drm/i915/ehl: Define EHL powerwells independently of ICL
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_psr.c
1 /*
2  * Copyright © 2014 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  */
23
24 #include <drm/drm_atomic_helper.h>
25
26 #include "display/intel_dp.h"
27
28 #include "i915_drv.h"
29 #include "intel_atomic.h"
30 #include "intel_display_types.h"
31 #include "intel_psr.h"
32 #include "intel_sprite.h"
33
34 /**
35  * DOC: Panel Self Refresh (PSR/SRD)
36  *
37  * Since Haswell Display controller supports Panel Self-Refresh on display
38  * panels witch have a remote frame buffer (RFB) implemented according to PSR
39  * spec in eDP1.3. PSR feature allows the display to go to lower standby states
40  * when system is idle but display is on as it eliminates display refresh
41  * request to DDR memory completely as long as the frame buffer for that
42  * display is unchanged.
43  *
44  * Panel Self Refresh must be supported by both Hardware (source) and
45  * Panel (sink).
46  *
47  * PSR saves power by caching the framebuffer in the panel RFB, which allows us
48  * to power down the link and memory controller. For DSI panels the same idea
49  * is called "manual mode".
50  *
51  * The implementation uses the hardware-based PSR support which automatically
52  * enters/exits self-refresh mode. The hardware takes care of sending the
53  * required DP aux message and could even retrain the link (that part isn't
54  * enabled yet though). The hardware also keeps track of any frontbuffer
55  * changes to know when to exit self-refresh mode again. Unfortunately that
56  * part doesn't work too well, hence why the i915 PSR support uses the
57  * software frontbuffer tracking to make sure it doesn't miss a screen
58  * update. For this integration intel_psr_invalidate() and intel_psr_flush()
59  * get called by the frontbuffer tracking code. Note that because of locking
60  * issues the self-refresh re-enable code is done from a work queue, which
61  * must be correctly synchronized/cancelled when shutting down the pipe."
62  */
63
64 static bool psr_global_enabled(u32 debug)
65 {
66         switch (debug & I915_PSR_DEBUG_MODE_MASK) {
67         case I915_PSR_DEBUG_DEFAULT:
68                 return i915_modparams.enable_psr;
69         case I915_PSR_DEBUG_DISABLE:
70                 return false;
71         default:
72                 return true;
73         }
74 }
75
76 static bool intel_psr2_enabled(struct drm_i915_private *dev_priv,
77                                const struct intel_crtc_state *crtc_state)
78 {
79         /* Cannot enable DSC and PSR2 simultaneously */
80         WARN_ON(crtc_state->dsc.compression_enable &&
81                 crtc_state->has_psr2);
82
83         switch (dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK) {
84         case I915_PSR_DEBUG_DISABLE:
85         case I915_PSR_DEBUG_FORCE_PSR1:
86                 return false;
87         default:
88                 return crtc_state->has_psr2;
89         }
90 }
91
92 static void psr_irq_control(struct drm_i915_private *dev_priv)
93 {
94         enum transcoder trans_shift;
95         u32 mask, val;
96         i915_reg_t imr_reg;
97
98         /*
99          * gen12+ has registers relative to transcoder and one per transcoder
100          * using the same bit definition: handle it as TRANSCODER_EDP to force
101          * 0 shift in bit definition
102          */
103         if (INTEL_GEN(dev_priv) >= 12) {
104                 trans_shift = 0;
105                 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
106         } else {
107                 trans_shift = dev_priv->psr.transcoder;
108                 imr_reg = EDP_PSR_IMR;
109         }
110
111         mask = EDP_PSR_ERROR(trans_shift);
112         if (dev_priv->psr.debug & I915_PSR_DEBUG_IRQ)
113                 mask |= EDP_PSR_POST_EXIT(trans_shift) |
114                         EDP_PSR_PRE_ENTRY(trans_shift);
115
116         /* Warning: it is masking/setting reserved bits too */
117         val = I915_READ(imr_reg);
118         val &= ~EDP_PSR_TRANS_MASK(trans_shift);
119         val |= ~mask;
120         I915_WRITE(imr_reg, val);
121 }
122
123 static void psr_event_print(u32 val, bool psr2_enabled)
124 {
125         DRM_DEBUG_KMS("PSR exit events: 0x%x\n", val);
126         if (val & PSR_EVENT_PSR2_WD_TIMER_EXPIRE)
127                 DRM_DEBUG_KMS("\tPSR2 watchdog timer expired\n");
128         if ((val & PSR_EVENT_PSR2_DISABLED) && psr2_enabled)
129                 DRM_DEBUG_KMS("\tPSR2 disabled\n");
130         if (val & PSR_EVENT_SU_DIRTY_FIFO_UNDERRUN)
131                 DRM_DEBUG_KMS("\tSU dirty FIFO underrun\n");
132         if (val & PSR_EVENT_SU_CRC_FIFO_UNDERRUN)
133                 DRM_DEBUG_KMS("\tSU CRC FIFO underrun\n");
134         if (val & PSR_EVENT_GRAPHICS_RESET)
135                 DRM_DEBUG_KMS("\tGraphics reset\n");
136         if (val & PSR_EVENT_PCH_INTERRUPT)
137                 DRM_DEBUG_KMS("\tPCH interrupt\n");
138         if (val & PSR_EVENT_MEMORY_UP)
139                 DRM_DEBUG_KMS("\tMemory up\n");
140         if (val & PSR_EVENT_FRONT_BUFFER_MODIFY)
141                 DRM_DEBUG_KMS("\tFront buffer modification\n");
142         if (val & PSR_EVENT_WD_TIMER_EXPIRE)
143                 DRM_DEBUG_KMS("\tPSR watchdog timer expired\n");
144         if (val & PSR_EVENT_PIPE_REGISTERS_UPDATE)
145                 DRM_DEBUG_KMS("\tPIPE registers updated\n");
146         if (val & PSR_EVENT_REGISTER_UPDATE)
147                 DRM_DEBUG_KMS("\tRegister updated\n");
148         if (val & PSR_EVENT_HDCP_ENABLE)
149                 DRM_DEBUG_KMS("\tHDCP enabled\n");
150         if (val & PSR_EVENT_KVMR_SESSION_ENABLE)
151                 DRM_DEBUG_KMS("\tKVMR session enabled\n");
152         if (val & PSR_EVENT_VBI_ENABLE)
153                 DRM_DEBUG_KMS("\tVBI enabled\n");
154         if (val & PSR_EVENT_LPSP_MODE_EXIT)
155                 DRM_DEBUG_KMS("\tLPSP mode exited\n");
156         if ((val & PSR_EVENT_PSR_DISABLE) && !psr2_enabled)
157                 DRM_DEBUG_KMS("\tPSR disabled\n");
158 }
159
160 void intel_psr_irq_handler(struct drm_i915_private *dev_priv, u32 psr_iir)
161 {
162         enum transcoder cpu_transcoder = dev_priv->psr.transcoder;
163         enum transcoder trans_shift;
164         i915_reg_t imr_reg;
165         ktime_t time_ns =  ktime_get();
166
167         if (INTEL_GEN(dev_priv) >= 12) {
168                 trans_shift = 0;
169                 imr_reg = TRANS_PSR_IMR(dev_priv->psr.transcoder);
170         } else {
171                 trans_shift = dev_priv->psr.transcoder;
172                 imr_reg = EDP_PSR_IMR;
173         }
174
175         if (psr_iir & EDP_PSR_PRE_ENTRY(trans_shift)) {
176                 dev_priv->psr.last_entry_attempt = time_ns;
177                 DRM_DEBUG_KMS("[transcoder %s] PSR entry attempt in 2 vblanks\n",
178                               transcoder_name(cpu_transcoder));
179         }
180
181         if (psr_iir & EDP_PSR_POST_EXIT(trans_shift)) {
182                 dev_priv->psr.last_exit = time_ns;
183                 DRM_DEBUG_KMS("[transcoder %s] PSR exit completed\n",
184                               transcoder_name(cpu_transcoder));
185
186                 if (INTEL_GEN(dev_priv) >= 9) {
187                         u32 val = I915_READ(PSR_EVENT(cpu_transcoder));
188                         bool psr2_enabled = dev_priv->psr.psr2_enabled;
189
190                         I915_WRITE(PSR_EVENT(cpu_transcoder), val);
191                         psr_event_print(val, psr2_enabled);
192                 }
193         }
194
195         if (psr_iir & EDP_PSR_ERROR(trans_shift)) {
196                 u32 val;
197
198                 DRM_WARN("[transcoder %s] PSR aux error\n",
199                          transcoder_name(cpu_transcoder));
200
201                 dev_priv->psr.irq_aux_error = true;
202
203                 /*
204                  * If this interruption is not masked it will keep
205                  * interrupting so fast that it prevents the scheduled
206                  * work to run.
