drm/i915: Fix skl+ non-scaled pfit modes
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67
68 #define DP_DPRX_ESI_LEN 14
69
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
74
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
77
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
80 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83
84 struct dp_link_dpll {
85         int clock;
86         struct dpll dpll;
87 };
88
89 static const struct dp_link_dpll g4x_dpll[] = {
90         { 162000,
91                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92         { 270000,
93                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95
96 static const struct dp_link_dpll pch_dpll[] = {
97         { 162000,
98                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99         { 270000,
100                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102
103 static const struct dp_link_dpll vlv_dpll[] = {
104         { 162000,
105                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106         { 270000,
107                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115         /*
116          * CHV requires to program fractional division for m2.
117          * m2 is stored in fixed point format using formula below
118          * (m2_int << 22) | m2_fraction
119          */
120         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
121                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122         { 270000,       /* m2_int = 27, m2_fraction = 0 */
123                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144
145         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149                                const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153                                            const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155                                       enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161         static const int dp_rates[] = {
162                 162000, 270000, 540000, 810000
163         };
164         int i, max_rate;
165
166         if (drm_dp_has_quirk(&intel_dp->desc, 0,
167                              DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168                 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169                 static const int quirk_rates[] = { 162000, 270000, 324000 };
170
171                 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172                 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173
174                 return;
175         }
176
177         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178
179         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180                 if (dp_rates[i] > max_rate)
181                         break;
182                 intel_dp->sink_rates[i] = dp_rates[i];
183         }
184
185         intel_dp->num_sink_rates = i;
186 }
187
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191         int i;
192
193         /* Limit results by potentially reduced max rate */
194         for (i = 0; i < len; i++) {
195                 if (rates[len - i - 1] <= max_rate)
196                         return len - i;
197         }
198
199         return 0;
200 }
201
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204                                           int max_rate)
205 {
206         return intel_dp_rate_limit_len(intel_dp->common_rates,
207                                        intel_dp->num_common_rates, max_rate);
208 }
209
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220         int source_max = intel_dig_port->max_lanes;
221         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223
224         return min3(source_max, sink_max, fia_max);
225 }
226
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229         return intel_dp->max_link_lane_count;
230 }
231
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236         return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243          * link rate that is generally expressed in Gbps. Since, 8 bits of data
244          * is transmitted every LS_Clk per lane, there is no need to account for
245          * the channel encoding that is done in the PHY layer here.
246          */
247
248         return max_link_clock * max_lanes;
249 }
250
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255         struct intel_encoder *encoder = &intel_dig_port->base;
256         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257         int max_dotclk = dev_priv->max_dotclk_freq;
258         int ds_max_dotclk;
259
260         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261
262         if (type != DP_DS_PORT_TYPE_VGA)
263                 return max_dotclk;
264
265         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266                                                     intel_dp->downstream_ports);
267
268         if (ds_max_dotclk != 0)
269                 max_dotclk = min(max_dotclk, ds_max_dotclk);
270
271         return max_dotclk;
272 }
273
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278         enum port port = dig_port->base.port;
279
280         u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281
282         /* Low voltage SKUs are limited to max of 5.4G */
283         if (voltage == VOLTAGE_INFO_0_85V)
284                 return 540000;
285
286         /* For this SKU 8.1G is supported in all ports */
287         if (IS_CNL_WITH_PORT_F(dev_priv))
288                 return 810000;
289
290         /* For other SKUs, max rate on ports A and D is 5.4G */
291         if (port == PORT_A || port == PORT_D)
292                 return 540000;
293
294         return 810000;
295 }
296
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302
303         if (intel_phy_is_combo(dev_priv, phy) &&
304             !IS_ELKHARTLAKE(dev_priv) &&
305             !intel_dp_is_edp(intel_dp))
306                 return 540000;
307
308         return 810000;
309 }
310
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314         /* The values must be in increasing order */
315         static const int cnl_rates[] = {
316                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317         };
318         static const int bxt_rates[] = {
319                 162000, 216000, 243000, 270000, 324000, 432000, 540000
320         };
321         static const int skl_rates[] = {
322                 162000, 216000, 270000, 324000, 432000, 540000
323         };
324         static const int hsw_rates[] = {
325                 162000, 270000, 540000
326         };
327         static const int g4x_rates[] = {
328                 162000, 270000
329         };
330         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331         struct intel_encoder *encoder = &dig_port->base;
332         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333         const int *source_rates;
334         int size, max_rate = 0, vbt_max_rate;
335
336         /* This should only be done once */
337         drm_WARN_ON(&dev_priv->drm,
338                     intel_dp->source_rates || intel_dp->num_source_rates);
339
340         if (INTEL_GEN(dev_priv) >= 10) {
341                 source_rates = cnl_rates;
342                 size = ARRAY_SIZE(cnl_rates);
343                 if (IS_GEN(dev_priv, 10))
344                         max_rate = cnl_max_source_rate(intel_dp);
345                 else
346                         max_rate = icl_max_source_rate(intel_dp);
347         } else if (IS_GEN9_LP(dev_priv)) {
348                 source_rates = bxt_rates;
349                 size = ARRAY_SIZE(bxt_rates);
350         } else if (IS_GEN9_BC(dev_priv)) {
351                 source_rates = skl_rates;
352                 size = ARRAY_SIZE(skl_rates);
353         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354                    IS_BROADWELL(dev_priv)) {
355                 source_rates = hsw_rates;
356                 size = ARRAY_SIZE(hsw_rates);
357         } else {
358                 source_rates = g4x_rates;
359                 size = ARRAY_SIZE(g4x_rates);
360         }
361
362         vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363         if (max_rate && vbt_max_rate)
364                 max_rate = min(max_rate, vbt_max_rate);
365         else if (vbt_max_rate)
366                 max_rate = vbt_max_rate;
367
368         if (max_rate)
369                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370
371         intel_dp->source_rates = source_rates;
372         intel_dp->num_source_rates = size;
373 }
374
375 static int intersect_rates(const int *source_rates, int source_len,
376                            const int *sink_rates, int sink_len,
377                            int *common_rates)
378 {
379         int i = 0, j = 0, k = 0;
380
381         while (i < source_len && j < sink_len) {
382                 if (source_rates[i] == sink_rates[j]) {
383                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384                                 return k;
385                         common_rates[k] = source_rates[i];
386                         ++k;
387                         ++i;
388                         ++j;
389                 } else if (source_rates[i] < sink_rates[j]) {
390                         ++i;
391                 } else {
392                         ++j;
393                 }
394         }
395         return k;
396 }
397
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401         int i;
402
403         for (i = 0; i < len; i++)
404                 if (rate == rates[i])
405                         return i;
406
407         return -1;
408 }
409
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413
414         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
415                                                      intel_dp->num_source_rates,
416                                                      intel_dp->sink_rates,
417                                                      intel_dp->num_sink_rates,
418                                                      intel_dp->common_rates);
419
420         /* Paranoia, there should always be something in common. */
421         if (WARN_ON(intel_dp->num_common_rates == 0)) {
422                 intel_dp->common_rates[0] = 162000;
423                 intel_dp->num_common_rates = 1;
424         }
425 }
426
427 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428                                        u8 lane_count)
429 {
430         /*
431          * FIXME: we need to synchronize the current link parameters with
432          * hardware readout. Currently fast link training doesn't work on
433          * boot-up.
434          */
435         if (link_rate == 0 ||
436             link_rate > intel_dp->max_link_rate)
437                 return false;
438
439         if (lane_count == 0 ||
440             lane_count > intel_dp_max_lane_count(intel_dp))
441                 return false;
442
443         return true;
444 }
445
446 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
447                                                      int link_rate,
448                                                      u8 lane_count)
449 {
450         const struct drm_display_mode *fixed_mode =
451                 intel_dp->attached_connector->panel.fixed_mode;
452         int mode_rate, max_rate;
453
454         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
455         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
456         if (mode_rate > max_rate)
457                 return false;
458
459         return true;
460 }
461
462 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463                                             int link_rate, u8 lane_count)
464 {
465         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466         int index;
467
468         index = intel_dp_rate_index(intel_dp->common_rates,
469                                     intel_dp->num_common_rates,
470                                     link_rate);
471         if (index > 0) {
472                 if (intel_dp_is_edp(intel_dp) &&
473                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474                                                               intel_dp->common_rates[index - 1],
475                                                               lane_count)) {
476                         drm_dbg_kms(&i915->drm,
477                                     "Retrying Link training for eDP with same parameters\n");
478                         return 0;
479                 }
480                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
481                 intel_dp->max_link_lane_count = lane_count;
482         } else if (lane_count > 1) {
483                 if (intel_dp_is_edp(intel_dp) &&
484                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
485                                                               intel_dp_max_common_rate(intel_dp),
486                                                               lane_count >> 1)) {
487                         drm_dbg_kms(&i915->drm,
488                                     "Retrying Link training for eDP with same parameters\n");
489                         return 0;
490                 }
491                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492                 intel_dp->max_link_lane_count = lane_count >> 1;
493         } else {
494                 drm_err(&i915->drm, "Link Training Unsuccessful\n");
495                 return -1;
496         }
497
498         return 0;
499 }
500
501 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
502 {
503         return div_u64(mul_u32_u32(mode_clock, 1000000U),
504                        DP_DSC_FEC_OVERHEAD_FACTOR);
505 }
506
507 static int
508 small_joiner_ram_size_bits(struct drm_i915_private *i915)
509 {
510         if (INTEL_GEN(i915) >= 11)
511                 return 7680 * 8;
512         else
513                 return 6144 * 8;
514 }
515
516 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
517                                        u32 link_clock, u32 lane_count,
518                                        u32 mode_clock, u32 mode_hdisplay)
519 {
520         u32 bits_per_pixel, max_bpp_small_joiner_ram;
521         int i;
522
523         /*
524          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
525          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
526          * for SST -> TimeSlotsPerMTP is 1,
527          * for MST -> TimeSlotsPerMTP has to be calculated
528          */
529         bits_per_pixel = (link_clock * lane_count * 8) /
530                          intel_dp_mode_to_fec_clock(mode_clock);
531         drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532
533         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
535                 mode_hdisplay;
536         drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
537                     max_bpp_small_joiner_ram);
538
539         /*
540          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
541          * check, output bpp from small joiner RAM check)
542          */
543         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
544
545         /* Error out if the max bpp is less than smallest allowed valid bpp */
546         if (bits_per_pixel < valid_dsc_bpp[0]) {
547                 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
548                             bits_per_pixel, valid_dsc_bpp[0]);
549                 return 0;
550         }
551
552         /* Find the nearest match in the array of known BPPs from VESA */
553         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
554                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
555                         break;
556         }
557         bits_per_pixel = valid_dsc_bpp[i];
558
559         /*
560          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
561          * fractional part is 0
562          */
563         return bits_per_pixel << 4;
564 }
565
566 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
567                                        int mode_clock, int mode_hdisplay)
568 {
569         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570         u8 min_slice_count, i;
571         int max_slice_width;
572
573         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
574                 min_slice_count = DIV_ROUND_UP(mode_clock,
575                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
576         else
577                 min_slice_count = DIV_ROUND_UP(mode_clock,
578                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
579
580         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
581         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582                 drm_dbg_kms(&i915->drm,
583                             "Unsupported slice width %d by DP DSC Sink device\n",
584                             max_slice_width);
585                 return 0;
586         }
587         /* Also take into account max slice width */
588         min_slice_count = min_t(u8, min_slice_count,
589                                 DIV_ROUND_UP(mode_hdisplay,
590                                              max_slice_width));
591
592         /* Find the closest match to the valid slice count values */
593         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
594                 if (valid_dsc_slicecount[i] >
595                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
596                                                     false))
597                         break;
598                 if (min_slice_count  <= valid_dsc_slicecount[i])
599                         return valid_dsc_slicecount[i];
600         }
601
602         drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
603                     min_slice_count);
604         return 0;
605 }
606
607 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
608                                   int hdisplay)
609 {
610         /*
611          * Older platforms don't like hdisplay==4096 with DP.
612          *
613          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
614          * and frame counter increment), but we don't get vblank interrupts,
615          * and the pipe underruns immediately. The link also doesn't seem
616          * to get trained properly.
617          *
618          * On CHV the vblank interrupts don't seem to disappear but
619          * otherwise the symptoms are similar.
