Merge tag 'kvmarm-fixes-5.17-2' of git://git.kernel.org/pub/scm/linux/kernel/git...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / gem / i915_gem_ttm.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2021 Intel Corporation
4  */
5
6 #include <drm/ttm/ttm_bo_driver.h>
7 #include <drm/ttm/ttm_placement.h>
8
9 #include "i915_drv.h"
10 #include "intel_memory_region.h"
11 #include "intel_region_ttm.h"
12
13 #include "gem/i915_gem_mman.h"
14 #include "gem/i915_gem_object.h"
15 #include "gem/i915_gem_region.h"
16 #include "gem/i915_gem_ttm.h"
17 #include "gem/i915_gem_ttm_move.h"
18 #include "gem/i915_gem_ttm_pm.h"
19
20 #define I915_TTM_PRIO_PURGE     0
21 #define I915_TTM_PRIO_NO_PAGES  1
22 #define I915_TTM_PRIO_HAS_PAGES 2
23
24 /*
25  * Size of struct ttm_place vector in on-stack struct ttm_placement allocs
26  */
27 #define I915_TTM_MAX_PLACEMENTS INTEL_REGION_UNKNOWN
28
29 /**
30  * struct i915_ttm_tt - TTM page vector with additional private information
31  * @ttm: The base TTM page vector.
32  * @dev: The struct device used for dma mapping and unmapping.
33  * @cached_rsgt: The cached scatter-gather table.
34  * @is_shmem: Set if using shmem.
35  * @filp: The shmem file, if using shmem backend.
36  *
37  * Note that DMA may be going on right up to the point where the page-
38  * vector is unpopulated in delayed destroy. Hence keep the
39  * scatter-gather table mapped and cached up to that point. This is
40  * different from the cached gem object io scatter-gather table which
41  * doesn't have an associated dma mapping.
42  */
43 struct i915_ttm_tt {
44         struct ttm_tt ttm;
45         struct device *dev;
46         struct i915_refct_sgt cached_rsgt;
47
48         bool is_shmem;
49         struct file *filp;
50 };
51
52 static const struct ttm_place sys_placement_flags = {
53         .fpfn = 0,
54         .lpfn = 0,
55         .mem_type = I915_PL_SYSTEM,
56         .flags = 0,
57 };
58
59 static struct ttm_placement i915_sys_placement = {
60         .num_placement = 1,
61         .placement = &sys_placement_flags,
62         .num_busy_placement = 1,
63         .busy_placement = &sys_placement_flags,
64 };
65
66 /**
67  * i915_ttm_sys_placement - Return the struct ttm_placement to be
68  * used for an object in system memory.
69  *
70  * Rather than making the struct extern, use this
71  * function.
72  *
73  * Return: A pointer to a static variable for sys placement.
74  */
75 struct ttm_placement *i915_ttm_sys_placement(void)
76 {
77         return &i915_sys_placement;
78 }
79
80 static int i915_ttm_err_to_gem(int err)
81 {
82         /* Fastpath */
83         if (likely(!err))
84                 return 0;
85
86         switch (err) {
87         case -EBUSY:
88                 /*
89                  * TTM likes to convert -EDEADLK to -EBUSY, and wants us to
90                  * restart the operation, since we don't record the contending
91                  * lock. We use -EAGAIN to restart.
92                  */
93                 return -EAGAIN;
94         case -ENOSPC:
95                 /*
96                  * Memory type / region is full, and we can't evict.
97                  * Except possibly system, that returns -ENOMEM;
98                  */
99                 return -ENXIO;
100         default:
101                 break;
102         }
103
104         return err;
105 }
106
107 static enum ttm_caching
108 i915_ttm_select_tt_caching(const struct drm_i915_gem_object *obj)
109 {
110         /*
111          * Objects only allowed in system get cached cpu-mappings, or when
112          * evicting lmem-only buffers to system for swapping. Other objects get
113          * WC mapping for now. Even if in system.
