
29 }
30
31 static void irq_disable(struct intel_engine_cs *engine)
32 {
33         if (!engine->irq_disable)
34                 return;
35
36         /* Caller disables interrupts */
37         spin_lock(&engine->gt->irq_lock);
38         engine->irq_disable(engine);
39         spin_unlock(&engine->gt->irq_lock);
40 }
41
42 static void __intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
43 {
44         /*
45          * Since we are waiting on a request, the GPU should be busy
46          * and should have its own rpm reference.
47          */
48         if (GEM_WARN_ON(!intel_gt_pm_get_if_awake(b->irq_engine->gt)))
49                 return;
50
51         /*
52          * The breadcrumb irq will be disarmed on the interrupt after the
53          * waiters are signaled. This gives us a single interrupt window in
54          * which we can add a new waiter and avoid the cost of re-enabling
55          * the irq.
56          */
57         WRITE_ONCE(b->irq_armed, true);
58
59         /* Requests may have completed before we could enable the interrupt. */
60         if (!b->irq_enabled++ && irq_enable(b->irq_engine))
61                 irq_work_queue(&b->irq_work);
62 }
63
64 static void intel_breadcrumbs_arm_irq(struct intel_breadcrumbs *b)
65 {
66         if (!b->irq_engine)
67                 return;
68
69         spin_lock(&b->irq_lock);
70         if (!b->irq_armed)
71                 __intel_breadcrumbs_arm_irq(b);
72         spin_unlock(&b->irq_lock);
73 }
74
75 static void __intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
76 {
77         GEM_BUG_ON(!b->irq_enabled);
78         if (!--b->irq_enabled)
79                 irq_disable(b->irq_engine);
80
81         WRITE_ONCE(b->irq_armed, false);
82         intel_gt_pm_put_async(b->irq_engine->gt);
83 }
84
85 static void intel_breadcrumbs_disarm_irq(struct intel_breadcrumbs *b)
86 {
87         spin_lock(&b->irq_lock);
88         if (b->irq_armed)
89                 __intel_breadcrumbs_disarm_irq(b);
90         spin_unlock(&b->irq_lock);
91 }
92
93 static void add_signaling_context(struct intel_breadcrumbs *b,
94                                   struct intel_context *ce)
95 {
96         lockdep_assert_held(&ce->signal_lock);
97
98         spin_lock(&b->signalers_lock);
99         list_add_rcu(&ce->signal_link, &b->signalers);
100         spin_unlock(&b->signalers_lock);
101 }
102
103 static bool remove_signaling_context(struct intel_breadcrumbs *b,
104                                      struct intel_context *ce)
105 {
106         lockdep_assert_held(&ce->signal_lock);
107
108         if (!list_empty(&ce->signals))
109                 return false;
110
111         spin_lock(&b->signalers_lock);
112         list_del_rcu(&ce->signal_link);
113         spin_unlock(&b->signalers_lock);
114
115         return true;
116 }
117
118 __maybe_unused static bool
119 check_signal_order(struct intel_context *ce, struct i915_request *rq)
120 {
121         if (rq->context != ce)
122                 return false;
123
124         if (!list_is_last(&rq->signal_link, &ce->signals) &&
125             i915_seqno_passed(rq->fence.seqno,
126                               list_next_entry(rq, signal_link)->fence.seqno))
127                 return false;
128
129         if (!list_is_first(&rq->signal_link, &ce->signals) &&
130             i915_seqno_passed(list_prev_entry(rq, signal_link)->fence.seqno,
131                               rq->fence.seqno))
132                 return false;
133
134         return true;
135 }
136
137 static bool
138 __dma_fence_signal(struct dma_fence *fence)
139 {
140         return !test_and_set_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags);
141 }
142
143 static void
144 __dma_fence_signal__timestamp(struct dma_fence *fence, ktime_t timestamp)
145 {
146         fence->timestamp = timestamp;
147         set_bit(DMA_FENCE_FLAG_TIMESTAMP_BIT, &fence->flags);
148         trace_dma_fence_signaled(fence);
149 }
150
151 static void
152 __dma_fence_signal__notify(struct dma_fence *fence,
153                            const struct list_head *list)
154 {
155         struct dma_fence_cb *cur, *tmp;
156
157         lockdep_assert_held(fence->lock);
158
159         list_for_each_entry_safe(cur, tmp, list, node) {
160                 INIT_LIST_HEAD(&cur->node);
161                 cur->func(fence, cur);
162         }
163 }
164
165 static void add_retire(struct intel_breadcrumbs *b, struct intel_timeline *tl)
166 {
167         if (b->irq_engine)
168                 intel_engine_add_retire(b->irq_engine, tl);
169 }
170
171 static struct llist_node *
172 slist_add(struct llist_node *node, struct llist_node *head)
173 {
174         node->next = head;
175         return node;
176 }
177
178 static void signal_irq_work(struct irq_work *work)
179 {
180         struct intel_breadcrumbs *b = container_of(work, typeof(*b), irq_work);
181         const ktime_t timestamp = ktime_get();
182         struct llist_node *signal, *sn;
183         struct intel_context *ce;
184
185         signal = NULL;
186         if (unlikely(!llist_empty(&b->signaled_requests)))
187                 signal = llist_del_all(&b->signaled_requests);
188
189         /*
190          * Keep the irq armed until the interrupt after all listeners are gone.
