drm/i915: Move platform checks into intel_hdmi_bpc_possible()
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_hdmi.c
1 /*
2  * Copyright 2006 Dave Airlie <airlied@linux.ie>
3  * Copyright © 2006-2009 Intel Corporation
4  *
5  * Permission is hereby granted, free of charge, to any person obtaining a
6  * copy of this software and associated documentation files (the "Software"),
7  * to deal in the Software without restriction, including without limitation
8  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
9  * and/or sell copies of the Software, and to permit persons to whom the
10  * Software is furnished to do so, subject to the following conditions:
11  *
12  * The above copyright notice and this permission notice (including the next
13  * paragraph) shall be included in all copies or substantial portions of the
14  * Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
21  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
22  * DEALINGS IN THE SOFTWARE.
23  *
24  * Authors:
25  *      Eric Anholt <eric@anholt.net>
26  *      Jesse Barnes <jesse.barnes@intel.com>
27  */
28
29 #include <linux/delay.h>
30 #include <linux/hdmi.h>
31 #include <linux/i2c.h>
32 #include <linux/slab.h>
33
34 #include <drm/drm_atomic_helper.h>
35 #include <drm/drm_crtc.h>
36 #include <drm/drm_edid.h>
37 #include <drm/drm_hdcp.h>
38 #include <drm/drm_scdc_helper.h>
39 #include <drm/intel_lpe_audio.h>
40
41 #include "i915_debugfs.h"
42 #include "i915_drv.h"
43 #include "intel_atomic.h"
44 #include "intel_connector.h"
45 #include "intel_ddi.h"
46 #include "intel_de.h"
47 #include "intel_display_types.h"
48 #include "intel_dp.h"
49 #include "intel_gmbus.h"
50 #include "intel_hdcp.h"
51 #include "intel_hdmi.h"
52 #include "intel_lspcon.h"
53 #include "intel_panel.h"
54
55 static struct drm_device *intel_hdmi_to_dev(struct intel_hdmi *intel_hdmi)
56 {
57         return hdmi_to_dig_port(intel_hdmi)->base.base.dev;
58 }
59
60 static void
61 assert_hdmi_port_disabled(struct intel_hdmi *intel_hdmi)
62 {
63         struct drm_device *dev = intel_hdmi_to_dev(intel_hdmi);
64         struct drm_i915_private *dev_priv = to_i915(dev);
65         u32 enabled_bits;
66
67         enabled_bits = HAS_DDI(dev_priv) ? DDI_BUF_CTL_ENABLE : SDVO_ENABLE;
68
69         drm_WARN(dev,
70                  intel_de_read(dev_priv, intel_hdmi->hdmi_reg) & enabled_bits,
71                  "HDMI port enabled, expecting disabled\n");
72 }
73
74 static void
75 assert_hdmi_transcoder_func_disabled(struct drm_i915_private *dev_priv,
76                                      enum transcoder cpu_transcoder)
77 {
78         drm_WARN(&dev_priv->drm,
79                  intel_de_read(dev_priv, TRANS_DDI_FUNC_CTL(cpu_transcoder)) &
80                  TRANS_DDI_FUNC_ENABLE,
81                  "HDMI transcoder function enabled, expecting disabled\n");
82 }
83
84 static u32 g4x_infoframe_index(unsigned int type)
85 {
86         switch (type) {
87         case HDMI_PACKET_TYPE_GAMUT_METADATA:
88                 return VIDEO_DIP_SELECT_GAMUT;
89         case HDMI_INFOFRAME_TYPE_AVI:
90                 return VIDEO_DIP_SELECT_AVI;
91         case HDMI_INFOFRAME_TYPE_SPD:
92                 return VIDEO_DIP_SELECT_SPD;
93         case HDMI_INFOFRAME_TYPE_VENDOR:
94                 return VIDEO_DIP_SELECT_VENDOR;
95         default:
96                 MISSING_CASE(type);
97                 return 0;
98         }
99 }
100
101 static u32 g4x_infoframe_enable(unsigned int type)
102 {
103         switch (type) {
104         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
105                 return VIDEO_DIP_ENABLE_GCP;
106         case HDMI_PACKET_TYPE_GAMUT_METADATA:
107                 return VIDEO_DIP_ENABLE_GAMUT;
108         case DP_SDP_VSC:
109                 return 0;
110         case HDMI_INFOFRAME_TYPE_AVI:
111                 return VIDEO_DIP_ENABLE_AVI;
112         case HDMI_INFOFRAME_TYPE_SPD:
113                 return VIDEO_DIP_ENABLE_SPD;
114         case HDMI_INFOFRAME_TYPE_VENDOR:
115                 return VIDEO_DIP_ENABLE_VENDOR;
116         case HDMI_INFOFRAME_TYPE_DRM:
117                 return 0;
118         default:
119                 MISSING_CASE(type);
120                 return 0;
121         }
122 }
123
124 static u32 hsw_infoframe_enable(unsigned int type)
125 {
126         switch (type) {
127         case HDMI_PACKET_TYPE_GENERAL_CONTROL:
128                 return VIDEO_DIP_ENABLE_GCP_HSW;
129         case HDMI_PACKET_TYPE_GAMUT_METADATA:
130                 return VIDEO_DIP_ENABLE_GMP_HSW;
131         case DP_SDP_VSC:
132                 return VIDEO_DIP_ENABLE_VSC_HSW;
133         case DP_SDP_PPS:
134                 return VDIP_ENABLE_PPS;
135         case HDMI_INFOFRAME_TYPE_AVI:
136                 return VIDEO_DIP_ENABLE_AVI_HSW;
137         case HDMI_INFOFRAME_TYPE_SPD:
138                 return VIDEO_DIP_ENABLE_SPD_HSW;
139         case HDMI_INFOFRAME_TYPE_VENDOR:
140                 return VIDEO_DIP_ENABLE_VS_HSW;
141         case HDMI_INFOFRAME_TYPE_DRM:
142                 return VIDEO_DIP_ENABLE_DRM_GLK;
143         default:
144                 MISSING_CASE(type);
145                 return 0;
146         }
147 }
148
149 static i915_reg_t
150 hsw_dip_data_reg(struct drm_i915_private *dev_priv,
151                  enum transcoder cpu_transcoder,
152                  unsigned int type,
153                  int i)
154 {
155         switch (type) {
156         case HDMI_PACKET_TYPE_GAMUT_METADATA:
157                 return HSW_TVIDEO_DIP_GMP_DATA(cpu_transcoder, i);
158         case DP_SDP_VSC:
159                 return HSW_TVIDEO_DIP_VSC_DATA(cpu_transcoder, i);
160         case DP_SDP_PPS:
161                 return ICL_VIDEO_DIP_PPS_DATA(cpu_transcoder, i);
162         case HDMI_INFOFRAME_TYPE_AVI:
163                 return HSW_TVIDEO_DIP_AVI_DATA(cpu_transcoder, i);
164         case HDMI_INFOFRAME_TYPE_SPD:
165                 return HSW_TVIDEO_DIP_SPD_DATA(cpu_transcoder, i);
166         case HDMI_INFOFRAME_TYPE_VENDOR:
167                 return HSW_TVIDEO_DIP_VS_DATA(cpu_transcoder, i);
168         case HDMI_INFOFRAME_TYPE_DRM:
169                 return GLK_TVIDEO_DIP_DRM_DATA(cpu_transcoder, i);
170         default:
171                 MISSING_CASE(type);
172                 return INVALID_MMIO_REG;
173         }
174 }
175
176 static int hsw_dip_data_size(struct drm_i915_private *dev_priv,
177                              unsigned int type)
178 {
179         switch (type) {
180         case DP_SDP_VSC:
181                 return VIDEO_DIP_VSC_DATA_SIZE;
182         case DP_SDP_PPS:
183                 return VIDEO_DIP_PPS_DATA_SIZE;
184         case HDMI_PACKET_TYPE_GAMUT_METADATA:
185                 if (DISPLAY_VER(dev_priv) >= 11)
186                         return VIDEO_DIP_GMP_DATA_SIZE;
187                 else
188                         return VIDEO_DIP_DATA_SIZE;
189         default:
190                 return VIDEO_DIP_DATA_SIZE;
191         }
192 }
193
194 static void g4x_write_infoframe(struct intel_encoder *encoder,
195                                 const struct intel_crtc_state *crtc_state,
196                                 unsigned int type,
197                                 const void *frame, ssize_t len)
198 {
199         const u32 *data = frame;
200         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
201         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
202         int i;
203
204         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
205                  "Writing DIP with CTL reg disabled\n");
206
207         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
208         val |= g4x_infoframe_index(type);
209
210         val &= ~g4x_infoframe_enable(type);
211
212         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
213
214         for (i = 0; i < len; i += 4) {
215                 intel_de_write(dev_priv, VIDEO_DIP_DATA, *data);
216                 data++;
217         }
218         /* Write every possible data byte to force correct ECC calculation. */
219         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
220                 intel_de_write(dev_priv, VIDEO_DIP_DATA, 0);
221
222         val |= g4x_infoframe_enable(type);
223         val &= ~VIDEO_DIP_FREQ_MASK;
224         val |= VIDEO_DIP_FREQ_VSYNC;
225
226         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
227         intel_de_posting_read(dev_priv, VIDEO_DIP_CTL);
228 }
229
230 static void g4x_read_infoframe(struct intel_encoder *encoder,
231                                const struct intel_crtc_state *crtc_state,
232                                unsigned int type,
233                                void *frame, ssize_t len)
234 {
235         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
236         u32 val, *data = frame;
237         int i;
238
239         val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
240
241         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
242         val |= g4x_infoframe_index(type);
243
244         intel_de_write(dev_priv, VIDEO_DIP_CTL, val);
245
246         for (i = 0; i < len; i += 4)
247                 *data++ = intel_de_read(dev_priv, VIDEO_DIP_DATA);
248 }
249
250 static u32 g4x_infoframes_enabled(struct intel_encoder *encoder,
251                                   const struct intel_crtc_state *pipe_config)
252 {
253         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
254         u32 val = intel_de_read(dev_priv, VIDEO_DIP_CTL);
255
256         if ((val & VIDEO_DIP_ENABLE) == 0)
257                 return 0;
258
259         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
260                 return 0;
261
262         return val & (VIDEO_DIP_ENABLE_AVI |
263                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
264 }
265
266 static void ibx_write_infoframe(struct intel_encoder *encoder,
267                                 const struct intel_crtc_state *crtc_state,
268                                 unsigned int type,
269                                 const void *frame, ssize_t len)
270 {
271         const u32 *data = frame;
272         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
273         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
274         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
275         u32 val = intel_de_read(dev_priv, reg);
276         int i;
277
278         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
279                  "Writing DIP with CTL reg disabled\n");
280
281         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
282         val |= g4x_infoframe_index(type);
283
284         val &= ~g4x_infoframe_enable(type);
285
286         intel_de_write(dev_priv, reg, val);
287
288         for (i = 0; i < len; i += 4) {
289                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
290                                *data);
291                 data++;
292         }
293         /* Write every possible data byte to force correct ECC calculation. */
294         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
295                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
296
297         val |= g4x_infoframe_enable(type);
298         val &= ~VIDEO_DIP_FREQ_MASK;
299         val |= VIDEO_DIP_FREQ_VSYNC;
300
301         intel_de_write(dev_priv, reg, val);
302         intel_de_posting_read(dev_priv, reg);
303 }
304
305 static void ibx_read_infoframe(struct intel_encoder *encoder,
306                                const struct intel_crtc_state *crtc_state,
307                                unsigned int type,
308                                void *frame, ssize_t len)
309 {
310         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
311         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
312         u32 val, *data = frame;
313         int i;
314
315         val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
316
317         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
318         val |= g4x_infoframe_index(type);
319
320         intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
321
322         for (i = 0; i < len; i += 4)
323                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
324 }
325
326 static u32 ibx_infoframes_enabled(struct intel_encoder *encoder,
327                                   const struct intel_crtc_state *pipe_config)
328 {
329         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
330         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
331         i915_reg_t reg = TVIDEO_DIP_CTL(pipe);
332         u32 val = intel_de_read(dev_priv, reg);
333
334         if ((val & VIDEO_DIP_ENABLE) == 0)
335                 return 0;
336
337         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
338                 return 0;
339
340         return val & (VIDEO_DIP_ENABLE_AVI |
341                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
342                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
343 }
344
345 static void cpt_write_infoframe(struct intel_encoder *encoder,
346                                 const struct intel_crtc_state *crtc_state,
347                                 unsigned int type,
348                                 const void *frame, ssize_t len)
349 {
350         const u32 *data = frame;
351         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
352         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
353         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
354         u32 val = intel_de_read(dev_priv, reg);
355         int i;
356
357         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
358                  "Writing DIP with CTL reg disabled\n");
359
360         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
361         val |= g4x_infoframe_index(type);
362
363         /* The DIP control register spec says that we need to update the AVI
364          * infoframe without clearing its enable bit */
365         if (type != HDMI_INFOFRAME_TYPE_AVI)
366                 val &= ~g4x_infoframe_enable(type);
367
368         intel_de_write(dev_priv, reg, val);
369
370         for (i = 0; i < len; i += 4) {
371                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe),
372                                *data);
373                 data++;
374         }
375         /* Write every possible data byte to force correct ECC calculation. */
376         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
377                 intel_de_write(dev_priv, TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
378
379         val |= g4x_infoframe_enable(type);
380         val &= ~VIDEO_DIP_FREQ_MASK;
381         val |= VIDEO_DIP_FREQ_VSYNC;
382
383         intel_de_write(dev_priv, reg, val);
384         intel_de_posting_read(dev_priv, reg);
385 }
386
387 static void cpt_read_infoframe(struct intel_encoder *encoder,
388                                const struct intel_crtc_state *crtc_state,
389                                unsigned int type,
390                                void *frame, ssize_t len)
391 {
392         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
393         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
394         u32 val, *data = frame;
395         int i;
396
397         val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(crtc->pipe));
398
399         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
400         val |= g4x_infoframe_index(type);
401
402         intel_de_write(dev_priv, TVIDEO_DIP_CTL(crtc->pipe), val);
403
404         for (i = 0; i < len; i += 4)
405                 *data++ = intel_de_read(dev_priv, TVIDEO_DIP_DATA(crtc->pipe));
406 }
407
408 static u32 cpt_infoframes_enabled(struct intel_encoder *encoder,
409                                   const struct intel_crtc_state *pipe_config)
410 {
411         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
412         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
413         u32 val = intel_de_read(dev_priv, TVIDEO_DIP_CTL(pipe));
414
415         if ((val & VIDEO_DIP_ENABLE) == 0)
416                 return 0;
417
418         return val & (VIDEO_DIP_ENABLE_AVI |
419                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
420                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
421 }
422
423 static void vlv_write_infoframe(struct intel_encoder *encoder,
424                                 const struct intel_crtc_state *crtc_state,
425                                 unsigned int type,
426                                 const void *frame, ssize_t len)
427 {
428         const u32 *data = frame;
429         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
430         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
431         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
432         u32 val = intel_de_read(dev_priv, reg);
433         int i;
434
435         drm_WARN(&dev_priv->drm, !(val & VIDEO_DIP_ENABLE),
436                  "Writing DIP with CTL reg disabled\n");
437
438         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
439         val |= g4x_infoframe_index(type);
440
441         val &= ~g4x_infoframe_enable(type);
442
443         intel_de_write(dev_priv, reg, val);
444
445         for (i = 0; i < len; i += 4) {
446                 intel_de_write(dev_priv,
447                                VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), *data);
448                 data++;
449         }
450         /* Write every possible data byte to force correct ECC calculation. */
451         for (; i < VIDEO_DIP_DATA_SIZE; i += 4)
452                 intel_de_write(dev_priv,
453                                VLV_TVIDEO_DIP_DATA(intel_crtc->pipe), 0);
454
455         val |= g4x_infoframe_enable(type);
456         val &= ~VIDEO_DIP_FREQ_MASK;
457         val |= VIDEO_DIP_FREQ_VSYNC;
458
459         intel_de_write(dev_priv, reg, val);
460         intel_de_posting_read(dev_priv, reg);
461 }
462
463 static void vlv_read_infoframe(struct intel_encoder *encoder,
464                                const struct intel_crtc_state *crtc_state,
465                                unsigned int type,
466                                void *frame, ssize_t len)
467 {
468         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
469         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
470         u32 val, *data = frame;
471         int i;
472
473         val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe));
474
475         val &= ~(VIDEO_DIP_SELECT_MASK | 0xf); /* clear DIP data offset */