114          */
115         if (obj->mm.n_placements <= 1)
116                 return ttm_cached;
117
118         return ttm_write_combined;
119 }
120
121 static void
122 i915_ttm_place_from_region(const struct intel_memory_region *mr,
123                            struct ttm_place *place,
124                            unsigned int flags)
125 {
126         memset(place, 0, sizeof(*place));
127         place->mem_type = intel_region_to_ttm_type(mr);
128
129         if (flags & I915_BO_ALLOC_CONTIGUOUS)
130                 place->flags = TTM_PL_FLAG_CONTIGUOUS;
131 }
132
133 static void
134 i915_ttm_placement_from_obj(const struct drm_i915_gem_object *obj,
135                             struct ttm_place *requested,
136                             struct ttm_place *busy,
137                             struct ttm_placement *placement)
138 {
139         unsigned int num_allowed = obj->mm.n_placements;
140         unsigned int flags = obj->flags;
141         unsigned int i;
142
143         placement->num_placement = 1;
144         i915_ttm_place_from_region(num_allowed ? obj->mm.placements[0] :
145                                    obj->mm.region, requested, flags);
146
147         /* Cache this on object? */
148         placement->num_busy_placement = num_allowed;
149         for (i = 0; i < placement->num_busy_placement; ++i)
150                 i915_ttm_place_from_region(obj->mm.placements[i], busy + i, flags);
151
152         if (num_allowed == 0) {
153                 *busy = *requested;
154                 placement->num_busy_placement = 1;
155         }
156
157         placement->placement = requested;
158         placement->busy_placement = busy;
159 }
160
161 static int i915_ttm_tt_shmem_populate(struct ttm_device *bdev,
162                                       struct ttm_tt *ttm,
163                                       struct ttm_operation_ctx *ctx)
164 {
165         struct drm_i915_private *i915 = container_of(bdev, typeof(*i915), bdev);
166         struct intel_memory_region *mr = i915->mm.regions[INTEL_MEMORY_SYSTEM];
167         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
168         const unsigned int max_segment = i915_sg_segment_size();
169         const size_t size = (size_t)ttm->num_pages << PAGE_SHIFT;
170         struct file *filp = i915_tt->filp;
171         struct sgt_iter sgt_iter;
172         struct sg_table *st;
173         struct page *page;
174         unsigned long i;
175         int err;
176
177         if (!filp) {
178                 struct address_space *mapping;
179                 gfp_t mask;
180
181                 filp = shmem_file_setup("i915-shmem-tt", size, VM_NORESERVE);
182                 if (IS_ERR(filp))
183                         return PTR_ERR(filp);
184
185                 mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
186
187                 mapping = filp->f_mapping;
188                 mapping_set_gfp_mask(mapping, mask);
189                 GEM_BUG_ON(!(mapping_gfp_mask(mapping) & __GFP_RECLAIM));
190
191                 i915_tt->filp = filp;
192         }
193
194         st = &i915_tt->cached_rsgt.table;
195         err = shmem_sg_alloc_table(i915, st, size, mr, filp->f_mapping,
196                                    max_segment);
197         if (err)
198                 return err;
199
200         err = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL,
201                               DMA_ATTR_SKIP_CPU_SYNC);
202         if (err)
203                 goto err_free_st;
204
205         i = 0;
206         for_each_sgt_page(page, sgt_iter, st)
207                 ttm->pages[i++] = page;
208
209         if (ttm->page_flags & TTM_TT_FLAG_SWAPPED)
210                 ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
211
212         return 0;
213
214 err_free_st:
215         shmem_sg_free_table(st, filp->f_mapping, false, false);
216
217         return err;
218 }
219
220 static void i915_ttm_tt_shmem_unpopulate(struct ttm_tt *ttm)
221 {
222         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
223         bool backup = ttm->page_flags & TTM_TT_FLAG_SWAPPED;
224         struct sg_table *st = &i915_tt->cached_rsgt.table;
225
226         shmem_sg_free_table(st, file_inode(i915_tt->filp)->i_mapping,
227                             backup, backup);
228 }
229
230 static void i915_ttm_tt_release(struct kref *ref)
231 {
232         struct i915_ttm_tt *i915_tt =
233                 container_of(ref, typeof(*i915_tt), cached_rsgt.kref);
234         struct sg_table *st = &i915_tt->cached_rsgt.table;
235
236         GEM_WARN_ON(st->sgl);
237
238         kfree(i915_tt);
239 }
240
241 static const struct i915_refct_sgt_ops tt_rsgt_ops = {
242         .release = i915_ttm_tt_release
243 };
244
245 static struct ttm_tt *i915_ttm_tt_create(struct ttm_buffer_object *bo,
246                                          uint32_t page_flags)
247 {
248         struct ttm_resource_manager *man =
249                 ttm_manager_type(bo->bdev, bo->resource->mem_type);
250         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
251         enum ttm_caching caching;
252         struct i915_ttm_tt *i915_tt;
253         int ret;
254
255         if (!obj)
256                 return NULL;
257
258         i915_tt = kzalloc(sizeof(*i915_tt), GFP_KERNEL);
259         if (!i915_tt)
260                 return NULL;
261
262         if (obj->flags & I915_BO_ALLOC_CPU_CLEAR &&
263             man->use_tt)
264                 page_flags |= TTM_TT_FLAG_ZERO_ALLOC;
265
266         caching = i915_ttm_select_tt_caching(obj);
267         if (i915_gem_object_is_shrinkable(obj) && caching == ttm_cached) {
268                 page_flags |= TTM_TT_FLAG_EXTERNAL |
269                               TTM_TT_FLAG_EXTERNAL_MAPPABLE;
270                 i915_tt->is_shmem = true;
271         }
272
273         ret = ttm_tt_init(&i915_tt->ttm, bo, page_flags, caching);
274         if (ret)
275                 goto err_free;
276
277         __i915_refct_sgt_init(&i915_tt->cached_rsgt, bo->base.size,
278                               &tt_rsgt_ops);
279
280         i915_tt->dev = obj->base.dev->dev;
281
282         return &i915_tt->ttm;
283
284 err_free:
285         kfree(i915_tt);
286         return NULL;
287 }
288
289 static int i915_ttm_tt_populate(struct ttm_device *bdev,
290                                 struct ttm_tt *ttm,
291                                 struct ttm_operation_ctx *ctx)
292 {
293         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
294
295         if (i915_tt->is_shmem)
296                 return i915_ttm_tt_shmem_populate(bdev, ttm, ctx);
297
298         return ttm_pool_alloc(&bdev->pool, ttm, ctx);
299 }
300
301 static void i915_ttm_tt_unpopulate(struct ttm_device *bdev, struct ttm_tt *ttm)
302 {
303         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
304         struct sg_table *st = &i915_tt->cached_rsgt.table;
305
306         if (st->sgl)
307                 dma_unmap_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
308
309         if (i915_tt->is_shmem) {
310                 i915_ttm_tt_shmem_unpopulate(ttm);
311         } else {
312                 sg_free_table(st);
313                 ttm_pool_free(&bdev->pool, ttm);
314         }
315 }
316
317 static void i915_ttm_tt_destroy(struct ttm_device *bdev, struct ttm_tt *ttm)
318 {
319         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
320
321         if (i915_tt->filp)
322                 fput(i915_tt->filp);
323
324         ttm_tt_fini(ttm);
325         i915_refct_sgt_put(&i915_tt->cached_rsgt);
326 }
327
328 static bool i915_ttm_eviction_valuable(struct ttm_buffer_object *bo,
329                                        const struct ttm_place *place)
330 {
331         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
332
333         if (!obj)
334                 return false;
335
336         /*
337          * EXTERNAL objects should never be swapped out by TTM, instead we need
338          * to handle that ourselves. TTM will already skip such objects for us,
339          * but we would like to avoid grabbing locks for no good reason.