620          *
621          * TODO: confirm the behaviour on HSW+
622          */
623         return hdisplay == 4096 && !HAS_DDI(dev_priv);
624 }
625
626 static enum drm_mode_status
627 intel_dp_mode_valid(struct drm_connector *connector,
628                     struct drm_display_mode *mode)
629 {
630         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631         struct intel_connector *intel_connector = to_intel_connector(connector);
632         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633         struct drm_i915_private *dev_priv = to_i915(connector->dev);
634         int target_clock = mode->clock;
635         int max_rate, mode_rate, max_lanes, max_link_clock;
636         int max_dotclk;
637         u16 dsc_max_output_bpp = 0;
638         u8 dsc_slice_count = 0;
639
640         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
641                 return MODE_NO_DBLESCAN;
642
643         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644
645         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646                 if (mode->hdisplay > fixed_mode->hdisplay)
647                         return MODE_PANEL;
648
649                 if (mode->vdisplay > fixed_mode->vdisplay)
650                         return MODE_PANEL;
651
652                 target_clock = fixed_mode->clock;
653         }
654
655         max_link_clock = intel_dp_max_link_rate(intel_dp);
656         max_lanes = intel_dp_max_lane_count(intel_dp);
657
658         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
659         mode_rate = intel_dp_link_required(target_clock, 18);
660
661         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
662                 return MODE_H_ILLEGAL;
663
664         /*
665          * Output bpp is stored in 6.4 format so right shift by 4 to get the
666          * integer value since we support only integer values of bpp.
667          */
668         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
669             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
670                 if (intel_dp_is_edp(intel_dp)) {
671                         dsc_max_output_bpp =
672                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
673                         dsc_slice_count =
674                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
675                                                                 true);
676                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677                         dsc_max_output_bpp =
678                                 intel_dp_dsc_get_output_bpp(dev_priv,
679                                                             max_link_clock,
680                                                             max_lanes,
681                                                             target_clock,
682                                                             mode->hdisplay) >> 4;
683                         dsc_slice_count =
684                                 intel_dp_dsc_get_slice_count(intel_dp,
685                                                              target_clock,
686                                                              mode->hdisplay);
687                 }
688         }
689
690         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
691             target_clock > max_dotclk)
692                 return MODE_CLOCK_HIGH;
693
694         if (mode->clock < 10000)
695                 return MODE_CLOCK_LOW;
696
697         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
698                 return MODE_H_ILLEGAL;
699
700         return intel_mode_valid_max_plane_size(dev_priv, mode);
701 }
702
703 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704 {
705         int i;
706         u32 v = 0;
707
708         if (src_bytes > 4)
709                 src_bytes = 4;
710         for (i = 0; i < src_bytes; i++)
711                 v |= ((u32)src[i]) << ((3 - i) * 8);
712         return v;
713 }
714
715 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 {
717         int i;
718         if (dst_bytes > 4)
719                 dst_bytes = 4;
720         for (i = 0; i < dst_bytes; i++)
721                 dst[i] = src >> ((3-i) * 8);
722 }
723
724 static void
725 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726 static void
727 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728                                               bool force_disable_vdd);
729 static void
730 intel_dp_pps_init(struct intel_dp *intel_dp);
731
732 static intel_wakeref_t
733 pps_lock(struct intel_dp *intel_dp)
734 {
735         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736         intel_wakeref_t wakeref;
737
738         /*
739          * See intel_power_sequencer_reset() why we need
740          * a power domain reference here.
741          */
742         wakeref = intel_display_power_get(dev_priv,
743                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744
745         mutex_lock(&dev_priv->pps_mutex);
746
747         return wakeref;
748 }
749
750 static intel_wakeref_t
751 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752 {
753         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754
755         mutex_unlock(&dev_priv->pps_mutex);
756         intel_display_power_put(dev_priv,
757                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
758                                 wakeref);
759         return 0;
760 }
761
762 #define with_pps_lock(dp, wf) \
763         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
764
765 static void
766 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
767 {
768         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
770         enum pipe pipe = intel_dp->pps_pipe;
771         bool pll_enabled, release_cl_override = false;
772         enum dpio_phy phy = DPIO_PHY(pipe);
773         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774         u32 DP;
775
776         if (drm_WARN(&dev_priv->drm,
777                      intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
778                      "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
779                      pipe_name(pipe), intel_dig_port->base.base.base.id,
780                      intel_dig_port->base.base.name))
781                 return;
782
783         drm_dbg_kms(&dev_priv->drm,
784                     "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
785                     pipe_name(pipe), intel_dig_port->base.base.base.id,
786                     intel_dig_port->base.base.name);
787
788         /* Preserve the BIOS-computed detected bit. This is
789          * supposed to be read-only.
790          */
791         DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
793         DP |= DP_PORT_WIDTH(1);
794         DP |= DP_LINK_TRAIN_PAT_1;
795
796         if (IS_CHERRYVIEW(dev_priv))
797                 DP |= DP_PIPE_SEL_CHV(pipe);
798         else
799                 DP |= DP_PIPE_SEL(pipe);
800
801         pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802
803         /*
804          * The DPLL for the pipe must be enabled for this to work.
805          * So enable temporarily it if it's not already enabled.
806          */
807         if (!pll_enabled) {
808                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
810
811                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813                         drm_err(&dev_priv->drm,
814                                 "Failed to force on pll for pipe %c!\n",
815                                 pipe_name(pipe));
816                         return;
817                 }
818         }
819
820         /*
821          * Similar magic as in intel_dp_enable_port().
822          * We _must_ do this port enable + disable trick
823          * to make this power sequencer lock onto the port.
824          * Otherwise even VDD force bit won't work.
825          */
826         intel_de_write(dev_priv, intel_dp->output_reg, DP);
827         intel_de_posting_read(dev_priv, intel_dp->output_reg);
828
829         intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
830         intel_de_posting_read(dev_priv, intel_dp->output_reg);
831
832         intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
833         intel_de_posting_read(dev_priv, intel_dp->output_reg);
834
835         if (!pll_enabled) {
836                 vlv_force_pll_off(dev_priv, pipe);
837
838                 if (release_cl_override)
839                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
840         }
841 }
842
843 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
844 {
845         struct intel_encoder *encoder;
846         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
847
848         /*
849          * We don't have power sequencer currently.
850          * Pick one that's not used by other ports.
851          */
852         for_each_intel_dp(&dev_priv->drm, encoder) {
853                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854
855                 if (encoder->type == INTEL_OUTPUT_EDP) {
856                         drm_WARN_ON(&dev_priv->drm,
857                                     intel_dp->active_pipe != INVALID_PIPE &&
858                                     intel_dp->active_pipe !=
859                                     intel_dp->pps_pipe);
860
861                         if (intel_dp->pps_pipe != INVALID_PIPE)
862                                 pipes &= ~(1 << intel_dp->pps_pipe);
863                 } else {
864                         drm_WARN_ON(&dev_priv->drm,
865                                     intel_dp->pps_pipe != INVALID_PIPE);
866
867                         if (intel_dp->active_pipe != INVALID_PIPE)
868                                 pipes &= ~(1 << intel_dp->active_pipe);
869                 }
870         }
871
872         if (pipes == 0)
873                 return INVALID_PIPE;
874
875         return ffs(pipes) - 1;
876 }
877
878 static enum pipe
879 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
880 {
881         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883         enum pipe pipe;
884
885         lockdep_assert_held(&dev_priv->pps_mutex);
886
887         /* We should never land here with regular DP ports */
888         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889
890         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
891                     intel_dp->active_pipe != intel_dp->pps_pipe);
892
893         if (intel_dp->pps_pipe != INVALID_PIPE)
894                 return intel_dp->pps_pipe;
895
896         pipe = vlv_find_free_pps(dev_priv);
897
898         /*
899          * Didn't find one. This should not happen since there
900          * are two power sequencers and up to two eDP ports.
901          */
902         if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903                 pipe = PIPE_A;
904
905         vlv_steal_power_sequencer(dev_priv, pipe);
906         intel_dp->pps_pipe = pipe;
907
908         drm_dbg_kms(&dev_priv->drm,
909                     "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
910                     pipe_name(intel_dp->pps_pipe),
911                     intel_dig_port->base.base.base.id,
912                     intel_dig_port->base.base.name);
913
914         /* init power sequencer on this pipe and port */
915         intel_dp_init_panel_power_sequencer(intel_dp);
916         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917
918         /*
919          * Even vdd force doesn't work until we've made
920          * the power sequencer lock in on the port.
921          */
922         vlv_power_sequencer_kick(intel_dp);
923
924         return intel_dp->pps_pipe;
925 }
926
927 static int
928 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
929 {
930         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931         int backlight_controller = dev_priv->vbt.backlight.controller;
932
933         lockdep_assert_held(&dev_priv->pps_mutex);
934
935         /* We should never land here with regular DP ports */
936         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937
938         if (!intel_dp->pps_reset)
939                 return backlight_controller;
940
941         intel_dp->pps_reset = false;
942
943         /*
944          * Only the HW needs to be reprogrammed, the SW state is fixed and
945          * has been setup during connector init.
946          */
947         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948
949         return backlight_controller;
950 }
951
952 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
953                                enum pipe pipe);
954
955 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
956                                enum pipe pipe)
957 {
958         return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 }
960
961 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
962                                 enum pipe pipe)
963 {
964         return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 }
966
967 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
968                          enum pipe pipe)
969 {
970         return true;
971 }
972
973 static enum pipe
974 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
975                      enum port port,
976                      vlv_pipe_check pipe_check)
977 {
978         enum pipe pipe;
979
980         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981                 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982                         PANEL_PORT_SELECT_MASK;
983
984                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
985                         continue;
986
987                 if (!pipe_check(dev_priv, pipe))
988                         continue;
989
990                 return pipe;
991         }
992
993         return INVALID_PIPE;
994 }
995
996 static void
997 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
998 {
999         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001         enum port port = intel_dig_port->base.port;
1002
1003         lockdep_assert_held(&dev_priv->pps_mutex);
1004
1005         /* try to find a pipe with this port selected */
1006         /* first pick one where the panel is on */
1007         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1008                                                   vlv_pipe_has_pp_on);
1009         /* didn't find one? pick one where vdd is on */
1010         if (intel_dp->pps_pipe == INVALID_PIPE)
1011                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1012                                                           vlv_pipe_has_vdd_on);
1013         /* didn't find one? pick one with just the correct port */
1014         if (intel_dp->pps_pipe == INVALID_PIPE)
1015                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1016                                                           vlv_pipe_any);
1017
1018         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1019         if (intel_dp->pps_pipe == INVALID_PIPE) {
1020                 drm_dbg_kms(&dev_priv->drm,
1021                             "no initial power sequencer for [ENCODER:%d:%s]\n",
1022                             intel_dig_port->base.base.base.id,
1023                             intel_dig_port->base.base.name);
1024                 return;
1025         }
1026
1027         drm_dbg_kms(&dev_priv->drm,
1028                     "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1029                     intel_dig_port->base.base.base.id,
1030                     intel_dig_port->base.base.name,
1031                     pipe_name(intel_dp->pps_pipe));
1032
1033         intel_dp_init_panel_power_sequencer(intel_dp);
1034         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 }
1036
1037 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 {
1039         struct intel_encoder *encoder;
1040
1041         if (drm_WARN_ON(&dev_priv->drm,
1042                         !(IS_VALLEYVIEW(dev_priv) ||
1043                           IS_CHERRYVIEW(dev_priv) ||
1044                           IS_GEN9_LP(dev_priv))))
1045                 return;
1046
1047         /*
1048          * We can't grab pps_mutex here due to deadlock with power_domain
1049          * mutex when power_domain functions are called while holding pps_mutex.
1050          * That also means that in order to use pps_pipe the code needs to
1051          * hold both a power domain reference and pps_mutex, and the power domain
1052          * reference get/put must be done while _not_ holding pps_mutex.
1053          * pps_{lock,unlock}() do these steps in the correct order, so one
1054          * should use them always.
