Merge branch 'stable/for-linus-5.10' of git://git.kernel.org/pub/scm/linux/kernel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_reg.h"
19 #include "intel_display_power.h"
20 #include "intel_display_types.h"
21 #include "intel_hdcp.h"
22 #include "intel_sideband.h"
23 #include "intel_connector.h"
24
25 #define KEY_LOAD_TRIES  5
26 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS        50
27 #define HDCP2_LC_RETRY_CNT                      3
28
29 static
30 bool intel_hdcp_is_ksv_valid(u8 *ksv)
31 {
32         int i, ones = 0;
33         /* KSV has 20 1's and 20 0's */
34         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
35                 ones += hweight8(ksv[i]);
36         if (ones != 20)
37                 return false;
38
39         return true;
40 }
41
42 static
43 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
44                                const struct intel_hdcp_shim *shim, u8 *bksv)
45 {
46         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
47         int ret, i, tries = 2;
48
49         /* HDCP spec states that we must retry the bksv if it is invalid */
50         for (i = 0; i < tries; i++) {
51                 ret = shim->read_bksv(dig_port, bksv);
52                 if (ret)
53                         return ret;
54                 if (intel_hdcp_is_ksv_valid(bksv))
55                         break;
56         }
57         if (i == tries) {
58                 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
59                 return -ENODEV;
60         }
61
62         return 0;
63 }
64
65 /* Is HDCP1.4 capable on Platform and Sink */
66 bool intel_hdcp_capable(struct intel_connector *connector)
67 {
68         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
69         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
70         bool capable = false;
71         u8 bksv[5];
72
73         if (!shim)
74                 return capable;
75
76         if (shim->hdcp_capable) {
77                 shim->hdcp_capable(dig_port, &capable);
78         } else {
79                 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
80                         capable = true;
81         }
82
83         return capable;
84 }
85
86 /* Is HDCP2.2 capable on Platform and Sink */
87 bool intel_hdcp2_capable(struct intel_connector *connector)
88 {
89         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
90         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
91         struct intel_hdcp *hdcp = &connector->hdcp;
92         bool capable = false;
93
94         /* I915 support for HDCP2.2 */
95         if (!hdcp->hdcp2_supported)
96                 return false;
97
98         /* MEI interface is solid */
99         mutex_lock(&dev_priv->hdcp_comp_mutex);
100         if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
101                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
102                 return false;
103         }
104         mutex_unlock(&dev_priv->hdcp_comp_mutex);
105
106         /* Sink's capability for HDCP2.2 */
107         hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
108
109         return capable;
110 }
111
112 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
113                               enum transcoder cpu_transcoder, enum port port)
114 {
115         return intel_de_read(dev_priv,
116                              HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
117                HDCP_STATUS_ENC;
118 }
119
120 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
121                                enum transcoder cpu_transcoder, enum port port)
122 {
123         return intel_de_read(dev_priv,
124                              HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
125                LINK_ENCRYPTION_STATUS;
126 }
127
128 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
129                                     const struct intel_hdcp_shim *shim)
130 {
131         int ret, read_ret;
132         bool ksv_ready;
133
134         /* Poll for ksv list ready (spec says max time allowed is 5s) */
135         ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
136                                                          &ksv_ready),
137                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
138                          100 * 1000);
139         if (ret)
140                 return ret;
141         if (read_ret)
142                 return read_ret;
143         if (!ksv_ready)
144                 return -ETIMEDOUT;
145
146         return 0;
147 }
148
149 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
150 {
151         struct i915_power_domains *power_domains = &dev_priv->power_domains;
152         struct i915_power_well *power_well;
153         enum i915_power_well_id id;
154         bool enabled = false;
155
156         /*
157          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
158          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
159          */
160         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
161                 id = HSW_DISP_PW_GLOBAL;
162         else
163                 id = SKL_DISP_PW_1;
164
165         mutex_lock(&power_domains->lock);
166
167         /* PG1 (power well #1) needs to be enabled */
168         for_each_power_well(dev_priv, power_well) {
169                 if (power_well->desc->id == id) {
170                         enabled = power_well->desc->ops->is_enabled(dev_priv,
171                                                                     power_well);
172                         break;
173                 }
174         }
175         mutex_unlock(&power_domains->lock);
176
177         /*
178          * Another req for hdcp key loadability is enabled state of pll for
179          * cdclk. Without active crtc we wont land here. So we are assuming that
180          * cdclk is already on.
181          */
182
183         return enabled;
184 }
185
186 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
187 {
188         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
189         intel_de_write(dev_priv, HDCP_KEY_STATUS,
190                        HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
191 }
192
193 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
194 {
195         int ret;
196         u32 val;
197
198         val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
199         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
200                 return 0;
201
202         /*
203          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
204          * out of reset. So if Key is not already loaded, its an error state.
205          */
206         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
207                 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
208                         return -ENXIO;
209
210         /*
211          * Initiate loading the HDCP key from fuses.
212          *
213          * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
214          * platforms except BXT and GLK, differ in the key load trigger process
215          * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
216          */
217         if (IS_GEN9_BC(dev_priv)) {
218                 ret = sandybridge_pcode_write(dev_priv,
219                                               SKL_PCODE_LOAD_HDCP_KEYS, 1);
220                 if (ret) {
221                         drm_err(&dev_priv->drm,
222                                 "Failed to initiate HDCP key load (%d)\n",
223                                 ret);
224                         return ret;
225                 }
226         } else {
227                 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
228         }
229
230         /* Wait for the keys to load (500us) */
231         ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
232                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
233                                         10, 1, &val);
234         if (ret)
235                 return ret;
236         else if (!(val & HDCP_KEY_LOAD_STATUS))
237                 return -ENXIO;
238
239         /* Send Aksv over to PCH display for use in authentication */
240         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
241
242         return 0;
243 }
244
245 /* Returns updated SHA-1 index */
246 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
247 {
248         intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
249         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
250                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
251                 return -ETIMEDOUT;
252         }
253         return 0;
254 }
255
256 static
257 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
258                                 enum transcoder cpu_transcoder, enum port port)
259 {
260         if (INTEL_GEN(dev_priv) >= 12) {
261                 switch (cpu_transcoder) {
262                 case TRANSCODER_A:
263                         return HDCP_TRANSA_REP_PRESENT |
264                                HDCP_TRANSA_SHA1_M0;
265                 case TRANSCODER_B:
266                         return HDCP_TRANSB_REP_PRESENT |
267                                HDCP_TRANSB_SHA1_M0;
268                 case TRANSCODER_C:
269                         return HDCP_TRANSC_REP_PRESENT |
270                                HDCP_TRANSC_SHA1_M0;
271                 case TRANSCODER_D:
272                         return HDCP_TRANSD_REP_PRESENT |
273                                HDCP_TRANSD_SHA1_M0;
274                 default:
275                         drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
276                                 cpu_transcoder);
277                         return -EINVAL;
278                 }
279         }
280
281         switch (port) {
282         case PORT_A:
283                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
284         case PORT_B:
285                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
286         case PORT_C:
287                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
288         case PORT_D:
289                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
290         case PORT_E:
291                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
292         default:
293                 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
294                 return -EINVAL;
295         }
296 }
297
298 static
299 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
300                                 const struct intel_hdcp_shim *shim,
301                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
302 {
303         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
304         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
305         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
306         enum port port = dig_port->base.port;
307         u32 vprime, sha_text, sha_leftovers, rep_ctl;
308         int ret, i, j, sha_idx;
309
310         /* Process V' values from the receiver */
311         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
312                 ret = shim->read_v_prime_part(dig_port, i, &vprime);
313                 if (ret)
314                         return ret;
315                 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
316         }
317
318         /*
319          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
320          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
321          * stream is written via the HDCP_SHA_TEXT register in 32-bit
322          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
323          * index will keep track of our progress through the 64 bytes as well as
324          * helping us work the 40-bit KSVs through our 32-bit register.
