Merge tag 'arc-5.10-rc1' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_hdcp.c
1 /* SPDX-License-Identifier: MIT */
2 /*
3  * Copyright (C) 2017 Google, Inc.
4  * Copyright _ 2017-2019, Intel Corporation.
5  *
6  * Authors:
7  * Sean Paul <seanpaul@chromium.org>
8  * Ramalingam C <ramalingam.c@intel.com>
9  */
10
11 #include <linux/component.h>
12 #include <linux/i2c.h>
13 #include <linux/random.h>
14
15 #include <drm/drm_hdcp.h>
16 #include <drm/i915_component.h>
17
18 #include "i915_reg.h"
19 #include "intel_display_power.h"
20 #include "intel_display_types.h"
21 #include "intel_hdcp.h"
22 #include "intel_sideband.h"
23 #include "intel_connector.h"
24
25 #define KEY_LOAD_TRIES  5
26 #define ENCRYPT_STATUS_CHANGE_TIMEOUT_MS        50
27 #define HDCP2_LC_RETRY_CNT                      3
28
29 static
30 bool intel_hdcp_is_ksv_valid(u8 *ksv)
31 {
32         int i, ones = 0;
33         /* KSV has 20 1's and 20 0's */
34         for (i = 0; i < DRM_HDCP_KSV_LEN; i++)
35                 ones += hweight8(ksv[i]);
36         if (ones != 20)
37                 return false;
38
39         return true;
40 }
41
42 static
43 int intel_hdcp_read_valid_bksv(struct intel_digital_port *dig_port,
44                                const struct intel_hdcp_shim *shim, u8 *bksv)
45 {
46         struct drm_i915_private *i915 = to_i915(dig_port->base.base.dev);
47         int ret, i, tries = 2;
48
49         /* HDCP spec states that we must retry the bksv if it is invalid */
50         for (i = 0; i < tries; i++) {
51                 ret = shim->read_bksv(dig_port, bksv);
52                 if (ret)
53                         return ret;
54                 if (intel_hdcp_is_ksv_valid(bksv))
55                         break;
56         }
57         if (i == tries) {
58                 drm_dbg_kms(&i915->drm, "Bksv is invalid\n");
59                 return -ENODEV;
60         }
61
62         return 0;
63 }
64
65 /* Is HDCP1.4 capable on Platform and Sink */
66 bool intel_hdcp_capable(struct intel_connector *connector)
67 {
68         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
69         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
70         bool capable = false;
71         u8 bksv[5];
72
73         if (!shim)
74                 return capable;
75
76         if (shim->hdcp_capable) {
77                 shim->hdcp_capable(dig_port, &capable);
78         } else {
79                 if (!intel_hdcp_read_valid_bksv(dig_port, shim, bksv))
80                         capable = true;
81         }
82
83         return capable;
84 }
85
86 /* Is HDCP2.2 capable on Platform and Sink */
87 bool intel_hdcp2_capable(struct intel_connector *connector)
88 {
89         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
90         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
91         struct intel_hdcp *hdcp = &connector->hdcp;
92         bool capable = false;
93
94         /* I915 support for HDCP2.2 */
95         if (!hdcp->hdcp2_supported)
96                 return false;
97
98         /* MEI interface is solid */
99         mutex_lock(&dev_priv->hdcp_comp_mutex);
100         if (!dev_priv->hdcp_comp_added ||  !dev_priv->hdcp_master) {
101                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
102                 return false;
103         }
104         mutex_unlock(&dev_priv->hdcp_comp_mutex);
105
106         /* Sink's capability for HDCP2.2 */
107         hdcp->shim->hdcp_2_2_capable(dig_port, &capable);
108
109         return capable;
110 }
111
112 static bool intel_hdcp_in_use(struct drm_i915_private *dev_priv,
113                               enum transcoder cpu_transcoder, enum port port)
114 {
115         return intel_de_read(dev_priv,
116                              HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
117                HDCP_STATUS_ENC;
118 }
119
120 static bool intel_hdcp2_in_use(struct drm_i915_private *dev_priv,
121                                enum transcoder cpu_transcoder, enum port port)
122 {
123         return intel_de_read(dev_priv,
124                              HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
125                LINK_ENCRYPTION_STATUS;
126 }
127
128 static int intel_hdcp_poll_ksv_fifo(struct intel_digital_port *dig_port,
129                                     const struct intel_hdcp_shim *shim)
130 {
131         int ret, read_ret;
132         bool ksv_ready;
133
134         /* Poll for ksv list ready (spec says max time allowed is 5s) */
135         ret = __wait_for(read_ret = shim->read_ksv_ready(dig_port,
136                                                          &ksv_ready),
137                          read_ret || ksv_ready, 5 * 1000 * 1000, 1000,
138                          100 * 1000);
139         if (ret)
140                 return ret;
141         if (read_ret)
142                 return read_ret;
143         if (!ksv_ready)
144                 return -ETIMEDOUT;
145
146         return 0;
147 }
148
149 static bool hdcp_key_loadable(struct drm_i915_private *dev_priv)
150 {
151         enum i915_power_well_id id;
152         intel_wakeref_t wakeref;
153         bool enabled = false;
154
155         /*
156          * On HSW and BDW, Display HW loads the Key as soon as Display resumes.
157          * On all BXT+, SW can load the keys only when the PW#1 is turned on.
158          */
159         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
160                 id = HSW_DISP_PW_GLOBAL;
161         else
162                 id = SKL_DISP_PW_1;
163
164         /* PG1 (power well #1) needs to be enabled */
165         with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref)
166                 enabled = intel_display_power_well_is_enabled(dev_priv, id);
167
168         /*
169          * Another req for hdcp key loadability is enabled state of pll for
170          * cdclk. Without active crtc we wont land here. So we are assuming that
171          * cdclk is already on.
172          */
173
174         return enabled;
175 }
176
177 static void intel_hdcp_clear_keys(struct drm_i915_private *dev_priv)
178 {
179         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_CLEAR_KEYS_TRIGGER);
180         intel_de_write(dev_priv, HDCP_KEY_STATUS,
181                        HDCP_KEY_LOAD_DONE | HDCP_KEY_LOAD_STATUS | HDCP_FUSE_IN_PROGRESS | HDCP_FUSE_ERROR | HDCP_FUSE_DONE);
182 }
183
184 static int intel_hdcp_load_keys(struct drm_i915_private *dev_priv)
185 {
186         int ret;
187         u32 val;
188
189         val = intel_de_read(dev_priv, HDCP_KEY_STATUS);
190         if ((val & HDCP_KEY_LOAD_DONE) && (val & HDCP_KEY_LOAD_STATUS))
191                 return 0;
192
193         /*
194          * On HSW and BDW HW loads the HDCP1.4 Key when Display comes
195          * out of reset. So if Key is not already loaded, its an error state.
196          */
197         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
198                 if (!(intel_de_read(dev_priv, HDCP_KEY_STATUS) & HDCP_KEY_LOAD_DONE))
199                         return -ENXIO;
200
201         /*
202          * Initiate loading the HDCP key from fuses.
203          *
204          * BXT+ platforms, HDCP key needs to be loaded by SW. Only Gen 9
205          * platforms except BXT and GLK, differ in the key load trigger process
206          * from other platforms. So GEN9_BC uses the GT Driver Mailbox i/f.
207          */
208         if (IS_GEN9_BC(dev_priv)) {
209                 ret = sandybridge_pcode_write(dev_priv,
210                                               SKL_PCODE_LOAD_HDCP_KEYS, 1);
211                 if (ret) {
212                         drm_err(&dev_priv->drm,
213                                 "Failed to initiate HDCP key load (%d)\n",
214                                 ret);
215                         return ret;
216                 }
217         } else {
218                 intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_KEY_LOAD_TRIGGER);
219         }
220
221         /* Wait for the keys to load (500us) */
222         ret = __intel_wait_for_register(&dev_priv->uncore, HDCP_KEY_STATUS,
223                                         HDCP_KEY_LOAD_DONE, HDCP_KEY_LOAD_DONE,
224                                         10, 1, &val);
225         if (ret)
226                 return ret;
227         else if (!(val & HDCP_KEY_LOAD_STATUS))
228                 return -ENXIO;
229
230         /* Send Aksv over to PCH display for use in authentication */
231         intel_de_write(dev_priv, HDCP_KEY_CONF, HDCP_AKSV_SEND_TRIGGER);
232
233         return 0;
234 }
235
236 /* Returns updated SHA-1 index */
237 static int intel_write_sha_text(struct drm_i915_private *dev_priv, u32 sha_text)
238 {
239         intel_de_write(dev_priv, HDCP_SHA_TEXT, sha_text);
240         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL, HDCP_SHA1_READY, 1)) {
241                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 ready\n");
242                 return -ETIMEDOUT;
243         }
244         return 0;
245 }
246
247 static
248 u32 intel_hdcp_get_repeater_ctl(struct drm_i915_private *dev_priv,
249                                 enum transcoder cpu_transcoder, enum port port)
250 {
251         if (INTEL_GEN(dev_priv) >= 12) {
252                 switch (cpu_transcoder) {
253                 case TRANSCODER_A:
254                         return HDCP_TRANSA_REP_PRESENT |
255                                HDCP_TRANSA_SHA1_M0;
256                 case TRANSCODER_B:
257                         return HDCP_TRANSB_REP_PRESENT |
258                                HDCP_TRANSB_SHA1_M0;
259                 case TRANSCODER_C:
260                         return HDCP_TRANSC_REP_PRESENT |
261                                HDCP_TRANSC_SHA1_M0;
262                 case TRANSCODER_D:
263                         return HDCP_TRANSD_REP_PRESENT |
264                                HDCP_TRANSD_SHA1_M0;
265                 default:
266                         drm_err(&dev_priv->drm, "Unknown transcoder %d\n",
267                                 cpu_transcoder);
268                         return -EINVAL;
269                 }
270         }
271
272         switch (port) {
273         case PORT_A:
274                 return HDCP_DDIA_REP_PRESENT | HDCP_DDIA_SHA1_M0;
275         case PORT_B:
276                 return HDCP_DDIB_REP_PRESENT | HDCP_DDIB_SHA1_M0;
277         case PORT_C:
278                 return HDCP_DDIC_REP_PRESENT | HDCP_DDIC_SHA1_M0;
279         case PORT_D:
280                 return HDCP_DDID_REP_PRESENT | HDCP_DDID_SHA1_M0;
281         case PORT_E:
282                 return HDCP_DDIE_REP_PRESENT | HDCP_DDIE_SHA1_M0;
283         default:
284                 drm_err(&dev_priv->drm, "Unknown port %d\n", port);
285                 return -EINVAL;
286         }
287 }
288
289 static
290 int intel_hdcp_validate_v_prime(struct intel_connector *connector,
291                                 const struct intel_hdcp_shim *shim,
292                                 u8 *ksv_fifo, u8 num_downstream, u8 *bstatus)
293 {
294         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
295         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
296         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
297         enum port port = dig_port->base.port;
298         u32 vprime, sha_text, sha_leftovers, rep_ctl;
299         int ret, i, j, sha_idx;
300
301         /* Process V' values from the receiver */
302         for (i = 0; i < DRM_HDCP_V_PRIME_NUM_PARTS; i++) {
303                 ret = shim->read_v_prime_part(dig_port, i, &vprime);
304                 if (ret)
305                         return ret;
306                 intel_de_write(dev_priv, HDCP_SHA_V_PRIME(i), vprime);
307         }
308
309         /*
310          * We need to write the concatenation of all device KSVs, BINFO (DP) ||
311          * BSTATUS (HDMI), and M0 (which is added via HDCP_REP_CTL). This byte
312          * stream is written via the HDCP_SHA_TEXT register in 32-bit
313          * increments. Every 64 bytes, we need to write HDCP_REP_CTL again. This
314          * index will keep track of our progress through the 64 bytes as well as
315          * helping us work the 40-bit KSVs through our 32-bit register.
