drm/i915/adl_p: Add initial ADL_P Workarounds
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gt / gen8_engine_cs.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5
6 #include "gen8_engine_cs.h"
7 #include "i915_drv.h"
8 #include "intel_lrc.h"
9 #include "intel_gpu_commands.h"
10 #include "intel_ring.h"
11
12 int gen8_emit_flush_rcs(struct i915_request *rq, u32 mode)
13 {
14         bool vf_flush_wa = false, dc_flush_wa = false;
15         u32 *cs, flags = 0;
16         int len;
17
18         flags |= PIPE_CONTROL_CS_STALL;
19
20         if (mode & EMIT_FLUSH) {
21                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
22                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
23                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
24                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
25         }
26
27         if (mode & EMIT_INVALIDATE) {
28                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
29                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
30                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
31                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
32                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
33                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
34                 flags |= PIPE_CONTROL_QW_WRITE;
35                 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
36
37                 /*
38                  * On GEN9: before VF_CACHE_INVALIDATE we need to emit a NULL
39                  * pipe control.
40                  */
41                 if (GRAPHICS_VER(rq->engine->i915) == 9)
42                         vf_flush_wa = true;
43
44                 /* WaForGAMHang:kbl */
45                 if (IS_KBL_GT_STEP(rq->engine->i915, 0, STEP_B0))
46                         dc_flush_wa = true;
47         }
48
49         len = 6;
50
51         if (vf_flush_wa)
52                 len += 6;
53
54         if (dc_flush_wa)
55                 len += 12;
56
57         cs = intel_ring_begin(rq, len);
58         if (IS_ERR(cs))
59                 return PTR_ERR(cs);
60
61         if (vf_flush_wa)
62                 cs = gen8_emit_pipe_control(cs, 0, 0);
63
64         if (dc_flush_wa)
65                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_DC_FLUSH_ENABLE,
66                                             0);
67
68         cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
69
70         if (dc_flush_wa)
71                 cs = gen8_emit_pipe_control(cs, PIPE_CONTROL_CS_STALL, 0);
72
73         intel_ring_advance(rq, cs);
74
75         return 0;
76 }
77
78 int gen8_emit_flush_xcs(struct i915_request *rq, u32 mode)
79 {
80         u32 cmd, *cs;
81
82         cs = intel_ring_begin(rq, 4);
83         if (IS_ERR(cs))
84                 return PTR_ERR(cs);
85
86         cmd = MI_FLUSH_DW + 1;
87
88         /*
89          * We always require a command barrier so that subsequent
90          * commands, such as breadcrumb interrupts, are strictly ordered
91          * wrt the contents of the write cache being flushed to memory
92          * (and thus being coherent from the CPU).
93          */
94         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
95
96         if (mode & EMIT_INVALIDATE) {
97                 cmd |= MI_INVALIDATE_TLB;
98                 if (rq->engine->class == VIDEO_DECODE_CLASS)
99                         cmd |= MI_INVALIDATE_BSD;
100         }
101
102         *cs++ = cmd;
103         *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
104         *cs++ = 0; /* upper addr */
105         *cs++ = 0; /* value */
106         intel_ring_advance(rq, cs);
107
108         return 0;
109 }
110
111 int gen11_emit_flush_rcs(struct i915_request *rq, u32 mode)
112 {
113         if (mode & EMIT_FLUSH) {
114                 u32 *cs;
115                 u32 flags = 0;
116
117                 flags |= PIPE_CONTROL_CS_STALL;
118
119                 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
120                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
121                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
122                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
123                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
124                 flags |= PIPE_CONTROL_QW_WRITE;
125                 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
126
127                 cs = intel_ring_begin(rq, 6);
128                 if (IS_ERR(cs))
129                         return PTR_ERR(cs);
130
131                 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
