Merge branches 'clk-samsung', 'clk-formatting', 'clk-si5341' and 'clk-socfpga' into...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static struct intel_dp *intel_attached_dp(struct intel_connector *connector)
150 {
151         return enc_to_intel_dp(intel_attached_encoder(connector));
152 }
153
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155                                const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159                                            const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161                                       enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167         static const int dp_rates[] = {
168                 162000, 270000, 540000, 810000
169         };
170         int i, max_rate;
171
172         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173
174         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175                 if (dp_rates[i] > max_rate)
176                         break;
177                 intel_dp->sink_rates[i] = dp_rates[i];
178         }
179
180         intel_dp->num_sink_rates = i;
181 }
182
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186         int i;
187
188         /* Limit results by potentially reduced max rate */
189         for (i = 0; i < len; i++) {
190                 if (rates[len - i - 1] <= max_rate)
191                         return len - i;
192         }
193
194         return 0;
195 }
196
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199                                           int max_rate)
200 {
201         return intel_dp_rate_limit_len(intel_dp->common_rates,
202                                        intel_dp->num_common_rates, max_rate);
203 }
204
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215         int source_max = intel_dig_port->max_lanes;
216         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218
219         return min3(source_max, sink_max, fia_max);
220 }
221
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224         return intel_dp->max_link_lane_count;
225 }
226
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231         return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238          * link rate that is generally expressed in Gbps. Since, 8 bits of data
239          * is transmitted every LS_Clk per lane, there is no need to account for
240          * the channel encoding that is done in the PHY layer here.
241          */
242
243         return max_link_clock * max_lanes;
244 }
245
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250         struct intel_encoder *encoder = &intel_dig_port->base;
251         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252         int max_dotclk = dev_priv->max_dotclk_freq;
253         int ds_max_dotclk;
254
255         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256
257         if (type != DP_DS_PORT_TYPE_VGA)
258                 return max_dotclk;
259
260         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261                                                     intel_dp->downstream_ports);
262
263         if (ds_max_dotclk != 0)
264                 max_dotclk = min(max_dotclk, ds_max_dotclk);
265
266         return max_dotclk;
267 }
268
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273         enum port port = dig_port->base.port;
274
275         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276
277         /* Low voltage SKUs are limited to max of 5.4G */
278         if (voltage == VOLTAGE_INFO_0_85V)
279                 return 540000;
280
281         /* For this SKU 8.1G is supported in all ports */
282         if (IS_CNL_WITH_PORT_F(dev_priv))
283                 return 810000;
284
285         /* For other SKUs, max rate on ports A and D is 5.4G */
286         if (port == PORT_A || port == PORT_D)
287                 return 540000;
288
289         return 810000;
290 }
291
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297
298         if (intel_phy_is_combo(dev_priv, phy) &&
299             !IS_ELKHARTLAKE(dev_priv) &&
300             !intel_dp_is_edp(intel_dp))
301                 return 540000;
302
303         return 810000;
304 }
305
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309         /* The values must be in increasing order */
310         static const int cnl_rates[] = {
311                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312         };
313         static const int bxt_rates[] = {
314                 162000, 216000, 243000, 270000, 324000, 432000, 540000
315         };
316         static const int skl_rates[] = {
317                 162000, 216000, 270000, 324000, 432000, 540000
318         };
319         static const int hsw_rates[] = {
320                 162000, 270000, 540000
321         };
322         static const int g4x_rates[] = {
323                 162000, 270000
324         };
325         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327         const struct ddi_vbt_port_info *info =
328                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
329         const int *source_rates;
330         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331
332         /* This should only be done once */
333         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334
335         if (INTEL_GEN(dev_priv) >= 10) {
336                 source_rates = cnl_rates;
337                 size = ARRAY_SIZE(cnl_rates);
338                 if (IS_GEN(dev_priv, 10))
339                         max_rate = cnl_max_source_rate(intel_dp);
340                 else
341                         max_rate = icl_max_source_rate(intel_dp);
342         } else if (IS_GEN9_LP(dev_priv)) {
343                 source_rates = bxt_rates;
344                 size = ARRAY_SIZE(bxt_rates);
345         } else if (IS_GEN9_BC(dev_priv)) {
346                 source_rates = skl_rates;
347                 size = ARRAY_SIZE(skl_rates);
348         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349                    IS_BROADWELL(dev_priv)) {
350                 source_rates = hsw_rates;
351                 size = ARRAY_SIZE(hsw_rates);
352         } else {
353                 source_rates = g4x_rates;
354                 size = ARRAY_SIZE(g4x_rates);
355         }
356
357         if (max_rate && vbt_max_rate)
358                 max_rate = min(max_rate, vbt_max_rate);
359         else if (vbt_max_rate)
360                 max_rate = vbt_max_rate;
361
362         if (max_rate)
363                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364
365         intel_dp->source_rates = source_rates;
366         intel_dp->num_source_rates = size;
367 }
368
369 static int intersect_rates(const int *source_rates, int source_len,
370                            const int *sink_rates, int sink_len,
371                            int *common_rates)
372 {
373         int i = 0, j = 0, k = 0;
374
375         while (i < source_len && j < sink_len) {
376                 if (source_rates[i] == sink_rates[j]) {
377                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378                                 return k;
379                         common_rates[k] = source_rates[i];
380                         ++k;
381                         ++i;
382                         ++j;
383                 } else if (source_rates[i] < sink_rates[j]) {
384                         ++i;
385                 } else {
386                         ++j;
387                 }
388         }
389         return k;
390 }
391
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395         int i;
396
397         for (i = 0; i < len; i++)
398                 if (rate == rates[i])
399                         return i;
400
401         return -1;
402 }
403
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407
408         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409                                                      intel_dp->num_source_rates,
410                                                      intel_dp->sink_rates,
411                                                      intel_dp->num_sink_rates,
412                                                      intel_dp->common_rates);
413
414         /* Paranoia, there should always be something in common. */
415         if (WARN_ON(intel_dp->num_common_rates == 0)) {
416                 intel_dp->common_rates[0] = 162000;
417                 intel_dp->num_common_rates = 1;
418         }
419 }
420
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422                                        u8 lane_count)
423 {
424         /*
425          * FIXME: we need to synchronize the current link parameters with
426          * hardware readout. Currently fast link training doesn't work on
427          * boot-up.
428          */
429         if (link_rate == 0 ||
430             link_rate > intel_dp->max_link_rate)
431                 return false;
432
433         if (lane_count == 0 ||
434             lane_count > intel_dp_max_lane_count(intel_dp))
435                 return false;
436
437         return true;
438 }
439
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441                                                      int link_rate,
442                                                      u8 lane_count)
443 {
444         const struct drm_display_mode *fixed_mode =
445                 intel_dp->attached_connector->panel.fixed_mode;
446         int mode_rate, max_rate;
447
448         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450         if (mode_rate > max_rate)
451                 return false;
452
453         return true;
454 }
455
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457                                             int link_rate, u8 lane_count)
458 {
459         int index;
460
461         index = intel_dp_rate_index(intel_dp->common_rates,
462                                     intel_dp->num_common_rates,
463                                     link_rate);
464         if (index > 0) {
465                 if (intel_dp_is_edp(intel_dp) &&
466                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467                                                               intel_dp->common_rates[index - 1],
468                                                               lane_count)) {
469                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470                         return 0;
471                 }
472                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473                 intel_dp->max_link_lane_count = lane_count;
474         } else if (lane_count > 1) {
475                 if (intel_dp_is_edp(intel_dp) &&
476                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477                                                               intel_dp_max_common_rate(intel_dp),
478                                                               lane_count >> 1)) {
479                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480                         return 0;
481                 }
482                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483                 intel_dp->max_link_lane_count = lane_count >> 1;
484         } else {
485                 DRM_ERROR("Link Training Unsuccessful\n");
486                 return -1;
487         }
488
489         return 0;
490 }
491
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494         return div_u64(mul_u32_u32(mode_clock, 1000000U),
495                        DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501         if (INTEL_GEN(i915) >= 11)
502                 return 7680 * 8;
503         else
504                 return 6144 * 8;
505 }
506
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508                                        u32 link_clock, u32 lane_count,
509                                        u32 mode_clock, u32 mode_hdisplay)
510 {
511         u32 bits_per_pixel, max_bpp_small_joiner_ram;
512         int i;
513
514         /*
515          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517          * for SST -> TimeSlotsPerMTP is 1,
518          * for MST -> TimeSlotsPerMTP has to be calculated
519          */
520         bits_per_pixel = (link_clock * lane_count * 8) /
521                          intel_dp_mode_to_fec_clock(mode_clock);
522         DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523
524         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526                 mode_hdisplay;
527         DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528
529         /*
530          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531          * check, output bpp from small joiner RAM check)
532          */
533         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534
535         /* Error out if the max bpp is less than smallest allowed valid bpp */
536         if (bits_per_pixel < valid_dsc_bpp[0]) {
537                 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538                               bits_per_pixel, valid_dsc_bpp[0]);
539                 return 0;
540         }
541
542         /* Find the nearest match in the array of known BPPs from VESA */
543         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
545                         break;
546         }
547         bits_per_pixel = valid_dsc_bpp[i];
548
549         /*
550          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551          * fractional part is 0
552          */
553         return bits_per_pixel << 4;
554 }
555
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557                                        int mode_clock, int mode_hdisplay)
558 {
559         u8 min_slice_count, i;
560         int max_slice_width;
561
562         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563                 min_slice_count = DIV_ROUND_UP(mode_clock,
564                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
565         else
566                 min_slice_count = DIV_ROUND_UP(mode_clock,
567                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
568
569         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572                               max_slice_width);
573                 return 0;
574         }
575         /* Also take into account max slice width */
576         min_slice_count = min_t(u8, min_slice_count,
577                                 DIV_ROUND_UP(mode_hdisplay,
578                                              max_slice_width));
579
580         /* Find the closest match to the valid slice count values */
581         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582                 if (valid_dsc_slicecount[i] >
583                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584                                                     false))
585                         break;
586                 if (min_slice_count  <= valid_dsc_slicecount[i])
587                         return valid_dsc_slicecount[i];
588         }
589
590         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591         return 0;
592 }
593
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595                                   int hdisplay)
596 {
597         /*
598          * Older platforms don't like hdisplay==4096 with DP.
599          *
600          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601          * and frame counter increment), but we don't get vblank interrupts,
602          * and the pipe underruns immediately. The link also doesn't seem
603          * to get trained properly.
604          *
605          * On CHV the vblank interrupts don't seem to disappear but
606          * otherwise the symptoms are similar.
607          *
608          * TODO: confirm the behaviour on HSW+
609          */
610         return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615                     struct drm_display_mode *mode)
616 {
617         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
618         struct intel_connector *intel_connector = to_intel_connector(connector);
619         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620         struct drm_i915_private *dev_priv = to_i915(connector->dev);
621         int target_clock = mode->clock;
622         int max_rate, mode_rate, max_lanes, max_link_clock;
623         int max_dotclk;
624         u16 dsc_max_output_bpp = 0;
625         u8 dsc_slice_count = 0;
626
627         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628                 return MODE_NO_DBLESCAN;
629
630         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631
632         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633                 if (mode->hdisplay > fixed_mode->hdisplay)
634                         return MODE_PANEL;
635
636                 if (mode->vdisplay > fixed_mode->vdisplay)
637                         return MODE_PANEL;
638
639                 target_clock = fixed_mode->clock;
640         }
641
642         max_link_clock = intel_dp_max_link_rate(intel_dp);
643         max_lanes = intel_dp_max_lane_count(intel_dp);
644
645         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646         mode_rate = intel_dp_link_required(target_clock, 18);
647
648         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649                 return MODE_H_ILLEGAL;
650
651         /*
652          * Output bpp is stored in 6.4 format so right shift by 4 to get the
653          * integer value since we support only integer values of bpp.
654          */
655         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657                 if (intel_dp_is_edp(intel_dp)) {
658                         dsc_max_output_bpp =
659                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660                         dsc_slice_count =
661                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662                                                                 true);
663                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664                         dsc_max_output_bpp =
665                                 intel_dp_dsc_get_output_bpp(dev_priv,
666                                                             max_link_clock,
667                                                             max_lanes,
668                                                             target_clock,
669                                                             mode->hdisplay) >> 4;
670                         dsc_slice_count =
671                                 intel_dp_dsc_get_slice_count(intel_dp,
672                                                              target_clock,
673                                                              mode->hdisplay);
674                 }
675         }
676
677         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678             target_clock > max_dotclk)
679                 return MODE_CLOCK_HIGH;
680
681         if (mode->clock < 10000)
682                 return MODE_CLOCK_LOW;
683
684         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685                 return MODE_H_ILLEGAL;
686
687         return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692         int i;
693         u32 v = 0;
694
695         if (src_bytes > 4)
696                 src_bytes = 4;
697         for (i = 0; i < src_bytes; i++)
698                 v |= ((u32)src[i]) << ((3 - i) * 8);
699         return v;
700 }
701
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704         int i;
705         if (dst_bytes > 4)
706                 dst_bytes = 4;
707         for (i = 0; i < dst_bytes; i++)
708                 dst[i] = src >> ((3-i) * 8);
709 }
710
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715                                               bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723         intel_wakeref_t wakeref;
724
725         /*
726          * See intel_power_sequencer_reset() why we need
727          * a power domain reference here.
728          */
729         wakeref = intel_display_power_get(dev_priv,
730                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731
732         mutex_lock(&dev_priv->pps_mutex);
733
734         return wakeref;
735 }
736
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741
742         mutex_unlock(&dev_priv->pps_mutex);
743         intel_display_power_put(dev_priv,
744                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745                                 wakeref);
746         return 0;
747 }
748
749 #define with_pps_lock(dp, wf) \
750         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         enum pipe pipe = intel_dp->pps_pipe;
758         bool pll_enabled, release_cl_override = false;
759         enum dpio_phy phy = DPIO_PHY(pipe);
760         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761         u32 DP;
762
763         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764                  "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765                  pipe_name(pipe), intel_dig_port->base.base.base.id,
766                  intel_dig_port->base.base.name))
767                 return;
768
769         DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770                       pipe_name(pipe), intel_dig_port->base.base.base.id,
771                       intel_dig_port->base.base.name);
772
773         /* Preserve the BIOS-computed detected bit. This is
774          * supposed to be read-only.
775          */
776         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778         DP |= DP_PORT_WIDTH(1);
779         DP |= DP_LINK_TRAIN_PAT_1;
780
781         if (IS_CHERRYVIEW(dev_priv))
782                 DP |= DP_PIPE_SEL_CHV(pipe);
783         else
784                 DP |= DP_PIPE_SEL(pipe);
785
786         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787
788         /*
789          * The DPLL for the pipe must be enabled for this to work.
790          * So enable temporarily it if it's not already enabled.
791          */
792         if (!pll_enabled) {
793                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
795
796                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
799                                   pipe_name(pipe));
800                         return;
801                 }
802         }
803
804         /*
805          * Similar magic as in intel_dp_enable_port().
806          * We _must_ do this port enable + disable trick
807          * to make this power sequencer lock onto the port.
808          * Otherwise even VDD force bit won't work.
809          */
810         I915_WRITE(intel_dp->output_reg, DP);
811         POSTING_READ(intel_dp->output_reg);
812
813         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814         POSTING_READ(intel_dp->output_reg);
815
816         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817         POSTING_READ(intel_dp->output_reg);
818
819         if (!pll_enabled) {
820                 vlv_force_pll_off(dev_priv, pipe);
821
822                 if (release_cl_override)
823                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
824         }
825 }
826
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829         struct intel_encoder *encoder;
830         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831
832         /*
833          * We don't have power sequencer currently.
834          * Pick one that's not used by other ports.
835          */
836         for_each_intel_dp(&dev_priv->drm, encoder) {
837                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
838
839                 if (encoder->type == INTEL_OUTPUT_EDP) {
840                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841                                 intel_dp->active_pipe != intel_dp->pps_pipe);
842
843                         if (intel_dp->pps_pipe != INVALID_PIPE)
844                                 pipes &= ~(1 << intel_dp->pps_pipe);
845                 } else {
846                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847
848                         if (intel_dp->active_pipe != INVALID_PIPE)
849                                 pipes &= ~(1 << intel_dp->active_pipe);
850                 }
851         }
852
853         if (pipes == 0)
854                 return INVALID_PIPE;
855
856         return ffs(pipes) - 1;
857 }
858
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864         enum pipe pipe;
865
866         lockdep_assert_held(&dev_priv->pps_mutex);
867
868         /* We should never land here with regular DP ports */
869         WARN_ON(!intel_dp_is_edp(intel_dp));
870
871         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872                 intel_dp->active_pipe != intel_dp->pps_pipe);
873
874         if (intel_dp->pps_pipe != INVALID_PIPE)
875                 return intel_dp->pps_pipe;
876
877         pipe = vlv_find_free_pps(dev_priv);
878
879         /*
880          * Didn't find one. This should not happen since there
881          * are two power sequencers and up to two eDP ports.
882          */
883         if (WARN_ON(pipe == INVALID_PIPE))
884                 pipe = PIPE_A;
885
886         vlv_steal_power_sequencer(dev_priv, pipe);
887         intel_dp->pps_pipe = pipe;
888
889         DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890                       pipe_name(intel_dp->pps_pipe),
891                       intel_dig_port->base.base.base.id,
892                       intel_dig_port->base.base.name);
893
894         /* init power sequencer on this pipe and port */
895         intel_dp_init_panel_power_sequencer(intel_dp);
896         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897
898         /*
899          * Even vdd force doesn't work until we've made
900          * the power sequencer lock in on the port.
901          */
902         vlv_power_sequencer_kick(intel_dp);
903
904         return intel_dp->pps_pipe;
905 }
906
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911         int backlight_controller = dev_priv->vbt.backlight.controller;
912
913         lockdep_assert_held(&dev_priv->pps_mutex);
914
915         /* We should never land here with regular DP ports */
916         WARN_ON(!intel_dp_is_edp(intel_dp));
917
918         if (!intel_dp->pps_reset)
919                 return backlight_controller;
920
921         intel_dp->pps_reset = false;
922
923         /*
924          * Only the HW needs to be reprogrammed, the SW state is fixed and
925          * has been setup during connector init.
926          */
927         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928
929         return backlight_controller;
930 }
931
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933                                enum pipe pipe);
934
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936                                enum pipe pipe)
937 {
938         return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942                                 enum pipe pipe)
943 {
944         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948                          enum pipe pipe)
949 {
950         return true;
951 }
952
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955                      enum port port,
956                      vlv_pipe_check pipe_check)
957 {
958         enum pipe pipe;
959
960         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962                         PANEL_PORT_SELECT_MASK;
963
964                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
965                         continue;
966
967                 if (!pipe_check(dev_priv, pipe))
968                         continue;
969
970                 return pipe;
971         }
972
973         return INVALID_PIPE;
974 }
975
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981         enum port port = intel_dig_port->base.port;
982
983         lockdep_assert_held(&dev_priv->pps_mutex);
984
985         /* try to find a pipe with this port selected */
986         /* first pick one where the panel is on */
987         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988                                                   vlv_pipe_has_pp_on);
989         /* didn't find one? pick one where vdd is on */
990         if (intel_dp->pps_pipe == INVALID_PIPE)
991                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992                                                           vlv_pipe_has_vdd_on);
993         /* didn't find one? pick one with just the correct port */
994         if (intel_dp->pps_pipe == INVALID_PIPE)
995                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996                                                           vlv_pipe_any);
997
998         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999         if (intel_dp->pps_pipe == INVALID_PIPE) {
1000                 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001                               intel_dig_port->base.base.base.id,
1002                               intel_dig_port->base.base.name);
1003                 return;
1004         }
1005
1006         DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007                       intel_dig_port->base.base.base.id,
1008                       intel_dig_port->base.base.name,
1009                       pipe_name(intel_dp->pps_pipe));
1010
1011         intel_dp_init_panel_power_sequencer(intel_dp);
1012         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017         struct intel_encoder *encoder;
1018
1019         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020                     !IS_GEN9_LP(dev_priv)))
1021                 return;
1022
1023         /*
1024          * We can't grab pps_mutex here due to deadlock with power_domain
1025          * mutex when power_domain functions are called while holding pps_mutex.
1026          * That also means that in order to use pps_pipe the code needs to
1027          * hold both a power domain reference and pps_mutex, and the power domain
1028          * reference get/put must be done while _not_ holding pps_mutex.
1029          * pps_{lock,unlock}() do these steps in the correct order, so one
1030          * should use them always.
1031          */
1032
1033         for_each_intel_dp(&dev_priv->drm, encoder) {
1034                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1035
1036                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037
1038                 if (encoder->type != INTEL_OUTPUT_EDP)
1039                         continue;
1040
1041                 if (IS_GEN9_LP(dev_priv))
1042                         intel_dp->pps_reset = true;
1043                 else
1044                         intel_dp->pps_pipe = INVALID_PIPE;
1045         }
1046 }
1047
1048 struct pps_registers {
1049         i915_reg_t pp_ctrl;
1050         i915_reg_t pp_stat;
1051         i915_reg_t pp_on;
1052         i915_reg_t pp_off;
1053         i915_reg_t pp_div;
1054 };
1055
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057                                     struct pps_registers *regs)
1058 {
1059         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060         int pps_idx = 0;
1061
1062         memset(regs, 0, sizeof(*regs));
1063
1064         if (IS_GEN9_LP(dev_priv))
1065                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1066         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068
1069         regs->pp_ctrl = PP_CONTROL(pps_idx);
1070         regs->pp_stat = PP_STATUS(pps_idx);
1071         regs->pp_on = PP_ON_DELAYS(pps_idx);
1072         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073
1074         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076                 regs->pp_div = INVALID_MMIO_REG;
1077         else
1078                 regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084         struct pps_registers regs;
1085
1086         intel_pps_get_registers(intel_dp, &regs);
1087
1088         return regs.pp_ctrl;
1089 }
1090
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094         struct pps_registers regs;
1095
1096         intel_pps_get_registers(intel_dp, &regs);
1097
1098         return regs.pp_stat;
1099 }
1100
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104                               void *unused)
1105 {
1106         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107                                                  edp_notifier);
1108         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109         intel_wakeref_t wakeref;
1110
1111         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112                 return 0;
1113
1114         with_pps_lock(intel_dp, wakeref) {
1115                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1118                         u32 pp_div;
1119
1120                         pp_ctrl_reg = PP_CONTROL(pipe);
1121                         pp_div_reg  = PP_DIVISOR(pipe);
1122                         pp_div = I915_READ(pp_div_reg);
1123                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124
1125                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1126                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128                         msleep(intel_dp->panel_power_cycle_delay);
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138
1139         lockdep_assert_held(&dev_priv->pps_mutex);
1140
1141         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142             intel_dp->pps_pipe == INVALID_PIPE)
1143                 return false;
1144
1145         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151
1152         lockdep_assert_held(&dev_priv->pps_mutex);
1153
1154         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155             intel_dp->pps_pipe == INVALID_PIPE)
1156                 return false;
1157
1158         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165
1166         if (!intel_dp_is_edp(intel_dp))
1167                 return;
1168
1169         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172                               I915_READ(_pp_stat_reg(intel_dp)),
1173                               I915_READ(_pp_ctrl_reg(intel_dp)));
1174         }
1175 }
1176
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182         const unsigned int timeout_ms = 10;
1183         u32 status;
1184         bool done;
1185
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188                                   msecs_to_jiffies_timeout(timeout_ms));
1189
1190         /* just trace the final value */
1191         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192
1193         if (!done)
1194                 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195                           intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197
1198         return status;
1199 }
1200
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204
1205         if (index)
1206                 return 0;
1207
1208         /*
1209          * The clock divider is based off the hrawclk, and would like to run at
1210          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211          */
1212         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219
1220         if (index)
1221                 return 0;
1222
1223         /*
1224          * The clock divider is based off the cdclk or PCH rawclk, and would
1225          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226          * divide by 2000 and use that
1227          */
1228         if (dig_port->aux_ch == AUX_CH_A)
1229                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230         else
1231                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238
1239         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240                 /* Workaround for non-ULT HSW */
1241                 switch (index) {
1242                 case 0: return 63;
1243                 case 1: return 72;
1244                 default: return 0;
1245                 }
1246         }
1247
1248         return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253         /*
1254          * SKL doesn't need us to program the AUX clock divider (Hardware will
1255          * derive the clock from CDCLK automatically). We still implement the
1256          * get_aux_clock_divider vfunc to plug-in into the existing code.