1055          */
1056
1057         for_each_intel_dp(&dev_priv->drm, encoder) {
1058                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059
1060                 drm_WARN_ON(&dev_priv->drm,
1061                             intel_dp->active_pipe != INVALID_PIPE);
1062
1063                 if (encoder->type != INTEL_OUTPUT_EDP)
1064                         continue;
1065
1066                 if (IS_GEN9_LP(dev_priv))
1067                         intel_dp->pps_reset = true;
1068                 else
1069                         intel_dp->pps_pipe = INVALID_PIPE;
1070         }
1071 }
1072
1073 struct pps_registers {
1074         i915_reg_t pp_ctrl;
1075         i915_reg_t pp_stat;
1076         i915_reg_t pp_on;
1077         i915_reg_t pp_off;
1078         i915_reg_t pp_div;
1079 };
1080
1081 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082                                     struct pps_registers *regs)
1083 {
1084         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085         int pps_idx = 0;
1086
1087         memset(regs, 0, sizeof(*regs));
1088
1089         if (IS_GEN9_LP(dev_priv))
1090                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1091         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1092                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093
1094         regs->pp_ctrl = PP_CONTROL(pps_idx);
1095         regs->pp_stat = PP_STATUS(pps_idx);
1096         regs->pp_on = PP_ON_DELAYS(pps_idx);
1097         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098
1099         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101                 regs->pp_div = INVALID_MMIO_REG;
1102         else
1103                 regs->pp_div = PP_DIVISOR(pps_idx);
1104 }
1105
1106 static i915_reg_t
1107 _pp_ctrl_reg(struct intel_dp *intel_dp)
1108 {
1109         struct pps_registers regs;
1110
1111         intel_pps_get_registers(intel_dp, &regs);
1112
1113         return regs.pp_ctrl;
1114 }
1115
1116 static i915_reg_t
1117 _pp_stat_reg(struct intel_dp *intel_dp)
1118 {
1119         struct pps_registers regs;
1120
1121         intel_pps_get_registers(intel_dp, &regs);
1122
1123         return regs.pp_stat;
1124 }
1125
1126 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1127    This function only applicable when panel PM state is not to be tracked */
1128 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1129                               void *unused)
1130 {
1131         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1132                                                  edp_notifier);
1133         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134         intel_wakeref_t wakeref;
1135
1136         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137                 return 0;
1138
1139         with_pps_lock(intel_dp, wakeref) {
1140                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1141                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1142                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1143                         u32 pp_div;
1144
1145                         pp_ctrl_reg = PP_CONTROL(pipe);
1146                         pp_div_reg  = PP_DIVISOR(pipe);
1147                         pp_div = intel_de_read(dev_priv, pp_div_reg);
1148                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1149
1150                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1151                         intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1152                         intel_de_write(dev_priv, pp_ctrl_reg,
1153                                        PANEL_UNLOCK_REGS);
1154                         msleep(intel_dp->panel_power_cycle_delay);
1155                 }
1156         }
1157
1158         return 0;
1159 }
1160
1161 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162 {
1163         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164
1165         lockdep_assert_held(&dev_priv->pps_mutex);
1166
1167         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168             intel_dp->pps_pipe == INVALID_PIPE)
1169                 return false;
1170
1171         return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 }
1173
1174 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175 {
1176         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177
1178         lockdep_assert_held(&dev_priv->pps_mutex);
1179
1180         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181             intel_dp->pps_pipe == INVALID_PIPE)
1182                 return false;
1183
1184         return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 }
1186
1187 static void
1188 intel_dp_check_edp(struct intel_dp *intel_dp)
1189 {
1190         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191
1192         if (!intel_dp_is_edp(intel_dp))
1193                 return;
1194
1195         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196                 drm_WARN(&dev_priv->drm, 1,
1197                          "eDP powered off while attempting aux channel communication.\n");
1198                 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199                             intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1200                             intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201         }
1202 }
1203
1204 static u32
1205 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206 {
1207         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209         const unsigned int timeout_ms = 10;
1210         u32 status;
1211         bool done;
1212
1213 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1214         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215                                   msecs_to_jiffies_timeout(timeout_ms));
1216
1217         /* just trace the final value */
1218         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1219
1220         if (!done)
1221                 drm_err(&i915->drm,
1222                         "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223                         intel_dp->aux.name, timeout_ms, status);
1224 #undef C
1225
1226         return status;
1227 }
1228
1229 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230 {
1231         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232
1233         if (index)
1234                 return 0;
1235
1236         /*
1237          * The clock divider is based off the hrawclk, and would like to run at
1238          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1239          */
1240         return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 }
1242
1243 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247         u32 freq;
1248
1249         if (index)
1250                 return 0;
1251
1252         /*
1253          * The clock divider is based off the cdclk or PCH rawclk, and would
1254          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1255          * divide by 2000 and use that
1256          */
1257         if (dig_port->aux_ch == AUX_CH_A)
1258                 freq = dev_priv->cdclk.hw.cdclk;
1259         else
1260                 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1261         return DIV_ROUND_CLOSEST(freq, 2000);
1262 }
1263
1264 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265 {
1266         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268
1269         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270                 /* Workaround for non-ULT HSW */
1271                 switch (index) {
1272                 case 0: return 63;
1273                 case 1: return 72;
1274                 default: return 0;
1275                 }
1276         }
1277
1278         return ilk_get_aux_clock_divider(intel_dp, index);
1279 }
1280
1281 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 {
1283         /*
1284          * SKL doesn't need us to program the AUX clock divider (Hardware will
1285          * derive the clock from CDCLK automatically). We still implement the
1286          * get_aux_clock_divider vfunc to plug-in into the existing code.
1287          */
1288         return index ? 0 : 1;
1289 }
1290
1291 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 aux_clock_divider)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *dev_priv =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         u32 precharge, timeout;
1299
1300         if (IS_GEN(dev_priv, 6))
1301                 precharge = 3;
1302         else
1303                 precharge = 5;
1304
1305         if (IS_BROADWELL(dev_priv))
1306                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1307         else
1308                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1309
1310         return DP_AUX_CH_CTL_SEND_BUSY |
1311                DP_AUX_CH_CTL_DONE |
1312                DP_AUX_CH_CTL_INTERRUPT |
1313                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314                timeout |
1315                DP_AUX_CH_CTL_RECEIVE_ERROR |
1316                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1317                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 }
1320
1321 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1322                                 int send_bytes,
1323                                 u32 unused)
1324 {
1325         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326         struct drm_i915_private *i915 =
1327                         to_i915(intel_dig_port->base.base.dev);
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         u32 ret;
1330
1331         ret = DP_AUX_CH_CTL_SEND_BUSY |
1332               DP_AUX_CH_CTL_DONE |
1333               DP_AUX_CH_CTL_INTERRUPT |
1334               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1335               DP_AUX_CH_CTL_TIME_OUT_MAX |
1336               DP_AUX_CH_CTL_RECEIVE_ERROR |
1337               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1338               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1339               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1340
1341         if (intel_phy_is_tc(i915, phy) &&
1342             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343                 ret |= DP_AUX_CH_CTL_TBT_IO;
1344
1345         return ret;
1346 }
1347
1348 static int
1349 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350                   const u8 *send, int send_bytes,
1351                   u8 *recv, int recv_size,
1352                   u32 aux_send_ctl_flags)
1353 {
1354         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355         struct drm_i915_private *i915 =
1356                         to_i915(intel_dig_port->base.base.dev);
1357         struct intel_uncore *uncore = &i915->uncore;
1358         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1359         bool is_tc_port = intel_phy_is_tc(i915, phy);
1360         i915_reg_t ch_ctl, ch_data[5];
1361         u32 aux_clock_divider;
1362         enum intel_display_power_domain aux_domain =
1363                 intel_aux_power_domain(intel_dig_port);
1364         intel_wakeref_t aux_wakeref;
1365         intel_wakeref_t pps_wakeref;
1366         int i, ret, recv_bytes;
1367         int try, clock = 0;
1368         u32 status;
1369         bool vdd;
1370
1371         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1372         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1373                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1374
1375         if (is_tc_port)
1376                 intel_tc_port_lock(intel_dig_port);
1377
1378         aux_wakeref = intel_display_power_get(i915, aux_domain);
1379         pps_wakeref = pps_lock(intel_dp);
1380
1381         /*
1382          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1383          * In such cases we want to leave VDD enabled and it's up to upper layers
1384          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1385          * ourselves.
1386          */
1387         vdd = edp_panel_vdd_on(intel_dp);
1388
1389         /* dp aux is extremely sensitive to irq latency, hence request the
1390          * lowest possible wakeup latency and so prevent the cpu from going into
1391          * deep sleep states.
1392          */
1393         cpu_latency_qos_update_request(&i915->pm_qos, 0);
1394
1395         intel_dp_check_edp(intel_dp);
1396
1397         /* Try to wait for any previous AUX channel activity */
1398         for (try = 0; try < 3; try++) {
1399                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1400                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1401                         break;
1402                 msleep(1);
1403         }
1404         /* just trace the final value */
1405         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1406
1407         if (try == 3) {
1408                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1409
1410                 if (status != intel_dp->aux_busy_last_status) {
1411                         drm_WARN(&i915->drm, 1,
1412                                  "%s: not started (status 0x%08x)\n",
1413                                  intel_dp->aux.name, status);
1414                         intel_dp->aux_busy_last_status = status;
1415                 }
1416
1417                 ret = -EBUSY;
1418                 goto out;
1419         }
1420
1421         /* Only 5 data registers! */
1422         if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1423                 ret = -E2BIG;
1424                 goto out;
1425         }
1426
1427         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1428                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1429                                                           send_bytes,
1430                                                           aux_clock_divider);
1431
1432                 send_ctl |= aux_send_ctl_flags;
1433
1434                 /* Must try at least 3 times according to DP spec */
1435                 for (try = 0; try < 5; try++) {
1436                         /* Load the send data into the aux channel data registers */
1437                         for (i = 0; i < send_bytes; i += 4)
1438                                 intel_uncore_write(uncore,
1439                                                    ch_data[i >> 2],
1440                                                    intel_dp_pack_aux(send + i,
1441                                                                      send_bytes - i));
1442
1443                         /* Send the command and wait for it to complete */
1444                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1445
1446                         status = intel_dp_aux_wait_done(intel_dp);
1447
1448                         /* Clear done status and any errors */
1449                         intel_uncore_write(uncore,
1450                                            ch_ctl,
1451                                            status |
1452                                            DP_AUX_CH_CTL_DONE |
1453                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1454                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1455
1456                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1457                          *   400us delay required for errors and timeouts
1458                          *   Timeout errors from the HW already meet this
1459                          *   requirement so skip to next iteration
1460                          */
1461                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1462                                 continue;
1463
1464                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1465                                 usleep_range(400, 500);
1466                                 continue;
1467                         }
1468                         if (status & DP_AUX_CH_CTL_DONE)
1469                                 goto done;
1470                 }
1471         }
1472
1473         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1474                 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1475                         intel_dp->aux.name, status);
1476                 ret = -EBUSY;
1477                 goto out;
1478         }
1479
1480 done:
1481         /* Check for timeout or receive error.
1482          * Timeouts occur when the sink is not connected
1483          */
1484         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1485                 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1486                         intel_dp->aux.name, status);
1487                 ret = -EIO;
1488                 goto out;
1489         }
1490
1491         /* Timeouts occur when the device isn't connected, so they're
1492          * "normal" -- don't fill the kernel log with these */
1493         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1494                 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1495                             intel_dp->aux.name, status);
1496                 ret = -ETIMEDOUT;
1497                 goto out;
1498         }
1499
1500         /* Unload any bytes sent back from the other side */
1501         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1502                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1503
1504         /*
1505          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1506          * We have no idea of what happened so we return -EBUSY so
1507          * drm layer takes care for the necessary retries.
1508          */
1509         if (recv_bytes == 0 || recv_bytes > 20) {
1510                 drm_dbg_kms(&i915->drm,
1511                             "%s: Forbidden recv_bytes = %d on aux transaction\n",
1512                             intel_dp->aux.name, recv_bytes);
1513                 ret = -EBUSY;
1514                 goto out;
1515         }
1516
1517         if (recv_bytes > recv_size)
1518                 recv_bytes = recv_size;
1519
1520         for (i = 0; i < recv_bytes; i += 4)
1521                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1522                                     recv + i, recv_bytes - i);
1523
1524         ret = recv_bytes;
1525 out:
1526         cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1527
1528         if (vdd)
1529                 edp_panel_vdd_off(intel_dp, false);
1530
1531         pps_unlock(intel_dp, pps_wakeref);
1532         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1533
1534         if (is_tc_port)
1535                 intel_tc_port_unlock(intel_dig_port);
1536
1537         return ret;
1538 }
1539
1540 #define BARE_ADDRESS_SIZE       3
1541 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1542
1543 static void
1544 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1545                     const struct drm_dp_aux_msg *msg)
1546 {
1547         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1548         txbuf[1] = (msg->address >> 8) & 0xff;
1549         txbuf[2] = msg->address & 0xff;
1550         txbuf[3] = msg->size - 1;
1551 }
1552
1553 static ssize_t
1554 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1555 {
1556         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1557         u8 txbuf[20], rxbuf[20];
1558         size_t txsize, rxsize;
1559         int ret;
1560
1561         intel_dp_aux_header(txbuf, msg);
1562
1563         switch (msg->request & ~DP_AUX_I2C_MOT) {
1564         case DP_AUX_NATIVE_WRITE:
1565         case DP_AUX_I2C_WRITE:
1566         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1567                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1568                 rxsize = 2; /* 0 or 1 data bytes */
1569
1570                 if (WARN_ON(txsize > 20))
1571                         return -E2BIG;
1572
1573                 WARN_ON(!msg->buffer != !msg->size);
1574
1575                 if (msg->buffer)
1576                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1577
1578                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1579                                         rxbuf, rxsize, 0);
1580                 if (ret > 0) {
1581                         msg->reply = rxbuf[0] >> 4;
1582
1583                         if (ret > 1) {
1584                                 /* Number of bytes written in a short write. */
1585                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1586                         } else {
1587                                 /* Return payload size. */
1588                                 ret = msg->size;
1589                         }
1590                 }
1591                 break;
1592
1593         case DP_AUX_NATIVE_READ:
1594         case DP_AUX_I2C_READ:
1595                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1596                 rxsize = msg->size + 1;
1597
1598                 if (WARN_ON(rxsize > 20))
1599                         return -E2BIG;
1600
1601                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1602                                         rxbuf, rxsize, 0);
1603                 if (ret > 0) {
1604                         msg->reply = rxbuf[0] >> 4;
1605                         /*
1606                          * Assume happy day, and copy the data. The caller is
1607                          * expected to check msg->reply before touching it.