191          *
192          * Enabling/disabling the interrupt is rather costly, roughly a couple
193          * of hundred microseconds. If we are proactive and enable/disable
194          * the interrupt around every request that wants a breadcrumb, we
195          * quickly drown in the extra orders of magnitude of latency imposed
196          * on request submission.
197          *
198          * So we try to be lazy, and keep the interrupts enabled until no
199          * more listeners appear within a breadcrumb interrupt interval (that
200          * is until a request completes that no one cares about). The
201          * observation is that listeners come in batches, and will often
202          * listen to a bunch of requests in succession. Though note on icl+,
203          * interrupts are always enabled due to concerns with rc6 being
204          * dysfunctional with per-engine interrupt masking.
205          *
206          * We also try to avoid raising too many interrupts, as they may
207          * be generated by userspace batches and it is unfortunately rather
208          * too easy to drown the CPU under a flood of GPU interrupts. Thus
209          * whenever no one appears to be listening, we turn off the interrupts.
210          * Fewer interrupts should conserve power -- at the very least, fewer
211          * interrupt draw less ire from other users of the system and tools
212          * like powertop.
213          */
214         if (!signal && READ_ONCE(b->irq_armed) && list_empty(&b->signalers))
215                 intel_breadcrumbs_disarm_irq(b);
216
217         rcu_read_lock();
218         atomic_inc(&b->signaler_active);
219         list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
220                 struct i915_request *rq;
221
222                 list_for_each_entry_rcu(rq, &ce->signals, signal_link) {
223                         bool release;
224
225                         if (!__i915_request_is_complete(rq))
226                                 break;
227
228                         if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
229                                                 &rq->fence.flags))
230                                 break;
231
232                         /*
233                          * Queue for execution after dropping the signaling
234                          * spinlock as the callback chain may end up adding
235                          * more signalers to the same context or engine.