325          *
326          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
327          */
328         sha_idx = 0;
329         sha_text = 0;
330         sha_leftovers = 0;
331         rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
332         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
333         for (i = 0; i < num_downstream; i++) {
334                 unsigned int sha_empty;
335                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
336
337                 /* Fill up the empty slots in sha_text and write it out */
338                 sha_empty = sizeof(sha_text) - sha_leftovers;
339                 for (j = 0; j < sha_empty; j++) {
340                         u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
341                         sha_text |= ksv[j] << off;
342                 }
343
344                 ret = intel_write_sha_text(dev_priv, sha_text);
345                 if (ret < 0)
346                         return ret;
347
348                 /* Programming guide writes this every 64 bytes */
349                 sha_idx += sizeof(sha_text);
350                 if (!(sha_idx % 64))
351                         intel_de_write(dev_priv, HDCP_REP_CTL,
352                                        rep_ctl | HDCP_SHA1_TEXT_32);
353
354                 /* Store the leftover bytes from the ksv in sha_text */
355                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
356                 sha_text = 0;
357                 for (j = 0; j < sha_leftovers; j++)
358                         sha_text |= ksv[sha_empty + j] <<
359                                         ((sizeof(sha_text) - j - 1) * 8);
360
361                 /*
362                  * If we still have room in sha_text for more data, continue.
363                  * Otherwise, write it out immediately.
364                  */
365                 if (sizeof(sha_text) > sha_leftovers)
366                         continue;
367
368                 ret = intel_write_sha_text(dev_priv, sha_text);
369                 if (ret < 0)
370                         return ret;
371                 sha_leftovers = 0;
372                 sha_text = 0;
373                 sha_idx += sizeof(sha_text);
374         }
375
376         /*
377          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
378          * bytes are leftover from the last ksv, we might be able to fit them
379          * all in sha_text (first 2 cases), or we might need to split them up
380          * into 2 writes (last 2 cases).
381          */
382         if (sha_leftovers == 0) {
383                 /* Write 16 bits of text, 16 bits of M0 */
384                 intel_de_write(dev_priv, HDCP_REP_CTL,
385                                rep_ctl | HDCP_SHA1_TEXT_16);
386                 ret = intel_write_sha_text(dev_priv,
387                                            bstatus[0] << 8 | bstatus[1]);
388                 if (ret < 0)
389                         return ret;
390                 sha_idx += sizeof(sha_text);
391
392                 /* Write 32 bits of M0 */
393                 intel_de_write(dev_priv, HDCP_REP_CTL,
394                                rep_ctl | HDCP_SHA1_TEXT_0);
395                 ret = intel_write_sha_text(dev_priv, 0);
396                 if (ret < 0)
397                         return ret;
398                 sha_idx += sizeof(sha_text);
399
400                 /* Write 16 bits of M0 */
401                 intel_de_write(dev_priv, HDCP_REP_CTL,
402                                rep_ctl | HDCP_SHA1_TEXT_16);
403                 ret = intel_write_sha_text(dev_priv, 0);
404                 if (ret < 0)
405                         return ret;
406                 sha_idx += sizeof(sha_text);
407
408         } else if (sha_leftovers == 1) {
409                 /* Write 24 bits of text, 8 bits of M0 */
410                 intel_de_write(dev_priv, HDCP_REP_CTL,
411                                rep_ctl | HDCP_SHA1_TEXT_24);
412                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
413                 /* Only 24-bits of data, must be in the LSB */
414                 sha_text = (sha_text & 0xffffff00) >> 8;
415                 ret = intel_write_sha_text(dev_priv, sha_text);
416                 if (ret < 0)
417                         return ret;
418                 sha_idx += sizeof(sha_text);
419
420                 /* Write 32 bits of M0 */
421                 intel_de_write(dev_priv, HDCP_REP_CTL,
422                                rep_ctl | HDCP_SHA1_TEXT_0);
423                 ret = intel_write_sha_text(dev_priv, 0);
424                 if (ret < 0)
425                         return ret;
426                 sha_idx += sizeof(sha_text);
427
428                 /* Write 24 bits of M0 */
429                 intel_de_write(dev_priv, HDCP_REP_CTL,
430                                rep_ctl | HDCP_SHA1_TEXT_8);
431                 ret = intel_write_sha_text(dev_priv, 0);
432                 if (ret < 0)
433                         return ret;
434                 sha_idx += sizeof(sha_text);
435
436         } else if (sha_leftovers == 2) {
437                 /* Write 32 bits of text */
438                 intel_de_write(dev_priv, HDCP_REP_CTL,
439                                rep_ctl | HDCP_SHA1_TEXT_32);
440                 sha_text |= bstatus[0] << 8 | bstatus[1];
441                 ret = intel_write_sha_text(dev_priv, sha_text);
442                 if (ret < 0)
443                         return ret;
444                 sha_idx += sizeof(sha_text);
445
446                 /* Write 64 bits of M0 */
447                 intel_de_write(dev_priv, HDCP_REP_CTL,
448                                rep_ctl | HDCP_SHA1_TEXT_0);
449                 for (i = 0; i < 2; i++) {
450                         ret = intel_write_sha_text(dev_priv, 0);
451                         if (ret < 0)
452                                 return ret;
453                         sha_idx += sizeof(sha_text);
454                 }
455
456                 /*
457                  * Terminate the SHA-1 stream by hand. For the other leftover
458                  * cases this is appended by the hardware.
459                  */
460                 intel_de_write(dev_priv, HDCP_REP_CTL,
461                                rep_ctl | HDCP_SHA1_TEXT_32);
462                 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
463                 ret = intel_write_sha_text(dev_priv, sha_text);
464                 if (ret < 0)
465                         return ret;
466                 sha_idx += sizeof(sha_text);
467         } else if (sha_leftovers == 3) {
468                 /* Write 32 bits of text (filled from LSB) */
469                 intel_de_write(dev_priv, HDCP_REP_CTL,
470                                rep_ctl | HDCP_SHA1_TEXT_32);
471                 sha_text |= bstatus[0];
472                 ret = intel_write_sha_text(dev_priv, sha_text);
473                 if (ret < 0)
474                         return ret;
475                 sha_idx += sizeof(sha_text);
476
477                 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
478                 intel_de_write(dev_priv, HDCP_REP_CTL,
479                                rep_ctl | HDCP_SHA1_TEXT_8);
480                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
481                 if (ret < 0)
482                         return ret;
483                 sha_idx += sizeof(sha_text);
484
485                 /* Write 32 bits of M0 */
486                 intel_de_write(dev_priv, HDCP_REP_CTL,
487                                rep_ctl | HDCP_SHA1_TEXT_0);
488                 ret = intel_write_sha_text(dev_priv, 0);
489                 if (ret < 0)
490                         return ret;
491                 sha_idx += sizeof(sha_text);
492
493                 /* Write 8 bits of M0 */
494                 intel_de_write(dev_priv, HDCP_REP_CTL,
495                                rep_ctl | HDCP_SHA1_TEXT_24);
496                 ret = intel_write_sha_text(dev_priv, 0);
497                 if (ret < 0)
498                         return ret;
499                 sha_idx += sizeof(sha_text);
500         } else {
501                 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
502                             sha_leftovers);
503                 return -EINVAL;
504         }
505
506         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
507         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
508         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
509                 ret = intel_write_sha_text(dev_priv, 0);
510                 if (ret < 0)
511                         return ret;
512                 sha_idx += sizeof(sha_text);
513         }
514
515         /*
516          * Last write gets the length of the concatenation in bits. That is:
517          *  - 5 bytes per device
518          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
519          */
520         sha_text = (num_downstream * 5 + 10) * 8;
521         ret = intel_write_sha_text(dev_priv, sha_text);
522         if (ret < 0)
523                 return ret;
524
525         /* Tell the HW we're done with the hash and wait for it to ACK */
526         intel_de_write(dev_priv, HDCP_REP_CTL,
527                        rep_ctl | HDCP_SHA1_COMPLETE_HASH);
528         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
529                                   HDCP_SHA1_COMPLETE, 1)) {
530                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
531                 return -ETIMEDOUT;
532         }
533         if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
534                 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
535                 return -ENXIO;
536         }
537
538         return 0;
539 }
540
541 /* Implements Part 2 of the HDCP authorization procedure */
542 static
543 int intel_hdcp_auth_downstream(struct intel_connector *connector)
544 {
545         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
546         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
547         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
548         u8 bstatus[2], num_downstream, *ksv_fifo;
549         int ret, i, tries = 3;
550
551         ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
552         if (ret) {
553                 drm_dbg_kms(&dev_priv->drm,
554                             "KSV list failed to become ready (%d)\n", ret);
555                 return ret;
556         }
557
558         ret = shim->read_bstatus(dig_port, bstatus);
559         if (ret)
560                 return ret;
561
562         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
563             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
564                 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
565                 return -EPERM;
566         }
567
568         /*
569          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
570          * the HDCP encryption. That implies that repeater can't have its own
571          * display. As there is no consumption of encrypted content in the
572          * repeater with 0 downstream devices, we are failing the
573          * authentication.