1608                          *
1609                          * Return payload size.
1610                          */
1611                         ret--;
1612                         memcpy(msg->buffer, rxbuf + 1, ret);
1613                 }
1614                 break;
1615
1616         default:
1617                 ret = -EINVAL;
1618                 break;
1619         }
1620
1621         return ret;
1622 }
1623
1624
1625 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1626 {
1627         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1628         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1629         enum aux_ch aux_ch = dig_port->aux_ch;
1630
1631         switch (aux_ch) {
1632         case AUX_CH_B:
1633         case AUX_CH_C:
1634         case AUX_CH_D:
1635                 return DP_AUX_CH_CTL(aux_ch);
1636         default:
1637                 MISSING_CASE(aux_ch);
1638                 return DP_AUX_CH_CTL(AUX_CH_B);
1639         }
1640 }
1641
1642 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1643 {
1644         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1645         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1646         enum aux_ch aux_ch = dig_port->aux_ch;
1647
1648         switch (aux_ch) {
1649         case AUX_CH_B:
1650         case AUX_CH_C:
1651         case AUX_CH_D:
1652                 return DP_AUX_CH_DATA(aux_ch, index);
1653         default:
1654                 MISSING_CASE(aux_ch);
1655                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1656         }
1657 }
1658
1659 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1660 {
1661         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1662         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1663         enum aux_ch aux_ch = dig_port->aux_ch;
1664
1665         switch (aux_ch) {
1666         case AUX_CH_A:
1667                 return DP_AUX_CH_CTL(aux_ch);
1668         case AUX_CH_B:
1669         case AUX_CH_C:
1670         case AUX_CH_D:
1671                 return PCH_DP_AUX_CH_CTL(aux_ch);
1672         default:
1673                 MISSING_CASE(aux_ch);
1674                 return DP_AUX_CH_CTL(AUX_CH_A);
1675         }
1676 }
1677
1678 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1679 {
1680         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1681         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1682         enum aux_ch aux_ch = dig_port->aux_ch;
1683
1684         switch (aux_ch) {
1685         case AUX_CH_A:
1686                 return DP_AUX_CH_DATA(aux_ch, index);
1687         case AUX_CH_B:
1688         case AUX_CH_C:
1689         case AUX_CH_D:
1690                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1691         default:
1692                 MISSING_CASE(aux_ch);
1693                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1694         }
1695 }
1696
1697 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1698 {
1699         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1700         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1701         enum aux_ch aux_ch = dig_port->aux_ch;
1702
1703         switch (aux_ch) {
1704         case AUX_CH_A:
1705         case AUX_CH_B:
1706         case AUX_CH_C:
1707         case AUX_CH_D:
1708         case AUX_CH_E:
1709         case AUX_CH_F:
1710         case AUX_CH_G:
1711                 return DP_AUX_CH_CTL(aux_ch);
1712         default:
1713                 MISSING_CASE(aux_ch);
1714                 return DP_AUX_CH_CTL(AUX_CH_A);
1715         }
1716 }
1717
1718 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1719 {
1720         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1721         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1722         enum aux_ch aux_ch = dig_port->aux_ch;
1723
1724         switch (aux_ch) {
1725         case AUX_CH_A:
1726         case AUX_CH_B:
1727         case AUX_CH_C:
1728         case AUX_CH_D:
1729         case AUX_CH_E:
1730         case AUX_CH_F:
1731         case AUX_CH_G:
1732                 return DP_AUX_CH_DATA(aux_ch, index);
1733         default:
1734                 MISSING_CASE(aux_ch);
1735                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1736         }
1737 }
1738
1739 static void
1740 intel_dp_aux_fini(struct intel_dp *intel_dp)
1741 {
1742         kfree(intel_dp->aux.name);
1743 }
1744
1745 static void
1746 intel_dp_aux_init(struct intel_dp *intel_dp)
1747 {
1748         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1749         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1750         struct intel_encoder *encoder = &dig_port->base;
1751
1752         if (INTEL_GEN(dev_priv) >= 9) {
1753                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1754                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1755         } else if (HAS_PCH_SPLIT(dev_priv)) {
1756                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1757                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1758         } else {
1759                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1760                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1761         }
1762
1763         if (INTEL_GEN(dev_priv) >= 9)
1764                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1765         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1766                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1767         else if (HAS_PCH_SPLIT(dev_priv))
1768                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1769         else
1770                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1771
1772         if (INTEL_GEN(dev_priv) >= 9)
1773                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1774         else
1775                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1776
1777         drm_dp_aux_init(&intel_dp->aux);
1778
1779         /* Failure to allocate our preferred name is not critical */
1780         intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1781                                        aux_ch_name(dig_port->aux_ch),
1782                                        port_name(encoder->port));
1783         intel_dp->aux.transfer = intel_dp_aux_transfer;
1784 }
1785
1786 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1787 {
1788         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1789
1790         return max_rate >= 540000;
1791 }
1792
1793 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1794 {
1795         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1796
1797         return max_rate >= 810000;
1798 }
1799
1800 static void
1801 intel_dp_set_clock(struct intel_encoder *encoder,
1802                    struct intel_crtc_state *pipe_config)
1803 {
1804         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1805         const struct dp_link_dpll *divisor = NULL;
1806         int i, count = 0;
1807
1808         if (IS_G4X(dev_priv)) {
1809                 divisor = g4x_dpll;
1810                 count = ARRAY_SIZE(g4x_dpll);
1811         } else if (HAS_PCH_SPLIT(dev_priv)) {
1812                 divisor = pch_dpll;
1813                 count = ARRAY_SIZE(pch_dpll);
1814         } else if (IS_CHERRYVIEW(dev_priv)) {
1815                 divisor = chv_dpll;
1816                 count = ARRAY_SIZE(chv_dpll);
1817         } else if (IS_VALLEYVIEW(dev_priv)) {
1818                 divisor = vlv_dpll;
1819                 count = ARRAY_SIZE(vlv_dpll);
1820         }
1821
1822         if (divisor && count) {
1823                 for (i = 0; i < count; i++) {
1824                         if (pipe_config->port_clock == divisor[i].clock) {
1825                                 pipe_config->dpll = divisor[i].dpll;
1826                                 pipe_config->clock_set = true;
1827                                 break;
1828                         }
1829                 }
1830         }
1831 }
1832
1833 static void snprintf_int_array(char *str, size_t len,
1834                                const int *array, int nelem)
1835 {
1836         int i;
1837
1838         str[0] = '\0';
1839
1840         for (i = 0; i < nelem; i++) {
1841                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1842                 if (r >= len)
1843                         return;
1844                 str += r;
1845                 len -= r;
1846         }
1847 }
1848
1849 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1850 {
1851         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1852         char str[128]; /* FIXME: too big for stack? */
1853
1854         if (!drm_debug_enabled(DRM_UT_KMS))
1855                 return;
1856
1857         snprintf_int_array(str, sizeof(str),
1858                            intel_dp->source_rates, intel_dp->num_source_rates);
1859         drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1860
1861         snprintf_int_array(str, sizeof(str),
1862                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1863         drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1864
1865         snprintf_int_array(str, sizeof(str),
1866                            intel_dp->common_rates, intel_dp->num_common_rates);
1867         drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1868 }
1869
1870 int
1871 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1872 {
1873         int len;
1874
1875         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1876         if (WARN_ON(len <= 0))
1877                 return 162000;
1878
1879         return intel_dp->common_rates[len - 1];
1880 }
1881
1882 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1883 {
1884         int i = intel_dp_rate_index(intel_dp->sink_rates,
1885                                     intel_dp->num_sink_rates, rate);
1886
1887         if (WARN_ON(i < 0))
1888                 i = 0;
1889
1890         return i;
1891 }
1892
1893 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1894                            u8 *link_bw, u8 *rate_select)
1895 {
1896         /* eDP 1.4 rate select method. */
1897         if (intel_dp->use_rate_select) {
1898                 *link_bw = 0;
1899                 *rate_select =
1900                         intel_dp_rate_select(intel_dp, port_clock);
1901         } else {
1902                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1903                 *rate_select = 0;
1904         }
1905 }
1906
1907 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1908                                          const struct intel_crtc_state *pipe_config)
1909 {
1910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1911
1912         /* On TGL, FEC is supported on all Pipes */
1913         if (INTEL_GEN(dev_priv) >= 12)
1914                 return true;
1915
1916         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1917                 return true;
1918
1919         return false;
1920 }
1921
1922 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1923                                   const struct intel_crtc_state *pipe_config)
1924 {
1925         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1926                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1927 }
1928
1929 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1930                                   const struct intel_crtc_state *crtc_state)
1931 {
1932         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1933
1934         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1935                 return false;
1936
1937         return intel_dsc_source_support(encoder, crtc_state) &&
1938                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1939 }
1940
1941 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1942                                 struct intel_crtc_state *pipe_config)
1943 {
1944         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1945         struct intel_connector *intel_connector = intel_dp->attached_connector;
1946         int bpp, bpc;
1947
1948         bpp = pipe_config->pipe_bpp;
1949         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1950
1951         if (bpc > 0)
1952                 bpp = min(bpp, 3*bpc);
1953
1954         if (intel_dp_is_edp(intel_dp)) {
1955                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1956                 if (intel_connector->base.display_info.bpc == 0 &&
1957                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1958                         drm_dbg_kms(&dev_priv->drm,
1959                                     "clamping bpp for eDP panel to BIOS-provided %i\n",
1960                                     dev_priv->vbt.edp.bpp);
1961                         bpp = dev_priv->vbt.edp.bpp;
1962                 }
1963         }
1964
1965         return bpp;
1966 }
1967
1968 /* Adjust link config limits based on compliance test requests. */
1969 void
1970 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1971                                   struct intel_crtc_state *pipe_config,
1972                                   struct link_config_limits *limits)
1973 {
1974         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1975
1976         /* For DP Compliance we override the computed bpp for the pipe */
1977         if (intel_dp->compliance.test_data.bpc != 0) {
1978                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1979
1980                 limits->min_bpp = limits->max_bpp = bpp;
1981                 pipe_config->dither_force_disable = bpp == 6 * 3;
1982
1983                 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1984         }
1985
1986         /* Use values requested by Compliance Test Request */
1987         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1988                 int index;
1989
1990                 /* Validate the compliance test data since max values
1991                  * might have changed due to link train fallback.
1992                  */
1993                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1994                                                intel_dp->compliance.test_lane_count)) {
1995                         index = intel_dp_rate_index(intel_dp->common_rates,
1996                                                     intel_dp->num_common_rates,
1997                                                     intel_dp->compliance.test_link_rate);
1998                         if (index >= 0)
1999                                 limits->min_clock = limits->max_clock = index;
2000                         limits->min_lane_count = limits->max_lane_count =
2001                                 intel_dp->compliance.test_lane_count;
2002                 }
2003         }
2004 }
2005
2006 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2007 {
2008         /*
2009          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2010          * format of the number of bytes per pixel will be half the number
2011          * of bytes of RGB pixel.
2012          */
2013         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2014                 bpp /= 2;
2015
2016         return bpp;
2017 }
2018
2019 /* Optimize link config in order: max bpp, min clock, min lanes */
2020 static int
2021 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2022                                   struct intel_crtc_state *pipe_config,
2023                                   const struct link_config_limits *limits)
2024 {
2025         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2026         int bpp, clock, lane_count;
2027         int mode_rate, link_clock, link_avail;
2028
2029         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2030                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2031
2032                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2033                                                    output_bpp);
2034
2035                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2036                         for (lane_count = limits->min_lane_count;
2037                              lane_count <= limits->max_lane_count;
2038                              lane_count <<= 1) {
2039                                 link_clock = intel_dp->common_rates[clock];
2040                                 link_avail = intel_dp_max_data_rate(link_clock,
2041                                                                     lane_count);
2042
2043                                 if (mode_rate <= link_avail) {
2044                                         pipe_config->lane_count = lane_count;
2045                                         pipe_config->pipe_bpp = bpp;
2046                                         pipe_config->port_clock = link_clock;
2047
2048                                         return 0;
2049                                 }
2050                         }
2051                 }
2052         }
2053
2054         return -EINVAL;
2055 }
2056
2057 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2058 {
2059         int i, num_bpc;
2060         u8 dsc_bpc[3] = {0};
2061
2062         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2063                                                        dsc_bpc);
2064         for (i = 0; i < num_bpc; i++) {
2065                 if (dsc_max_bpc >= dsc_bpc[i])
2066                         return dsc_bpc[i] * 3;
2067         }
2068
2069         return 0;
2070 }
2071
2072 #define DSC_SUPPORTED_VERSION_MIN               1
2073
2074 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2075                                        struct intel_crtc_state *crtc_state)
2076 {
2077         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2078         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2079         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2080         u8 line_buf_depth;
2081         int ret;
2082
2083         ret = intel_dsc_compute_params(encoder, crtc_state);
2084         if (ret)
2085                 return ret;
2086
2087         /*
2088          * Slice Height of 8 works for all currently available panels. So start
2089          * with that if pic_height is an integral multiple of 8. Eventually add
2090          * logic to try multiple slice heights.