476         val |= g4x_infoframe_index(type);
477
478         intel_de_write(dev_priv, VLV_TVIDEO_DIP_CTL(crtc->pipe), val);
479
480         for (i = 0; i < len; i += 4)
481                 *data++ = intel_de_read(dev_priv,
482                                         VLV_TVIDEO_DIP_DATA(crtc->pipe));
483 }
484
485 static u32 vlv_infoframes_enabled(struct intel_encoder *encoder,
486                                   const struct intel_crtc_state *pipe_config)
487 {
488         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
489         enum pipe pipe = to_intel_crtc(pipe_config->uapi.crtc)->pipe;
490         u32 val = intel_de_read(dev_priv, VLV_TVIDEO_DIP_CTL(pipe));
491
492         if ((val & VIDEO_DIP_ENABLE) == 0)
493                 return 0;
494
495         if ((val & VIDEO_DIP_PORT_MASK) != VIDEO_DIP_PORT(encoder->port))
496                 return 0;
497
498         return val & (VIDEO_DIP_ENABLE_AVI |
499                       VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
500                       VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
501 }
502
503 void hsw_write_infoframe(struct intel_encoder *encoder,
504                          const struct intel_crtc_state *crtc_state,
505                          unsigned int type,
506                          const void *frame, ssize_t len)
507 {
508         const u32 *data = frame;
509         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
510         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
511         i915_reg_t ctl_reg = HSW_TVIDEO_DIP_CTL(cpu_transcoder);
512         int data_size;
513         int i;
514         u32 val = intel_de_read(dev_priv, ctl_reg);
515
516         data_size = hsw_dip_data_size(dev_priv, type);
517
518         drm_WARN_ON(&dev_priv->drm, len > data_size);
519
520         val &= ~hsw_infoframe_enable(type);
521         intel_de_write(dev_priv, ctl_reg, val);
522
523         for (i = 0; i < len; i += 4) {
524                 intel_de_write(dev_priv,
525                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
526                                *data);
527                 data++;
528         }
529         /* Write every possible data byte to force correct ECC calculation. */
530         for (; i < data_size; i += 4)
531                 intel_de_write(dev_priv,
532                                hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2),
533                                0);
534
535         /* Wa_14013475917 */
536         if (DISPLAY_VER(dev_priv) == 13 && crtc_state->has_psr &&
537             type == DP_SDP_VSC)
538                 return;
539
540         val |= hsw_infoframe_enable(type);
541         intel_de_write(dev_priv, ctl_reg, val);
542         intel_de_posting_read(dev_priv, ctl_reg);
543 }
544
545 void hsw_read_infoframe(struct intel_encoder *encoder,
546                         const struct intel_crtc_state *crtc_state,
547                         unsigned int type, void *frame, ssize_t len)
548 {
549         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
550         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
551         u32 *data = frame;
552         int i;
553
554         for (i = 0; i < len; i += 4)
555                 *data++ = intel_de_read(dev_priv,
556                                         hsw_dip_data_reg(dev_priv, cpu_transcoder, type, i >> 2));
557 }
558
559 static u32 hsw_infoframes_enabled(struct intel_encoder *encoder,
560                                   const struct intel_crtc_state *pipe_config)
561 {
562         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
563         u32 val = intel_de_read(dev_priv,
564                                 HSW_TVIDEO_DIP_CTL(pipe_config->cpu_transcoder));
565         u32 mask;
566
567         mask = (VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
568                 VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
569                 VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW);
570
571         if (DISPLAY_VER(dev_priv) >= 10)
572                 mask |= VIDEO_DIP_ENABLE_DRM_GLK;
573
574         return val & mask;
575 }
576
577 static const u8 infoframe_type_to_idx[] = {
578         HDMI_PACKET_TYPE_GENERAL_CONTROL,
579         HDMI_PACKET_TYPE_GAMUT_METADATA,
580         DP_SDP_VSC,
581         HDMI_INFOFRAME_TYPE_AVI,
582         HDMI_INFOFRAME_TYPE_SPD,
583         HDMI_INFOFRAME_TYPE_VENDOR,
584         HDMI_INFOFRAME_TYPE_DRM,
585 };
586
587 u32 intel_hdmi_infoframe_enable(unsigned int type)
588 {
589         int i;
590
591         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
592                 if (infoframe_type_to_idx[i] == type)
593                         return BIT(i);
594         }
595
596         return 0;
597 }
598
599 u32 intel_hdmi_infoframes_enabled(struct intel_encoder *encoder,
600                                   const struct intel_crtc_state *crtc_state)
601 {
602         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
603         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
604         u32 val, ret = 0;
605         int i;
606
607         val = dig_port->infoframes_enabled(encoder, crtc_state);
608
609         /* map from hardware bits to dip idx */
610         for (i = 0; i < ARRAY_SIZE(infoframe_type_to_idx); i++) {
611                 unsigned int type = infoframe_type_to_idx[i];
612
613                 if (HAS_DDI(dev_priv)) {
614                         if (val & hsw_infoframe_enable(type))
615                                 ret |= BIT(i);
616                 } else {
617                         if (val & g4x_infoframe_enable(type))
618                                 ret |= BIT(i);
619                 }
620         }
621
622         return ret;
623 }
624
625 /*
626  * The data we write to the DIP data buffer registers is 1 byte bigger than the
627  * HDMI infoframe size because of an ECC/reserved byte at position 3 (starting
628  * at 0). It's also a byte used by DisplayPort so the same DIP registers can be
629  * used for both technologies.
630  *
631  * DW0: Reserved/ECC/DP | HB2 | HB1 | HB0
632  * DW1:       DB3       | DB2 | DB1 | DB0
633  * DW2:       DB7       | DB6 | DB5 | DB4
634  * DW3: ...
635  *
636  * (HB is Header Byte, DB is Data Byte)
637  *
638  * The hdmi pack() functions don't know about that hardware specific hole so we
639  * trick them by giving an offset into the buffer and moving back the header
640  * bytes by one.
641  */
642 static void intel_write_infoframe(struct intel_encoder *encoder,
643                                   const struct intel_crtc_state *crtc_state,
644                                   enum hdmi_infoframe_type type,
645                                   const union hdmi_infoframe *frame)
646 {
647         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
648         u8 buffer[VIDEO_DIP_DATA_SIZE];
649         ssize_t len;
650
651         if ((crtc_state->infoframes.enable &
652              intel_hdmi_infoframe_enable(type)) == 0)
653                 return;
654
655         if (drm_WARN_ON(encoder->base.dev, frame->any.type != type))
656                 return;
657
658         /* see comment above for the reason for this offset */
659         len = hdmi_infoframe_pack_only(frame, buffer + 1, sizeof(buffer) - 1);
660         if (drm_WARN_ON(encoder->base.dev, len < 0))
661                 return;
662
663         /* Insert the 'hole' (see big comment above) at position 3 */
664         memmove(&buffer[0], &buffer[1], 3);
665         buffer[3] = 0;
666         len++;
667
668         dig_port->write_infoframe(encoder, crtc_state, type, buffer, len);
669 }
670
671 void intel_read_infoframe(struct intel_encoder *encoder,
672                           const struct intel_crtc_state *crtc_state,
673                           enum hdmi_infoframe_type type,
674                           union hdmi_infoframe *frame)
675 {
676         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
677         u8 buffer[VIDEO_DIP_DATA_SIZE];
678         int ret;
679
680         if ((crtc_state->infoframes.enable &
681              intel_hdmi_infoframe_enable(type)) == 0)
682                 return;
683
684         dig_port->read_infoframe(encoder, crtc_state,
685                                        type, buffer, sizeof(buffer));
686
687         /* Fill the 'hole' (see big comment above) at position 3 */
688         memmove(&buffer[1], &buffer[0], 3);
689
690         /* see comment above for the reason for this offset */
691         ret = hdmi_infoframe_unpack(frame, buffer + 1, sizeof(buffer) - 1);
692         if (ret) {
693                 drm_dbg_kms(encoder->base.dev,
694                             "Failed to unpack infoframe type 0x%02x\n", type);
695                 return;
696         }
697
698         if (frame->any.type != type)
699                 drm_dbg_kms(encoder->base.dev,
700                             "Found the wrong infoframe type 0x%x (expected 0x%02x)\n",
701                             frame->any.type, type);
702 }
703
704 static bool
705 intel_hdmi_compute_avi_infoframe(struct intel_encoder *encoder,
706                                  struct intel_crtc_state *crtc_state,
707                                  struct drm_connector_state *conn_state)
708 {
709         struct hdmi_avi_infoframe *frame = &crtc_state->infoframes.avi.avi;
710         const struct drm_display_mode *adjusted_mode =
711                 &crtc_state->hw.adjusted_mode;
712         struct drm_connector *connector = conn_state->connector;
713         int ret;
714
715         if (!crtc_state->has_infoframe)
716                 return true;
717
718         crtc_state->infoframes.enable |=
719                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI);
720
721         ret = drm_hdmi_avi_infoframe_from_display_mode(frame, connector,
722                                                        adjusted_mode);
723         if (ret)
724                 return false;
725
726         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
727                 frame->colorspace = HDMI_COLORSPACE_YUV420;
728         else if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
729                 frame->colorspace = HDMI_COLORSPACE_YUV444;
730         else
731                 frame->colorspace = HDMI_COLORSPACE_RGB;
732
733         drm_hdmi_avi_infoframe_colorspace(frame, conn_state);
734
735         /* nonsense combination */
736         drm_WARN_ON(encoder->base.dev, crtc_state->limited_color_range &&
737                     crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
738
739         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB) {
740                 drm_hdmi_avi_infoframe_quant_range(frame, connector,
741                                                    adjusted_mode,
742                                                    crtc_state->limited_color_range ?
743                                                    HDMI_QUANTIZATION_RANGE_LIMITED :
744                                                    HDMI_QUANTIZATION_RANGE_FULL);
745         } else {
746                 frame->quantization_range = HDMI_QUANTIZATION_RANGE_DEFAULT;
747                 frame->ycc_quantization_range = HDMI_YCC_QUANTIZATION_RANGE_LIMITED;
748         }
749
750         drm_hdmi_avi_infoframe_content_type(frame, conn_state);
751
752         /* TODO: handle pixel repetition for YCBCR420 outputs */
753
754         ret = hdmi_avi_infoframe_check(frame);
755         if (drm_WARN_ON(encoder->base.dev, ret))
756                 return false;
757
758         return true;
759 }
760
761 static bool
762 intel_hdmi_compute_spd_infoframe(struct intel_encoder *encoder,
763                                  struct intel_crtc_state *crtc_state,
764                                  struct drm_connector_state *conn_state)
765 {
766         struct hdmi_spd_infoframe *frame = &crtc_state->infoframes.spd.spd;
767         int ret;
768
769         if (!crtc_state->has_infoframe)
770                 return true;
771
772         crtc_state->infoframes.enable |=
773                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD);
774
775         ret = hdmi_spd_infoframe_init(frame, "Intel", "Integrated gfx");
776         if (drm_WARN_ON(encoder->base.dev, ret))
777                 return false;
778
779         frame->sdi = HDMI_SPD_SDI_PC;
780
781         ret = hdmi_spd_infoframe_check(frame);
782         if (drm_WARN_ON(encoder->base.dev, ret))
783                 return false;
784
785         return true;
786 }
787
788 static bool
789 intel_hdmi_compute_hdmi_infoframe(struct intel_encoder *encoder,
790                                   struct intel_crtc_state *crtc_state,
791                                   struct drm_connector_state *conn_state)
792 {
793         struct hdmi_vendor_infoframe *frame =
794                 &crtc_state->infoframes.hdmi.vendor.hdmi;
795         const struct drm_display_info *info =
796                 &conn_state->connector->display_info;
797         int ret;
798
799         if (!crtc_state->has_infoframe || !info->has_hdmi_infoframe)
800                 return true;
801
802         crtc_state->infoframes.enable |=
803                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR);
804
805         ret = drm_hdmi_vendor_infoframe_from_display_mode(frame,
806                                                           conn_state->connector,
807                                                           &crtc_state->hw.adjusted_mode);
808         if (drm_WARN_ON(encoder->base.dev, ret))
809                 return false;
810
811         ret = hdmi_vendor_infoframe_check(frame);
812         if (drm_WARN_ON(encoder->base.dev, ret))
813                 return false;
814
815         return true;
816 }
817
818 static bool
819 intel_hdmi_compute_drm_infoframe(struct intel_encoder *encoder,
820                                  struct intel_crtc_state *crtc_state,
821                                  struct drm_connector_state *conn_state)
822 {
823         struct hdmi_drm_infoframe *frame = &crtc_state->infoframes.drm.drm;
824         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
825         int ret;
826
827         if (DISPLAY_VER(dev_priv) < 10)
828                 return true;
829
830         if (!crtc_state->has_infoframe)
831                 return true;
832
833         if (!conn_state->hdr_output_metadata)
834                 return true;
835
836         crtc_state->infoframes.enable |=
837                 intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_DRM);
838
839         ret = drm_hdmi_infoframe_set_hdr_metadata(frame, conn_state);
840         if (ret < 0) {
841                 drm_dbg_kms(&dev_priv->drm,
842                             "couldn't set HDR metadata in infoframe\n");
843                 return false;
844         }
845
846         ret = hdmi_drm_infoframe_check(frame);
847         if (drm_WARN_ON(&dev_priv->drm, ret))
848                 return false;
849
850         return true;
851 }
852
853 static void g4x_set_infoframes(struct intel_encoder *encoder,
854                                bool enable,
855                                const struct intel_crtc_state *crtc_state,
856                                const struct drm_connector_state *conn_state)
857 {
858         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
859         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
860         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
861         i915_reg_t reg = VIDEO_DIP_CTL;
862         u32 val = intel_de_read(dev_priv, reg);
863         u32 port = VIDEO_DIP_PORT(encoder->port);
864
865         assert_hdmi_port_disabled(intel_hdmi);
866
867         /* If the registers were not initialized yet, they might be zeroes,
868          * which means we're selecting the AVI DIP and we're setting its
869          * frequency to once. This seems to really confuse the HW and make
870          * things stop working (the register spec says the AVI always needs to
871          * be sent every VSync). So here we avoid writing to the register more
872          * than we need and also explicitly select the AVI DIP and explicitly
873          * set its frequency to every VSync. Avoiding to write it twice seems to
874          * be enough to solve the problem, but being defensive shouldn't hurt us
875          * either. */
876         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
877
878         if (!enable) {
879                 if (!(val & VIDEO_DIP_ENABLE))
880                         return;
881                 if (port != (val & VIDEO_DIP_PORT_MASK)) {
882                         drm_dbg_kms(&dev_priv->drm,
883                                     "video DIP still enabled on port %c\n",
884                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
885                         return;
886                 }
887                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
888                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
889                 intel_de_write(dev_priv, reg, val);
890                 intel_de_posting_read(dev_priv, reg);
891                 return;
892         }
893
894         if (port != (val & VIDEO_DIP_PORT_MASK)) {
895                 if (val & VIDEO_DIP_ENABLE) {
896                         drm_dbg_kms(&dev_priv->drm,
897                                     "video DIP already enabled on port %c\n",
898                                     (val & VIDEO_DIP_PORT_MASK) >> 29);
899                         return;
900                 }
901                 val &= ~VIDEO_DIP_PORT_MASK;
902                 val |= port;
903         }
904
905         val |= VIDEO_DIP_ENABLE;
906         val &= ~(VIDEO_DIP_ENABLE_AVI |
907                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_SPD);
908
909         intel_de_write(dev_priv, reg, val);
910         intel_de_posting_read(dev_priv, reg);
911
912         intel_write_infoframe(encoder, crtc_state,
913                               HDMI_INFOFRAME_TYPE_AVI,
914                               &crtc_state->infoframes.avi);
915         intel_write_infoframe(encoder, crtc_state,
916                               HDMI_INFOFRAME_TYPE_SPD,
917                               &crtc_state->infoframes.spd);
918         intel_write_infoframe(encoder, crtc_state,
919                               HDMI_INFOFRAME_TYPE_VENDOR,
920                               &crtc_state->infoframes.hdmi);
921 }
922
923 /*
924  * Determine if default_phase=1 can be indicated in the GCP infoframe.