340          */
341         if (bo->ttm && bo->ttm->page_flags & TTM_TT_FLAG_EXTERNAL)
342                 return false;
343
344         /* Will do for now. Our pinned objects are still on TTM's LRU lists */
345         return i915_gem_object_evictable(obj);
346 }
347
348 static void i915_ttm_evict_flags(struct ttm_buffer_object *bo,
349                                  struct ttm_placement *placement)
350 {
351         *placement = i915_sys_placement;
352 }
353
354 /**
355  * i915_ttm_free_cached_io_rsgt - Free object cached LMEM information
356  * @obj: The GEM object
357  * This function frees any LMEM-related information that is cached on
358  * the object. For example the radix tree for fast page lookup and the
359  * cached refcounted sg-table
360  */
361 void i915_ttm_free_cached_io_rsgt(struct drm_i915_gem_object *obj)
362 {
363         struct radix_tree_iter iter;
364         void __rcu **slot;
365
366         if (!obj->ttm.cached_io_rsgt)
367                 return;
368
369         rcu_read_lock();
370         radix_tree_for_each_slot(slot, &obj->ttm.get_io_page.radix, &iter, 0)
371                 radix_tree_delete(&obj->ttm.get_io_page.radix, iter.index);
372         rcu_read_unlock();
373
374         i915_refct_sgt_put(obj->ttm.cached_io_rsgt);
375         obj->ttm.cached_io_rsgt = NULL;
376 }
377
378 /**
379  * i915_ttm_purge - Clear an object of its memory
380  * @obj: The object
381  *
382  * This function is called to clear an object of it's memory when it is
383  * marked as not needed anymore.
384  *
385  * Return: 0 on success, negative error code on failure.
386  */
387 int i915_ttm_purge(struct drm_i915_gem_object *obj)
388 {
389         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
390         struct i915_ttm_tt *i915_tt =
391                 container_of(bo->ttm, typeof(*i915_tt), ttm);
392         struct ttm_operation_ctx ctx = {
393                 .interruptible = true,
394                 .no_wait_gpu = false,
395         };
396         struct ttm_placement place = {};
397         int ret;
398
399         if (obj->mm.madv == __I915_MADV_PURGED)
400                 return 0;
401
402         ret = ttm_bo_validate(bo, &place, &ctx);
403         if (ret)
404                 return ret;
405
406         if (bo->ttm && i915_tt->filp) {
407                 /*
408                  * The below fput(which eventually calls shmem_truncate) might
409                  * be delayed by worker, so when directly called to purge the
410                  * pages(like by the shrinker) we should try to be more
411                  * aggressive and release the pages immediately.