2091          */
2092         if (vdsc_cfg->pic_height % 8 == 0)
2093                 vdsc_cfg->slice_height = 8;
2094         else if (vdsc_cfg->pic_height % 4 == 0)
2095                 vdsc_cfg->slice_height = 4;
2096         else
2097                 vdsc_cfg->slice_height = 2;
2098
2099         vdsc_cfg->dsc_version_major =
2100                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2101                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2102         vdsc_cfg->dsc_version_minor =
2103                 min(DSC_SUPPORTED_VERSION_MIN,
2104                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2105                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2106
2107         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2108                 DP_DSC_RGB;
2109
2110         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2111         if (!line_buf_depth) {
2112                 drm_dbg_kms(&i915->drm,
2113                             "DSC Sink Line Buffer Depth invalid\n");
2114                 return -EINVAL;
2115         }
2116
2117         if (vdsc_cfg->dsc_version_minor == 2)
2118                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2119                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2120         else
2121                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2122                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2123
2124         vdsc_cfg->block_pred_enable =
2125                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2126                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2127
2128         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2129 }
2130
2131 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2132                                        struct intel_crtc_state *pipe_config,
2133                                        struct drm_connector_state *conn_state,
2134                                        struct link_config_limits *limits)
2135 {
2136         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2137         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2138         const struct drm_display_mode *adjusted_mode =
2139                 &pipe_config->hw.adjusted_mode;
2140         u8 dsc_max_bpc;
2141         int pipe_bpp;
2142         int ret;
2143
2144         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2145                 intel_dp_supports_fec(intel_dp, pipe_config);
2146
2147         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2148                 return -EINVAL;
2149
2150         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2151         if (INTEL_GEN(dev_priv) >= 12)
2152                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2153         else
2154                 dsc_max_bpc = min_t(u8, 10,
2155                                     conn_state->max_requested_bpc);
2156
2157         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2158
2159         /* Min Input BPC for ICL+ is 8 */
2160         if (pipe_bpp < 8 * 3) {
2161                 drm_dbg_kms(&dev_priv->drm,
2162                             "No DSC support for less than 8bpc\n");
2163                 return -EINVAL;
2164         }
2165
2166         /*
2167          * For now enable DSC for max bpp, max link rate, max lane count.
2168          * Optimize this later for the minimum possible link rate/lane count
2169          * with DSC enabled for the requested mode.
2170          */
2171         pipe_config->pipe_bpp = pipe_bpp;
2172         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2173         pipe_config->lane_count = limits->max_lane_count;
2174
2175         if (intel_dp_is_edp(intel_dp)) {
2176                 pipe_config->dsc.compressed_bpp =
2177                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2178                               pipe_config->pipe_bpp);
2179                 pipe_config->dsc.slice_count =
2180                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2181                                                         true);
2182         } else {
2183                 u16 dsc_max_output_bpp;
2184                 u8 dsc_dp_slice_count;
2185
2186                 dsc_max_output_bpp =
2187                         intel_dp_dsc_get_output_bpp(dev_priv,
2188                                                     pipe_config->port_clock,
2189                                                     pipe_config->lane_count,
2190                                                     adjusted_mode->crtc_clock,
2191                                                     adjusted_mode->crtc_hdisplay);
2192                 dsc_dp_slice_count =
2193                         intel_dp_dsc_get_slice_count(intel_dp,
2194                                                      adjusted_mode->crtc_clock,
2195                                                      adjusted_mode->crtc_hdisplay);
2196                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2197                         drm_dbg_kms(&dev_priv->drm,
2198                                     "Compressed BPP/Slice Count not supported\n");
2199                         return -EINVAL;
2200                 }
2201                 pipe_config->dsc.compressed_bpp = min_t(u16,
2202                                                                dsc_max_output_bpp >> 4,
2203                                                                pipe_config->pipe_bpp);
2204                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2205         }
2206         /*
2207          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2208          * is greater than the maximum Cdclock and if slice count is even
2209          * then we need to use 2 VDSC instances.
2210          */
2211         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2212                 if (pipe_config->dsc.slice_count > 1) {
2213                         pipe_config->dsc.dsc_split = true;
2214                 } else {
2215                         drm_dbg_kms(&dev_priv->drm,
2216                                     "Cannot split stream to use 2 VDSC instances\n");
2217                         return -EINVAL;
2218                 }
2219         }
2220
2221         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2222         if (ret < 0) {
2223                 drm_dbg_kms(&dev_priv->drm,
2224                             "Cannot compute valid DSC parameters for Input Bpp = %d "
2225                             "Compressed BPP = %d\n",
2226                             pipe_config->pipe_bpp,
2227                             pipe_config->dsc.compressed_bpp);
2228                 return ret;
2229         }
2230
2231         pipe_config->dsc.compression_enable = true;
2232         drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2233                     "Compressed Bpp = %d Slice Count = %d\n",
2234                     pipe_config->pipe_bpp,
2235                     pipe_config->dsc.compressed_bpp,
2236                     pipe_config->dsc.slice_count);
2237
2238         return 0;
2239 }
2240
2241 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2242 {
2243         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2244                 return 6 * 3;
2245         else
2246                 return 8 * 3;
2247 }
2248
2249 static int
2250 intel_dp_compute_link_config(struct intel_encoder *encoder,
2251                              struct intel_crtc_state *pipe_config,
2252                              struct drm_connector_state *conn_state)
2253 {
2254         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2255         const struct drm_display_mode *adjusted_mode =
2256                 &pipe_config->hw.adjusted_mode;
2257         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2258         struct link_config_limits limits;
2259         int common_len;
2260         int ret;
2261
2262         common_len = intel_dp_common_len_rate_limit(intel_dp,
2263                                                     intel_dp->max_link_rate);
2264
2265         /* No common link rates between source and sink */
2266         drm_WARN_ON(encoder->base.dev, common_len <= 0);
2267
2268         limits.min_clock = 0;
2269         limits.max_clock = common_len - 1;
2270
2271         limits.min_lane_count = 1;
2272         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2273
2274         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2275         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2276
2277         if (intel_dp_is_edp(intel_dp)) {
2278                 /*
2279                  * Use the maximum clock and number of lanes the eDP panel
2280                  * advertizes being capable of. The panels are generally
2281                  * designed to support only a single clock and lane
2282                  * configuration, and typically these values correspond to the
2283                  * native resolution of the panel.
2284                  */
2285                 limits.min_lane_count = limits.max_lane_count;
2286                 limits.min_clock = limits.max_clock;
2287         }
2288
2289         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2290
2291         drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2292                     "max rate %d max bpp %d pixel clock %iKHz\n",
2293                     limits.max_lane_count,
2294                     intel_dp->common_rates[limits.max_clock],
2295                     limits.max_bpp, adjusted_mode->crtc_clock);
2296
2297         /*
2298          * Optimize for slow and wide. This is the place to add alternative
2299          * optimization policy.
2300          */
2301         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2302
2303         /* enable compression if the mode doesn't fit available BW */
2304         drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2305         if (ret || intel_dp->force_dsc_en) {
2306                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2307                                                   conn_state, &limits);
2308                 if (ret < 0)
2309                         return ret;
2310         }
2311
2312         if (pipe_config->dsc.compression_enable) {
2313                 drm_dbg_kms(&i915->drm,
2314                             "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2315                             pipe_config->lane_count, pipe_config->port_clock,
2316                             pipe_config->pipe_bpp,
2317                             pipe_config->dsc.compressed_bpp);
2318
2319                 drm_dbg_kms(&i915->drm,
2320                             "DP link rate required %i available %i\n",
2321                             intel_dp_link_required(adjusted_mode->crtc_clock,
2322                                                    pipe_config->dsc.compressed_bpp),
2323                             intel_dp_max_data_rate(pipe_config->port_clock,
2324                                                    pipe_config->lane_count));
2325         } else {
2326                 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2327                             pipe_config->lane_count, pipe_config->port_clock,
2328                             pipe_config->pipe_bpp);
2329
2330                 drm_dbg_kms(&i915->drm,
2331                             "DP link rate required %i available %i\n",
2332                             intel_dp_link_required(adjusted_mode->crtc_clock,
2333                                                    pipe_config->pipe_bpp),
2334                             intel_dp_max_data_rate(pipe_config->port_clock,
2335                                                    pipe_config->lane_count));
2336         }
2337         return 0;
2338 }
2339
2340 static int
2341 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2342                          struct drm_connector *connector,
2343                          struct intel_crtc_state *crtc_state)
2344 {
2345         const struct drm_display_info *info = &connector->display_info;
2346         const struct drm_display_mode *adjusted_mode =
2347                 &crtc_state->hw.adjusted_mode;
2348         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2349
2350         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2351             !intel_dp_get_colorimetry_status(intel_dp) ||
2352             !connector->ycbcr_420_allowed)
2353                 return 0;
2354
2355         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2356
2357         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2358
2359         return 0;
2360 }
2361
2362 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2363                                   const struct drm_connector_state *conn_state)
2364 {
2365         const struct intel_digital_connector_state *intel_conn_state =
2366                 to_intel_digital_connector_state(conn_state);
2367         const struct drm_display_mode *adjusted_mode =
2368                 &crtc_state->hw.adjusted_mode;
2369
2370         /*
2371          * Our YCbCr output is always limited range.
2372          * crtc_state->limited_color_range only applies to RGB,
2373          * and it must never be set for YCbCr or we risk setting
2374          * some conflicting bits in PIPECONF which will mess up
2375          * the colors on the monitor.
2376          */
2377         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2378                 return false;
2379
2380         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2381                 /*
2382                  * See:
2383                  * CEA-861-E - 5.1 Default Encoding Parameters
2384                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2385                  */
2386                 return crtc_state->pipe_bpp != 18 &&
2387                         drm_default_rgb_quant_range(adjusted_mode) ==
2388                         HDMI_QUANTIZATION_RANGE_LIMITED;
2389         } else {
2390                 return intel_conn_state->broadcast_rgb ==
2391                         INTEL_BROADCAST_RGB_LIMITED;
2392         }
2393 }
2394
2395 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2396                                     enum port port)
2397 {
2398         if (IS_G4X(dev_priv))
2399                 return false;
2400         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2401                 return false;
2402
2403         return true;
2404 }
2405
2406 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2407                                              const struct drm_connector_state *conn_state,
2408                                              struct drm_dp_vsc_sdp *vsc)
2409 {
2410         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2411         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2412
2413         /*
2414          * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2415          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2416          * Colorimetry Format indication.
2417          */
2418         vsc->revision = 0x5;
2419         vsc->length = 0x13;
2420
2421         /* DP 1.4a spec, Table 2-120 */
2422         switch (crtc_state->output_format) {
2423         case INTEL_OUTPUT_FORMAT_YCBCR444:
2424                 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2425                 break;
2426         case INTEL_OUTPUT_FORMAT_YCBCR420:
2427                 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2428                 break;
2429         case INTEL_OUTPUT_FORMAT_RGB:
2430         default:
2431                 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2432         }
2433
2434         switch (conn_state->colorspace) {
2435         case DRM_MODE_COLORIMETRY_BT709_YCC:
2436                 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2437                 break;
2438         case DRM_MODE_COLORIMETRY_XVYCC_601:
2439                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2440                 break;
2441         case DRM_MODE_COLORIMETRY_XVYCC_709:
2442                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2443                 break;
2444         case DRM_MODE_COLORIMETRY_SYCC_601:
2445                 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2446                 break;
2447         case DRM_MODE_COLORIMETRY_OPYCC_601:
2448                 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2449                 break;
2450         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2451                 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2452                 break;
2453         case DRM_MODE_COLORIMETRY_BT2020_RGB:
2454                 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2455                 break;
2456         case DRM_MODE_COLORIMETRY_BT2020_YCC:
2457                 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2458                 break;
2459         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2460         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2461                 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2462                 break;
2463         default:
2464                 /*
2465                  * RGB->YCBCR color conversion uses the BT.709
2466                  * color space.