925  *
926  * From HDMI specification 1.4a:
927  * - The first pixel of each Video Data Period shall always have a pixel packing phase of 0
928  * - The first pixel following each Video Data Period shall have a pixel packing phase of 0
929  * - The PP bits shall be constant for all GCPs and will be equal to the last packing phase
930  * - The first pixel following every transition of HSYNC or VSYNC shall have a pixel packing
931  *   phase of 0
932  */
933 static bool gcp_default_phase_possible(int pipe_bpp,
934                                        const struct drm_display_mode *mode)
935 {
936         unsigned int pixels_per_group;
937
938         switch (pipe_bpp) {
939         case 30:
940                 /* 4 pixels in 5 clocks */
941                 pixels_per_group = 4;
942                 break;
943         case 36:
944                 /* 2 pixels in 3 clocks */
945                 pixels_per_group = 2;
946                 break;
947         case 48:
948                 /* 1 pixel in 2 clocks */
949                 pixels_per_group = 1;
950                 break;
951         default:
952                 /* phase information not relevant for 8bpc */
953                 return false;
954         }
955
956         return mode->crtc_hdisplay % pixels_per_group == 0 &&
957                 mode->crtc_htotal % pixels_per_group == 0 &&
958                 mode->crtc_hblank_start % pixels_per_group == 0 &&
959                 mode->crtc_hblank_end % pixels_per_group == 0 &&
960                 mode->crtc_hsync_start % pixels_per_group == 0 &&
961                 mode->crtc_hsync_end % pixels_per_group == 0 &&
962                 ((mode->flags & DRM_MODE_FLAG_INTERLACE) == 0 ||
963                  mode->crtc_htotal/2 % pixels_per_group == 0);
964 }
965
966 static bool intel_hdmi_set_gcp_infoframe(struct intel_encoder *encoder,
967                                          const struct intel_crtc_state *crtc_state,
968                                          const struct drm_connector_state *conn_state)
969 {
970         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
971         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
972         i915_reg_t reg;
973
974         if ((crtc_state->infoframes.enable &
975              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
976                 return false;
977
978         if (HAS_DDI(dev_priv))
979                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
980         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
981                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
982         else if (HAS_PCH_SPLIT(dev_priv))
983                 reg = TVIDEO_DIP_GCP(crtc->pipe);
984         else
985                 return false;
986
987         intel_de_write(dev_priv, reg, crtc_state->infoframes.gcp);
988
989         return true;
990 }
991
992 void intel_hdmi_read_gcp_infoframe(struct intel_encoder *encoder,
993                                    struct intel_crtc_state *crtc_state)
994 {
995         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
996         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
997         i915_reg_t reg;
998
999         if ((crtc_state->infoframes.enable &
1000              intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL)) == 0)
1001                 return;
1002
1003         if (HAS_DDI(dev_priv))
1004                 reg = HSW_TVIDEO_DIP_GCP(crtc_state->cpu_transcoder);
1005         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1006                 reg = VLV_TVIDEO_DIP_GCP(crtc->pipe);
1007         else if (HAS_PCH_SPLIT(dev_priv))
1008                 reg = TVIDEO_DIP_GCP(crtc->pipe);
1009         else
1010                 return;
1011
1012         crtc_state->infoframes.gcp = intel_de_read(dev_priv, reg);
1013 }
1014
1015 static void intel_hdmi_compute_gcp_infoframe(struct intel_encoder *encoder,
1016                                              struct intel_crtc_state *crtc_state,
1017                                              struct drm_connector_state *conn_state)
1018 {
1019         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1020
1021         if (IS_G4X(dev_priv) || !crtc_state->has_infoframe)
1022                 return;
1023
1024         crtc_state->infoframes.enable |=
1025                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL);
1026
1027         /* Indicate color indication for deep color mode */
1028         if (crtc_state->pipe_bpp > 24)
1029                 crtc_state->infoframes.gcp |= GCP_COLOR_INDICATION;
1030
1031         /* Enable default_phase whenever the display mode is suitably aligned */
1032         if (gcp_default_phase_possible(crtc_state->pipe_bpp,
1033                                        &crtc_state->hw.adjusted_mode))
1034                 crtc_state->infoframes.gcp |= GCP_DEFAULT_PHASE_ENABLE;
1035 }
1036
1037 static void ibx_set_infoframes(struct intel_encoder *encoder,
1038                                bool enable,
1039                                const struct intel_crtc_state *crtc_state,
1040                                const struct drm_connector_state *conn_state)
1041 {
1042         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1043         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1044         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
1045         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
1046         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1047         u32 val = intel_de_read(dev_priv, reg);
1048         u32 port = VIDEO_DIP_PORT(encoder->port);
1049
1050         assert_hdmi_port_disabled(intel_hdmi);
1051
1052         /* See the big comment in g4x_set_infoframes() */
1053         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1054
1055         if (!enable) {
1056                 if (!(val & VIDEO_DIP_ENABLE))
1057                         return;
1058                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1059                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1060                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1061                 intel_de_write(dev_priv, reg, val);
1062                 intel_de_posting_read(dev_priv, reg);
1063                 return;
1064         }
1065
1066         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1067                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1068                          "DIP already enabled on port %c\n",
1069                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1070                 val &= ~VIDEO_DIP_PORT_MASK;
1071                 val |= port;
1072         }
1073
1074         val |= VIDEO_DIP_ENABLE;
1075         val &= ~(VIDEO_DIP_ENABLE_AVI |
1076                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1077                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1078
1079         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1080                 val |= VIDEO_DIP_ENABLE_GCP;
1081
1082         intel_de_write(dev_priv, reg, val);
1083         intel_de_posting_read(dev_priv, reg);
1084
1085         intel_write_infoframe(encoder, crtc_state,
1086                               HDMI_INFOFRAME_TYPE_AVI,
1087                               &crtc_state->infoframes.avi);
1088         intel_write_infoframe(encoder, crtc_state,
1089                               HDMI_INFOFRAME_TYPE_SPD,
1090                               &crtc_state->infoframes.spd);
1091         intel_write_infoframe(encoder, crtc_state,
1092                               HDMI_INFOFRAME_TYPE_VENDOR,
1093                               &crtc_state->infoframes.hdmi);
1094 }
1095
1096 static void cpt_set_infoframes(struct intel_encoder *encoder,
1097                                bool enable,
1098                                const struct intel_crtc_state *crtc_state,
1099                                const struct drm_connector_state *conn_state)
1100 {
1101         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1102         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1103         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1104         i915_reg_t reg = TVIDEO_DIP_CTL(intel_crtc->pipe);
1105         u32 val = intel_de_read(dev_priv, reg);
1106
1107         assert_hdmi_port_disabled(intel_hdmi);
1108
1109         /* See the big comment in g4x_set_infoframes() */
1110         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1111
1112         if (!enable) {
1113                 if (!(val & VIDEO_DIP_ENABLE))
1114                         return;
1115                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1116                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1117                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1118                 intel_de_write(dev_priv, reg, val);
1119                 intel_de_posting_read(dev_priv, reg);
1120                 return;
1121         }
1122
1123         /* Set both together, unset both together: see the spec. */
1124         val |= VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI;
1125         val &= ~(VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1126                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1127
1128         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1129                 val |= VIDEO_DIP_ENABLE_GCP;
1130
1131         intel_de_write(dev_priv, reg, val);
1132         intel_de_posting_read(dev_priv, reg);
1133
1134         intel_write_infoframe(encoder, crtc_state,
1135                               HDMI_INFOFRAME_TYPE_AVI,
1136                               &crtc_state->infoframes.avi);
1137         intel_write_infoframe(encoder, crtc_state,
1138                               HDMI_INFOFRAME_TYPE_SPD,
1139                               &crtc_state->infoframes.spd);
1140         intel_write_infoframe(encoder, crtc_state,
1141                               HDMI_INFOFRAME_TYPE_VENDOR,
1142                               &crtc_state->infoframes.hdmi);
1143 }
1144
1145 static void vlv_set_infoframes(struct intel_encoder *encoder,
1146                                bool enable,
1147                                const struct intel_crtc_state *crtc_state,
1148                                const struct drm_connector_state *conn_state)
1149 {
1150         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1151         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
1152         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
1153         i915_reg_t reg = VLV_TVIDEO_DIP_CTL(intel_crtc->pipe);
1154         u32 val = intel_de_read(dev_priv, reg);
1155         u32 port = VIDEO_DIP_PORT(encoder->port);
1156
1157         assert_hdmi_port_disabled(intel_hdmi);
1158
1159         /* See the big comment in g4x_set_infoframes() */
1160         val |= VIDEO_DIP_SELECT_AVI | VIDEO_DIP_FREQ_VSYNC;
1161
1162         if (!enable) {
1163                 if (!(val & VIDEO_DIP_ENABLE))
1164                         return;
1165                 val &= ~(VIDEO_DIP_ENABLE | VIDEO_DIP_ENABLE_AVI |
1166                          VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1167                          VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1168                 intel_de_write(dev_priv, reg, val);
1169                 intel_de_posting_read(dev_priv, reg);
1170                 return;
1171         }
1172
1173         if (port != (val & VIDEO_DIP_PORT_MASK)) {
1174                 drm_WARN(&dev_priv->drm, val & VIDEO_DIP_ENABLE,
1175                          "DIP already enabled on port %c\n",
1176                          (val & VIDEO_DIP_PORT_MASK) >> 29);
1177                 val &= ~VIDEO_DIP_PORT_MASK;
1178                 val |= port;
1179         }
1180
1181         val |= VIDEO_DIP_ENABLE;
1182         val &= ~(VIDEO_DIP_ENABLE_AVI |
1183                  VIDEO_DIP_ENABLE_VENDOR | VIDEO_DIP_ENABLE_GAMUT |
1184                  VIDEO_DIP_ENABLE_SPD | VIDEO_DIP_ENABLE_GCP);
1185
1186         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1187                 val |= VIDEO_DIP_ENABLE_GCP;
1188
1189         intel_de_write(dev_priv, reg, val);
1190         intel_de_posting_read(dev_priv, reg);
1191
1192         intel_write_infoframe(encoder, crtc_state,
1193                               HDMI_INFOFRAME_TYPE_AVI,
1194                               &crtc_state->infoframes.avi);
1195         intel_write_infoframe(encoder, crtc_state,
1196                               HDMI_INFOFRAME_TYPE_SPD,
1197                               &crtc_state->infoframes.spd);
1198         intel_write_infoframe(encoder, crtc_state,
1199                               HDMI_INFOFRAME_TYPE_VENDOR,
1200                               &crtc_state->infoframes.hdmi);
1201 }
1202
1203 static void hsw_set_infoframes(struct intel_encoder *encoder,
1204                                bool enable,
1205                                const struct intel_crtc_state *crtc_state,
1206                                const struct drm_connector_state *conn_state)
1207 {
1208         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1209         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
1210         u32 val = intel_de_read(dev_priv, reg);
1211
1212         assert_hdmi_transcoder_func_disabled(dev_priv,
1213                                              crtc_state->cpu_transcoder);
1214
1215         val &= ~(VIDEO_DIP_ENABLE_VSC_HSW | VIDEO_DIP_ENABLE_AVI_HSW |
1216                  VIDEO_DIP_ENABLE_GCP_HSW | VIDEO_DIP_ENABLE_VS_HSW |
1217                  VIDEO_DIP_ENABLE_GMP_HSW | VIDEO_DIP_ENABLE_SPD_HSW |
1218                  VIDEO_DIP_ENABLE_DRM_GLK);
1219
1220         if (!enable) {
1221                 intel_de_write(dev_priv, reg, val);
1222                 intel_de_posting_read(dev_priv, reg);
1223                 return;
1224         }
1225
1226         if (intel_hdmi_set_gcp_infoframe(encoder, crtc_state, conn_state))
1227                 val |= VIDEO_DIP_ENABLE_GCP_HSW;
1228
1229         intel_de_write(dev_priv, reg, val);
1230         intel_de_posting_read(dev_priv, reg);
1231
1232         intel_write_infoframe(encoder, crtc_state,
1233                               HDMI_INFOFRAME_TYPE_AVI,
1234                               &crtc_state->infoframes.avi);
1235         intel_write_infoframe(encoder, crtc_state,
1236                               HDMI_INFOFRAME_TYPE_SPD,
1237                               &crtc_state->infoframes.spd);
1238         intel_write_infoframe(encoder, crtc_state,
1239                               HDMI_INFOFRAME_TYPE_VENDOR,
1240                               &crtc_state->infoframes.hdmi);
1241         intel_write_infoframe(encoder, crtc_state,
1242                               HDMI_INFOFRAME_TYPE_DRM,
1243                               &crtc_state->infoframes.drm);
1244 }
1245
1246 void intel_dp_dual_mode_set_tmds_output(struct intel_hdmi *hdmi, bool enable)
1247 {
1248         struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1249         struct i2c_adapter *adapter =
1250                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
1251
1252         if (hdmi->dp_dual_mode.type < DRM_DP_DUAL_MODE_TYPE2_DVI)
1253                 return;
1254
1255         drm_dbg_kms(&dev_priv->drm, "%s DP dual mode adaptor TMDS output\n",
1256                     enable ? "Enabling" : "Disabling");
1257
1258         drm_dp_dual_mode_set_tmds_output(&dev_priv->drm, hdmi->dp_dual_mode.type, adapter, enable);
1259 }
1260
1261 static int intel_hdmi_hdcp_read(struct intel_digital_port *dig_port,
1262                                 unsigned int offset, void *buffer, size_t size)
1263 {
1264         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1265         struct intel_hdmi *hdmi = &dig_port->hdmi;
1266         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1267                                                               hdmi->ddc_bus);
1268         int ret;
1269         u8 start = offset & 0xff;
1270         struct i2c_msg msgs[] = {
1271                 {
1272                         .addr = DRM_HDCP_DDC_ADDR,
1273                         .flags = 0,
1274                         .len = 1,
1275                         .buf = &start,
1276                 },
1277                 {
1278                         .addr = DRM_HDCP_DDC_ADDR,
1279                         .flags = I2C_M_RD,