412                  */
413                 shmem_truncate_range(file_inode(i915_tt->filp),
414                                      0, (loff_t)-1);
415                 fput(fetch_and_zero(&i915_tt->filp));
416         }
417
418         obj->write_domain = 0;
419         obj->read_domains = 0;
420         i915_ttm_adjust_gem_after_move(obj);
421         i915_ttm_free_cached_io_rsgt(obj);
422         obj->mm.madv = __I915_MADV_PURGED;
423
424         return 0;
425 }
426
427 static int i915_ttm_shrinker_release_pages(struct drm_i915_gem_object *obj,
428                                            bool no_wait_gpu,
429                                            bool should_writeback)
430 {
431         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
432         struct i915_ttm_tt *i915_tt =
433                 container_of(bo->ttm, typeof(*i915_tt), ttm);
434         struct ttm_operation_ctx ctx = {
435                 .interruptible = true,
436                 .no_wait_gpu = no_wait_gpu,
437         };
438         struct ttm_placement place = {};
439         int ret;
440
441         if (!bo->ttm || bo->resource->mem_type != TTM_PL_SYSTEM)
442                 return 0;
443
444         GEM_BUG_ON(!i915_tt->is_shmem);
445
446         if (!i915_tt->filp)
447                 return 0;
448
449         ret = ttm_bo_wait_ctx(bo, &ctx);
450         if (ret)
451                 return ret;
452
453         switch (obj->mm.madv) {
454         case I915_MADV_DONTNEED:
455                 return i915_ttm_purge(obj);
456         case __I915_MADV_PURGED:
457                 return 0;
458         }
459
460         if (bo->ttm->page_flags & TTM_TT_FLAG_SWAPPED)
461                 return 0;
462
463         bo->ttm->page_flags |= TTM_TT_FLAG_SWAPPED;
464         ret = ttm_bo_validate(bo, &place, &ctx);
465         if (ret) {
466                 bo->ttm->page_flags &= ~TTM_TT_FLAG_SWAPPED;
467                 return ret;
468         }
469
470         if (should_writeback)
471                 __shmem_writeback(obj->base.size, i915_tt->filp->f_mapping);
472
473         return 0;
474 }
475
476 static void i915_ttm_delete_mem_notify(struct ttm_buffer_object *bo)
477 {
478         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
479
480         if (likely(obj)) {
481                 __i915_gem_object_pages_fini(obj);
482                 i915_ttm_free_cached_io_rsgt(obj);
483         }
484 }
485
486 static struct i915_refct_sgt *i915_ttm_tt_get_st(struct ttm_tt *ttm)
487 {
488         struct i915_ttm_tt *i915_tt = container_of(ttm, typeof(*i915_tt), ttm);
489         struct sg_table *st;
490         int ret;
491
492         if (i915_tt->cached_rsgt.table.sgl)
493                 return i915_refct_sgt_get(&i915_tt->cached_rsgt);
494
495         st = &i915_tt->cached_rsgt.table;
496         ret = sg_alloc_table_from_pages_segment(st,
497                         ttm->pages, ttm->num_pages,
498                         0, (unsigned long)ttm->num_pages << PAGE_SHIFT,
499                         i915_sg_segment_size(), GFP_KERNEL);
500         if (ret) {
501                 st->sgl = NULL;
502                 return ERR_PTR(ret);
503         }
504
505         ret = dma_map_sgtable(i915_tt->dev, st, DMA_BIDIRECTIONAL, 0);
506         if (ret) {
507                 sg_free_table(st);
508                 return ERR_PTR(ret);
509         }
510
511         return i915_refct_sgt_get(&i915_tt->cached_rsgt);
512 }
513
514 /**
515  * i915_ttm_resource_get_st - Get a refcounted sg-table pointing to the
516  * resource memory
517  * @obj: The GEM object used for sg-table caching
518  * @res: The struct ttm_resource for which an sg-table is requested.
519  *
520  * This function returns a refcounted sg-table representing the memory
521  * pointed to by @res. If @res is the object's current resource it may also
522  * cache the sg_table on the object or attempt to access an already cached
523  * sg-table. The refcounted sg-table needs to be put when no-longer in use.
524  *
525  * Return: A valid pointer to a struct i915_refct_sgt or error pointer on
526  * failure.
527  */
528 struct i915_refct_sgt *
529 i915_ttm_resource_get_st(struct drm_i915_gem_object *obj,
530                          struct ttm_resource *res)
531 {
532         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
533
534         if (!i915_ttm_gtt_binds_lmem(res))
535                 return i915_ttm_tt_get_st(bo->ttm);
536
537         /*
538          * If CPU mapping differs, we need to add the ttm_tt pages to
539          * the resulting st. Might make sense for GGTT.
540          */
541         GEM_WARN_ON(!i915_ttm_cpu_maps_iomem(res));
542         if (bo->resource == res) {
543                 if (!obj->ttm.cached_io_rsgt) {
544                         struct i915_refct_sgt *rsgt;
545
546                         rsgt = intel_region_ttm_resource_to_rsgt(obj->mm.region,
547                                                                  res);
548                         if (IS_ERR(rsgt))
549                                 return rsgt;
550
551                         obj->ttm.cached_io_rsgt = rsgt;
552                 }
553                 return i915_refct_sgt_get(obj->ttm.cached_io_rsgt);
554         }
555
556         return intel_region_ttm_resource_to_rsgt(obj->mm.region, res);
557 }
558
559 static int i915_ttm_truncate(struct drm_i915_gem_object *obj)
560 {
561         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
562         int err;
563
564         WARN_ON_ONCE(obj->mm.madv == I915_MADV_WILLNEED);
565
566         err = i915_ttm_move_notify(bo);
567         if (err)
568                 return err;
569
570         return i915_ttm_purge(obj);
571 }
572
573 static void i915_ttm_swap_notify(struct ttm_buffer_object *bo)
574 {
575         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
576         int ret;
577
578         if (!obj)
579                 return;
580
581         ret = i915_ttm_move_notify(bo);
582         GEM_WARN_ON(ret);
583         GEM_WARN_ON(obj->ttm.cached_io_rsgt);
584         if (!ret && obj->mm.madv != I915_MADV_WILLNEED)
585                 i915_ttm_purge(obj);
586 }
587
588 static int i915_ttm_io_mem_reserve(struct ttm_device *bdev, struct ttm_resource *mem)
589 {
590         if (!i915_ttm_cpu_maps_iomem(mem))
591                 return 0;
592
593         mem->bus.caching = ttm_write_combined;
594         mem->bus.is_iomem = true;
595
596         return 0;
597 }
598
599 static unsigned long i915_ttm_io_mem_pfn(struct ttm_buffer_object *bo,
600                                          unsigned long page_offset)
601 {
602         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
603         struct scatterlist *sg;
604         unsigned long base;
605         unsigned int ofs;
606
607         GEM_BUG_ON(!obj);
608         GEM_WARN_ON(bo->ttm);
609
610         base = obj->mm.region->iomap.base - obj->mm.region->region.start;
611         sg = __i915_gem_object_get_sg(obj, &obj->ttm.get_io_page, page_offset, &ofs, true);
612
613         return ((base + sg_dma_address(sg)) >> PAGE_SHIFT) + ofs;
614 }
615
616 /*
617  * All callbacks need to take care not to downcast a struct ttm_buffer_object
618  * without checking its subclass, since it might be a TTM ghost object.