2467                  */
2468                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2469                         vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2470                 else
2471                         vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2472                 break;
2473         }
2474
2475         vsc->bpc = crtc_state->pipe_bpp / 3;
2476
2477         /* only RGB pixelformat supports 6 bpc */
2478         drm_WARN_ON(&dev_priv->drm,
2479                     vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2480
2481         /* all YCbCr are always limited range */
2482         vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2483         vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2484 }
2485
2486 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2487                                      struct intel_crtc_state *crtc_state,
2488                                      const struct drm_connector_state *conn_state)
2489 {
2490         struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2491
2492         /* When PSR is enabled, VSC SDP is handled by PSR routine */
2493         if (intel_psr_enabled(intel_dp))
2494                 return;
2495
2496         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2497                 return;
2498
2499         crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2500         vsc->sdp_type = DP_SDP_VSC;
2501         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2502                                          &crtc_state->infoframes.vsc);
2503 }
2504
2505 static void
2506 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2507                                             struct intel_crtc_state *crtc_state,
2508                                             const struct drm_connector_state *conn_state)
2509 {
2510         int ret;
2511         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2512         struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2513
2514         if (!conn_state->hdr_output_metadata)
2515                 return;
2516
2517         ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2518
2519         if (ret) {
2520                 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2521                 return;
2522         }
2523
2524         crtc_state->infoframes.enable |=
2525                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2526 }
2527
2528 int
2529 intel_dp_compute_config(struct intel_encoder *encoder,
2530                         struct intel_crtc_state *pipe_config,
2531                         struct drm_connector_state *conn_state)
2532 {
2533         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2534         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2535         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2536         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2537         enum port port = encoder->port;
2538         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2539         struct intel_connector *intel_connector = intel_dp->attached_connector;
2540         struct intel_digital_connector_state *intel_conn_state =
2541                 to_intel_digital_connector_state(conn_state);
2542         bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2543                                            DP_DPCD_QUIRK_CONSTANT_N);
2544         int ret = 0, output_bpp;
2545
2546         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2547                 pipe_config->has_pch_encoder = true;
2548
2549         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2550
2551         if (lspcon->active)
2552                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2553         else
2554                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2555                                                pipe_config);
2556         if (ret)
2557                 return ret;
2558
2559         pipe_config->has_drrs = false;
2560         if (!intel_dp_port_has_audio(dev_priv, port))
2561                 pipe_config->has_audio = false;
2562         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2563                 pipe_config->has_audio = intel_dp->has_audio;
2564         else
2565                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2566
2567         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2568                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2569                                        adjusted_mode);
2570
2571                 if (HAS_GMCH(dev_priv))
2572                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2573                                                  conn_state->scaling_mode);
2574                 else
2575                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2576                                                 conn_state->scaling_mode);
2577         }
2578
2579         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2580                 return -EINVAL;
2581
2582         if (HAS_GMCH(dev_priv) &&
2583             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2584                 return -EINVAL;
2585
2586         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2587                 return -EINVAL;
2588
2589         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2590                 return -EINVAL;
2591
2592         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2593         if (ret < 0)
2594                 return ret;
2595
2596         pipe_config->limited_color_range =
2597                 intel_dp_limited_color_range(pipe_config, conn_state);
2598
2599         if (pipe_config->dsc.compression_enable)
2600                 output_bpp = pipe_config->dsc.compressed_bpp;
2601         else
2602                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2603
2604         intel_link_compute_m_n(output_bpp,
2605                                pipe_config->lane_count,
2606                                adjusted_mode->crtc_clock,
2607                                pipe_config->port_clock,
2608                                &pipe_config->dp_m_n,
2609                                constant_n, pipe_config->fec_enable);
2610
2611         if (intel_connector->panel.downclock_mode != NULL &&
2612                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2613                         pipe_config->has_drrs = true;
2614                         intel_link_compute_m_n(output_bpp,
2615                                                pipe_config->lane_count,
2616                                                intel_connector->panel.downclock_mode->clock,
2617                                                pipe_config->port_clock,
2618                                                &pipe_config->dp_m2_n2,
2619                                                constant_n, pipe_config->fec_enable);
2620         }
2621
2622         if (!HAS_DDI(dev_priv))
2623                 intel_dp_set_clock(encoder, pipe_config);
2624
2625         intel_psr_compute_config(intel_dp, pipe_config);
2626         intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2627         intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2628
2629         return 0;
2630 }
2631
2632 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2633                               int link_rate, u8 lane_count,
2634                               bool link_mst)
2635 {
2636         intel_dp->link_trained = false;
2637         intel_dp->link_rate = link_rate;
2638         intel_dp->lane_count = lane_count;
2639         intel_dp->link_mst = link_mst;
2640 }
2641
2642 static void intel_dp_prepare(struct intel_encoder *encoder,
2643                              const struct intel_crtc_state *pipe_config)
2644 {
2645         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2646         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2647         enum port port = encoder->port;
2648         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2649         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2650
2651         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2652                                  pipe_config->lane_count,
2653                                  intel_crtc_has_type(pipe_config,
2654                                                      INTEL_OUTPUT_DP_MST));
2655
2656         /*
2657          * There are four kinds of DP registers:
2658          *
2659          *      IBX PCH
2660          *      SNB CPU
2661          *      IVB CPU
2662          *      CPT PCH
2663          *
2664          * IBX PCH and CPU are the same for almost everything,
2665          * except that the CPU DP PLL is configured in this
2666          * register
2667          *
2668          * CPT PCH is quite different, having many bits moved
2669          * to the TRANS_DP_CTL register instead. That
2670          * configuration happens (oddly) in ilk_pch_enable
2671          */
2672
2673         /* Preserve the BIOS-computed detected bit. This is
2674          * supposed to be read-only.
2675          */
2676         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2677
2678         /* Handle DP bits in common between all three register formats */
2679         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2680         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2681
2682         /* Split out the IBX/CPU vs CPT settings */
2683
2684         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2685                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2686                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2687                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2688                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2689                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2690
2691                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2692                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2693
2694                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2695         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2696                 u32 trans_dp;
2697
2698                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2699
2700                 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2701                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2702                         trans_dp |= TRANS_DP_ENH_FRAMING;
2703                 else
2704                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2705                 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2706         } else {
2707                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2708                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2709
2710                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2711                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2712                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2713                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2714                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2715
2716                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2717                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2718
2719                 if (IS_CHERRYVIEW(dev_priv))
2720                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2721                 else
2722                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2723         }
2724 }
2725
2726 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2727 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2728
2729 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2730 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2731
2732 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2733 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2734
2735 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2736
2737 static void wait_panel_status(struct intel_dp *intel_dp,
2738                                        u32 mask,
2739                                        u32 value)
2740 {
2741         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2742         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2743
2744         lockdep_assert_held(&dev_priv->pps_mutex);
2745
2746         intel_pps_verify_state(intel_dp);
2747
2748         pp_stat_reg = _pp_stat_reg(intel_dp);
2749         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2750
2751         drm_dbg_kms(&dev_priv->drm,
2752                     "mask %08x value %08x status %08x control %08x\n",
2753                     mask, value,
2754                     intel_de_read(dev_priv, pp_stat_reg),
2755                     intel_de_read(dev_priv, pp_ctrl_reg));
2756
2757         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2758                                        mask, value, 5000))
2759                 drm_err(&dev_priv->drm,
2760                         "Panel status timeout: status %08x control %08x\n",
2761                         intel_de_read(dev_priv, pp_stat_reg),
2762                         intel_de_read(dev_priv, pp_ctrl_reg));
2763
2764         drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2765 }
2766
2767 static void wait_panel_on(struct intel_dp *intel_dp)
2768 {
2769         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2770
2771         drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2772         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2773 }
2774
2775 static void wait_panel_off(struct intel_dp *intel_dp)
2776 {
2777         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2778
2779         drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2780         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2781 }
2782
2783 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2784 {
2785         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2786         ktime_t panel_power_on_time;
2787         s64 panel_power_off_duration;
2788
2789         drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2790
2791         /* take the difference of currrent time and panel power off time
2792          * and then make panel wait for t11_t12 if needed. */
2793         panel_power_on_time = ktime_get_boottime();
2794         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2795
2796         /* When we disable the VDD override bit last we have to do the manual
2797          * wait. */
2798         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2799                 wait_remaining_ms_from_jiffies(jiffies,
2800                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2801
2802         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2803 }
2804
2805 static void wait_backlight_on(struct intel_dp *intel_dp)
2806 {
2807         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2808                                        intel_dp->backlight_on_delay);
2809 }
2810
2811 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2812 {
2813         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2814                                        intel_dp->backlight_off_delay);
2815 }
2816
2817 /* Read the current pp_control value, unlocking the register if it
2818  * is locked
2819  */
2820
2821 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2822 {
2823         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2824         u32 control;
2825
2826         lockdep_assert_held(&dev_priv->pps_mutex);
2827
2828         control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2829         if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2830                         (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2831                 control &= ~PANEL_UNLOCK_MASK;
2832                 control |= PANEL_UNLOCK_REGS;
2833         }
2834         return control;
2835 }
2836
2837 /*
2838  * Must be paired with edp_panel_vdd_off().
2839  * Must hold pps_mutex around the whole on/off sequence.
2840  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2841  */
2842 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2843 {
2844         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2845         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2846         u32 pp;
2847         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2848         bool need_to_disable = !intel_dp->want_panel_vdd;
2849
2850         lockdep_assert_held(&dev_priv->pps_mutex);
2851
2852         if (!intel_dp_is_edp(intel_dp))
2853                 return false;
2854
2855         cancel_delayed_work(&intel_dp->panel_vdd_work);
2856         intel_dp->want_panel_vdd = true;
2857
2858         if (edp_have_panel_vdd(intel_dp))
2859                 return need_to_disable;
2860
2861         intel_display_power_get(dev_priv,
2862                                 intel_aux_power_domain(intel_dig_port));
2863
2864         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2865                     intel_dig_port->base.base.base.id,
2866                     intel_dig_port->base.base.name);
2867
2868         if (!edp_have_panel_power(intel_dp))
2869                 wait_panel_power_cycle(intel_dp);
2870
2871         pp = ilk_get_pp_control(intel_dp);
2872         pp |= EDP_FORCE_VDD;
2873
2874         pp_stat_reg = _pp_stat_reg(intel_dp);
2875         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2876
2877         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2878         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2879         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2880                     intel_de_read(dev_priv, pp_stat_reg),
2881                     intel_de_read(dev_priv, pp_ctrl_reg));
2882         /*
2883          * If the panel wasn't on, delay before accessing aux channel
2884          */
2885         if (!edp_have_panel_power(intel_dp)) {
2886                 drm_dbg_kms(&dev_priv->drm,
2887                             "[ENCODER:%d:%s] panel power wasn't enabled\n",
2888                             intel_dig_port->base.base.base.id,
2889                             intel_dig_port->base.base.name);
2890                 msleep(intel_dp->panel_power_up_delay);
2891         }
2892
2893         return need_to_disable;
2894 }
2895
2896 /*
2897  * Must be paired with intel_edp_panel_vdd_off() or
2898  * intel_edp_panel_off().
2899  * Nested calls to these functions are not allowed since
2900  * we drop the lock. Caller must use some higher level
2901  * locking to prevent nested calls from other threads.
2902  */
2903 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2904 {
2905         intel_wakeref_t wakeref;
2906         bool vdd;
2907
2908         if (!intel_dp_is_edp(intel_dp))
2909                 return;
2910
2911         vdd = false;
2912         with_pps_lock(intel_dp, wakeref)
2913                 vdd = edp_panel_vdd_on(intel_dp);
2914         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2915                         dp_to_dig_port(intel_dp)->base.base.base.id,
2916                         dp_to_dig_port(intel_dp)->base.base.name);
2917 }
2918
2919 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2920 {
2921         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2922         struct intel_digital_port *intel_dig_port =
2923                 dp_to_dig_port(intel_dp);
2924         u32 pp;
2925         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2926
2927         lockdep_assert_held(&dev_priv->pps_mutex);
2928
2929         drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2930
2931         if (!edp_have_panel_vdd(intel_dp))
2932                 return;
2933
2934         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2935                     intel_dig_port->base.base.base.id,
2936                     intel_dig_port->base.base.name);
2937
2938         pp = ilk_get_pp_control(intel_dp);
2939         pp &= ~EDP_FORCE_VDD;
2940
2941         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2942         pp_stat_reg = _pp_stat_reg(intel_dp);
2943
2944         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2945         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2946
2947         /* Make sure sequencer is idle before allowing subsequent activity */
2948         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2949                     intel_de_read(dev_priv, pp_stat_reg),
2950                     intel_de_read(dev_priv, pp_ctrl_reg));
2951
2952         if ((pp & PANEL_POWER_ON) == 0)
2953                 intel_dp->panel_power_off_time = ktime_get_boottime();
2954
2955         intel_display_power_put_unchecked(dev_priv,
2956                                           intel_aux_power_domain(intel_dig_port));
2957 }
2958
2959 static void edp_panel_vdd_work(struct work_struct *__work)
2960 {
2961         struct intel_dp *intel_dp =
2962                 container_of(to_delayed_work(__work),
2963                              struct intel_dp, panel_vdd_work);
2964         intel_wakeref_t wakeref;
2965
2966         with_pps_lock(intel_dp, wakeref) {
2967                 if (!intel_dp->want_panel_vdd)
2968                         edp_panel_vdd_off_sync(intel_dp);
2969         }
2970 }
2971
2972 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2973 {
2974         unsigned long delay;
2975
2976         /*
2977          * Queue the timer to fire a long time from now (relative to the power
2978          * down delay) to keep the panel power up across a sequence of
2979          * operations.