1257          */
1258         return index ? 0 : 1;
1259 }
1260
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262                                 int send_bytes,
1263                                 u32 aux_clock_divider)
1264 {
1265         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266         struct drm_i915_private *dev_priv =
1267                         to_i915(intel_dig_port->base.base.dev);
1268         u32 precharge, timeout;
1269
1270         if (IS_GEN(dev_priv, 6))
1271                 precharge = 3;
1272         else
1273                 precharge = 5;
1274
1275         if (IS_BROADWELL(dev_priv))
1276                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277         else
1278                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279
1280         return DP_AUX_CH_CTL_SEND_BUSY |
1281                DP_AUX_CH_CTL_DONE |
1282                DP_AUX_CH_CTL_INTERRUPT |
1283                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284                timeout |
1285                DP_AUX_CH_CTL_RECEIVE_ERROR |
1286                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 unused)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *i915 =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299         u32 ret;
1300
1301         ret = DP_AUX_CH_CTL_SEND_BUSY |
1302               DP_AUX_CH_CTL_DONE |
1303               DP_AUX_CH_CTL_INTERRUPT |
1304               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305               DP_AUX_CH_CTL_TIME_OUT_MAX |
1306               DP_AUX_CH_CTL_RECEIVE_ERROR |
1307               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310
1311         if (intel_phy_is_tc(i915, phy) &&
1312             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313                 ret |= DP_AUX_CH_CTL_TBT_IO;
1314
1315         return ret;
1316 }
1317
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320                   const u8 *send, int send_bytes,
1321                   u8 *recv, int recv_size,
1322                   u32 aux_send_ctl_flags)
1323 {
1324         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325         struct drm_i915_private *i915 =
1326                         to_i915(intel_dig_port->base.base.dev);
1327         struct intel_uncore *uncore = &i915->uncore;
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         bool is_tc_port = intel_phy_is_tc(i915, phy);
1330         i915_reg_t ch_ctl, ch_data[5];
1331         u32 aux_clock_divider;
1332         enum intel_display_power_domain aux_domain =
1333                 intel_aux_power_domain(intel_dig_port);
1334         intel_wakeref_t aux_wakeref;
1335         intel_wakeref_t pps_wakeref;
1336         int i, ret, recv_bytes;
1337         int try, clock = 0;
1338         u32 status;
1339         bool vdd;
1340
1341         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344
1345         if (is_tc_port)
1346                 intel_tc_port_lock(intel_dig_port);
1347
1348         aux_wakeref = intel_display_power_get(i915, aux_domain);
1349         pps_wakeref = pps_lock(intel_dp);
1350
1351         /*
1352          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353          * In such cases we want to leave VDD enabled and it's up to upper layers
1354          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355          * ourselves.
1356          */
1357         vdd = edp_panel_vdd_on(intel_dp);
1358
1359         /* dp aux is extremely sensitive to irq latency, hence request the
1360          * lowest possible wakeup latency and so prevent the cpu from going into
1361          * deep sleep states.
1362          */
1363         pm_qos_update_request(&i915->pm_qos, 0);
1364
1365         intel_dp_check_edp(intel_dp);
1366
1367         /* Try to wait for any previous AUX channel activity */
1368         for (try = 0; try < 3; try++) {
1369                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1370                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371                         break;
1372                 msleep(1);
1373         }
1374         /* just trace the final value */
1375         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376
1377         if (try == 3) {
1378                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1379
1380                 if (status != intel_dp->aux_busy_last_status) {
1381                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382                              status);
1383                         intel_dp->aux_busy_last_status = status;
1384                 }
1385
1386                 ret = -EBUSY;
1387                 goto out;
1388         }
1389
1390         /* Only 5 data registers! */
1391         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392                 ret = -E2BIG;
1393                 goto out;
1394         }
1395
1396         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398                                                           send_bytes,
1399                                                           aux_clock_divider);
1400
1401                 send_ctl |= aux_send_ctl_flags;
1402
1403                 /* Must try at least 3 times according to DP spec */
1404                 for (try = 0; try < 5; try++) {
1405                         /* Load the send data into the aux channel data registers */
1406                         for (i = 0; i < send_bytes; i += 4)
1407                                 intel_uncore_write(uncore,
1408                                                    ch_data[i >> 2],
1409                                                    intel_dp_pack_aux(send + i,
1410                                                                      send_bytes - i));
1411
1412                         /* Send the command and wait for it to complete */
1413                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1414
1415                         status = intel_dp_aux_wait_done(intel_dp);
1416
1417                         /* Clear done status and any errors */
1418                         intel_uncore_write(uncore,
1419                                            ch_ctl,
1420                                            status |
1421                                            DP_AUX_CH_CTL_DONE |
1422                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1424
1425                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426                          *   400us delay required for errors and timeouts
1427                          *   Timeout errors from the HW already meet this
1428                          *   requirement so skip to next iteration
1429                          */
1430                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431                                 continue;
1432
1433                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434                                 usleep_range(400, 500);
1435                                 continue;
1436                         }
1437                         if (status & DP_AUX_CH_CTL_DONE)
1438                                 goto done;
1439                 }
1440         }
1441
1442         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444                 ret = -EBUSY;
1445                 goto out;
1446         }
1447
1448 done:
1449         /* Check for timeout or receive error.
1450          * Timeouts occur when the sink is not connected
1451          */
1452         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454                 ret = -EIO;
1455                 goto out;
1456         }
1457
1458         /* Timeouts occur when the device isn't connected, so they're
1459          * "normal" -- don't fill the kernel log with these */
1460         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462                 ret = -ETIMEDOUT;
1463                 goto out;
1464         }
1465
1466         /* Unload any bytes sent back from the other side */
1467         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469
1470         /*
1471          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472          * We have no idea of what happened so we return -EBUSY so
1473          * drm layer takes care for the necessary retries.
1474          */
1475         if (recv_bytes == 0 || recv_bytes > 20) {
1476                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477                               recv_bytes);
1478                 ret = -EBUSY;
1479                 goto out;
1480         }
1481
1482         if (recv_bytes > recv_size)
1483                 recv_bytes = recv_size;
1484
1485         for (i = 0; i < recv_bytes; i += 4)
1486                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487                                     recv + i, recv_bytes - i);
1488
1489         ret = recv_bytes;
1490 out:
1491         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492
1493         if (vdd)
1494                 edp_panel_vdd_off(intel_dp, false);
1495
1496         pps_unlock(intel_dp, pps_wakeref);
1497         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498
1499         if (is_tc_port)
1500                 intel_tc_port_unlock(intel_dig_port);
1501
1502         return ret;
1503 }
1504
1505 #define BARE_ADDRESS_SIZE       3
1506 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1507
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510                     const struct drm_dp_aux_msg *msg)
1511 {
1512         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513         txbuf[1] = (msg->address >> 8) & 0xff;
1514         txbuf[2] = msg->address & 0xff;
1515         txbuf[3] = msg->size - 1;
1516 }
1517
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522         u8 txbuf[20], rxbuf[20];
1523         size_t txsize, rxsize;
1524         int ret;
1525
1526         intel_dp_aux_header(txbuf, msg);
1527
1528         switch (msg->request & ~DP_AUX_I2C_MOT) {
1529         case DP_AUX_NATIVE_WRITE:
1530         case DP_AUX_I2C_WRITE:
1531         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533                 rxsize = 2; /* 0 or 1 data bytes */
1534
1535                 if (WARN_ON(txsize > 20))
1536                         return -E2BIG;
1537
1538                 WARN_ON(!msg->buffer != !msg->size);
1539
1540                 if (msg->buffer)
1541                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542
1543                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544                                         rxbuf, rxsize, 0);
1545                 if (ret > 0) {
1546                         msg->reply = rxbuf[0] >> 4;
1547
1548                         if (ret > 1) {
1549                                 /* Number of bytes written in a short write. */
1550                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551                         } else {
1552                                 /* Return payload size. */
1553                                 ret = msg->size;
1554                         }
1555                 }
1556                 break;
1557
1558         case DP_AUX_NATIVE_READ:
1559         case DP_AUX_I2C_READ:
1560                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561                 rxsize = msg->size + 1;
1562
1563                 if (WARN_ON(rxsize > 20))
1564                         return -E2BIG;
1565
1566                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567                                         rxbuf, rxsize, 0);
1568                 if (ret > 0) {
1569                         msg->reply = rxbuf[0] >> 4;
1570                         /*
1571                          * Assume happy day, and copy the data. The caller is
1572                          * expected to check msg->reply before touching it.
1573                          *
1574                          * Return payload size.
1575                          */
1576                         ret--;
1577                         memcpy(msg->buffer, rxbuf + 1, ret);
1578                 }
1579                 break;
1580
1581         default:
1582                 ret = -EINVAL;
1583                 break;
1584         }
1585
1586         return ret;
1587 }
1588
1589
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594         enum aux_ch aux_ch = dig_port->aux_ch;
1595
1596         switch (aux_ch) {
1597         case AUX_CH_B:
1598         case AUX_CH_C:
1599         case AUX_CH_D:
1600                 return DP_AUX_CH_CTL(aux_ch);
1601         default:
1602                 MISSING_CASE(aux_ch);
1603                 return DP_AUX_CH_CTL(AUX_CH_B);
1604         }
1605 }
1606
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611         enum aux_ch aux_ch = dig_port->aux_ch;
1612
1613         switch (aux_ch) {
1614         case AUX_CH_B:
1615         case AUX_CH_C:
1616         case AUX_CH_D:
1617                 return DP_AUX_CH_DATA(aux_ch, index);
1618         default:
1619                 MISSING_CASE(aux_ch);
1620                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1621         }
1622 }
1623
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628         enum aux_ch aux_ch = dig_port->aux_ch;
1629
1630         switch (aux_ch) {
1631         case AUX_CH_A:
1632                 return DP_AUX_CH_CTL(aux_ch);
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return PCH_DP_AUX_CH_CTL(aux_ch);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_CTL(AUX_CH_A);
1640         }
1641 }
1642
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_A:
1651                 return DP_AUX_CH_DATA(aux_ch, index);
1652         case AUX_CH_B:
1653         case AUX_CH_C:
1654         case AUX_CH_D:
1655                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656         default:
1657                 MISSING_CASE(aux_ch);
1658                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1659         }
1660 }
1661
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666         enum aux_ch aux_ch = dig_port->aux_ch;
1667
1668         switch (aux_ch) {
1669         case AUX_CH_A:
1670         case AUX_CH_B:
1671         case AUX_CH_C:
1672         case AUX_CH_D:
1673         case AUX_CH_E:
1674         case AUX_CH_F:
1675         case AUX_CH_G:
1676                 return DP_AUX_CH_CTL(aux_ch);
1677         default:
1678                 MISSING_CASE(aux_ch);
1679                 return DP_AUX_CH_CTL(AUX_CH_A);
1680         }
1681 }
1682
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687         enum aux_ch aux_ch = dig_port->aux_ch;
1688
1689         switch (aux_ch) {
1690         case AUX_CH_A:
1691         case AUX_CH_B:
1692         case AUX_CH_C:
1693         case AUX_CH_D:
1694         case AUX_CH_E:
1695         case AUX_CH_F:
1696         case AUX_CH_G:
1697                 return DP_AUX_CH_DATA(aux_ch, index);
1698         default:
1699                 MISSING_CASE(aux_ch);
1700                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1701         }
1702 }
1703
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707         kfree(intel_dp->aux.name);
1708 }
1709
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715         struct intel_encoder *encoder = &dig_port->base;
1716
1717         if (INTEL_GEN(dev_priv) >= 9) {
1718                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720         } else if (HAS_PCH_SPLIT(dev_priv)) {
1721                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723         } else {
1724                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726         }
1727
1728         if (INTEL_GEN(dev_priv) >= 9)
1729                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732         else if (HAS_PCH_SPLIT(dev_priv))
1733                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734         else
1735                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736
1737         if (INTEL_GEN(dev_priv) >= 9)
1738                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739         else
1740                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741
1742         drm_dp_aux_init(&intel_dp->aux);
1743
1744         /* Failure to allocate our preferred name is not critical */
1745         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746                                        port_name(encoder->port));
1747         intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753
1754         return max_rate >= 540000;
1755 }
1756
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760
1761         return max_rate >= 810000;
1762 }
1763
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766                    struct intel_crtc_state *pipe_config)
1767 {
1768         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769         const struct dp_link_dpll *divisor = NULL;
1770         int i, count = 0;
1771
1772         if (IS_G4X(dev_priv)) {
1773                 divisor = g4x_dpll;
1774                 count = ARRAY_SIZE(g4x_dpll);
1775         } else if (HAS_PCH_SPLIT(dev_priv)) {
1776                 divisor = pch_dpll;
1777                 count = ARRAY_SIZE(pch_dpll);
1778         } else if (IS_CHERRYVIEW(dev_priv)) {
1779                 divisor = chv_dpll;
1780                 count = ARRAY_SIZE(chv_dpll);
1781         } else if (IS_VALLEYVIEW(dev_priv)) {
1782                 divisor = vlv_dpll;
1783                 count = ARRAY_SIZE(vlv_dpll);
1784         }
1785
1786         if (divisor && count) {
1787                 for (i = 0; i < count; i++) {
1788                         if (pipe_config->port_clock == divisor[i].clock) {
1789                                 pipe_config->dpll = divisor[i].dpll;
1790                                 pipe_config->clock_set = true;
1791                                 break;
1792                         }
1793                 }
1794         }
1795 }
1796
1797 static void snprintf_int_array(char *str, size_t len,
1798                                const int *array, int nelem)
1799 {
1800         int i;
1801
1802         str[0] = '\0';
1803
1804         for (i = 0; i < nelem; i++) {
1805                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806                 if (r >= len)
1807                         return;
1808                 str += r;
1809                 len -= r;
1810         }
1811 }
1812
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815         char str[128]; /* FIXME: too big for stack? */
1816
1817         if (!drm_debug_enabled(DRM_UT_KMS))
1818                 return;
1819
1820         snprintf_int_array(str, sizeof(str),
1821                            intel_dp->source_rates, intel_dp->num_source_rates);
1822         DRM_DEBUG_KMS("source rates: %s\n", str);
1823
1824         snprintf_int_array(str, sizeof(str),
1825                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1826         DRM_DEBUG_KMS("sink rates: %s\n", str);
1827
1828         snprintf_int_array(str, sizeof(str),
1829                            intel_dp->common_rates, intel_dp->num_common_rates);
1830         DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836         int len;
1837
1838         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839         if (WARN_ON(len <= 0))
1840                 return 162000;
1841
1842         return intel_dp->common_rates[len - 1];
1843 }
1844
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847         int i = intel_dp_rate_index(intel_dp->sink_rates,
1848                                     intel_dp->num_sink_rates, rate);
1849
1850         if (WARN_ON(i < 0))
1851                 i = 0;
1852
1853         return i;
1854 }
1855
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857                            u8 *link_bw, u8 *rate_select)
1858 {
1859         /* eDP 1.4 rate select method. */
1860         if (intel_dp->use_rate_select) {
1861                 *link_bw = 0;
1862                 *rate_select =
1863                         intel_dp_rate_select(intel_dp, port_clock);
1864         } else {
1865                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866                 *rate_select = 0;
1867         }
1868 }
1869
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871                                          const struct intel_crtc_state *pipe_config)
1872 {
1873         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874
1875         /* On TGL, FEC is supported on all Pipes */
1876         if (INTEL_GEN(dev_priv) >= 12)
1877                 return true;
1878
1879         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880                 return true;
1881
1882         return false;
1883 }
1884
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886                                   const struct intel_crtc_state *pipe_config)
1887 {
1888         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891
1892 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1893                                   const struct intel_crtc_state *crtc_state)
1894 {
1895         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1896
1897         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1898                 return false;
1899
1900         return intel_dsc_source_support(encoder, crtc_state) &&
1901                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1902 }
1903
1904 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1905                                 struct intel_crtc_state *pipe_config)
1906 {
1907         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1908         struct intel_connector *intel_connector = intel_dp->attached_connector;
1909         int bpp, bpc;
1910
1911         bpp = pipe_config->pipe_bpp;
1912         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1913
1914         if (bpc > 0)
1915                 bpp = min(bpp, 3*bpc);
1916
1917         if (intel_dp_is_edp(intel_dp)) {
1918                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1919                 if (intel_connector->base.display_info.bpc == 0 &&
1920                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1921                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1922                                       dev_priv->vbt.edp.bpp);
1923                         bpp = dev_priv->vbt.edp.bpp;
1924                 }
1925         }
1926
1927         return bpp;
1928 }
1929
1930 /* Adjust link config limits based on compliance test requests. */
1931 void
1932 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1933                                   struct intel_crtc_state *pipe_config,
1934                                   struct link_config_limits *limits)
1935 {
1936         /* For DP Compliance we override the computed bpp for the pipe */
1937         if (intel_dp->compliance.test_data.bpc != 0) {
1938                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1939
1940                 limits->min_bpp = limits->max_bpp = bpp;
1941                 pipe_config->dither_force_disable = bpp == 6 * 3;
1942
1943                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1944         }
1945
1946         /* Use values requested by Compliance Test Request */
1947         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1948                 int index;
1949
1950                 /* Validate the compliance test data since max values
1951                  * might have changed due to link train fallback.
1952                  */
1953                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1954                                                intel_dp->compliance.test_lane_count)) {
1955                         index = intel_dp_rate_index(intel_dp->common_rates,
1956                                                     intel_dp->num_common_rates,
1957                                                     intel_dp->compliance.test_link_rate);
1958                         if (index >= 0)
1959                                 limits->min_clock = limits->max_clock = index;
1960                         limits->min_lane_count = limits->max_lane_count =
1961                                 intel_dp->compliance.test_lane_count;
1962                 }
1963         }
1964 }
1965
1966 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1967 {
1968         /*
1969          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1970          * format of the number of bytes per pixel will be half the number
1971          * of bytes of RGB pixel.
1972          */
1973         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1974                 bpp /= 2;
1975
1976         return bpp;
1977 }
1978
1979 /* Optimize link config in order: max bpp, min clock, min lanes */
1980 static int
1981 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1982                                   struct intel_crtc_state *pipe_config,
1983                                   const struct link_config_limits *limits)
1984 {
1985         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
1986         int bpp, clock, lane_count;
1987         int mode_rate, link_clock, link_avail;
1988
1989         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1990                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1991
1992                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1993                                                    output_bpp);
1994
1995                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1996                         for (lane_count = limits->min_lane_count;
1997                              lane_count <= limits->max_lane_count;
1998                              lane_count <<= 1) {
1999                                 link_clock = intel_dp->common_rates[clock];
2000                                 link_avail = intel_dp_max_data_rate(link_clock,
2001                                                                     lane_count);
2002
2003                                 if (mode_rate <= link_avail) {
2004                                         pipe_config->lane_count = lane_count;
2005                                         pipe_config->pipe_bpp = bpp;
2006                                         pipe_config->port_clock = link_clock;
2007
2008                                         return 0;
2009                                 }
2010                         }
2011                 }
2012         }
2013
2014         return -EINVAL;
2015 }
2016
2017 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2018 {
2019         int i, num_bpc;
2020         u8 dsc_bpc[3] = {0};
2021
2022         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2023                                                        dsc_bpc);
2024         for (i = 0; i < num_bpc; i++) {
2025                 if (dsc_max_bpc >= dsc_bpc[i])
2026                         return dsc_bpc[i] * 3;
2027         }
2028
2029         return 0;
2030 }
2031
2032 #define DSC_SUPPORTED_VERSION_MIN               1
2033
2034 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2035                                        struct intel_crtc_state *crtc_state)
2036 {
2037         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2038         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2039         u8 line_buf_depth;
2040         int ret;
2041
2042         ret = intel_dsc_compute_params(encoder, crtc_state);
2043         if (ret)
2044                 return ret;
2045
2046         /*
2047          * Slice Height of 8 works for all currently available panels. So start
2048          * with that if pic_height is an integral multiple of 8. Eventually add
2049          * logic to try multiple slice heights.
2050          */
2051         if (vdsc_cfg->pic_height % 8 == 0)
2052                 vdsc_cfg->slice_height = 8;
2053         else if (vdsc_cfg->pic_height % 4 == 0)
2054                 vdsc_cfg->slice_height = 4;
2055         else
2056                 vdsc_cfg->slice_height = 2;
2057
2058         vdsc_cfg->dsc_version_major =
2059                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2060                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2061         vdsc_cfg->dsc_version_minor =
2062                 min(DSC_SUPPORTED_VERSION_MIN,
2063                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2064                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2065
2066         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2067                 DP_DSC_RGB;
2068
2069         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2070         if (!line_buf_depth) {
2071                 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2072                 return -EINVAL;
2073         }
2074
2075         if (vdsc_cfg->dsc_version_minor == 2)
2076                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2077                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2078         else
2079                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2080                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2081
2082         vdsc_cfg->block_pred_enable =
2083                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2084                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2085
2086         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2087 }
2088
2089 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2090                                        struct intel_crtc_state *pipe_config,
2091                                        struct drm_connector_state *conn_state,
2092                                        struct link_config_limits *limits)
2093 {
2094         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2095         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2096         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2097         u8 dsc_max_bpc;
2098         int pipe_bpp;
2099         int ret;
2100
2101         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2102                 intel_dp_supports_fec(intel_dp, pipe_config);
2103
2104         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2105                 return -EINVAL;
2106
2107         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2108         if (INTEL_GEN(dev_priv) >= 12)
2109                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2110         else
2111                 dsc_max_bpc = min_t(u8, 10,
2112                                     conn_state->max_requested_bpc);
2113
2114         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2115
2116         /* Min Input BPC for ICL+ is 8 */
2117         if (pipe_bpp < 8 * 3) {
2118                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2119                 return -EINVAL;
2120         }
2121
2122         /*
2123          * For now enable DSC for max bpp, max link rate, max lane count.
2124          * Optimize this later for the minimum possible link rate/lane count
2125          * with DSC enabled for the requested mode.
2126          */
2127         pipe_config->pipe_bpp = pipe_bpp;
2128         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2129         pipe_config->lane_count = limits->max_lane_count;
2130
2131         if (intel_dp_is_edp(intel_dp)) {
2132                 pipe_config->dsc.compressed_bpp =
2133                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2134                               pipe_config->pipe_bpp);
2135                 pipe_config->dsc.slice_count =
2136                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2137                                                         true);
2138         } else {
2139                 u16 dsc_max_output_bpp;
2140                 u8 dsc_dp_slice_count;
2141
2142                 dsc_max_output_bpp =
2143                         intel_dp_dsc_get_output_bpp(dev_priv,
2144                                                     pipe_config->port_clock,
2145                                                     pipe_config->lane_count,
2146                                                     adjusted_mode->crtc_clock,
2147                                                     adjusted_mode->crtc_hdisplay);
2148                 dsc_dp_slice_count =
2149                         intel_dp_dsc_get_slice_count(intel_dp,
2150                                                      adjusted_mode->crtc_clock,
2151                                                      adjusted_mode->crtc_hdisplay);
2152                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2153                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2154                         return -EINVAL;
2155                 }
2156                 pipe_config->dsc.compressed_bpp = min_t(u16,
2157                                                                dsc_max_output_bpp >> 4,
2158                                                                pipe_config->pipe_bpp);
2159                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2160         }
2161         /*
2162          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2163          * is greater than the maximum Cdclock and if slice count is even
2164          * then we need to use 2 VDSC instances.
2165          */
2166         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2167                 if (pipe_config->dsc.slice_count > 1) {
2168                         pipe_config->dsc.dsc_split = true;
2169                 } else {
2170                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2171                         return -EINVAL;
2172                 }
2173         }
2174
2175         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2176         if (ret < 0) {
2177                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2178                               "Compressed BPP = %d\n",
2179                               pipe_config->pipe_bpp,
2180                               pipe_config->dsc.compressed_bpp);
2181                 return ret;
2182         }
2183
2184         pipe_config->dsc.compression_enable = true;
2185         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2186                       "Compressed Bpp = %d Slice Count = %d\n",
2187                       pipe_config->pipe_bpp,
2188                       pipe_config->dsc.compressed_bpp,
2189                       pipe_config->dsc.slice_count);
2190
2191         return 0;
2192 }
2193
2194 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2195 {
2196         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2197                 return 6 * 3;
2198         else
2199                 return 8 * 3;
2200 }
2201
2202 static int
2203 intel_dp_compute_link_config(struct intel_encoder *encoder,
2204                              struct intel_crtc_state *pipe_config,
2205                              struct drm_connector_state *conn_state)
2206 {
2207         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2208         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2209         struct link_config_limits limits;
2210         int common_len;
2211         int ret;
2212
2213         common_len = intel_dp_common_len_rate_limit(intel_dp,
2214                                                     intel_dp->max_link_rate);
2215
2216         /* No common link rates between source and sink */
2217         WARN_ON(common_len <= 0);
2218
2219         limits.min_clock = 0;
2220         limits.max_clock = common_len - 1;
2221
2222         limits.min_lane_count = 1;
2223         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2224
2225         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2226         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2227
2228         if (intel_dp_is_edp(intel_dp)) {
2229                 /*
2230                  * Use the maximum clock and number of lanes the eDP panel
2231                  * advertizes being capable of. The panels are generally
2232                  * designed to support only a single clock and lane
2233                  * configuration, and typically these values correspond to the
2234                  * native resolution of the panel.