619  */
620 static struct ttm_device_funcs i915_ttm_bo_driver = {
621         .ttm_tt_create = i915_ttm_tt_create,
622         .ttm_tt_populate = i915_ttm_tt_populate,
623         .ttm_tt_unpopulate = i915_ttm_tt_unpopulate,
624         .ttm_tt_destroy = i915_ttm_tt_destroy,
625         .eviction_valuable = i915_ttm_eviction_valuable,
626         .evict_flags = i915_ttm_evict_flags,
627         .move = i915_ttm_move,
628         .swap_notify = i915_ttm_swap_notify,
629         .delete_mem_notify = i915_ttm_delete_mem_notify,
630         .io_mem_reserve = i915_ttm_io_mem_reserve,
631         .io_mem_pfn = i915_ttm_io_mem_pfn,
632 };
633
634 /**
635  * i915_ttm_driver - Return a pointer to the TTM device funcs
636  *
637  * Return: Pointer to statically allocated TTM device funcs.
638  */
639 struct ttm_device_funcs *i915_ttm_driver(void)
640 {
641         return &i915_ttm_bo_driver;
642 }
643
644 static int __i915_ttm_get_pages(struct drm_i915_gem_object *obj,
645                                 struct ttm_placement *placement)
646 {
647         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
648         struct ttm_operation_ctx ctx = {
649                 .interruptible = true,
650                 .no_wait_gpu = false,
651         };
652         int real_num_busy;
653         int ret;
654
655         /* First try only the requested placement. No eviction. */
656         real_num_busy = fetch_and_zero(&placement->num_busy_placement);
657         ret = ttm_bo_validate(bo, placement, &ctx);
658         if (ret) {
659                 ret = i915_ttm_err_to_gem(ret);
660                 /*
661                  * Anything that wants to restart the operation gets to
662                  * do that.
663                  */
664                 if (ret == -EDEADLK || ret == -EINTR || ret == -ERESTARTSYS ||
665                     ret == -EAGAIN)
666                         return ret;
667
668                 /*
669                  * If the initial attempt fails, allow all accepted placements,
670                  * evicting if necessary.
671                  */
672                 placement->num_busy_placement = real_num_busy;
673                 ret = ttm_bo_validate(bo, placement, &ctx);
674                 if (ret)
675                         return i915_ttm_err_to_gem(ret);
676         }
677
678         if (bo->ttm && !ttm_tt_is_populated(bo->ttm)) {
679                 ret = ttm_tt_populate(bo->bdev, bo->ttm, &ctx);
680                 if (ret)
681                         return ret;
682
683                 i915_ttm_adjust_domains_after_move(obj);
684                 i915_ttm_adjust_gem_after_move(obj);
685         }
686
687         if (!i915_gem_object_has_pages(obj)) {
688                 struct i915_refct_sgt *rsgt =
689                         i915_ttm_resource_get_st(obj, bo->resource);
690
691                 if (IS_ERR(rsgt))
692                         return PTR_ERR(rsgt);
693
694                 GEM_BUG_ON(obj->mm.rsgt);
695                 obj->mm.rsgt = rsgt;
696                 __i915_gem_object_set_pages(obj, &rsgt->table,
697                                             i915_sg_dma_sizes(rsgt->table.sgl));
698         }
699
700         i915_ttm_adjust_lru(obj);
701         return ret;
702 }
703
704 static int i915_ttm_get_pages(struct drm_i915_gem_object *obj)
705 {
706         struct ttm_place requested, busy[I915_TTM_MAX_PLACEMENTS];
707         struct ttm_placement placement;
708
709         GEM_BUG_ON(obj->mm.n_placements > I915_TTM_MAX_PLACEMENTS);
710
711         /* Move to the requested placement. */
712         i915_ttm_placement_from_obj(obj, &requested, busy, &placement);
713
714         return __i915_ttm_get_pages(obj, &placement);
715 }
716
717 /**
718  * DOC: Migration vs eviction
719  *
720  * GEM migration may not be the same as TTM migration / eviction. If
721  * the TTM core decides to evict an object it may be evicted to a
722  * TTM memory type that is not in the object's allowable GEM regions, or
723  * in fact theoretically to a TTM memory type that doesn't correspond to
724  * a GEM memory region. In that case the object's GEM region is not
725  * updated, and the data is migrated back to the GEM region at
726  * get_pages time. TTM may however set up CPU ptes to the object even
727  * when it is evicted.
728  * Gem forced migration using the i915_ttm_migrate() op, is allowed even
729  * to regions that are not in the object's list of allowable placements.