1280                         .len = size,
1281                         .buf = buffer
1282                 }
1283         };
1284         ret = i2c_transfer(adapter, msgs, ARRAY_SIZE(msgs));
1285         if (ret == ARRAY_SIZE(msgs))
1286                 return 0;
1287         return ret >= 0 ? -EIO : ret;
1288 }
1289
1290 static int intel_hdmi_hdcp_write(struct intel_digital_port *dig_port,
1291                                  unsigned int offset, void *buffer, size_t size)
1292 {
1293         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1294         struct intel_hdmi *hdmi = &dig_port->hdmi;
1295         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1296                                                               hdmi->ddc_bus);
1297         int ret;
1298         u8 *write_buf;
1299         struct i2c_msg msg;
1300
1301         write_buf = kzalloc(size + 1, GFP_KERNEL);
1302         if (!write_buf)
1303                 return -ENOMEM;
1304
1305         write_buf[0] = offset & 0xff;
1306         memcpy(&write_buf[1], buffer, size);
1307
1308         msg.addr = DRM_HDCP_DDC_ADDR;
1309         msg.flags = 0,
1310         msg.len = size + 1,
1311         msg.buf = write_buf;
1312
1313         ret = i2c_transfer(adapter, &msg, 1);
1314         if (ret == 1)
1315                 ret = 0;
1316         else if (ret >= 0)
1317                 ret = -EIO;
1318
1319         kfree(write_buf);
1320         return ret;
1321 }
1322
1323 static
1324 int intel_hdmi_hdcp_write_an_aksv(struct intel_digital_port *dig_port,
1325                                   u8 *an)
1326 {
1327         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1328         struct intel_hdmi *hdmi = &dig_port->hdmi;
1329         struct i2c_adapter *adapter = intel_gmbus_get_adapter(i915,
1330                                                               hdmi->ddc_bus);
1331         int ret;
1332
1333         ret = intel_hdmi_hdcp_write(dig_port, DRM_HDCP_DDC_AN, an,
1334                                     DRM_HDCP_AN_LEN);
1335         if (ret) {
1336                 drm_dbg_kms(&i915->drm, "Write An over DDC failed (%d)\n",
1337                             ret);
1338                 return ret;
1339         }
1340
1341         ret = intel_gmbus_output_aksv(adapter);
1342         if (ret < 0) {
1343                 drm_dbg_kms(&i915->drm, "Failed to output aksv (%d)\n", ret);
1344                 return ret;
1345         }
1346         return 0;
1347 }
1348
1349 static int intel_hdmi_hdcp_read_bksv(struct intel_digital_port *dig_port,
1350                                      u8 *bksv)
1351 {
1352         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1353
1354         int ret;
1355         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BKSV, bksv,
1356                                    DRM_HDCP_KSV_LEN);
1357         if (ret)
1358                 drm_dbg_kms(&i915->drm, "Read Bksv over DDC failed (%d)\n",
1359                             ret);
1360         return ret;
1361 }
1362
1363 static
1364 int intel_hdmi_hdcp_read_bstatus(struct intel_digital_port *dig_port,
1365                                  u8 *bstatus)
1366 {
1367         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1368
1369         int ret;
1370         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BSTATUS,
1371                                    bstatus, DRM_HDCP_BSTATUS_LEN);
1372         if (ret)
1373                 drm_dbg_kms(&i915->drm, "Read bstatus over DDC failed (%d)\n",
1374                             ret);
1375         return ret;
1376 }
1377
1378 static
1379 int intel_hdmi_hdcp_repeater_present(struct intel_digital_port *dig_port,
1380                                      bool *repeater_present)
1381 {
1382         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1383         int ret;
1384         u8 val;
1385
1386         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1387         if (ret) {
1388                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1389                             ret);
1390                 return ret;
1391         }
1392         *repeater_present = val & DRM_HDCP_DDC_BCAPS_REPEATER_PRESENT;
1393         return 0;
1394 }
1395
1396 static
1397 int intel_hdmi_hdcp_read_ri_prime(struct intel_digital_port *dig_port,
1398                                   u8 *ri_prime)
1399 {
1400         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1401
1402         int ret;
1403         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_RI_PRIME,
1404                                    ri_prime, DRM_HDCP_RI_LEN);
1405         if (ret)
1406                 drm_dbg_kms(&i915->drm, "Read Ri' over DDC failed (%d)\n",
1407                             ret);
1408         return ret;
1409 }
1410
1411 static
1412 int intel_hdmi_hdcp_read_ksv_ready(struct intel_digital_port *dig_port,
1413                                    bool *ksv_ready)
1414 {
1415         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1416         int ret;
1417         u8 val;
1418
1419         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_BCAPS, &val, 1);
1420         if (ret) {
1421                 drm_dbg_kms(&i915->drm, "Read bcaps over DDC failed (%d)\n",
1422                             ret);
1423                 return ret;
1424         }
1425         *ksv_ready = val & DRM_HDCP_DDC_BCAPS_KSV_FIFO_READY;
1426         return 0;
1427 }
1428
1429 static
1430 int intel_hdmi_hdcp_read_ksv_fifo(struct intel_digital_port *dig_port,
1431                                   int num_downstream, u8 *ksv_fifo)
1432 {
1433         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1434         int ret;
1435         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_KSV_FIFO,
1436                                    ksv_fifo, num_downstream * DRM_HDCP_KSV_LEN);
1437         if (ret) {
1438                 drm_dbg_kms(&i915->drm,
1439                             "Read ksv fifo over DDC failed (%d)\n", ret);
1440                 return ret;
1441         }
1442         return 0;
1443 }
1444
1445 static
1446 int intel_hdmi_hdcp_read_v_prime_part(struct intel_digital_port *dig_port,
1447                                       int i, u32 *part)
1448 {
1449         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1450         int ret;
1451
1452         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
1453                 return -EINVAL;
1454
1455         ret = intel_hdmi_hdcp_read(dig_port, DRM_HDCP_DDC_V_PRIME(i),
1456                                    part, DRM_HDCP_V_PRIME_PART_LEN);
1457         if (ret)
1458                 drm_dbg_kms(&i915->drm, "Read V'[%d] over DDC failed (%d)\n",
1459                             i, ret);
1460         return ret;
1461 }
1462
1463 static int kbl_repositioning_enc_en_signal(struct intel_connector *connector,
1464                                            enum transcoder cpu_transcoder)
1465 {
1466         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1467         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1468         struct drm_crtc *crtc = connector->base.state->crtc;
1469         struct intel_crtc *intel_crtc = container_of(crtc,
1470                                                      struct intel_crtc, base);
1471         u32 scanline;
1472         int ret;
1473
1474         for (;;) {
1475                 scanline = intel_de_read(dev_priv, PIPEDSL(intel_crtc->pipe));
1476                 if (scanline > 100 && scanline < 200)
1477                         break;
1478                 usleep_range(25, 50);
1479         }
1480
1481         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1482                                          false, TRANS_DDI_HDCP_SIGNALLING);
1483         if (ret) {
1484                 drm_err(&dev_priv->drm,
1485                         "Disable HDCP signalling failed (%d)\n", ret);
1486                 return ret;
1487         }
1488
1489         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base, cpu_transcoder,
1490                                          true, TRANS_DDI_HDCP_SIGNALLING);
1491         if (ret) {
1492                 drm_err(&dev_priv->drm,
1493                         "Enable HDCP signalling failed (%d)\n", ret);
1494                 return ret;
1495         }
1496
1497         return 0;
1498 }
1499
1500 static
1501 int intel_hdmi_hdcp_toggle_signalling(struct intel_digital_port *dig_port,
1502                                       enum transcoder cpu_transcoder,
1503                                       bool enable)
1504 {
1505         struct intel_hdmi *hdmi = &dig_port->hdmi;
1506         struct intel_connector *connector = hdmi->attached_connector;
1507         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1508         int ret;
1509
1510         if (!enable)
1511                 usleep_range(6, 60); /* Bspec says >= 6us */
1512
1513         ret = intel_ddi_toggle_hdcp_bits(&dig_port->base,
1514                                          cpu_transcoder, enable,
1515                                          TRANS_DDI_HDCP_SIGNALLING);
1516         if (ret) {
1517                 drm_err(&dev_priv->drm, "%s HDCP signalling failed (%d)\n",
1518                         enable ? "Enable" : "Disable", ret);
1519                 return ret;
1520         }
1521
1522         /*
1523          * WA: To fix incorrect positioning of the window of
1524          * opportunity and enc_en signalling in KABYLAKE.
1525          */
1526         if (IS_KABYLAKE(dev_priv) && enable)
1527                 return kbl_repositioning_enc_en_signal(connector,
1528                                                        cpu_transcoder);
1529
1530         return 0;
1531 }
1532
1533 static
1534 bool intel_hdmi_hdcp_check_link_once(struct intel_digital_port *dig_port,
1535                                      struct intel_connector *connector)
1536 {
1537         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1538         enum port port = dig_port->base.port;
1539         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
1540         int ret;
1541         union {
1542                 u32 reg;
1543                 u8 shim[DRM_HDCP_RI_LEN];
1544         } ri;
1545
1546         ret = intel_hdmi_hdcp_read_ri_prime(dig_port, ri.shim);
1547         if (ret)
1548                 return false;
1549
1550         intel_de_write(i915, HDCP_RPRIME(i915, cpu_transcoder, port), ri.reg);
1551
1552         /* Wait for Ri prime match */
1553         if (wait_for((intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder, port)) &
1554                       (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC)) ==
1555                      (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1)) {
1556                 drm_dbg_kms(&i915->drm, "Ri' mismatch detected (%x)\n",
1557                         intel_de_read(i915, HDCP_STATUS(i915, cpu_transcoder,
1558                                                         port)));
1559                 return false;
1560         }
1561         return true;
1562 }
1563
1564 static
1565 bool intel_hdmi_hdcp_check_link(struct intel_digital_port *dig_port,
1566                                 struct intel_connector *connector)
1567 {
1568         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1569         int retry;
1570
1571         for (retry = 0; retry < 3; retry++)
1572                 if (intel_hdmi_hdcp_check_link_once(dig_port, connector))
1573                         return true;
1574
1575         drm_err(&i915->drm, "Link check failed\n");
1576         return false;
1577 }
1578
1579 struct hdcp2_hdmi_msg_timeout {
1580         u8 msg_id;
1581         u16 timeout;
1582 };
1583
1584 static const struct hdcp2_hdmi_msg_timeout hdcp2_msg_timeout[] = {
1585         { HDCP_2_2_AKE_SEND_CERT, HDCP_2_2_CERT_TIMEOUT_MS, },
1586         { HDCP_2_2_AKE_SEND_PAIRING_INFO, HDCP_2_2_PAIRING_TIMEOUT_MS, },
1587         { HDCP_2_2_LC_SEND_LPRIME, HDCP_2_2_HDMI_LPRIME_TIMEOUT_MS, },
1588         { HDCP_2_2_REP_SEND_RECVID_LIST, HDCP_2_2_RECVID_LIST_TIMEOUT_MS, },
1589         { HDCP_2_2_REP_STREAM_READY, HDCP_2_2_STREAM_READY_TIMEOUT_MS, },
1590 };
1591
1592 static
1593 int intel_hdmi_hdcp2_read_rx_status(struct intel_digital_port *dig_port,
1594                                     u8 *rx_status)
1595 {
1596         return intel_hdmi_hdcp_read(dig_port,
1597                                     HDCP_2_2_HDMI_REG_RXSTATUS_OFFSET,
1598                                     rx_status,
1599                                     HDCP_2_2_HDMI_RXSTATUS_LEN);
1600 }
1601
1602 static int get_hdcp2_msg_timeout(u8 msg_id, bool is_paired)
1603 {
1604         int i;
1605
1606         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME) {
1607                 if (is_paired)
1608                         return HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS;
1609                 else
1610                         return HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS;
1611         }
1612
1613         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_timeout); i++) {
1614                 if (hdcp2_msg_timeout[i].msg_id == msg_id)
1615                         return hdcp2_msg_timeout[i].timeout;
1616         }
1617
1618         return -EINVAL;
1619 }
1620
1621 static int
1622 hdcp2_detect_msg_availability(struct intel_digital_port *dig_port,
1623                               u8 msg_id, bool *msg_ready,
1624                               ssize_t *msg_sz)
1625 {
1626         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1627         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1628         int ret;
1629
1630         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1631         if (ret < 0) {
1632                 drm_dbg_kms(&i915->drm, "rx_status read failed. Err %d\n",
1633                             ret);
1634                 return ret;
1635         }
1636
1637         *msg_sz = ((HDCP_2_2_HDMI_RXSTATUS_MSG_SZ_HI(rx_status[1]) << 8) |
1638                   rx_status[0]);
1639
1640         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST)
1641                 *msg_ready = (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]) &&
1642                              *msg_sz);
1643         else
1644                 *msg_ready = *msg_sz;
1645
1646         return 0;
1647 }
1648
1649 static ssize_t
1650 intel_hdmi_hdcp2_wait_for_msg(struct intel_digital_port *dig_port,
1651                               u8 msg_id, bool paired)
1652 {
1653         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1654         bool msg_ready = false;
1655         int timeout, ret;
1656         ssize_t msg_sz = 0;
1657
1658         timeout = get_hdcp2_msg_timeout(msg_id, paired);
1659         if (timeout < 0)
1660                 return timeout;
1661
1662         ret = __wait_for(ret = hdcp2_detect_msg_availability(dig_port,
1663                                                              msg_id, &msg_ready,
1664                                                              &msg_sz),
1665                          !ret && msg_ready && msg_sz, timeout * 1000,
1666                          1000, 5 * 1000);
1667         if (ret)
1668                 drm_dbg_kms(&i915->drm, "msg_id: %d, ret: %d, timeout: %d\n",
1669                             msg_id, ret, timeout);
1670
1671         return ret ? ret : msg_sz;
1672 }
1673
1674 static
1675 int intel_hdmi_hdcp2_write_msg(struct intel_digital_port *dig_port,
1676                                void *buf, size_t size)
1677 {
1678         unsigned int offset;
1679
1680         offset = HDCP_2_2_HDMI_REG_WR_MSG_OFFSET;
1681         return intel_hdmi_hdcp_write(dig_port, offset, buf, size);
1682 }
1683
1684 static
1685 int intel_hdmi_hdcp2_read_msg(struct intel_digital_port *dig_port,
1686                               u8 msg_id, void *buf, size_t size)
1687 {
1688         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
1689         struct intel_hdmi *hdmi = &dig_port->hdmi;
1690         struct intel_hdcp *hdcp = &hdmi->attached_connector->hdcp;
1691         unsigned int offset;
1692         ssize_t ret;
1693
1694         ret = intel_hdmi_hdcp2_wait_for_msg(dig_port, msg_id,
1695                                             hdcp->is_paired);
1696         if (ret < 0)
1697                 return ret;
1698
1699         /*
1700          * Available msg size should be equal to or lesser than the
1701          * available buffer.