316          *
317          * NOTE: data passed via HDCP_SHA_TEXT should be big-endian
318          */
319         sha_idx = 0;
320         sha_text = 0;
321         sha_leftovers = 0;
322         rep_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port);
323         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
324         for (i = 0; i < num_downstream; i++) {
325                 unsigned int sha_empty;
326                 u8 *ksv = &ksv_fifo[i * DRM_HDCP_KSV_LEN];
327
328                 /* Fill up the empty slots in sha_text and write it out */
329                 sha_empty = sizeof(sha_text) - sha_leftovers;
330                 for (j = 0; j < sha_empty; j++) {
331                         u8 off = ((sizeof(sha_text) - j - 1 - sha_leftovers) * 8);
332                         sha_text |= ksv[j] << off;
333                 }
334
335                 ret = intel_write_sha_text(dev_priv, sha_text);
336                 if (ret < 0)
337                         return ret;
338
339                 /* Programming guide writes this every 64 bytes */
340                 sha_idx += sizeof(sha_text);
341                 if (!(sha_idx % 64))
342                         intel_de_write(dev_priv, HDCP_REP_CTL,
343                                        rep_ctl | HDCP_SHA1_TEXT_32);
344
345                 /* Store the leftover bytes from the ksv in sha_text */
346                 sha_leftovers = DRM_HDCP_KSV_LEN - sha_empty;
347                 sha_text = 0;
348                 for (j = 0; j < sha_leftovers; j++)
349                         sha_text |= ksv[sha_empty + j] <<
350                                         ((sizeof(sha_text) - j - 1) * 8);
351
352                 /*
353                  * If we still have room in sha_text for more data, continue.
354                  * Otherwise, write it out immediately.
355                  */
356                 if (sizeof(sha_text) > sha_leftovers)
357                         continue;
358
359                 ret = intel_write_sha_text(dev_priv, sha_text);
360                 if (ret < 0)
361                         return ret;
362                 sha_leftovers = 0;
363                 sha_text = 0;
364                 sha_idx += sizeof(sha_text);
365         }
366
367         /*
368          * We need to write BINFO/BSTATUS, and M0 now. Depending on how many
369          * bytes are leftover from the last ksv, we might be able to fit them
370          * all in sha_text (first 2 cases), or we might need to split them up
371          * into 2 writes (last 2 cases).
372          */
373         if (sha_leftovers == 0) {
374                 /* Write 16 bits of text, 16 bits of M0 */
375                 intel_de_write(dev_priv, HDCP_REP_CTL,
376                                rep_ctl | HDCP_SHA1_TEXT_16);
377                 ret = intel_write_sha_text(dev_priv,
378                                            bstatus[0] << 8 | bstatus[1]);
379                 if (ret < 0)
380                         return ret;
381                 sha_idx += sizeof(sha_text);
382
383                 /* Write 32 bits of M0 */
384                 intel_de_write(dev_priv, HDCP_REP_CTL,
385                                rep_ctl | HDCP_SHA1_TEXT_0);
386                 ret = intel_write_sha_text(dev_priv, 0);
387                 if (ret < 0)
388                         return ret;
389                 sha_idx += sizeof(sha_text);
390
391                 /* Write 16 bits of M0 */
392                 intel_de_write(dev_priv, HDCP_REP_CTL,
393                                rep_ctl | HDCP_SHA1_TEXT_16);
394                 ret = intel_write_sha_text(dev_priv, 0);
395                 if (ret < 0)
396                         return ret;
397                 sha_idx += sizeof(sha_text);
398
399         } else if (sha_leftovers == 1) {
400                 /* Write 24 bits of text, 8 bits of M0 */
401                 intel_de_write(dev_priv, HDCP_REP_CTL,
402                                rep_ctl | HDCP_SHA1_TEXT_24);
403                 sha_text |= bstatus[0] << 16 | bstatus[1] << 8;
404                 /* Only 24-bits of data, must be in the LSB */
405                 sha_text = (sha_text & 0xffffff00) >> 8;
406                 ret = intel_write_sha_text(dev_priv, sha_text);
407                 if (ret < 0)
408                         return ret;
409                 sha_idx += sizeof(sha_text);
410
411                 /* Write 32 bits of M0 */
412                 intel_de_write(dev_priv, HDCP_REP_CTL,
413                                rep_ctl | HDCP_SHA1_TEXT_0);
414                 ret = intel_write_sha_text(dev_priv, 0);
415                 if (ret < 0)
416                         return ret;
417                 sha_idx += sizeof(sha_text);
418
419                 /* Write 24 bits of M0 */
420                 intel_de_write(dev_priv, HDCP_REP_CTL,
421                                rep_ctl | HDCP_SHA1_TEXT_8);
422                 ret = intel_write_sha_text(dev_priv, 0);
423                 if (ret < 0)
424                         return ret;
425                 sha_idx += sizeof(sha_text);
426
427         } else if (sha_leftovers == 2) {
428                 /* Write 32 bits of text */
429                 intel_de_write(dev_priv, HDCP_REP_CTL,
430                                rep_ctl | HDCP_SHA1_TEXT_32);
431                 sha_text |= bstatus[0] << 8 | bstatus[1];
432                 ret = intel_write_sha_text(dev_priv, sha_text);
433                 if (ret < 0)
434                         return ret;
435                 sha_idx += sizeof(sha_text);
436
437                 /* Write 64 bits of M0 */
438                 intel_de_write(dev_priv, HDCP_REP_CTL,
439                                rep_ctl | HDCP_SHA1_TEXT_0);
440                 for (i = 0; i < 2; i++) {
441                         ret = intel_write_sha_text(dev_priv, 0);
442                         if (ret < 0)
443                                 return ret;
444                         sha_idx += sizeof(sha_text);
445                 }
446
447                 /*
448                  * Terminate the SHA-1 stream by hand. For the other leftover
449                  * cases this is appended by the hardware.
450                  */
451                 intel_de_write(dev_priv, HDCP_REP_CTL,
452                                rep_ctl | HDCP_SHA1_TEXT_32);
453                 sha_text = DRM_HDCP_SHA1_TERMINATOR << 24;
454                 ret = intel_write_sha_text(dev_priv, sha_text);
455                 if (ret < 0)
456                         return ret;
457                 sha_idx += sizeof(sha_text);
458         } else if (sha_leftovers == 3) {
459                 /* Write 32 bits of text (filled from LSB) */
460                 intel_de_write(dev_priv, HDCP_REP_CTL,
461                                rep_ctl | HDCP_SHA1_TEXT_32);
462                 sha_text |= bstatus[0];
463                 ret = intel_write_sha_text(dev_priv, sha_text);
464                 if (ret < 0)
465                         return ret;
466                 sha_idx += sizeof(sha_text);
467
468                 /* Write 8 bits of text (filled from LSB), 24 bits of M0 */
469                 intel_de_write(dev_priv, HDCP_REP_CTL,
470                                rep_ctl | HDCP_SHA1_TEXT_8);
471                 ret = intel_write_sha_text(dev_priv, bstatus[1]);
472                 if (ret < 0)
473                         return ret;
474                 sha_idx += sizeof(sha_text);
475
476                 /* Write 32 bits of M0 */
477                 intel_de_write(dev_priv, HDCP_REP_CTL,
478                                rep_ctl | HDCP_SHA1_TEXT_0);
479                 ret = intel_write_sha_text(dev_priv, 0);
480                 if (ret < 0)
481                         return ret;
482                 sha_idx += sizeof(sha_text);
483
484                 /* Write 8 bits of M0 */
485                 intel_de_write(dev_priv, HDCP_REP_CTL,
486                                rep_ctl | HDCP_SHA1_TEXT_24);
487                 ret = intel_write_sha_text(dev_priv, 0);
488                 if (ret < 0)
489                         return ret;
490                 sha_idx += sizeof(sha_text);
491         } else {
492                 drm_dbg_kms(&dev_priv->drm, "Invalid number of leftovers %d\n",
493                             sha_leftovers);
494                 return -EINVAL;
495         }
496
497         intel_de_write(dev_priv, HDCP_REP_CTL, rep_ctl | HDCP_SHA1_TEXT_32);
498         /* Fill up to 64-4 bytes with zeros (leave the last write for length) */
499         while ((sha_idx % 64) < (64 - sizeof(sha_text))) {
500                 ret = intel_write_sha_text(dev_priv, 0);
501                 if (ret < 0)
502                         return ret;
503                 sha_idx += sizeof(sha_text);
504         }
505
506         /*
507          * Last write gets the length of the concatenation in bits. That is:
508          *  - 5 bytes per device
509          *  - 10 bytes for BINFO/BSTATUS(2), M0(8)
510          */
511         sha_text = (num_downstream * 5 + 10) * 8;
512         ret = intel_write_sha_text(dev_priv, sha_text);
513         if (ret < 0)
514                 return ret;
515
516         /* Tell the HW we're done with the hash and wait for it to ACK */
517         intel_de_write(dev_priv, HDCP_REP_CTL,
518                        rep_ctl | HDCP_SHA1_COMPLETE_HASH);
519         if (intel_de_wait_for_set(dev_priv, HDCP_REP_CTL,
520                                   HDCP_SHA1_COMPLETE, 1)) {
521                 drm_err(&dev_priv->drm, "Timed out waiting for SHA1 complete\n");
522                 return -ETIMEDOUT;
523         }
524         if (!(intel_de_read(dev_priv, HDCP_REP_CTL) & HDCP_SHA1_V_MATCH)) {
525                 drm_dbg_kms(&dev_priv->drm, "SHA-1 mismatch, HDCP failed\n");
526                 return -ENXIO;
527         }
528
529         return 0;
530 }
531
532 /* Implements Part 2 of the HDCP authorization procedure */
533 static
534 int intel_hdcp_auth_downstream(struct intel_connector *connector)
535 {
536         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
537         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
538         const struct intel_hdcp_shim *shim = connector->hdcp.shim;
539         u8 bstatus[2], num_downstream, *ksv_fifo;
540         int ret, i, tries = 3;
541
542         ret = intel_hdcp_poll_ksv_fifo(dig_port, shim);
543         if (ret) {
544                 drm_dbg_kms(&dev_priv->drm,
545                             "KSV list failed to become ready (%d)\n", ret);
546                 return ret;
547         }
548
549         ret = shim->read_bstatus(dig_port, bstatus);
550         if (ret)
551                 return ret;
552
553         if (DRM_HDCP_MAX_DEVICE_EXCEEDED(bstatus[0]) ||
554             DRM_HDCP_MAX_CASCADE_EXCEEDED(bstatus[1])) {
555                 drm_dbg_kms(&dev_priv->drm, "Max Topology Limit Exceeded\n");
556                 return -EPERM;
557         }
558
559         /*
560          * When repeater reports 0 device count, HDCP1.4 spec allows disabling
561          * the HDCP encryption. That implies that repeater can't have its own
562          * display. As there is no consumption of encrypted content in the
563          * repeater with 0 downstream devices, we are failing the
564          * authentication.