730  */
731 static int i915_ttm_migrate(struct drm_i915_gem_object *obj,
732                             struct intel_memory_region *mr)
733 {
734         struct ttm_place requested;
735         struct ttm_placement placement;
736         int ret;
737
738         i915_ttm_place_from_region(mr, &requested, obj->flags);
739         placement.num_placement = 1;
740         placement.num_busy_placement = 1;
741         placement.placement = &requested;
742         placement.busy_placement = &requested;
743
744         ret = __i915_ttm_get_pages(obj, &placement);
745         if (ret)
746                 return ret;
747
748         /*
749          * Reinitialize the region bindings. This is primarily
750          * required for objects where the new region is not in
751          * its allowable placements.
752          */
753         if (obj->mm.region != mr) {
754                 i915_gem_object_release_memory_region(obj);
755                 i915_gem_object_init_memory_region(obj, mr);
756         }
757
758         return 0;
759 }
760
761 static void i915_ttm_put_pages(struct drm_i915_gem_object *obj,
762                                struct sg_table *st)
763 {
764         /*
765          * We're currently not called from a shrinker, so put_pages()
766          * typically means the object is about to destroyed, or called
767          * from move_notify(). So just avoid doing much for now.
768          * If the object is not destroyed next, The TTM eviction logic
769          * and shrinkers will move it out if needed.
770          */
771
772         if (obj->mm.rsgt)
773                 i915_refct_sgt_put(fetch_and_zero(&obj->mm.rsgt));
774 }
775
776 /**
777  * i915_ttm_adjust_lru - Adjust an object's position on relevant LRU lists.
778  * @obj: The object
779  */
780 void i915_ttm_adjust_lru(struct drm_i915_gem_object *obj)
781 {
782         struct ttm_buffer_object *bo = i915_gem_to_ttm(obj);
783         struct i915_ttm_tt *i915_tt =
784                 container_of(bo->ttm, typeof(*i915_tt), ttm);
785         bool shrinkable =
786                 bo->ttm && i915_tt->filp && ttm_tt_is_populated(bo->ttm);
787
788         /*
789          * Don't manipulate the TTM LRUs while in TTM bo destruction.
790          * We're called through i915_ttm_delete_mem_notify().
791          */
792         if (!kref_read(&bo->kref))
793                 return;
794
795         /*
796          * We skip managing the shrinker LRU in set_pages() and just manage
797          * everything here. This does at least solve the issue with having
798          * temporary shmem mappings(like with evicted lmem) not being visible to
799          * the shrinker. Only our shmem objects are shrinkable, everything else
800          * we keep as unshrinkable.
801          *
802          * To make sure everything plays nice we keep an extra shrink pin in TTM
803          * if the underlying pages are not currently shrinkable. Once we release
804          * our pin, like when the pages are moved to shmem, the pages will then
805          * be added to the shrinker LRU, assuming the caller isn't also holding
806          * a pin.
807          *
808          * TODO: consider maybe also bumping the shrinker list here when we have
809          * already unpinned it, which should give us something more like an LRU.
810          *
811          * TODO: There is a small window of opportunity for this function to
812          * get called from eviction after we've dropped the last GEM refcount,
813          * but before the TTM deleted flag is set on the object. Avoid
814          * adjusting the shrinker list in such cases, since the object is
815          * not available to the shrinker anyway due to its zero refcount.
816          * To fix this properly we should move to a TTM shrinker LRU list for
817          * these objects.
818          */
819         if (kref_get_unless_zero(&obj->base.refcount)) {
820                 if (shrinkable != obj->mm.ttm_shrinkable) {
821                         if (shrinkable) {
822                                 if (obj->mm.madv == I915_MADV_WILLNEED)
823                                         __i915_gem_object_make_shrinkable(obj);
824                                 else
825                                         __i915_gem_object_make_purgeable(obj);
826                         } else {
827                                 i915_gem_object_make_unshrinkable(obj);
828                         }
829
830                         obj->mm.ttm_shrinkable = shrinkable;
831                 }
832                 i915_gem_object_put(obj);
833         }
834
835         /*
836          * Put on the correct LRU list depending on the MADV status
837          */
838         spin_lock(&bo->bdev->lru_lock);
839         if (shrinkable) {
840                 /* Try to keep shmem_tt from being considered for shrinking. */
841                 bo->priority = TTM_MAX_BO_PRIORITY - 1;
842         } else if (obj->mm.madv != I915_MADV_WILLNEED) {
843                 bo->priority = I915_TTM_PRIO_PURGE;
844         } else if (!i915_gem_object_has_pages(obj)) {
845                 if (bo->priority < I915_TTM_PRIO_HAS_PAGES)
846                         bo->priority = I915_TTM_PRIO_HAS_PAGES;
847         } else {
848                 if (bo->priority > I915_TTM_PRIO_NO_PAGES)
849                         bo->priority = I915_TTM_PRIO_NO_PAGES;
850         }
851
852         ttm_bo_move_to_lru_tail(bo, bo->resource, NULL);
853         spin_unlock(&bo->bdev->lru_lock);
854 }
855
856 /*
857  * TTM-backed gem object destruction requires some clarification.