574          */
575         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
576         if (num_downstream == 0) {
577                 drm_dbg_kms(&dev_priv->drm,
578                             "Repeater with zero downstream devices\n");
579                 return -EINVAL;
580         }
581
582         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
583         if (!ksv_fifo) {
584                 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
585                 return -ENOMEM;
586         }
587
588         ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
589         if (ret)
590                 goto err;
591
592         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
593                                         num_downstream) > 0) {
594                 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
595                 ret = -EPERM;
596                 goto err;
597         }
598
599         /*
600          * When V prime mismatches, DP Spec mandates re-read of
601          * V prime atleast twice.
602          */
603         for (i = 0; i < tries; i++) {
604                 ret = intel_hdcp_validate_v_prime(connector, shim,
605                                                   ksv_fifo, num_downstream,
606                                                   bstatus);
607                 if (!ret)
608                         break;
609         }
610
611         if (i == tries) {
612                 drm_dbg_kms(&dev_priv->drm,
613                             "V Prime validation failed.(%d)\n", ret);
614                 goto err;
615         }
616
617         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
618                     num_downstream);
619         ret = 0;
620 err:
621         kfree(ksv_fifo);
622         return ret;
623 }
624
625 /* Implements Part 1 of the HDCP authorization procedure */
626 static int intel_hdcp_auth(struct intel_connector *connector)
627 {
628         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
629         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
630         struct intel_hdcp *hdcp = &connector->hdcp;
631         const struct intel_hdcp_shim *shim = hdcp->shim;
632         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
633         enum port port = dig_port->base.port;
634         unsigned long r0_prime_gen_start;
635         int ret, i, tries = 2;
636         union {
637                 u32 reg[2];
638                 u8 shim[DRM_HDCP_AN_LEN];
639         } an;
640         union {
641                 u32 reg[2];
642                 u8 shim[DRM_HDCP_KSV_LEN];
643         } bksv;
644         union {
645                 u32 reg;
646                 u8 shim[DRM_HDCP_RI_LEN];
647         } ri;
648         bool repeater_present, hdcp_capable;
649
650         /*
651          * Detects whether the display is HDCP capable. Although we check for
652          * valid Bksv below, the HDCP over DP spec requires that we check
653          * whether the display supports HDCP before we write An. For HDMI
654          * displays, this is not necessary.
655          */
656         if (shim->hdcp_capable) {
657                 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
658                 if (ret)
659                         return ret;
660                 if (!hdcp_capable) {
661                         drm_dbg_kms(&dev_priv->drm,
662                                     "Panel is not HDCP capable\n");
663                         return -EINVAL;
664                 }
665         }
666
667         /* Initialize An with 2 random values and acquire it */
668         for (i = 0; i < 2; i++)
669                 intel_de_write(dev_priv,
670                                HDCP_ANINIT(dev_priv, cpu_transcoder, port),
671                                get_random_u32());
672         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
673                        HDCP_CONF_CAPTURE_AN);
674
675         /* Wait for An to be acquired */
676         if (intel_de_wait_for_set(dev_priv,
677                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
678                                   HDCP_STATUS_AN_READY, 1)) {
679                 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
680                 return -ETIMEDOUT;
681         }
682
683         an.reg[0] = intel_de_read(dev_priv,
684                                   HDCP_ANLO(dev_priv, cpu_transcoder, port));
685         an.reg[1] = intel_de_read(dev_priv,
686                                   HDCP_ANHI(dev_priv, cpu_transcoder, port));
687         ret = shim->write_an_aksv(dig_port, an.shim);
688         if (ret)
689                 return ret;
690
691         r0_prime_gen_start = jiffies;
692
693         memset(&bksv, 0, sizeof(bksv));
694
695         ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
696         if (ret < 0)
697                 return ret;
698
699         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
700                 drm_err(&dev_priv->drm, "BKSV is revoked\n");
701                 return -EPERM;
702         }
703
704         intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
705                        bksv.reg[0]);
706         intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
707                        bksv.reg[1]);
708
709         ret = shim->repeater_present(dig_port, &repeater_present);
710         if (ret)
711                 return ret;
712         if (repeater_present)
713                 intel_de_write(dev_priv, HDCP_REP_CTL,
714                                intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
715
716         ret = shim->toggle_signalling(dig_port, true);
717         if (ret)
718                 return ret;
719
720         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
721                        HDCP_CONF_AUTH_AND_ENC);
722
723         /* Wait for R0 ready */
724         if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
725                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
726                 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
727                 return -ETIMEDOUT;
728         }
729
730         /*
731          * Wait for R0' to become available. The spec says 100ms from Aksv, but
732          * some monitors can take longer than this. We'll set the timeout at
733          * 300ms just to be sure.
734          *
735          * On DP, there's an R0_READY bit available but no such bit
736          * exists on HDMI. Since the upper-bound is the same, we'll just do
737          * the stupid thing instead of polling on one and not the other.
738          */
739         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
740
741         tries = 3;
742
743         /*
744          * DP HDCP Spec mandates the two more reattempt to read R0, incase
745          * of R0 mismatch.
746          */
747         for (i = 0; i < tries; i++) {
748                 ri.reg = 0;
749                 ret = shim->read_ri_prime(dig_port, ri.shim);
750                 if (ret)
751                         return ret;
752                 intel_de_write(dev_priv,
753                                HDCP_RPRIME(dev_priv, cpu_transcoder, port),
754                                ri.reg);
755
756                 /* Wait for Ri prime match */
757                 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
758                               (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
759                         break;
760         }
761
762         if (i == tries) {
763                 drm_dbg_kms(&dev_priv->drm,
764                             "Timed out waiting for Ri prime match (%x)\n",
765                             intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
766                                           cpu_transcoder, port)));
767                 return -ETIMEDOUT;
768         }
769
770         /* Wait for encryption confirmation */
771         if (intel_de_wait_for_set(dev_priv,
772                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
773                                   HDCP_STATUS_ENC,
774                                   ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
775                 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
776                 return -ETIMEDOUT;
777         }
778
779         /*
780          * XXX: If we have MST-connected devices, we need to enable encryption
781          * on those as well.