565          */
566         num_downstream = DRM_HDCP_NUM_DOWNSTREAM(bstatus[0]);
567         if (num_downstream == 0) {
568                 drm_dbg_kms(&dev_priv->drm,
569                             "Repeater with zero downstream devices\n");
570                 return -EINVAL;
571         }
572
573         ksv_fifo = kcalloc(DRM_HDCP_KSV_LEN, num_downstream, GFP_KERNEL);
574         if (!ksv_fifo) {
575                 drm_dbg_kms(&dev_priv->drm, "Out of mem: ksv_fifo\n");
576                 return -ENOMEM;
577         }
578
579         ret = shim->read_ksv_fifo(dig_port, num_downstream, ksv_fifo);
580         if (ret)
581                 goto err;
582
583         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, ksv_fifo,
584                                         num_downstream) > 0) {
585                 drm_err(&dev_priv->drm, "Revoked Ksv(s) in ksv_fifo\n");
586                 ret = -EPERM;
587                 goto err;
588         }
589
590         /*
591          * When V prime mismatches, DP Spec mandates re-read of
592          * V prime atleast twice.
593          */
594         for (i = 0; i < tries; i++) {
595                 ret = intel_hdcp_validate_v_prime(connector, shim,
596                                                   ksv_fifo, num_downstream,
597                                                   bstatus);
598                 if (!ret)
599                         break;
600         }
601
602         if (i == tries) {
603                 drm_dbg_kms(&dev_priv->drm,
604                             "V Prime validation failed.(%d)\n", ret);
605                 goto err;
606         }
607
608         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (%d downstream devices)\n",
609                     num_downstream);
610         ret = 0;
611 err:
612         kfree(ksv_fifo);
613         return ret;
614 }
615
616 /* Implements Part 1 of the HDCP authorization procedure */
617 static int intel_hdcp_auth(struct intel_connector *connector)
618 {
619         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
620         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
621         struct intel_hdcp *hdcp = &connector->hdcp;
622         const struct intel_hdcp_shim *shim = hdcp->shim;
623         enum transcoder cpu_transcoder = connector->hdcp.cpu_transcoder;
624         enum port port = dig_port->base.port;
625         unsigned long r0_prime_gen_start;
626         int ret, i, tries = 2;
627         union {
628                 u32 reg[2];
629                 u8 shim[DRM_HDCP_AN_LEN];
630         } an;
631         union {
632                 u32 reg[2];
633                 u8 shim[DRM_HDCP_KSV_LEN];
634         } bksv;
635         union {
636                 u32 reg;
637                 u8 shim[DRM_HDCP_RI_LEN];
638         } ri;
639         bool repeater_present, hdcp_capable;
640
641         /*
642          * Detects whether the display is HDCP capable. Although we check for
643          * valid Bksv below, the HDCP over DP spec requires that we check
644          * whether the display supports HDCP before we write An. For HDMI
645          * displays, this is not necessary.
646          */
647         if (shim->hdcp_capable) {
648                 ret = shim->hdcp_capable(dig_port, &hdcp_capable);
649                 if (ret)
650                         return ret;
651                 if (!hdcp_capable) {
652                         drm_dbg_kms(&dev_priv->drm,
653                                     "Panel is not HDCP capable\n");
654                         return -EINVAL;
655                 }
656         }
657
658         /* Initialize An with 2 random values and acquire it */
659         for (i = 0; i < 2; i++)
660                 intel_de_write(dev_priv,
661                                HDCP_ANINIT(dev_priv, cpu_transcoder, port),
662                                get_random_u32());
663         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
664                        HDCP_CONF_CAPTURE_AN);
665
666         /* Wait for An to be acquired */
667         if (intel_de_wait_for_set(dev_priv,
668                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
669                                   HDCP_STATUS_AN_READY, 1)) {
670                 drm_err(&dev_priv->drm, "Timed out waiting for An\n");
671                 return -ETIMEDOUT;
672         }
673
674         an.reg[0] = intel_de_read(dev_priv,
675                                   HDCP_ANLO(dev_priv, cpu_transcoder, port));
676         an.reg[1] = intel_de_read(dev_priv,
677                                   HDCP_ANHI(dev_priv, cpu_transcoder, port));
678         ret = shim->write_an_aksv(dig_port, an.shim);
679         if (ret)
680                 return ret;
681
682         r0_prime_gen_start = jiffies;
683
684         memset(&bksv, 0, sizeof(bksv));
685
686         ret = intel_hdcp_read_valid_bksv(dig_port, shim, bksv.shim);
687         if (ret < 0)
688                 return ret;
689
690         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm, bksv.shim, 1) > 0) {
691                 drm_err(&dev_priv->drm, "BKSV is revoked\n");
692                 return -EPERM;
693         }
694
695         intel_de_write(dev_priv, HDCP_BKSVLO(dev_priv, cpu_transcoder, port),
696                        bksv.reg[0]);
697         intel_de_write(dev_priv, HDCP_BKSVHI(dev_priv, cpu_transcoder, port),
698                        bksv.reg[1]);
699
700         ret = shim->repeater_present(dig_port, &repeater_present);
701         if (ret)
702                 return ret;
703         if (repeater_present)
704                 intel_de_write(dev_priv, HDCP_REP_CTL,
705                                intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder, port));
706
707         ret = shim->toggle_signalling(dig_port, cpu_transcoder, true);
708         if (ret)
709                 return ret;
710
711         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port),
712                        HDCP_CONF_AUTH_AND_ENC);
713
714         /* Wait for R0 ready */
715         if (wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
716                      (HDCP_STATUS_R0_READY | HDCP_STATUS_ENC), 1)) {
717                 drm_err(&dev_priv->drm, "Timed out waiting for R0 ready\n");
718                 return -ETIMEDOUT;
719         }
720
721         /*
722          * Wait for R0' to become available. The spec says 100ms from Aksv, but
723          * some monitors can take longer than this. We'll set the timeout at
724          * 300ms just to be sure.
725          *
726          * On DP, there's an R0_READY bit available but no such bit
727          * exists on HDMI. Since the upper-bound is the same, we'll just do
728          * the stupid thing instead of polling on one and not the other.
729          */
730         wait_remaining_ms_from_jiffies(r0_prime_gen_start, 300);
731
732         tries = 3;
733
734         /*
735          * DP HDCP Spec mandates the two more reattempt to read R0, incase
736          * of R0 mismatch.
737          */
738         for (i = 0; i < tries; i++) {
739                 ri.reg = 0;
740                 ret = shim->read_ri_prime(dig_port, ri.shim);
741                 if (ret)
742                         return ret;
743                 intel_de_write(dev_priv,
744                                HDCP_RPRIME(dev_priv, cpu_transcoder, port),
745                                ri.reg);
746
747                 /* Wait for Ri prime match */
748                 if (!wait_for(intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)) &
749                               (HDCP_STATUS_RI_MATCH | HDCP_STATUS_ENC), 1))
750                         break;
751         }
752
753         if (i == tries) {
754                 drm_dbg_kms(&dev_priv->drm,
755                             "Timed out waiting for Ri prime match (%x)\n",
756                             intel_de_read(dev_priv, HDCP_STATUS(dev_priv,
757                                           cpu_transcoder, port)));
758                 return -ETIMEDOUT;
759         }
760
761         /* Wait for encryption confirmation */
762         if (intel_de_wait_for_set(dev_priv,
763                                   HDCP_STATUS(dev_priv, cpu_transcoder, port),
764                                   HDCP_STATUS_ENC,
765                                   ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
766                 drm_err(&dev_priv->drm, "Timed out waiting for encryption\n");
767                 return -ETIMEDOUT;
768         }
769
770         /*
771          * XXX: If we have MST-connected devices, we need to enable encryption
772          * on those as well.
773          */
774
775         if (repeater_present)
776                 return intel_hdcp_auth_downstream(connector);
777
778         drm_dbg_kms(&dev_priv->drm, "HDCP is enabled (no repeater present)\n");
779         return 0;
780 }
781
782 static int _intel_hdcp_disable(struct intel_connector *connector)
783 {
784         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
785         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
786         struct intel_hdcp *hdcp = &connector->hdcp;
787         enum port port = dig_port->base.port;
788         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
789         u32 repeater_ctl;
790         int ret;
791
792         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being disabled...\n",
793                     connector->base.name, connector->base.base.id);
794
795         /*
796          * If there are other connectors on this port using HDCP, don't disable
797          * it. Instead, toggle the HDCP signalling off on that particular
798          * connector/pipe and exit.