858  * Basically we have two possibilities here. We can either rely on the
859  * i915 delayed destruction and put the TTM object when the object
860  * is idle. This would be detected by TTM which would bypass the
861  * TTM delayed destroy handling. The other approach is to put the TTM
862  * object early and rely on the TTM destroyed handling, and then free
863  * the leftover parts of the GEM object once TTM's destroyed list handling is
864  * complete. For now, we rely on the latter for two reasons:
865  * a) TTM can evict an object even when it's on the delayed destroy list,
866  * which in theory allows for complete eviction.
867  * b) There is work going on in TTM to allow freeing an object even when
868  * it's not idle, and using the TTM destroyed list handling could help us
869  * benefit from that.
870  */
871 static void i915_ttm_delayed_free(struct drm_i915_gem_object *obj)
872 {
873         GEM_BUG_ON(!obj->ttm.created);
874
875         ttm_bo_put(i915_gem_to_ttm(obj));
876 }
877
878 static vm_fault_t vm_fault_ttm(struct vm_fault *vmf)
879 {
880         struct vm_area_struct *area = vmf->vma;
881         struct ttm_buffer_object *bo = area->vm_private_data;
882         struct drm_device *dev = bo->base.dev;
883         struct drm_i915_gem_object *obj;
884         vm_fault_t ret;
885         int idx;
886
887         obj = i915_ttm_to_gem(bo);
888         if (!obj)
889                 return VM_FAULT_SIGBUS;
890
891         /* Sanity check that we allow writing into this object */
892         if (unlikely(i915_gem_object_is_readonly(obj) &&
893                      area->vm_flags & VM_WRITE))
894                 return VM_FAULT_SIGBUS;
895
896         ret = ttm_bo_vm_reserve(bo, vmf);
897         if (ret)
898                 return ret;
899
900         if (obj->mm.madv != I915_MADV_WILLNEED) {
901                 dma_resv_unlock(bo->base.resv);
902                 return VM_FAULT_SIGBUS;
903         }
904
905         if (drm_dev_enter(dev, &idx)) {
906                 ret = ttm_bo_vm_fault_reserved(vmf, vmf->vma->vm_page_prot,
907                                                TTM_BO_VM_NUM_PREFAULT);
908                 drm_dev_exit(idx);
909         } else {
910                 ret = ttm_bo_vm_dummy_page(vmf, vmf->vma->vm_page_prot);
911         }
912         if (ret == VM_FAULT_RETRY && !(vmf->flags & FAULT_FLAG_RETRY_NOWAIT))
913                 return ret;
914
915         i915_ttm_adjust_lru(obj);
916
917         dma_resv_unlock(bo->base.resv);
918         return ret;
919 }
920
921 static int
922 vm_access_ttm(struct vm_area_struct *area, unsigned long addr,
923               void *buf, int len, int write)
924 {
925         struct drm_i915_gem_object *obj =
926                 i915_ttm_to_gem(area->vm_private_data);
927
928         if (i915_gem_object_is_readonly(obj) && write)
929                 return -EACCES;
930
931         return ttm_bo_vm_access(area, addr, buf, len, write);
932 }
933
934 static void ttm_vm_open(struct vm_area_struct *vma)
935 {
936         struct drm_i915_gem_object *obj =
937                 i915_ttm_to_gem(vma->vm_private_data);
938
939         GEM_BUG_ON(!obj);
940         i915_gem_object_get(obj);
941 }
942
943 static void ttm_vm_close(struct vm_area_struct *vma)
944 {
945         struct drm_i915_gem_object *obj =
946                 i915_ttm_to_gem(vma->vm_private_data);
947
948         GEM_BUG_ON(!obj);
949         i915_gem_object_put(obj);
950 }
951
952 static const struct vm_operations_struct vm_ops_ttm = {
953         .fault = vm_fault_ttm,
954         .access = vm_access_ttm,
955         .open = ttm_vm_open,
956         .close = ttm_vm_close,
957 };
958
959 static u64 i915_ttm_mmap_offset(struct drm_i915_gem_object *obj)
960 {
961         /* The ttm_bo must be allocated with I915_BO_ALLOC_USER */
962         GEM_BUG_ON(!drm_mm_node_allocated(&obj->base.vma_node.vm_node));
963
964         return drm_vma_node_offset_addr(&obj->base.vma_node);
965 }
966
967 static void i915_ttm_unmap_virtual(struct drm_i915_gem_object *obj)
968 {
969         ttm_bo_unmap_virtual(i915_gem_to_ttm(obj));
970 }
971
972 static const struct drm_i915_gem_object_ops i915_gem_ttm_obj_ops = {
973         .name = "i915_gem_object_ttm",
974         .flags = I915_GEM_OBJECT_IS_SHRINKABLE |
975                  I915_GEM_OBJECT_SELF_MANAGED_SHRINK_LIST,
976
977         .get_pages = i915_ttm_get_pages,
978         .put_pages = i915_ttm_put_pages,
979         .truncate = i915_ttm_truncate,
980         .shrinker_release_pages = i915_ttm_shrinker_release_pages,
981
982         .adjust_lru = i915_ttm_adjust_lru,
983         .delayed_free = i915_ttm_delayed_free,
984         .migrate = i915_ttm_migrate,
985
986         .mmap_offset = i915_ttm_mmap_offset,
987         .unmap_virtual = i915_ttm_unmap_virtual,
988         .mmap_ops = &vm_ops_ttm,
989 };
990
991 void i915_ttm_bo_destroy(struct ttm_buffer_object *bo)
992 {
993         struct drm_i915_gem_object *obj = i915_ttm_to_gem(bo);
994
995         i915_gem_object_release_memory_region(obj);
996         mutex_destroy(&obj->ttm.get_io_page.lock);
997
998         if (obj->ttm.created) {
999                 /*
1000                  * We freely manage the shrinker LRU outide of the mm.pages life
1001                  * cycle. As a result when destroying the object we should be
1002                  * extra paranoid and ensure we remove it from the LRU, before
1003                  * we free the object.