782          */
783
784         if (repeater_present)
785                 return intel_hdcp_auth_downstream(connector);
786
787         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
788         return 0;
789 }
790
791 static int _intel_hdcp_disable(struct intel_connector *connector)
792 {
793         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
794         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
795         struct intel_hdcp *hdcp = &connector->hdcp;
796         enum port port = dig_port->base.port;
797         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
798         u32 repeater_ctl;
799         int ret;
800
801         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
802                     connector->base.name, connector->base.base.id);
803
804         hdcp->hdcp_encrypted = false;
805         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
806         if (intel_de_wait_for_clear(dev_priv,
807                                     HDCP_STATUS(dev_priv, cpu_transcoder, port),
808                                     ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
809                 drm_err(&dev_priv->drm,
810                         "Failed to disable HDCP, timeout clearing status\n");
811                 return -ETIMEDOUT;
812         }
813
814         repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
815                                                    port);
816         intel_de_write(dev_priv, HDCP_REP_CTL,
817                        intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
818
819         ret = hdcp->shim->toggle_signalling(dig_port, false);
820         if (ret) {
821                 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
822                 return ret;
823         }
824
825         drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
826         return 0;
827 }
828
829 static int _intel_hdcp_enable(struct intel_connector *connector)
830 {
831         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
832         struct intel_hdcp *hdcp = &connector->hdcp;
833         int i, ret, tries = 3;
834
835         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
836                     connector->base.name, connector->base.base.id);
837
838         if (!hdcp_key_loadable(dev_priv)) {
839                 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
840                 return -ENXIO;
841         }
842
843         for (i = 0; i < KEY_LOAD_TRIES; i++) {
844                 ret = intel_hdcp_load_keys(dev_priv);
845                 if (!ret)
846                         break;
847                 intel_hdcp_clear_keys(dev_priv);
848         }
849         if (ret) {
850                 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
851                         ret);
852                 return ret;
853         }
854
855         /* Incase of authentication failures, HDCP spec expects reauth. */
856         for (i = 0; i < tries; i++) {
857                 ret = intel_hdcp_auth(connector);
858                 if (!ret) {
859                         hdcp->hdcp_encrypted = true;
860                         return 0;
861                 }
862
863                 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
864
865                 /* Ensuring HDCP encryption and signalling are stopped. */
866                 _intel_hdcp_disable(connector);
867         }
868
869         drm_dbg_kms(&dev_priv->drm,
870                     "HDCP authentication failed (%d tries/%d)\n", tries, ret);
871         return ret;
872 }
873
874 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
875 {
876         return container_of(hdcp, struct intel_connector, hdcp);
877 }
878
879 /* Implements Part 3 of the HDCP authorization procedure */
880 static int intel_hdcp_check_link(struct intel_connector *connector)
881 {
882         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
883         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
884         struct intel_hdcp *hdcp = &connector->hdcp;
885         enum port port = dig_port->base.port;
886         enum transcoder cpu_transcoder;
887         int ret = 0;
888
889         mutex_lock(&hdcp->mutex);
890         cpu_transcoder = hdcp->cpu_transcoder;
891
892         /* Check_link valid only when HDCP1.4 is enabled */
893         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
894             !hdcp->hdcp_encrypted) {
895                 ret = -EINVAL;
896                 goto out;
897         }
898
899         if (drm_WARN_ON(&dev_priv->drm,
900                         !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
901                 drm_err(&dev_priv->drm,
902                         "%s:%d HDCP link stopped encryption,%x\n",
903                         connector->base.name, connector->base.base.id,
904                         intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
905                 ret = -ENXIO;
906                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
907                 schedule_work(&hdcp->prop_work);
908                 goto out;
909         }
910
911         if (hdcp->shim->check_link(dig_port)) {
912                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
913                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
914                         schedule_work(&hdcp->prop_work);
915                 }
916                 goto out;
917         }
918
919         drm_dbg_kms(&dev_priv->drm,
920                     "[%s:%d] HDCP link failed, retrying authentication\n",
921                     connector->base.name, connector->base.base.id);
922
923         ret = _intel_hdcp_disable(connector);
924         if (ret) {
925                 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
926                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
927                 schedule_work(&hdcp->prop_work);
928                 goto out;
929         }
930
931         ret = _intel_hdcp_enable(connector);
932         if (ret) {
933                 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
934                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
935                 schedule_work(&hdcp->prop_work);
936                 goto out;
937         }
938
939 out:
940         mutex_unlock(&hdcp->mutex);
941         return ret;
942 }
943
944 static void intel_hdcp_prop_work(struct work_struct *work)
945 {
946         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
947                                                prop_work);
948         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
949         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
950
951         drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
952         mutex_lock(&hdcp->mutex);
953
954         /*
955          * This worker is only used to flip between ENABLED/DESIRED. Either of
956          * those to UNDESIRED is handled by core. If value == UNDESIRED,
957          * we're running just after hdcp has been disabled, so just exit
958          */
959         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
960                 drm_hdcp_update_content_protection(&connector->base,
961                                                    hdcp->value);
962
963         mutex_unlock(&hdcp->mutex);
964         drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
965 }
966
967 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
968 {
969         return INTEL_INFO(dev_priv)->display.has_hdcp &&
970                         (INTEL_GEN(dev_priv) >= 12 || port < PORT_E);
971 }
972
973 static int
974 hdcp2_prepare_ake_init(struct intel_connector *connector,
975                        struct hdcp2_ake_init *ake_data)
976 {
977         struct hdcp_port_data *data = &connector->hdcp.port_data;
978         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
979         struct i915_hdcp_comp_master *comp;
980         int ret;
981
982         mutex_lock(&dev_priv->hdcp_comp_mutex);
983         comp = dev_priv->hdcp_master;
984
985         if (!comp || !comp->ops) {
986                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
987                 return -EINVAL;
988         }
989
990         ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
991         if (ret)
992                 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
993                             ret);
994         mutex_unlock(&dev_priv->hdcp_comp_mutex);
995
996         return ret;
997 }
998
999 static int
1000 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1001                                 struct hdcp2_ake_send_cert *rx_cert,
1002                                 bool *paired,
1003                                 struct hdcp2_ake_no_stored_km *ek_pub_km,
1004                                 size_t *msg_sz)
1005 {
1006         struct hdcp_port_data *data = &connector->hdcp.port_data;
1007         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1008         struct i915_hdcp_comp_master *comp;
1009         int ret;
1010
1011         mutex_lock(&dev_priv->hdcp_comp_mutex);
1012         comp = dev_priv->hdcp_master;
1013
1014         if (!comp || !comp->ops) {
1015                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1016                 return -EINVAL;
1017         }
1018
1019         ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1020                                                          rx_cert, paired,
1021                                                          ek_pub_km, msg_sz);
1022         if (ret < 0)
1023                 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1024                             ret);
1025         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1026
1027         return ret;
1028 }
1029
1030 static int hdcp2_verify_hprime(struct intel_connector *connector,
1031                                struct hdcp2_ake_send_hprime *rx_hprime)
1032 {
1033         struct hdcp_port_data *data = &connector->hdcp.port_data;
1034         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1035         struct i915_hdcp_comp_master *comp;
1036         int ret;
1037
1038         mutex_lock(&dev_priv->hdcp_comp_mutex);
1039         comp = dev_priv->hdcp_master;
1040
1041         if (!comp || !comp->ops) {
1042                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1043                 return -EINVAL;
1044         }
1045
1046         ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1047         if (ret < 0)
1048                 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1049         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1050
1051         return ret;
1052 }
1053
1054 static int
1055 hdcp2_store_pairing_info(struct intel_connector *connector,
1056                          struct hdcp2_ake_send_pairing_info *pairing_info)
1057 {
1058         struct hdcp_port_data *data = &connector->hdcp.port_data;
1059         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1060         struct i915_hdcp_comp_master *comp;
1061         int ret;
1062
1063         mutex_lock(&dev_priv->hdcp_comp_mutex);
1064         comp = dev_priv->hdcp_master;
1065
1066         if (!comp || !comp->ops) {
1067                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1068                 return -EINVAL;
1069         }
1070
1071         ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1072         if (ret < 0)
1073                 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1074                             ret);
1075         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1076
1077         return ret;
1078 }
1079
1080 static int
1081 hdcp2_prepare_lc_init(struct intel_connector *connector,
1082                       struct hdcp2_lc_init *lc_init)
1083 {