207                  * Also after a PSR error, we don't want to arm PSR
208                  * again so we don't care about unmask the interruption
209                  * or unset irq_aux_error.
210                  */
211                 val = I915_READ(imr_reg);
212                 val |= EDP_PSR_ERROR(trans_shift);
213                 I915_WRITE(imr_reg, val);
214
215                 schedule_work(&dev_priv->psr.work);
216         }
217 }
218
219 static bool intel_dp_get_alpm_status(struct intel_dp *intel_dp)
220 {
221         u8 alpm_caps = 0;
222
223         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_RECEIVER_ALPM_CAP,
224                               &alpm_caps) != 1)
225                 return false;
226         return alpm_caps & DP_ALPM_CAP;
227 }
228
229 static u8 intel_dp_get_sink_sync_latency(struct intel_dp *intel_dp)
230 {
231         u8 val = 8; /* assume the worst if we can't read the value */
232
233         if (drm_dp_dpcd_readb(&intel_dp->aux,
234                               DP_SYNCHRONIZATION_LATENCY_IN_SINK, &val) == 1)
235                 val &= DP_MAX_RESYNC_FRAME_COUNT_MASK;
236         else
237                 DRM_DEBUG_KMS("Unable to get sink synchronization latency, assuming 8 frames\n");
238         return val;
239 }
240
241 static u16 intel_dp_get_su_x_granulartiy(struct intel_dp *intel_dp)
242 {
243         u16 val;
244         ssize_t r;
245
246         /*
247          * Returning the default X granularity if granularity not required or
248          * if DPCD read fails
249          */
250         if (!(intel_dp->psr_dpcd[1] & DP_PSR2_SU_GRANULARITY_REQUIRED))
251                 return 4;
252
253         r = drm_dp_dpcd_read(&intel_dp->aux, DP_PSR2_SU_X_GRANULARITY, &val, 2);
254         if (r != 2)
255                 DRM_DEBUG_KMS("Unable to read DP_PSR2_SU_X_GRANULARITY\n");
256
257         /*
258          * Spec says that if the value read is 0 the default granularity should
259          * be used instead.
260          */
261         if (r != 2 || val == 0)
262                 val = 4;
263
264         return val;
265 }
266
267 void intel_psr_init_dpcd(struct intel_dp *intel_dp)
268 {
269         struct drm_i915_private *dev_priv =
270                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
271
272         if (dev_priv->psr.dp) {
273                 DRM_WARN("More than one eDP panel found, PSR support should be extended\n");
274                 return;
275         }
276
277         drm_dp_dpcd_read(&intel_dp->aux, DP_PSR_SUPPORT, intel_dp->psr_dpcd,
278                          sizeof(intel_dp->psr_dpcd));
279
280         if (!intel_dp->psr_dpcd[0])
281                 return;
282         DRM_DEBUG_KMS("eDP panel supports PSR version %x\n",
283                       intel_dp->psr_dpcd[0]);
284
285         if (drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_PSR)) {
286                 DRM_DEBUG_KMS("PSR support not currently available for this panel\n");
287                 return;
288         }
289
290         if (!(intel_dp->edp_dpcd[1] & DP_EDP_SET_POWER_CAP)) {
291                 DRM_DEBUG_KMS("Panel lacks power state control, PSR cannot be enabled\n");
292                 return;
293         }
294
295         dev_priv->psr.sink_support = true;
296         dev_priv->psr.sink_sync_latency =
297                 intel_dp_get_sink_sync_latency(intel_dp);
298
299         dev_priv->psr.dp = intel_dp;
300
301         if (INTEL_GEN(dev_priv) >= 9 &&
302             (intel_dp->psr_dpcd[0] == DP_PSR2_WITH_Y_COORD_IS_SUPPORTED)) {
303                 bool y_req = intel_dp->psr_dpcd[1] &
304                              DP_PSR2_SU_Y_COORDINATE_REQUIRED;
305                 bool alpm = intel_dp_get_alpm_status(intel_dp);
306
307                 /*
308                  * All panels that supports PSR version 03h (PSR2 +
309                  * Y-coordinate) can handle Y-coordinates in VSC but we are
310                  * only sure that it is going to be used when required by the
311                  * panel. This way panel is capable to do selective update
312                  * without a aux frame sync.
313                  *
314                  * To support PSR version 02h and PSR version 03h without
315                  * Y-coordinate requirement panels we would need to enable
316                  * GTC first.