2235                  */
2236                 limits.min_lane_count = limits.max_lane_count;
2237                 limits.min_clock = limits.max_clock;
2238         }
2239
2240         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2241
2242         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2243                       "max rate %d max bpp %d pixel clock %iKHz\n",
2244                       limits.max_lane_count,
2245                       intel_dp->common_rates[limits.max_clock],
2246                       limits.max_bpp, adjusted_mode->crtc_clock);
2247
2248         /*
2249          * Optimize for slow and wide. This is the place to add alternative
2250          * optimization policy.
2251          */
2252         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2253
2254         /* enable compression if the mode doesn't fit available BW */
2255         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2256         if (ret || intel_dp->force_dsc_en) {
2257                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2258                                                   conn_state, &limits);
2259                 if (ret < 0)
2260                         return ret;
2261         }
2262
2263         if (pipe_config->dsc.compression_enable) {
2264                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2265                               pipe_config->lane_count, pipe_config->port_clock,
2266                               pipe_config->pipe_bpp,
2267                               pipe_config->dsc.compressed_bpp);
2268
2269                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2270                               intel_dp_link_required(adjusted_mode->crtc_clock,
2271                                                      pipe_config->dsc.compressed_bpp),
2272                               intel_dp_max_data_rate(pipe_config->port_clock,
2273                                                      pipe_config->lane_count));
2274         } else {
2275                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2276                               pipe_config->lane_count, pipe_config->port_clock,
2277                               pipe_config->pipe_bpp);
2278
2279                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2280                               intel_dp_link_required(adjusted_mode->crtc_clock,
2281                                                      pipe_config->pipe_bpp),
2282                               intel_dp_max_data_rate(pipe_config->port_clock,
2283                                                      pipe_config->lane_count));
2284         }
2285         return 0;
2286 }
2287
2288 static int
2289 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2290                          struct drm_connector *connector,
2291                          struct intel_crtc_state *crtc_state)
2292 {
2293         const struct drm_display_info *info = &connector->display_info;
2294         const struct drm_display_mode *adjusted_mode =
2295                 &crtc_state->hw.adjusted_mode;
2296         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2297         int ret;
2298
2299         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2300             !intel_dp_get_colorimetry_status(intel_dp) ||
2301             !connector->ycbcr_420_allowed)
2302                 return 0;
2303
2304         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2305
2306         /* YCBCR 420 output conversion needs a scaler */
2307         ret = skl_update_scaler_crtc(crtc_state);
2308         if (ret) {
2309                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2310                 return ret;
2311         }
2312
2313         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2314
2315         return 0;
2316 }
2317
2318 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2319                                   const struct drm_connector_state *conn_state)
2320 {
2321         const struct intel_digital_connector_state *intel_conn_state =
2322                 to_intel_digital_connector_state(conn_state);
2323         const struct drm_display_mode *adjusted_mode =
2324                 &crtc_state->hw.adjusted_mode;
2325
2326         /*
2327          * Our YCbCr output is always limited range.
2328          * crtc_state->limited_color_range only applies to RGB,
2329          * and it must never be set for YCbCr or we risk setting
2330          * some conflicting bits in PIPECONF which will mess up
2331          * the colors on the monitor.
2332          */
2333         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2334                 return false;
2335
2336         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2337                 /*
2338                  * See:
2339                  * CEA-861-E - 5.1 Default Encoding Parameters
2340                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2341                  */
2342                 return crtc_state->pipe_bpp != 18 &&
2343                         drm_default_rgb_quant_range(adjusted_mode) ==
2344                         HDMI_QUANTIZATION_RANGE_LIMITED;
2345         } else {
2346                 return intel_conn_state->broadcast_rgb ==
2347                         INTEL_BROADCAST_RGB_LIMITED;
2348         }
2349 }
2350
2351 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2352                                     enum port port)
2353 {
2354         if (IS_G4X(dev_priv))
2355                 return false;
2356         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2357                 return false;
2358
2359         return true;
2360 }
2361
2362 int
2363 intel_dp_compute_config(struct intel_encoder *encoder,
2364                         struct intel_crtc_state *pipe_config,
2365                         struct drm_connector_state *conn_state)
2366 {
2367         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2368         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2369         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2370         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2371         enum port port = encoder->port;
2372         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2373         struct intel_connector *intel_connector = intel_dp->attached_connector;
2374         struct intel_digital_connector_state *intel_conn_state =
2375                 to_intel_digital_connector_state(conn_state);
2376         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2377                                            DP_DPCD_QUIRK_CONSTANT_N);
2378         int ret = 0, output_bpp;
2379
2380         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2381                 pipe_config->has_pch_encoder = true;
2382
2383         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2384
2385         if (lspcon->active)
2386                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2387         else
2388                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2389                                                pipe_config);
2390
2391         if (ret)
2392                 return ret;
2393
2394         pipe_config->has_drrs = false;
2395         if (!intel_dp_port_has_audio(dev_priv, port))
2396                 pipe_config->has_audio = false;
2397         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2398                 pipe_config->has_audio = intel_dp->has_audio;
2399         else
2400                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2401
2402         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2403                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2404                                        adjusted_mode);
2405
2406                 if (INTEL_GEN(dev_priv) >= 9) {
2407                         ret = skl_update_scaler_crtc(pipe_config);
2408                         if (ret)
2409                                 return ret;
2410                 }
2411
2412                 if (HAS_GMCH(dev_priv))
2413                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2414                                                  conn_state->scaling_mode);
2415                 else
2416                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2417                                                 conn_state->scaling_mode);
2418         }
2419
2420         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2421                 return -EINVAL;
2422
2423         if (HAS_GMCH(dev_priv) &&
2424             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2425                 return -EINVAL;
2426
2427         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2428                 return -EINVAL;
2429
2430         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2431                 return -EINVAL;
2432
2433         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2434         if (ret < 0)
2435                 return ret;
2436
2437         pipe_config->limited_color_range =
2438                 intel_dp_limited_color_range(pipe_config, conn_state);
2439
2440         if (pipe_config->dsc.compression_enable)
2441                 output_bpp = pipe_config->dsc.compressed_bpp;
2442         else
2443                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2444
2445         intel_link_compute_m_n(output_bpp,
2446                                pipe_config->lane_count,
2447                                adjusted_mode->crtc_clock,
2448                                pipe_config->port_clock,
2449                                &pipe_config->dp_m_n,
2450                                constant_n, pipe_config->fec_enable);
2451
2452         if (intel_connector->panel.downclock_mode != NULL &&
2453                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2454                         pipe_config->has_drrs = true;
2455                         intel_link_compute_m_n(output_bpp,
2456                                                pipe_config->lane_count,
2457                                                intel_connector->panel.downclock_mode->clock,
2458                                                pipe_config->port_clock,
2459                                                &pipe_config->dp_m2_n2,
2460                                                constant_n, pipe_config->fec_enable);
2461         }
2462
2463         if (!HAS_DDI(dev_priv))
2464                 intel_dp_set_clock(encoder, pipe_config);
2465
2466         intel_psr_compute_config(intel_dp, pipe_config);
2467
2468         return 0;
2469 }
2470
2471 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2472                               int link_rate, u8 lane_count,
2473                               bool link_mst)
2474 {
2475         intel_dp->link_trained = false;
2476         intel_dp->link_rate = link_rate;
2477         intel_dp->lane_count = lane_count;
2478         intel_dp->link_mst = link_mst;
2479 }
2480
2481 static void intel_dp_prepare(struct intel_encoder *encoder,
2482                              const struct intel_crtc_state *pipe_config)
2483 {
2484         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2485         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2486         enum port port = encoder->port;
2487         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2488         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2489
2490         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2491                                  pipe_config->lane_count,
2492                                  intel_crtc_has_type(pipe_config,
2493                                                      INTEL_OUTPUT_DP_MST));
2494
2495         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2496         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2497
2498         /*
2499          * There are four kinds of DP registers:
2500          *
2501          *      IBX PCH
2502          *      SNB CPU
2503          *      IVB CPU
2504          *      CPT PCH
2505          *
2506          * IBX PCH and CPU are the same for almost everything,
2507          * except that the CPU DP PLL is configured in this
2508          * register
2509          *
2510          * CPT PCH is quite different, having many bits moved
2511          * to the TRANS_DP_CTL register instead. That
2512          * configuration happens (oddly) in ilk_pch_enable
2513          */
2514
2515         /* Preserve the BIOS-computed detected bit. This is
2516          * supposed to be read-only.
2517          */
2518         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2519
2520         /* Handle DP bits in common between all three register formats */
2521         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2522         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2523
2524         /* Split out the IBX/CPU vs CPT settings */
2525
2526         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2527                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2528                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2529                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2530                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2531                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2532
2533                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2534                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2535
2536                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2537         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2538                 u32 trans_dp;
2539
2540                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2541
2542                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2543                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2544                         trans_dp |= TRANS_DP_ENH_FRAMING;
2545                 else
2546                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2547                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2548         } else {
2549                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2550                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2551
2552                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2553                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2554                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2555                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2556                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2557
2558                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2559                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2560
2561                 if (IS_CHERRYVIEW(dev_priv))
2562                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2563                 else
2564                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2565         }
2566 }
2567
2568 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2569 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2570
2571 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2572 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2573
2574 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2575 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2576
2577 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2578
2579 static void wait_panel_status(struct intel_dp *intel_dp,
2580                                        u32 mask,
2581                                        u32 value)
2582 {
2583         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2584         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2585
2586         lockdep_assert_held(&dev_priv->pps_mutex);
2587
2588         intel_pps_verify_state(intel_dp);
2589
2590         pp_stat_reg = _pp_stat_reg(intel_dp);
2591         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2592
2593         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2594                         mask, value,
2595                         I915_READ(pp_stat_reg),
2596                         I915_READ(pp_ctrl_reg));
2597
2598         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2599                                        mask, value, 5000))
2600                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2601                                 I915_READ(pp_stat_reg),
2602                                 I915_READ(pp_ctrl_reg));
2603
2604         DRM_DEBUG_KMS("Wait complete\n");
2605 }
2606
2607 static void wait_panel_on(struct intel_dp *intel_dp)
2608 {
2609         DRM_DEBUG_KMS("Wait for panel power on\n");
2610         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2611 }
2612
2613 static void wait_panel_off(struct intel_dp *intel_dp)
2614 {
2615         DRM_DEBUG_KMS("Wait for panel power off time\n");
2616         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2617 }
2618
2619 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2620 {
2621         ktime_t panel_power_on_time;
2622         s64 panel_power_off_duration;
2623
2624         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2625
2626         /* take the difference of currrent time and panel power off time
2627          * and then make panel wait for t11_t12 if needed. */
2628         panel_power_on_time = ktime_get_boottime();
2629         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2630
2631         /* When we disable the VDD override bit last we have to do the manual
2632          * wait. */
2633         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2634                 wait_remaining_ms_from_jiffies(jiffies,
2635                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2636
2637         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2638 }
2639
2640 static void wait_backlight_on(struct intel_dp *intel_dp)
2641 {
2642         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2643                                        intel_dp->backlight_on_delay);
2644 }
2645
2646 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2647 {
2648         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2649                                        intel_dp->backlight_off_delay);
2650 }
2651
2652 /* Read the current pp_control value, unlocking the register if it
2653  * is locked
2654  */
2655
2656 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2657 {
2658         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2659         u32 control;
2660
2661         lockdep_assert_held(&dev_priv->pps_mutex);
2662
2663         control = I915_READ(_pp_ctrl_reg(intel_dp));
2664         if (WARN_ON(!HAS_DDI(dev_priv) &&
2665                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2666                 control &= ~PANEL_UNLOCK_MASK;
2667                 control |= PANEL_UNLOCK_REGS;
2668         }
2669         return control;
2670 }
2671
2672 /*
2673  * Must be paired with edp_panel_vdd_off().
2674  * Must hold pps_mutex around the whole on/off sequence.
2675  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2676  */
2677 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2678 {
2679         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2680         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2681         u32 pp;
2682         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2683         bool need_to_disable = !intel_dp->want_panel_vdd;
2684
2685         lockdep_assert_held(&dev_priv->pps_mutex);
2686
2687         if (!intel_dp_is_edp(intel_dp))
2688                 return false;
2689
2690         cancel_delayed_work(&intel_dp->panel_vdd_work);
2691         intel_dp->want_panel_vdd = true;
2692
2693         if (edp_have_panel_vdd(intel_dp))
2694                 return need_to_disable;
2695
2696         intel_display_power_get(dev_priv,
2697                                 intel_aux_power_domain(intel_dig_port));
2698
2699         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2700                       intel_dig_port->base.base.base.id,
2701                       intel_dig_port->base.base.name);
2702
2703         if (!edp_have_panel_power(intel_dp))
2704                 wait_panel_power_cycle(intel_dp);
2705
2706         pp = ilk_get_pp_control(intel_dp);
2707         pp |= EDP_FORCE_VDD;
2708
2709         pp_stat_reg = _pp_stat_reg(intel_dp);
2710         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2711
2712         I915_WRITE(pp_ctrl_reg, pp);
2713         POSTING_READ(pp_ctrl_reg);
2714         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2715                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2716         /*
2717          * If the panel wasn't on, delay before accessing aux channel
2718          */
2719         if (!edp_have_panel_power(intel_dp)) {
2720                 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2721                               intel_dig_port->base.base.base.id,
2722                               intel_dig_port->base.base.name);
2723                 msleep(intel_dp->panel_power_up_delay);
2724         }
2725
2726         return need_to_disable;
2727 }
2728
2729 /*
2730  * Must be paired with intel_edp_panel_vdd_off() or
2731  * intel_edp_panel_off().
2732  * Nested calls to these functions are not allowed since
2733  * we drop the lock. Caller must use some higher level
2734  * locking to prevent nested calls from other threads.
2735  */
2736 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2737 {
2738         intel_wakeref_t wakeref;
2739         bool vdd;
2740
2741         if (!intel_dp_is_edp(intel_dp))
2742                 return;
2743
2744         vdd = false;
2745         with_pps_lock(intel_dp, wakeref)
2746                 vdd = edp_panel_vdd_on(intel_dp);
2747         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2748                         dp_to_dig_port(intel_dp)->base.base.base.id,
2749                         dp_to_dig_port(intel_dp)->base.base.name);
2750 }
2751
2752 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2753 {
2754         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2755         struct intel_digital_port *intel_dig_port =
2756                 dp_to_dig_port(intel_dp);
2757         u32 pp;
2758         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2759
2760         lockdep_assert_held(&dev_priv->pps_mutex);
2761
2762         WARN_ON(intel_dp->want_panel_vdd);
2763
2764         if (!edp_have_panel_vdd(intel_dp))
2765                 return;
2766
2767         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2768                       intel_dig_port->base.base.base.id,
2769                       intel_dig_port->base.base.name);
2770
2771         pp = ilk_get_pp_control(intel_dp);
2772         pp &= ~EDP_FORCE_VDD;
2773
2774         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2775         pp_stat_reg = _pp_stat_reg(intel_dp);
2776
2777         I915_WRITE(pp_ctrl_reg, pp);
2778         POSTING_READ(pp_ctrl_reg);
2779
2780         /* Make sure sequencer is idle before allowing subsequent activity */
2781         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2782         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2783
2784         if ((pp & PANEL_POWER_ON) == 0)
2785                 intel_dp->panel_power_off_time = ktime_get_boottime();
2786
2787         intel_display_power_put_unchecked(dev_priv,
2788                                           intel_aux_power_domain(intel_dig_port));
2789 }
2790
2791 static void edp_panel_vdd_work(struct work_struct *__work)
2792 {
2793         struct intel_dp *intel_dp =
2794                 container_of(to_delayed_work(__work),
2795                              struct intel_dp, panel_vdd_work);
2796         intel_wakeref_t wakeref;
2797
2798         with_pps_lock(intel_dp, wakeref) {
2799                 if (!intel_dp->want_panel_vdd)
2800                         edp_panel_vdd_off_sync(intel_dp);
2801         }
2802 }
2803
2804 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2805 {
2806         unsigned long delay;
2807
2808         /*
2809          * Queue the timer to fire a long time from now (relative to the power
2810          * down delay) to keep the panel power up across a sequence of
2811          * operations.
2812          */
2813         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2814         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2815 }
2816
2817 /*
2818  * Must be paired with edp_panel_vdd_on().
2819  * Must hold pps_mutex around the whole on/off sequence.
2820  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2821  */
2822 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2823 {
2824         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2825
2826         lockdep_assert_held(&dev_priv->pps_mutex);
2827
2828         if (!intel_dp_is_edp(intel_dp))
2829                 return;
2830
2831         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2832                         dp_to_dig_port(intel_dp)->base.base.base.id,
2833                         dp_to_dig_port(intel_dp)->base.base.name);
2834
2835         intel_dp->want_panel_vdd = false;
2836
2837         if (sync)
2838                 edp_panel_vdd_off_sync(intel_dp);
2839         else
2840                 edp_panel_vdd_schedule_off(intel_dp);
2841 }
2842
2843 static void edp_panel_on(struct intel_dp *intel_dp)
2844 {
2845         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2846         u32 pp;
2847         i915_reg_t pp_ctrl_reg;
2848
2849         lockdep_assert_held(&dev_priv->pps_mutex);
2850
2851         if (!intel_dp_is_edp(intel_dp))
2852                 return;
2853
2854         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2855                       dp_to_dig_port(intel_dp)->base.base.base.id,
2856                       dp_to_dig_port(intel_dp)->base.base.name);
2857
2858         if (WARN(edp_have_panel_power(intel_dp),
2859                  "[ENCODER:%d:%s] panel power already on\n",
2860                  dp_to_dig_port(intel_dp)->base.base.base.id,
2861                  dp_to_dig_port(intel_dp)->base.base.name))
2862                 return;
2863
2864         wait_panel_power_cycle(intel_dp);
2865
2866         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2867         pp = ilk_get_pp_control(intel_dp);
2868         if (IS_GEN(dev_priv, 5)) {
2869                 /* ILK workaround: disable reset around power sequence */
2870                 pp &= ~PANEL_POWER_RESET;
2871                 I915_WRITE(pp_ctrl_reg, pp);
2872                 POSTING_READ(pp_ctrl_reg);
2873         }
2874
2875         pp |= PANEL_POWER_ON;
2876         if (!IS_GEN(dev_priv, 5))
2877                 pp |= PANEL_POWER_RESET;
2878
2879         I915_WRITE(pp_ctrl_reg, pp);
2880         POSTING_READ(pp_ctrl_reg);
2881
2882         wait_panel_on(intel_dp);
2883         intel_dp->last_power_on = jiffies;
2884
2885         if (IS_GEN(dev_priv, 5)) {
2886                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2887                 I915_WRITE(pp_ctrl_reg, pp);
2888                 POSTING_READ(pp_ctrl_reg);
2889         }
2890 }
2891
2892 void intel_edp_panel_on(struct intel_dp *intel_dp)
2893 {
2894         intel_wakeref_t wakeref;
2895
2896         if (!intel_dp_is_edp(intel_dp))
2897                 return;
2898
2899         with_pps_lock(intel_dp, wakeref)
2900                 edp_panel_on(intel_dp);
2901 }
2902
2903
2904 static void edp_panel_off(struct intel_dp *intel_dp)
2905 {
2906         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2907         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2908         u32 pp;
2909         i915_reg_t pp_ctrl_reg;
2910
2911         lockdep_assert_held(&dev_priv->pps_mutex);
2912
2913         if (!intel_dp_is_edp(intel_dp))
2914                 return;
2915
2916         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2917                       dig_port->base.base.base.id, dig_port->base.base.name);
2918
2919         WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2920              dig_port->base.base.base.id, dig_port->base.base.name);
2921
2922         pp = ilk_get_pp_control(intel_dp);
2923         /* We need to switch off panel power _and_ force vdd, for otherwise some
2924          * panels get very unhappy and cease to work. */
2925         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2926                 EDP_BLC_ENABLE);
2927
2928         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2929
2930         intel_dp->want_panel_vdd = false;
2931
2932         I915_WRITE(pp_ctrl_reg, pp);
2933         POSTING_READ(pp_ctrl_reg);
2934
2935         wait_panel_off(intel_dp);
2936         intel_dp->panel_power_off_time = ktime_get_boottime();
2937
2938         /* We got a reference when we enabled the VDD. */
2939         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2940 }
2941
2942 void intel_edp_panel_off(struct intel_dp *intel_dp)
2943 {
2944         intel_wakeref_t wakeref;
2945
2946         if (!intel_dp_is_edp(intel_dp))
2947                 return;
2948
2949         with_pps_lock(intel_dp, wakeref)
2950                 edp_panel_off(intel_dp);
2951 }
2952
2953 /* Enable backlight in the panel power control. */
2954 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2955 {
2956         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2957         intel_wakeref_t wakeref;
2958
2959         /*
2960          * If we enable the backlight right away following a panel power
2961          * on, we may see slight flicker as the panel syncs with the eDP
2962          * link.  So delay a bit to make sure the image is solid before
2963          * allowing it to appear.
2964          */
2965         wait_backlight_on(intel_dp);
2966
2967         with_pps_lock(intel_dp, wakeref) {
2968                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2969                 u32 pp;
2970
2971                 pp = ilk_get_pp_control(intel_dp);
2972                 pp |= EDP_BLC_ENABLE;
2973
2974                 I915_WRITE(pp_ctrl_reg, pp);
2975                 POSTING_READ(pp_ctrl_reg);
2976         }
2977 }
2978
2979 /* Enable backlight PWM and backlight PP control. */
2980 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2981                             const struct drm_connector_state *conn_state)
2982 {
2983         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
2984
2985         if (!intel_dp_is_edp(intel_dp))
2986                 return;
2987
2988         DRM_DEBUG_KMS("\n");
2989
2990         intel_panel_enable_backlight(crtc_state, conn_state);
2991         _intel_edp_backlight_on(intel_dp);
2992 }
2993
2994 /* Disable backlight in the panel power control. */
2995 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2996 {
2997         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2998         intel_wakeref_t wakeref;
2999
3000         if (!intel_dp_is_edp(intel_dp))
3001                 return;
3002
3003         with_pps_lock(intel_dp, wakeref) {
3004                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3005                 u32 pp;
3006
3007                 pp = ilk_get_pp_control(intel_dp);
3008                 pp &= ~EDP_BLC_ENABLE;
3009
3010                 I915_WRITE(pp_ctrl_reg, pp);
3011                 POSTING_READ(pp_ctrl_reg);
3012         }
3013
3014         intel_dp->last_backlight_off = jiffies;
3015         edp_wait_backlight_off(intel_dp);
3016 }
3017
3018 /* Disable backlight PP control and backlight PWM. */
3019 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3020 {
3021         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3022
3023         if (!intel_dp_is_edp(intel_dp))
3024                 return;
3025
3026         DRM_DEBUG_KMS("\n");
3027
3028         _intel_edp_backlight_off(intel_dp);
3029         intel_panel_disable_backlight(old_conn_state);
3030 }
3031
3032 /*
3033  * Hook for controlling the panel power control backlight through the bl_power
3034  * sysfs attribute. Take care to handle multiple calls.