1084         struct hdcp_port_data *data = &connector->hdcp.port_data;
1085         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1086         struct i915_hdcp_comp_master *comp;
1087         int ret;
1088
1089         mutex_lock(&dev_priv->hdcp_comp_mutex);
1090         comp = dev_priv->hdcp_master;
1091
1092         if (!comp || !comp->ops) {
1093                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1094                 return -EINVAL;
1095         }
1096
1097         ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1098         if (ret < 0)
1099                 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1100                             ret);
1101         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1102
1103         return ret;
1104 }
1105
1106 static int
1107 hdcp2_verify_lprime(struct intel_connector *connector,
1108                     struct hdcp2_lc_send_lprime *rx_lprime)
1109 {
1110         struct hdcp_port_data *data = &connector->hdcp.port_data;
1111         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1112         struct i915_hdcp_comp_master *comp;
1113         int ret;
1114
1115         mutex_lock(&dev_priv->hdcp_comp_mutex);
1116         comp = dev_priv->hdcp_master;
1117
1118         if (!comp || !comp->ops) {
1119                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1120                 return -EINVAL;
1121         }
1122
1123         ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1124         if (ret < 0)
1125                 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1126                             ret);
1127         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1128
1129         return ret;
1130 }
1131
1132 static int hdcp2_prepare_skey(struct intel_connector *connector,
1133                               struct hdcp2_ske_send_eks *ske_data)
1134 {
1135         struct hdcp_port_data *data = &connector->hdcp.port_data;
1136         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1137         struct i915_hdcp_comp_master *comp;
1138         int ret;
1139
1140         mutex_lock(&dev_priv->hdcp_comp_mutex);
1141         comp = dev_priv->hdcp_master;
1142
1143         if (!comp || !comp->ops) {
1144                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1145                 return -EINVAL;
1146         }
1147
1148         ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1149         if (ret < 0)
1150                 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1151                             ret);
1152         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1153
1154         return ret;
1155 }
1156
1157 static int
1158 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1159                                       struct hdcp2_rep_send_receiverid_list
1160                                                                 *rep_topology,
1161                                       struct hdcp2_rep_send_ack *rep_send_ack)
1162 {
1163         struct hdcp_port_data *data = &connector->hdcp.port_data;
1164         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1165         struct i915_hdcp_comp_master *comp;
1166         int ret;
1167
1168         mutex_lock(&dev_priv->hdcp_comp_mutex);
1169         comp = dev_priv->hdcp_master;
1170
1171         if (!comp || !comp->ops) {
1172                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1173                 return -EINVAL;
1174         }
1175
1176         ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1177                                                          rep_topology,
1178                                                          rep_send_ack);
1179         if (ret < 0)
1180                 drm_dbg_kms(&dev_priv->drm,
1181                             "Verify rep topology failed. %d\n", ret);
1182         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1183
1184         return ret;
1185 }
1186
1187 static int
1188 hdcp2_verify_mprime(struct intel_connector *connector,
1189                     struct hdcp2_rep_stream_ready *stream_ready)
1190 {
1191         struct hdcp_port_data *data = &connector->hdcp.port_data;
1192         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1193         struct i915_hdcp_comp_master *comp;
1194         int ret;
1195
1196         mutex_lock(&dev_priv->hdcp_comp_mutex);
1197         comp = dev_priv->hdcp_master;
1198
1199         if (!comp || !comp->ops) {
1200                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1201                 return -EINVAL;
1202         }
1203
1204         ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1205         if (ret < 0)
1206                 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1207         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1208
1209         return ret;
1210 }
1211
1212 static int hdcp2_authenticate_port(struct intel_connector *connector)
1213 {
1214         struct hdcp_port_data *data = &connector->hdcp.port_data;
1215         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1216         struct i915_hdcp_comp_master *comp;
1217         int ret;
1218
1219         mutex_lock(&dev_priv->hdcp_comp_mutex);
1220         comp = dev_priv->hdcp_master;
1221
1222         if (!comp || !comp->ops) {
1223                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1224                 return -EINVAL;
1225         }
1226
1227         ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1228         if (ret < 0)
1229                 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1230                             ret);
1231         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1232
1233         return ret;
1234 }
1235
1236 static int hdcp2_close_mei_session(struct intel_connector *connector)
1237 {
1238         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1239         struct i915_hdcp_comp_master *comp;
1240         int ret;
1241
1242         mutex_lock(&dev_priv->hdcp_comp_mutex);
1243         comp = dev_priv->hdcp_master;
1244
1245         if (!comp || !comp->ops) {
1246                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1247                 return -EINVAL;
1248         }
1249
1250         ret = comp->ops->close_hdcp_session(comp->mei_dev,
1251                                              &connector->hdcp.port_data);
1252         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1253
1254         return ret;
1255 }
1256
1257 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1258 {
1259         return hdcp2_close_mei_session(connector);
1260 }
1261
1262 /* Authentication flow starts from here */
1263 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1264 {
1265         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1266         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1267         struct intel_hdcp *hdcp = &connector->hdcp;
1268         union {
1269                 struct hdcp2_ake_init ake_init;
1270                 struct hdcp2_ake_send_cert send_cert;
1271                 struct hdcp2_ake_no_stored_km no_stored_km;
1272                 struct hdcp2_ake_send_hprime send_hprime;
1273                 struct hdcp2_ake_send_pairing_info pairing_info;
1274         } msgs;
1275         const struct intel_hdcp_shim *shim = hdcp->shim;
1276         size_t size;
1277         int ret;
1278
1279         /* Init for seq_num */
1280         hdcp->seq_num_v = 0;
1281         hdcp->seq_num_m = 0;
1282
1283         ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1284         if (ret < 0)
1285                 return ret;
1286
1287         ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1288                                   sizeof(msgs.ake_init));
1289         if (ret < 0)
1290                 return ret;
1291
1292         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1293                                  &msgs.send_cert, sizeof(msgs.send_cert));
1294         if (ret < 0)
1295                 return ret;
1296
1297         if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1298                 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1299                 return -EINVAL;
1300         }
1301
1302         hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1303
1304         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1305                                         msgs.send_cert.cert_rx.receiver_id,
1306                                         1) > 0) {
1307                 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1308                 return -EPERM;
1309         }
1310
1311         /*
1312          * Here msgs.no_stored_km will hold msgs corresponding to the km
1313          * stored also.
1314          */
1315         ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1316                                               &hdcp->is_paired,
1317                                               &msgs.no_stored_km, &size);
1318         if (ret < 0)
1319                 return ret;
1320
1321         ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1322         if (ret < 0)
1323                 return ret;
1324
1325         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1326                                  &msgs.send_hprime, sizeof(msgs.send_hprime));
1327         if (ret < 0)
1328                 return ret;
1329
1330         ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1331         if (ret < 0)
1332                 return ret;
1333
1334         if (!hdcp->is_paired) {
1335                 /* Pairing is required */
1336                 ret = shim->read_2_2_msg(dig_port,
1337                                          HDCP_2_2_AKE_SEND_PAIRING_INFO,
1338                                          &msgs.pairing_info,
1339                                          sizeof(msgs.pairing_info));
1340                 if (ret < 0)
1341                         return ret;
1342
1343                 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1344                 if (ret < 0)
1345                         return ret;
1346                 hdcp->is_paired = true;
1347         }
1348
1349         return 0;
1350 }
1351
1352 static int hdcp2_locality_check(struct intel_connector *connector)
1353 {
1354         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1355         struct intel_hdcp *hdcp = &connector->hdcp;
1356         union {
1357                 struct hdcp2_lc_init lc_init;
1358                 struct hdcp2_lc_send_lprime send_lprime;
1359         } msgs;
1360         const struct intel_hdcp_shim *shim = hdcp->shim;
1361         int tries = HDCP2_LC_RETRY_CNT, ret, i;
1362
1363         for (i = 0; i < tries; i++) {
1364                 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1365                 if (ret < 0)
1366                         continue;
1367
1368                 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1369                                       sizeof(msgs.lc_init));
1370                 if (ret < 0)
1371                         continue;
1372
1373                 ret = shim->read_2_2_msg(dig_port,
1374                                          HDCP_2_2_LC_SEND_LPRIME,
1375                                          &msgs.send_lprime,
1376                                          sizeof(msgs.send_lprime));
1377                 if (ret < 0)
1378                         continue;
1379
1380                 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1381                 if (!ret)
1382                         break;
1383         }
1384
1385         return ret;
1386 }
1387
1388 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1389 {
1390         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1391         struct intel_hdcp *hdcp = &connector->hdcp;
1392         struct hdcp2_ske_send_eks send_eks;