1702          */
1703         if (ret > size) {
1704                 drm_dbg_kms(&i915->drm,
1705                             "msg_sz(%zd) is more than exp size(%zu)\n",
1706                             ret, size);
1707                 return -1;
1708         }
1709
1710         offset = HDCP_2_2_HDMI_REG_RD_MSG_OFFSET;
1711         ret = intel_hdmi_hdcp_read(dig_port, offset, buf, ret);
1712         if (ret)
1713                 drm_dbg_kms(&i915->drm, "Failed to read msg_id: %d(%zd)\n",
1714                             msg_id, ret);
1715
1716         return ret;
1717 }
1718
1719 static
1720 int intel_hdmi_hdcp2_check_link(struct intel_digital_port *dig_port,
1721                                 struct intel_connector *connector)
1722 {
1723         u8 rx_status[HDCP_2_2_HDMI_RXSTATUS_LEN];
1724         int ret;
1725
1726         ret = intel_hdmi_hdcp2_read_rx_status(dig_port, rx_status);
1727         if (ret)
1728                 return ret;
1729
1730         /*
1731          * Re-auth request and Link Integrity Failures are represented by
1732          * same bit. i.e reauth_req.
1733          */
1734         if (HDCP_2_2_HDMI_RXSTATUS_REAUTH_REQ(rx_status[1]))
1735                 ret = HDCP_REAUTH_REQUEST;
1736         else if (HDCP_2_2_HDMI_RXSTATUS_READY(rx_status[1]))
1737                 ret = HDCP_TOPOLOGY_CHANGE;
1738
1739         return ret;
1740 }
1741
1742 static
1743 int intel_hdmi_hdcp2_capable(struct intel_digital_port *dig_port,
1744                              bool *capable)
1745 {
1746         u8 hdcp2_version;
1747         int ret;
1748
1749         *capable = false;
1750         ret = intel_hdmi_hdcp_read(dig_port, HDCP_2_2_HDMI_REG_VER_OFFSET,
1751                                    &hdcp2_version, sizeof(hdcp2_version));
1752         if (!ret && hdcp2_version & HDCP_2_2_HDMI_SUPPORT_MASK)
1753                 *capable = true;
1754
1755         return ret;
1756 }
1757
1758 static const struct intel_hdcp_shim intel_hdmi_hdcp_shim = {
1759         .write_an_aksv = intel_hdmi_hdcp_write_an_aksv,
1760         .read_bksv = intel_hdmi_hdcp_read_bksv,
1761         .read_bstatus = intel_hdmi_hdcp_read_bstatus,
1762         .repeater_present = intel_hdmi_hdcp_repeater_present,
1763         .read_ri_prime = intel_hdmi_hdcp_read_ri_prime,
1764         .read_ksv_ready = intel_hdmi_hdcp_read_ksv_ready,
1765         .read_ksv_fifo = intel_hdmi_hdcp_read_ksv_fifo,
1766         .read_v_prime_part = intel_hdmi_hdcp_read_v_prime_part,
1767         .toggle_signalling = intel_hdmi_hdcp_toggle_signalling,
1768         .check_link = intel_hdmi_hdcp_check_link,
1769         .write_2_2_msg = intel_hdmi_hdcp2_write_msg,
1770         .read_2_2_msg = intel_hdmi_hdcp2_read_msg,
1771         .check_2_2_link = intel_hdmi_hdcp2_check_link,
1772         .hdcp_2_2_capable = intel_hdmi_hdcp2_capable,
1773         .protocol = HDCP_PROTOCOL_HDMI,
1774 };
1775
1776 static int intel_hdmi_source_max_tmds_clock(struct intel_encoder *encoder)
1777 {
1778         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1779         int max_tmds_clock, vbt_max_tmds_clock;
1780
1781         if (DISPLAY_VER(dev_priv) >= 10)
1782                 max_tmds_clock = 594000;
1783         else if (DISPLAY_VER(dev_priv) >= 8 || IS_HASWELL(dev_priv))
1784                 max_tmds_clock = 300000;
1785         else if (DISPLAY_VER(dev_priv) >= 5)
1786                 max_tmds_clock = 225000;
1787         else
1788                 max_tmds_clock = 165000;
1789
1790         vbt_max_tmds_clock = intel_bios_max_tmds_clock(encoder);
1791         if (vbt_max_tmds_clock)
1792                 max_tmds_clock = min(max_tmds_clock, vbt_max_tmds_clock);
1793
1794         return max_tmds_clock;
1795 }
1796
1797 static bool intel_has_hdmi_sink(struct intel_hdmi *hdmi,
1798                                 const struct drm_connector_state *conn_state)
1799 {
1800         return hdmi->has_hdmi_sink &&
1801                 READ_ONCE(to_intel_digital_connector_state(conn_state)->force_audio) != HDMI_AUDIO_OFF_DVI;
1802 }
1803
1804 static int hdmi_port_clock_limit(struct intel_hdmi *hdmi,
1805                                  bool respect_downstream_limits,
1806                                  bool has_hdmi_sink)
1807 {
1808         struct intel_encoder *encoder = &hdmi_to_dig_port(hdmi)->base;
1809         int max_tmds_clock = intel_hdmi_source_max_tmds_clock(encoder);
1810
1811         if (respect_downstream_limits) {
1812                 struct intel_connector *connector = hdmi->attached_connector;
1813                 const struct drm_display_info *info = &connector->base.display_info;
1814
1815                 if (hdmi->dp_dual_mode.max_tmds_clock)
1816                         max_tmds_clock = min(max_tmds_clock,
1817                                              hdmi->dp_dual_mode.max_tmds_clock);
1818
1819                 if (info->max_tmds_clock)
1820                         max_tmds_clock = min(max_tmds_clock,
1821                                              info->max_tmds_clock);
1822                 else if (!has_hdmi_sink)
1823                         max_tmds_clock = min(max_tmds_clock, 165000);
1824         }
1825
1826         return max_tmds_clock;
1827 }
1828
1829 static enum drm_mode_status
1830 hdmi_port_clock_valid(struct intel_hdmi *hdmi,
1831                       int clock, bool respect_downstream_limits,
1832                       bool has_hdmi_sink)
1833 {
1834         struct drm_i915_private *dev_priv = to_i915(intel_hdmi_to_dev(hdmi));
1835
1836         if (clock < 25000)
1837                 return MODE_CLOCK_LOW;
1838         if (clock > hdmi_port_clock_limit(hdmi, respect_downstream_limits,
1839                                           has_hdmi_sink))
1840                 return MODE_CLOCK_HIGH;
1841
1842         /* GLK DPLL can't generate 446-480 MHz */
1843         if (IS_GEMINILAKE(dev_priv) && clock > 446666 && clock < 480000)
1844                 return MODE_CLOCK_RANGE;
1845
1846         /* BXT/GLK DPLL can't generate 223-240 MHz */
1847         if ((IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv)) &&
1848             clock > 223333 && clock < 240000)
1849                 return MODE_CLOCK_RANGE;
1850
1851         /* CHV DPLL can't generate 216-240 MHz */
1852         if (IS_CHERRYVIEW(dev_priv) && clock > 216000 && clock < 240000)
1853                 return MODE_CLOCK_RANGE;
1854
1855         return MODE_OK;
1856 }
1857
1858 static int intel_hdmi_port_clock(int clock, int bpc)
1859 {
1860         /*
1861          * Need to adjust the port link by:
1862          *  1.5x for 12bpc
1863          *  1.25x for 10bpc
1864          */
1865         return clock * bpc / 8;
1866 }
1867
1868 static bool intel_hdmi_bpc_possible(struct drm_connector *connector,
1869                                     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1870 {
1871         struct drm_i915_private *i915 = to_i915(connector->dev);
1872         const struct drm_display_info *info = &connector->display_info;
1873         const struct drm_hdmi_info *hdmi = &info->hdmi;
1874
1875         switch (bpc) {
1876         case 12:
1877                 if (HAS_GMCH(i915))
1878                         return false;
1879
1880                 if (!has_hdmi_sink)
1881                         return false;
1882
1883                 if (ycbcr420_output)
1884                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_36;
1885                 else
1886                         return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_36;
1887         case 10:
1888                 if (DISPLAY_VER(i915) < 11)
1889                         return false;
1890
1891                 if (!has_hdmi_sink)
1892                         return false;
1893
1894                 if (ycbcr420_output)
1895                         return hdmi->y420_dc_modes & DRM_EDID_YCBCR420_DC_30;
1896                 else
1897                         return info->edid_hdmi_dc_modes & DRM_EDID_HDMI_DC_30;
1898         case 8:
1899                 return true;
1900         default:
1901                 MISSING_CASE(bpc);
1902                 return false;
1903         }
1904 }
1905
1906 static enum drm_mode_status
1907 intel_hdmi_mode_clock_valid(struct intel_hdmi *hdmi, int clock, bool has_hdmi_sink)
1908 {
1909         struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1910         struct drm_i915_private *dev_priv = to_i915(dev);
1911         enum drm_mode_status status;
1912
1913         /* check if we can do 8bpc */
1914         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 8),
1915                                        true, has_hdmi_sink);
1916
1917         if (has_hdmi_sink) {
1918                 /* if we can't do 8bpc we may still be able to do 12bpc */
1919                 if (status != MODE_OK && !HAS_GMCH(dev_priv))
1920                         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 12),
1921                                                        true, has_hdmi_sink);
1922
1923                 /* if we can't do 8,12bpc we may still be able to do 10bpc */
1924                 if (status != MODE_OK && DISPLAY_VER(dev_priv) >= 11)
1925                         status = hdmi_port_clock_valid(hdmi, intel_hdmi_port_clock(clock, 10),
1926                                                        true, has_hdmi_sink);
1927         }
1928
1929         return status;
1930 }
1931
1932 static enum drm_mode_status
1933 intel_hdmi_mode_valid(struct drm_connector *connector,
1934                       struct drm_display_mode *mode)
1935 {
1936         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
1937         struct drm_device *dev = intel_hdmi_to_dev(hdmi);
1938         struct drm_i915_private *dev_priv = to_i915(dev);
1939         enum drm_mode_status status;
1940         int clock = mode->clock;
1941         int max_dotclk = to_i915(connector->dev)->max_dotclk_freq;
1942         bool has_hdmi_sink = intel_has_hdmi_sink(hdmi, connector->state);
1943         bool ycbcr_420_only;
1944
1945         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
1946                 return MODE_NO_DBLESCAN;
1947
1948         if ((mode->flags & DRM_MODE_FLAG_3D_MASK) == DRM_MODE_FLAG_3D_FRAME_PACKING)
1949                 clock *= 2;
1950
1951         if (clock > max_dotclk)
1952                 return MODE_CLOCK_HIGH;
1953
1954         if (mode->flags & DRM_MODE_FLAG_DBLCLK) {
1955                 if (!has_hdmi_sink)
1956                         return MODE_CLOCK_LOW;
1957                 clock *= 2;
1958         }
1959
1960         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, mode);
1961         if (ycbcr_420_only)
1962                 clock /= 2;
1963
1964         status = intel_hdmi_mode_clock_valid(hdmi, clock, has_hdmi_sink);
1965         if (status != MODE_OK) {
1966                 if (ycbcr_420_only ||
1967                     !connector->ycbcr_420_allowed ||
1968                     !drm_mode_is_420_also(&connector->display_info, mode))
1969                         return status;
1970
1971                 clock /= 2;
1972                 status = intel_hdmi_mode_clock_valid(hdmi, clock, has_hdmi_sink);
1973                 if (status != MODE_OK)
1974                         return status;
1975         }
1976
1977         return intel_mode_valid_max_plane_size(dev_priv, mode, false);
1978 }
1979
1980 bool intel_hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
1981                                     int bpc, bool has_hdmi_sink, bool ycbcr420_output)
1982 {
1983         struct drm_atomic_state *state = crtc_state->uapi.state;
1984         struct drm_connector_state *connector_state;
1985         struct drm_connector *connector;
1986         int i;
1987
1988         if (crtc_state->pipe_bpp < bpc * 3)
1989                 return false;
1990
1991         for_each_new_connector_in_state(state, connector, connector_state, i) {
1992                 if (connector_state->crtc != crtc_state->uapi.crtc)
1993                         continue;
1994
1995                 if (!intel_hdmi_bpc_possible(connector, bpc, has_hdmi_sink, ycbcr420_output))
1996                         return false;
1997         }
1998
1999         return true;
2000 }
2001
2002 static bool hdmi_deep_color_possible(const struct intel_crtc_state *crtc_state,
2003                                      int bpc)
2004 {
2005         struct drm_i915_private *dev_priv =
2006                 to_i915(crtc_state->uapi.crtc->dev);
2007         const struct drm_display_mode *adjusted_mode =
2008                 &crtc_state->hw.adjusted_mode;
2009
2010         /*
2011          * HDMI deep color affects the clocks, so it's only possible
2012          * when not cloning with other encoder types.