317                  */
318                 dev_priv->psr.sink_psr2_support = y_req && alpm;
319                 DRM_DEBUG_KMS("PSR2 %ssupported\n",
320                               dev_priv->psr.sink_psr2_support ? "" : "not ");
321
322                 if (dev_priv->psr.sink_psr2_support) {
323                         dev_priv->psr.colorimetry_support =
324                                 intel_dp_get_colorimetry_status(intel_dp);
325                         dev_priv->psr.su_x_granularity =
326                                 intel_dp_get_su_x_granulartiy(intel_dp);
327                 }
328         }
329 }
330
331 static void intel_psr_setup_vsc(struct intel_dp *intel_dp,
332                                 const struct intel_crtc_state *crtc_state)
333 {
334         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
335         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
336         struct dp_sdp psr_vsc;
337
338         if (dev_priv->psr.psr2_enabled) {
339                 /* Prepare VSC Header for SU as per EDP 1.4 spec, Table 6.11 */
340                 memset(&psr_vsc, 0, sizeof(psr_vsc));
341                 psr_vsc.sdp_header.HB0 = 0;
342                 psr_vsc.sdp_header.HB1 = 0x7;
343                 if (dev_priv->psr.colorimetry_support) {
344                         psr_vsc.sdp_header.HB2 = 0x5;
345                         psr_vsc.sdp_header.HB3 = 0x13;
346                 } else {
347                         psr_vsc.sdp_header.HB2 = 0x4;
348                         psr_vsc.sdp_header.HB3 = 0xe;
349                 }
350         } else {
351                 /* Prepare VSC packet as per EDP 1.3 spec, Table 3.10 */
352                 memset(&psr_vsc, 0, sizeof(psr_vsc));
353                 psr_vsc.sdp_header.HB0 = 0;
354                 psr_vsc.sdp_header.HB1 = 0x7;
355                 psr_vsc.sdp_header.HB2 = 0x2;
356                 psr_vsc.sdp_header.HB3 = 0x8;
357         }
358
359         intel_dig_port->write_infoframe(&intel_dig_port->base,
360                                         crtc_state,
361                                         DP_SDP_VSC, &psr_vsc, sizeof(psr_vsc));
362 }
363
364 static void hsw_psr_setup_aux(struct intel_dp *intel_dp)
365 {
366         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
367         u32 aux_clock_divider, aux_ctl;
368         int i;
369         static const u8 aux_msg[] = {
370                 [0] = DP_AUX_NATIVE_WRITE << 4,
371                 [1] = DP_SET_POWER >> 8,
372                 [2] = DP_SET_POWER & 0xff,
373                 [3] = 1 - 1,
374                 [4] = DP_SET_POWER_D0,
375         };
376         u32 psr_aux_mask = EDP_PSR_AUX_CTL_TIME_OUT_MASK |
377                            EDP_PSR_AUX_CTL_MESSAGE_SIZE_MASK |
378                            EDP_PSR_AUX_CTL_PRECHARGE_2US_MASK |
379                            EDP_PSR_AUX_CTL_BIT_CLOCK_2X_MASK;
380
381         BUILD_BUG_ON(sizeof(aux_msg) > 20);
382         for (i = 0; i < sizeof(aux_msg); i += 4)
383                 I915_WRITE(EDP_PSR_AUX_DATA(dev_priv->psr.transcoder, i >> 2),
384                            intel_dp_pack_aux(&aux_msg[i], sizeof(aux_msg) - i));
385
386         aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, 0);
387
388         /* Start with bits set for DDI_AUX_CTL register */
389         aux_ctl = intel_dp->get_aux_send_ctl(intel_dp, sizeof(aux_msg),
390                                              aux_clock_divider);
391
392         /* Select only valid bits for SRD_AUX_CTL */
393         aux_ctl &= psr_aux_mask;
394         I915_WRITE(EDP_PSR_AUX_CTL(dev_priv->psr.transcoder), aux_ctl);
395 }
396
397 static void intel_psr_enable_sink(struct intel_dp *intel_dp)
398 {
399         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
400         u8 dpcd_val = DP_PSR_ENABLE;
401
402         /* Enable ALPM at sink for psr2 */
403         if (dev_priv->psr.psr2_enabled) {
404                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG,
405                                    DP_ALPM_ENABLE |
406                                    DP_ALPM_LOCK_ERROR_IRQ_HPD_ENABLE);
407
408                 dpcd_val |= DP_PSR_ENABLE_PSR2 | DP_PSR_IRQ_HPD_WITH_CRC_ERRORS;
409         } else {
410                 if (dev_priv->psr.link_standby)
411                         dpcd_val |= DP_PSR_MAIN_LINK_ACTIVE;
412
413                 if (INTEL_GEN(dev_priv) >= 8)
414                         dpcd_val |= DP_PSR_CRC_VERIFICATION;
415         }
416
417         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, dpcd_val);
418
419         drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
420 }
421
422 static u32 intel_psr1_get_tp_time(struct intel_dp *intel_dp)
423 {
424         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
425         u32 val = 0;
426
427         if (INTEL_GEN(dev_priv) >= 11)
428                 val |= EDP_PSR_TP4_TIME_0US;
429
430         if (dev_priv->vbt.psr.tp1_wakeup_time_us == 0)
431                 val |= EDP_PSR_TP1_TIME_0us;
432         else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 100)
433                 val |= EDP_PSR_TP1_TIME_100us;
434         else if (dev_priv->vbt.psr.tp1_wakeup_time_us <= 500)
435                 val |= EDP_PSR_TP1_TIME_500us;
436         else
437                 val |= EDP_PSR_TP1_TIME_2500us;
438
439         if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us == 0)
440                 val |= EDP_PSR_TP2_TP3_TIME_0us;
441         else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 100)
442                 val |= EDP_PSR_TP2_TP3_TIME_100us;
443         else if (dev_priv->vbt.psr.tp2_tp3_wakeup_time_us <= 500)
444                 val |= EDP_PSR_TP2_TP3_TIME_500us;
445         else
446                 val |= EDP_PSR_TP2_TP3_TIME_2500us;
447
448         if (intel_dp_source_supports_hbr2(intel_dp) &&
449             drm_dp_tps3_supported(intel_dp->dpcd))
450                 val |= EDP_PSR_TP1_TP3_SEL;
451         else
452                 val |= EDP_PSR_TP1_TP2_SEL;
453
454         return val;
455 }
456
457 static void hsw_activate_psr1(struct intel_dp *intel_dp)
458 {
459         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
460         u32 max_sleep_time = 0x1f;
461         u32 val = EDP_PSR_ENABLE;
462
463         /* Let's use 6 as the minimum to cover all known cases including the
464          * off-by-one issue that HW has in some cases.
465          */
466         int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
467
468         /* sink_sync_latency of 8 means source has to wait for more than 8
469          * frames, we'll go with 9 frames for now
470          */
471         idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
472         val |= idle_frames << EDP_PSR_IDLE_FRAME_SHIFT;
473
474         val |= max_sleep_time << EDP_PSR_MAX_SLEEP_TIME_SHIFT;
475         if (IS_HASWELL(dev_priv))
476                 val |= EDP_PSR_MIN_LINK_ENTRY_TIME_8_LINES;
477
478         if (dev_priv->psr.link_standby)
479                 val |= EDP_PSR_LINK_STANDBY;
480
481         val |= intel_psr1_get_tp_time(intel_dp);
482
483         if (INTEL_GEN(dev_priv) >= 8)
484                 val |= EDP_PSR_CRC_ENABLE;
485
486         val |= (I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder)) &
487                 EDP_PSR_RESTORE_PSR_ACTIVE_CTX_MASK);
488         I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), val);
489 }
490
491 static void hsw_activate_psr2(struct intel_dp *intel_dp)
492 {
493         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
494         u32 val;
495
496         /* Let's use 6 as the minimum to cover all known cases including the
497          * off-by-one issue that HW has in some cases.
498          */
499         int idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
500
501         idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
502         val = idle_frames << EDP_PSR2_IDLE_FRAME_SHIFT;
503
504         val |= EDP_PSR2_ENABLE | EDP_SU_TRACK_ENABLE;
505         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
506                 val |= EDP_Y_COORDINATE_ENABLE;
507
508         val |= EDP_PSR2_FRAME_BEFORE_SU(dev_priv->psr.sink_sync_latency + 1);
509
510         if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us >= 0 &&
511             dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 50)
512                 val |= EDP_PSR2_TP2_TIME_50us;
513         else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 100)
514                 val |= EDP_PSR2_TP2_TIME_100us;
515         else if (dev_priv->vbt.psr.psr2_tp2_tp3_wakeup_time_us <= 500)
516                 val |= EDP_PSR2_TP2_TIME_500us;
517         else
518                 val |= EDP_PSR2_TP2_TIME_2500us;
519
520         /*
521          * PSR2 HW is incorrectly using EDP_PSR_TP1_TP3_SEL and BSpec is
522          * recommending keep this bit unset while PSR2 is enabled.
523          */
524         I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), 0);
525
526         I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
527 }
528
529 static bool
530 transcoder_has_psr2(struct drm_i915_private *dev_priv, enum transcoder trans)
531 {
532         if (INTEL_GEN(dev_priv) < 9)
533                 return false;
534         else if (INTEL_GEN(dev_priv) >= 12)
535                 return trans == TRANSCODER_A;
536         else
537                 return trans == TRANSCODER_EDP;
538 }
539
540 static u32 intel_get_frame_time_us(const struct intel_crtc_state *cstate)
541 {
542         if (!cstate || !cstate->hw.active)
543                 return 0;
544
545         return DIV_ROUND_UP(1000 * 1000,
546                             drm_mode_vrefresh(&cstate->hw.adjusted_mode));
547 }
548
549 static void psr2_program_idle_frames(struct drm_i915_private *dev_priv,
550                                      u32 idle_frames)
551 {
552         u32 val;
553
554         idle_frames <<=  EDP_PSR2_IDLE_FRAME_SHIFT;
555         val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
556         val &= ~EDP_PSR2_IDLE_FRAME_MASK;
557         val |= idle_frames;
558         I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
559 }
560
561 static void tgl_psr2_enable_dc3co(struct drm_i915_private *dev_priv)
562 {
563         psr2_program_idle_frames(dev_priv, 0);
564         intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_DC3CO);
565 }
566
567 static void tgl_psr2_disable_dc3co(struct drm_i915_private *dev_priv)
568 {
569         int idle_frames;
570
571         intel_display_power_set_target_dc_state(dev_priv, DC_STATE_EN_UPTO_DC6);
572         /*
573          * Restore PSR2 idle frame let's use 6 as the minimum to cover all known
574          * cases including the off-by-one issue that HW has in some cases.