236                          */
237                         spin_lock(&ce->signal_lock);
238                         list_del_rcu(&rq->signal_link);
239                         release = remove_signaling_context(b, ce);
240                         spin_unlock(&ce->signal_lock);
241                         if (release) {
242                                 if (intel_timeline_is_last(ce->timeline, rq))
243                                         add_retire(b, ce->timeline);
244                                 intel_context_put(ce);
245                         }
246
247                         if (__dma_fence_signal(&rq->fence))
248                                 /* We own signal_node now, xfer to local list */
249                                 signal = slist_add(&rq->signal_node, signal);
250                         else
251                                 i915_request_put(rq);
252                 }
253         }
254         atomic_dec(&b->signaler_active);
255         rcu_read_unlock();
256
257         llist_for_each_safe(signal, sn, signal) {
258                 struct i915_request *rq =
259                         llist_entry(signal, typeof(*rq), signal_node);
260                 struct list_head cb_list;
261
262                 spin_lock(&rq->lock);
263                 list_replace(&rq->fence.cb_list, &cb_list);
264                 __dma_fence_signal__timestamp(&rq->fence, timestamp);
265                 __dma_fence_signal__notify(&rq->fence, &cb_list);
266                 spin_unlock(&rq->lock);
267
268                 i915_request_put(rq);
269         }
270
271         if (!READ_ONCE(b->irq_armed) && !list_empty(&b->signalers))
272                 intel_breadcrumbs_arm_irq(b);
273 }
274
275 struct intel_breadcrumbs *
276 intel_breadcrumbs_create(struct intel_engine_cs *irq_engine)
277 {
278         struct intel_breadcrumbs *b;
279
280         b = kzalloc(sizeof(*b), GFP_KERNEL);
281         if (!b)
282                 return NULL;
283
284         b->irq_engine = irq_engine;
285
286         spin_lock_init(&b->signalers_lock);
287         INIT_LIST_HEAD(&b->signalers);
288         init_llist_head(&b->signaled_requests);
289
290         spin_lock_init(&b->irq_lock);
291         init_irq_work(&b->irq_work, signal_irq_work);
292
293         return b;
294 }
295
296 void intel_breadcrumbs_reset(struct intel_breadcrumbs *b)
297 {
298         unsigned long flags;
299
300         if (!b->irq_engine)
301                 return;
302
303         spin_lock_irqsave(&b->irq_lock, flags);
304
305         if (b->irq_enabled)
306                 irq_enable(b->irq_engine);
307         else
308                 irq_disable(b->irq_engine);
309
310         spin_unlock_irqrestore(&b->irq_lock, flags);
311 }
312
313 void __intel_breadcrumbs_park(struct intel_breadcrumbs *b)
314 {
315         if (!READ_ONCE(b->irq_armed))
316                 return;
317
318         /* Kick the work once more to drain the signalers, and disarm the irq */
319         irq_work_sync(&b->irq_work);
320         while (READ_ONCE(b->irq_armed) && !atomic_read(&b->active)) {
321                 local_irq_disable();
322                 signal_irq_work(&b->irq_work);
323                 local_irq_enable();
324                 cond_resched();
325         }
326 }
327
328 void intel_breadcrumbs_free(struct intel_breadcrumbs *b)
329 {
330         irq_work_sync(&b->irq_work);
331         GEM_BUG_ON(!list_empty(&b->signalers));
332         GEM_BUG_ON(b->irq_armed);
333         kfree(b);
334 }
335
336 static void irq_signal_request(struct i915_request *rq,
337                                struct intel_breadcrumbs *b)
338 {
339         if (!__dma_fence_signal(&rq->fence))
340                 return;
341
342         i915_request_get(rq);
343         if (llist_add(&rq->signal_node, &b->signaled_requests))
344                 irq_work_queue(&b->irq_work);
345 }
346
347 static void insert_breadcrumb(struct i915_request *rq)
348 {
349         struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
350         struct intel_context *ce = rq->context;
351         struct list_head *pos;
352
353         if (test_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags))
354                 return;
355
356         /*
357          * If the request is already completed, we can transfer it
358          * straight onto a signaled list, and queue the irq worker for
359          * its signal completion.
360          */
361         if (__i915_request_is_complete(rq)) {
362                 irq_signal_request(rq, b);
363                 return;
364         }
365
366         if (list_empty(&ce->signals)) {
367                 intel_context_get(ce);
368                 add_signaling_context(b, ce);
369                 pos = &ce->signals;
370         } else {
371                 /*
372                  * We keep the seqno in retirement order, so we can break
373                  * inside intel_engine_signal_breadcrumbs as soon as we've
374                  * passed the last completed request (or seen a request that
375                  * hasn't event started). We could walk the timeline->requests,
376                  * but keeping a separate signalers_list has the advantage of
377                  * hopefully being much smaller than the full list and so
378                  * provides faster iteration and detection when there are no
379                  * more interrupts required for this context.
380                  *
381                  * We typically expect to add new signalers in order, so we
382                  * start looking for our insertion point from the tail of
383                  * the list.
384                  */
385                 list_for_each_prev(pos, &ce->signals) {
386                         struct i915_request *it =
387                                 list_entry(pos, typeof(*it), signal_link);
388
389                         if (i915_seqno_passed(rq->fence.seqno, it->fence.seqno))
390                                 break;
391                 }
392         }
393
394         i915_request_get(rq);
395         list_add_rcu(&rq->signal_link, pos);
396         GEM_BUG_ON(!check_signal_order(ce, rq));
397         GEM_BUG_ON(test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags));
398         set_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags);
399
400         /*
401          * Defer enabling the interrupt to after HW submission and recheck
402          * the request as it may have completed and raised the interrupt as
403          * we were attaching it into the lists.