2013          */
2014         if (crtc_state->output_types != BIT(INTEL_OUTPUT_HDMI))
2015                 return false;
2016
2017         /* Display Wa_1405510057:icl,ehl */
2018         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 &&
2019             bpc == 10 && DISPLAY_VER(dev_priv) == 11 &&
2020             (adjusted_mode->crtc_hblank_end -
2021              adjusted_mode->crtc_hblank_start) % 8 == 2)
2022                 return false;
2023
2024         return intel_hdmi_deep_color_possible(crtc_state, bpc,
2025                                               crtc_state->has_hdmi_sink,
2026                                               crtc_state->output_format ==
2027                                               INTEL_OUTPUT_FORMAT_YCBCR420);
2028 }
2029
2030 static int intel_hdmi_compute_bpc(struct intel_encoder *encoder,
2031                                   struct intel_crtc_state *crtc_state,
2032                                   int clock)
2033 {
2034         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2035         int bpc;
2036
2037         for (bpc = 12; bpc >= 10; bpc -= 2) {
2038                 if (hdmi_deep_color_possible(crtc_state, bpc) &&
2039                     hdmi_port_clock_valid(intel_hdmi,
2040                                           intel_hdmi_port_clock(clock, bpc),
2041                                           true, crtc_state->has_hdmi_sink) == MODE_OK)
2042                         return bpc;
2043         }
2044
2045         return 8;
2046 }
2047
2048 static int intel_hdmi_compute_clock(struct intel_encoder *encoder,
2049                                     struct intel_crtc_state *crtc_state)
2050 {
2051         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2052         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2053         const struct drm_display_mode *adjusted_mode =
2054                 &crtc_state->hw.adjusted_mode;
2055         int bpc, clock = adjusted_mode->crtc_clock;
2056
2057         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2058                 clock *= 2;
2059
2060         /* YCBCR420 TMDS rate requirement is half the pixel clock */
2061         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2062                 clock /= 2;
2063
2064         bpc = intel_hdmi_compute_bpc(encoder, crtc_state, clock);
2065
2066         crtc_state->port_clock = intel_hdmi_port_clock(clock, bpc);
2067
2068         /*
2069          * pipe_bpp could already be below 8bpc due to
2070          * FDI bandwidth constraints. We shouldn't bump it
2071          * back up to 8bpc in that case.
2072          */
2073         if (crtc_state->pipe_bpp > bpc * 3)
2074                 crtc_state->pipe_bpp = bpc * 3;
2075
2076         drm_dbg_kms(&i915->drm,
2077                     "picking %d bpc for HDMI output (pipe bpp: %d)\n",
2078                     bpc, crtc_state->pipe_bpp);
2079
2080         if (hdmi_port_clock_valid(intel_hdmi, crtc_state->port_clock,
2081                                   false, crtc_state->has_hdmi_sink) != MODE_OK) {
2082                 drm_dbg_kms(&i915->drm,
2083                             "unsupported HDMI clock (%d kHz), rejecting mode\n",
2084                             crtc_state->port_clock);
2085                 return -EINVAL;
2086         }
2087
2088         return 0;
2089 }
2090
2091 bool intel_hdmi_limited_color_range(const struct intel_crtc_state *crtc_state,
2092                                     const struct drm_connector_state *conn_state)
2093 {
2094         const struct intel_digital_connector_state *intel_conn_state =
2095                 to_intel_digital_connector_state(conn_state);
2096         const struct drm_display_mode *adjusted_mode =
2097                 &crtc_state->hw.adjusted_mode;
2098
2099         /*
2100          * Our YCbCr output is always limited range.
2101          * crtc_state->limited_color_range only applies to RGB,
2102          * and it must never be set for YCbCr or we risk setting
2103          * some conflicting bits in PIPECONF which will mess up
2104          * the colors on the monitor.
2105          */
2106         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2107                 return false;
2108
2109         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2110                 /* See CEA-861-E - 5.1 Default Encoding Parameters */
2111                 return crtc_state->has_hdmi_sink &&
2112                         drm_default_rgb_quant_range(adjusted_mode) ==
2113                         HDMI_QUANTIZATION_RANGE_LIMITED;
2114         } else {
2115                 return intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_LIMITED;
2116         }
2117 }
2118
2119 static bool intel_hdmi_has_audio(struct intel_encoder *encoder,
2120                                  const struct intel_crtc_state *crtc_state,
2121                                  const struct drm_connector_state *conn_state)
2122 {
2123         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2124         const struct intel_digital_connector_state *intel_conn_state =
2125                 to_intel_digital_connector_state(conn_state);
2126
2127         if (!crtc_state->has_hdmi_sink)
2128                 return false;
2129
2130         if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2131                 return intel_hdmi->has_audio;
2132         else
2133                 return intel_conn_state->force_audio == HDMI_AUDIO_ON;
2134 }
2135
2136 static int intel_hdmi_compute_output_format(struct intel_encoder *encoder,
2137                                             struct intel_crtc_state *crtc_state,
2138                                             const struct drm_connector_state *conn_state)
2139 {
2140         struct drm_connector *connector = conn_state->connector;
2141         struct drm_i915_private *i915 = to_i915(connector->dev);
2142         const struct drm_display_mode *adjusted_mode = &crtc_state->hw.adjusted_mode;
2143         int ret;
2144         bool ycbcr_420_only;
2145
2146         ycbcr_420_only = drm_mode_is_420_only(&connector->display_info, adjusted_mode);
2147         if (connector->ycbcr_420_allowed && ycbcr_420_only) {
2148                 crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2149         } else {
2150                 if (!connector->ycbcr_420_allowed && ycbcr_420_only)
2151                         drm_dbg_kms(&i915->drm,
2152                                     "YCbCr 4:2:0 mode but YCbCr 4:2:0 output not possible. Falling back to RGB.\n");
2153                 crtc_state->output_format = INTEL_OUTPUT_FORMAT_RGB;
2154         }
2155
2156         ret = intel_hdmi_compute_clock(encoder, crtc_state);
2157         if (ret) {
2158                 if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420 &&
2159                     connector->ycbcr_420_allowed &&
2160                     drm_mode_is_420_also(&connector->display_info, adjusted_mode)) {
2161                         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2162                         ret = intel_hdmi_compute_clock(encoder, crtc_state);
2163                 }
2164         }
2165
2166         return ret;
2167 }
2168
2169 int intel_hdmi_compute_config(struct intel_encoder *encoder,
2170                               struct intel_crtc_state *pipe_config,
2171                               struct drm_connector_state *conn_state)
2172 {
2173         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2174         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2175         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2176         struct drm_connector *connector = conn_state->connector;
2177         struct drm_scdc *scdc = &connector->display_info.hdmi.scdc;
2178         int ret;
2179
2180         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2181                 return -EINVAL;
2182
2183         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2184         pipe_config->has_hdmi_sink = intel_has_hdmi_sink(intel_hdmi,
2185                                                          conn_state);
2186
2187         if (pipe_config->has_hdmi_sink)
2188                 pipe_config->has_infoframe = true;
2189
2190         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2191                 pipe_config->pixel_multiplier = 2;
2192
2193         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv))
2194                 pipe_config->has_pch_encoder = true;
2195
2196         pipe_config->has_audio =
2197                 intel_hdmi_has_audio(encoder, pipe_config, conn_state);
2198
2199         ret = intel_hdmi_compute_output_format(encoder, pipe_config, conn_state);
2200         if (ret)
2201                 return ret;
2202
2203         if (pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
2204                 ret = intel_pch_panel_fitting(pipe_config, conn_state);
2205                 if (ret)
2206                         return ret;
2207         }
2208
2209         pipe_config->limited_color_range =
2210                 intel_hdmi_limited_color_range(pipe_config, conn_state);
2211
2212         if (conn_state->picture_aspect_ratio)
2213                 adjusted_mode->picture_aspect_ratio =
2214                         conn_state->picture_aspect_ratio;
2215
2216         pipe_config->lane_count = 4;
2217
2218         if (scdc->scrambling.supported && DISPLAY_VER(dev_priv) >= 10) {
2219                 if (scdc->scrambling.low_rates)
2220                         pipe_config->hdmi_scrambling = true;
2221
2222                 if (pipe_config->port_clock > 340000) {
2223                         pipe_config->hdmi_scrambling = true;
2224                         pipe_config->hdmi_high_tmds_clock_ratio = true;
2225                 }
2226         }
2227
2228         intel_hdmi_compute_gcp_infoframe(encoder, pipe_config,
2229                                          conn_state);
2230
2231         if (!intel_hdmi_compute_avi_infoframe(encoder, pipe_config, conn_state)) {
2232                 drm_dbg_kms(&dev_priv->drm, "bad AVI infoframe\n");
2233                 return -EINVAL;
2234         }
2235
2236         if (!intel_hdmi_compute_spd_infoframe(encoder, pipe_config, conn_state)) {
2237                 drm_dbg_kms(&dev_priv->drm, "bad SPD infoframe\n");
2238                 return -EINVAL;
2239         }
2240
2241         if (!intel_hdmi_compute_hdmi_infoframe(encoder, pipe_config, conn_state)) {
2242                 drm_dbg_kms(&dev_priv->drm, "bad HDMI infoframe\n");
2243                 return -EINVAL;
2244         }
2245
2246         if (!intel_hdmi_compute_drm_infoframe(encoder, pipe_config, conn_state)) {
2247                 drm_dbg_kms(&dev_priv->drm, "bad DRM infoframe\n");
2248                 return -EINVAL;
2249         }
2250
2251         return 0;
2252 }
2253
2254 static void
2255 intel_hdmi_unset_edid(struct drm_connector *connector)
2256 {
2257         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2258
2259         intel_hdmi->has_hdmi_sink = false;
2260         intel_hdmi->has_audio = false;
2261
2262         intel_hdmi->dp_dual_mode.type = DRM_DP_DUAL_MODE_NONE;
2263         intel_hdmi->dp_dual_mode.max_tmds_clock = 0;
2264
2265         kfree(to_intel_connector(connector)->detect_edid);
2266         to_intel_connector(connector)->detect_edid = NULL;
2267 }
2268
2269 static void
2270 intel_hdmi_dp_dual_mode_detect(struct drm_connector *connector, bool has_edid)
2271 {
2272         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2273         struct intel_hdmi *hdmi = intel_attached_hdmi(to_intel_connector(connector));
2274         enum port port = hdmi_to_dig_port(hdmi)->base.port;
2275         struct i2c_adapter *adapter =
2276                 intel_gmbus_get_adapter(dev_priv, hdmi->ddc_bus);
2277         enum drm_dp_dual_mode_type type = drm_dp_dual_mode_detect(&dev_priv->drm, adapter);
2278
2279         /*
2280          * Type 1 DVI adaptors are not required to implement any
2281          * registers, so we can't always detect their presence.
2282          * Ideally we should be able to check the state of the
2283          * CONFIG1 pin, but no such luck on our hardware.
2284          *
2285          * The only method left to us is to check the VBT to see
2286          * if the port is a dual mode capable DP port. But let's
2287          * only do that when we sucesfully read the EDID, to avoid
2288          * confusing log messages about DP dual mode adaptors when
2289          * there's nothing connected to the port.
2290          */
2291         if (type == DRM_DP_DUAL_MODE_UNKNOWN) {
2292                 /* An overridden EDID imply that we want this port for testing.
2293                  * Make sure not to set limits for that port.
2294                  */
2295                 if (has_edid && !connector->override_edid &&
2296                     intel_bios_is_port_dp_dual_mode(dev_priv, port)) {
2297                         drm_dbg_kms(&dev_priv->drm,
2298                                     "Assuming DP dual mode adaptor presence based on VBT\n");
2299                         type = DRM_DP_DUAL_MODE_TYPE1_DVI;
2300                 } else {
2301                         type = DRM_DP_DUAL_MODE_NONE;
2302                 }
2303         }
2304
2305         if (type == DRM_DP_DUAL_MODE_NONE)
2306                 return;
2307
2308         hdmi->dp_dual_mode.type = type;
2309         hdmi->dp_dual_mode.max_tmds_clock =
2310                 drm_dp_dual_mode_max_tmds_clock(&dev_priv->drm, type, adapter);
2311
2312         drm_dbg_kms(&dev_priv->drm,
2313                     "DP dual mode adaptor (%s) detected (max TMDS clock: %d kHz)\n",
2314                     drm_dp_get_dual_mode_type_name(type),
2315                     hdmi->dp_dual_mode.max_tmds_clock);
2316 }
2317
2318 static bool
2319 intel_hdmi_set_edid(struct drm_connector *connector)
2320 {
2321         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2322         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2323         intel_wakeref_t wakeref;
2324         struct edid *edid;
2325         bool connected = false;
2326         struct i2c_adapter *i2c;
2327
2328         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2329
2330         i2c = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2331
2332         edid = drm_get_edid(connector, i2c);
2333
2334         if (!edid && !intel_gmbus_is_forced_bit(i2c)) {
2335                 drm_dbg_kms(&dev_priv->drm,
2336                             "HDMI GMBUS EDID read failed, retry using GPIO bit-banging\n");
2337                 intel_gmbus_force_bit(i2c, true);
2338                 edid = drm_get_edid(connector, i2c);
2339                 intel_gmbus_force_bit(i2c, false);
2340         }
2341
2342         intel_hdmi_dp_dual_mode_detect(connector, edid != NULL);
2343
2344         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2345
2346         to_intel_connector(connector)->detect_edid = edid;
2347         if (edid && edid->input & DRM_EDID_INPUT_DIGITAL) {
2348                 intel_hdmi->has_audio = drm_detect_monitor_audio(edid);
2349                 intel_hdmi->has_hdmi_sink = drm_detect_hdmi_monitor(edid);
2350
2351                 connected = true;
2352         }
2353
2354         cec_notifier_set_phys_addr_from_edid(intel_hdmi->cec_notifier, edid);
2355
2356         return connected;
2357 }
2358
2359 static enum drm_connector_status
2360 intel_hdmi_detect(struct drm_connector *connector, bool force)
2361 {
2362         enum drm_connector_status status = connector_status_disconnected;
2363         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2364         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2365         struct intel_encoder *encoder = &hdmi_to_dig_port(intel_hdmi)->base;
2366         intel_wakeref_t wakeref;
2367
2368         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
2369                     connector->base.id, connector->name);
2370
2371         if (!INTEL_DISPLAY_ENABLED(dev_priv))
2372                 return connector_status_disconnected;
2373
2374         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_GMBUS);
2375
2376         if (DISPLAY_VER(dev_priv) >= 11 &&
2377             !intel_digital_port_connected(encoder))
2378                 goto out;
2379
2380         intel_hdmi_unset_edid(connector);
2381
2382         if (intel_hdmi_set_edid(connector))
2383                 status = connector_status_connected;
2384
2385 out:
2386         intel_display_power_put(dev_priv, POWER_DOMAIN_GMBUS, wakeref);
2387
2388         if (status != connector_status_connected)
2389                 cec_notifier_phys_addr_invalidate(intel_hdmi->cec_notifier);
2390
2391         /*
2392          * Make sure the refs for power wells enabled during detect are
2393          * dropped to avoid a new detect cycle triggered by HPD polling.