575          */
576         idle_frames = max(6, dev_priv->vbt.psr.idle_frames);
577         idle_frames = max(idle_frames, dev_priv->psr.sink_sync_latency + 1);
578         psr2_program_idle_frames(dev_priv, idle_frames);
579 }
580
581 static void tgl_dc5_idle_thread(struct work_struct *work)
582 {
583         struct drm_i915_private *dev_priv =
584                 container_of(work, typeof(*dev_priv), psr.idle_work.work);
585
586         mutex_lock(&dev_priv->psr.lock);
587         /* If delayed work is pending, it is not idle */
588         if (delayed_work_pending(&dev_priv->psr.idle_work))
589                 goto unlock;
590
591         DRM_DEBUG_KMS("DC5/6 idle thread\n");
592         tgl_psr2_disable_dc3co(dev_priv);
593 unlock:
594         mutex_unlock(&dev_priv->psr.lock);
595 }
596
597 static void tgl_disallow_dc3co_on_psr2_exit(struct drm_i915_private *dev_priv)
598 {
599         if (!dev_priv->psr.dc3co_enabled)
600                 return;
601
602         cancel_delayed_work(&dev_priv->psr.idle_work);
603         /* Before PSR2 exit disallow dc3co*/
604         tgl_psr2_disable_dc3co(dev_priv);
605 }
606
607 static bool intel_psr2_config_valid(struct intel_dp *intel_dp,
608                                     struct intel_crtc_state *crtc_state)
609 {
610         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
611         int crtc_hdisplay = crtc_state->hw.adjusted_mode.crtc_hdisplay;
612         int crtc_vdisplay = crtc_state->hw.adjusted_mode.crtc_vdisplay;
613         int psr_max_h = 0, psr_max_v = 0, max_bpp = 0;
614
615         if (!dev_priv->psr.sink_psr2_support)
616                 return false;
617
618         if (!transcoder_has_psr2(dev_priv, crtc_state->cpu_transcoder)) {
619                 DRM_DEBUG_KMS("PSR2 not supported in transcoder %s\n",
620                               transcoder_name(crtc_state->cpu_transcoder));
621                 return false;
622         }
623
624         /*
625          * DSC and PSR2 cannot be enabled simultaneously. If a requested
626          * resolution requires DSC to be enabled, priority is given to DSC
627          * over PSR2.
628          */
629         if (crtc_state->dsc.compression_enable) {
630                 DRM_DEBUG_KMS("PSR2 cannot be enabled since DSC is enabled\n");
631                 return false;
632         }
633
634         if (INTEL_GEN(dev_priv) >= 12) {
635                 psr_max_h = 5120;
636                 psr_max_v = 3200;
637                 max_bpp = 30;
638         } else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
639                 psr_max_h = 4096;
640                 psr_max_v = 2304;
641                 max_bpp = 24;
642         } else if (IS_GEN(dev_priv, 9)) {
643                 psr_max_h = 3640;
644                 psr_max_v = 2304;
645                 max_bpp = 24;
646         }
647
648         if (crtc_hdisplay > psr_max_h || crtc_vdisplay > psr_max_v) {
649                 DRM_DEBUG_KMS("PSR2 not enabled, resolution %dx%d > max supported %dx%d\n",
650                               crtc_hdisplay, crtc_vdisplay,
651                               psr_max_h, psr_max_v);
652                 return false;
653         }
654
655         if (crtc_state->pipe_bpp > max_bpp) {
656                 DRM_DEBUG_KMS("PSR2 not enabled, pipe bpp %d > max supported %d\n",
657                               crtc_state->pipe_bpp, max_bpp);
658                 return false;
659         }
660
661         /*
662          * HW sends SU blocks of size four scan lines, which means the starting
663          * X coordinate and Y granularity requirements will always be met. We
664          * only need to validate the SU block width is a multiple of
665          * x granularity.
666          */
667         if (crtc_hdisplay % dev_priv->psr.su_x_granularity) {
668                 DRM_DEBUG_KMS("PSR2 not enabled, hdisplay(%d) not multiple of %d\n",
669                               crtc_hdisplay, dev_priv->psr.su_x_granularity);
670                 return false;
671         }
672
673         if (crtc_state->crc_enabled) {
674                 DRM_DEBUG_KMS("PSR2 not enabled because it would inhibit pipe CRC calculation\n");
675                 return false;
676         }
677
678         return true;
679 }
680
681 void intel_psr_compute_config(struct intel_dp *intel_dp,
682                               struct intel_crtc_state *crtc_state)
683 {
684         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
685         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
686         const struct drm_display_mode *adjusted_mode =
687                 &crtc_state->hw.adjusted_mode;
688         int psr_setup_time;
689
690         if (!CAN_PSR(dev_priv))
691                 return;
692
693         if (intel_dp != dev_priv->psr.dp)
694                 return;
695
696         /*
697          * HSW spec explicitly says PSR is tied to port A.
698          * BDW+ platforms have a instance of PSR registers per transcoder but
699          * for now it only supports one instance of PSR, so lets keep it
700          * hardcoded to PORT_A
701          */
702         if (dig_port->base.port != PORT_A) {
703                 DRM_DEBUG_KMS("PSR condition failed: Port not supported\n");
704                 return;
705         }
706
707         if (dev_priv->psr.sink_not_reliable) {
708                 DRM_DEBUG_KMS("PSR sink implementation is not reliable\n");
709                 return;
710         }
711
712         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
713                 DRM_DEBUG_KMS("PSR condition failed: Interlaced mode enabled\n");
714                 return;
715         }
716
717         psr_setup_time = drm_dp_psr_setup_time(intel_dp->psr_dpcd);
718         if (psr_setup_time < 0) {
719                 DRM_DEBUG_KMS("PSR condition failed: Invalid PSR setup time (0x%02x)\n",
720                               intel_dp->psr_dpcd[1]);
721                 return;
722         }
723
724         if (intel_usecs_to_scanlines(adjusted_mode, psr_setup_time) >
725             adjusted_mode->crtc_vtotal - adjusted_mode->crtc_vdisplay - 1) {
726                 DRM_DEBUG_KMS("PSR condition failed: PSR setup time (%d us) too long\n",
727                               psr_setup_time);
728                 return;
729         }
730
731         crtc_state->has_psr = true;
732         crtc_state->has_psr2 = intel_psr2_config_valid(intel_dp, crtc_state);
733 }
734
735 static void intel_psr_activate(struct intel_dp *intel_dp)
736 {
737         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
738
739         if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder))
740                 WARN_ON(I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder)) & EDP_PSR2_ENABLE);
741
742         WARN_ON(I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder)) & EDP_PSR_ENABLE);
743         WARN_ON(dev_priv->psr.active);
744         lockdep_assert_held(&dev_priv->psr.lock);
745
746         /* psr1 and psr2 are mutually exclusive.*/
747         if (dev_priv->psr.psr2_enabled)
748                 hsw_activate_psr2(intel_dp);
749         else
750                 hsw_activate_psr1(intel_dp);
751
752         dev_priv->psr.active = true;
753 }
754
755 static void intel_psr_enable_source(struct intel_dp *intel_dp,
756                                     const struct intel_crtc_state *crtc_state)
757 {
758         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
759         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
760         u32 mask;
761
762         /* Only HSW and BDW have PSR AUX registers that need to be setup. SKL+
763          * use hardcoded values PSR AUX transactions
764          */
765         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
766                 hsw_psr_setup_aux(intel_dp);
767
768         if (dev_priv->psr.psr2_enabled && (IS_GEN(dev_priv, 9) &&
769                                            !IS_GEMINILAKE(dev_priv))) {
770                 i915_reg_t reg = CHICKEN_TRANS(cpu_transcoder);
771                 u32 chicken = I915_READ(reg);
772
773                 chicken |= PSR2_VSC_ENABLE_PROG_HEADER |
774                            PSR2_ADD_VERTICAL_LINE_COUNT;
775                 I915_WRITE(reg, chicken);
776         }
777
778         /*
779          * Per Spec: Avoid continuous PSR exit by masking MEMUP and HPD also
780          * mask LPSP to avoid dependency on other drivers that might block
781          * runtime_pm besides preventing  other hw tracking issues now we
782          * can rely on frontbuffer tracking.