2980          */
2981         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2982         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2983 }
2984
2985 /*
2986  * Must be paired with edp_panel_vdd_on().
2987  * Must hold pps_mutex around the whole on/off sequence.
2988  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2989  */
2990 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2991 {
2992         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2993
2994         lockdep_assert_held(&dev_priv->pps_mutex);
2995
2996         if (!intel_dp_is_edp(intel_dp))
2997                 return;
2998
2999         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3000                         dp_to_dig_port(intel_dp)->base.base.base.id,
3001                         dp_to_dig_port(intel_dp)->base.base.name);
3002
3003         intel_dp->want_panel_vdd = false;
3004
3005         if (sync)
3006                 edp_panel_vdd_off_sync(intel_dp);
3007         else
3008                 edp_panel_vdd_schedule_off(intel_dp);
3009 }
3010
3011 static void edp_panel_on(struct intel_dp *intel_dp)
3012 {
3013         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3014         u32 pp;
3015         i915_reg_t pp_ctrl_reg;
3016
3017         lockdep_assert_held(&dev_priv->pps_mutex);
3018
3019         if (!intel_dp_is_edp(intel_dp))
3020                 return;
3021
3022         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3023                     dp_to_dig_port(intel_dp)->base.base.base.id,
3024                     dp_to_dig_port(intel_dp)->base.base.name);
3025
3026         if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3027                      "[ENCODER:%d:%s] panel power already on\n",
3028                      dp_to_dig_port(intel_dp)->base.base.base.id,
3029                      dp_to_dig_port(intel_dp)->base.base.name))
3030                 return;
3031
3032         wait_panel_power_cycle(intel_dp);
3033
3034         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3035         pp = ilk_get_pp_control(intel_dp);
3036         if (IS_GEN(dev_priv, 5)) {
3037                 /* ILK workaround: disable reset around power sequence */
3038                 pp &= ~PANEL_POWER_RESET;
3039                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3040                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3041         }
3042
3043         pp |= PANEL_POWER_ON;
3044         if (!IS_GEN(dev_priv, 5))
3045                 pp |= PANEL_POWER_RESET;
3046
3047         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3048         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3049
3050         wait_panel_on(intel_dp);
3051         intel_dp->last_power_on = jiffies;
3052
3053         if (IS_GEN(dev_priv, 5)) {
3054                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3055                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3056                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3057         }
3058 }
3059
3060 void intel_edp_panel_on(struct intel_dp *intel_dp)
3061 {
3062         intel_wakeref_t wakeref;
3063
3064         if (!intel_dp_is_edp(intel_dp))
3065                 return;
3066
3067         with_pps_lock(intel_dp, wakeref)
3068                 edp_panel_on(intel_dp);
3069 }
3070
3071
3072 static void edp_panel_off(struct intel_dp *intel_dp)
3073 {
3074         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3075         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3076         u32 pp;
3077         i915_reg_t pp_ctrl_reg;
3078
3079         lockdep_assert_held(&dev_priv->pps_mutex);
3080
3081         if (!intel_dp_is_edp(intel_dp))
3082                 return;
3083
3084         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3085                     dig_port->base.base.base.id, dig_port->base.base.name);
3086
3087         drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3088                  "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3089                  dig_port->base.base.base.id, dig_port->base.base.name);
3090
3091         pp = ilk_get_pp_control(intel_dp);
3092         /* We need to switch off panel power _and_ force vdd, for otherwise some
3093          * panels get very unhappy and cease to work. */
3094         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3095                 EDP_BLC_ENABLE);
3096
3097         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3098
3099         intel_dp->want_panel_vdd = false;
3100
3101         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3102         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3103
3104         wait_panel_off(intel_dp);
3105         intel_dp->panel_power_off_time = ktime_get_boottime();
3106
3107         /* We got a reference when we enabled the VDD. */
3108         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3109 }
3110
3111 void intel_edp_panel_off(struct intel_dp *intel_dp)
3112 {
3113         intel_wakeref_t wakeref;
3114
3115         if (!intel_dp_is_edp(intel_dp))
3116                 return;
3117
3118         with_pps_lock(intel_dp, wakeref)
3119                 edp_panel_off(intel_dp);
3120 }
3121
3122 /* Enable backlight in the panel power control. */
3123 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3124 {
3125         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3126         intel_wakeref_t wakeref;
3127
3128         /*
3129          * If we enable the backlight right away following a panel power
3130          * on, we may see slight flicker as the panel syncs with the eDP
3131          * link.  So delay a bit to make sure the image is solid before
3132          * allowing it to appear.
3133          */
3134         wait_backlight_on(intel_dp);
3135
3136         with_pps_lock(intel_dp, wakeref) {
3137                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3138                 u32 pp;
3139
3140                 pp = ilk_get_pp_control(intel_dp);
3141                 pp |= EDP_BLC_ENABLE;
3142
3143                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3144                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3145         }
3146 }
3147
3148 /* Enable backlight PWM and backlight PP control. */
3149 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3150                             const struct drm_connector_state *conn_state)
3151 {
3152         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3153         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3154
3155         if (!intel_dp_is_edp(intel_dp))
3156                 return;
3157
3158         drm_dbg_kms(&i915->drm, "\n");
3159
3160         intel_panel_enable_backlight(crtc_state, conn_state);
3161         _intel_edp_backlight_on(intel_dp);
3162 }
3163
3164 /* Disable backlight in the panel power control. */
3165 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3166 {
3167         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3168         intel_wakeref_t wakeref;
3169
3170         if (!intel_dp_is_edp(intel_dp))
3171                 return;
3172
3173         with_pps_lock(intel_dp, wakeref) {
3174                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3175                 u32 pp;
3176
3177                 pp = ilk_get_pp_control(intel_dp);
3178                 pp &= ~EDP_BLC_ENABLE;
3179
3180                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3181                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3182         }
3183
3184         intel_dp->last_backlight_off = jiffies;
3185         edp_wait_backlight_off(intel_dp);
3186 }
3187
3188 /* Disable backlight PP control and backlight PWM. */
3189 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3190 {
3191         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3192         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3193
3194         if (!intel_dp_is_edp(intel_dp))
3195                 return;
3196
3197         drm_dbg_kms(&i915->drm, "\n");
3198
3199         _intel_edp_backlight_off(intel_dp);
3200         intel_panel_disable_backlight(old_conn_state);
3201 }
3202
3203 /*
3204  * Hook for controlling the panel power control backlight through the bl_power
3205  * sysfs attribute. Take care to handle multiple calls.
3206  */
3207 static void intel_edp_backlight_power(struct intel_connector *connector,
3208                                       bool enable)
3209 {
3210         struct drm_i915_private *i915 = to_i915(connector->base.dev);
3211         struct intel_dp *intel_dp = intel_attached_dp(connector);
3212         intel_wakeref_t wakeref;
3213         bool is_enabled;
3214
3215         is_enabled = false;
3216         with_pps_lock(intel_dp, wakeref)
3217                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3218         if (is_enabled == enable)
3219                 return;
3220
3221         drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3222                     enable ? "enable" : "disable");
3223
3224         if (enable)
3225                 _intel_edp_backlight_on(intel_dp);
3226         else
3227                 _intel_edp_backlight_off(intel_dp);
3228 }
3229
3230 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3231 {
3232         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3233         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3234         bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3235
3236         I915_STATE_WARN(cur_state != state,
3237                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3238                         dig_port->base.base.base.id, dig_port->base.base.name,
3239                         onoff(state), onoff(cur_state));
3240 }
3241 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3242
3243 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3244 {
3245         bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3246
3247         I915_STATE_WARN(cur_state != state,
3248                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3249                         onoff(state), onoff(cur_state));
3250 }
3251 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3252 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3253
3254 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3255                            const struct intel_crtc_state *pipe_config)
3256 {
3257         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3258         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3259
3260         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3261         assert_dp_port_disabled(intel_dp);
3262         assert_edp_pll_disabled(dev_priv);
3263
3264         drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3265                     pipe_config->port_clock);
3266
3267         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3268
3269         if (pipe_config->port_clock == 162000)
3270                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3271         else
3272                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3273
3274         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3275         intel_de_posting_read(dev_priv, DP_A);
3276         udelay(500);
3277
3278         /*
3279          * [DevILK] Work around required when enabling DP PLL
3280          * while a pipe is enabled going to FDI:
3281          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3282          * 2. Program DP PLL enable
3283          */
3284         if (IS_GEN(dev_priv, 5))
3285                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3286
3287         intel_dp->DP |= DP_PLL_ENABLE;
3288
3289         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3290         intel_de_posting_read(dev_priv, DP_A);
3291         udelay(200);
3292 }
3293
3294 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3295                             const struct intel_crtc_state *old_crtc_state)
3296 {
3297         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3298         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3299
3300         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3301         assert_dp_port_disabled(intel_dp);
3302         assert_edp_pll_enabled(dev_priv);
3303
3304         drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3305
3306         intel_dp->DP &= ~DP_PLL_ENABLE;
3307
3308         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3309         intel_de_posting_read(dev_priv, DP_A);
3310         udelay(200);
3311 }
3312
3313 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3314 {
3315         /*
3316          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3317          * be capable of signalling downstream hpd with a long pulse.
3318          * Whether or not that means D3 is safe to use is not clear,
3319          * but let's assume so until proven otherwise.
3320          *
3321          * FIXME should really check all downstream ports...
3322          */
3323         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3324                 drm_dp_is_branch(intel_dp->dpcd) &&
3325                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3326 }
3327
3328 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3329                                            const struct intel_crtc_state *crtc_state,
3330                                            bool enable)
3331 {
3332         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3333         int ret;
3334
3335         if (!crtc_state->dsc.compression_enable)
3336                 return;
3337
3338         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3339                                  enable ? DP_DECOMPRESSION_EN : 0);
3340         if (ret < 0)
3341                 drm_dbg_kms(&i915->drm,
3342                             "Failed to %s sink decompression state\n",
3343                             enable ? "enable" : "disable");
3344 }
3345
3346 /* If the sink supports it, try to set the power state appropriately */
3347 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3348 {
3349         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3350         int ret, i;
3351
3352         /* Should have a valid DPCD by this point */
3353         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3354                 return;
3355
3356         if (mode != DRM_MODE_DPMS_ON) {
3357                 if (downstream_hpd_needs_d0(intel_dp))
3358                         return;
3359
3360                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3361                                          DP_SET_POWER_D3);
3362         } else {
3363                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3364
3365                 /*
3366                  * When turning on, we need to retry for 1ms to give the sink
3367                  * time to wake up.
3368                  */
3369                 for (i = 0; i < 3; i++) {
3370                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3371                                                  DP_SET_POWER_D0);
3372                         if (ret == 1)
3373                                 break;
3374                         msleep(1);
3375                 }
3376
3377                 if (ret == 1 && lspcon->active)
3378                         lspcon_wait_pcon_mode(lspcon);
3379         }
3380
3381         if (ret != 1)
3382                 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3383                             mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3384 }
3385
3386 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3387                                  enum port port, enum pipe *pipe)
3388 {
3389         enum pipe p;
3390
3391         for_each_pipe(dev_priv, p) {
3392                 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3393
3394                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3395                         *pipe = p;
3396                         return true;
3397                 }
3398         }
3399
3400         drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3401                     port_name(port));
3402
3403         /* must initialize pipe to something for the asserts */
3404         *pipe = PIPE_A;
3405
3406         return false;
3407 }
3408
3409 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3410                            i915_reg_t dp_reg, enum port port,
3411                            enum pipe *pipe)
3412 {
3413         bool ret;
3414         u32 val;
3415
3416         val = intel_de_read(dev_priv, dp_reg);
3417
3418         ret = val & DP_PORT_EN;
3419
3420         /* asserts want to know the pipe even if the port is disabled */
3421         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3422                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3423         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3424                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3425         else if (IS_CHERRYVIEW(dev_priv))
3426                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3427         else
3428                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3429
3430         return ret;
3431 }
3432
3433 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3434                                   enum pipe *pipe)
3435 {
3436         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3437         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3438         intel_wakeref_t wakeref;
3439         bool ret;
3440
3441         wakeref = intel_display_power_get_if_enabled(dev_priv,
3442                                                      encoder->power_domain);
3443         if (!wakeref)
3444                 return false;
3445
3446         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3447                                     encoder->port, pipe);
3448
3449         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3450
3451         return ret;
3452 }
3453
3454 static void intel_dp_get_config(struct intel_encoder *encoder,
3455                                 struct intel_crtc_state *pipe_config)
3456 {
3457         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3458         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3459         u32 tmp, flags = 0;
3460         enum port port = encoder->port;
3461         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3462
3463         if (encoder->type == INTEL_OUTPUT_EDP)
3464                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3465         else
3466                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3467
3468         tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3469
3470         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3471
3472         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3473                 u32 trans_dp = intel_de_read(dev_priv,
3474                                              TRANS_DP_CTL(crtc->pipe));
3475
3476                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3477                         flags |= DRM_MODE_FLAG_PHSYNC;
3478                 else
3479                         flags |= DRM_MODE_FLAG_NHSYNC;
3480
3481                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3482                         flags |= DRM_MODE_FLAG_PVSYNC;
3483                 else
3484                         flags |= DRM_MODE_FLAG_NVSYNC;
3485         } else {
3486                 if (tmp & DP_SYNC_HS_HIGH)
3487                         flags |= DRM_MODE_FLAG_PHSYNC;
3488                 else
3489                         flags |= DRM_MODE_FLAG_NHSYNC;
3490
3491                 if (tmp & DP_SYNC_VS_HIGH)
3492                         flags |= DRM_MODE_FLAG_PVSYNC;
3493                 else
3494                         flags |= DRM_MODE_FLAG_NVSYNC;
3495         }
3496
3497         pipe_config->hw.adjusted_mode.flags |= flags;
3498
3499         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3500                 pipe_config->limited_color_range = true;
3501
3502         pipe_config->lane_count =
3503                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3504
3505         intel_dp_get_m_n(crtc, pipe_config);
3506
3507         if (port == PORT_A) {
3508                 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3509                         pipe_config->port_clock = 162000;
3510                 else
3511                         pipe_config->port_clock = 270000;
3512         }
3513
3514         pipe_config->hw.adjusted_mode.crtc_clock =
3515                 intel_dotclock_calculate(pipe_config->port_clock,
3516                                          &pipe_config->dp_m_n);
3517
3518         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3519             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3520                 /*
3521                  * This is a big fat ugly hack.