3035  */
3036 static void intel_edp_backlight_power(struct intel_connector *connector,
3037                                       bool enable)
3038 {
3039         struct intel_dp *intel_dp = intel_attached_dp(connector);
3040         intel_wakeref_t wakeref;
3041         bool is_enabled;
3042
3043         is_enabled = false;
3044         with_pps_lock(intel_dp, wakeref)
3045                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3046         if (is_enabled == enable)
3047                 return;
3048
3049         DRM_DEBUG_KMS("panel power control backlight %s\n",
3050                       enable ? "enable" : "disable");
3051
3052         if (enable)
3053                 _intel_edp_backlight_on(intel_dp);
3054         else
3055                 _intel_edp_backlight_off(intel_dp);
3056 }
3057
3058 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3059 {
3060         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3061         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3062         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3063
3064         I915_STATE_WARN(cur_state != state,
3065                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3066                         dig_port->base.base.base.id, dig_port->base.base.name,
3067                         onoff(state), onoff(cur_state));
3068 }
3069 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3070
3071 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3072 {
3073         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3074
3075         I915_STATE_WARN(cur_state != state,
3076                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3077                         onoff(state), onoff(cur_state));
3078 }
3079 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3080 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3081
3082 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3083                            const struct intel_crtc_state *pipe_config)
3084 {
3085         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3086         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3087
3088         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3089         assert_dp_port_disabled(intel_dp);
3090         assert_edp_pll_disabled(dev_priv);
3091
3092         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3093                       pipe_config->port_clock);
3094
3095         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3096
3097         if (pipe_config->port_clock == 162000)
3098                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3099         else
3100                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3101
3102         I915_WRITE(DP_A, intel_dp->DP);
3103         POSTING_READ(DP_A);
3104         udelay(500);
3105
3106         /*
3107          * [DevILK] Work around required when enabling DP PLL
3108          * while a pipe is enabled going to FDI:
3109          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3110          * 2. Program DP PLL enable
3111          */
3112         if (IS_GEN(dev_priv, 5))
3113                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3114
3115         intel_dp->DP |= DP_PLL_ENABLE;
3116
3117         I915_WRITE(DP_A, intel_dp->DP);
3118         POSTING_READ(DP_A);
3119         udelay(200);
3120 }
3121
3122 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3123                             const struct intel_crtc_state *old_crtc_state)
3124 {
3125         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3126         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3127
3128         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3129         assert_dp_port_disabled(intel_dp);
3130         assert_edp_pll_enabled(dev_priv);
3131
3132         DRM_DEBUG_KMS("disabling eDP PLL\n");
3133
3134         intel_dp->DP &= ~DP_PLL_ENABLE;
3135
3136         I915_WRITE(DP_A, intel_dp->DP);
3137         POSTING_READ(DP_A);
3138         udelay(200);
3139 }
3140
3141 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3142 {
3143         /*
3144          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3145          * be capable of signalling downstream hpd with a long pulse.
3146          * Whether or not that means D3 is safe to use is not clear,
3147          * but let's assume so until proven otherwise.
3148          *
3149          * FIXME should really check all downstream ports...
3150          */
3151         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3152                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3153                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3154 }
3155
3156 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3157                                            const struct intel_crtc_state *crtc_state,
3158                                            bool enable)
3159 {
3160         int ret;
3161
3162         if (!crtc_state->dsc.compression_enable)
3163                 return;
3164
3165         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3166                                  enable ? DP_DECOMPRESSION_EN : 0);
3167         if (ret < 0)
3168                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3169                               enable ? "enable" : "disable");
3170 }
3171
3172 /* If the sink supports it, try to set the power state appropriately */
3173 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3174 {
3175         int ret, i;
3176
3177         /* Should have a valid DPCD by this point */
3178         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3179                 return;
3180
3181         if (mode != DRM_MODE_DPMS_ON) {
3182                 if (downstream_hpd_needs_d0(intel_dp))
3183                         return;
3184
3185                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3186                                          DP_SET_POWER_D3);
3187         } else {
3188                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3189
3190                 /*
3191                  * When turning on, we need to retry for 1ms to give the sink
3192                  * time to wake up.
3193                  */
3194                 for (i = 0; i < 3; i++) {
3195                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3196                                                  DP_SET_POWER_D0);
3197                         if (ret == 1)
3198                                 break;
3199                         msleep(1);
3200                 }
3201
3202                 if (ret == 1 && lspcon->active)
3203                         lspcon_wait_pcon_mode(lspcon);
3204         }
3205
3206         if (ret != 1)
3207                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3208                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3209 }
3210
3211 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3212                                  enum port port, enum pipe *pipe)
3213 {
3214         enum pipe p;
3215
3216         for_each_pipe(dev_priv, p) {
3217                 u32 val = I915_READ(TRANS_DP_CTL(p));
3218
3219                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3220                         *pipe = p;
3221                         return true;
3222                 }
3223         }
3224
3225         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3226
3227         /* must initialize pipe to something for the asserts */
3228         *pipe = PIPE_A;
3229
3230         return false;
3231 }
3232
3233 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3234                            i915_reg_t dp_reg, enum port port,
3235                            enum pipe *pipe)
3236 {
3237         bool ret;
3238         u32 val;
3239
3240         val = I915_READ(dp_reg);
3241
3242         ret = val & DP_PORT_EN;
3243
3244         /* asserts want to know the pipe even if the port is disabled */
3245         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3246                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3247         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3248                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3249         else if (IS_CHERRYVIEW(dev_priv))
3250                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3251         else
3252                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3253
3254         return ret;
3255 }
3256
3257 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3258                                   enum pipe *pipe)
3259 {
3260         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3261         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3262         intel_wakeref_t wakeref;
3263         bool ret;
3264
3265         wakeref = intel_display_power_get_if_enabled(dev_priv,
3266                                                      encoder->power_domain);
3267         if (!wakeref)
3268                 return false;
3269
3270         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3271                                     encoder->port, pipe);
3272
3273         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3274
3275         return ret;
3276 }
3277
3278 static void intel_dp_get_config(struct intel_encoder *encoder,
3279                                 struct intel_crtc_state *pipe_config)
3280 {
3281         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3282         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3283         u32 tmp, flags = 0;
3284         enum port port = encoder->port;
3285         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3286
3287         if (encoder->type == INTEL_OUTPUT_EDP)
3288                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3289         else
3290                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3291
3292         tmp = I915_READ(intel_dp->output_reg);
3293
3294         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3295
3296         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3297                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3298
3299                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3300                         flags |= DRM_MODE_FLAG_PHSYNC;
3301                 else
3302                         flags |= DRM_MODE_FLAG_NHSYNC;
3303
3304                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3305                         flags |= DRM_MODE_FLAG_PVSYNC;
3306                 else
3307                         flags |= DRM_MODE_FLAG_NVSYNC;
3308         } else {
3309                 if (tmp & DP_SYNC_HS_HIGH)
3310                         flags |= DRM_MODE_FLAG_PHSYNC;
3311                 else
3312                         flags |= DRM_MODE_FLAG_NHSYNC;
3313
3314                 if (tmp & DP_SYNC_VS_HIGH)
3315                         flags |= DRM_MODE_FLAG_PVSYNC;
3316                 else
3317                         flags |= DRM_MODE_FLAG_NVSYNC;
3318         }
3319
3320         pipe_config->hw.adjusted_mode.flags |= flags;
3321
3322         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3323                 pipe_config->limited_color_range = true;
3324
3325         pipe_config->lane_count =
3326                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3327
3328         intel_dp_get_m_n(crtc, pipe_config);
3329
3330         if (port == PORT_A) {
3331                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3332                         pipe_config->port_clock = 162000;
3333                 else
3334                         pipe_config->port_clock = 270000;
3335         }
3336
3337         pipe_config->hw.adjusted_mode.crtc_clock =
3338                 intel_dotclock_calculate(pipe_config->port_clock,
3339                                          &pipe_config->dp_m_n);
3340
3341         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3342             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3343                 /*
3344                  * This is a big fat ugly hack.
3345                  *
3346                  * Some machines in UEFI boot mode provide us a VBT that has 18
3347                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3348                  * unknown we fail to light up. Yet the same BIOS boots up with
3349                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3350                  * max, not what it tells us to use.
3351                  *
3352                  * Note: This will still be broken if the eDP panel is not lit
3353                  * up by the BIOS, and thus we can't get the mode at module
3354                  * load.
3355                  */
3356                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3357                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3358                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3359         }
3360 }
3361
3362 static void intel_disable_dp(struct intel_encoder *encoder,
3363                              const struct intel_crtc_state *old_crtc_state,
3364                              const struct drm_connector_state *old_conn_state)
3365 {
3366         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3367
3368         intel_dp->link_trained = false;
3369
3370         if (old_crtc_state->has_audio)
3371                 intel_audio_codec_disable(encoder,
3372                                           old_crtc_state, old_conn_state);
3373
3374         /* Make sure the panel is off before trying to change the mode. But also
3375          * ensure that we have vdd while we switch off the panel. */
3376         intel_edp_panel_vdd_on(intel_dp);
3377         intel_edp_backlight_off(old_conn_state);
3378         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3379         intel_edp_panel_off(intel_dp);
3380 }
3381
3382 static void g4x_disable_dp(struct intel_encoder *encoder,
3383                            const struct intel_crtc_state *old_crtc_state,
3384                            const struct drm_connector_state *old_conn_state)
3385 {
3386         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3387 }
3388
3389 static void vlv_disable_dp(struct intel_encoder *encoder,
3390                            const struct intel_crtc_state *old_crtc_state,
3391                            const struct drm_connector_state *old_conn_state)
3392 {
3393         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3394 }
3395
3396 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3397                                 const struct intel_crtc_state *old_crtc_state,
3398                                 const struct drm_connector_state *old_conn_state)
3399 {
3400         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3401         enum port port = encoder->port;
3402
3403         /*
3404          * Bspec does not list a specific disable sequence for g4x DP.
3405          * Follow the ilk+ sequence (disable pipe before the port) for
3406          * g4x DP as it does not suffer from underruns like the normal
3407          * g4x modeset sequence (disable pipe after the port).
3408          */
3409         intel_dp_link_down(encoder, old_crtc_state);
3410
3411         /* Only ilk+ has port A */
3412         if (port == PORT_A)
3413                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3414 }
3415
3416 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3417                                 const struct intel_crtc_state *old_crtc_state,
3418                                 const struct drm_connector_state *old_conn_state)
3419 {
3420         intel_dp_link_down(encoder, old_crtc_state);
3421 }
3422
3423 static void chv_post_disable_dp(struct intel_encoder *encoder,
3424                                 const struct intel_crtc_state *old_crtc_state,
3425                                 const struct drm_connector_state *old_conn_state)
3426 {
3427         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3428
3429         intel_dp_link_down(encoder, old_crtc_state);
3430
3431         vlv_dpio_get(dev_priv);
3432
3433         /* Assert data lane reset */
3434         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3435
3436         vlv_dpio_put(dev_priv);
3437 }
3438
3439 static void
3440 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3441                          u32 *DP,
3442                          u8 dp_train_pat)
3443 {
3444         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3445         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3446         enum port port = intel_dig_port->base.port;
3447         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3448
3449         if (dp_train_pat & train_pat_mask)
3450                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3451                               dp_train_pat & train_pat_mask);
3452
3453         if (HAS_DDI(dev_priv)) {
3454                 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3455
3456                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3457                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3458                 else
3459                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3460
3461                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3462                 switch (dp_train_pat & train_pat_mask) {
3463                 case DP_TRAINING_PATTERN_DISABLE:
3464                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3465
3466                         break;
3467                 case DP_TRAINING_PATTERN_1:
3468                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3469                         break;
3470                 case DP_TRAINING_PATTERN_2:
3471                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3472                         break;
3473                 case DP_TRAINING_PATTERN_3:
3474                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3475                         break;
3476                 case DP_TRAINING_PATTERN_4:
3477                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3478                         break;
3479                 }
3480                 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3481
3482         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3483                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3484                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3485
3486                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3487                 case DP_TRAINING_PATTERN_DISABLE:
3488                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3489                         break;
3490                 case DP_TRAINING_PATTERN_1:
3491                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3492                         break;
3493                 case DP_TRAINING_PATTERN_2:
3494                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3495                         break;
3496                 case DP_TRAINING_PATTERN_3:
3497                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3498                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3499                         break;
3500                 }
3501
3502         } else {
3503                 *DP &= ~DP_LINK_TRAIN_MASK;
3504
3505                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3506                 case DP_TRAINING_PATTERN_DISABLE:
3507                         *DP |= DP_LINK_TRAIN_OFF;
3508                         break;
3509                 case DP_TRAINING_PATTERN_1:
3510                         *DP |= DP_LINK_TRAIN_PAT_1;
3511                         break;
3512                 case DP_TRAINING_PATTERN_2:
3513                         *DP |= DP_LINK_TRAIN_PAT_2;
3514                         break;
3515                 case DP_TRAINING_PATTERN_3:
3516                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3517                         *DP |= DP_LINK_TRAIN_PAT_2;
3518                         break;
3519                 }
3520         }
3521 }
3522
3523 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3524                                  const struct intel_crtc_state *old_crtc_state)
3525 {
3526         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3527
3528         /* enable with pattern 1 (as per spec) */
3529
3530         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3531
3532         /*
3533          * Magic for VLV/CHV. We _must_ first set up the register
3534          * without actually enabling the port, and then do another
3535          * write to enable the port. Otherwise link training will
3536          * fail when the power sequencer is freshly used for this port.
3537          */
3538         intel_dp->DP |= DP_PORT_EN;
3539         if (old_crtc_state->has_audio)
3540                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3541
3542         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3543         POSTING_READ(intel_dp->output_reg);
3544 }
3545
3546 static void intel_enable_dp(struct intel_encoder *encoder,
3547                             const struct intel_crtc_state *pipe_config,
3548                             const struct drm_connector_state *conn_state)
3549 {
3550         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3551         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3552         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3553         u32 dp_reg = I915_READ(intel_dp->output_reg);
3554         enum pipe pipe = crtc->pipe;
3555         intel_wakeref_t wakeref;
3556
3557         if (WARN_ON(dp_reg & DP_PORT_EN))
3558                 return;
3559
3560         with_pps_lock(intel_dp, wakeref) {
3561                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3562                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3563
3564                 intel_dp_enable_port(intel_dp, pipe_config);
3565
3566                 edp_panel_vdd_on(intel_dp);
3567                 edp_panel_on(intel_dp);
3568                 edp_panel_vdd_off(intel_dp, true);
3569         }
3570
3571         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3572                 unsigned int lane_mask = 0x0;
3573
3574                 if (IS_CHERRYVIEW(dev_priv))
3575                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3576
3577                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3578                                     lane_mask);
3579         }
3580
3581         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3582         intel_dp_start_link_train(intel_dp);
3583         intel_dp_stop_link_train(intel_dp);
3584
3585         if (pipe_config->has_audio) {
3586                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3587                                  pipe_name(pipe));
3588                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3589         }
3590 }
3591
3592 static void g4x_enable_dp(struct intel_encoder *encoder,
3593                           const struct intel_crtc_state *pipe_config,
3594                           const struct drm_connector_state *conn_state)
3595 {
3596         intel_enable_dp(encoder, pipe_config, conn_state);
3597         intel_edp_backlight_on(pipe_config, conn_state);
3598 }
3599
3600 static void vlv_enable_dp(struct intel_encoder *encoder,
3601                           const struct intel_crtc_state *pipe_config,
3602                           const struct drm_connector_state *conn_state)
3603 {
3604         intel_edp_backlight_on(pipe_config, conn_state);
3605 }
3606
3607 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3608                               const struct intel_crtc_state *pipe_config,
3609                               const struct drm_connector_state *conn_state)
3610 {
3611         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3612         enum port port = encoder->port;
3613
3614         intel_dp_prepare(encoder, pipe_config);
3615
3616         /* Only ilk+ has port A */
3617         if (port == PORT_A)
3618                 ilk_edp_pll_on(intel_dp, pipe_config);
3619 }
3620
3621 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3622 {
3623         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3624         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3625         enum pipe pipe = intel_dp->pps_pipe;
3626         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3627
3628         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3629
3630         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3631                 return;
3632
3633         edp_panel_vdd_off_sync(intel_dp);
3634
3635         /*
3636          * VLV seems to get confused when multiple power sequencers
3637          * have the same port selected (even if only one has power/vdd
3638          * enabled). The failure manifests as vlv_wait_port_ready() failing
3639          * CHV on the other hand doesn't seem to mind having the same port
3640          * selected in multiple power sequencers, but let's clear the
3641          * port select always when logically disconnecting a power sequencer
3642          * from a port.
3643          */
3644         DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3645                       pipe_name(pipe), intel_dig_port->base.base.base.id,
3646                       intel_dig_port->base.base.name);
3647         I915_WRITE(pp_on_reg, 0);
3648         POSTING_READ(pp_on_reg);
3649
3650         intel_dp->pps_pipe = INVALID_PIPE;
3651 }
3652
3653 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3654                                       enum pipe pipe)
3655 {
3656         struct intel_encoder *encoder;
3657
3658         lockdep_assert_held(&dev_priv->pps_mutex);
3659
3660         for_each_intel_dp(&dev_priv->drm, encoder) {
3661                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3662
3663                 WARN(intel_dp->active_pipe == pipe,
3664                      "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3665                      pipe_name(pipe), encoder->base.base.id,
3666                      encoder->base.name);
3667
3668                 if (intel_dp->pps_pipe != pipe)
3669                         continue;
3670
3671                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3672                               pipe_name(pipe), encoder->base.base.id,
3673                               encoder->base.name);
3674
3675                 /* make sure vdd is off before we steal it */
3676                 vlv_detach_power_sequencer(intel_dp);
3677         }
3678 }
3679
3680 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3681                                            const struct intel_crtc_state *crtc_state)
3682 {
3683         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3684         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3685         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3686
3687         lockdep_assert_held(&dev_priv->pps_mutex);
3688
3689         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3690
3691         if (intel_dp->pps_pipe != INVALID_PIPE &&
3692             intel_dp->pps_pipe != crtc->pipe) {
3693                 /*
3694                  * If another power sequencer was being used on this
3695                  * port previously make sure to turn off vdd there while
3696                  * we still have control of it.
3697                  */
3698                 vlv_detach_power_sequencer(intel_dp);
3699         }
3700
3701         /*
3702          * We may be stealing the power
3703          * sequencer from another port.
3704          */
3705         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3706
3707         intel_dp->active_pipe = crtc->pipe;
3708
3709         if (!intel_dp_is_edp(intel_dp))
3710                 return;
3711
3712         /* now it's all ours */
3713         intel_dp->pps_pipe = crtc->pipe;
3714
3715         DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3716                       pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3717                       encoder->base.name);
3718
3719         /* init power sequencer on this pipe and port */
3720         intel_dp_init_panel_power_sequencer(intel_dp);
3721         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3722 }
3723
3724 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3725                               const struct intel_crtc_state *pipe_config,
3726                               const struct drm_connector_state *conn_state)
3727 {
3728         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3729
3730         intel_enable_dp(encoder, pipe_config, conn_state);
3731 }
3732
3733 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3734                                   const struct intel_crtc_state *pipe_config,
3735                                   const struct drm_connector_state *conn_state)
3736 {
3737         intel_dp_prepare(encoder, pipe_config);
3738
3739         vlv_phy_pre_pll_enable(encoder, pipe_config);
3740 }
3741
3742 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3743                               const struct intel_crtc_state *pipe_config,
3744                               const struct drm_connector_state *conn_state)
3745 {
3746         chv_phy_pre_encoder_enable(encoder, pipe_config);
3747
3748         intel_enable_dp(encoder, pipe_config, conn_state);
3749
3750         /* Second common lane will stay alive on its own now */
3751         chv_phy_release_cl2_override(encoder);
3752 }
3753
3754 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3755                                   const struct intel_crtc_state *pipe_config,
3756                                   const struct drm_connector_state *conn_state)
3757 {
3758         intel_dp_prepare(encoder, pipe_config);
3759
3760         chv_phy_pre_pll_enable(encoder, pipe_config);
3761 }
3762
3763 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3764                                     const struct intel_crtc_state *old_crtc_state,
3765                                     const struct drm_connector_state *old_conn_state)
3766 {
3767         chv_phy_post_pll_disable(encoder, old_crtc_state);
3768 }
3769
3770 /*
3771  * Fetch AUX CH registers 0x202 - 0x207 which contain
3772  * link status information
3773  */
3774 bool
3775 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3776 {
3777         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3778                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3779 }
3780
3781 /* These are source-specific values. */
3782 u8
3783 intel_dp_voltage_max(struct intel_dp *intel_dp)
3784 {
3785         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3786         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3787         enum port port = encoder->port;
3788
3789         if (HAS_DDI(dev_priv))
3790                 return intel_ddi_dp_voltage_max(encoder);
3791         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3792                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3793         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3794                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3795         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3796                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3797         else
3798                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3799 }
3800
3801 u8
3802 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3803 {
3804         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3805         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3806         enum port port = encoder->port;
3807
3808         if (HAS_DDI(dev_priv)) {
3809                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3810         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3811                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3812                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3813                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3814                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3815                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3816                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3817                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3818                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3819                 default:
3820                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3821                 }
3822         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3823                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3824                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3825                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3826                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3827                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3828                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3829                 default:
3830                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3831                 }
3832         } else {
3833                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3834                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3835                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3836                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3837                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3838                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3839                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3840                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3841                 default:
3842                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3843                 }
3844         }
3845 }
3846
3847 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3848 {
3849         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3850         unsigned long demph_reg_value, preemph_reg_value,
3851                 uniqtranscale_reg_value;
3852         u8 train_set = intel_dp->train_set[0];
3853
3854         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3855         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3856                 preemph_reg_value = 0x0004000;
3857                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3858                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3859                         demph_reg_value = 0x2B405555;
3860                         uniqtranscale_reg_value = 0x552AB83A;
3861                         break;
3862                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3863                         demph_reg_value = 0x2B404040;
3864                         uniqtranscale_reg_value = 0x5548B83A;
3865                         break;
3866                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3867                         demph_reg_value = 0x2B245555;
3868                         uniqtranscale_reg_value = 0x5560B83A;
3869                         break;
3870                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3871                         demph_reg_value = 0x2B405555;
3872                         uniqtranscale_reg_value = 0x5598DA3A;
3873                         break;
3874                 default:
3875                         return 0;
3876                 }
3877                 break;
3878         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3879                 preemph_reg_value = 0x0002000;
3880                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3881                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3882                         demph_reg_value = 0x2B404040;
3883                         uniqtranscale_reg_value = 0x5552B83A;
3884                         break;
3885                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3886                         demph_reg_value = 0x2B404848;
3887                         uniqtranscale_reg_value = 0x5580B83A;
3888                         break;
3889                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3890                         demph_reg_value = 0x2B404040;
3891                         uniqtranscale_reg_value = 0x55ADDA3A;
3892                         break;
3893                 default:
3894                         return 0;
3895                 }
3896                 break;
3897         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3898                 preemph_reg_value = 0x0000000;
3899                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3900                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3901                         demph_reg_value = 0x2B305555;
3902                         uniqtranscale_reg_value = 0x5570B83A;
3903                         break;
3904                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3905                         demph_reg_value = 0x2B2B4040;
3906                         uniqtranscale_reg_value = 0x55ADDA3A;
3907                         break;
3908                 default:
3909                         return 0;
3910                 }
3911                 break;
3912         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3913                 preemph_reg_value = 0x0006000;
3914                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3915                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3916                         demph_reg_value = 0x1B405555;
3917                         uniqtranscale_reg_value = 0x55ADDA3A;
3918                         break;
3919                 default:
3920                         return 0;
3921                 }
3922                 break;
3923         default:
3924                 return 0;
3925         }
3926
3927         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3928                                  uniqtranscale_reg_value, 0);
3929
3930         return 0;
3931 }
3932
3933 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3934 {
3935         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3936         u32 deemph_reg_value, margin_reg_value;
3937         bool uniq_trans_scale = false;
3938         u8 train_set = intel_dp->train_set[0];
3939
3940         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3941         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3942                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3943                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3944                         deemph_reg_value = 128;
3945                         margin_reg_value = 52;
3946                         break;
3947                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3948                         deemph_reg_value = 128;
3949                         margin_reg_value = 77;
3950                         break;
3951                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3952                         deemph_reg_value = 128;
3953                         margin_reg_value = 102;
3954                         break;
3955                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3956                         deemph_reg_value = 128;
3957                         margin_reg_value = 154;
3958                         uniq_trans_scale = true;
3959                         break;
3960                 default:
3961                         return 0;
3962                 }
3963                 break;
3964         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3965                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3966                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3967                         deemph_reg_value = 85;
3968                         margin_reg_value = 78;
3969                         break;
3970                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3971                         deemph_reg_value = 85;
3972                         margin_reg_value = 116;
3973                         break;
3974                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3975                         deemph_reg_value = 85;
3976                         margin_reg_value = 154;
3977                         break;
3978                 default:
3979                         return 0;
3980                 }
3981                 break;
3982         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3983                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3984                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3985                         deemph_reg_value = 64;
3986                         margin_reg_value = 104;
3987                         break;
3988                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3989                         deemph_reg_value = 64;
3990                         margin_reg_value = 154;
3991                         break;
3992                 default:
3993                         return 0;
3994                 }
3995                 break;
3996         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3997                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3998                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3999                         deemph_reg_value = 43;
4000                         margin_reg_value = 154;
4001                         break;
4002                 default:
4003                         return 0;
4004                 }
4005                 break;
4006         default:
4007                 return 0;
4008         }
4009
4010         chv_set_phy_signal_level(encoder, deemph_reg_value,
4011                                  margin_reg_value, uniq_trans_scale);
4012
4013         return 0;
4014 }
4015
4016 static u32
4017 g4x_signal_levels(u8 train_set)
4018 {
4019         u32 signal_levels = 0;
4020
4021         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4022         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4023         default:
4024                 signal_levels |= DP_VOLTAGE_0_4;
4025                 break;
4026         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4027                 signal_levels |= DP_VOLTAGE_0_6;
4028                 break;
4029         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4030                 signal_levels |= DP_VOLTAGE_0_8;
4031                 break;
4032         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4033                 signal_levels |= DP_VOLTAGE_1_2;
4034                 break;
4035         }
4036         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4037         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4038         default:
4039                 signal_levels |= DP_PRE_EMPHASIS_0;
4040                 break;
4041         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4042                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4043                 break;
4044         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4045                 signal_levels |= DP_PRE_EMPHASIS_6;
4046                 break;
4047         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4048                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4049                 break;
4050         }
4051         return signal_levels;
4052 }
4053
4054 /* SNB CPU eDP voltage swing and pre-emphasis control */
4055 static u32
4056 snb_cpu_edp_signal_levels(u8 train_set)
4057 {
4058         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4059                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4060         switch (signal_levels) {
4061         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4062         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4063                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4064         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4065                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4066         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4067         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4068                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4069         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4070         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4071                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4072         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4073         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4074                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4075         default:
4076                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4077                               "0x%x\n", signal_levels);
4078                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4079         }
4080 }
4081
4082 /* IVB CPU eDP voltage swing and pre-emphasis control */
4083 static u32
4084 ivb_cpu_edp_signal_levels(u8 train_set)
4085 {
4086         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4087                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4088         switch (signal_levels) {
4089         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4090                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4091         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4092                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4093         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4094                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4095
4096         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4097                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4098         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4099                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4100
4101         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4102                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4103         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4104                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4105
4106         default:
4107                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4108                               "0x%x\n", signal_levels);
4109                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4110         }
4111 }
4112
4113 void
4114 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4115 {
4116         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4117         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4118         enum port port = intel_dig_port->base.port;
4119         u32 signal_levels, mask = 0;
4120         u8 train_set = intel_dp->train_set[0];
4121
4122         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4123                 signal_levels = bxt_signal_levels(intel_dp);
4124         } else if (HAS_DDI(dev_priv)) {
4125                 signal_levels = ddi_signal_levels(intel_dp);
4126                 mask = DDI_BUF_EMP_MASK;
4127         } else if (IS_CHERRYVIEW(dev_priv)) {
4128                 signal_levels = chv_signal_levels(intel_dp);
4129         } else if (IS_VALLEYVIEW(dev_priv)) {
4130                 signal_levels = vlv_signal_levels(intel_dp);
4131         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4132                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4133                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4134         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4135                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4136                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4137         } else {
4138                 signal_levels = g4x_signal_levels(train_set);
4139                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4140         }
4141
4142         if (mask)
4143                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4144
4145         DRM_DEBUG_KMS("Using vswing level %d\n",
4146                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4147         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4148                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4149                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
4150
4151         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4152
4153         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4154         POSTING_READ(intel_dp->output_reg);
4155 }
4156
4157 void
4158 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4159                                        u8 dp_train_pat)
4160 {
4161         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4162         struct drm_i915_private *dev_priv =
4163                 to_i915(intel_dig_port->base.base.dev);
4164
4165         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4166
4167         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4168         POSTING_READ(intel_dp->output_reg);
4169 }
4170
4171 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4172 {
4173         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4174         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4175         enum port port = intel_dig_port->base.port;
4176         u32 val;
4177
4178         if (!HAS_DDI(dev_priv))
4179                 return;
4180
4181         val = I915_READ(intel_dp->regs.dp_tp_ctl);
4182         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4183         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4184         I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4185
4186         /*
4187          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4188          * reason we need to set idle transmission mode is to work around a HW
4189          * issue where we enable the pipe while not in idle link-training mode.