132                 intel_ring_advance(rq, cs);
133         }
134
135         if (mode & EMIT_INVALIDATE) {
136                 u32 *cs;
137                 u32 flags = 0;
138
139                 flags |= PIPE_CONTROL_CS_STALL;
140
141                 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
142                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
143                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
144                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
145                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
146                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
147                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
148                 flags |= PIPE_CONTROL_QW_WRITE;
149                 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
150
151                 cs = intel_ring_begin(rq, 6);
152                 if (IS_ERR(cs))
153                         return PTR_ERR(cs);
154
155                 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
156                 intel_ring_advance(rq, cs);
157         }
158
159         return 0;
160 }
161
162 static u32 preparser_disable(bool state)
163 {
164         return MI_ARB_CHECK | 1 << 8 | state;
165 }
166
167 static i915_reg_t aux_inv_reg(const struct intel_engine_cs *engine)
168 {
169         static const i915_reg_t vd[] = {
170                 GEN12_VD0_AUX_NV,
171                 GEN12_VD1_AUX_NV,
172                 GEN12_VD2_AUX_NV,
173                 GEN12_VD3_AUX_NV,
174         };
175
176         static const i915_reg_t ve[] = {
177                 GEN12_VE0_AUX_NV,
178                 GEN12_VE1_AUX_NV,
179         };
180
181         if (engine->class == VIDEO_DECODE_CLASS)
182                 return vd[engine->instance];
183
184         if (engine->class == VIDEO_ENHANCEMENT_CLASS)
185                 return ve[engine->instance];
186
187         GEM_BUG_ON("unknown aux_inv reg\n");
188         return INVALID_MMIO_REG;
189 }
190
191 static u32 *gen12_emit_aux_table_inv(const i915_reg_t inv_reg, u32 *cs)
192 {
193         *cs++ = MI_LOAD_REGISTER_IMM(1);
194         *cs++ = i915_mmio_reg_offset(inv_reg);
195         *cs++ = AUX_INV;
196         *cs++ = MI_NOOP;
197
198         return cs;
199 }
200
201 int gen12_emit_flush_rcs(struct i915_request *rq, u32 mode)
202 {
203         if (mode & EMIT_FLUSH) {
204                 u32 flags = 0;
205                 u32 *cs;
206
207                 flags |= PIPE_CONTROL_TILE_CACHE_FLUSH;
208                 flags |= PIPE_CONTROL_FLUSH_L3;
209                 flags |= PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH;
210                 flags |= PIPE_CONTROL_DEPTH_CACHE_FLUSH;
211                 /* Wa_1409600907:tgl,adl-p */
212                 flags |= PIPE_CONTROL_DEPTH_STALL;
213                 flags |= PIPE_CONTROL_DC_FLUSH_ENABLE;
214                 flags |= PIPE_CONTROL_FLUSH_ENABLE;
215
216                 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
217                 flags |= PIPE_CONTROL_QW_WRITE;
218
219                 flags |= PIPE_CONTROL_CS_STALL;
220
221                 cs = intel_ring_begin(rq, 6);
222                 if (IS_ERR(cs))
223                         return PTR_ERR(cs);
224
225                 cs = gen12_emit_pipe_control(cs,
226                                              PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
227                                              flags, LRC_PPHWSP_SCRATCH_ADDR);
228                 intel_ring_advance(rq, cs);
229         }
230
231         if (mode & EMIT_INVALIDATE) {
232                 u32 flags = 0;
233                 u32 *cs;
234
235                 flags |= PIPE_CONTROL_COMMAND_CACHE_INVALIDATE;
236                 flags |= PIPE_CONTROL_TLB_INVALIDATE;
237                 flags |= PIPE_CONTROL_INSTRUCTION_CACHE_INVALIDATE;
238                 flags |= PIPE_CONTROL_TEXTURE_CACHE_INVALIDATE;
239                 flags |= PIPE_CONTROL_VF_CACHE_INVALIDATE;
240                 flags |= PIPE_CONTROL_CONST_CACHE_INVALIDATE;
241                 flags |= PIPE_CONTROL_STATE_CACHE_INVALIDATE;
242
243                 flags |= PIPE_CONTROL_STORE_DATA_INDEX;
244                 flags |= PIPE_CONTROL_QW_WRITE;
245
246                 flags |= PIPE_CONTROL_CS_STALL;
247
248                 cs = intel_ring_begin(rq, 8 + 4);
249                 if (IS_ERR(cs))
250                         return PTR_ERR(cs);
251
252                 /*
253                  * Prevent the pre-parser from skipping past the TLB
254                  * invalidate and loading a stale page for the batch
255                  * buffer / request payload.