799          */
800         if (dig_port->num_hdcp_streams > 0) {
801                 ret = hdcp->shim->toggle_signalling(dig_port,
802                                                     cpu_transcoder, false);
803                 if (ret)
804                         DRM_ERROR("Failed to disable HDCP signalling\n");
805                 return ret;
806         }
807
808         hdcp->hdcp_encrypted = false;
809         intel_de_write(dev_priv, HDCP_CONF(dev_priv, cpu_transcoder, port), 0);
810         if (intel_de_wait_for_clear(dev_priv,
811                                     HDCP_STATUS(dev_priv, cpu_transcoder, port),
812                                     ~0, ENCRYPT_STATUS_CHANGE_TIMEOUT_MS)) {
813                 drm_err(&dev_priv->drm,
814                         "Failed to disable HDCP, timeout clearing status\n");
815                 return -ETIMEDOUT;
816         }
817
818         repeater_ctl = intel_hdcp_get_repeater_ctl(dev_priv, cpu_transcoder,
819                                                    port);
820         intel_de_write(dev_priv, HDCP_REP_CTL,
821                        intel_de_read(dev_priv, HDCP_REP_CTL) & ~repeater_ctl);
822
823         ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder, false);
824         if (ret) {
825                 drm_err(&dev_priv->drm, "Failed to disable HDCP signalling\n");
826                 return ret;
827         }
828
829         drm_dbg_kms(&dev_priv->drm, "HDCP is disabled\n");
830         return 0;
831 }
832
833 static int _intel_hdcp_enable(struct intel_connector *connector)
834 {
835         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
836         struct intel_hdcp *hdcp = &connector->hdcp;
837         int i, ret, tries = 3;
838
839         drm_dbg_kms(&dev_priv->drm, "[%s:%d] HDCP is being enabled...\n",
840                     connector->base.name, connector->base.base.id);
841
842         if (!hdcp_key_loadable(dev_priv)) {
843                 drm_err(&dev_priv->drm, "HDCP key Load is not possible\n");
844                 return -ENXIO;
845         }
846
847         for (i = 0; i < KEY_LOAD_TRIES; i++) {
848                 ret = intel_hdcp_load_keys(dev_priv);
849                 if (!ret)
850                         break;
851                 intel_hdcp_clear_keys(dev_priv);
852         }
853         if (ret) {
854                 drm_err(&dev_priv->drm, "Could not load HDCP keys, (%d)\n",
855                         ret);
856                 return ret;
857         }
858
859         /* Incase of authentication failures, HDCP spec expects reauth. */
860         for (i = 0; i < tries; i++) {
861                 ret = intel_hdcp_auth(connector);
862                 if (!ret) {
863                         hdcp->hdcp_encrypted = true;
864                         return 0;
865                 }
866
867                 drm_dbg_kms(&dev_priv->drm, "HDCP Auth failure (%d)\n", ret);
868
869                 /* Ensuring HDCP encryption and signalling are stopped. */
870                 _intel_hdcp_disable(connector);
871         }
872
873         drm_dbg_kms(&dev_priv->drm,
874                     "HDCP authentication failed (%d tries/%d)\n", tries, ret);
875         return ret;
876 }
877
878 static struct intel_connector *intel_hdcp_to_connector(struct intel_hdcp *hdcp)
879 {
880         return container_of(hdcp, struct intel_connector, hdcp);
881 }
882
883 static void intel_hdcp_update_value(struct intel_connector *connector,
884                                     u64 value, bool update_property)
885 {
886         struct drm_device *dev = connector->base.dev;
887         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
888         struct intel_hdcp *hdcp = &connector->hdcp;
889
890         drm_WARN_ON(connector->base.dev, !mutex_is_locked(&hdcp->mutex));
891
892         if (hdcp->value == value)
893                 return;
894
895         drm_WARN_ON(dev, !mutex_is_locked(&dig_port->hdcp_mutex));
896
897         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
898                 if (!drm_WARN_ON(dev, dig_port->num_hdcp_streams == 0))
899                         dig_port->num_hdcp_streams--;
900         } else if (value == DRM_MODE_CONTENT_PROTECTION_ENABLED) {
901                 dig_port->num_hdcp_streams++;
902         }
903
904         hdcp->value = value;
905         if (update_property) {
906                 drm_connector_get(&connector->base);
907                 schedule_work(&hdcp->prop_work);
908         }
909 }
910
911 /* Implements Part 3 of the HDCP authorization procedure */
912 static int intel_hdcp_check_link(struct intel_connector *connector)
913 {
914         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
915         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
916         struct intel_hdcp *hdcp = &connector->hdcp;
917         enum port port = dig_port->base.port;
918         enum transcoder cpu_transcoder;
919         int ret = 0;
920
921         mutex_lock(&hdcp->mutex);
922         mutex_lock(&dig_port->hdcp_mutex);
923
924         cpu_transcoder = hdcp->cpu_transcoder;
925
926         /* Check_link valid only when HDCP1.4 is enabled */
927         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
928             !hdcp->hdcp_encrypted) {
929                 ret = -EINVAL;
930                 goto out;
931         }
932
933         if (drm_WARN_ON(&dev_priv->drm,
934                         !intel_hdcp_in_use(dev_priv, cpu_transcoder, port))) {
935                 drm_err(&dev_priv->drm,
936                         "%s:%d HDCP link stopped encryption,%x\n",
937                         connector->base.name, connector->base.base.id,
938                         intel_de_read(dev_priv, HDCP_STATUS(dev_priv, cpu_transcoder, port)));
939                 ret = -ENXIO;
940                 intel_hdcp_update_value(connector,
941                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
942                                         true);
943                 goto out;
944         }
945
946         if (hdcp->shim->check_link(dig_port, connector)) {
947                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
948                         intel_hdcp_update_value(connector,
949                                 DRM_MODE_CONTENT_PROTECTION_ENABLED, true);
950                 }
951                 goto out;
952         }
953
954         drm_dbg_kms(&dev_priv->drm,
955                     "[%s:%d] HDCP link failed, retrying authentication\n",
956                     connector->base.name, connector->base.base.id);
957
958         ret = _intel_hdcp_disable(connector);
959         if (ret) {
960                 drm_err(&dev_priv->drm, "Failed to disable hdcp (%d)\n", ret);
961                 intel_hdcp_update_value(connector,
962                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
963                                         true);
964                 goto out;
965         }
966
967         ret = _intel_hdcp_enable(connector);
968         if (ret) {
969                 drm_err(&dev_priv->drm, "Failed to enable hdcp (%d)\n", ret);
970                 intel_hdcp_update_value(connector,
971                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
972                                         true);
973                 goto out;
974         }
975
976 out:
977         mutex_unlock(&dig_port->hdcp_mutex);
978         mutex_unlock(&hdcp->mutex);
979         return ret;
980 }
981
982 static void intel_hdcp_prop_work(struct work_struct *work)
983 {
984         struct intel_hdcp *hdcp = container_of(work, struct intel_hdcp,
985                                                prop_work);
986         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
987         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
988
989         drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex, NULL);
990         mutex_lock(&hdcp->mutex);
991
992         /*
993          * This worker is only used to flip between ENABLED/DESIRED. Either of
994          * those to UNDESIRED is handled by core. If value == UNDESIRED,
995          * we're running just after hdcp has been disabled, so just exit
996          */
997         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
998                 drm_hdcp_update_content_protection(&connector->base,
999                                                    hdcp->value);
1000
1001         mutex_unlock(&hdcp->mutex);
1002         drm_modeset_unlock(&dev_priv->drm.mode_config.connection_mutex);
1003
1004         drm_connector_put(&connector->base);
1005 }
1006
1007 bool is_hdcp_supported(struct drm_i915_private *dev_priv, enum port port)
1008 {
1009         return INTEL_INFO(dev_priv)->display.has_hdcp &&
1010                         (INTEL_GEN(dev_priv) >= 12 || port < PORT_E);
1011 }
1012
1013 static int
1014 hdcp2_prepare_ake_init(struct intel_connector *connector,
1015                        struct hdcp2_ake_init *ake_data)
1016 {
1017         struct hdcp_port_data *data = &connector->hdcp.port_data;
1018         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1019         struct i915_hdcp_comp_master *comp;
1020         int ret;
1021
1022         mutex_lock(&dev_priv->hdcp_comp_mutex);
1023         comp = dev_priv->hdcp_master;
1024
1025         if (!comp || !comp->ops) {
1026                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1027                 return -EINVAL;
1028         }
1029
1030         ret = comp->ops->initiate_hdcp2_session(comp->mei_dev, data, ake_data);
1031         if (ret)
1032                 drm_dbg_kms(&dev_priv->drm, "Prepare_ake_init failed. %d\n",
1033                             ret);
1034         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1035
1036         return ret;
1037 }
1038
1039 static int
1040 hdcp2_verify_rx_cert_prepare_km(struct intel_connector *connector,
1041                                 struct hdcp2_ake_send_cert *rx_cert,
1042                                 bool *paired,
1043                                 struct hdcp2_ake_no_stored_km *ek_pub_km,
1044                                 size_t *msg_sz)
1045 {
1046         struct hdcp_port_data *data = &connector->hdcp.port_data;
1047         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1048         struct i915_hdcp_comp_master *comp;
1049         int ret;
1050
1051         mutex_lock(&dev_priv->hdcp_comp_mutex);
1052         comp = dev_priv->hdcp_master;
1053
1054         if (!comp || !comp->ops) {
1055                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1056                 return -EINVAL;
1057         }
1058
1059         ret = comp->ops->verify_receiver_cert_prepare_km(comp->mei_dev, data,
1060                                                          rx_cert, paired,
1061                                                          ek_pub_km, msg_sz);
1062         if (ret < 0)
1063                 drm_dbg_kms(&dev_priv->drm, "Verify rx_cert failed. %d\n",
1064                             ret);
1065         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1066
1067         return ret;
1068 }
1069
1070 static int hdcp2_verify_hprime(struct intel_connector *connector,
1071                                struct hdcp2_ake_send_hprime *rx_hprime)
1072 {
1073         struct hdcp_port_data *data = &connector->hdcp.port_data;
1074         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1075         struct i915_hdcp_comp_master *comp;
1076         int ret;
1077
1078         mutex_lock(&dev_priv->hdcp_comp_mutex);
1079         comp = dev_priv->hdcp_master;
1080
1081         if (!comp || !comp->ops) {
1082                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1083                 return -EINVAL;
1084         }
1085
1086         ret = comp->ops->verify_hprime(comp->mei_dev, data, rx_hprime);
1087         if (ret < 0)
1088                 drm_dbg_kms(&dev_priv->drm, "Verify hprime failed. %d\n", ret);
1089         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1090
1091         return ret;
1092 }
1093
1094 static int
1095 hdcp2_store_pairing_info(struct intel_connector *connector,
1096                          struct hdcp2_ake_send_pairing_info *pairing_info)
1097 {
1098         struct hdcp_port_data *data = &connector->hdcp.port_data;
1099         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1100         struct i915_hdcp_comp_master *comp;
1101         int ret;
1102
1103         mutex_lock(&dev_priv->hdcp_comp_mutex);
1104         comp = dev_priv->hdcp_master;
1105
1106         if (!comp || !comp->ops) {