4190          * In this case there is requirement to wait for a minimum number of
4191          * idle patterns to be sent.
4192          */
4193         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4194                 return;
4195
4196         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4197                                   DP_TP_STATUS_IDLE_DONE, 1))
4198                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4199 }
4200
4201 static void
4202 intel_dp_link_down(struct intel_encoder *encoder,
4203                    const struct intel_crtc_state *old_crtc_state)
4204 {
4205         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4206         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4207         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4208         enum port port = encoder->port;
4209         u32 DP = intel_dp->DP;
4210
4211         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4212                 return;
4213
4214         DRM_DEBUG_KMS("\n");
4215
4216         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4217             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4218                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4219                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4220         } else {
4221                 DP &= ~DP_LINK_TRAIN_MASK;
4222                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4223         }
4224         I915_WRITE(intel_dp->output_reg, DP);
4225         POSTING_READ(intel_dp->output_reg);
4226
4227         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4228         I915_WRITE(intel_dp->output_reg, DP);
4229         POSTING_READ(intel_dp->output_reg);
4230
4231         /*
4232          * HW workaround for IBX, we need to move the port
4233          * to transcoder A after disabling it to allow the
4234          * matching HDMI port to be enabled on transcoder A.
4235          */
4236         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4237                 /*
4238                  * We get CPU/PCH FIFO underruns on the other pipe when
4239                  * doing the workaround. Sweep them under the rug.
4240                  */
4241                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4242                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4243
4244                 /* always enable with pattern 1 (as per spec) */
4245                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4246                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4247                         DP_LINK_TRAIN_PAT_1;
4248                 I915_WRITE(intel_dp->output_reg, DP);
4249                 POSTING_READ(intel_dp->output_reg);
4250
4251                 DP &= ~DP_PORT_EN;
4252                 I915_WRITE(intel_dp->output_reg, DP);
4253                 POSTING_READ(intel_dp->output_reg);
4254
4255                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4256                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4257                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4258         }
4259
4260         msleep(intel_dp->panel_power_down_delay);
4261
4262         intel_dp->DP = DP;
4263
4264         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4265                 intel_wakeref_t wakeref;
4266
4267                 with_pps_lock(intel_dp, wakeref)
4268                         intel_dp->active_pipe = INVALID_PIPE;
4269         }
4270 }
4271
4272 static void
4273 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4274 {
4275         u8 dpcd_ext[6];
4276
4277         /*
4278          * Prior to DP1.3 the bit represented by
4279          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4280          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4281          * the true capability of the panel. The only way to check is to
4282          * then compare 0000h and 2200h.
4283          */
4284         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4285               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4286                 return;
4287
4288         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4289                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4290                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4291                 return;
4292         }
4293
4294         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4295                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4296                 return;
4297         }
4298
4299         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4300                 return;
4301
4302         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4303                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4304
4305         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4306 }
4307
4308 bool
4309 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4310 {
4311         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4312                              sizeof(intel_dp->dpcd)) < 0)
4313                 return false; /* aux transfer failed */
4314
4315         intel_dp_extended_receiver_capabilities(intel_dp);
4316
4317         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4318
4319         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4320 }
4321
4322 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4323 {
4324         u8 dprx = 0;
4325
4326         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4327                               &dprx) != 1)
4328                 return false;
4329         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4330 }
4331
4332 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4333 {
4334         /*
4335          * Clear the cached register set to avoid using stale values
4336          * for the sinks that do not support DSC.
4337          */
4338         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4339
4340         /* Clear fec_capable to avoid using stale values */
4341         intel_dp->fec_capable = 0;
4342
4343         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4344         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4345             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4346                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4347                                      intel_dp->dsc_dpcd,
4348                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4349                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4350                                   DP_DSC_SUPPORT);
4351
4352                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4353                               (int)sizeof(intel_dp->dsc_dpcd),
4354                               intel_dp->dsc_dpcd);
4355
4356                 /* FEC is supported only on DP 1.4 */
4357                 if (!intel_dp_is_edp(intel_dp) &&
4358                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4359                                       &intel_dp->fec_capable) < 0)
4360                         DRM_ERROR("Failed to read FEC DPCD register\n");
4361
4362                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4363         }
4364 }
4365
4366 static bool
4367 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4368 {
4369         struct drm_i915_private *dev_priv =
4370                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4371
4372         /* this function is meant to be called only once */
4373         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4374
4375         if (!intel_dp_read_dpcd(intel_dp))
4376                 return false;
4377
4378         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4379                          drm_dp_is_branch(intel_dp->dpcd));
4380
4381         /*
4382          * Read the eDP display control registers.
4383          *
4384          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4385          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4386          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4387          * method). The display control registers should read zero if they're
4388          * not supported anyway.
4389          */
4390         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4391                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4392                              sizeof(intel_dp->edp_dpcd))
4393                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4394                               intel_dp->edp_dpcd);
4395
4396         /*
4397          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4398          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4399          */
4400         intel_psr_init_dpcd(intel_dp);
4401
4402         /* Read the eDP 1.4+ supported link rates. */
4403         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4404                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4405                 int i;
4406
4407                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4408                                 sink_rates, sizeof(sink_rates));
4409
4410                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4411                         int val = le16_to_cpu(sink_rates[i]);
4412
4413                         if (val == 0)
4414                                 break;
4415
4416                         /* Value read multiplied by 200kHz gives the per-lane
4417                          * link rate in kHz. The source rates are, however,
4418                          * stored in terms of LS_Clk kHz. The full conversion
4419                          * back to symbols is
4420                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4421                          */
4422                         intel_dp->sink_rates[i] = (val * 200) / 10;
4423                 }
4424                 intel_dp->num_sink_rates = i;
4425         }
4426
4427         /*
4428          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4429          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4430          */
4431         if (intel_dp->num_sink_rates)
4432                 intel_dp->use_rate_select = true;
4433         else
4434                 intel_dp_set_sink_rates(intel_dp);
4435
4436         intel_dp_set_common_rates(intel_dp);
4437
4438         /* Read the eDP DSC DPCD registers */
4439         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4440                 intel_dp_get_dsc_sink_cap(intel_dp);
4441
4442         return true;
4443 }
4444
4445
4446 static bool
4447 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4448 {
4449         if (!intel_dp_read_dpcd(intel_dp))
4450                 return false;
4451
4452         /*
4453          * Don't clobber cached eDP rates. Also skip re-reading
4454          * the OUI/ID since we know it won't change.
4455          */
4456         if (!intel_dp_is_edp(intel_dp)) {
4457                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4458                                  drm_dp_is_branch(intel_dp->dpcd));
4459
4460                 intel_dp_set_sink_rates(intel_dp);
4461                 intel_dp_set_common_rates(intel_dp);
4462         }
4463
4464         /*
4465          * Some eDP panels do not set a valid value for sink count, that is why
4466          * it don't care about read it here and in intel_edp_init_dpcd().
4467          */
4468         if (!intel_dp_is_edp(intel_dp) &&
4469             !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4470                 u8 count;
4471                 ssize_t r;
4472
4473                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4474                 if (r < 1)
4475                         return false;
4476
4477                 /*
4478                  * Sink count can change between short pulse hpd hence
4479                  * a member variable in intel_dp will track any changes
4480                  * between short pulse interrupts.
4481                  */
4482                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4483
4484                 /*
4485                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4486                  * a dongle is present but no display. Unless we require to know
4487                  * if a dongle is present or not, we don't need to update
4488                  * downstream port information. So, an early return here saves
4489                  * time from performing other operations which are not required.
4490                  */
4491                 if (!intel_dp->sink_count)
4492                         return false;
4493         }
4494
4495         if (!drm_dp_is_branch(intel_dp->dpcd))
4496                 return true; /* native DP sink */
4497
4498         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4499                 return true; /* no per-port downstream info */
4500
4501         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4502                              intel_dp->downstream_ports,
4503                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4504                 return false; /* downstream port status fetch failed */
4505
4506         return true;
4507 }
4508
4509 static bool
4510 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4511 {
4512         u8 mstm_cap;
4513
4514         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4515                 return false;
4516
4517         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4518                 return false;
4519
4520         return mstm_cap & DP_MST_CAP;
4521 }
4522
4523 static bool
4524 intel_dp_can_mst(struct intel_dp *intel_dp)
4525 {
4526         return i915_modparams.enable_dp_mst &&
4527                 intel_dp->can_mst &&
4528                 intel_dp_sink_can_mst(intel_dp);
4529 }
4530
4531 static void
4532 intel_dp_configure_mst(struct intel_dp *intel_dp)
4533 {
4534         struct intel_encoder *encoder =
4535                 &dp_to_dig_port(intel_dp)->base;
4536         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4537
4538         DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4539                       encoder->base.base.id, encoder->base.name,
4540                       yesno(intel_dp->can_mst), yesno(sink_can_mst),
4541                       yesno(i915_modparams.enable_dp_mst));
4542
4543         if (!intel_dp->can_mst)
4544                 return;
4545
4546         intel_dp->is_mst = sink_can_mst &&
4547                 i915_modparams.enable_dp_mst;
4548
4549         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4550                                         intel_dp->is_mst);
4551 }
4552
4553 static bool
4554 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4555 {
4556         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4557                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4558                 DP_DPRX_ESI_LEN;
4559 }
4560
4561 bool
4562 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4563                        const struct drm_connector_state *conn_state)
4564 {
4565         /*
4566          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4567          * of Color Encoding Format and Content Color Gamut], in order to
4568          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4569          */
4570         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4571                 return true;
4572
4573         switch (conn_state->colorspace) {
4574         case DRM_MODE_COLORIMETRY_SYCC_601:
4575         case DRM_MODE_COLORIMETRY_OPYCC_601:
4576         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4577         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4578         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4579                 return true;
4580         default:
4581                 break;
4582         }
4583
4584         return false;
4585 }
4586
4587 static void
4588 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4589                        const struct intel_crtc_state *crtc_state,
4590                        const struct drm_connector_state *conn_state)
4591 {
4592         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4593         struct dp_sdp vsc_sdp = {};
4594
4595         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4596         vsc_sdp.sdp_header.HB0 = 0;
4597         vsc_sdp.sdp_header.HB1 = 0x7;
4598
4599         /*
4600          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4601          * Colorimetry Format indication.
4602          */
4603         vsc_sdp.sdp_header.HB2 = 0x5;
4604
4605         /*
4606          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4607          * Colorimetry Format indication (HB2 = 05h).
4608          */
4609         vsc_sdp.sdp_header.HB3 = 0x13;
4610
4611         /* DP 1.4a spec, Table 2-120 */
4612         switch (crtc_state->output_format) {
4613         case INTEL_OUTPUT_FORMAT_YCBCR444:
4614                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4615                 break;
4616         case INTEL_OUTPUT_FORMAT_YCBCR420:
4617                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4618                 break;
4619         case INTEL_OUTPUT_FORMAT_RGB:
4620         default:
4621                 /* RGB: DB16[7:4] = 0h */
4622                 break;
4623         }
4624
4625         switch (conn_state->colorspace) {
4626         case DRM_MODE_COLORIMETRY_BT709_YCC:
4627                 vsc_sdp.db[16] |= 0x1;
4628                 break;
4629         case DRM_MODE_COLORIMETRY_XVYCC_601:
4630                 vsc_sdp.db[16] |= 0x2;
4631                 break;
4632         case DRM_MODE_COLORIMETRY_XVYCC_709:
4633                 vsc_sdp.db[16] |= 0x3;
4634                 break;
4635         case DRM_MODE_COLORIMETRY_SYCC_601:
4636                 vsc_sdp.db[16] |= 0x4;
4637                 break;
4638         case DRM_MODE_COLORIMETRY_OPYCC_601:
4639                 vsc_sdp.db[16] |= 0x5;
4640                 break;
4641         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4642         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4643                 vsc_sdp.db[16] |= 0x6;
4644                 break;
4645         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4646                 vsc_sdp.db[16] |= 0x7;
4647                 break;
4648         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4649         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4650                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4651                 break;
4652         default:
4653                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4654
4655                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4656                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4657                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4658                 break;
4659         }
4660
4661         /*
4662          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4663          * the following Component Bit Depth values are defined:
4664          * 001b = 8bpc.
4665          * 010b = 10bpc.
4666          * 011b = 12bpc.
4667          * 100b = 16bpc.
4668          */
4669         switch (crtc_state->pipe_bpp) {
4670         case 24: /* 8bpc */
4671                 vsc_sdp.db[17] = 0x1;
4672                 break;
4673         case 30: /* 10bpc */
4674                 vsc_sdp.db[17] = 0x2;
4675                 break;
4676         case 36: /* 12bpc */
4677                 vsc_sdp.db[17] = 0x3;
4678                 break;
4679         case 48: /* 16bpc */
4680                 vsc_sdp.db[17] = 0x4;
4681                 break;
4682         default:
4683                 MISSING_CASE(crtc_state->pipe_bpp);
4684                 break;
4685         }
4686
4687         /*
4688          * Dynamic Range (Bit 7)
4689          * 0 = VESA range, 1 = CTA range.
4690          * all YCbCr are always limited range
4691          */
4692         vsc_sdp.db[17] |= 0x80;
4693
4694         /*
4695          * Content Type (Bits 2:0)
4696          * 000b = Not defined.
4697          * 001b = Graphics.
4698          * 010b = Photo.
4699          * 011b = Video.
4700          * 100b = Game
4701          * All other values are RESERVED.
4702          * Note: See CTA-861-G for the definition and expected
4703          * processing by a stream sink for the above contect types.
4704          */
4705         vsc_sdp.db[18] = 0;
4706
4707         intel_dig_port->write_infoframe(&intel_dig_port->base,
4708                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4709 }
4710
4711 static void
4712 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4713                                           const struct intel_crtc_state *crtc_state,
4714                                           const struct drm_connector_state *conn_state)
4715 {
4716         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4717         struct dp_sdp infoframe_sdp = {};
4718         struct hdmi_drm_infoframe drm_infoframe = {};
4719         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4720         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4721         ssize_t len;
4722         int ret;
4723
4724         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4725         if (ret) {
4726                 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4727                 return;
4728         }
4729
4730         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4731         if (len < 0) {
4732                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4733                 return;
4734         }
4735
4736         if (len != infoframe_size) {
4737                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4738                 return;
4739         }
4740
4741         /*
4742          * Set up the infoframe sdp packet for HDR static metadata.
4743          * Prepare VSC Header for SU as per DP 1.4a spec,
4744          * Table 2-100 and Table 2-101
4745          */
4746
4747         /* Packet ID, 00h for non-Audio INFOFRAME */
4748         infoframe_sdp.sdp_header.HB0 = 0;
4749         /*
4750          * Packet Type 80h + Non-audio INFOFRAME Type value
4751          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4752          */
4753         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4754         /*
4755          * Least Significant Eight Bits of (Data Byte Count – 1)
4756          * infoframe_size - 1,
4757          */
4758         infoframe_sdp.sdp_header.HB2 = 0x1D;
4759         /* INFOFRAME SDP Version Number */
4760         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4761         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4762         infoframe_sdp.db[0] = drm_infoframe.version;
4763         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4764         infoframe_sdp.db[1] = drm_infoframe.length;
4765         /*
4766          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4767          * HDMI_INFOFRAME_HEADER_SIZE
4768          */
4769         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4770         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4771                HDMI_DRM_INFOFRAME_SIZE);
4772
4773         /*
4774          * Size of DP infoframe sdp packet for HDR static metadata is consist of
4775          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4776          * - Two Data Blocks: 2 bytes
4777          *    CTA Header Byte2 (INFOFRAME Version Number)
4778          *    CTA Header Byte3 (Length of INFOFRAME)
4779          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4780          *
4781          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4782          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4783          * will pad rest of the size.
4784          */
4785         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4786                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
4787                                         &infoframe_sdp,
4788                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4789 }
4790
4791 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4792                          const struct intel_crtc_state *crtc_state,
4793                          const struct drm_connector_state *conn_state)
4794 {
4795         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4796                 return;
4797
4798         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4799 }
4800
4801 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4802                                   const struct intel_crtc_state *crtc_state,
4803                                   const struct drm_connector_state *conn_state)
4804 {
4805         if (!conn_state->hdr_output_metadata)
4806                 return;
4807
4808         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4809                                                   crtc_state,
4810                                                   conn_state);
4811 }
4812
4813 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4814 {
4815         int status = 0;
4816         int test_link_rate;
4817         u8 test_lane_count, test_link_bw;
4818         /* (DP CTS 1.2)
4819          * 4.3.1.11
4820          */
4821         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4822         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4823                                    &test_lane_count);
4824
4825         if (status <= 0) {
4826                 DRM_DEBUG_KMS("Lane count read failed\n");
4827                 return DP_TEST_NAK;
4828         }
4829         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4830
4831         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4832                                    &test_link_bw);
4833         if (status <= 0) {
4834                 DRM_DEBUG_KMS("Link Rate read failed\n");
4835                 return DP_TEST_NAK;
4836         }
4837         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4838
4839         /* Validate the requested link rate and lane count */
4840         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4841                                         test_lane_count))
4842                 return DP_TEST_NAK;
4843
4844         intel_dp->compliance.test_lane_count = test_lane_count;
4845         intel_dp->compliance.test_link_rate = test_link_rate;
4846
4847         return DP_TEST_ACK;
4848 }
4849
4850 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4851 {
4852         u8 test_pattern;
4853         u8 test_misc;
4854         __be16 h_width, v_height;
4855         int status = 0;
4856
4857         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4858         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4859                                    &test_pattern);
4860         if (status <= 0) {
4861                 DRM_DEBUG_KMS("Test pattern read failed\n");
4862                 return DP_TEST_NAK;
4863         }
4864         if (test_pattern != DP_COLOR_RAMP)
4865                 return DP_TEST_NAK;
4866
4867         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4868                                   &h_width, 2);
4869         if (status <= 0) {
4870                 DRM_DEBUG_KMS("H Width read failed\n");
4871                 return DP_TEST_NAK;
4872         }
4873
4874         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4875                                   &v_height, 2);
4876         if (status <= 0) {
4877                 DRM_DEBUG_KMS("V Height read failed\n");
4878                 return DP_TEST_NAK;
4879         }
4880
4881         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4882                                    &test_misc);
4883         if (status <= 0) {
4884                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4885                 return DP_TEST_NAK;
4886         }
4887         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4888                 return DP_TEST_NAK;
4889         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4890                 return DP_TEST_NAK;
4891         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4892         case DP_TEST_BIT_DEPTH_6:
4893                 intel_dp->compliance.test_data.bpc = 6;
4894                 break;
4895         case DP_TEST_BIT_DEPTH_8:
4896                 intel_dp->compliance.test_data.bpc = 8;
4897                 break;
4898         default:
4899                 return DP_TEST_NAK;
4900         }
4901
4902         intel_dp->compliance.test_data.video_pattern = test_pattern;
4903         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4904         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4905         /* Set test active flag here so userspace doesn't interrupt things */
4906         intel_dp->compliance.test_active = true;
4907
4908         return DP_TEST_ACK;
4909 }
4910
4911 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4912 {
4913         u8 test_result = DP_TEST_ACK;
4914         struct intel_connector *intel_connector = intel_dp->attached_connector;
4915         struct drm_connector *connector = &intel_connector->base;
4916
4917         if (intel_connector->detect_edid == NULL ||
4918             connector->edid_corrupt ||
4919             intel_dp->aux.i2c_defer_count > 6) {
4920                 /* Check EDID read for NACKs, DEFERs and corruption
4921                  * (DP CTS 1.2 Core r1.1)
4922                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4923                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4924                  *    4.2.2.6 : EDID corruption detected
4925                  * Use failsafe mode for all cases
4926                  */
4927                 if (intel_dp->aux.i2c_nack_count > 0 ||
4928                         intel_dp->aux.i2c_defer_count > 0)
4929                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4930                                       intel_dp->aux.i2c_nack_count,
4931                                       intel_dp->aux.i2c_defer_count);
4932                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4933         } else {
4934                 struct edid *block = intel_connector->detect_edid;
4935
4936                 /* We have to write the checksum
4937                  * of the last block read
4938                  */
4939                 block += intel_connector->detect_edid->extensions;
4940
4941                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4942                                        block->checksum) <= 0)
4943                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4944
4945                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4946                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4947         }
4948
4949         /* Set test active flag here so userspace doesn't interrupt things */
4950         intel_dp->compliance.test_active = true;
4951
4952         return test_result;
4953 }
4954
4955 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4956 {
4957         u8 test_result = DP_TEST_NAK;
4958         return test_result;
4959 }
4960
4961 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4962 {
4963         u8 response = DP_TEST_NAK;
4964         u8 request = 0;
4965         int status;
4966
4967         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4968         if (status <= 0) {
4969                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4970                 goto update_status;
4971         }
4972
4973         switch (request) {
4974         case DP_TEST_LINK_TRAINING:
4975                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4976                 response = intel_dp_autotest_link_training(intel_dp);
4977                 break;
4978         case DP_TEST_LINK_VIDEO_PATTERN:
4979                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4980                 response = intel_dp_autotest_video_pattern(intel_dp);
4981                 break;
4982         case DP_TEST_LINK_EDID_READ:
4983                 DRM_DEBUG_KMS("EDID test requested\n");
4984                 response = intel_dp_autotest_edid(intel_dp);
4985                 break;
4986         case DP_TEST_LINK_PHY_TEST_PATTERN:
4987                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4988                 response = intel_dp_autotest_phy_pattern(intel_dp);
4989                 break;
4990         default:
4991                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4992                 break;
4993         }
4994
4995         if (response & DP_TEST_ACK)
4996                 intel_dp->compliance.test_type = request;
4997
4998 update_status:
4999         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5000         if (status <= 0)
5001                 DRM_DEBUG_KMS("Could not write test response to sink\n");
5002 }
5003
5004 static int
5005 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5006 {
5007         bool bret;
5008
5009         if (intel_dp->is_mst) {
5010                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5011                 int ret = 0;
5012                 int retry;
5013                 bool handled;
5014
5015                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5016                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5017 go_again:
5018                 if (bret == true) {
5019
5020                         /* check link status - esi[10] = 0x200c */
5021                         if (intel_dp->active_mst_links > 0 &&
5022                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5023                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5024                                 intel_dp_start_link_train(intel_dp);
5025                                 intel_dp_stop_link_train(intel_dp);
5026                         }
5027
5028                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
5029                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5030
5031                         if (handled) {
5032                                 for (retry = 0; retry < 3; retry++) {
5033                                         int wret;
5034                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5035                                                                  DP_SINK_COUNT_ESI+1,
5036                                                                  &esi[1], 3);
5037                                         if (wret == 3) {
5038                                                 break;
5039                                         }
5040                                 }
5041
5042                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5043                                 if (bret == true) {
5044                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5045                                         goto go_again;
5046                                 }
5047                         } else
5048                                 ret = 0;
5049
5050                         return ret;
5051                 } else {
5052                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5053                         intel_dp->is_mst = false;
5054                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5055                                                         intel_dp->is_mst);
5056                 }
5057         }
5058         return -EINVAL;
5059 }
5060
5061 static bool
5062 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5063 {
5064         u8 link_status[DP_LINK_STATUS_SIZE];
5065
5066         if (!intel_dp->link_trained)
5067                 return false;
5068
5069         /*
5070          * While PSR source HW is enabled, it will control main-link sending
5071          * frames, enabling and disabling it so trying to do a retrain will fail
5072          * as the link would or not be on or it could mix training patterns
5073          * and frame data at the same time causing retrain to fail.