2394          */
2395         intel_display_power_flush_work(dev_priv);
2396
2397         return status;
2398 }
2399
2400 static void
2401 intel_hdmi_force(struct drm_connector *connector)
2402 {
2403         struct drm_i915_private *i915 = to_i915(connector->dev);
2404
2405         drm_dbg_kms(&i915->drm, "[CONNECTOR:%d:%s]\n",
2406                     connector->base.id, connector->name);
2407
2408         intel_hdmi_unset_edid(connector);
2409
2410         if (connector->status != connector_status_connected)
2411                 return;
2412
2413         intel_hdmi_set_edid(connector);
2414 }
2415
2416 static int intel_hdmi_get_modes(struct drm_connector *connector)
2417 {
2418         struct edid *edid;
2419
2420         edid = to_intel_connector(connector)->detect_edid;
2421         if (edid == NULL)
2422                 return 0;
2423
2424         return intel_connector_update_modes(connector, edid);
2425 }
2426
2427 static struct i2c_adapter *
2428 intel_hdmi_get_i2c_adapter(struct drm_connector *connector)
2429 {
2430         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2431         struct intel_hdmi *intel_hdmi = intel_attached_hdmi(to_intel_connector(connector));
2432
2433         return intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2434 }
2435
2436 static void intel_hdmi_create_i2c_symlink(struct drm_connector *connector)
2437 {
2438         struct drm_i915_private *i915 = to_i915(connector->dev);
2439         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2440         struct kobject *i2c_kobj = &adapter->dev.kobj;
2441         struct kobject *connector_kobj = &connector->kdev->kobj;
2442         int ret;
2443
2444         ret = sysfs_create_link(connector_kobj, i2c_kobj, i2c_kobj->name);
2445         if (ret)
2446                 drm_err(&i915->drm, "Failed to create i2c symlink (%d)\n", ret);
2447 }
2448
2449 static void intel_hdmi_remove_i2c_symlink(struct drm_connector *connector)
2450 {
2451         struct i2c_adapter *adapter = intel_hdmi_get_i2c_adapter(connector);
2452         struct kobject *i2c_kobj = &adapter->dev.kobj;
2453         struct kobject *connector_kobj = &connector->kdev->kobj;
2454
2455         sysfs_remove_link(connector_kobj, i2c_kobj->name);
2456 }
2457
2458 static int
2459 intel_hdmi_connector_register(struct drm_connector *connector)
2460 {
2461         int ret;
2462
2463         ret = intel_connector_register(connector);
2464         if (ret)
2465                 return ret;
2466
2467         intel_hdmi_create_i2c_symlink(connector);
2468
2469         return ret;
2470 }
2471
2472 static void intel_hdmi_connector_unregister(struct drm_connector *connector)
2473 {
2474         struct cec_notifier *n = intel_attached_hdmi(to_intel_connector(connector))->cec_notifier;
2475
2476         cec_notifier_conn_unregister(n);
2477
2478         intel_hdmi_remove_i2c_symlink(connector);
2479         intel_connector_unregister(connector);
2480 }
2481
2482 static const struct drm_connector_funcs intel_hdmi_connector_funcs = {
2483         .detect = intel_hdmi_detect,
2484         .force = intel_hdmi_force,
2485         .fill_modes = drm_helper_probe_single_connector_modes,
2486         .atomic_get_property = intel_digital_connector_atomic_get_property,
2487         .atomic_set_property = intel_digital_connector_atomic_set_property,
2488         .late_register = intel_hdmi_connector_register,
2489         .early_unregister = intel_hdmi_connector_unregister,
2490         .destroy = intel_connector_destroy,
2491         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
2492         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
2493 };
2494
2495 static const struct drm_connector_helper_funcs intel_hdmi_connector_helper_funcs = {
2496         .get_modes = intel_hdmi_get_modes,
2497         .mode_valid = intel_hdmi_mode_valid,
2498         .atomic_check = intel_digital_connector_atomic_check,
2499 };
2500
2501 static void
2502 intel_hdmi_add_properties(struct intel_hdmi *intel_hdmi, struct drm_connector *connector)
2503 {
2504         struct drm_i915_private *dev_priv = to_i915(connector->dev);
2505
2506         intel_attach_force_audio_property(connector);
2507         intel_attach_broadcast_rgb_property(connector);
2508         intel_attach_aspect_ratio_property(connector);
2509
2510         intel_attach_hdmi_colorspace_property(connector);
2511         drm_connector_attach_content_type_property(connector);
2512
2513         if (DISPLAY_VER(dev_priv) >= 10)
2514                 drm_connector_attach_hdr_output_metadata_property(connector);
2515
2516         if (!HAS_GMCH(dev_priv))
2517                 drm_connector_attach_max_bpc_property(connector, 8, 12);
2518 }
2519
2520 /*
2521  * intel_hdmi_handle_sink_scrambling: handle sink scrambling/clock ratio setup
2522  * @encoder: intel_encoder
2523  * @connector: drm_connector
2524  * @high_tmds_clock_ratio = bool to indicate if the function needs to set
2525  *  or reset the high tmds clock ratio for scrambling
2526  * @scrambling: bool to Indicate if the function needs to set or reset
2527  *  sink scrambling
2528  *
2529  * This function handles scrambling on HDMI 2.0 capable sinks.
2530  * If required clock rate is > 340 Mhz && scrambling is supported by sink
2531  * it enables scrambling. This should be called before enabling the HDMI
2532  * 2.0 port, as the sink can choose to disable the scrambling if it doesn't
2533  * detect a scrambled clock within 100 ms.
2534  *
2535  * Returns:
2536  * True on success, false on failure.
2537  */
2538 bool intel_hdmi_handle_sink_scrambling(struct intel_encoder *encoder,
2539                                        struct drm_connector *connector,
2540                                        bool high_tmds_clock_ratio,
2541                                        bool scrambling)
2542 {
2543         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2544         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(encoder);
2545         struct drm_scrambling *sink_scrambling =
2546                 &connector->display_info.hdmi.scdc.scrambling;
2547         struct i2c_adapter *adapter =
2548                 intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2549
2550         if (!sink_scrambling->supported)
2551                 return true;
2552
2553         drm_dbg_kms(&dev_priv->drm,
2554                     "[CONNECTOR:%d:%s] scrambling=%s, TMDS bit clock ratio=1/%d\n",
2555                     connector->base.id, connector->name,
2556                     yesno(scrambling), high_tmds_clock_ratio ? 40 : 10);
2557
2558         /* Set TMDS bit clock ratio to 1/40 or 1/10, and enable/disable scrambling */
2559         return drm_scdc_set_high_tmds_clock_ratio(adapter,
2560                                                   high_tmds_clock_ratio) &&
2561                 drm_scdc_set_scrambling(adapter, scrambling);
2562 }
2563
2564 static u8 chv_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2565 {
2566         u8 ddc_pin;
2567
2568         switch (port) {
2569         case PORT_B:
2570                 ddc_pin = GMBUS_PIN_DPB;
2571                 break;
2572         case PORT_C:
2573                 ddc_pin = GMBUS_PIN_DPC;
2574                 break;
2575         case PORT_D:
2576                 ddc_pin = GMBUS_PIN_DPD_CHV;
2577                 break;
2578         default:
2579                 MISSING_CASE(port);
2580                 ddc_pin = GMBUS_PIN_DPB;
2581                 break;
2582         }
2583         return ddc_pin;
2584 }
2585
2586 static u8 bxt_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2587 {
2588         u8 ddc_pin;
2589
2590         switch (port) {
2591         case PORT_B:
2592                 ddc_pin = GMBUS_PIN_1_BXT;
2593                 break;
2594         case PORT_C:
2595                 ddc_pin = GMBUS_PIN_2_BXT;
2596                 break;
2597         default:
2598                 MISSING_CASE(port);
2599                 ddc_pin = GMBUS_PIN_1_BXT;
2600                 break;
2601         }
2602         return ddc_pin;
2603 }
2604
2605 static u8 cnp_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2606                               enum port port)
2607 {
2608         u8 ddc_pin;
2609
2610         switch (port) {
2611         case PORT_B:
2612                 ddc_pin = GMBUS_PIN_1_BXT;
2613                 break;
2614         case PORT_C:
2615                 ddc_pin = GMBUS_PIN_2_BXT;
2616                 break;
2617         case PORT_D:
2618                 ddc_pin = GMBUS_PIN_4_CNP;
2619                 break;
2620         case PORT_F:
2621                 ddc_pin = GMBUS_PIN_3_BXT;
2622                 break;
2623         default:
2624                 MISSING_CASE(port);
2625                 ddc_pin = GMBUS_PIN_1_BXT;
2626                 break;
2627         }
2628         return ddc_pin;
2629 }
2630
2631 static u8 icl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2632 {
2633         enum phy phy = intel_port_to_phy(dev_priv, port);
2634
2635         if (intel_phy_is_combo(dev_priv, phy))
2636                 return GMBUS_PIN_1_BXT + port;
2637         else if (intel_phy_is_tc(dev_priv, phy))
2638                 return GMBUS_PIN_9_TC1_ICP + intel_port_to_tc(dev_priv, port);
2639
2640         drm_WARN(&dev_priv->drm, 1, "Unknown port:%c\n", port_name(port));
2641         return GMBUS_PIN_2_BXT;
2642 }
2643
2644 static u8 mcc_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2645 {
2646         enum phy phy = intel_port_to_phy(dev_priv, port);
2647         u8 ddc_pin;
2648
2649         switch (phy) {
2650         case PHY_A:
2651                 ddc_pin = GMBUS_PIN_1_BXT;
2652                 break;
2653         case PHY_B:
2654                 ddc_pin = GMBUS_PIN_2_BXT;
2655                 break;
2656         case PHY_C:
2657                 ddc_pin = GMBUS_PIN_9_TC1_ICP;
2658                 break;
2659         default:
2660                 MISSING_CASE(phy);
2661                 ddc_pin = GMBUS_PIN_1_BXT;
2662                 break;
2663         }
2664         return ddc_pin;
2665 }
2666
2667 static u8 rkl_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2668 {
2669         enum phy phy = intel_port_to_phy(dev_priv, port);
2670
2671         WARN_ON(port == PORT_C);
2672
2673         /*
2674          * Pin mapping for RKL depends on which PCH is present.  With TGP, the
2675          * final two outputs use type-c pins, even though they're actually
2676          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2677          * all outputs.
2678          */
2679         if (INTEL_PCH_TYPE(dev_priv) >= PCH_TGP && phy >= PHY_C)
2680                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2681
2682         return GMBUS_PIN_1_BXT + phy;
2683 }
2684
2685 static u8 gen9bc_tgp_port_to_ddc_pin(struct drm_i915_private *i915, enum port port)
2686 {
2687         enum phy phy = intel_port_to_phy(i915, port);
2688
2689         drm_WARN_ON(&i915->drm, port == PORT_A);
2690
2691         /*
2692          * Pin mapping for GEN9 BC depends on which PCH is present.  With TGP,
2693          * final two outputs use type-c pins, even though they're actually
2694          * combo outputs.  With CMP, the traditional DDI A-D pins are used for
2695          * all outputs.
2696          */
2697         if (INTEL_PCH_TYPE(i915) >= PCH_TGP && phy >= PHY_C)
2698                 return GMBUS_PIN_9_TC1_ICP + phy - PHY_C;
2699
2700         return GMBUS_PIN_1_BXT + phy;
2701 }
2702
2703 static u8 dg1_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2704 {
2705         return intel_port_to_phy(dev_priv, port) + 1;
2706 }
2707
2708 static u8 adls_port_to_ddc_pin(struct drm_i915_private *dev_priv, enum port port)
2709 {
2710         enum phy phy = intel_port_to_phy(dev_priv, port);
2711
2712         WARN_ON(port == PORT_B || port == PORT_C);
2713
2714         /*
2715          * Pin mapping for ADL-S requires TC pins for all combo phy outputs
2716          * except first combo output.
2717          */
2718         if (phy == PHY_A)
2719                 return GMBUS_PIN_1_BXT;
2720
2721         return GMBUS_PIN_9_TC1_ICP + phy - PHY_B;
2722 }
2723
2724 static u8 g4x_port_to_ddc_pin(struct drm_i915_private *dev_priv,
2725                               enum port port)
2726 {
2727         u8 ddc_pin;
2728
2729         switch (port) {
2730         case PORT_B:
2731                 ddc_pin = GMBUS_PIN_DPB;
2732                 break;
2733         case PORT_C:
2734                 ddc_pin = GMBUS_PIN_DPC;
2735                 break;
2736         case PORT_D:
2737                 ddc_pin = GMBUS_PIN_DPD;
2738                 break;
2739         default:
2740                 MISSING_CASE(port);
2741                 ddc_pin = GMBUS_PIN_DPB;
2742                 break;
2743         }
2744         return ddc_pin;
2745 }
2746
2747 static u8 intel_hdmi_ddc_pin(struct intel_encoder *encoder)
2748 {
2749         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2750         enum port port = encoder->port;
2751         u8 ddc_pin;
2752
2753         ddc_pin = intel_bios_alternate_ddc_pin(encoder);
2754         if (ddc_pin) {
2755                 drm_dbg_kms(&dev_priv->drm,
2756                             "Using DDC pin 0x%x for port %c (VBT)\n",
2757                             ddc_pin, port_name(port));
2758                 return ddc_pin;
2759         }
2760
2761         if (IS_ALDERLAKE_S(dev_priv))
2762                 ddc_pin = adls_port_to_ddc_pin(dev_priv, port);
2763         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_DG1)
2764                 ddc_pin = dg1_port_to_ddc_pin(dev_priv, port);
2765         else if (IS_ROCKETLAKE(dev_priv))
2766                 ddc_pin = rkl_port_to_ddc_pin(dev_priv, port);
2767         else if (DISPLAY_VER(dev_priv) == 9 && HAS_PCH_TGP(dev_priv))
2768                 ddc_pin = gen9bc_tgp_port_to_ddc_pin(dev_priv, port);
2769         else if (HAS_PCH_MCC(dev_priv))
2770                 ddc_pin = mcc_port_to_ddc_pin(dev_priv, port);
2771         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
2772                 ddc_pin = icl_port_to_ddc_pin(dev_priv, port);
2773         else if (HAS_PCH_CNP(dev_priv))
2774                 ddc_pin = cnp_port_to_ddc_pin(dev_priv, port);
2775         else if (IS_GEMINILAKE(dev_priv) || IS_BROXTON(dev_priv))
2776                 ddc_pin = bxt_port_to_ddc_pin(dev_priv, port);
2777         else if (IS_CHERRYVIEW(dev_priv))
2778                 ddc_pin = chv_port_to_ddc_pin(dev_priv, port);
2779         else
2780                 ddc_pin = g4x_port_to_ddc_pin(dev_priv, port);
2781
2782         drm_dbg_kms(&dev_priv->drm,
2783                     "Using DDC pin 0x%x for port %c (platform default)\n",
2784                     ddc_pin, port_name(port));
2785
2786         return ddc_pin;
2787 }
2788
2789 void intel_infoframe_init(struct intel_digital_port *dig_port)
2790 {
2791         struct drm_i915_private *dev_priv =
2792                 to_i915(dig_port->base.base.dev);
2793
2794         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
2795                 dig_port->write_infoframe = vlv_write_infoframe;
2796                 dig_port->read_infoframe = vlv_read_infoframe;
2797                 dig_port->set_infoframes = vlv_set_infoframes;
2798                 dig_port->infoframes_enabled = vlv_infoframes_enabled;
2799         } else if (IS_G4X(dev_priv)) {
2800                 dig_port->write_infoframe = g4x_write_infoframe;
2801                 dig_port->read_infoframe = g4x_read_infoframe;
2802                 dig_port->set_infoframes = g4x_set_infoframes;
2803                 dig_port->infoframes_enabled = g4x_infoframes_enabled;
2804         } else if (HAS_DDI(dev_priv)) {
2805                 if (intel_bios_is_lspcon_present(dev_priv, dig_port->base.port)) {
2806                         dig_port->write_infoframe = lspcon_write_infoframe;
2807                         dig_port->read_infoframe = lspcon_read_infoframe;
2808                         dig_port->set_infoframes = lspcon_set_infoframes;
2809                         dig_port->infoframes_enabled = lspcon_infoframes_enabled;
2810                 } else {
2811                         dig_port->write_infoframe = hsw_write_infoframe;
2812                         dig_port->read_infoframe = hsw_read_infoframe;
2813                         dig_port->set_infoframes = hsw_set_infoframes;
2814                         dig_port->infoframes_enabled = hsw_infoframes_enabled;
2815                 }
2816         } else if (HAS_PCH_IBX(dev_priv)) {
2817                 dig_port->write_infoframe = ibx_write_infoframe;
2818                 dig_port->read_infoframe = ibx_read_infoframe;
2819                 dig_port->set_infoframes = ibx_set_infoframes;
2820                 dig_port->infoframes_enabled = ibx_infoframes_enabled;
2821         } else {
2822                 dig_port->write_infoframe = cpt_write_infoframe;
2823                 dig_port->read_infoframe = cpt_read_infoframe;
2824                 dig_port->set_infoframes = cpt_set_infoframes;
2825                 dig_port->infoframes_enabled = cpt_infoframes_enabled;
2826         }
2827 }
2828
2829 void intel_hdmi_init_connector(struct intel_digital_port *dig_port,
2830                                struct intel_connector *intel_connector)
2831 {
2832         struct drm_connector *connector = &intel_connector->base;
2833         struct intel_hdmi *intel_hdmi = &dig_port->hdmi;
2834         struct intel_encoder *intel_encoder = &dig_port->base;
2835         struct drm_device *dev = intel_encoder->base.dev;
2836         struct drm_i915_private *dev_priv = to_i915(dev);
2837         struct i2c_adapter *ddc;
2838         enum port port = intel_encoder->port;
2839         struct cec_connector_info conn_info;
2840
2841         drm_dbg_kms(&dev_priv->drm,
2842                     "Adding HDMI connector on [ENCODER:%d:%s]\n",
2843                     intel_encoder->base.base.id, intel_encoder->base.name);
2844
2845         if (DISPLAY_VER(dev_priv) < 12 && drm_WARN_ON(dev, port == PORT_A))
2846                 return;
2847
2848         if (drm_WARN(dev, dig_port->max_lanes < 4,
2849                      "Not enough lanes (%d) for HDMI on [ENCODER:%d:%s]\n",
2850                      dig_port->max_lanes, intel_encoder->base.base.id,
2851                      intel_encoder->base.name))
2852                 return;
2853
2854         intel_hdmi->ddc_bus = intel_hdmi_ddc_pin(intel_encoder);
2855         ddc = intel_gmbus_get_adapter(dev_priv, intel_hdmi->ddc_bus);
2856
2857         drm_connector_init_with_ddc(dev, connector,
2858                                     &intel_hdmi_connector_funcs,
2859                                     DRM_MODE_CONNECTOR_HDMIA,
2860                                     ddc);
2861         drm_connector_helper_add(connector, &intel_hdmi_connector_helper_funcs);
2862
2863         connector->interlace_allowed = 1;
2864         connector->doublescan_allowed = 0;
2865         connector->stereo_allowed = 1;
2866
2867         if (DISPLAY_VER(dev_priv) >= 10)
2868                 connector->ycbcr_420_allowed = true;
2869
2870         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
2871
2872         if (HAS_DDI(dev_priv))
2873                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
2874         else
2875                 intel_connector->get_hw_state = intel_connector_get_hw_state;
2876
2877         intel_hdmi_add_properties(intel_hdmi, connector);
2878
2879         intel_connector_attach_encoder(intel_connector, intel_encoder);
2880         intel_hdmi->attached_connector = intel_connector;
2881
2882         if (is_hdcp_supported(dev_priv, port)) {
2883                 int ret = intel_hdcp_init(intel_connector, dig_port,
2884                                           &intel_hdmi_hdcp_shim);
2885                 if (ret)
2886                         drm_dbg_kms(&dev_priv->drm,
2887                                     "HDCP init failed, skipping.\n");
2888         }
2889
2890         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
2891          * 0xd.  Failure to do so will result in spurious interrupts being
2892          * generated on the port when a cable is not attached.