1107                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1108                 return -EINVAL;
1109         }
1110
1111         ret = comp->ops->store_pairing_info(comp->mei_dev, data, pairing_info);
1112         if (ret < 0)
1113                 drm_dbg_kms(&dev_priv->drm, "Store pairing info failed. %d\n",
1114                             ret);
1115         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1116
1117         return ret;
1118 }
1119
1120 static int
1121 hdcp2_prepare_lc_init(struct intel_connector *connector,
1122                       struct hdcp2_lc_init *lc_init)
1123 {
1124         struct hdcp_port_data *data = &connector->hdcp.port_data;
1125         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1126         struct i915_hdcp_comp_master *comp;
1127         int ret;
1128
1129         mutex_lock(&dev_priv->hdcp_comp_mutex);
1130         comp = dev_priv->hdcp_master;
1131
1132         if (!comp || !comp->ops) {
1133                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1134                 return -EINVAL;
1135         }
1136
1137         ret = comp->ops->initiate_locality_check(comp->mei_dev, data, lc_init);
1138         if (ret < 0)
1139                 drm_dbg_kms(&dev_priv->drm, "Prepare lc_init failed. %d\n",
1140                             ret);
1141         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1142
1143         return ret;
1144 }
1145
1146 static int
1147 hdcp2_verify_lprime(struct intel_connector *connector,
1148                     struct hdcp2_lc_send_lprime *rx_lprime)
1149 {
1150         struct hdcp_port_data *data = &connector->hdcp.port_data;
1151         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1152         struct i915_hdcp_comp_master *comp;
1153         int ret;
1154
1155         mutex_lock(&dev_priv->hdcp_comp_mutex);
1156         comp = dev_priv->hdcp_master;
1157
1158         if (!comp || !comp->ops) {
1159                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1160                 return -EINVAL;
1161         }
1162
1163         ret = comp->ops->verify_lprime(comp->mei_dev, data, rx_lprime);
1164         if (ret < 0)
1165                 drm_dbg_kms(&dev_priv->drm, "Verify L_Prime failed. %d\n",
1166                             ret);
1167         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1168
1169         return ret;
1170 }
1171
1172 static int hdcp2_prepare_skey(struct intel_connector *connector,
1173                               struct hdcp2_ske_send_eks *ske_data)
1174 {
1175         struct hdcp_port_data *data = &connector->hdcp.port_data;
1176         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1177         struct i915_hdcp_comp_master *comp;
1178         int ret;
1179
1180         mutex_lock(&dev_priv->hdcp_comp_mutex);
1181         comp = dev_priv->hdcp_master;
1182
1183         if (!comp || !comp->ops) {
1184                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1185                 return -EINVAL;
1186         }
1187
1188         ret = comp->ops->get_session_key(comp->mei_dev, data, ske_data);
1189         if (ret < 0)
1190                 drm_dbg_kms(&dev_priv->drm, "Get session key failed. %d\n",
1191                             ret);
1192         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1193
1194         return ret;
1195 }
1196
1197 static int
1198 hdcp2_verify_rep_topology_prepare_ack(struct intel_connector *connector,
1199                                       struct hdcp2_rep_send_receiverid_list
1200                                                                 *rep_topology,
1201                                       struct hdcp2_rep_send_ack *rep_send_ack)
1202 {
1203         struct hdcp_port_data *data = &connector->hdcp.port_data;
1204         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1205         struct i915_hdcp_comp_master *comp;
1206         int ret;
1207
1208         mutex_lock(&dev_priv->hdcp_comp_mutex);
1209         comp = dev_priv->hdcp_master;
1210
1211         if (!comp || !comp->ops) {
1212                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1213                 return -EINVAL;
1214         }
1215
1216         ret = comp->ops->repeater_check_flow_prepare_ack(comp->mei_dev, data,
1217                                                          rep_topology,
1218                                                          rep_send_ack);
1219         if (ret < 0)
1220                 drm_dbg_kms(&dev_priv->drm,
1221                             "Verify rep topology failed. %d\n", ret);
1222         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1223
1224         return ret;
1225 }
1226
1227 static int
1228 hdcp2_verify_mprime(struct intel_connector *connector,
1229                     struct hdcp2_rep_stream_ready *stream_ready)
1230 {
1231         struct hdcp_port_data *data = &connector->hdcp.port_data;
1232         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1233         struct i915_hdcp_comp_master *comp;
1234         int ret;
1235
1236         mutex_lock(&dev_priv->hdcp_comp_mutex);
1237         comp = dev_priv->hdcp_master;
1238
1239         if (!comp || !comp->ops) {
1240                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1241                 return -EINVAL;
1242         }
1243
1244         ret = comp->ops->verify_mprime(comp->mei_dev, data, stream_ready);
1245         if (ret < 0)
1246                 drm_dbg_kms(&dev_priv->drm, "Verify mprime failed. %d\n", ret);
1247         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1248
1249         return ret;
1250 }
1251
1252 static int hdcp2_authenticate_port(struct intel_connector *connector)
1253 {
1254         struct hdcp_port_data *data = &connector->hdcp.port_data;
1255         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1256         struct i915_hdcp_comp_master *comp;
1257         int ret;
1258
1259         mutex_lock(&dev_priv->hdcp_comp_mutex);
1260         comp = dev_priv->hdcp_master;
1261
1262         if (!comp || !comp->ops) {
1263                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1264                 return -EINVAL;
1265         }
1266
1267         ret = comp->ops->enable_hdcp_authentication(comp->mei_dev, data);
1268         if (ret < 0)
1269                 drm_dbg_kms(&dev_priv->drm, "Enable hdcp auth failed. %d\n",
1270                             ret);
1271         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1272
1273         return ret;
1274 }
1275
1276 static int hdcp2_close_mei_session(struct intel_connector *connector)
1277 {
1278         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1279         struct i915_hdcp_comp_master *comp;
1280         int ret;
1281
1282         mutex_lock(&dev_priv->hdcp_comp_mutex);
1283         comp = dev_priv->hdcp_master;
1284
1285         if (!comp || !comp->ops) {
1286                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
1287                 return -EINVAL;
1288         }
1289
1290         ret = comp->ops->close_hdcp_session(comp->mei_dev,
1291                                              &connector->hdcp.port_data);
1292         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1293
1294         return ret;
1295 }
1296
1297 static int hdcp2_deauthenticate_port(struct intel_connector *connector)
1298 {
1299         return hdcp2_close_mei_session(connector);
1300 }
1301
1302 /* Authentication flow starts from here */
1303 static int hdcp2_authentication_key_exchange(struct intel_connector *connector)
1304 {
1305         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1306         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1307         struct intel_hdcp *hdcp = &connector->hdcp;
1308         union {
1309                 struct hdcp2_ake_init ake_init;
1310                 struct hdcp2_ake_send_cert send_cert;
1311                 struct hdcp2_ake_no_stored_km no_stored_km;
1312                 struct hdcp2_ake_send_hprime send_hprime;
1313                 struct hdcp2_ake_send_pairing_info pairing_info;
1314         } msgs;
1315         const struct intel_hdcp_shim *shim = hdcp->shim;
1316         size_t size;
1317         int ret;
1318
1319         /* Init for seq_num */
1320         hdcp->seq_num_v = 0;
1321         hdcp->seq_num_m = 0;
1322
1323         ret = hdcp2_prepare_ake_init(connector, &msgs.ake_init);
1324         if (ret < 0)
1325                 return ret;
1326
1327         ret = shim->write_2_2_msg(dig_port, &msgs.ake_init,
1328                                   sizeof(msgs.ake_init));
1329         if (ret < 0)
1330                 return ret;
1331
1332         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_CERT,
1333                                  &msgs.send_cert, sizeof(msgs.send_cert));
1334         if (ret < 0)
1335                 return ret;
1336
1337         if (msgs.send_cert.rx_caps[0] != HDCP_2_2_RX_CAPS_VERSION_VAL) {
1338                 drm_dbg_kms(&dev_priv->drm, "cert.rx_caps dont claim HDCP2.2\n");
1339                 return -EINVAL;
1340         }
1341
1342         hdcp->is_repeater = HDCP_2_2_RX_REPEATER(msgs.send_cert.rx_caps[2]);
1343
1344         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1345                                         msgs.send_cert.cert_rx.receiver_id,
1346                                         1) > 0) {
1347                 drm_err(&dev_priv->drm, "Receiver ID is revoked\n");
1348                 return -EPERM;
1349         }
1350
1351         /*
1352          * Here msgs.no_stored_km will hold msgs corresponding to the km
1353          * stored also.
1354          */
1355         ret = hdcp2_verify_rx_cert_prepare_km(connector, &msgs.send_cert,
1356                                               &hdcp->is_paired,
1357                                               &msgs.no_stored_km, &size);
1358         if (ret < 0)
1359                 return ret;
1360
1361         ret = shim->write_2_2_msg(dig_port, &msgs.no_stored_km, size);
1362         if (ret < 0)
1363                 return ret;
1364
1365         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_AKE_SEND_HPRIME,
1366                                  &msgs.send_hprime, sizeof(msgs.send_hprime));
1367         if (ret < 0)
1368                 return ret;
1369
1370         ret = hdcp2_verify_hprime(connector, &msgs.send_hprime);
1371         if (ret < 0)
1372                 return ret;
1373
1374         if (!hdcp->is_paired) {
1375                 /* Pairing is required */
1376                 ret = shim->read_2_2_msg(dig_port,
1377                                          HDCP_2_2_AKE_SEND_PAIRING_INFO,
1378                                          &msgs.pairing_info,
1379                                          sizeof(msgs.pairing_info));
1380                 if (ret < 0)
1381                         return ret;
1382
1383                 ret = hdcp2_store_pairing_info(connector, &msgs.pairing_info);
1384                 if (ret < 0)
1385                         return ret;
1386                 hdcp->is_paired = true;
1387         }
1388
1389         return 0;
1390 }
1391
1392 static int hdcp2_locality_check(struct intel_connector *connector)
1393 {
1394         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1395         struct intel_hdcp *hdcp = &connector->hdcp;
1396         union {
1397                 struct hdcp2_lc_init lc_init;
1398                 struct hdcp2_lc_send_lprime send_lprime;
1399         } msgs;
1400         const struct intel_hdcp_shim *shim = hdcp->shim;
1401         int tries = HDCP2_LC_RETRY_CNT, ret, i;
1402
1403         for (i = 0; i < tries; i++) {
1404                 ret = hdcp2_prepare_lc_init(connector, &msgs.lc_init);
1405                 if (ret < 0)
1406                         continue;
1407
1408                 ret = shim->write_2_2_msg(dig_port, &msgs.lc_init,
1409                                       sizeof(msgs.lc_init));
1410                 if (ret < 0)
1411                         continue;
1412
1413                 ret = shim->read_2_2_msg(dig_port,
1414                                          HDCP_2_2_LC_SEND_LPRIME,
1415                                          &msgs.send_lprime,
1416                                          sizeof(msgs.send_lprime));
1417                 if (ret < 0)
1418                         continue;
1419
1420                 ret = hdcp2_verify_lprime(connector, &msgs.send_lprime);
1421                 if (!ret)
1422                         break;
1423         }
1424
1425         return ret;
1426 }
1427