5074          * Also when exiting PSR, HW will retrain the link anyways fixing
5075          * any link status error.
5076          */
5077         if (intel_psr_enabled(intel_dp))
5078                 return false;
5079
5080         if (!intel_dp_get_link_status(intel_dp, link_status))
5081                 return false;
5082
5083         /*
5084          * Validate the cached values of intel_dp->link_rate and
5085          * intel_dp->lane_count before attempting to retrain.
5086          */
5087         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5088                                         intel_dp->lane_count))
5089                 return false;
5090
5091         /* Retrain if Channel EQ or CR not ok */
5092         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5093 }
5094
5095 int intel_dp_retrain_link(struct intel_encoder *encoder,
5096                           struct drm_modeset_acquire_ctx *ctx)
5097 {
5098         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5099         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5100         struct intel_connector *connector = intel_dp->attached_connector;
5101         struct drm_connector_state *conn_state;
5102         struct intel_crtc_state *crtc_state;
5103         struct intel_crtc *crtc;
5104         int ret;
5105
5106         /* FIXME handle the MST connectors as well */
5107
5108         if (!connector || connector->base.status != connector_status_connected)
5109                 return 0;
5110
5111         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5112                                ctx);
5113         if (ret)
5114                 return ret;
5115
5116         conn_state = connector->base.state;
5117
5118         crtc = to_intel_crtc(conn_state->crtc);
5119         if (!crtc)
5120                 return 0;
5121
5122         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5123         if (ret)
5124                 return ret;
5125
5126         crtc_state = to_intel_crtc_state(crtc->base.state);
5127
5128         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5129
5130         if (!crtc_state->hw.active)
5131                 return 0;
5132
5133         if (conn_state->commit &&
5134             !try_wait_for_completion(&conn_state->commit->hw_done))
5135                 return 0;
5136
5137         if (!intel_dp_needs_link_retrain(intel_dp))
5138                 return 0;
5139
5140         /* Suppress underruns caused by re-training */
5141         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5142         if (crtc_state->has_pch_encoder)
5143                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5144                                                       intel_crtc_pch_transcoder(crtc), false);
5145
5146         intel_dp_start_link_train(intel_dp);
5147         intel_dp_stop_link_train(intel_dp);
5148
5149         /* Keep underrun reporting disabled until things are stable */
5150         intel_wait_for_vblank(dev_priv, crtc->pipe);
5151
5152         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5153         if (crtc_state->has_pch_encoder)
5154                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5155                                                       intel_crtc_pch_transcoder(crtc), true);
5156
5157         return 0;
5158 }
5159
5160 /*
5161  * If display is now connected check links status,
5162  * there has been known issues of link loss triggering
5163  * long pulse.
5164  *
5165  * Some sinks (eg. ASUS PB287Q) seem to perform some
5166  * weird HPD ping pong during modesets. So we can apparently
5167  * end up with HPD going low during a modeset, and then
5168  * going back up soon after. And once that happens we must
5169  * retrain the link to get a picture. That's in case no
5170  * userspace component reacted to intermittent HPD dip.
5171  */
5172 static enum intel_hotplug_state
5173 intel_dp_hotplug(struct intel_encoder *encoder,
5174                  struct intel_connector *connector,
5175                  bool irq_received)
5176 {
5177         struct drm_modeset_acquire_ctx ctx;
5178         enum intel_hotplug_state state;
5179         int ret;
5180
5181         state = intel_encoder_hotplug(encoder, connector, irq_received);
5182
5183         drm_modeset_acquire_init(&ctx, 0);
5184
5185         for (;;) {
5186                 ret = intel_dp_retrain_link(encoder, &ctx);
5187
5188                 if (ret == -EDEADLK) {
5189                         drm_modeset_backoff(&ctx);
5190                         continue;
5191                 }
5192
5193                 break;
5194         }
5195
5196         drm_modeset_drop_locks(&ctx);
5197         drm_modeset_acquire_fini(&ctx);
5198         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5199
5200         /*
5201          * Keeping it consistent with intel_ddi_hotplug() and
5202          * intel_hdmi_hotplug().
5203          */
5204         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5205                 state = INTEL_HOTPLUG_RETRY;
5206
5207         return state;
5208 }
5209
5210 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5211 {
5212         u8 val;
5213
5214         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5215                 return;
5216
5217         if (drm_dp_dpcd_readb(&intel_dp->aux,
5218                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5219                 return;
5220
5221         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5222
5223         if (val & DP_AUTOMATED_TEST_REQUEST)
5224                 intel_dp_handle_test_request(intel_dp);
5225
5226         if (val & DP_CP_IRQ)
5227                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5228
5229         if (val & DP_SINK_SPECIFIC_IRQ)
5230                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5231 }
5232
5233 /*
5234  * According to DP spec
5235  * 5.1.2:
5236  *  1. Read DPCD
5237  *  2. Configure link according to Receiver Capabilities
5238  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5239  *  4. Check link status on receipt of hot-plug interrupt
5240  *
5241  * intel_dp_short_pulse -  handles short pulse interrupts
5242  * when full detection is not required.
5243  * Returns %true if short pulse is handled and full detection
5244  * is NOT required and %false otherwise.
5245  */
5246 static bool
5247 intel_dp_short_pulse(struct intel_dp *intel_dp)
5248 {
5249         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5250         u8 old_sink_count = intel_dp->sink_count;
5251         bool ret;
5252
5253         /*
5254          * Clearing compliance test variables to allow capturing
5255          * of values for next automated test request.
5256          */
5257         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5258
5259         /*
5260          * Now read the DPCD to see if it's actually running
5261          * If the current value of sink count doesn't match with
5262          * the value that was stored earlier or dpcd read failed
5263          * we need to do full detection
5264          */
5265         ret = intel_dp_get_dpcd(intel_dp);
5266
5267         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5268                 /* No need to proceed if we are going to do full detect */
5269                 return false;
5270         }
5271
5272         intel_dp_check_service_irq(intel_dp);
5273
5274         /* Handle CEC interrupts, if any */
5275         drm_dp_cec_irq(&intel_dp->aux);
5276
5277         /* defer to the hotplug work for link retraining if needed */
5278         if (intel_dp_needs_link_retrain(intel_dp))
5279                 return false;
5280
5281         intel_psr_short_pulse(intel_dp);
5282
5283         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5284                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5285                 /* Send a Hotplug Uevent to userspace to start modeset */
5286                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5287         }
5288
5289         return true;
5290 }
5291
5292 /* XXX this is probably wrong for multiple downstream ports */
5293 static enum drm_connector_status
5294 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5295 {
5296         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5297         u8 *dpcd = intel_dp->dpcd;
5298         u8 type;
5299
5300         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5301                 return connector_status_connected;
5302
5303         if (lspcon->active)
5304                 lspcon_resume(lspcon);
5305
5306         if (!intel_dp_get_dpcd(intel_dp))
5307                 return connector_status_disconnected;
5308
5309         /* if there's no downstream port, we're done */
5310         if (!drm_dp_is_branch(dpcd))
5311                 return connector_status_connected;
5312
5313         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5314         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5315             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5316
5317                 return intel_dp->sink_count ?
5318                 connector_status_connected : connector_status_disconnected;
5319         }
5320
5321         if (intel_dp_can_mst(intel_dp))
5322                 return connector_status_connected;
5323
5324         /* If no HPD, poke DDC gently */
5325         if (drm_probe_ddc(&intel_dp->aux.ddc))
5326                 return connector_status_connected;
5327
5328         /* Well we tried, say unknown for unreliable port types */
5329         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5330                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5331                 if (type == DP_DS_PORT_TYPE_VGA ||
5332                     type == DP_DS_PORT_TYPE_NON_EDID)
5333                         return connector_status_unknown;
5334         } else {
5335                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5336                         DP_DWN_STRM_PORT_TYPE_MASK;
5337                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5338                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5339                         return connector_status_unknown;
5340         }
5341
5342         /* Anything else is out of spec, warn and ignore */
5343         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5344         return connector_status_disconnected;
5345 }
5346
5347 static enum drm_connector_status
5348 edp_detect(struct intel_dp *intel_dp)
5349 {
5350         return connector_status_connected;
5351 }
5352
5353 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5354 {
5355         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5356         u32 bit;
5357
5358         switch (encoder->hpd_pin) {
5359         case HPD_PORT_B:
5360                 bit = SDE_PORTB_HOTPLUG;
5361                 break;
5362         case HPD_PORT_C:
5363                 bit = SDE_PORTC_HOTPLUG;
5364                 break;
5365         case HPD_PORT_D:
5366                 bit = SDE_PORTD_HOTPLUG;
5367                 break;
5368         default:
5369                 MISSING_CASE(encoder->hpd_pin);
5370                 return false;
5371         }
5372
5373         return I915_READ(SDEISR) & bit;
5374 }
5375
5376 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5377 {
5378         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5379         u32 bit;
5380
5381         switch (encoder->hpd_pin) {
5382         case HPD_PORT_B:
5383                 bit = SDE_PORTB_HOTPLUG_CPT;
5384                 break;
5385         case HPD_PORT_C:
5386                 bit = SDE_PORTC_HOTPLUG_CPT;
5387                 break;
5388         case HPD_PORT_D:
5389                 bit = SDE_PORTD_HOTPLUG_CPT;
5390                 break;
5391         default:
5392                 MISSING_CASE(encoder->hpd_pin);
5393                 return false;
5394         }
5395
5396         return I915_READ(SDEISR) & bit;
5397 }
5398
5399 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5400 {
5401         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5402         u32 bit;
5403
5404         switch (encoder->hpd_pin) {
5405         case HPD_PORT_A:
5406                 bit = SDE_PORTA_HOTPLUG_SPT;
5407                 break;
5408         case HPD_PORT_E:
5409                 bit = SDE_PORTE_HOTPLUG_SPT;
5410                 break;
5411         default:
5412                 return cpt_digital_port_connected(encoder);
5413         }
5414
5415         return I915_READ(SDEISR) & bit;
5416 }
5417
5418 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5419 {
5420         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5421         u32 bit;
5422
5423         switch (encoder->hpd_pin) {
5424         case HPD_PORT_B:
5425                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5426                 break;
5427         case HPD_PORT_C:
5428                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5429                 break;
5430         case HPD_PORT_D:
5431                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5432                 break;
5433         default:
5434                 MISSING_CASE(encoder->hpd_pin);
5435                 return false;
5436         }
5437
5438         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5439 }
5440
5441 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5442 {
5443         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5444         u32 bit;
5445
5446         switch (encoder->hpd_pin) {
5447         case HPD_PORT_B:
5448                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5449                 break;
5450         case HPD_PORT_C:
5451                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5452                 break;
5453         case HPD_PORT_D:
5454                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5455                 break;
5456         default:
5457                 MISSING_CASE(encoder->hpd_pin);
5458                 return false;
5459         }
5460
5461         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5462 }
5463
5464 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5465 {
5466         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5467
5468         if (encoder->hpd_pin == HPD_PORT_A)
5469                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5470         else
5471                 return ibx_digital_port_connected(encoder);
5472 }
5473
5474 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5475 {
5476         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5477
5478         if (encoder->hpd_pin == HPD_PORT_A)
5479                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5480         else
5481                 return cpt_digital_port_connected(encoder);
5482 }
5483
5484 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5485 {
5486         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5487
5488         if (encoder->hpd_pin == HPD_PORT_A)
5489                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5490         else
5491                 return cpt_digital_port_connected(encoder);
5492 }
5493
5494 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5495 {
5496         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5497
5498         if (encoder->hpd_pin == HPD_PORT_A)
5499                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5500         else
5501                 return cpt_digital_port_connected(encoder);
5502 }
5503
5504 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5505 {
5506         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5507         u32 bit;
5508
5509         switch (encoder->hpd_pin) {
5510         case HPD_PORT_A:
5511                 bit = BXT_DE_PORT_HP_DDIA;
5512                 break;
5513         case HPD_PORT_B:
5514                 bit = BXT_DE_PORT_HP_DDIB;
5515                 break;
5516         case HPD_PORT_C:
5517                 bit = BXT_DE_PORT_HP_DDIC;
5518                 break;
5519         default:
5520                 MISSING_CASE(encoder->hpd_pin);
5521                 return false;
5522         }
5523
5524         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5525 }
5526
5527 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5528                                       enum phy phy)
5529 {
5530         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5531                 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5532
5533         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5534 }
5535
5536 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5537 {
5538         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5539         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5540         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5541
5542         if (intel_phy_is_combo(dev_priv, phy))
5543                 return intel_combo_phy_connected(dev_priv, phy);
5544         else if (intel_phy_is_tc(dev_priv, phy))
5545                 return intel_tc_port_connected(dig_port);
5546         else
5547                 MISSING_CASE(encoder->hpd_pin);
5548
5549         return false;
5550 }
5551
5552 /*
5553  * intel_digital_port_connected - is the specified port connected?
5554  * @encoder: intel_encoder
5555  *
5556  * In cases where there's a connector physically connected but it can't be used
5557  * by our hardware we also return false, since the rest of the driver should
5558  * pretty much treat the port as disconnected. This is relevant for type-C
5559  * (starting on ICL) where there's ownership involved.
5560  *
5561  * Return %true if port is connected, %false otherwise.
5562  */
5563 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5564 {
5565         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5566
5567         if (HAS_GMCH(dev_priv)) {
5568                 if (IS_GM45(dev_priv))
5569                         return gm45_digital_port_connected(encoder);
5570                 else
5571                         return g4x_digital_port_connected(encoder);
5572         }
5573
5574         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5575                 return icp_digital_port_connected(encoder);
5576         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5577                 return spt_digital_port_connected(encoder);
5578         else if (IS_GEN9_LP(dev_priv))
5579                 return bxt_digital_port_connected(encoder);
5580         else if (IS_GEN(dev_priv, 8))
5581                 return bdw_digital_port_connected(encoder);
5582         else if (IS_GEN(dev_priv, 7))
5583                 return ivb_digital_port_connected(encoder);
5584         else if (IS_GEN(dev_priv, 6))
5585                 return snb_digital_port_connected(encoder);
5586         else if (IS_GEN(dev_priv, 5))
5587                 return ilk_digital_port_connected(encoder);
5588
5589         MISSING_CASE(INTEL_GEN(dev_priv));
5590         return false;
5591 }
5592
5593 bool intel_digital_port_connected(struct intel_encoder *encoder)
5594 {
5595         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5596         bool is_connected = false;
5597         intel_wakeref_t wakeref;
5598
5599         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5600                 is_connected = __intel_digital_port_connected(encoder);
5601
5602         return is_connected;
5603 }
5604
5605 static struct edid *
5606 intel_dp_get_edid(struct intel_dp *intel_dp)
5607 {
5608         struct intel_connector *intel_connector = intel_dp->attached_connector;
5609
5610         /* use cached edid if we have one */
5611         if (intel_connector->edid) {
5612                 /* invalid edid */
5613                 if (IS_ERR(intel_connector->edid))
5614                         return NULL;
5615
5616                 return drm_edid_duplicate(intel_connector->edid);
5617         } else
5618                 return drm_get_edid(&intel_connector->base,
5619                                     &intel_dp->aux.ddc);
5620 }
5621
5622 static void
5623 intel_dp_set_edid(struct intel_dp *intel_dp)
5624 {
5625         struct intel_connector *intel_connector = intel_dp->attached_connector;
5626         struct edid *edid;
5627
5628         intel_dp_unset_edid(intel_dp);
5629         edid = intel_dp_get_edid(intel_dp);
5630         intel_connector->detect_edid = edid;
5631
5632         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5633         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5634 }
5635
5636 static void
5637 intel_dp_unset_edid(struct intel_dp *intel_dp)
5638 {
5639         struct intel_connector *intel_connector = intel_dp->attached_connector;
5640
5641         drm_dp_cec_unset_edid(&intel_dp->aux);
5642         kfree(intel_connector->detect_edid);
5643         intel_connector->detect_edid = NULL;
5644
5645         intel_dp->has_audio = false;
5646 }
5647
5648 static int
5649 intel_dp_detect(struct drm_connector *connector,
5650                 struct drm_modeset_acquire_ctx *ctx,
5651                 bool force)
5652 {
5653         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5654         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5655         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5656         struct intel_encoder *encoder = &dig_port->base;
5657         enum drm_connector_status status;
5658
5659         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5660                       connector->base.id, connector->name);
5661         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5662
5663         /* Can't disconnect eDP */
5664         if (intel_dp_is_edp(intel_dp))
5665                 status = edp_detect(intel_dp);
5666         else if (intel_digital_port_connected(encoder))
5667                 status = intel_dp_detect_dpcd(intel_dp);
5668         else
5669                 status = connector_status_disconnected;
5670
5671         if (status == connector_status_disconnected) {
5672                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5673                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5674
5675                 if (intel_dp->is_mst) {
5676                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5677                                       intel_dp->is_mst,
5678                                       intel_dp->mst_mgr.mst_state);
5679                         intel_dp->is_mst = false;
5680                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5681                                                         intel_dp->is_mst);
5682                 }
5683
5684                 goto out;
5685         }
5686
5687         if (intel_dp->reset_link_params) {
5688                 /* Initial max link lane count */
5689                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5690
5691                 /* Initial max link rate */
5692                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5693
5694                 intel_dp->reset_link_params = false;
5695         }
5696
5697         intel_dp_print_rates(intel_dp);
5698
5699         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5700         if (INTEL_GEN(dev_priv) >= 11)
5701                 intel_dp_get_dsc_sink_cap(intel_dp);
5702
5703         intel_dp_configure_mst(intel_dp);
5704
5705         if (intel_dp->is_mst) {
5706                 /*
5707                  * If we are in MST mode then this connector
5708                  * won't appear connected or have anything
5709                  * with EDID on it
5710                  */
5711                 status = connector_status_disconnected;
5712                 goto out;
5713         }
5714
5715         /*
5716          * Some external monitors do not signal loss of link synchronization
5717          * with an IRQ_HPD, so force a link status check.
5718          */
5719         if (!intel_dp_is_edp(intel_dp)) {
5720                 int ret;
5721
5722                 ret = intel_dp_retrain_link(encoder, ctx);
5723                 if (ret)
5724                         return ret;
5725         }
5726
5727         /*
5728          * Clearing NACK and defer counts to get their exact values
5729          * while reading EDID which are required by Compliance tests
5730          * 4.2.2.4 and 4.2.2.5
5731          */
5732         intel_dp->aux.i2c_nack_count = 0;
5733         intel_dp->aux.i2c_defer_count = 0;
5734
5735         intel_dp_set_edid(intel_dp);
5736         if (intel_dp_is_edp(intel_dp) ||
5737             to_intel_connector(connector)->detect_edid)
5738                 status = connector_status_connected;
5739
5740         intel_dp_check_service_irq(intel_dp);
5741
5742 out:
5743         if (status != connector_status_connected && !intel_dp->is_mst)
5744                 intel_dp_unset_edid(intel_dp);
5745
5746         /*
5747          * Make sure the refs for power wells enabled during detect are
5748          * dropped to avoid a new detect cycle triggered by HPD polling.
5749          */
5750         intel_display_power_flush_work(dev_priv);
5751
5752         return status;
5753 }
5754
5755 static void
5756 intel_dp_force(struct drm_connector *connector)
5757 {
5758         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5759         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5760         struct intel_encoder *intel_encoder = &dig_port->base;
5761         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5762         enum intel_display_power_domain aux_domain =
5763                 intel_aux_power_domain(dig_port);
5764         intel_wakeref_t wakeref;
5765
5766         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5767                       connector->base.id, connector->name);
5768         intel_dp_unset_edid(intel_dp);
5769
5770         if (connector->status != connector_status_connected)
5771                 return;
5772
5773         wakeref = intel_display_power_get(dev_priv, aux_domain);
5774
5775         intel_dp_set_edid(intel_dp);
5776
5777         intel_display_power_put(dev_priv, aux_domain, wakeref);
5778 }
5779
5780 static int intel_dp_get_modes(struct drm_connector *connector)
5781 {
5782         struct intel_connector *intel_connector = to_intel_connector(connector);
5783         struct edid *edid;
5784
5785         edid = intel_connector->detect_edid;
5786         if (edid) {
5787                 int ret = intel_connector_update_modes(connector, edid);
5788                 if (ret)
5789                         return ret;
5790         }
5791
5792         /* if eDP has no EDID, fall back to fixed mode */
5793         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5794             intel_connector->panel.fixed_mode) {
5795                 struct drm_display_mode *mode;
5796
5797                 mode = drm_mode_duplicate(connector->dev,
5798                                           intel_connector->panel.fixed_mode);
5799                 if (mode) {
5800                         drm_mode_probed_add(connector, mode);
5801                         return 1;
5802                 }
5803         }
5804
5805         return 0;
5806 }
5807
5808 static int
5809 intel_dp_connector_register(struct drm_connector *connector)
5810 {
5811         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5812         int ret;
5813
5814         ret = intel_connector_register(connector);
5815         if (ret)
5816                 return ret;
5817
5818         i915_debugfs_connector_add(connector);
5819
5820         DRM_DEBUG_KMS("registering %s bus for %s\n",
5821                       intel_dp->aux.name, connector->kdev->kobj.name);
5822
5823         intel_dp->aux.dev = connector->kdev;
5824         ret = drm_dp_aux_register(&intel_dp->aux);
5825         if (!ret)
5826                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5827         return ret;
5828 }
5829
5830 static void
5831 intel_dp_connector_unregister(struct drm_connector *connector)
5832 {
5833         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5834
5835         drm_dp_cec_unregister_connector(&intel_dp->aux);
5836         drm_dp_aux_unregister(&intel_dp->aux);
5837         intel_connector_unregister(connector);
5838 }
5839
5840 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5841 {
5842         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5843         struct intel_dp *intel_dp = &intel_dig_port->dp;
5844
5845         intel_dp_mst_encoder_cleanup(intel_dig_port);
5846         if (intel_dp_is_edp(intel_dp)) {
5847                 intel_wakeref_t wakeref;
5848
5849                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5850                 /*
5851                  * vdd might still be enabled do to the delayed vdd off.