783          */
784         mask = EDP_PSR_DEBUG_MASK_MEMUP |
785                EDP_PSR_DEBUG_MASK_HPD |
786                EDP_PSR_DEBUG_MASK_LPSP |
787                EDP_PSR_DEBUG_MASK_MAX_SLEEP;
788
789         if (INTEL_GEN(dev_priv) < 11)
790                 mask |= EDP_PSR_DEBUG_MASK_DISP_REG_WRITE;
791
792         I915_WRITE(EDP_PSR_DEBUG(dev_priv->psr.transcoder), mask);
793
794         psr_irq_control(dev_priv);
795 }
796
797 static void intel_psr_enable_locked(struct drm_i915_private *dev_priv,
798                                     const struct intel_crtc_state *crtc_state)
799 {
800         struct intel_dp *intel_dp = dev_priv->psr.dp;
801         u32 val;
802
803         WARN_ON(dev_priv->psr.enabled);
804
805         dev_priv->psr.psr2_enabled = intel_psr2_enabled(dev_priv, crtc_state);
806         dev_priv->psr.busy_frontbuffer_bits = 0;
807         dev_priv->psr.pipe = to_intel_crtc(crtc_state->uapi.crtc)->pipe;
808         dev_priv->psr.dc3co_enabled = !!crtc_state->dc3co_exitline;
809         dev_priv->psr.dc3co_exit_delay = intel_get_frame_time_us(crtc_state);
810         dev_priv->psr.transcoder = crtc_state->cpu_transcoder;
811
812         /*
813          * If a PSR error happened and the driver is reloaded, the EDP_PSR_IIR
814          * will still keep the error set even after the reset done in the
815          * irq_preinstall and irq_uninstall hooks.
816          * And enabling in this situation cause the screen to freeze in the
817          * first time that PSR HW tries to activate so lets keep PSR disabled
818          * to avoid any rendering problems.
819          */
820         if (INTEL_GEN(dev_priv) >= 12) {
821                 val = I915_READ(TRANS_PSR_IIR(dev_priv->psr.transcoder));
822                 val &= EDP_PSR_ERROR(0);
823         } else {
824                 val = I915_READ(EDP_PSR_IIR);
825                 val &= EDP_PSR_ERROR(dev_priv->psr.transcoder);
826         }
827         if (val) {
828                 dev_priv->psr.sink_not_reliable = true;
829                 DRM_DEBUG_KMS("PSR interruption error set, not enabling PSR\n");
830                 return;
831         }
832
833         DRM_DEBUG_KMS("Enabling PSR%s\n",
834                       dev_priv->psr.psr2_enabled ? "2" : "1");
835         intel_psr_setup_vsc(intel_dp, crtc_state);
836         intel_psr_enable_sink(intel_dp);
837         intel_psr_enable_source(intel_dp, crtc_state);
838         dev_priv->psr.enabled = true;
839
840         intel_psr_activate(intel_dp);
841 }
842
843 /**
844  * intel_psr_enable - Enable PSR
845  * @intel_dp: Intel DP
846  * @crtc_state: new CRTC state
847  *
848  * This function can only be called after the pipe is fully trained and enabled.
849  */
850 void intel_psr_enable(struct intel_dp *intel_dp,
851                       const struct intel_crtc_state *crtc_state)
852 {
853         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
854
855         if (!crtc_state->has_psr)
856                 return;
857
858         if (WARN_ON(!CAN_PSR(dev_priv)))
859                 return;
860
861         WARN_ON(dev_priv->drrs.dp);
862
863         mutex_lock(&dev_priv->psr.lock);
864
865         if (!psr_global_enabled(dev_priv->psr.debug)) {
866                 DRM_DEBUG_KMS("PSR disabled by flag\n");
867                 goto unlock;
868         }
869
870         intel_psr_enable_locked(dev_priv, crtc_state);
871
872 unlock:
873         mutex_unlock(&dev_priv->psr.lock);
874 }
875
876 static void intel_psr_exit(struct drm_i915_private *dev_priv)
877 {
878         u32 val;
879
880         if (!dev_priv->psr.active) {
881                 if (transcoder_has_psr2(dev_priv, dev_priv->psr.transcoder)) {
882                         val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
883                         WARN_ON(val & EDP_PSR2_ENABLE);
884                 }
885
886                 val = I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder));
887                 WARN_ON(val & EDP_PSR_ENABLE);
888
889                 return;
890         }
891
892         if (dev_priv->psr.psr2_enabled) {
893                 tgl_disallow_dc3co_on_psr2_exit(dev_priv);
894                 val = I915_READ(EDP_PSR2_CTL(dev_priv->psr.transcoder));
895                 WARN_ON(!(val & EDP_PSR2_ENABLE));
896                 val &= ~EDP_PSR2_ENABLE;
897                 I915_WRITE(EDP_PSR2_CTL(dev_priv->psr.transcoder), val);
898         } else {
899                 val = I915_READ(EDP_PSR_CTL(dev_priv->psr.transcoder));
900                 WARN_ON(!(val & EDP_PSR_ENABLE));
901                 val &= ~EDP_PSR_ENABLE;
902                 I915_WRITE(EDP_PSR_CTL(dev_priv->psr.transcoder), val);
903         }
904         dev_priv->psr.active = false;
905 }
906
907 static void intel_psr_disable_locked(struct intel_dp *intel_dp)
908 {
909         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
910         i915_reg_t psr_status;
911         u32 psr_status_mask;
912
913         lockdep_assert_held(&dev_priv->psr.lock);
914
915         if (!dev_priv->psr.enabled)
916                 return;
917
918         DRM_DEBUG_KMS("Disabling PSR%s\n",
919                       dev_priv->psr.psr2_enabled ? "2" : "1");
920
921         intel_psr_exit(dev_priv);
922
923         if (dev_priv->psr.psr2_enabled) {
924                 psr_status = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
925                 psr_status_mask = EDP_PSR2_STATUS_STATE_MASK;
926         } else {
927                 psr_status = EDP_PSR_STATUS(dev_priv->psr.transcoder);
928                 psr_status_mask = EDP_PSR_STATUS_STATE_MASK;
929         }
930
931         /* Wait till PSR is idle */
932         if (intel_de_wait_for_clear(dev_priv, psr_status,
933                                     psr_status_mask, 2000))
934                 DRM_ERROR("Timed out waiting PSR idle state\n");
935
936         /* Disable PSR on Sink */
937         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_EN_CFG, 0);
938
939         if (dev_priv->psr.psr2_enabled)
940                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_RECEIVER_ALPM_CONFIG, 0);
941
942         dev_priv->psr.enabled = false;
943 }
944
945 /**
946  * intel_psr_disable - Disable PSR
947  * @intel_dp: Intel DP
948  * @old_crtc_state: old CRTC state
949  *
950  * This function needs to be called before disabling pipe.