256                  */
257                 *cs++ = preparser_disable(true);
258
259                 cs = gen8_emit_pipe_control(cs, flags, LRC_PPHWSP_SCRATCH_ADDR);
260
261                 /* hsdes: 1809175790 */
262                 cs = gen12_emit_aux_table_inv(GEN12_GFX_CCS_AUX_NV, cs);
263
264                 *cs++ = preparser_disable(false);
265                 intel_ring_advance(rq, cs);
266         }
267
268         return 0;
269 }
270
271 int gen12_emit_flush_xcs(struct i915_request *rq, u32 mode)
272 {
273         intel_engine_mask_t aux_inv = 0;
274         u32 cmd, *cs;
275
276         cmd = 4;
277         if (mode & EMIT_INVALIDATE)
278                 cmd += 2;
279         if (mode & EMIT_INVALIDATE)
280                 aux_inv = rq->engine->mask & ~BIT(BCS0);
281         if (aux_inv)
282                 cmd += 2 * hweight8(aux_inv) + 2;
283
284         cs = intel_ring_begin(rq, cmd);
285         if (IS_ERR(cs))
286                 return PTR_ERR(cs);
287
288         if (mode & EMIT_INVALIDATE)
289                 *cs++ = preparser_disable(true);
290
291         cmd = MI_FLUSH_DW + 1;
292
293         /*
294          * We always require a command barrier so that subsequent
295          * commands, such as breadcrumb interrupts, are strictly ordered
296          * wrt the contents of the write cache being flushed to memory
297          * (and thus being coherent from the CPU).
298          */
299         cmd |= MI_FLUSH_DW_STORE_INDEX | MI_FLUSH_DW_OP_STOREDW;
300
301         if (mode & EMIT_INVALIDATE) {
302                 cmd |= MI_INVALIDATE_TLB;
303                 if (rq->engine->class == VIDEO_DECODE_CLASS)
304                         cmd |= MI_INVALIDATE_BSD;
305         }
306
307         *cs++ = cmd;
308         *cs++ = LRC_PPHWSP_SCRATCH_ADDR;
309         *cs++ = 0; /* upper addr */
310         *cs++ = 0; /* value */
311
312         if (aux_inv) { /* hsdes: 1809175790 */
313                 struct intel_engine_cs *engine;
314                 unsigned int tmp;
315
316                 *cs++ = MI_LOAD_REGISTER_IMM(hweight8(aux_inv));
317                 for_each_engine_masked(engine, rq->engine->gt,
318                                        aux_inv, tmp) {
319                         *cs++ = i915_mmio_reg_offset(aux_inv_reg(engine));
320                         *cs++ = AUX_INV;
321                 }
322                 *cs++ = MI_NOOP;
323         }
324
325         if (mode & EMIT_INVALIDATE)
326                 *cs++ = preparser_disable(false);
327
328         intel_ring_advance(rq, cs);
329
330         return 0;
331 }
332
333 static u32 preempt_address(struct intel_engine_cs *engine)
334 {
335         return (i915_ggtt_offset(engine->status_page.vma) +
336                 I915_GEM_HWS_PREEMPT_ADDR);
337 }
338
339 static u32 hwsp_offset(const struct i915_request *rq)
340 {
341         const struct intel_timeline *tl;
342
343         /* Before the request is executed, the timeline is fixed */
344         tl = rcu_dereference_protected(rq->timeline,
345                                        !i915_request_signaled(rq));
346
347         /* See the comment in i915_request_active_seqno(). */
348         return page_mask_bits(tl->hwsp_offset) + offset_in_page(rq->hwsp_seqno);
349 }
350
351 int gen8_emit_init_breadcrumb(struct i915_request *rq)
352 {
353         u32 *cs;
354
355         GEM_BUG_ON(i915_request_has_initial_breadcrumb(rq));
356         if (!i915_request_timeline(rq)->has_initial_breadcrumb)
357                 return 0;
358
359         cs = intel_ring_begin(rq, 6);
360         if (IS_ERR(cs))
361                 return PTR_ERR(cs);
362
363         *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
364         *cs++ = hwsp_offset(rq);
365         *cs++ = 0;
366         *cs++ = rq->fence.seqno - 1;
367
368         /*
369          * Check if we have been preempted before we even get started.