404          */
405         irq_work_queue(&b->irq_work);
406 }
407
408 bool i915_request_enable_breadcrumb(struct i915_request *rq)
409 {
410         struct intel_context *ce = rq->context;
411
412         /* Serialises with i915_request_retire() using rq->lock */
413         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &rq->fence.flags))
414                 return true;
415
416         /*
417          * Peek at i915_request_submit()/i915_request_unsubmit() status.
418          *
419          * If the request is not yet active (and not signaled), we will
420          * attach the breadcrumb later.
421          */
422         if (!test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
423                 return true;
424
425         spin_lock(&ce->signal_lock);
426         if (test_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags))
427                 insert_breadcrumb(rq);
428         spin_unlock(&ce->signal_lock);
429
430         return true;
431 }
432
433 void i915_request_cancel_breadcrumb(struct i915_request *rq)
434 {
435         struct intel_breadcrumbs *b = READ_ONCE(rq->engine)->breadcrumbs;
436         struct intel_context *ce = rq->context;
437         bool release;
438
439         spin_lock(&ce->signal_lock);
440         if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL, &rq->fence.flags)) {
441                 spin_unlock(&ce->signal_lock);
442                 return;
443         }
444
445         list_del_rcu(&rq->signal_link);
446         release = remove_signaling_context(b, ce);
447         spin_unlock(&ce->signal_lock);
448         if (release)
449                 intel_context_put(ce);
450
451         if (__i915_request_is_complete(rq))
452                 irq_signal_request(rq, b);
453
454         i915_request_put(rq);
455 }
456
457 void intel_context_remove_breadcrumbs(struct intel_context *ce,
458                                       struct intel_breadcrumbs *b)
459 {
460         struct i915_request *rq, *rn;
461         bool release = false;
462         unsigned long flags;
463
464         spin_lock_irqsave(&ce->signal_lock, flags);
465
466         if (list_empty(&ce->signals))
467                 goto unlock;
468
469         list_for_each_entry_safe(rq, rn, &ce->signals, signal_link) {
470                 GEM_BUG_ON(!__i915_request_is_complete(rq));
471                 if (!test_and_clear_bit(I915_FENCE_FLAG_SIGNAL,
472                                         &rq->fence.flags))
473                         continue;
474
475                 list_del_rcu(&rq->signal_link);
476                 irq_signal_request(rq, b);
477                 i915_request_put(rq);
478         }
479         release = remove_signaling_context(b, ce);
480
481 unlock:
482         spin_unlock_irqrestore(&ce->signal_lock, flags);
483         if (release)
484                 intel_context_put(ce);
485
486         while (atomic_read(&b->signaler_active))
487                 cpu_relax();
488 }
489
490 static void print_signals(struct intel_breadcrumbs *b, struct drm_printer *p)
491 {
492         struct intel_context *ce;
493         struct i915_request *rq;
494
495         drm_printf(p, "Signals:\n");
496
497         rcu_read_lock();
498         list_for_each_entry_rcu(ce, &b->signalers, signal_link) {
499                 list_for_each_entry_rcu(rq, &ce->signals, signal_link)
500                         drm_printf(p, "\t[%llx:%llx%s] @ %dms\n",
501                                    rq->fence.context, rq->fence.seqno,
502                                    __i915_request_is_complete(rq) ? "!" :
503                                    __i915_request_has_started(rq) ? "*" :
504                                    "",
505                                    jiffies_to_msecs(jiffies - rq->emitted_jiffies));
506         }
507         rcu_read_unlock();
508 }
509
510 void intel_engine_print_breadcrumbs(struct intel_engine_cs *engine,
511                                     struct drm_printer *p)
512 {
513         struct intel_breadcrumbs *b;
514
515         b = engine->breadcrumbs;
516         if (!b)
517                 return;
518
519         drm_printf(p, "IRQ: %s\n", enableddisabled(b->irq_armed));
520         if (!list_empty(&b->signalers))
521                 print_signals(b, p);
522 }