951  */
952 void intel_psr_disable(struct intel_dp *intel_dp,
953                        const struct intel_crtc_state *old_crtc_state)
954 {
955         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
956
957         if (!old_crtc_state->has_psr)
958                 return;
959
960         if (WARN_ON(!CAN_PSR(dev_priv)))
961                 return;
962
963         mutex_lock(&dev_priv->psr.lock);
964
965         intel_psr_disable_locked(intel_dp);
966
967         mutex_unlock(&dev_priv->psr.lock);
968         cancel_work_sync(&dev_priv->psr.work);
969         cancel_delayed_work_sync(&dev_priv->psr.idle_work);
970 }
971
972 static void psr_force_hw_tracking_exit(struct drm_i915_private *dev_priv)
973 {
974         if (INTEL_GEN(dev_priv) >= 9)
975                 /*
976                  * Display WA #0884: skl+
977                  * This documented WA for bxt can be safely applied
978                  * broadly so we can force HW tracking to exit PSR
979                  * instead of disabling and re-enabling.
980                  * Workaround tells us to write 0 to CUR_SURFLIVE_A,
981                  * but it makes more sense write to the current active
982                  * pipe.
983                  */
984                 I915_WRITE(CURSURFLIVE(dev_priv->psr.pipe), 0);
985         else
986                 /*
987                  * A write to CURSURFLIVE do not cause HW tracking to exit PSR
988                  * on older gens so doing the manual exit instead.
989                  */
990                 intel_psr_exit(dev_priv);
991 }
992
993 /**
994  * intel_psr_update - Update PSR state
995  * @intel_dp: Intel DP
996  * @crtc_state: new CRTC state
997  *
998  * This functions will update PSR states, disabling, enabling or switching PSR
999  * version when executing fastsets. For full modeset, intel_psr_disable() and
1000  * intel_psr_enable() should be called instead.
1001  */
1002 void intel_psr_update(struct intel_dp *intel_dp,
1003                       const struct intel_crtc_state *crtc_state)
1004 {
1005         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1006         struct i915_psr *psr = &dev_priv->psr;
1007         bool enable, psr2_enable;
1008
1009         if (!CAN_PSR(dev_priv) || READ_ONCE(psr->dp) != intel_dp)
1010                 return;
1011
1012         mutex_lock(&dev_priv->psr.lock);
1013
1014         enable = crtc_state->has_psr && psr_global_enabled(psr->debug);
1015         psr2_enable = intel_psr2_enabled(dev_priv, crtc_state);
1016
1017         if (enable == psr->enabled && psr2_enable == psr->psr2_enabled) {
1018                 /* Force a PSR exit when enabling CRC to avoid CRC timeouts */
1019                 if (crtc_state->crc_enabled && psr->enabled)
1020                         psr_force_hw_tracking_exit(dev_priv);
1021                 else if (INTEL_GEN(dev_priv) < 9 && psr->enabled) {
1022                         /*
1023                          * Activate PSR again after a force exit when enabling
1024                          * CRC in older gens
1025                          */
1026                         if (!dev_priv->psr.active &&
1027                             !dev_priv->psr.busy_frontbuffer_bits)
1028                                 schedule_work(&dev_priv->psr.work);
1029                 }
1030
1031                 goto unlock;
1032         }
1033
1034         if (psr->enabled)
1035                 intel_psr_disable_locked(intel_dp);
1036
1037         if (enable)
1038                 intel_psr_enable_locked(dev_priv, crtc_state);
1039
1040 unlock:
1041         mutex_unlock(&dev_priv->psr.lock);
1042 }
1043
1044 /**
1045  * intel_psr_wait_for_idle - wait for PSR1 to idle
1046  * @new_crtc_state: new CRTC state
1047  * @out_value: PSR status in case of failure
1048  *
1049  * This function is expected to be called from pipe_update_start() where it is
1050  * not expected to race with PSR enable or disable.
1051  *
1052  * Returns: 0 on success or -ETIMEOUT if PSR status does not idle.
1053  */
1054 int intel_psr_wait_for_idle(const struct intel_crtc_state *new_crtc_state,
1055                             u32 *out_value)
1056 {
1057         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
1058         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1059
1060         if (!dev_priv->psr.enabled || !new_crtc_state->has_psr)
1061                 return 0;
1062
1063         /* FIXME: Update this for PSR2 if we need to wait for idle */
1064         if (READ_ONCE(dev_priv->psr.psr2_enabled))
1065                 return 0;
1066
1067         /*
1068          * From bspec: Panel Self Refresh (BDW+)
1069          * Max. time for PSR to idle = Inverse of the refresh rate + 6 ms of
1070          * exit training time + 1.5 ms of aux channel handshake. 50 ms is
1071          * defensive enough to cover everything.
1072          */
1073
1074         return __intel_wait_for_register(&dev_priv->uncore,
1075                                          EDP_PSR_STATUS(dev_priv->psr.transcoder),
1076                                          EDP_PSR_STATUS_STATE_MASK,
1077                                          EDP_PSR_STATUS_STATE_IDLE, 2, 50,
1078                                          out_value);
1079 }
1080
1081 static bool __psr_wait_for_idle_locked(struct drm_i915_private *dev_priv)
1082 {
1083         i915_reg_t reg;
1084         u32 mask;
1085         int err;
1086
1087         if (!dev_priv->psr.enabled)
1088                 return false;
1089
1090         if (dev_priv->psr.psr2_enabled) {
1091                 reg = EDP_PSR2_STATUS(dev_priv->psr.transcoder);
1092                 mask = EDP_PSR2_STATUS_STATE_MASK;
1093         } else {
1094                 reg = EDP_PSR_STATUS(dev_priv->psr.transcoder);
1095                 mask = EDP_PSR_STATUS_STATE_MASK;
1096         }
1097
1098         mutex_unlock(&dev_priv->psr.lock);
1099
1100         err = intel_de_wait_for_clear(dev_priv, reg, mask, 50);
1101         if (err)
1102                 DRM_ERROR("Timed out waiting for PSR Idle for re-enable\n");
1103
1104         /* After the unlocked wait, verify that PSR is still wanted! */
1105         mutex_lock(&dev_priv->psr.lock);
1106         return err == 0 && dev_priv->psr.enabled;
1107 }
1108
1109 static int intel_psr_fastset_force(struct drm_i915_private *dev_priv)
1110 {
1111         struct drm_device *dev = &dev_priv->drm;
1112         struct drm_modeset_acquire_ctx ctx;
1113         struct drm_atomic_state *state;
1114         struct intel_crtc *crtc;
1115         int err;
1116
1117         state = drm_atomic_state_alloc(dev);
1118         if (!state)
1119                 return -ENOMEM;
1120
1121         drm_modeset_acquire_init(&ctx, DRM_MODESET_ACQUIRE_INTERRUPTIBLE);
1122         state->acquire_ctx = &ctx;
1123
1124 retry:
1125         for_each_intel_crtc(dev, crtc) {
1126                 struct intel_crtc_state *crtc_state =
1127                         intel_atomic_get_crtc_state(state, crtc);
1128
1129                 if (IS_ERR(crtc_state)) {
1130                         err = PTR_ERR(crtc_state);
1131                         goto error;
1132                 }
1133
1134                 if (crtc_state->hw.active && crtc_state->has_psr) {
1135                         /* Mark mode as changed to trigger a pipe->update() */
1136                         crtc_state->uapi.mode_changed = true;
1137                         break;
1138                 }
1139         }
1140
1141         err = drm_atomic_commit(state);
1142
1143 error:
1144         if (err == -EDEADLK) {
1145                 drm_atomic_state_clear(state);
1146                 err = drm_modeset_backoff(&ctx);
1147                 if (!err)
1148                         goto retry;
1149         }
1150
1151         drm_modeset_drop_locks(&ctx);
1152         drm_modeset_acquire_fini(&ctx);
1153         drm_atomic_state_put(state);
1154
1155         return err;
1156 }
1157
1158 int intel_psr_debug_set(struct drm_i915_private *dev_priv, u64 val)
1159 {
1160         const u32 mode = val & I915_PSR_DEBUG_MODE_MASK;
1161         u32 old_mode;
1162         int ret;
1163
1164         if (val & ~(I915_PSR_DEBUG_IRQ | I915_PSR_DEBUG_MODE_MASK) ||
1165             mode > I915_PSR_DEBUG_FORCE_PSR1) {
1166                 DRM_DEBUG_KMS("Invalid debug mask %llx\n", val);
1167                 return -EINVAL;
1168         }
1169
1170         ret = mutex_lock_interruptible(&dev_priv->psr.lock);
1171         if (ret)
1172                 return ret;
1173
1174         old_mode = dev_priv->psr.debug & I915_PSR_DEBUG_MODE_MASK;
1175         dev_priv->psr.debug = val;
1176
1177         /*
1178          * Do it right away if it's already enabled, otherwise it will be done
1179          * when enabling the source.