370          *
371          * After this point i915_request_started() reports true, even if
372          * we get preempted and so are no longer running.
373          *
374          * i915_request_started() is used during preemption processing
375          * to decide if the request is currently inside the user payload
376          * or spinning on a kernel semaphore (or earlier). For no-preemption
377          * requests, we do allow preemption on the semaphore before the user
378          * payload, but do not allow preemption once the request is started.
379          *
380          * i915_request_started() is similarly used during GPU hangs to
381          * determine if the user's payload was guilty, and if so, the
382          * request is banned. Before the request is started, it is assumed
383          * to be unharmed and an innocent victim of another's hang.
384          */
385         *cs++ = MI_NOOP;
386         *cs++ = MI_ARB_CHECK;
387
388         intel_ring_advance(rq, cs);
389
390         /* Record the updated position of the request's payload */
391         rq->infix = intel_ring_offset(rq, cs);
392
393         __set_bit(I915_FENCE_FLAG_INITIAL_BREADCRUMB, &rq->fence.flags);
394
395         return 0;
396 }
397
398 int gen8_emit_bb_start_noarb(struct i915_request *rq,
399                              u64 offset, u32 len,
400                              const unsigned int flags)
401 {
402         u32 *cs;
403
404         cs = intel_ring_begin(rq, 4);
405         if (IS_ERR(cs))
406                 return PTR_ERR(cs);
407
408         /*
409          * WaDisableCtxRestoreArbitration:bdw,chv
410          *
411          * We don't need to perform MI_ARB_ENABLE as often as we do (in
412          * particular all the gen that do not need the w/a at all!), if we
413          * took care to make sure that on every switch into this context
414          * (both ordinary and for preemption) that arbitrartion was enabled
415          * we would be fine.  However, for gen8 there is another w/a that
416          * requires us to not preempt inside GPGPU execution, so we keep
417          * arbitration disabled for gen8 batches. Arbitration will be
418          * re-enabled before we close the request
419          * (engine->emit_fini_breadcrumb).
420          */
421         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
422
423         /* FIXME(BDW+): Address space and security selectors. */
424         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
425                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
426         *cs++ = lower_32_bits(offset);
427         *cs++ = upper_32_bits(offset);
428
429         intel_ring_advance(rq, cs);
430
431         return 0;
432 }
433
434 int gen8_emit_bb_start(struct i915_request *rq,
435                        u64 offset, u32 len,
436                        const unsigned int flags)
437 {
438         u32 *cs;
439
440         if (unlikely(i915_request_has_nopreempt(rq)))
441                 return gen8_emit_bb_start_noarb(rq, offset, len, flags);
442
443         cs = intel_ring_begin(rq, 6);
444         if (IS_ERR(cs))
445                 return PTR_ERR(cs);
446
447         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
448
449         *cs++ = MI_BATCH_BUFFER_START_GEN8 |
450                 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
451         *cs++ = lower_32_bits(offset);
452         *cs++ = upper_32_bits(offset);
453
454         *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
455         *cs++ = MI_NOOP;
456
457         intel_ring_advance(rq, cs);
458
459         return 0;
460 }
461
462 static void assert_request_valid(struct i915_request *rq)
463 {
464         struct intel_ring *ring __maybe_unused = rq->ring;
465
466         /* Can we unwind this request without appearing to go forwards? */
467         GEM_BUG_ON(intel_ring_direction(ring, rq->wa_tail, rq->head) <= 0);
468 }
469
470 /*
471  * Reserve space for 2 NOOPs at the end of each request to be
472  * used as a workaround for not being allowed to do lite
473  * restore with HEAD==TAIL (WaIdleLiteRestore).