1428 static int hdcp2_session_key_exchange(struct intel_connector *connector)
1429 {
1430         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1431         struct intel_hdcp *hdcp = &connector->hdcp;
1432         struct hdcp2_ske_send_eks send_eks;
1433         int ret;
1434
1435         ret = hdcp2_prepare_skey(connector, &send_eks);
1436         if (ret < 0)
1437                 return ret;
1438
1439         ret = hdcp->shim->write_2_2_msg(dig_port, &send_eks,
1440                                         sizeof(send_eks));
1441         if (ret < 0)
1442                 return ret;
1443
1444         return 0;
1445 }
1446
1447 static
1448 int hdcp2_propagate_stream_management_info(struct intel_connector *connector)
1449 {
1450         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1451         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1452         struct intel_hdcp *hdcp = &connector->hdcp;
1453         union {
1454                 struct hdcp2_rep_stream_manage stream_manage;
1455                 struct hdcp2_rep_stream_ready stream_ready;
1456         } msgs;
1457         const struct intel_hdcp_shim *shim = hdcp->shim;
1458         int ret;
1459
1460         /* Prepare RepeaterAuth_Stream_Manage msg */
1461         msgs.stream_manage.msg_id = HDCP_2_2_REP_STREAM_MANAGE;
1462         drm_hdcp_cpu_to_be24(msgs.stream_manage.seq_num_m, hdcp->seq_num_m);
1463
1464         /* K no of streams is fixed as 1. Stored as big-endian. */
1465         msgs.stream_manage.k = cpu_to_be16(1);
1466
1467         /* For HDMI this is forced to be 0x0. For DP SST also this is 0x0. */
1468         msgs.stream_manage.streams[0].stream_id = 0;
1469         msgs.stream_manage.streams[0].stream_type = hdcp->content_type;
1470
1471         /* Send it to Repeater */
1472         ret = shim->write_2_2_msg(dig_port, &msgs.stream_manage,
1473                                   sizeof(msgs.stream_manage));
1474         if (ret < 0)
1475                 return ret;
1476
1477         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_STREAM_READY,
1478                                  &msgs.stream_ready, sizeof(msgs.stream_ready));
1479         if (ret < 0)
1480                 return ret;
1481
1482         hdcp->port_data.seq_num_m = hdcp->seq_num_m;
1483         hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1484
1485         ret = hdcp2_verify_mprime(connector, &msgs.stream_ready);
1486         if (ret < 0)
1487                 return ret;
1488
1489         hdcp->seq_num_m++;
1490
1491         if (hdcp->seq_num_m > HDCP_2_2_SEQ_NUM_MAX) {
1492                 drm_dbg_kms(&i915->drm, "seq_num_m roll over.\n");
1493                 return -1;
1494         }
1495
1496         return 0;
1497 }
1498
1499 static
1500 int hdcp2_authenticate_repeater_topology(struct intel_connector *connector)
1501 {
1502         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1503         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1504         struct intel_hdcp *hdcp = &connector->hdcp;
1505         union {
1506                 struct hdcp2_rep_send_receiverid_list recvid_list;
1507                 struct hdcp2_rep_send_ack rep_ack;
1508         } msgs;
1509         const struct intel_hdcp_shim *shim = hdcp->shim;
1510         u32 seq_num_v, device_cnt;
1511         u8 *rx_info;
1512         int ret;
1513
1514         ret = shim->read_2_2_msg(dig_port, HDCP_2_2_REP_SEND_RECVID_LIST,
1515                                  &msgs.recvid_list, sizeof(msgs.recvid_list));
1516         if (ret < 0)
1517                 return ret;
1518
1519         rx_info = msgs.recvid_list.rx_info;
1520
1521         if (HDCP_2_2_MAX_CASCADE_EXCEEDED(rx_info[1]) ||
1522             HDCP_2_2_MAX_DEVS_EXCEEDED(rx_info[1])) {
1523                 drm_dbg_kms(&dev_priv->drm, "Topology Max Size Exceeded\n");
1524                 return -EINVAL;
1525         }
1526
1527         /* Converting and Storing the seq_num_v to local variable as DWORD */
1528         seq_num_v =
1529                 drm_hdcp_be24_to_cpu((const u8 *)msgs.recvid_list.seq_num_v);
1530
1531         if (!hdcp->hdcp2_encrypted && seq_num_v) {
1532                 drm_dbg_kms(&dev_priv->drm,
1533                             "Non zero Seq_num_v at first RecvId_List msg\n");
1534                 return -EINVAL;
1535         }
1536
1537         if (seq_num_v < hdcp->seq_num_v) {
1538                 /* Roll over of the seq_num_v from repeater. Reauthenticate. */
1539                 drm_dbg_kms(&dev_priv->drm, "Seq_num_v roll over.\n");
1540                 return -EINVAL;
1541         }
1542
1543         device_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
1544                       HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
1545         if (drm_hdcp_check_ksvs_revoked(&dev_priv->drm,
1546                                         msgs.recvid_list.receiver_ids,
1547                                         device_cnt) > 0) {
1548                 drm_err(&dev_priv->drm, "Revoked receiver ID(s) is in list\n");
1549                 return -EPERM;
1550         }
1551
1552         ret = hdcp2_verify_rep_topology_prepare_ack(connector,
1553                                                     &msgs.recvid_list,
1554                                                     &msgs.rep_ack);
1555         if (ret < 0)
1556                 return ret;
1557
1558         hdcp->seq_num_v = seq_num_v;
1559         ret = shim->write_2_2_msg(dig_port, &msgs.rep_ack,
1560                                   sizeof(msgs.rep_ack));
1561         if (ret < 0)
1562                 return ret;
1563
1564         return 0;
1565 }
1566
1567 static int hdcp2_authenticate_repeater(struct intel_connector *connector)
1568 {
1569         int ret;
1570
1571         ret = hdcp2_authenticate_repeater_topology(connector);
1572         if (ret < 0)
1573                 return ret;
1574
1575         return hdcp2_propagate_stream_management_info(connector);
1576 }
1577
1578 static int hdcp2_authenticate_sink(struct intel_connector *connector)
1579 {
1580         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1581         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1582         struct intel_hdcp *hdcp = &connector->hdcp;
1583         const struct intel_hdcp_shim *shim = hdcp->shim;
1584         int ret;
1585
1586         ret = hdcp2_authentication_key_exchange(connector);
1587         if (ret < 0) {
1588                 drm_dbg_kms(&i915->drm, "AKE Failed. Err : %d\n", ret);
1589                 return ret;
1590         }
1591
1592         ret = hdcp2_locality_check(connector);
1593         if (ret < 0) {
1594                 drm_dbg_kms(&i915->drm,
1595                             "Locality Check failed. Err : %d\n", ret);
1596                 return ret;
1597         }
1598
1599         ret = hdcp2_session_key_exchange(connector);
1600         if (ret < 0) {
1601                 drm_dbg_kms(&i915->drm, "SKE Failed. Err : %d\n", ret);
1602                 return ret;
1603         }
1604
1605         if (shim->config_stream_type) {
1606                 ret = shim->config_stream_type(dig_port,
1607                                                hdcp->is_repeater,
1608                                                hdcp->content_type);
1609                 if (ret < 0)
1610                         return ret;
1611         }
1612
1613         if (hdcp->is_repeater) {
1614                 ret = hdcp2_authenticate_repeater(connector);
1615                 if (ret < 0) {
1616                         drm_dbg_kms(&i915->drm,
1617                                     "Repeater Auth Failed. Err: %d\n", ret);
1618                         return ret;
1619                 }
1620         }
1621
1622         hdcp->port_data.streams[0].stream_type = hdcp->content_type;
1623         ret = hdcp2_authenticate_port(connector);
1624         if (ret < 0)
1625                 return ret;
1626
1627         return ret;
1628 }
1629
1630 static int hdcp2_enable_encryption(struct intel_connector *connector)
1631 {
1632         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1633         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1634         struct intel_hdcp *hdcp = &connector->hdcp;
1635         enum port port = dig_port->base.port;
1636         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1637         int ret;
1638
1639         drm_WARN_ON(&dev_priv->drm,
1640                     intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1641                     LINK_ENCRYPTION_STATUS);
1642         if (hdcp->shim->toggle_signalling) {
1643                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1644                                                     true);
1645                 if (ret) {
1646                         drm_err(&dev_priv->drm,
1647                                 "Failed to enable HDCP signalling. %d\n",
1648                                 ret);
1649                         return ret;
1650                 }
1651         }
1652
1653         if (intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1654             LINK_AUTH_STATUS) {
1655                 /* Link is Authenticated. Now set for Encryption */
1656                 intel_de_write(dev_priv,
1657                                HDCP2_CTL(dev_priv, cpu_transcoder, port),
1658                                intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) | CTL_LINK_ENCRYPTION_REQ);
1659         }
1660
1661         ret = intel_de_wait_for_set(dev_priv,
1662                                     HDCP2_STATUS(dev_priv, cpu_transcoder,
1663                                                  port),
1664                                     LINK_ENCRYPTION_STATUS,
1665                                     ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1666
1667         return ret;
1668 }
1669
1670 static int hdcp2_disable_encryption(struct intel_connector *connector)
1671 {
1672         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1673         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1674         struct intel_hdcp *hdcp = &connector->hdcp;
1675         enum port port = dig_port->base.port;
1676         enum transcoder cpu_transcoder = hdcp->cpu_transcoder;
1677         int ret;
1678
1679         drm_WARN_ON(&dev_priv->drm, !(intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)) &
1680                                       LINK_ENCRYPTION_STATUS));
1681
1682         intel_de_write(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port),
1683                        intel_de_read(dev_priv, HDCP2_CTL(dev_priv, cpu_transcoder, port)) & ~CTL_LINK_ENCRYPTION_REQ);
1684
1685         ret = intel_de_wait_for_clear(dev_priv,
1686                                       HDCP2_STATUS(dev_priv, cpu_transcoder,
1687                                                    port),
1688                                       LINK_ENCRYPTION_STATUS,
1689                                       ENCRYPT_STATUS_CHANGE_TIMEOUT_MS);
1690         if (ret == -ETIMEDOUT)
1691                 drm_dbg_kms(&dev_priv->drm, "Disable Encryption Timedout");
1692
1693         if (hdcp->shim->toggle_signalling) {
1694                 ret = hdcp->shim->toggle_signalling(dig_port, cpu_transcoder,
1695                                                     false);
1696                 if (ret) {
1697                         drm_err(&dev_priv->drm,
1698                                 "Failed to disable HDCP signalling. %d\n",
1699                                 ret);
1700                         return ret;
1701                 }
1702         }
1703
1704         return ret;
1705 }
1706
1707 static int hdcp2_authenticate_and_encrypt(struct intel_connector *connector)
1708 {
1709         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1710         int ret, i, tries = 3;
1711
1712         for (i = 0; i < tries; i++) {
1713                 ret = hdcp2_authenticate_sink(connector);
1714                 if (!ret)
1715                         break;
1716
1717                 /* Clearing the mei hdcp session */
1718                 drm_dbg_kms(&i915->drm, "HDCP2.2 Auth %d of %d Failed.(%d)\n",
1719                             i + 1, tries, ret);
1720                 if (hdcp2_deauthenticate_port(connector) < 0)
1721                         drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1722         }
1723
1724         if (i != tries) {
1725                 /*
1726                  * Ensuring the required 200mSec min time interval between
1727                  * Session Key Exchange and encryption.