2893          */
2894         if (IS_G45(dev_priv)) {
2895                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
2896                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
2897                                (temp & ~0xf) | 0xd);
2898         }
2899
2900         cec_fill_conn_info_from_drm(&conn_info, connector);
2901
2902         intel_hdmi->cec_notifier =
2903                 cec_notifier_conn_register(dev->dev, port_identifier(port),
2904                                            &conn_info);
2905         if (!intel_hdmi->cec_notifier)
2906                 drm_dbg_kms(&dev_priv->drm, "CEC notifier get failed\n");
2907 }
2908
2909 /*
2910  * intel_hdmi_dsc_get_slice_height - get the dsc slice_height
2911  * @vactive: Vactive of a display mode
2912  *
2913  * @return: appropriate dsc slice height for a given mode.
2914  */
2915 int intel_hdmi_dsc_get_slice_height(int vactive)
2916 {
2917         int slice_height;
2918
2919         /*
2920          * Slice Height determination : HDMI2.1 Section 7.7.5.2
2921          * Select smallest slice height >=96, that results in a valid PPS and
2922          * requires minimum padding lines required for final slice.
2923          *
2924          * Assumption : Vactive is even.
2925          */
2926         for (slice_height = 96; slice_height <= vactive; slice_height += 2)
2927                 if (vactive % slice_height == 0)
2928                         return slice_height;
2929
2930         return 0;
2931 }
2932
2933 /*
2934  * intel_hdmi_dsc_get_num_slices - get no. of dsc slices based on dsc encoder
2935  * and dsc decoder capabilities
2936  *
2937  * @crtc_state: intel crtc_state
2938  * @src_max_slices: maximum slices supported by the DSC encoder
2939  * @src_max_slice_width: maximum slice width supported by DSC encoder
2940  * @hdmi_max_slices: maximum slices supported by sink DSC decoder
2941  * @hdmi_throughput: maximum clock per slice (MHz) supported by HDMI sink
2942  *
2943  * @return: num of dsc slices that can be supported by the dsc encoder
2944  * and decoder.
2945  */
2946 int
2947 intel_hdmi_dsc_get_num_slices(const struct intel_crtc_state *crtc_state,
2948                               int src_max_slices, int src_max_slice_width,
2949                               int hdmi_max_slices, int hdmi_throughput)
2950 {
2951 /* Pixel rates in KPixels/sec */
2952 #define HDMI_DSC_PEAK_PIXEL_RATE                2720000
2953 /*
2954  * Rates at which the source and sink are required to process pixels in each
2955  * slice, can be two levels: either atleast 340000KHz or atleast 40000KHz.
2956  */
2957 #define HDMI_DSC_MAX_ENC_THROUGHPUT_0           340000
2958 #define HDMI_DSC_MAX_ENC_THROUGHPUT_1           400000
2959
2960 /* Spec limits the slice width to 2720 pixels */
2961 #define MAX_HDMI_SLICE_WIDTH                    2720
2962         int kslice_adjust;
2963         int adjusted_clk_khz;
2964         int min_slices;
2965         int target_slices;
2966         int max_throughput; /* max clock freq. in khz per slice */
2967         int max_slice_width;
2968         int slice_width;
2969         int pixel_clock = crtc_state->hw.adjusted_mode.crtc_clock;
2970
2971         if (!hdmi_throughput)
2972                 return 0;
2973
2974         /*
2975          * Slice Width determination : HDMI2.1 Section 7.7.5.1
2976          * kslice_adjust factor for 4:2:0, and 4:2:2 formats is 0.5, where as
2977          * for 4:4:4 is 1.0. Multiplying these factors by 10 and later
2978          * dividing adjusted clock value by 10.
2979          */
2980         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
2981             crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2982                 kslice_adjust = 10;
2983         else
2984                 kslice_adjust = 5;
2985
2986         /*
2987          * As per spec, the rate at which the source and the sink process
2988          * the pixels per slice are at two levels: atleast 340Mhz or 400Mhz.
2989          * This depends upon the pixel clock rate and output formats
2990          * (kslice adjust).
2991          * If pixel clock * kslice adjust >= 2720MHz slices can be processed
2992          * at max 340MHz, otherwise they can be processed at max 400MHz.
2993          */
2994
2995         adjusted_clk_khz = DIV_ROUND_UP(kslice_adjust * pixel_clock, 10);
2996
2997         if (adjusted_clk_khz <= HDMI_DSC_PEAK_PIXEL_RATE)
2998                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_0;
2999         else
3000                 max_throughput = HDMI_DSC_MAX_ENC_THROUGHPUT_1;
3001
3002         /*
3003          * Taking into account the sink's capability for maximum
3004          * clock per slice (in MHz) as read from HF-VSDB.
3005          */
3006         max_throughput = min(max_throughput, hdmi_throughput * 1000);
3007
3008         min_slices = DIV_ROUND_UP(adjusted_clk_khz, max_throughput);
3009         max_slice_width = min(MAX_HDMI_SLICE_WIDTH, src_max_slice_width);
3010
3011         /*
3012          * Keep on increasing the num of slices/line, starting from min_slices
3013          * per line till we get such a number, for which the slice_width is
3014          * just less than max_slice_width. The slices/line selected should be
3015          * less than or equal to the max horizontal slices that the combination
3016          * of PCON encoder and HDMI decoder can support.
3017          */
3018         slice_width = max_slice_width;
3019
3020         do {
3021                 if (min_slices <= 1 && src_max_slices >= 1 && hdmi_max_slices >= 1)
3022                         target_slices = 1;
3023                 else if (min_slices <= 2 && src_max_slices >= 2 && hdmi_max_slices >= 2)
3024                         target_slices = 2;
3025                 else if (min_slices <= 4 && src_max_slices >= 4 && hdmi_max_slices >= 4)
3026                         target_slices = 4;
3027                 else if (min_slices <= 8 && src_max_slices >= 8 && hdmi_max_slices >= 8)
3028                         target_slices = 8;
3029                 else if (min_slices <= 12 && src_max_slices >= 12 && hdmi_max_slices >= 12)
3030                         target_slices = 12;
3031                 else if (min_slices <= 16 && src_max_slices >= 16 && hdmi_max_slices >= 16)
3032                         target_slices = 16;
3033                 else
3034                         return 0;
3035
3036                 slice_width = DIV_ROUND_UP(crtc_state->hw.adjusted_mode.hdisplay, target_slices);
3037                 if (slice_width >= max_slice_width)
3038                         min_slices = target_slices + 1;
3039         } while (slice_width >= max_slice_width);
3040
3041         return target_slices;
3042 }
3043
3044 /*
3045  * intel_hdmi_dsc_get_bpp - get the appropriate compressed bits_per_pixel based on
3046  * source and sink capabilities.
3047  *
3048  * @src_fraction_bpp: fractional bpp supported by the source
3049  * @slice_width: dsc slice width supported by the source and sink
3050  * @num_slices: num of slices supported by the source and sink
3051  * @output_format: video output format
3052  * @hdmi_all_bpp: sink supports decoding of 1/16th bpp setting
3053  * @hdmi_max_chunk_bytes: max bytes in a line of chunks supported by sink
3054  *
3055  * @return: compressed bits_per_pixel in step of 1/16 of bits_per_pixel
3056  */
3057 int
3058 intel_hdmi_dsc_get_bpp(int src_fractional_bpp, int slice_width, int num_slices,
3059                        int output_format, bool hdmi_all_bpp,
3060                        int hdmi_max_chunk_bytes)
3061 {
3062         int max_dsc_bpp, min_dsc_bpp;
3063         int target_bytes;
3064         bool bpp_found = false;
3065         int bpp_decrement_x16;
3066         int bpp_target;
3067         int bpp_target_x16;
3068
3069         /*
3070          * Get min bpp and max bpp as per Table 7.23, in HDMI2.1 spec
3071          * Start with the max bpp and keep on decrementing with
3072          * fractional bpp, if supported by PCON DSC encoder
3073          *
3074          * for each bpp we check if no of bytes can be supported by HDMI sink
3075          */
3076
3077         /* Assuming: bpc as 8*/
3078         if (output_format == INTEL_OUTPUT_FORMAT_YCBCR420) {
3079                 min_dsc_bpp = 6;
3080                 max_dsc_bpp = 3 * 4; /* 3*bpc/2 */
3081         } else if (output_format == INTEL_OUTPUT_FORMAT_YCBCR444 ||
3082                    output_format == INTEL_OUTPUT_FORMAT_RGB) {
3083                 min_dsc_bpp = 8;
3084                 max_dsc_bpp = 3 * 8; /* 3*bpc */
3085         } else {
3086                 /* Assuming 4:2:2 encoding */
3087                 min_dsc_bpp = 7;
3088                 max_dsc_bpp = 2 * 8; /* 2*bpc */
3089         }
3090
3091         /*
3092          * Taking into account if all dsc_all_bpp supported by HDMI2.1 sink
3093          * Section 7.7.34 : Source shall not enable compressed Video
3094          * Transport with bpp_target settings above 12 bpp unless
3095          * DSC_all_bpp is set to 1.
3096          */
3097         if (!hdmi_all_bpp)
3098                 max_dsc_bpp = min(max_dsc_bpp, 12);
3099
3100         /*
3101          * The Sink has a limit of compressed data in bytes for a scanline,
3102          * as described in max_chunk_bytes field in HFVSDB block of edid.
3103          * The no. of bytes depend on the target bits per pixel that the
3104          * source configures. So we start with the max_bpp and calculate
3105          * the target_chunk_bytes. We keep on decrementing the target_bpp,
3106          * till we get the target_chunk_bytes just less than what the sink's
3107          * max_chunk_bytes, or else till we reach the min_dsc_bpp.
3108          *
3109          * The decrement is according to the fractional support from PCON DSC
3110          * encoder. For fractional BPP we use bpp_target as a multiple of 16.
3111          *
3112          * bpp_target_x16 = bpp_target * 16
3113          * So we need to decrement by {1, 2, 4, 8, 16} for fractional bpps
3114          * {1/16, 1/8, 1/4, 1/2, 1} respectively.
3115          */
3116
3117         bpp_target = max_dsc_bpp;
3118
3119         /* src does not support fractional bpp implies decrement by 16 for bppx16 */
3120         if (!src_fractional_bpp)
3121                 src_fractional_bpp = 1;
3122         bpp_decrement_x16 = DIV_ROUND_UP(16, src_fractional_bpp);
3123         bpp_target_x16 = (bpp_target * 16) - bpp_decrement_x16;
3124
3125         while (bpp_target_x16 > (min_dsc_bpp * 16)) {
3126                 int bpp;
3127
3128                 bpp = DIV_ROUND_UP(bpp_target_x16, 16);
3129                 target_bytes = DIV_ROUND_UP((num_slices * slice_width * bpp), 8);
3130                 if (target_bytes <= hdmi_max_chunk_bytes) {
3131                         bpp_found = true;
3132                         break;
3133                 }
3134                 bpp_target_x16 -= bpp_decrement_x16;
3135         }
3136         if (bpp_found)
3137                 return bpp_target_x16;
3138
3139         return 0;
3140 }