474  */
475 static u32 *gen8_emit_wa_tail(struct i915_request *rq, u32 *cs)
476 {
477         /* Ensure there's always at least one preemption point per-request. */
478         *cs++ = MI_ARB_CHECK;
479         *cs++ = MI_NOOP;
480         rq->wa_tail = intel_ring_offset(rq, cs);
481
482         /* Check that entire request is less than half the ring */
483         assert_request_valid(rq);
484
485         return cs;
486 }
487
488 static u32 *emit_preempt_busywait(struct i915_request *rq, u32 *cs)
489 {
490         *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
491         *cs++ = MI_SEMAPHORE_WAIT |
492                 MI_SEMAPHORE_GLOBAL_GTT |
493                 MI_SEMAPHORE_POLL |
494                 MI_SEMAPHORE_SAD_EQ_SDD;
495         *cs++ = 0;
496         *cs++ = preempt_address(rq->engine);
497         *cs++ = 0;
498         *cs++ = MI_NOOP;
499
500         return cs;
501 }
502
503 static __always_inline u32*
504 gen8_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
505 {
506         *cs++ = MI_USER_INTERRUPT;
507
508         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
509         if (intel_engine_has_semaphores(rq->engine))
510                 cs = emit_preempt_busywait(rq, cs);
511
512         rq->tail = intel_ring_offset(rq, cs);
513         assert_ring_tail_valid(rq->ring, rq->tail);
514
515         return gen8_emit_wa_tail(rq, cs);
516 }
517
518 static u32 *emit_xcs_breadcrumb(struct i915_request *rq, u32 *cs)
519 {
520         return gen8_emit_ggtt_write(cs, rq->fence.seqno, hwsp_offset(rq), 0);
521 }
522
523 u32 *gen8_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
524 {
525         return gen8_emit_fini_breadcrumb_tail(rq, emit_xcs_breadcrumb(rq, cs));
526 }
527
528 u32 *gen8_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
529 {
530         cs = gen8_emit_pipe_control(cs,
531                                     PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
532                                     PIPE_CONTROL_DEPTH_CACHE_FLUSH |
533                                     PIPE_CONTROL_DC_FLUSH_ENABLE,
534                                     0);
535
536         /* XXX flush+write+CS_STALL all in one upsets gem_concurrent_blt:kbl */
537         cs = gen8_emit_ggtt_write_rcs(cs,
538                                       rq->fence.seqno,
539                                       hwsp_offset(rq),
540                                       PIPE_CONTROL_FLUSH_ENABLE |
541                                       PIPE_CONTROL_CS_STALL);
542
543         return gen8_emit_fini_breadcrumb_tail(rq, cs);
544 }
545
546 u32 *gen11_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
547 {
548         cs = gen8_emit_ggtt_write_rcs(cs,
549                                       rq->fence.seqno,
550                                       hwsp_offset(rq),
551                                       PIPE_CONTROL_CS_STALL |
552                                       PIPE_CONTROL_TILE_CACHE_FLUSH |
553                                       PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
554                                       PIPE_CONTROL_DEPTH_CACHE_FLUSH |
555                                       PIPE_CONTROL_DC_FLUSH_ENABLE |
556                                       PIPE_CONTROL_FLUSH_ENABLE);
557
558         return gen8_emit_fini_breadcrumb_tail(rq, cs);
559 }
560
561 /*
562  * Note that the CS instruction pre-parser will not stall on the breadcrumb
563  * flush and will continue pre-fetching the instructions after it before the
564  * memory sync is completed. On pre-gen12 HW, the pre-parser will stop at
565  * BB_START/END instructions, so, even though we might pre-fetch the pre-amble
566  * of the next request before the memory has been flushed, we're guaranteed that
567  * we won't access the batch itself too early.