1728                  */
1729                 msleep(HDCP_2_2_DELAY_BEFORE_ENCRYPTION_EN);
1730                 ret = hdcp2_enable_encryption(connector);
1731                 if (ret < 0) {
1732                         drm_dbg_kms(&i915->drm,
1733                                     "Encryption Enable Failed.(%d)\n", ret);
1734                         if (hdcp2_deauthenticate_port(connector) < 0)
1735                                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1736                 }
1737         }
1738
1739         return ret;
1740 }
1741
1742 static int _intel_hdcp2_enable(struct intel_connector *connector)
1743 {
1744         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1745         struct intel_hdcp *hdcp = &connector->hdcp;
1746         int ret;
1747
1748         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being enabled. Type: %d\n",
1749                     connector->base.name, connector->base.base.id,
1750                     hdcp->content_type);
1751
1752         ret = hdcp2_authenticate_and_encrypt(connector);
1753         if (ret) {
1754                 drm_dbg_kms(&i915->drm, "HDCP2 Type%d  Enabling Failed. (%d)\n",
1755                             hdcp->content_type, ret);
1756                 return ret;
1757         }
1758
1759         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is enabled. Type %d\n",
1760                     connector->base.name, connector->base.base.id,
1761                     hdcp->content_type);
1762
1763         hdcp->hdcp2_encrypted = true;
1764         return 0;
1765 }
1766
1767 static int _intel_hdcp2_disable(struct intel_connector *connector)
1768 {
1769         struct drm_i915_private *i915 = to_i915(connector->base.dev);
1770         int ret;
1771
1772         drm_dbg_kms(&i915->drm, "[%s:%d] HDCP2.2 is being Disabled\n",
1773                     connector->base.name, connector->base.base.id);
1774
1775         ret = hdcp2_disable_encryption(connector);
1776
1777         if (hdcp2_deauthenticate_port(connector) < 0)
1778                 drm_dbg_kms(&i915->drm, "Port deauth failed.\n");
1779
1780         connector->hdcp.hdcp2_encrypted = false;
1781
1782         return ret;
1783 }
1784
1785 /* Implements the Link Integrity Check for HDCP2.2 */
1786 static int intel_hdcp2_check_link(struct intel_connector *connector)
1787 {
1788         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
1789         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1790         struct intel_hdcp *hdcp = &connector->hdcp;
1791         enum port port = dig_port->base.port;
1792         enum transcoder cpu_transcoder;
1793         int ret = 0;
1794
1795         mutex_lock(&hdcp->mutex);
1796         cpu_transcoder = hdcp->cpu_transcoder;
1797
1798         /* hdcp2_check_link is expected only when HDCP2.2 is Enabled */
1799         if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED ||
1800             !hdcp->hdcp2_encrypted) {
1801                 ret = -EINVAL;
1802                 goto out;
1803         }
1804
1805         if (drm_WARN_ON(&dev_priv->drm,
1806                         !intel_hdcp2_in_use(dev_priv, cpu_transcoder, port))) {
1807                 drm_err(&dev_priv->drm,
1808                         "HDCP2.2 link stopped the encryption, %x\n",
1809                         intel_de_read(dev_priv, HDCP2_STATUS(dev_priv, cpu_transcoder, port)));
1810                 ret = -ENXIO;
1811                 intel_hdcp_update_value(connector,
1812                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1813                                         true);
1814                 goto out;
1815         }
1816
1817         ret = hdcp->shim->check_2_2_link(dig_port);
1818         if (ret == HDCP_LINK_PROTECTED) {
1819                 if (hdcp->value != DRM_MODE_CONTENT_PROTECTION_UNDESIRED) {
1820                         intel_hdcp_update_value(connector,
1821                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
1822                                         true);
1823                 }
1824                 goto out;
1825         }
1826
1827         if (ret == HDCP_TOPOLOGY_CHANGE) {
1828                 if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
1829                         goto out;
1830
1831                 drm_dbg_kms(&dev_priv->drm,
1832                             "HDCP2.2 Downstream topology change\n");
1833                 ret = hdcp2_authenticate_repeater_topology(connector);
1834                 if (!ret) {
1835                         intel_hdcp_update_value(connector,
1836                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
1837                                         true);
1838                         goto out;
1839                 }
1840                 drm_dbg_kms(&dev_priv->drm,
1841                             "[%s:%d] Repeater topology auth failed.(%d)\n",
1842                             connector->base.name, connector->base.base.id,
1843                             ret);
1844         } else {
1845                 drm_dbg_kms(&dev_priv->drm,
1846                             "[%s:%d] HDCP2.2 link failed, retrying auth\n",
1847                             connector->base.name, connector->base.base.id);
1848         }
1849
1850         ret = _intel_hdcp2_disable(connector);
1851         if (ret) {
1852                 drm_err(&dev_priv->drm,
1853                         "[%s:%d] Failed to disable hdcp2.2 (%d)\n",
1854                         connector->base.name, connector->base.base.id, ret);
1855                 intel_hdcp_update_value(connector,
1856                                 DRM_MODE_CONTENT_PROTECTION_DESIRED, true);
1857                 goto out;
1858         }
1859
1860         ret = _intel_hdcp2_enable(connector);
1861         if (ret) {
1862                 drm_dbg_kms(&dev_priv->drm,
1863                             "[%s:%d] Failed to enable hdcp2.2 (%d)\n",
1864                             connector->base.name, connector->base.base.id,
1865                             ret);
1866                 intel_hdcp_update_value(connector,
1867                                         DRM_MODE_CONTENT_PROTECTION_DESIRED,
1868                                         true);
1869                 goto out;
1870         }
1871
1872 out:
1873         mutex_unlock(&hdcp->mutex);
1874         return ret;
1875 }
1876
1877 static void intel_hdcp_check_work(struct work_struct *work)
1878 {
1879         struct intel_hdcp *hdcp = container_of(to_delayed_work(work),
1880                                                struct intel_hdcp,
1881                                                check_work);
1882         struct intel_connector *connector = intel_hdcp_to_connector(hdcp);
1883
1884         if (drm_connector_is_unregistered(&connector->base))
1885                 return;
1886
1887         if (!intel_hdcp2_check_link(connector))
1888                 schedule_delayed_work(&hdcp->check_work,
1889                                       DRM_HDCP2_CHECK_PERIOD_MS);
1890         else if (!intel_hdcp_check_link(connector))
1891                 schedule_delayed_work(&hdcp->check_work,
1892                                       DRM_HDCP_CHECK_PERIOD_MS);
1893 }
1894
1895 static int i915_hdcp_component_bind(struct device *i915_kdev,
1896                                     struct device *mei_kdev, void *data)
1897 {
1898         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1899
1900         drm_dbg(&dev_priv->drm, "I915 HDCP comp bind\n");
1901         mutex_lock(&dev_priv->hdcp_comp_mutex);
1902         dev_priv->hdcp_master = (struct i915_hdcp_comp_master *)data;
1903         dev_priv->hdcp_master->mei_dev = mei_kdev;
1904         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1905
1906         return 0;
1907 }
1908
1909 static void i915_hdcp_component_unbind(struct device *i915_kdev,
1910                                        struct device *mei_kdev, void *data)
1911 {
1912         struct drm_i915_private *dev_priv = kdev_to_i915(i915_kdev);
1913
1914         drm_dbg(&dev_priv->drm, "I915 HDCP comp unbind\n");
1915         mutex_lock(&dev_priv->hdcp_comp_mutex);
1916         dev_priv->hdcp_master = NULL;
1917         mutex_unlock(&dev_priv->hdcp_comp_mutex);
1918 }
1919
1920 static const struct component_ops i915_hdcp_component_ops = {
1921         .bind   = i915_hdcp_component_bind,
1922         .unbind = i915_hdcp_component_unbind,
1923 };
1924
1925 static enum mei_fw_ddi intel_get_mei_fw_ddi_index(enum port port)
1926 {
1927         switch (port) {
1928         case PORT_A:
1929                 return MEI_DDI_A;
1930         case PORT_B ... PORT_F:
1931                 return (enum mei_fw_ddi)port;
1932         default:
1933                 return MEI_DDI_INVALID_PORT;
1934         }
1935 }
1936
1937 static enum mei_fw_tc intel_get_mei_fw_tc(enum transcoder cpu_transcoder)
1938 {
1939         switch (cpu_transcoder) {
1940         case TRANSCODER_A ... TRANSCODER_D:
1941                 return (enum mei_fw_tc)(cpu_transcoder | 0x10);
1942         default: /* eDP, DSI TRANSCODERS are non HDCP capable */
1943                 return MEI_INVALID_TRANSCODER;
1944         }
1945 }
1946
1947 static int initialize_hdcp_port_data(struct intel_connector *connector,
1948                                      enum port port,
1949                                      const struct intel_hdcp_shim *shim)
1950 {
1951         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
1952         struct intel_hdcp *hdcp = &connector->hdcp;
1953         struct hdcp_port_data *data = &hdcp->port_data;
1954
1955         if (INTEL_GEN(dev_priv) < 12)
1956                 data->fw_ddi = intel_get_mei_fw_ddi_index(port);
1957         else
1958                 /*
1959                  * As per ME FW API expectation, for GEN 12+, fw_ddi is filled
1960                  * with zero(INVALID PORT index).
1961                  */
1962                 data->fw_ddi = MEI_DDI_INVALID_PORT;
1963
1964         /*
1965          * As associated transcoder is set and modified at modeset, here fw_tc
1966          * is initialized to zero (invalid transcoder index). This will be
1967          * retained for <Gen12 forever.
1968          */
1969         data->fw_tc = MEI_INVALID_TRANSCODER;
1970
1971         data->port_type = (u8)HDCP_PORT_TYPE_INTEGRATED;
1972         data->protocol = (u8)shim->protocol;
1973
1974         data->k = 1;
1975         if (!data->streams)
1976                 data->streams = kcalloc(data->k,
1977                                         sizeof(struct hdcp2_streamid_type),
1978                                         GFP_KERNEL);
1979         if (!data->streams) {
1980                 drm_err(&dev_priv->drm, "Out of Memory\n");
1981                 return -ENOMEM;
1982         }
1983
1984         data->streams[0].stream_id = 0;
1985         data->streams[0].stream_type = hdcp->content_type;
1986
1987         return 0;
1988 }
1989
1990 static bool is_hdcp2_supported(struct drm_i915_private *dev_priv)
1991 {
1992         if (!IS_ENABLED(CONFIG_INTEL_MEI_HDCP))
1993                 return false;
1994
1995         return (INTEL_GEN(dev_priv) >= 10 ||
1996                 IS_GEMINILAKE(dev_priv) ||
1997                 IS_KABYLAKE(dev_priv) ||
1998                 IS_COFFEELAKE(dev_priv) ||
1999                 IS_COMETLAKE(dev_priv));
2000 }
2001
2002 void intel_hdcp_component_init(struct drm_i915_private *dev_priv)
2003 {
2004         int ret;
2005
2006         if (!is_hdcp2_supported(dev_priv))
2007                 return;
2008
2009         mutex_lock(&dev_priv->hdcp_comp_mutex);
2010         drm_WARN_ON(&dev_priv->drm, dev_priv->hdcp_comp_added);
2011
2012         dev_priv->hdcp_comp_added = true;
2013         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2014         ret = component_add_typed(dev_priv->drm.dev, &i915_hdcp_component_ops,
2015                                   I915_COMPONENT_HDCP);
2016         if (ret < 0) {
2017                 drm_dbg_kms(&dev_priv->drm, "Failed at component add(%d)\n",
2018                             ret);
2019                 mutex_lock(&dev_priv->hdcp_comp_mutex);
2020                 dev_priv->hdcp_comp_added = false;
2021                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2022                 return;
2023         }
2024 }
2025
2026 static void intel_hdcp2_init(struct intel_connector *connector, enum port port,
2027                              const struct intel_hdcp_shim *shim)
2028 {
2029         struct drm_i915_private *i915 = to_i915(connector->base.dev);
2030         struct intel_hdcp *hdcp = &connector->hdcp;
2031         int ret;
2032
2033         ret = initialize_hdcp_port_data(connector, port, shim);
2034         if (ret) {
2035                 drm_dbg_kms(&i915->drm, "Mei hdcp data init failed\n");
2036                 return;
2037         }
2038
2039         hdcp->hdcp2_supported = true;
2040 }
2041
2042 int intel_hdcp_init(struct intel_connector *connector,
2043                     enum port port,
2044                     const struct intel_hdcp_shim *shim)
2045 {
2046         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2047         struct intel_hdcp *hdcp = &connector->hdcp;
2048         int ret;
2049
2050         if (!shim)
2051                 return -EINVAL;
2052
2053         if (is_hdcp2_supported(dev_priv) && !connector->mst_port)
2054                 intel_hdcp2_init(connector, port, shim);
2055
2056         ret =
2057         drm_connector_attach_content_protection_property(&connector->base,
2058                                                          hdcp->hdcp2_supported);
2059         if (ret) {
2060                 hdcp->hdcp2_supported = false;
2061                 kfree(hdcp->port_data.streams);
2062                 return ret;
2063         }
2064
2065         hdcp->shim = shim;
2066         mutex_init(&hdcp->mutex);
2067         INIT_DELAYED_WORK(&hdcp->check_work, intel_hdcp_check_work);
2068         INIT_WORK(&hdcp->prop_work, intel_hdcp_prop_work);
2069         init_waitqueue_head(&hdcp->cp_irq_queue);
2070
2071         return 0;
2072 }
2073
2074 int intel_hdcp_enable(struct intel_connector *connector,
2075                       enum transcoder cpu_transcoder, u8 content_type)
2076 {
2077         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
2078         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2079         struct intel_hdcp *hdcp = &connector->hdcp;
2080         unsigned long check_link_interval = DRM_HDCP_CHECK_PERIOD_MS;
2081         int ret = -EINVAL;
2082
2083         if (!hdcp->shim)
2084                 return -ENOENT;
2085
2086         mutex_lock(&hdcp->mutex);
2087         mutex_lock(&dig_port->hdcp_mutex);
2088         drm_WARN_ON(&dev_priv->drm,
2089                     hdcp->value == DRM_MODE_CONTENT_PROTECTION_ENABLED);
2090         hdcp->content_type = content_type;
2091         hdcp->cpu_transcoder = cpu_transcoder;
2092
2093         if (INTEL_GEN(dev_priv) >= 12)
2094                 hdcp->port_data.fw_tc = intel_get_mei_fw_tc(cpu_transcoder);
2095
2096         /*
2097          * Considering that HDCP2.2 is more secure than HDCP1.4, If the setup
2098          * is capable of HDCP2.2, it is preferred to use HDCP2.2.