1180          */
1181         if (dev_priv->psr.enabled)
1182                 psr_irq_control(dev_priv);
1183
1184         mutex_unlock(&dev_priv->psr.lock);
1185
1186         if (old_mode != mode)
1187                 ret = intel_psr_fastset_force(dev_priv);
1188
1189         return ret;
1190 }
1191
1192 static void intel_psr_handle_irq(struct drm_i915_private *dev_priv)
1193 {
1194         struct i915_psr *psr = &dev_priv->psr;
1195
1196         intel_psr_disable_locked(psr->dp);
1197         psr->sink_not_reliable = true;
1198         /* let's make sure that sink is awaken */
1199         drm_dp_dpcd_writeb(&psr->dp->aux, DP_SET_POWER, DP_SET_POWER_D0);
1200 }
1201
1202 static void intel_psr_work(struct work_struct *work)
1203 {
1204         struct drm_i915_private *dev_priv =
1205                 container_of(work, typeof(*dev_priv), psr.work);
1206
1207         mutex_lock(&dev_priv->psr.lock);
1208
1209         if (!dev_priv->psr.enabled)
1210                 goto unlock;
1211
1212         if (READ_ONCE(dev_priv->psr.irq_aux_error))
1213                 intel_psr_handle_irq(dev_priv);
1214
1215         /*
1216          * We have to make sure PSR is ready for re-enable
1217          * otherwise it keeps disabled until next full enable/disable cycle.
1218          * PSR might take some time to get fully disabled
1219          * and be ready for re-enable.
1220          */
1221         if (!__psr_wait_for_idle_locked(dev_priv))
1222                 goto unlock;
1223
1224         /*
1225          * The delayed work can race with an invalidate hence we need to
1226          * recheck. Since psr_flush first clears this and then reschedules we
1227          * won't ever miss a flush when bailing out here.
1228          */
1229         if (dev_priv->psr.busy_frontbuffer_bits || dev_priv->psr.active)
1230                 goto unlock;
1231
1232         intel_psr_activate(dev_priv->psr.dp);
1233 unlock:
1234         mutex_unlock(&dev_priv->psr.lock);
1235 }
1236
1237 /**
1238  * intel_psr_invalidate - Invalidade PSR
1239  * @dev_priv: i915 device
1240  * @frontbuffer_bits: frontbuffer plane tracking bits
1241  * @origin: which operation caused the invalidate
1242  *
1243  * Since the hardware frontbuffer tracking has gaps we need to integrate
1244  * with the software frontbuffer tracking. This function gets called every
1245  * time frontbuffer rendering starts and a buffer gets dirtied. PSR must be
1246  * disabled if the frontbuffer mask contains a buffer relevant to PSR.
1247  *
1248  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits."
1249  */
1250 void intel_psr_invalidate(struct drm_i915_private *dev_priv,
1251                           unsigned frontbuffer_bits, enum fb_op_origin origin)
1252 {
1253         if (!CAN_PSR(dev_priv))
1254                 return;
1255
1256         if (origin == ORIGIN_FLIP)
1257                 return;
1258
1259         mutex_lock(&dev_priv->psr.lock);
1260         if (!dev_priv->psr.enabled) {
1261                 mutex_unlock(&dev_priv->psr.lock);
1262                 return;
1263         }
1264
1265         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1266         dev_priv->psr.busy_frontbuffer_bits |= frontbuffer_bits;
1267
1268         if (frontbuffer_bits)
1269                 intel_psr_exit(dev_priv);
1270
1271         mutex_unlock(&dev_priv->psr.lock);
1272 }
1273
1274 /*
1275  * When we will be completely rely on PSR2 S/W tracking in future,
1276  * intel_psr_flush() will invalidate and flush the PSR for ORIGIN_FLIP
1277  * event also therefore tgl_dc3co_flush() require to be changed
1278  * accrodingly in future.
1279  */
1280 static void
1281 tgl_dc3co_flush(struct drm_i915_private *dev_priv,
1282                 unsigned int frontbuffer_bits, enum fb_op_origin origin)
1283 {
1284         u32 delay;
1285
1286         mutex_lock(&dev_priv->psr.lock);
1287
1288         if (!dev_priv->psr.dc3co_enabled)
1289                 goto unlock;
1290
1291         if (!dev_priv->psr.psr2_enabled || !dev_priv->psr.active)
1292                 goto unlock;
1293
1294         /*
1295          * At every frontbuffer flush flip event modified delay of delayed work,
1296          * when delayed work schedules that means display has been idle.
1297          */
1298         if (!(frontbuffer_bits &
1299             INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe)))
1300                 goto unlock;
1301
1302         tgl_psr2_enable_dc3co(dev_priv);
1303         /* DC5/DC6 required idle frames = 6 */
1304         delay = 6 * dev_priv->psr.dc3co_exit_delay;
1305         mod_delayed_work(system_wq, &dev_priv->psr.idle_work,
1306                          usecs_to_jiffies(delay));
1307
1308 unlock:
1309         mutex_unlock(&dev_priv->psr.lock);
1310 }
1311
1312 /**
1313  * intel_psr_flush - Flush PSR
1314  * @dev_priv: i915 device
1315  * @frontbuffer_bits: frontbuffer plane tracking bits
1316  * @origin: which operation caused the flush
1317  *
1318  * Since the hardware frontbuffer tracking has gaps we need to integrate
1319  * with the software frontbuffer tracking. This function gets called every
1320  * time frontbuffer rendering has completed and flushed out to memory. PSR
1321  * can be enabled again if no other frontbuffer relevant to PSR is dirty.
1322  *
1323  * Dirty frontbuffers relevant to PSR are tracked in busy_frontbuffer_bits.