568  * However, on gen12+ the parser can pre-fetch across the BB_START/END commands,
569  * so, if the current request is modifying an instruction in the next request on
570  * the same intel_context, we might pre-fetch and then execute the pre-update
571  * instruction. To avoid this, the users of self-modifying code should either
572  * disable the parser around the code emitting the memory writes, via a new flag
573  * added to MI_ARB_CHECK, or emit the writes from a different intel_context. For
574  * the in-kernel use-cases we've opted to use a separate context, see
575  * reloc_gpu() as an example.
576  * All the above applies only to the instructions themselves. Non-inline data
577  * used by the instructions is not pre-fetched.
578  */
579
580 static u32 *gen12_emit_preempt_busywait(struct i915_request *rq, u32 *cs)
581 {
582         *cs++ = MI_ARB_CHECK; /* trigger IDLE->ACTIVE first */
583         *cs++ = MI_SEMAPHORE_WAIT_TOKEN |
584                 MI_SEMAPHORE_GLOBAL_GTT |
585                 MI_SEMAPHORE_POLL |
586                 MI_SEMAPHORE_SAD_EQ_SDD;
587         *cs++ = 0;
588         *cs++ = preempt_address(rq->engine);
589         *cs++ = 0;
590         *cs++ = 0;
591
592         return cs;
593 }
594
595 static __always_inline u32*
596 gen12_emit_fini_breadcrumb_tail(struct i915_request *rq, u32 *cs)
597 {
598         *cs++ = MI_USER_INTERRUPT;
599
600         *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
601         if (intel_engine_has_semaphores(rq->engine))
602                 cs = gen12_emit_preempt_busywait(rq, cs);
603
604         rq->tail = intel_ring_offset(rq, cs);
605         assert_ring_tail_valid(rq->ring, rq->tail);
606
607         return gen8_emit_wa_tail(rq, cs);
608 }
609
610 u32 *gen12_emit_fini_breadcrumb_xcs(struct i915_request *rq, u32 *cs)
611 {
612         /* XXX Stalling flush before seqno write; post-sync not */
613         cs = emit_xcs_breadcrumb(rq, __gen8_emit_flush_dw(cs, 0, 0, 0));
614         return gen12_emit_fini_breadcrumb_tail(rq, cs);
615 }
616
617 u32 *gen12_emit_fini_breadcrumb_rcs(struct i915_request *rq, u32 *cs)
618 {
619         cs = gen12_emit_ggtt_write_rcs(cs,
620                                        rq->fence.seqno,
621                                        hwsp_offset(rq),
622                                        PIPE_CONTROL0_HDC_PIPELINE_FLUSH,
623                                        PIPE_CONTROL_CS_STALL |
624                                        PIPE_CONTROL_TILE_CACHE_FLUSH |
625                                        PIPE_CONTROL_FLUSH_L3 |
626                                        PIPE_CONTROL_RENDER_TARGET_CACHE_FLUSH |
627                                        PIPE_CONTROL_DEPTH_CACHE_FLUSH |
628                                        /* Wa_1409600907:tgl */
629                                        PIPE_CONTROL_DEPTH_STALL |
630                                        PIPE_CONTROL_DC_FLUSH_ENABLE |
631                                        PIPE_CONTROL_FLUSH_ENABLE);
632
633         return gen12_emit_fini_breadcrumb_tail(rq, cs);
634 }