2099          */
2100         if (intel_hdcp2_capable(connector)) {
2101                 ret = _intel_hdcp2_enable(connector);
2102                 if (!ret)
2103                         check_link_interval = DRM_HDCP2_CHECK_PERIOD_MS;
2104         }
2105
2106         /*
2107          * When HDCP2.2 fails and Content Type is not Type1, HDCP1.4 will
2108          * be attempted.
2109          */
2110         if (ret && intel_hdcp_capable(connector) &&
2111             hdcp->content_type != DRM_MODE_HDCP_CONTENT_TYPE1) {
2112                 ret = _intel_hdcp_enable(connector);
2113         }
2114
2115         if (!ret) {
2116                 schedule_delayed_work(&hdcp->check_work, check_link_interval);
2117                 intel_hdcp_update_value(connector,
2118                                         DRM_MODE_CONTENT_PROTECTION_ENABLED,
2119                                         true);
2120         }
2121
2122         mutex_unlock(&dig_port->hdcp_mutex);
2123         mutex_unlock(&hdcp->mutex);
2124         return ret;
2125 }
2126
2127 int intel_hdcp_disable(struct intel_connector *connector)
2128 {
2129         struct intel_digital_port *dig_port = intel_attached_dig_port(connector);
2130         struct intel_hdcp *hdcp = &connector->hdcp;
2131         int ret = 0;
2132
2133         if (!hdcp->shim)
2134                 return -ENOENT;
2135
2136         mutex_lock(&hdcp->mutex);
2137         mutex_lock(&dig_port->hdcp_mutex);
2138
2139         if (hdcp->value == DRM_MODE_CONTENT_PROTECTION_UNDESIRED)
2140                 goto out;
2141
2142         intel_hdcp_update_value(connector,
2143                                 DRM_MODE_CONTENT_PROTECTION_UNDESIRED, false);
2144         if (hdcp->hdcp2_encrypted)
2145                 ret = _intel_hdcp2_disable(connector);
2146         else if (hdcp->hdcp_encrypted)
2147                 ret = _intel_hdcp_disable(connector);
2148
2149 out:
2150         mutex_unlock(&dig_port->hdcp_mutex);
2151         mutex_unlock(&hdcp->mutex);
2152         cancel_delayed_work_sync(&hdcp->check_work);
2153         return ret;
2154 }
2155
2156 void intel_hdcp_update_pipe(struct intel_atomic_state *state,
2157                             struct intel_encoder *encoder,
2158                             const struct intel_crtc_state *crtc_state,
2159                             const struct drm_connector_state *conn_state)
2160 {
2161         struct intel_connector *connector =
2162                                 to_intel_connector(conn_state->connector);
2163         struct intel_hdcp *hdcp = &connector->hdcp;
2164         bool content_protection_type_changed, desired_and_not_enabled = false;
2165
2166         if (!connector->hdcp.shim)
2167                 return;
2168
2169         content_protection_type_changed =
2170                 (conn_state->hdcp_content_type != hdcp->content_type &&
2171                  conn_state->content_protection !=
2172                  DRM_MODE_CONTENT_PROTECTION_UNDESIRED);
2173
2174         /*
2175          * During the HDCP encryption session if Type change is requested,
2176          * disable the HDCP and reenable it with new TYPE value.
2177          */
2178         if (conn_state->content_protection ==
2179             DRM_MODE_CONTENT_PROTECTION_UNDESIRED ||
2180             content_protection_type_changed)
2181                 intel_hdcp_disable(connector);
2182
2183         /*
2184          * Mark the hdcp state as DESIRED after the hdcp disable of type
2185          * change procedure.
2186          */
2187         if (content_protection_type_changed) {
2188                 mutex_lock(&hdcp->mutex);
2189                 hdcp->value = DRM_MODE_CONTENT_PROTECTION_DESIRED;
2190                 schedule_work(&hdcp->prop_work);
2191                 mutex_unlock(&hdcp->mutex);
2192         }
2193
2194         if (conn_state->content_protection ==
2195             DRM_MODE_CONTENT_PROTECTION_DESIRED) {
2196                 mutex_lock(&hdcp->mutex);
2197                 /* Avoid enabling hdcp, if it already ENABLED */
2198                 desired_and_not_enabled =
2199                         hdcp->value != DRM_MODE_CONTENT_PROTECTION_ENABLED;
2200                 mutex_unlock(&hdcp->mutex);
2201         }
2202
2203         if (desired_and_not_enabled || content_protection_type_changed)
2204                 intel_hdcp_enable(connector,
2205                                   crtc_state->cpu_transcoder,
2206                                   (u8)conn_state->hdcp_content_type);
2207 }
2208
2209 void intel_hdcp_component_fini(struct drm_i915_private *dev_priv)
2210 {
2211         mutex_lock(&dev_priv->hdcp_comp_mutex);
2212         if (!dev_priv->hdcp_comp_added) {
2213                 mutex_unlock(&dev_priv->hdcp_comp_mutex);
2214                 return;
2215         }
2216
2217         dev_priv->hdcp_comp_added = false;
2218         mutex_unlock(&dev_priv->hdcp_comp_mutex);
2219
2220         component_del(dev_priv->drm.dev, &i915_hdcp_component_ops);
2221 }
2222
2223 void intel_hdcp_cleanup(struct intel_connector *connector)
2224 {
2225         struct intel_hdcp *hdcp = &connector->hdcp;
2226
2227         if (!hdcp->shim)
2228                 return;
2229
2230         /*
2231          * If the connector is registered, it's possible userspace could kick
2232          * off another HDCP enable, which would re-spawn the workers.
2233          */
2234         drm_WARN_ON(connector->base.dev,
2235                 connector->base.registration_state == DRM_CONNECTOR_REGISTERED);
2236
2237         /*
2238          * Now that the connector is not registered, check_work won't be run,
2239          * but cancel any outstanding instances of it
2240          */
2241         cancel_delayed_work_sync(&hdcp->check_work);
2242
2243         /*
2244          * We don't cancel prop_work in the same way as check_work since it
2245          * requires connection_mutex which could be held while calling this
2246          * function. Instead, we rely on the connector references grabbed before
2247          * scheduling prop_work to ensure the connector is alive when prop_work
2248          * is run. So if we're in the destroy path (which is where this
2249          * function should be called), we're "guaranteed" that prop_work is not
2250          * active (tl;dr This Should Never Happen).
2251          */
2252         drm_WARN_ON(connector->base.dev, work_pending(&hdcp->prop_work));
2253
2254         mutex_lock(&hdcp->mutex);
2255         kfree(hdcp->port_data.streams);
2256         hdcp->shim = NULL;
2257         mutex_unlock(&hdcp->mutex);
2258 }
2259
2260 void intel_hdcp_atomic_check(struct drm_connector *connector,
2261                              struct drm_connector_state *old_state,
2262                              struct drm_connector_state *new_state)
2263 {
2264         u64 old_cp = old_state->content_protection;
2265         u64 new_cp = new_state->content_protection;
2266         struct drm_crtc_state *crtc_state;
2267
2268         if (!new_state->crtc) {
2269                 /*
2270                  * If the connector is being disabled with CP enabled, mark it
2271                  * desired so it's re-enabled when the connector is brought back
2272                  */
2273                 if (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)
2274                         new_state->content_protection =
2275                                 DRM_MODE_CONTENT_PROTECTION_DESIRED;
2276                 return;
2277         }
2278
2279         crtc_state = drm_atomic_get_new_crtc_state(new_state->state,
2280                                                    new_state->crtc);
2281         /*
2282          * Fix the HDCP uapi content protection state in case of modeset.
2283          * FIXME: As per HDCP content protection property uapi doc, an uevent()
2284          * need to be sent if there is transition from ENABLED->DESIRED.
2285          */
2286         if (drm_atomic_crtc_needs_modeset(crtc_state) &&
2287             (old_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED &&
2288             new_cp != DRM_MODE_CONTENT_PROTECTION_UNDESIRED))
2289                 new_state->content_protection =
2290                         DRM_MODE_CONTENT_PROTECTION_DESIRED;
2291
2292         /*
2293          * Nothing to do if the state didn't change, or HDCP was activated since
2294          * the last commit. And also no change in hdcp content type.
2295          */
2296         if (old_cp == new_cp ||
2297             (old_cp == DRM_MODE_CONTENT_PROTECTION_DESIRED &&
2298              new_cp == DRM_MODE_CONTENT_PROTECTION_ENABLED)) {
2299                 if (old_state->hdcp_content_type ==
2300                                 new_state->hdcp_content_type)
2301                         return;
2302         }
2303
2304         crtc_state->mode_changed = true;
2305 }
2306
2307 /* Handles the CP_IRQ raised from the DP HDCP sink */
2308 void intel_hdcp_handle_cp_irq(struct intel_connector *connector)
2309 {
2310         struct intel_hdcp *hdcp = &connector->hdcp;
2311
2312         if (!hdcp->shim)
2313                 return;
2314
2315         atomic_inc(&connector->hdcp.cp_irq_count);
2316         wake_up_all(&connector->hdcp.cp_irq_queue);
2317
2318         schedule_delayed_work(&hdcp->check_work, 0);
2319 }