1393         int ret;
1394
1395         ret = hdcp2_prepare_skey(connector, &send_eks);
1396         if (ret < 0)
1397                 return ret;
1398
1399         ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1400                                         sizeof(send_eks));
1401         if (ret < 0)
1402                 return ret;
1403
1404         return 0;
1405 }
1406
1407 static
1408 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1409 {
1410         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1411         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1412         struct intel_hdcp *hdcp = &connector->hdcp;
1413         union {
1414                 struct hdcp2_rep_stream_manage stream_manage;
1415                 struct hdcp2_rep_stream_ready stream_ready;
1416         } msgs;
1417         const struct intel_hdcp_shim *shim = hdcp->shim;
1418         int ret;
1419
1420         /* Prepare RepeaterAuth_Stream_Manage msg */
1421         msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1422         drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1423
1424         /* K no of streams is fixed as 1. Stored as big-endian. */
1425         msgs.stream_manage.k = cpu_to_be16(1);
1426
1427         /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1428         msgs.stream_manage.streams[0].stream_id = 0;
1429         msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1430
1431         /* Send it to Repeater */
1432         ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1433                                   sizeof(msgs.stream_manage));
1434         if (ret < 0)
1435                 return ret;
1436
1437         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1438                                  &msgs.stream_ready, sizeof(msgs.stream_ready));
1439         if (ret < 0)
1440                 return ret;
1441
1442         hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1443         hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1444
1445         ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1446         if (ret < 0)
1447                 return ret;
1448
1449         hdcp->seq_num_m++;
1450
1451         if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1452                 drm_dbg_kms(&i915->drm, "seq_num_m roll over.\n");
1453                 return -1;
1454         }
1455
1456         return 0;
1457 }
1458
1459 static
1460 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1461 {
1462         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1463         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1464         struct intel_hdcp *hdcp = &connector->hdcp;
1465         union {
1466                 struct hdcp2_rep_send_receiverid_list recvid_list;
1467                 struct hdcp2_rep_send_ack rep_ack;
1468         } msgs;
1469         const struct intel_hdcp_shim *shim = hdcp->shim;
1470         u32 seq_num_v, device_cnt;
1471         u8 *rx_info;
1472         int ret;
1473
1474         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1475                                  &msgs.recvid_list, sizeof(msgs.recvid_list));
1476         if (ret < 0)
1477                 return ret;
1478
1479         rx_info = msgs.recvid_list.rx_info;
1480
1481         if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1482             HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1483                 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1484                 return -EINVAL;
1485         }
1486
1487         /* Converting and Storing the seq_num_v to local variable as DWORD */
1488         seq_num_v =
1489                 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1490
1491         if (!hdcp->hdcp2_encrypted && seq_num_v) {
1492                 drm_dbg_kms(&dev_priv->drm,
1493                             "Non zero Seq_num_v at first RecvId_List msg\n");
1494                 return -EINVAL;
1495         }
1496
1497         if (seq_num_v < hdcp->seq_num_v) {
1498                 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1499                 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1500                 return -EINVAL;
1501         }
1502
1503         device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1504                       HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1505         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1506                                         msgs.recvid_list.receiver_ids,
1507                                         device_cnt) > 0) {
1508                 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1509                 return -EPERM;
1510         }
1511
1512         ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1513                                                     &msgs.recvid_list,
1514                                                     &msgs.rep_ack);
1515         if (ret < 0)
1516                 return ret;
1517
1518         hdcp->seq_num_v = seq_num_v;
1519         ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1520                                   sizeof(msgs.rep_ack));
1521         if (ret < 0)
1522                 return ret;
1523
1524         return 0;
1525 }
1526
1527 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1528 {
1529         int ret;
1530
1531         ret = hdcp2_authenticate_repeater_topology(connector);
1532         if (ret < 0)
1533                 return ret;
1534
1535         return hdcp2_propagate_stream_management_info(connector);
1536 }
1537
1538 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1539 {
1540         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1541         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1542         struct intel_hdcp *hdcp = &connector->hdcp;
1543         const struct intel_hdcp_shim *shim = hdcp->shim;
1544         int ret;
1545
1546         ret = hdcp2_authentication_key_exchange(connector);
1547         if (ret < 0) {
1548                 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1549                 return ret;
1550         }
1551
1552         ret = hdcp2_locality_check(connector);
1553         if (ret < 0) {
1554                 drm_dbg_kms(&i915->drm,
1555                             "Locality Check failed. Err : %d\n", ret);
1556                 return ret;
1557         }
1558
1559         ret = hdcp2_session_key_exchange(connector);
1560         if (ret < 0) {
1561                 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1562                 return ret;
1563         }
1564
1565         if (shim->config_stream_type) {
1566                 ret = shim->config_stream_type(dig_port,
1567                                                hdcp->is_repeater,
1568                                                hdcp->content_type);
1569                 if (ret < 0)
1570                         return ret;
1571         }
1572
1573         if (hdcp->is_repeater) {
1574                 ret = hdcp2_authenticate_repeater(connector);
1575                 if (ret < 0) {
1576                         drm_dbg_kms(&i915->drm,
1577                                     "Repeater Auth Failed. Err: %d\n", ret);
1578                         return ret;
1579                 }
1580         }
1581
1582         hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1583         ret = hdcp2_authenticate_port(connector);
1584         if (ret < 0)
1585                 return ret;
1586
1587         return ret;
1588 }
1589
1590 static int hdcp2_enable_encryption(struct intel_connector *connector)
1591 {
1592         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1593         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1594         struct intel_hdcp *hdcp = &connector->hdcp;
1595         enum port port = dig_port->base.port;
1596         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1597         int ret;
1598
1599         drm_WARN_ON(&dev_priv->drm,
1600                     intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1601                     LINK_ENCRYPTION_STATUS);
1602         if (hdcp->shim->toggle_signalling) {
1603                 ret = hdcp->shim->toggle_signalling(dig_port, true);
1604                 if (ret) {
1605                         drm_err(&dev_priv->drm,
1606                                 "Failed to enable HDCP signalling. %d\n",
1607                                 ret);
1608                         return ret;
1609                 }
1610         }
1611
1612         if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1613             LINK_AUTH_STATUS) {
1614                 /* Link is Authenticated. Now set for Encryption */
1615                 intel_de_write(dev_priv,
1616                                HDCP2_CTL(dev_priv, cpu_transcoder, port),
1617                                intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1618         }
1619
1620         ret = intel_de_wait_for_set(dev_priv,
1621                                     HDCP2_STATUS(dev_priv, cpu_transcoder,
1622                                                  port),
1623                                     LINK_ENCRYPTION_STATUS,
1624                                     ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1625
1626         return ret;
1627 }
1628
1629 static int hdcp2_disable_encryption(struct intel_connector *connector)
1630 {
1631         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1632         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1633         struct intel_hdcp *hdcp = &connector->hdcp;
1634         enum port port = dig_port->base.port;
1635         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1636         int ret;
1637
1638         drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1639                                       LINK_ENCRYPTION_STATUS));
1640
1641         intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1642                        intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1643
1644         ret = intel_de_wait_for_clear(dev_priv,
1645                                       HDCP2_STATUS(dev_priv, cpu_transcoder,
1646                                                    port),
1647                                       LINK_ENCRYPTION_STATUS,
1648                                       ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1649         if (ret == -ETIMEDOUT)
1650                 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1651
1652         if (hdcp->shim->toggle_signalling) {
1653                 ret = hdcp->shim->toggle_signalling(dig_port, false);
1654                 if (ret) {
1655                         drm_err(&dev_priv->drm,
1656                                 "Failed to disable HDCP signalling. %d\n",
1657                                 ret);
1658                         return ret;
1659                 }
1660         }
1661
1662         return ret;
1663 }
1664
1665 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1666 {
1667         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1668         int ret, i, tries = 3;
1669
1670         for (i = 0; i < tries; i++) {
1671                 ret = hdcp2_authenticate_sink(connector);
1672                 if (!ret)
1673                         break;
1674
1675                 /* Clearing the mei hdcp session */
1676                 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1677                             i + 1, tries, ret);
1678                 if (hdcp2_deauthenticate_port(connector) < 0)
1679                         drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1680         }
1681
1682         if (i != tries) {
1683                 /*
1684                  * Ensuring the required 200mSec min time interval between
1685                  * Session Key Exchange and encryption.