5852                  * Make sure vdd is actually turned off here.
5853                  */
5854                 with_pps_lock(intel_dp, wakeref)
5855                         edp_panel_vdd_off_sync(intel_dp);
5856
5857                 if (intel_dp->edp_notifier.notifier_call) {
5858                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5859                         intel_dp->edp_notifier.notifier_call = NULL;
5860                 }
5861         }
5862
5863         intel_dp_aux_fini(intel_dp);
5864 }
5865
5866 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5867 {
5868         intel_dp_encoder_flush_work(encoder);
5869
5870         drm_encoder_cleanup(encoder);
5871         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5872 }
5873
5874 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5875 {
5876         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5877         intel_wakeref_t wakeref;
5878
5879         if (!intel_dp_is_edp(intel_dp))
5880                 return;
5881
5882         /*
5883          * vdd might still be enabled do to the delayed vdd off.
5884          * Make sure vdd is actually turned off here.
5885          */
5886         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5887         with_pps_lock(intel_dp, wakeref)
5888                 edp_panel_vdd_off_sync(intel_dp);
5889 }
5890
5891 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5892 {
5893         long ret;
5894
5895 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5896         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5897                                                msecs_to_jiffies(timeout));
5898
5899         if (!ret)
5900                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5901 }
5902
5903 static
5904 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5905                                 u8 *an)
5906 {
5907         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5908         static const struct drm_dp_aux_msg msg = {
5909                 .request = DP_AUX_NATIVE_WRITE,
5910                 .address = DP_AUX_HDCP_AKSV,
5911                 .size = DRM_HDCP_KSV_LEN,
5912         };
5913         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5914         ssize_t dpcd_ret;
5915         int ret;
5916
5917         /* Output An first, that's easy */
5918         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5919                                      an, DRM_HDCP_AN_LEN);
5920         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5921                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5922                               dpcd_ret);
5923                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5924         }
5925
5926         /*
5927          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5928          * order to get it on the wire, we need to create the AUX header as if
5929          * we were writing the data, and then tickle the hardware to output the
5930          * data once the header is sent out.
5931          */
5932         intel_dp_aux_header(txbuf, &msg);
5933
5934         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5935                                 rxbuf, sizeof(rxbuf),
5936                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5937         if (ret < 0) {
5938                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5939                 return ret;
5940         } else if (ret == 0) {
5941                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5942                 return -EIO;
5943         }
5944
5945         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5946         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5947                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5948                               reply);
5949                 return -EIO;
5950         }
5951         return 0;
5952 }
5953
5954 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5955                                    u8 *bksv)
5956 {
5957         ssize_t ret;
5958         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5959                                DRM_HDCP_KSV_LEN);
5960         if (ret != DRM_HDCP_KSV_LEN) {
5961                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5962                 return ret >= 0 ? -EIO : ret;
5963         }
5964         return 0;
5965 }
5966
5967 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5968                                       u8 *bstatus)
5969 {
5970         ssize_t ret;
5971         /*
5972          * For some reason the HDMI and DP HDCP specs call this register
5973          * definition by different names. In the HDMI spec, it's called BSTATUS,
5974          * but in DP it's called BINFO.
5975          */
5976         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5977                                bstatus, DRM_HDCP_BSTATUS_LEN);
5978         if (ret != DRM_HDCP_BSTATUS_LEN) {
5979                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5980                 return ret >= 0 ? -EIO : ret;
5981         }
5982         return 0;
5983 }
5984
5985 static
5986 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5987                              u8 *bcaps)
5988 {
5989         ssize_t ret;
5990
5991         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5992                                bcaps, 1);
5993         if (ret != 1) {
5994                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5995                 return ret >= 0 ? -EIO : ret;
5996         }
5997
5998         return 0;
5999 }
6000
6001 static
6002 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6003                                    bool *repeater_present)
6004 {
6005         ssize_t ret;
6006         u8 bcaps;
6007
6008         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6009         if (ret)
6010                 return ret;
6011
6012         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6013         return 0;
6014 }
6015
6016 static
6017 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6018                                 u8 *ri_prime)
6019 {
6020         ssize_t ret;
6021         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6022                                ri_prime, DRM_HDCP_RI_LEN);
6023         if (ret != DRM_HDCP_RI_LEN) {
6024                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6025                 return ret >= 0 ? -EIO : ret;
6026         }
6027         return 0;
6028 }
6029
6030 static
6031 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6032                                  bool *ksv_ready)
6033 {
6034         ssize_t ret;
6035         u8 bstatus;
6036         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6037                                &bstatus, 1);
6038         if (ret != 1) {
6039                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6040                 return ret >= 0 ? -EIO : ret;
6041         }
6042         *ksv_ready = bstatus & DP_BSTATUS_READY;
6043         return 0;
6044 }
6045
6046 static
6047 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6048                                 int num_downstream, u8 *ksv_fifo)
6049 {
6050         ssize_t ret;
6051         int i;
6052
6053         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6054         for (i = 0; i < num_downstream; i += 3) {
6055                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6056                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6057                                        DP_AUX_HDCP_KSV_FIFO,
6058                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6059                                        len);
6060                 if (ret != len) {
6061                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6062                                       i, ret);
6063                         return ret >= 0 ? -EIO : ret;
6064                 }
6065         }
6066         return 0;
6067 }
6068
6069 static
6070 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6071                                     int i, u32 *part)
6072 {
6073         ssize_t ret;
6074
6075         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6076                 return -EINVAL;
6077
6078         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6079                                DP_AUX_HDCP_V_PRIME(i), part,
6080                                DRM_HDCP_V_PRIME_PART_LEN);
6081         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6082                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6083                 return ret >= 0 ? -EIO : ret;
6084         }
6085         return 0;
6086 }
6087
6088 static
6089 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6090                                     bool enable)
6091 {
6092         /* Not used for single stream DisplayPort setups */
6093         return 0;
6094 }
6095
6096 static
6097 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6098 {
6099         ssize_t ret;
6100         u8 bstatus;
6101
6102         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6103                                &bstatus, 1);
6104         if (ret != 1) {
6105                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6106                 return false;
6107         }
6108
6109         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6110 }
6111
6112 static
6113 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6114                           bool *hdcp_capable)
6115 {
6116         ssize_t ret;
6117         u8 bcaps;
6118
6119         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6120         if (ret)
6121                 return ret;
6122
6123         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6124         return 0;
6125 }
6126
6127 struct hdcp2_dp_errata_stream_type {
6128         u8      msg_id;
6129         u8      stream_type;
6130 } __packed;
6131
6132 struct hdcp2_dp_msg_data {
6133         u8 msg_id;
6134         u32 offset;
6135         bool msg_detectable;
6136         u32 timeout;
6137         u32 timeout2; /* Added for non_paired situation */
6138 };
6139
6140 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6141         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6142         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6143           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6144         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6145           false, 0, 0 },
6146         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6147           false, 0, 0 },
6148         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6149           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6150           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6151         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6152           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6153           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6154         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6155         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6156           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6157         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6158           0, 0 },
6159         { HDCP_2_2_REP_SEND_RECVID_LIST,
6160           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6161           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6162         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6163           0, 0 },
6164         { HDCP_2_2_REP_STREAM_MANAGE,
6165           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6166           0, 0 },
6167         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6168           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6169 /* local define to shovel this through the write_2_2 interface */
6170 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6171         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6172           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6173           0, 0 },
6174 };
6175
6176 static inline
6177 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6178                                   u8 *rx_status)
6179 {
6180         ssize_t ret;
6181
6182         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6183                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6184                                HDCP_2_2_DP_RXSTATUS_LEN);
6185         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6186                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6187                 return ret >= 0 ? -EIO : ret;
6188         }
6189
6190         return 0;
6191 }
6192
6193 static
6194 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6195                                   u8 msg_id, bool *msg_ready)
6196 {
6197         u8 rx_status;
6198         int ret;
6199
6200         *msg_ready = false;
6201         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6202         if (ret < 0)
6203                 return ret;
6204
6205         switch (msg_id) {
6206         case HDCP_2_2_AKE_SEND_HPRIME:
6207                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6208                         *msg_ready = true;
6209                 break;
6210         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6211                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6212                         *msg_ready = true;
6213                 break;
6214         case HDCP_2_2_REP_SEND_RECVID_LIST:
6215                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6216                         *msg_ready = true;
6217                 break;
6218         default:
6219                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6220                 return -EINVAL;
6221         }
6222
6223         return 0;
6224 }
6225
6226 static ssize_t
6227 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6228                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6229 {
6230         struct intel_dp *dp = &intel_dig_port->dp;
6231         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6232         u8 msg_id = hdcp2_msg_data->msg_id;
6233         int ret, timeout;
6234         bool msg_ready = false;
6235
6236         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6237                 timeout = hdcp2_msg_data->timeout2;
6238         else
6239                 timeout = hdcp2_msg_data->timeout;
6240
6241         /*
6242          * There is no way to detect the CERT, LPRIME and STREAM_READY
6243          * availability. So Wait for timeout and read the msg.
6244          */
6245         if (!hdcp2_msg_data->msg_detectable) {
6246                 mdelay(timeout);
6247                 ret = 0;
6248         } else {
6249                 /*
6250                  * As we want to check the msg availability at timeout, Ignoring
6251                  * the timeout at wait for CP_IRQ.
6252                  */
6253                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6254                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6255                                                     msg_id, &msg_ready);
6256                 if (!msg_ready)
6257                         ret = -ETIMEDOUT;
6258         }
6259
6260         if (ret)
6261                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6262                               hdcp2_msg_data->msg_id, ret, timeout);
6263
6264         return ret;
6265 }
6266
6267 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6268 {
6269         int i;
6270
6271         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6272                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6273                         return &hdcp2_dp_msg_data[i];
6274
6275         return NULL;
6276 }
6277
6278 static
6279 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6280                              void *buf, size_t size)
6281 {
6282         struct intel_dp *dp = &intel_dig_port->dp;
6283         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6284         unsigned int offset;
6285         u8 *byte = buf;
6286         ssize_t ret, bytes_to_write, len;
6287         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6288
6289         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6290         if (!hdcp2_msg_data)
6291                 return -EINVAL;
6292
6293         offset = hdcp2_msg_data->offset;
6294
6295         /* No msg_id in DP HDCP2.2 msgs */
6296         bytes_to_write = size - 1;
6297         byte++;
6298
6299         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6300
6301         while (bytes_to_write) {
6302                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6303                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6304
6305                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6306                                         offset, (void *)byte, len);
6307                 if (ret < 0)
6308                         return ret;
6309
6310                 bytes_to_write -= ret;
6311                 byte += ret;
6312                 offset += ret;
6313         }
6314
6315         return size;
6316 }
6317
6318 static
6319 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6320 {
6321         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6322         u32 dev_cnt;
6323         ssize_t ret;
6324
6325         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6326                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6327                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6328         if (ret != HDCP_2_2_RXINFO_LEN)
6329                 return ret >= 0 ? -EIO : ret;
6330
6331         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6332                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6333
6334         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6335                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6336
6337         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6338                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6339                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6340
6341         return ret;
6342 }
6343
6344 static
6345 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6346                             u8 msg_id, void *buf, size_t size)
6347 {
6348         unsigned int offset;
6349         u8 *byte = buf;
6350         ssize_t ret, bytes_to_recv, len;
6351         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6352
6353         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6354         if (!hdcp2_msg_data)
6355                 return -EINVAL;
6356         offset = hdcp2_msg_data->offset;
6357
6358         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6359         if (ret < 0)
6360                 return ret;
6361
6362         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6363                 ret = get_receiver_id_list_size(intel_dig_port);
6364                 if (ret < 0)
6365                         return ret;
6366
6367                 size = ret;
6368         }
6369         bytes_to_recv = size - 1;
6370
6371         /* DP adaptation msgs has no msg_id */
6372         byte++;
6373
6374         while (bytes_to_recv) {
6375                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6376                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6377
6378                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6379                                        (void *)byte, len);
6380                 if (ret < 0) {
6381                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6382                         return ret;
6383                 }
6384
6385                 bytes_to_recv -= ret;
6386                 byte += ret;
6387                 offset += ret;
6388         }
6389         byte = buf;
6390         *byte = msg_id;
6391
6392         return size;
6393 }
6394
6395 static
6396 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6397                                       bool is_repeater, u8 content_type)
6398 {
6399         struct hdcp2_dp_errata_stream_type stream_type_msg;
6400
6401         if (is_repeater)
6402                 return 0;
6403
6404         /*
6405          * Errata for DP: As Stream type is used for encryption, Receiver
6406          * should be communicated with stream type for the decryption of the
6407          * content.
6408          * Repeater will be communicated with stream type as a part of it's
6409          * auth later in time.
6410          */
6411         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6412         stream_type_msg.stream_type = content_type;
6413
6414         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6415                                         sizeof(stream_type_msg));
6416 }
6417
6418 static
6419 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6420 {
6421         u8 rx_status;
6422         int ret;
6423
6424         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6425         if (ret)
6426                 return ret;
6427
6428         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6429                 ret = HDCP_REAUTH_REQUEST;
6430         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6431                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6432         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6433                 ret = HDCP_TOPOLOGY_CHANGE;
6434
6435         return ret;
6436 }
6437
6438 static
6439 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6440                            bool *capable)
6441 {
6442         u8 rx_caps[3];
6443         int ret;
6444
6445         *capable = false;
6446         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6447                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6448                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6449         if (ret != HDCP_2_2_RXCAPS_LEN)
6450                 return ret >= 0 ? -EIO : ret;
6451
6452         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6453             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6454                 *capable = true;
6455
6456         return 0;
6457 }
6458
6459 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6460         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6461         .read_bksv = intel_dp_hdcp_read_bksv,
6462         .read_bstatus = intel_dp_hdcp_read_bstatus,
6463         .repeater_present = intel_dp_hdcp_repeater_present,
6464         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6465         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6466         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6467         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6468         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6469         .check_link = intel_dp_hdcp_check_link,
6470         .hdcp_capable = intel_dp_hdcp_capable,
6471         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6472         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6473         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6474         .check_2_2_link = intel_dp_hdcp2_check_link,
6475         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6476         .protocol = HDCP_PROTOCOL_DP,
6477 };
6478
6479 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6480 {
6481         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6482         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6483
6484         lockdep_assert_held(&dev_priv->pps_mutex);
6485
6486         if (!edp_have_panel_vdd(intel_dp))
6487                 return;
6488
6489         /*
6490          * The VDD bit needs a power domain reference, so if the bit is
6491          * already enabled when we boot or resume, grab this reference and
6492          * schedule a vdd off, so we don't hold on to the reference
6493          * indefinitely.
6494          */
6495         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6496         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6497
6498         edp_panel_vdd_schedule_off(intel_dp);
6499 }
6500
6501 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6502 {
6503         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6504         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6505         enum pipe pipe;
6506
6507         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6508                                   encoder->port, &pipe))
6509                 return pipe;
6510
6511         return INVALID_PIPE;
6512 }
6513
6514 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6515 {
6516         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6517         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6518         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6519         intel_wakeref_t wakeref;
6520
6521         if (!HAS_DDI(dev_priv))
6522                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6523
6524         if (lspcon->active)
6525                 lspcon_resume(lspcon);
6526
6527         intel_dp->reset_link_params = true;
6528
6529         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6530             !intel_dp_is_edp(intel_dp))
6531                 return;
6532
6533         with_pps_lock(intel_dp, wakeref) {
6534                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6535                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6536
6537                 if (intel_dp_is_edp(intel_dp)) {
6538                         /*
6539                          * Reinit the power sequencer, in case BIOS did
6540                          * something nasty with it.
6541                          */
6542                         intel_dp_pps_init(intel_dp);
6543                         intel_edp_panel_vdd_sanitize(intel_dp);
6544                 }
6545         }
6546 }
6547
6548 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6549         .force = intel_dp_force,
6550         .fill_modes = drm_helper_probe_single_connector_modes,
6551         .atomic_get_property = intel_digital_connector_atomic_get_property,
6552         .atomic_set_property = intel_digital_connector_atomic_set_property,
6553         .late_register = intel_dp_connector_register,
6554         .early_unregister = intel_dp_connector_unregister,
6555         .destroy = intel_connector_destroy,
6556         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6557         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6558 };
6559
6560 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6561         .detect_ctx = intel_dp_detect,
6562         .get_modes = intel_dp_get_modes,
6563         .mode_valid = intel_dp_mode_valid,
6564         .atomic_check = intel_digital_connector_atomic_check,
6565 };
6566
6567 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6568         .reset = intel_dp_encoder_reset,
6569         .destroy = intel_dp_encoder_destroy,
6570 };
6571
6572 enum irqreturn
6573 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6574 {
6575         struct intel_dp *intel_dp = &intel_dig_port->dp;
6576
6577         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6578                 /*
6579                  * vdd off can generate a long pulse on eDP which
6580                  * would require vdd on to handle it, and thus we
6581                  * would end up in an endless cycle of
6582                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6583                  */
6584                 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6585                               intel_dig_port->base.base.base.id,
6586                               intel_dig_port->base.base.name);
6587                 return IRQ_HANDLED;
6588         }
6589
6590         DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6591                       intel_dig_port->base.base.base.id,
6592                       intel_dig_port->base.base.name,
6593                       long_hpd ? "long" : "short");
6594
6595         if (long_hpd) {
6596                 intel_dp->reset_link_params = true;
6597                 return IRQ_NONE;
6598         }
6599
6600         if (intel_dp->is_mst) {
6601                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6602                         /*
6603                          * If we were in MST mode, and device is not
6604                          * there, get out of MST mode
6605                          */
6606                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6607                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6608                         intel_dp->is_mst = false;
6609                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6610                                                         intel_dp->is_mst);
6611
6612                         return IRQ_NONE;
6613                 }
6614         }
6615
6616         if (!intel_dp->is_mst) {
6617                 bool handled;
6618
6619                 handled = intel_dp_short_pulse(intel_dp);
6620
6621                 if (!handled)
6622                         return IRQ_NONE;
6623         }
6624
6625         return IRQ_HANDLED;
6626 }
6627
6628 /* check the VBT to see whether the eDP is on another port */
6629 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6630 {
6631         /*
6632          * eDP not supported on g4x. so bail out early just
6633          * for a bit extra safety in case the VBT is bonkers.
6634          */
6635         if (INTEL_GEN(dev_priv) < 5)
6636                 return false;
6637
6638         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6639                 return true;
6640
6641         return intel_bios_is_port_edp(dev_priv, port);
6642 }
6643
6644 static void
6645 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6646 {
6647         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6648         enum port port = dp_to_dig_port(intel_dp)->base.port;
6649
6650         if (!IS_G4X(dev_priv) && port != PORT_A)
6651                 intel_attach_force_audio_property(connector);
6652
6653         intel_attach_broadcast_rgb_property(connector);
6654         if (HAS_GMCH(dev_priv))
6655                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6656         else if (INTEL_GEN(dev_priv) >= 5)
6657                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6658
6659         intel_attach_colorspace_property(connector);
6660
6661         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6662                 drm_object_attach_property(&connector->base,
6663                                            connector->dev->mode_config.hdr_output_metadata_property,
6664                                            0);
6665
6666         if (intel_dp_is_edp(intel_dp)) {
6667                 u32 allowed_scalers;
6668
6669                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6670                 if (!HAS_GMCH(dev_priv))
6671                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6672
6673                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6674
6675                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6676
6677         }
6678 }
6679
6680 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6681 {
6682         intel_dp->panel_power_off_time = ktime_get_boottime();
6683         intel_dp->last_power_on = jiffies;
6684         intel_dp->last_backlight_off = jiffies;
6685 }
6686
6687 static void
6688 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6689 {
6690         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6691         u32 pp_on, pp_off, pp_ctl;
6692         struct pps_registers regs;
6693
6694         intel_pps_get_registers(intel_dp, &regs);
6695
6696         pp_ctl = ilk_get_pp_control(intel_dp);
6697
6698         /* Ensure PPS is unlocked */
6699         if (!HAS_DDI(dev_priv))
6700                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6701
6702         pp_on = I915_READ(regs.pp_on);
6703         pp_off = I915_READ(regs.pp_off);
6704
6705         /* Pull timing values out of registers */
6706         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6707         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6708         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6709         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6710
6711         if (i915_mmio_reg_valid(regs.pp_div)) {
6712                 u32 pp_div;
6713
6714                 pp_div = I915_READ(regs.pp_div);
6715
6716                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6717         } else {
6718                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6719         }
6720 }
6721
6722 static void
6723 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6724 {
6725         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6726                       state_name,
6727                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6728 }
6729
6730 static void
6731 intel_pps_verify_state(struct intel_dp *intel_dp)
6732 {
6733         struct edp_power_seq hw;
6734         struct edp_power_seq *sw = &intel_dp->pps_delays;
6735
6736         intel_pps_readout_hw_state(intel_dp, &hw);
6737
6738         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6739             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6740                 DRM_ERROR("PPS state mismatch\n");
6741                 intel_pps_dump_state("sw", sw);
6742                 intel_pps_dump_state("hw", &hw);
6743         }
6744 }
6745
6746 static void
6747 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6748 {
6749         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6750         struct edp_power_seq cur, vbt, spec,
6751                 *final = &intel_dp->pps_delays;
6752
6753         lockdep_assert_held(&dev_priv->pps_mutex);
6754
6755         /* already initialized? */
6756         if (final->t11_t12 != 0)
6757                 return;
6758
6759         intel_pps_readout_hw_state(intel_dp, &cur);
6760
6761         intel_pps_dump_state("cur", &cur);
6762
6763         vbt = dev_priv->vbt.edp.pps;
6764         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6765          * of 500ms appears to be too short. Ocassionally the panel
6766          * just fails to power back on. Increasing the delay to 800ms
6767          * seems sufficient to avoid this problem.
6768          */
6769         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6770                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6771                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6772                               vbt.t11_t12);
6773         }
6774         /* T11_T12 delay is special and actually in units of 100ms, but zero
6775          * based in the hw (so we need to add 100 ms). But the sw vbt
6776          * table multiplies it with 1000 to make it in units of 100usec,
6777          * too. */
6778         vbt.t11_t12 += 100 * 10;
6779
6780         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6781          * our hw here, which are all in 100usec. */
6782         spec.t1_t3 = 210 * 10;
6783         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6784         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6785         spec.t10 = 500 * 10;
6786         /* This one is special and actually in units of 100ms, but zero
6787          * based in the hw (so we need to add 100 ms). But the sw vbt
6788          * table multiplies it with 1000 to make it in units of 100usec,
6789          * too. */
6790         spec.t11_t12 = (510 + 100) * 10;
6791
6792         intel_pps_dump_state("vbt", &vbt);
6793
6794         /* Use the max of the register settings and vbt. If both are
6795          * unset, fall back to the spec limits. */
6796 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6797                                        spec.field : \
6798                                        max(cur.field, vbt.field))
6799         assign_final(t1_t3);
6800         assign_final(t8);
6801         assign_final(t9);
6802         assign_final(t10);
6803         assign_final(t11_t12);
6804 #undef assign_final
6805
6806 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6807         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6808         intel_dp->backlight_on_delay = get_delay(t8);
6809         intel_dp->backlight_off_delay = get_delay(t9);
6810         intel_dp->panel_power_down_delay = get_delay(t10);
6811         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6812 #undef get_delay
6813
6814         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6815                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6816                       intel_dp->panel_power_cycle_delay);
6817
6818         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6819                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6820
6821         /*
6822          * We override the HW backlight delays to 1 because we do manual waits
6823          * on them. For T8, even BSpec recommends doing it. For T9, if we
6824          * don't do this, we'll end up waiting for the backlight off delay
6825          * twice: once when we do the manual sleep, and once when we disable
6826          * the panel and wait for the PP_STATUS bit to become zero.
6827          */
6828         final->t8 = 1;
6829         final->t9 = 1;
6830
6831         /*
6832          * HW has only a 100msec granularity for t11_t12 so round it up
6833          * accordingly.
6834          */
6835         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6836 }
6837
6838 static void
6839 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6840                                               bool force_disable_vdd)
6841 {
6842         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6843         u32 pp_on, pp_off, port_sel = 0;
6844         int div = dev_priv->rawclk_freq / 1000;
6845         struct pps_registers regs;
6846         enum port port = dp_to_dig_port(intel_dp)->base.port;
6847         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6848
6849         lockdep_assert_held(&dev_priv->pps_mutex);
6850
6851         intel_pps_get_registers(intel_dp, &regs);
6852
6853         /*
6854          * On some VLV machines the BIOS can leave the VDD
6855          * enabled even on power sequencers which aren't
6856          * hooked up to any port. This would mess up the
6857          * power domain tracking the first time we pick
6858          * one of these power sequencers for use since
6859          * edp_panel_vdd_on() would notice that the VDD was
6860          * already on and therefore wouldn't grab the power
6861          * domain reference. Disable VDD first to avoid this.