1324  */
1325 void intel_psr_flush(struct drm_i915_private *dev_priv,
1326                      unsigned frontbuffer_bits, enum fb_op_origin origin)
1327 {
1328         if (!CAN_PSR(dev_priv))
1329                 return;
1330
1331         if (origin == ORIGIN_FLIP) {
1332                 tgl_dc3co_flush(dev_priv, frontbuffer_bits, origin);
1333                 return;
1334         }
1335
1336         mutex_lock(&dev_priv->psr.lock);
1337         if (!dev_priv->psr.enabled) {
1338                 mutex_unlock(&dev_priv->psr.lock);
1339                 return;
1340         }
1341
1342         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(dev_priv->psr.pipe);
1343         dev_priv->psr.busy_frontbuffer_bits &= ~frontbuffer_bits;
1344
1345         /* By definition flush = invalidate + flush */
1346         if (frontbuffer_bits)
1347                 psr_force_hw_tracking_exit(dev_priv);
1348
1349         if (!dev_priv->psr.active && !dev_priv->psr.busy_frontbuffer_bits)
1350                 schedule_work(&dev_priv->psr.work);
1351         mutex_unlock(&dev_priv->psr.lock);
1352 }
1353
1354 /**
1355  * intel_psr_init - Init basic PSR work and mutex.
1356  * @dev_priv: i915 device private
1357  *
1358  * This function is  called only once at driver load to initialize basic
1359  * PSR stuff.
1360  */
1361 void intel_psr_init(struct drm_i915_private *dev_priv)
1362 {
1363         if (!HAS_PSR(dev_priv))
1364                 return;
1365
1366         if (!dev_priv->psr.sink_support)
1367                 return;
1368
1369         if (IS_HASWELL(dev_priv))
1370                 /*
1371                  * HSW don't have PSR registers on the same space as transcoder
1372                  * so set this to a value that when subtract to the register
1373                  * in transcoder space results in the right offset for HSW
1374                  */
1375                 dev_priv->hsw_psr_mmio_adjust = _SRD_CTL_EDP - _HSW_EDP_PSR_BASE;
1376
1377         if (i915_modparams.enable_psr == -1)
1378                 if (INTEL_GEN(dev_priv) < 9 || !dev_priv->vbt.psr.enable)
1379                         i915_modparams.enable_psr = 0;
1380
1381         /* Set link_standby x link_off defaults */
1382         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
1383                 /* HSW and BDW require workarounds that we don't implement. */
1384                 dev_priv->psr.link_standby = false;
1385         else if (INTEL_GEN(dev_priv) < 12)
1386                 /* For new platforms up to TGL let's respect VBT back again */
1387                 dev_priv->psr.link_standby = dev_priv->vbt.psr.full_link;
1388
1389         INIT_WORK(&dev_priv->psr.work, intel_psr_work);
1390         INIT_DELAYED_WORK(&dev_priv->psr.idle_work, tgl_dc5_idle_thread);
1391         mutex_init(&dev_priv->psr.lock);
1392 }
1393
1394 static int psr_get_status_and_error_status(struct intel_dp *intel_dp,
1395                                            u8 *status, u8 *error_status)
1396 {
1397         struct drm_dp_aux *aux = &intel_dp->aux;
1398         int ret;
1399
1400         ret = drm_dp_dpcd_readb(aux, DP_PSR_STATUS, status);
1401         if (ret != 1)
1402                 return ret;
1403
1404         ret = drm_dp_dpcd_readb(aux, DP_PSR_ERROR_STATUS, error_status);
1405         if (ret != 1)
1406                 return ret;
1407
1408         *status = *status & DP_PSR_SINK_STATE_MASK;
1409
1410         return 0;
1411 }
1412
1413 static void psr_alpm_check(struct intel_dp *intel_dp)
1414 {
1415         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1416         struct drm_dp_aux *aux = &intel_dp->aux;
1417         struct i915_psr *psr = &dev_priv->psr;
1418         u8 val;
1419         int r;
1420
1421         if (!psr->psr2_enabled)
1422                 return;
1423
1424         r = drm_dp_dpcd_readb(aux, DP_RECEIVER_ALPM_STATUS, &val);
1425         if (r != 1) {
1426                 DRM_ERROR("Error reading ALPM status\n");
1427                 return;
1428         }
1429
1430         if (val & DP_ALPM_LOCK_TIMEOUT_ERROR) {
1431                 intel_psr_disable_locked(intel_dp);
1432                 psr->sink_not_reliable = true;
1433                 DRM_DEBUG_KMS("ALPM lock timeout error, disabling PSR\n");
1434
1435                 /* Clearing error */
1436                 drm_dp_dpcd_writeb(aux, DP_RECEIVER_ALPM_STATUS, val);
1437         }
1438 }
1439
1440 static void psr_capability_changed_check(struct intel_dp *intel_dp)
1441 {
1442         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1443         struct i915_psr *psr = &dev_priv->psr;
1444         u8 val;
1445         int r;
1446
1447         r = drm_dp_dpcd_readb(&intel_dp->aux, DP_PSR_ESI, &val);
1448         if (r != 1) {
1449                 DRM_ERROR("Error reading DP_PSR_ESI\n");
1450                 return;
1451         }
1452
1453         if (val & DP_PSR_CAPS_CHANGE) {
1454                 intel_psr_disable_locked(intel_dp);
1455                 psr->sink_not_reliable = true;
1456                 DRM_DEBUG_KMS("Sink PSR capability changed, disabling PSR\n");
1457
1458                 /* Clearing it */
1459                 drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ESI, val);
1460         }
1461 }
1462
1463 void intel_psr_short_pulse(struct intel_dp *intel_dp)
1464 {
1465         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1466         struct i915_psr *psr = &dev_priv->psr;
1467         u8 status, error_status;
1468         const u8 errors = DP_PSR_RFB_STORAGE_ERROR |
1469                           DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR |
1470                           DP_PSR_LINK_CRC_ERROR;
1471
1472         if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1473                 return;
1474
1475         mutex_lock(&psr->lock);
1476
1477         if (!psr->enabled || psr->dp != intel_dp)
1478                 goto exit;
1479
1480         if (psr_get_status_and_error_status(intel_dp, &status, &error_status)) {
1481                 DRM_ERROR("Error reading PSR status or error status\n");
1482                 goto exit;
1483         }
1484
1485         if (status == DP_PSR_SINK_INTERNAL_ERROR || (error_status & errors)) {
1486                 intel_psr_disable_locked(intel_dp);
1487                 psr->sink_not_reliable = true;
1488         }
1489
1490         if (status == DP_PSR_SINK_INTERNAL_ERROR && !error_status)
1491                 DRM_DEBUG_KMS("PSR sink internal error, disabling PSR\n");
1492         if (error_status & DP_PSR_RFB_STORAGE_ERROR)
1493                 DRM_DEBUG_KMS("PSR RFB storage error, disabling PSR\n");
1494         if (error_status & DP_PSR_VSC_SDP_UNCORRECTABLE_ERROR)
1495                 DRM_DEBUG_KMS("PSR VSC SDP uncorrectable error, disabling PSR\n");
1496         if (error_status & DP_PSR_LINK_CRC_ERROR)
1497                 DRM_DEBUG_KMS("PSR Link CRC error, disabling PSR\n");
1498
1499         if (error_status & ~errors)
1500                 DRM_ERROR("PSR_ERROR_STATUS unhandled errors %x\n",
1501                           error_status & ~errors);
1502         /* clear status register */
1503         drm_dp_dpcd_writeb(&intel_dp->aux, DP_PSR_ERROR_STATUS, error_status);
1504
1505         psr_alpm_check(intel_dp);
1506         psr_capability_changed_check(intel_dp);
1507
1508 exit:
1509         mutex_unlock(&psr->lock);
1510 }
1511
1512 bool intel_psr_enabled(struct intel_dp *intel_dp)
1513 {
1514         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1515         bool ret;
1516
1517         if (!CAN_PSR(dev_priv) || !intel_dp_is_edp(intel_dp))
1518                 return false;
1519
1520         mutex_lock(&dev_priv->psr.lock);
1521         ret = (dev_priv->psr.dp == intel_dp && dev_priv->psr.enabled);
1522         mutex_unlock(&dev_priv->psr.lock);
1523
1524         return ret;
1525 }