1686                  */
1687                 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1688                 ret = hdcp2_enable_encryption(connector);
1689                 if (ret < 0) {
1690                         drm_dbg_kms(&i915->drm,
1691                                     "Encryption Enable Failed.(%d)\n", ret);
1692                         if (hdcp2_deauthenticate_port(connector) < 0)
1693                                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1694                 }
1695         }
1696
1697         return ret;
1698 }
1699
1700 static int _intel_hdcp2_enable(struct intel_connector *connector)
1701 {
1702         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1703         struct intel_hdcp *hdcp = &connector->hdcp;
1704         int ret;
1705
1706         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1707                     connector->base.name, connector->base.base.id,
1708                     hdcp->content_type);
1709
1710         ret = hdcp2_authenticate_and_encrypt(connector);
1711         if (ret) {
1712                 drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1713                             hdcp->content_type, ret);
1714                 return ret;
1715         }
1716
1717         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1718                     connector->base.name, connector->base.base.id,
1719                     hdcp->content_type);
1720
1721         hdcp->hdcp2_encrypted = true;
1722         return 0;
1723 }
1724
1725 static int _intel_hdcp2_disable(struct intel_connector *connector)
1726 {
1727         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1728         int ret;
1729
1730         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1731                     connector->base.name, connector->base.base.id);
1732
1733         ret = hdcp2_disable_encryption(connector);
1734
1735         if (hdcp2_deauthenticate_port(connector) < 0)
1736                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1737
1738         connector->hdcp.hdcp2_encrypted = false;
1739
1740         return ret;
1741 }
1742
1743 /* Implements the Link Integrity Check for HDCP2.2 */
1744 static int intel_hdcp2_check_link(struct intel_connector *connector)
1745 {
1746         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1747         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1748         struct intel_hdcp *hdcp = &connector->hdcp;
1749         enum port port = dig_port->base.port;
1750         enum transcoder cpu_transcoder;
1751         int ret = 0;
1752
1753         mutex_lock(&hdcp->mutex);
1754         cpu_transcoder = hdcp->cpu_transcoder;
1755
1756         /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1757         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1758             !hdcp->hdcp2_encrypted) {
1759                 ret = -EINVAL;
1760                 goto out;
1761         }
1762
1763         if (drm_WARN_ON(&dev_priv->drm,
1764                         !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
1765                 drm_err(&dev_priv->drm,
1766                         "HDCP2.2 link stopped the encryption, %x\n",
1767                         intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
1768                 ret = -ENXIO;
1769                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1770                 schedule_work(&hdcp->prop_work);
1771                 goto out;
1772         }
1773
1774         ret = hdcp->shim->check_2_2_link(dig_port);
1775         if (ret == HDCP_LINK_PROTECTED) {
1776                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1777                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1778                         schedule_work(&hdcp->prop_work);
1779                 }
1780                 goto out;
1781         }
1782
1783         if (ret == HDCP_TOPOLOGY_CHANGE) {
1784                 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1785                         goto out;
1786
1787                 drm_dbg_kms(&dev_priv->drm,
1788                             "HDCP2.2 Downstream topology change\n");
1789                 ret = hdcp2_authenticate_repeater_topology(connector);
1790                 if (!ret) {
1791                         hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
1792                         schedule_work(&hdcp->prop_work);
1793                         goto out;
1794                 }
1795                 drm_dbg_kms(&dev_priv->drm,
1796                             "[%s:%d] Repeater topology auth failed.(%d)\n",
1797                             connector->base.name, connector->base.base.id,
1798                             ret);
1799         } else {
1800                 drm_dbg_kms(&dev_priv->drm,
1801                             "[%s:%d] HDCP2.2 link failed, retrying auth\n",
1802                             connector->base.name, connector->base.base.id);
1803         }
1804
1805         ret = _intel_hdcp2_disable(connector);
1806         if (ret) {
1807                 drm_err(&dev_priv->drm,
1808                         "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1809                         connector->base.name, connector->base.base.id, ret);
1810                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1811                 schedule_work(&hdcp->prop_work);
1812                 goto out;
1813         }
1814
1815         ret = _intel_hdcp2_enable(connector);
1816         if (ret) {
1817                 drm_dbg_kms(&dev_priv->drm,
1818                             "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1819                             connector->base.name, connector->base.base.id,
1820                             ret);
1821                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
1822                 schedule_work(&hdcp->prop_work);
1823                 goto out;
1824         }
1825
1826 out:
1827         mutex_unlock(&hdcp->mutex);
1828         return ret;
1829 }
1830
1831 static void intel_hdcp_check_work(struct work_struct *work)
1832 {
1833         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1834                                                struct intel_hdcp,
1835                                                check_work);
1836         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1837
1838         if (!intel_hdcp2_check_link(connector))
1839                 schedule_delayed_work(&hdcp->check_work,
1840                                       DRM_HDCP2_CHECK_PERIOD_MS);
1841         else if (!intel_hdcp_check_link(connector))
1842                 schedule_delayed_work(&hdcp->check_work,
1843                                       DRM_HDCP_CHECK_PERIOD_MS);
1844 }
1845
1846 static int i915_hdcp_component_bind(struct device *i915_kdev,
1847                                     struct device *mei_kdev, void *data)
1848 {
1849         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1850
1851         drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
1852         mutex_lock(&dev_priv->hdcp_comp_mutex);
1853         dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1854         dev_priv->hdcp_master->mei_dev = mei_kdev;
1855         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1856
1857         return 0;
1858 }
1859
1860 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1861                                        struct device *mei_kdev, void *data)
1862 {
1863         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1864
1865         drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
1866         mutex_lock(&dev_priv->hdcp_comp_mutex);
1867         dev_priv->hdcp_master = NULL;
1868         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1869 }
1870
1871 static const struct component_ops i915_hdcp_component_ops = {
1872         .bind   = i915_hdcp_component_bind,
1873         .unbind = i915_hdcp_component_unbind,
1874 };
1875
1876 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
1877 {
1878         switch (port) {
1879         case PORT_A:
1880                 return MEI_DDI_A;
1881         case PORT_B ... PORT_F:
1882                 return (enum mei_fw_ddi)port;
1883         default:
1884                 return MEI_DDI_INVALID_PORT;
1885         }
1886 }
1887
1888 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
1889 {
1890         switch (cpu_transcoder) {
1891         case TRANSCODER_A ... TRANSCODER_D:
1892                 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
1893         default: /* eDP, DSI TRANSCODERS are non HDCP capable */
1894                 return MEI_INVALID_TRANSCODER;
1895         }
1896 }
1897
1898 static int initialize_hdcp_port_data(struct intel_connector *connector,
1899                                      const struct intel_hdcp_shim *shim)
1900 {
1901         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1902         struct intel_hdcp *hdcp = &connector->hdcp;
1903         struct hdcp_port_data *data = &hdcp->port_data;
1904
1905         if (INTEL_GEN(dev_priv) < 12)
1906                 data->fw_ddi =
1907                         intel_get_mei_fw_ddi_index(intel_attached_encoder(connector)->port);
1908         else
1909                 /*
1910                  * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
1911                  * with zero(INVALID PORT index).
1912                  */
1913                 data->fw_ddi = MEI_DDI_INVALID_PORT;
1914
1915         /*
1916          * As associated transcoder is set and modified at modeset, here fw_tc
1917          * is initialized to zero (invalid transcoder index). This will be
1918          * retained for <Gen12 forever.