6862          * This also avoids spuriously turning the VDD on as
6863          * soon as the new power sequencer gets initialized.
6864          */
6865         if (force_disable_vdd) {
6866                 u32 pp = ilk_get_pp_control(intel_dp);
6867
6868                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6869
6870                 if (pp & EDP_FORCE_VDD)
6871                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6872
6873                 pp &= ~EDP_FORCE_VDD;
6874
6875                 I915_WRITE(regs.pp_ctrl, pp);
6876         }
6877
6878         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6879                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6880         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6881                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6882
6883         /* Haswell doesn't have any port selection bits for the panel
6884          * power sequencer any more. */
6885         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6886                 port_sel = PANEL_PORT_SELECT_VLV(port);
6887         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6888                 switch (port) {
6889                 case PORT_A:
6890                         port_sel = PANEL_PORT_SELECT_DPA;
6891                         break;
6892                 case PORT_C:
6893                         port_sel = PANEL_PORT_SELECT_DPC;
6894                         break;
6895                 case PORT_D:
6896                         port_sel = PANEL_PORT_SELECT_DPD;
6897                         break;
6898                 default:
6899                         MISSING_CASE(port);
6900                         break;
6901                 }
6902         }
6903
6904         pp_on |= port_sel;
6905
6906         I915_WRITE(regs.pp_on, pp_on);
6907         I915_WRITE(regs.pp_off, pp_off);
6908
6909         /*
6910          * Compute the divisor for the pp clock, simply match the Bspec formula.
6911          */
6912         if (i915_mmio_reg_valid(regs.pp_div)) {
6913                 I915_WRITE(regs.pp_div,
6914                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6915                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6916         } else {
6917                 u32 pp_ctl;
6918
6919                 pp_ctl = I915_READ(regs.pp_ctrl);
6920                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6921                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6922                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6923         }
6924
6925         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6926                       I915_READ(regs.pp_on),
6927                       I915_READ(regs.pp_off),
6928                       i915_mmio_reg_valid(regs.pp_div) ?
6929                       I915_READ(regs.pp_div) :
6930                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6931 }
6932
6933 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6934 {
6935         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6936
6937         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6938                 vlv_initial_power_sequencer_setup(intel_dp);
6939         } else {
6940                 intel_dp_init_panel_power_sequencer(intel_dp);
6941                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6942         }
6943 }
6944
6945 /**
6946  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6947  * @dev_priv: i915 device
6948  * @crtc_state: a pointer to the active intel_crtc_state
6949  * @refresh_rate: RR to be programmed
6950  *
6951  * This function gets called when refresh rate (RR) has to be changed from
6952  * one frequency to another. Switches can be between high and low RR
6953  * supported by the panel or to any other RR based on media playback (in
6954  * this case, RR value needs to be passed from user space).
6955  *
6956  * The caller of this function needs to take a lock on dev_priv->drrs.
6957  */
6958 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6959                                     const struct intel_crtc_state *crtc_state,
6960                                     int refresh_rate)
6961 {
6962         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
6964         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6965
6966         if (refresh_rate <= 0) {
6967                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6968                 return;
6969         }
6970
6971         if (intel_dp == NULL) {
6972                 DRM_DEBUG_KMS("DRRS not supported.\n");
6973                 return;
6974         }
6975
6976         if (!intel_crtc) {
6977                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6978                 return;
6979         }
6980
6981         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6982                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6983                 return;
6984         }
6985
6986         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6987                         refresh_rate)
6988                 index = DRRS_LOW_RR;
6989
6990         if (index == dev_priv->drrs.refresh_rate_type) {
6991                 DRM_DEBUG_KMS(
6992                         "DRRS requested for previously set RR...ignoring\n");
6993                 return;
6994         }
6995
6996         if (!crtc_state->hw.active) {
6997                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6998                 return;
6999         }
7000
7001         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7002                 switch (index) {
7003                 case DRRS_HIGH_RR:
7004                         intel_dp_set_m_n(crtc_state, M1_N1);
7005                         break;
7006                 case DRRS_LOW_RR:
7007                         intel_dp_set_m_n(crtc_state, M2_N2);
7008                         break;
7009                 case DRRS_MAX_RR:
7010                 default:
7011                         DRM_ERROR("Unsupported refreshrate type\n");
7012                 }
7013         } else if (INTEL_GEN(dev_priv) > 6) {
7014                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7015                 u32 val;
7016
7017                 val = I915_READ(reg);
7018                 if (index > DRRS_HIGH_RR) {
7019                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7020                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7021                         else
7022                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7023                 } else {
7024                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7025                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7026                         else
7027                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7028                 }
7029                 I915_WRITE(reg, val);
7030         }
7031
7032         dev_priv->drrs.refresh_rate_type = index;
7033
7034         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
7035 }
7036
7037 /**
7038  * intel_edp_drrs_enable - init drrs struct if supported
7039  * @intel_dp: DP struct
7040  * @crtc_state: A pointer to the active crtc state.
7041  *
7042  * Initializes frontbuffer_bits and drrs.dp
7043  */
7044 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7045                            const struct intel_crtc_state *crtc_state)
7046 {
7047         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7048
7049         if (!crtc_state->has_drrs) {
7050                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7051                 return;
7052         }
7053
7054         if (dev_priv->psr.enabled) {
7055                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7056                 return;
7057         }
7058
7059         mutex_lock(&dev_priv->drrs.mutex);
7060         if (dev_priv->drrs.dp) {
7061                 DRM_DEBUG_KMS("DRRS already enabled\n");
7062                 goto unlock;
7063         }
7064
7065         dev_priv->drrs.busy_frontbuffer_bits = 0;
7066
7067         dev_priv->drrs.dp = intel_dp;
7068
7069 unlock:
7070         mutex_unlock(&dev_priv->drrs.mutex);
7071 }
7072
7073 /**
7074  * intel_edp_drrs_disable - Disable DRRS
7075  * @intel_dp: DP struct
7076  * @old_crtc_state: Pointer to old crtc_state.
7077  *
7078  */
7079 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7080                             const struct intel_crtc_state *old_crtc_state)
7081 {
7082         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7083
7084         if (!old_crtc_state->has_drrs)
7085                 return;
7086
7087         mutex_lock(&dev_priv->drrs.mutex);
7088         if (!dev_priv->drrs.dp) {
7089                 mutex_unlock(&dev_priv->drrs.mutex);
7090                 return;
7091         }
7092
7093         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7094                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7095                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7096
7097         dev_priv->drrs.dp = NULL;
7098         mutex_unlock(&dev_priv->drrs.mutex);
7099
7100         cancel_delayed_work_sync(&dev_priv->drrs.work);
7101 }
7102
7103 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7104 {
7105         struct drm_i915_private *dev_priv =
7106                 container_of(work, typeof(*dev_priv), drrs.work.work);
7107         struct intel_dp *intel_dp;
7108
7109         mutex_lock(&dev_priv->drrs.mutex);
7110
7111         intel_dp = dev_priv->drrs.dp;
7112
7113         if (!intel_dp)
7114                 goto unlock;
7115
7116         /*
7117          * The delayed work can race with an invalidate hence we need to
7118          * recheck.
7119          */
7120
7121         if (dev_priv->drrs.busy_frontbuffer_bits)
7122                 goto unlock;
7123
7124         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7125                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7126
7127                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7128                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7129         }
7130
7131 unlock:
7132         mutex_unlock(&dev_priv->drrs.mutex);
7133 }
7134
7135 /**
7136  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7137  * @dev_priv: i915 device
7138  * @frontbuffer_bits: frontbuffer plane tracking bits
7139  *
7140  * This function gets called everytime rendering on the given planes start.
7141  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7142  *
7143  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7144  */
7145 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7146                                unsigned int frontbuffer_bits)
7147 {
7148         struct drm_crtc *crtc;
7149         enum pipe pipe;
7150
7151         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7152                 return;
7153
7154         cancel_delayed_work(&dev_priv->drrs.work);
7155
7156         mutex_lock(&dev_priv->drrs.mutex);
7157         if (!dev_priv->drrs.dp) {
7158                 mutex_unlock(&dev_priv->drrs.mutex);
7159                 return;
7160         }
7161
7162         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7163         pipe = to_intel_crtc(crtc)->pipe;
7164
7165         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7166         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7167
7168         /* invalidate means busy screen hence upclock */
7169         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7170                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7171                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7172
7173         mutex_unlock(&dev_priv->drrs.mutex);
7174 }
7175
7176 /**
7177  * intel_edp_drrs_flush - Restart Idleness DRRS
7178  * @dev_priv: i915 device
7179  * @frontbuffer_bits: frontbuffer plane tracking bits
7180  *
7181  * This function gets called every time rendering on the given planes has
7182  * completed or flip on a crtc is completed. So DRRS should be upclocked
7183  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7184  * if no other planes are dirty.
7185  *
7186  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7187  */
7188 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7189                           unsigned int frontbuffer_bits)
7190 {
7191         struct drm_crtc *crtc;
7192         enum pipe pipe;
7193
7194         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7195                 return;
7196
7197         cancel_delayed_work(&dev_priv->drrs.work);
7198
7199         mutex_lock(&dev_priv->drrs.mutex);
7200         if (!dev_priv->drrs.dp) {
7201                 mutex_unlock(&dev_priv->drrs.mutex);
7202                 return;
7203         }
7204
7205         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7206         pipe = to_intel_crtc(crtc)->pipe;
7207
7208         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7209         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7210
7211         /* flush means busy screen hence upclock */
7212         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7213                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7214                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7215
7216         /*
7217          * flush also means no more activity hence schedule downclock, if all
7218          * other fbs are quiescent too
7219          */
7220         if (!dev_priv->drrs.busy_frontbuffer_bits)
7221                 schedule_delayed_work(&dev_priv->drrs.work,
7222                                 msecs_to_jiffies(1000));
7223         mutex_unlock(&dev_priv->drrs.mutex);
7224 }
7225
7226 /**
7227  * DOC: Display Refresh Rate Switching (DRRS)
7228  *
7229  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7230  * which enables swtching between low and high refresh rates,
7231  * dynamically, based on the usage scenario. This feature is applicable
7232  * for internal panels.
7233  *
7234  * Indication that the panel supports DRRS is given by the panel EDID, which
7235  * would list multiple refresh rates for one resolution.
7236  *
7237  * DRRS is of 2 types - static and seamless.
7238  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7239  * (may appear as a blink on screen) and is used in dock-undock scenario.
7240  * Seamless DRRS involves changing RR without any visual effect to the user
7241  * and can be used during normal system usage. This is done by programming
7242  * certain registers.
7243  *
7244  * Support for static/seamless DRRS may be indicated in the VBT based on
7245  * inputs from the panel spec.
7246  *
7247  * DRRS saves power by switching to low RR based on usage scenarios.
7248  *
7249  * The implementation is based on frontbuffer tracking implementation.  When
7250  * there is a disturbance on the screen triggered by user activity or a periodic
7251  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7252  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7253  * made.
7254  *
7255  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7256  * and intel_edp_drrs_flush() are called.
7257  *
7258  * DRRS can be further extended to support other internal panels and also
7259  * the scenario of video playback wherein RR is set based on the rate
7260  * requested by userspace.
7261  */
7262
7263 /**
7264  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7265  * @connector: eDP connector
7266  * @fixed_mode: preferred mode of panel
7267  *
7268  * This function is  called only once at driver load to initialize basic
7269  * DRRS stuff.
7270  *
7271  * Returns:
7272  * Downclock mode if panel supports it, else return NULL.
7273  * DRRS support is determined by the presence of downclock mode (apart
7274  * from VBT setting).
7275  */
7276 static struct drm_display_mode *
7277 intel_dp_drrs_init(struct intel_connector *connector,
7278                    struct drm_display_mode *fixed_mode)
7279 {
7280         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7281         struct drm_display_mode *downclock_mode = NULL;
7282
7283         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7284         mutex_init(&dev_priv->drrs.mutex);
7285
7286         if (INTEL_GEN(dev_priv) <= 6) {
7287                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7288                 return NULL;
7289         }
7290
7291         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7292                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7293                 return NULL;
7294         }
7295
7296         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7297         if (!downclock_mode) {
7298                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7299                 return NULL;
7300         }
7301
7302         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7303
7304         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7305         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7306         return downclock_mode;
7307 }
7308
7309 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7310                                      struct intel_connector *intel_connector)
7311 {
7312         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7313         struct drm_device *dev = &dev_priv->drm;
7314         struct drm_connector *connector = &intel_connector->base;
7315         struct drm_display_mode *fixed_mode = NULL;
7316         struct drm_display_mode *downclock_mode = NULL;
7317         bool has_dpcd;
7318         enum pipe pipe = INVALID_PIPE;
7319         intel_wakeref_t wakeref;
7320         struct edid *edid;
7321
7322         if (!intel_dp_is_edp(intel_dp))
7323                 return true;
7324
7325         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7326
7327         /*
7328          * On IBX/CPT we may get here with LVDS already registered. Since the
7329          * driver uses the only internal power sequencer available for both
7330          * eDP and LVDS bail out early in this case to prevent interfering
7331          * with an already powered-on LVDS power sequencer.
7332          */
7333         if (intel_get_lvds_encoder(dev_priv)) {
7334                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7335                 DRM_INFO("LVDS was detected, not registering eDP\n");
7336
7337                 return false;
7338         }
7339
7340         with_pps_lock(intel_dp, wakeref) {
7341                 intel_dp_init_panel_power_timestamps(intel_dp);
7342                 intel_dp_pps_init(intel_dp);
7343                 intel_edp_panel_vdd_sanitize(intel_dp);
7344         }
7345
7346         /* Cache DPCD and EDID for edp. */
7347         has_dpcd = intel_edp_init_dpcd(intel_dp);
7348
7349         if (!has_dpcd) {
7350                 /* if this fails, presume the device is a ghost */
7351                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7352                 goto out_vdd_off;
7353         }
7354
7355         mutex_lock(&dev->mode_config.mutex);
7356         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7357         if (edid) {
7358                 if (drm_add_edid_modes(connector, edid)) {
7359                         drm_connector_update_edid_property(connector,
7360                                                                 edid);
7361                 } else {
7362                         kfree(edid);
7363                         edid = ERR_PTR(-EINVAL);
7364                 }
7365         } else {
7366                 edid = ERR_PTR(-ENOENT);
7367         }
7368         intel_connector->edid = edid;
7369
7370         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7371         if (fixed_mode)
7372                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7373
7374         /* fallback to VBT if available for eDP */
7375         if (!fixed_mode)
7376                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7377         mutex_unlock(&dev->mode_config.mutex);
7378
7379         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7380                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7381                 register_reboot_notifier(&intel_dp->edp_notifier);
7382
7383                 /*
7384                  * Figure out the current pipe for the initial backlight setup.
7385                  * If the current pipe isn't valid, try the PPS pipe, and if that
7386                  * fails just assume pipe A.
7387                  */
7388                 pipe = vlv_active_pipe(intel_dp);
7389
7390                 if (pipe != PIPE_A && pipe != PIPE_B)
7391                         pipe = intel_dp->pps_pipe;
7392
7393                 if (pipe != PIPE_A && pipe != PIPE_B)
7394                         pipe = PIPE_A;
7395
7396                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7397                               pipe_name(pipe));
7398         }
7399
7400         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7401         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7402         intel_panel_setup_backlight(connector, pipe);
7403
7404         if (fixed_mode)
7405                 drm_connector_init_panel_orientation_property(
7406                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7407
7408         return true;
7409
7410 out_vdd_off:
7411         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7412         /*
7413          * vdd might still be enabled do to the delayed vdd off.
7414          * Make sure vdd is actually turned off here.
7415          */
7416         with_pps_lock(intel_dp, wakeref)
7417                 edp_panel_vdd_off_sync(intel_dp);
7418
7419         return false;
7420 }
7421
7422 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7423 {
7424         struct intel_connector *intel_connector;
7425         struct drm_connector *connector;
7426
7427         intel_connector = container_of(work, typeof(*intel_connector),
7428                                        modeset_retry_work);
7429         connector = &intel_connector->base;
7430         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7431                       connector->name);
7432
7433         /* Grab the locks before changing connector property*/
7434         mutex_lock(&connector->dev->mode_config.mutex);
7435         /* Set connector link status to BAD and send a Uevent to notify
7436          * userspace to do a modeset.
7437          */
7438         drm_connector_set_link_status_property(connector,
7439                                                DRM_MODE_LINK_STATUS_BAD);
7440         mutex_unlock(&connector->dev->mode_config.mutex);
7441         /* Send Hotplug uevent so userspace can reprobe */
7442         drm_kms_helper_hotplug_event(connector->dev);
7443 }
7444
7445 bool
7446 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7447                         struct intel_connector *intel_connector)
7448 {
7449         struct drm_connector *connector = &intel_connector->base;
7450         struct intel_dp *intel_dp = &intel_dig_port->dp;
7451         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7452         struct drm_device *dev = intel_encoder->base.dev;
7453         struct drm_i915_private *dev_priv = to_i915(dev);
7454         enum port port = intel_encoder->port;
7455         enum phy phy = intel_port_to_phy(dev_priv, port);
7456         int type;
7457
7458         /* Initialize the work for modeset in case of link train failure */
7459         INIT_WORK(&intel_connector->modeset_retry_work,
7460                   intel_dp_modeset_retry_work_fn);
7461
7462         if (WARN(intel_dig_port->max_lanes < 1,
7463                  "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7464                  intel_dig_port->max_lanes, intel_encoder->base.base.id,
7465                  intel_encoder->base.name))
7466                 return false;
7467
7468         intel_dp_set_source_rates(intel_dp);
7469
7470         intel_dp->reset_link_params = true;
7471         intel_dp->pps_pipe = INVALID_PIPE;
7472         intel_dp->active_pipe = INVALID_PIPE;
7473
7474         /* Preserve the current hw state. */
7475         intel_dp->DP = I915_READ(intel_dp->output_reg);
7476         intel_dp->attached_connector = intel_connector;
7477
7478         if (intel_dp_is_port_edp(dev_priv, port)) {
7479                 /*
7480                  * Currently we don't support eDP on TypeC ports, although in
7481                  * theory it could work on TypeC legacy ports.
7482                  */
7483                 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7484                 type = DRM_MODE_CONNECTOR_eDP;
7485         } else {
7486                 type = DRM_MODE_CONNECTOR_DisplayPort;
7487         }
7488
7489         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7490                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7491
7492         /*
7493          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7494          * for DP the encoder type can be set by the caller to
7495          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7496          */
7497         if (type == DRM_MODE_CONNECTOR_eDP)
7498                 intel_encoder->type = INTEL_OUTPUT_EDP;
7499
7500         /* eDP only on port B and/or C on vlv/chv */
7501         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7502                     intel_dp_is_edp(intel_dp) &&
7503                     port != PORT_B && port != PORT_C))
7504                 return false;
7505
7506         DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7507                       type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7508                       intel_encoder->base.base.id, intel_encoder->base.name);
7509
7510         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7511         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7512
7513         if (!HAS_GMCH(dev_priv))
7514                 connector->interlace_allowed = true;
7515         connector->doublescan_allowed = 0;
7516
7517         if (INTEL_GEN(dev_priv) >= 11)
7518                 connector->ycbcr_420_allowed = true;
7519
7520         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7521
7522         intel_dp_aux_init(intel_dp);
7523
7524         intel_connector_attach_encoder(intel_connector, intel_encoder);
7525
7526         if (HAS_DDI(dev_priv))
7527                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7528         else
7529                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7530
7531         /* init MST on ports that can support it */
7532         intel_dp_mst_encoder_init(intel_dig_port,
7533                                   intel_connector->base.base.id);
7534
7535         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7536                 intel_dp_aux_fini(intel_dp);
7537                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7538                 goto fail;
7539         }
7540
7541         intel_dp_add_properties(intel_dp, connector);
7542
7543         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7544                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7545                 if (ret)
7546                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7547         }
7548
7549         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7550          * 0xd.  Failure to do so will result in spurious interrupts being
7551          * generated on the port when a cable is not attached.
7552          */
7553         if (IS_G45(dev_priv)) {
7554                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7555                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7556         }
7557
7558         return true;
7559
7560 fail:
7561         drm_connector_cleanup(connector);
7562
7563         return false;
7564 }
7565
7566 bool intel_dp_init(struct drm_i915_private *dev_priv,
7567                    i915_reg_t output_reg,
7568                    enum port port)
7569 {
7570         struct intel_digital_port *intel_dig_port;
7571         struct intel_encoder *intel_encoder;
7572         struct drm_encoder *encoder;
7573         struct intel_connector *intel_connector;
7574
7575         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7576         if (!intel_dig_port)
7577                 return false;
7578
7579         intel_connector = intel_connector_alloc();
7580         if (!intel_connector)
7581                 goto err_connector_alloc;
7582
7583         intel_encoder = &intel_dig_port->base;
7584         encoder = &intel_encoder->base;
7585
7586         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7587                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7588                              "DP %c", port_name(port)))
7589                 goto err_encoder_init;
7590
7591         intel_encoder->hotplug = intel_dp_hotplug;
7592         intel_encoder->compute_config = intel_dp_compute_config;
7593         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7594         intel_encoder->get_config = intel_dp_get_config;
7595         intel_encoder->update_pipe = intel_panel_update_backlight;
7596         intel_encoder->suspend = intel_dp_encoder_suspend;
7597         if (IS_CHERRYVIEW(dev_priv)) {
7598                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7599                 intel_encoder->pre_enable = chv_pre_enable_dp;
7600                 intel_encoder->enable = vlv_enable_dp;
7601                 intel_encoder->disable = vlv_disable_dp;
7602                 intel_encoder->post_disable = chv_post_disable_dp;
7603                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7604         } else if (IS_VALLEYVIEW(dev_priv)) {
7605                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7606                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7607                 intel_encoder->enable = vlv_enable_dp;
7608                 intel_encoder->disable = vlv_disable_dp;
7609                 intel_encoder->post_disable = vlv_post_disable_dp;
7610         } else {
7611                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7612                 intel_encoder->enable = g4x_enable_dp;
7613                 intel_encoder->disable = g4x_disable_dp;
7614                 intel_encoder->post_disable = g4x_post_disable_dp;
7615         }
7616
7617         intel_dig_port->dp.output_reg = output_reg;
7618         intel_dig_port->max_lanes = 4;
7619
7620         intel_encoder->type = INTEL_OUTPUT_DP;
7621         intel_encoder->power_domain = intel_port_to_power_domain(port);
7622         if (IS_CHERRYVIEW(dev_priv)) {
7623                 if (port == PORT_D)
7624                         intel_encoder->pipe_mask = BIT(PIPE_C);
7625                 else
7626                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7627         } else {
7628                 intel_encoder->pipe_mask = ~0;
7629         }
7630         intel_encoder->cloneable = 0;
7631         intel_encoder->port = port;
7632
7633         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7634
7635         if (port != PORT_A)
7636                 intel_infoframe_init(intel_dig_port);
7637
7638         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7639         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7640                 goto err_init_connector;
7641
7642         return true;
7643
7644 err_init_connector:
7645         drm_encoder_cleanup(encoder);
7646 err_encoder_init:
7647         kfree(intel_connector);
7648 err_connector_alloc:
7649         kfree(intel_dig_port);
7650         return false;
7651 }
7652
7653 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7654 {
7655         struct intel_encoder *encoder;
7656
7657         for_each_intel_encoder(&dev_priv->drm, encoder) {
7658                 struct intel_dp *intel_dp;
7659
7660                 if (encoder->type != INTEL_OUTPUT_DDI)
7661                         continue;
7662
7663                 intel_dp = enc_to_intel_dp(encoder);
7664
7665                 if (!intel_dp->can_mst)
7666                         continue;
7667
7668                 if (intel_dp->is_mst)
7669                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7670         }
7671 }
7672
7673 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7674 {
7675         struct intel_encoder *encoder;
7676
7677         for_each_intel_encoder(&dev_priv->drm, encoder) {
7678                 struct intel_dp *intel_dp;
7679                 int ret;
7680
7681                 if (encoder->type != INTEL_OUTPUT_DDI)
7682                         continue;
7683
7684                 intel_dp = enc_to_intel_dp(encoder);
7685
7686                 if (!intel_dp->can_mst)
7687                         continue;
7688
7689                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7690                                                      true);
7691                 if (ret) {
7692                         intel_dp->is_mst = false;
7693                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7694                                                         false);
7695                 }
7696         }
7697 }