1004                  *
1005                  * Touching the ttm_shrinkable outside of the object lock here
1006                  * should be safe now that the last GEM object ref was dropped.
1007                  */
1008                 if (obj->mm.ttm_shrinkable)
1009                         i915_gem_object_make_unshrinkable(obj);
1010
1011                 i915_ttm_backup_free(obj);
1012
1013                 /* This releases all gem object bindings to the backend. */
1014                 __i915_gem_free_object(obj);
1015
1016                 call_rcu(&obj->rcu, __i915_gem_free_object_rcu);
1017         } else {
1018                 __i915_gem_object_fini(obj);
1019         }
1020 }
1021
1022 /**
1023  * __i915_gem_ttm_object_init - Initialize a ttm-backed i915 gem object
1024  * @mem: The initial memory region for the object.
1025  * @obj: The gem object.
1026  * @size: Object size in bytes.
1027  * @flags: gem object flags.
1028  *
1029  * Return: 0 on success, negative error code on failure.
1030  */
1031 int __i915_gem_ttm_object_init(struct intel_memory_region *mem,
1032                                struct drm_i915_gem_object *obj,
1033                                resource_size_t size,
1034                                resource_size_t page_size,
1035                                unsigned int flags)
1036 {
1037         static struct lock_class_key lock_class;
1038         struct drm_i915_private *i915 = mem->i915;
1039         struct ttm_operation_ctx ctx = {
1040                 .interruptible = true,
1041                 .no_wait_gpu = false,
1042         };
1043         enum ttm_bo_type bo_type;
1044         int ret;
1045
1046         drm_gem_private_object_init(&i915->drm, &obj->base, size);
1047         i915_gem_object_init(obj, &i915_gem_ttm_obj_ops, &lock_class, flags);
1048
1049         /* Don't put on a region list until we're either locked or fully initialized. */
1050         obj->mm.region = mem;
1051         INIT_LIST_HEAD(&obj->mm.region_link);
1052
1053         INIT_RADIX_TREE(&obj->ttm.get_io_page.radix, GFP_KERNEL | __GFP_NOWARN);
1054         mutex_init(&obj->ttm.get_io_page.lock);
1055         bo_type = (obj->flags & I915_BO_ALLOC_USER) ? ttm_bo_type_device :
1056                 ttm_bo_type_kernel;
1057
1058         obj->base.vma_node.driver_private = i915_gem_to_ttm(obj);
1059
1060         /* Forcing the page size is kernel internal only */
1061         GEM_BUG_ON(page_size && obj->mm.n_placements);
1062
1063         /*
1064          * Keep an extra shrink pin to prevent the object from being made
1065          * shrinkable too early. If the ttm_tt is ever allocated in shmem, we
1066          * drop the pin. The TTM backend manages the shrinker LRU itself,
1067          * outside of the normal mm.pages life cycle.
1068          */
1069         i915_gem_object_make_unshrinkable(obj);
1070
1071         /*
1072          * If this function fails, it will call the destructor, but
1073          * our caller still owns the object. So no freeing in the
1074          * destructor until obj->ttm.created is true.
1075          * Similarly, in delayed_destroy, we can't call ttm_bo_put()
1076          * until successful initialization.
1077          */
1078         ret = ttm_bo_init_reserved(&i915->bdev, i915_gem_to_ttm(obj), size,
1079                                    bo_type, &i915_sys_placement,
1080                                    page_size >> PAGE_SHIFT,
1081                                    &ctx, NULL, NULL, i915_ttm_bo_destroy);
1082         if (ret)
1083                 return i915_ttm_err_to_gem(ret);
1084
1085         obj->ttm.created = true;
1086         i915_gem_object_release_memory_region(obj);
1087         i915_gem_object_init_memory_region(obj, mem);
1088         i915_ttm_adjust_domains_after_move(obj);
1089         i915_ttm_adjust_gem_after_move(obj);
1090         i915_gem_object_unlock(obj);
1091
1092         return 0;
1093 }
1094
1095 static const struct intel_memory_region_ops ttm_system_region_ops = {
1096         .init_object = __i915_gem_ttm_object_init,
1097         .release = intel_region_ttm_fini,
1098 };
1099
1100 struct intel_memory_region *
1101 i915_gem_ttm_system_setup(struct drm_i915_private *i915,
1102                           u16 type, u16 instance)
1103 {
1104         struct intel_memory_region *mr;
1105
1106         mr = intel_memory_region_create(i915, 0,
1107                                         totalram_pages() << PAGE_SHIFT,
1108                                         PAGE_SIZE, 0,
1109                                         type, instance,
1110                                         &ttm_system_region_ops);
1111         if (IS_ERR(mr))
1112                 return mr;
1113
1114         intel_memory_region_set_name(mr, "system-ttm");
1115         return mr;
1116 }