1919          */
1920         data->fw_tc = MEI_INVALID_TRANSCODER;
1921
1922         data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1923         data->protocol = (u8)shim->protocol;
1924
1925         data->k = 1;
1926         if (!data->streams)
1927                 data->streams = kcalloc(data->k,
1928                                         sizeof(struct hdcp2_streamid_type),
1929                                         GFP_KERNEL);
1930         if (!data->streams) {
1931                 drm_err(&dev_priv->drm, "Out of Memory\n");
1932                 return -ENOMEM;
1933         }
1934
1935         data->streams[0].stream_id = 0;
1936         data->streams[0].stream_type = hdcp->content_type;
1937
1938         return 0;
1939 }
1940
1941 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1942 {
1943         if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1944                 return false;
1945
1946         return (INTEL_GEN(dev_priv) >= 10 ||
1947                 IS_GEMINILAKE(dev_priv) ||
1948                 IS_KABYLAKE(dev_priv) ||
1949                 IS_COFFEELAKE(dev_priv) ||
1950                 IS_COMETLAKE(dev_priv));
1951 }
1952
1953 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
1954 {
1955         int ret;
1956
1957         if (!is_hdcp2_supported(dev_priv))
1958                 return;
1959
1960         mutex_lock(&dev_priv->hdcp_comp_mutex);
1961         drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
1962
1963         dev_priv->hdcp_comp_added = true;
1964         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1965         ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
1966                                   I915_COMPONENT_HDCP);
1967         if (ret < 0) {
1968                 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
1969                             ret);
1970                 mutex_lock(&dev_priv->hdcp_comp_mutex);
1971                 dev_priv->hdcp_comp_added = false;
1972                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1973                 return;
1974         }
1975 }
1976
1977 static void intel_hdcp2_init(struct intel_connector *connector,
1978                              const struct intel_hdcp_shim *shim)
1979 {
1980         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1981         struct intel_hdcp *hdcp = &connector->hdcp;
1982         int ret;
1983
1984         ret = initialize_hdcp_port_data(connector, shim);
1985         if (ret) {
1986                 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
1987                 return;
1988         }
1989
1990         hdcp->hdcp2_supported = true;
1991 }
1992
1993 int intel_hdcp_init(struct intel_connector *connector,
1994                     const struct intel_hdcp_shim *shim)
1995 {
1996         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1997         struct intel_hdcp *hdcp = &connector->hdcp;
1998         int ret;
1999
2000         if (!shim)
2001                 return -EINVAL;
2002
2003         if (is_hdcp2_supported(dev_priv))
2004                 intel_hdcp2_init(connector, shim);
2005
2006         ret =
2007         drm_connector_attach_content_protection_property(&connector->base,
2008                                                          hdcp->hdcp2_supported);
2009         if (ret) {
2010                 hdcp->hdcp2_supported = false;
2011                 kfree(hdcp->port_data.streams);
2012                 return ret;
2013         }
2014
2015         hdcp->shim = shim;
2016         mutex_init(&hdcp->mutex);
2017         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2018         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2019         init_waitqueue_head(&hdcp->cp_irq_queue);
2020
2021         return 0;
2022 }
2023
2024 int intel_hdcp_enable(struct intel_connector *connector,
2025                       enum transcoder cpu_transcoder, u8 content_type)
2026 {
2027         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2028         struct intel_hdcp *hdcp = &connector->hdcp;
2029         unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2030         int ret = -EINVAL;
2031
2032         if (!hdcp->shim)
2033                 return -ENOENT;
2034
2035         mutex_lock(&hdcp->mutex);
2036         drm_WARN_ON(&dev_priv->drm,
2037                     hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2038         hdcp->content_type = content_type;
2039
2040         if (INTEL_GEN(dev_priv) >= 12) {
2041                 hdcp->cpu_transcoder = cpu_transcoder;
2042                 hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
2043         }
2044
2045         /*
2046          * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2047          * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2048          */
2049         if (intel_hdcp2_capable(connector)) {
2050                 ret = _intel_hdcp2_enable(connector);
2051                 if (!ret)
2052                         check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2053         }
2054
2055         /*
2056          * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2057          * be attempted.
2058          */
2059         if (ret && intel_hdcp_capable(connector) &&
2060             hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2061                 ret = _intel_hdcp_enable(connector);
2062         }
2063
2064         if (!ret) {
2065                 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2066                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_ENABLED;
2067                 schedule_work(&hdcp->prop_work);
2068         }
2069
2070         mutex_unlock(&hdcp->mutex);
2071         return ret;
2072 }
2073
2074 int intel_hdcp_disable(struct intel_connector *connector)
2075 {
2076         struct intel_hdcp *hdcp = &connector->hdcp;
2077         int ret = 0;
2078
2079         if (!hdcp->shim)
2080                 return -ENOENT;
2081
2082         mutex_lock(&hdcp->mutex);
2083
2084         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
2085                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_UNDESIRED;
2086                 if (hdcp->hdcp2_encrypted)
2087                         ret = _intel_hdcp2_disable(connector);
2088                 else if (hdcp->hdcp_encrypted)
2089                         ret = _intel_hdcp_disable(connector);
2090         }
2091
2092         mutex_unlock(&hdcp->mutex);
2093         cancel_delayed_work_sync(&hdcp->check_work);
2094         return ret;
2095 }
2096
2097 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2098                             struct intel_encoder *encoder,
2099                             const struct intel_crtc_state *crtc_state,
2100                             const struct drm_connector_state *conn_state)
2101 {
2102         struct intel_connector *connector =
2103                                 to_intel_connector(conn_state->connector);
2104         struct intel_hdcp *hdcp = &connector->hdcp;
2105         bool content_protection_type_changed =
2106                 (conn_state->hdcp_content_type != hdcp->content_type &&
2107                  conn_state->content_protection !=
2108                  DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2109         bool desired_and_not_enabled = false;
2110
2111         /*
2112          * During the HDCP encryption session if Type change is requested,
2113          * disable the HDCP and reenable it with new TYPE value.
2114          */
2115         if (conn_state->content_protection ==
2116             DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2117             content_protection_type_changed)
2118                 intel_hdcp_disable(connector);
2119
2120         /*
2121          * Mark the hdcp state as DESIRED after the hdcp disable of type
2122          * change procedure.
2123          */
2124         if (content_protection_type_changed) {
2125                 mutex_lock(&hdcp->mutex);
2126                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2127                 schedule_work(&hdcp->prop_work);
2128                 mutex_unlock(&hdcp->mutex);
2129         }
2130
2131         if (conn_state->content_protection ==
2132             DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2133                 mutex_lock(&hdcp->mutex);
2134                 /* Avoid enabling hdcp, if it already ENABLED */
2135                 desired_and_not_enabled =
2136                         hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2137                 mutex_unlock(&hdcp->mutex);
2138         }
2139
2140         if (desired_and_not_enabled || content_protection_type_changed)
2141                 intel_hdcp_enable(connector,
2142                                   crtc_state->cpu_transcoder,
2143                                   (u8)conn_state->hdcp_content_type);
2144 }
2145
2146 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2147 {
2148         mutex_lock(&dev_priv->hdcp_comp_mutex);
2149         if (!dev_priv->hdcp_comp_added) {
2150                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2151                 return;
2152         }
2153
2154         dev_priv->hdcp_comp_added = false;
2155         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2156
2157         component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2158 }
2159
2160 void intel_hdcp_cleanup(struct intel_connector *connector)
2161 {
2162         if (!connector->hdcp.shim)
2163                 return;
2164
2165         mutex_lock(&connector->hdcp.mutex);
2166         kfree(connector->hdcp.port_data.streams);
2167         mutex_unlock(&connector->hdcp.mutex);
2168 }
2169
2170 void intel_hdcp_atomic_check(struct drm_connector *connector,
2171                              struct drm_connector_state *old_state,
2172                              struct drm_connector_state *new_state)
2173 {
2174         u64 old_cp = old_state->content_protection;
2175         u64 new_cp = new_state->content_protection;
2176         struct drm_crtc_state *crtc_state;
2177
2178         if (!new_state->crtc) {
2179                 /*
2180                  * If the connector is being disabled with CP enabled, mark it
2181                  * desired so it's re-enabled when the connector is brought back
2182                  */
2183                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2184                         new_state->content_protection =
2185                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2186                 return;
2187         }
2188
2189         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2190                                                    new_state->crtc);
2191         /*
2192          * Fix the HDCP uapi content protection state in case of modeset.
2193          * FIXME: As per HDCP content protection property uapi doc, an uevent()
2194          * need to be sent if there is transition from ENABLED->DESIRED.
2195          */
2196         if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2197             (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2198             new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2199                 new_state->content_protection =
2200                         DRM_MODE_CONTENT_PROTECTION_DESIRED;
2201
2202         /*
2203          * Nothing to do if the state didn't change, or HDCP was activated since
2204          * the last commit. And also no change in hdcp content type.
2205          */
2206         if (old_cp == new_cp ||
2207             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2208              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2209                 if (old_state->hdcp_content_type ==
2210                                 new_state->hdcp_content_type)
2211                         return;
2212         }
2213
2214         crtc_state->mode_changed = true;
2215 }
2216
2217 /* Handles the CP_IRQ raised from the DP HDCP sink */
2218 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2219 {
2220         struct intel_hdcp *hdcp = &connector->hdcp;
2221
2222         if (!hdcp->shim)
2223                 return;
2224
2225         atomic_inc(&connector->hdcp.cp_irq_count);
2226         wake_up_all(&connector->hdcp.cp_irq_queue);
2227
2228         schedule_delayed_work(&hdcp->check_work, 0);
2229 }