3522                  *
3523                  * Some machines in UEFI boot mode provide us a VBT that has 18
3524                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3525                  * unknown we fail to light up. Yet the same BIOS boots up with
3526                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3527                  * max, not what it tells us to use.
3528                  *
3529                  * Note: This will still be broken if the eDP panel is not lit
3530                  * up by the BIOS, and thus we can't get the mode at module
3531                  * load.
3532                  */
3533                 drm_dbg_kms(&dev_priv->drm,
3534                             "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3535                             pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3536                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3537         }
3538 }
3539
3540 static void intel_disable_dp(struct intel_atomic_state *state,
3541                              struct intel_encoder *encoder,
3542                              const struct intel_crtc_state *old_crtc_state,
3543                              const struct drm_connector_state *old_conn_state)
3544 {
3545         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3546
3547         intel_dp->link_trained = false;
3548
3549         if (old_crtc_state->has_audio)
3550                 intel_audio_codec_disable(encoder,
3551                                           old_crtc_state, old_conn_state);
3552
3553         /* Make sure the panel is off before trying to change the mode. But also
3554          * ensure that we have vdd while we switch off the panel. */
3555         intel_edp_panel_vdd_on(intel_dp);
3556         intel_edp_backlight_off(old_conn_state);
3557         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3558         intel_edp_panel_off(intel_dp);
3559 }
3560
3561 static void g4x_disable_dp(struct intel_atomic_state *state,
3562                            struct intel_encoder *encoder,
3563                            const struct intel_crtc_state *old_crtc_state,
3564                            const struct drm_connector_state *old_conn_state)
3565 {
3566         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3567 }
3568
3569 static void vlv_disable_dp(struct intel_atomic_state *state,
3570                            struct intel_encoder *encoder,
3571                            const struct intel_crtc_state *old_crtc_state,
3572                            const struct drm_connector_state *old_conn_state)
3573 {
3574         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3575 }
3576
3577 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3578                                 struct intel_encoder *encoder,
3579                                 const struct intel_crtc_state *old_crtc_state,
3580                                 const struct drm_connector_state *old_conn_state)
3581 {
3582         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3583         enum port port = encoder->port;
3584
3585         /*
3586          * Bspec does not list a specific disable sequence for g4x DP.
3587          * Follow the ilk+ sequence (disable pipe before the port) for
3588          * g4x DP as it does not suffer from underruns like the normal
3589          * g4x modeset sequence (disable pipe after the port).
3590          */
3591         intel_dp_link_down(encoder, old_crtc_state);
3592
3593         /* Only ilk+ has port A */
3594         if (port == PORT_A)
3595                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3596 }
3597
3598 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3599                                 struct intel_encoder *encoder,
3600                                 const struct intel_crtc_state *old_crtc_state,
3601                                 const struct drm_connector_state *old_conn_state)
3602 {
3603         intel_dp_link_down(encoder, old_crtc_state);
3604 }
3605
3606 static void chv_post_disable_dp(struct intel_atomic_state *state,
3607                                 struct intel_encoder *encoder,
3608                                 const struct intel_crtc_state *old_crtc_state,
3609                                 const struct drm_connector_state *old_conn_state)
3610 {
3611         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3612
3613         intel_dp_link_down(encoder, old_crtc_state);
3614
3615         vlv_dpio_get(dev_priv);
3616
3617         /* Assert data lane reset */
3618         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3619
3620         vlv_dpio_put(dev_priv);
3621 }
3622
3623 static void
3624 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3625                          u32 *DP,
3626                          u8 dp_train_pat)
3627 {
3628         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3629         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3630         enum port port = intel_dig_port->base.port;
3631         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3632
3633         if (dp_train_pat & train_pat_mask)
3634                 drm_dbg_kms(&dev_priv->drm,
3635                             "Using DP training pattern TPS%d\n",
3636                             dp_train_pat & train_pat_mask);
3637
3638         if (HAS_DDI(dev_priv)) {
3639                 u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3640
3641                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3642                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3643                 else
3644                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3645
3646                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3647                 switch (dp_train_pat & train_pat_mask) {
3648                 case DP_TRAINING_PATTERN_DISABLE:
3649                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3650
3651                         break;
3652                 case DP_TRAINING_PATTERN_1:
3653                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3654                         break;
3655                 case DP_TRAINING_PATTERN_2:
3656                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3657                         break;
3658                 case DP_TRAINING_PATTERN_3:
3659                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3660                         break;
3661                 case DP_TRAINING_PATTERN_4:
3662                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3663                         break;
3664                 }
3665                 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3666
3667         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3668                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3669                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3670
3671                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3672                 case DP_TRAINING_PATTERN_DISABLE:
3673                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3674                         break;
3675                 case DP_TRAINING_PATTERN_1:
3676                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3677                         break;
3678                 case DP_TRAINING_PATTERN_2:
3679                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3680                         break;
3681                 case DP_TRAINING_PATTERN_3:
3682                         drm_dbg_kms(&dev_priv->drm,
3683                                     "TPS3 not supported, using TPS2 instead\n");
3684                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3685                         break;
3686                 }
3687
3688         } else {
3689                 *DP &= ~DP_LINK_TRAIN_MASK;
3690
3691                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3692                 case DP_TRAINING_PATTERN_DISABLE:
3693                         *DP |= DP_LINK_TRAIN_OFF;
3694                         break;
3695                 case DP_TRAINING_PATTERN_1:
3696                         *DP |= DP_LINK_TRAIN_PAT_1;
3697                         break;
3698                 case DP_TRAINING_PATTERN_2:
3699                         *DP |= DP_LINK_TRAIN_PAT_2;
3700                         break;
3701                 case DP_TRAINING_PATTERN_3:
3702                         drm_dbg_kms(&dev_priv->drm,
3703                                     "TPS3 not supported, using TPS2 instead\n");
3704                         *DP |= DP_LINK_TRAIN_PAT_2;
3705                         break;
3706                 }
3707         }
3708 }
3709
3710 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3711                                  const struct intel_crtc_state *old_crtc_state)
3712 {
3713         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3714
3715         /* enable with pattern 1 (as per spec) */
3716
3717         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3718
3719         /*
3720          * Magic for VLV/CHV. We _must_ first set up the register
3721          * without actually enabling the port, and then do another
3722          * write to enable the port. Otherwise link training will
3723          * fail when the power sequencer is freshly used for this port.
3724          */
3725         intel_dp->DP |= DP_PORT_EN;
3726         if (old_crtc_state->has_audio)
3727                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3728
3729         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3730         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3731 }
3732
3733 static void intel_enable_dp(struct intel_atomic_state *state,
3734                             struct intel_encoder *encoder,
3735                             const struct intel_crtc_state *pipe_config,
3736                             const struct drm_connector_state *conn_state)
3737 {
3738         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3739         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3740         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3741         u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3742         enum pipe pipe = crtc->pipe;
3743         intel_wakeref_t wakeref;
3744
3745         if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3746                 return;
3747
3748         with_pps_lock(intel_dp, wakeref) {
3749                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3750                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3751
3752                 intel_dp_enable_port(intel_dp, pipe_config);
3753
3754                 edp_panel_vdd_on(intel_dp);
3755                 edp_panel_on(intel_dp);
3756                 edp_panel_vdd_off(intel_dp, true);
3757         }
3758
3759         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3760                 unsigned int lane_mask = 0x0;
3761
3762                 if (IS_CHERRYVIEW(dev_priv))
3763                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3764
3765                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3766                                     lane_mask);
3767         }
3768
3769         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3770         intel_dp_start_link_train(intel_dp);
3771         intel_dp_stop_link_train(intel_dp);
3772
3773         if (pipe_config->has_audio) {
3774                 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3775                         pipe_name(pipe));
3776                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3777         }
3778 }
3779
3780 static void g4x_enable_dp(struct intel_atomic_state *state,
3781                           struct intel_encoder *encoder,
3782                           const struct intel_crtc_state *pipe_config,
3783                           const struct drm_connector_state *conn_state)
3784 {
3785         intel_enable_dp(state, encoder, pipe_config, conn_state);
3786         intel_edp_backlight_on(pipe_config, conn_state);
3787 }
3788
3789 static void vlv_enable_dp(struct intel_atomic_state *state,
3790                           struct intel_encoder *encoder,
3791                           const struct intel_crtc_state *pipe_config,
3792                           const struct drm_connector_state *conn_state)
3793 {
3794         intel_edp_backlight_on(pipe_config, conn_state);
3795 }
3796
3797 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3798                               struct intel_encoder *encoder,
3799                               const struct intel_crtc_state *pipe_config,
3800                               const struct drm_connector_state *conn_state)
3801 {
3802         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3803         enum port port = encoder->port;
3804
3805         intel_dp_prepare(encoder, pipe_config);
3806
3807         /* Only ilk+ has port A */
3808         if (port == PORT_A)
3809                 ilk_edp_pll_on(intel_dp, pipe_config);
3810 }
3811
3812 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3813 {
3814         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3815         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3816         enum pipe pipe = intel_dp->pps_pipe;
3817         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3818
3819         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3820
3821         if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3822                 return;
3823
3824         edp_panel_vdd_off_sync(intel_dp);
3825
3826         /*
3827          * VLV seems to get confused when multiple power sequencers
3828          * have the same port selected (even if only one has power/vdd
3829          * enabled). The failure manifests as vlv_wait_port_ready() failing
3830          * CHV on the other hand doesn't seem to mind having the same port
3831          * selected in multiple power sequencers, but let's clear the
3832          * port select always when logically disconnecting a power sequencer
3833          * from a port.
3834          */
3835         drm_dbg_kms(&dev_priv->drm,
3836                     "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3837                     pipe_name(pipe), intel_dig_port->base.base.base.id,
3838                     intel_dig_port->base.base.name);
3839         intel_de_write(dev_priv, pp_on_reg, 0);
3840         intel_de_posting_read(dev_priv, pp_on_reg);
3841
3842         intel_dp->pps_pipe = INVALID_PIPE;
3843 }
3844
3845 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3846                                       enum pipe pipe)
3847 {
3848         struct intel_encoder *encoder;
3849
3850         lockdep_assert_held(&dev_priv->pps_mutex);
3851
3852         for_each_intel_dp(&dev_priv->drm, encoder) {
3853                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3854
3855                 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3856                          "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3857                          pipe_name(pipe), encoder->base.base.id,
3858                          encoder->base.name);
3859
3860                 if (intel_dp->pps_pipe != pipe)
3861                         continue;
3862
3863                 drm_dbg_kms(&dev_priv->drm,
3864                             "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3865                             pipe_name(pipe), encoder->base.base.id,
3866                             encoder->base.name);
3867
3868                 /* make sure vdd is off before we steal it */
3869                 vlv_detach_power_sequencer(intel_dp);
3870         }
3871 }
3872
3873 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3874                                            const struct intel_crtc_state *crtc_state)
3875 {
3876         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3877         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3878         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3879
3880         lockdep_assert_held(&dev_priv->pps_mutex);
3881
3882         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3883
3884         if (intel_dp->pps_pipe != INVALID_PIPE &&
3885             intel_dp->pps_pipe != crtc->pipe) {
3886                 /*
3887                  * If another power sequencer was being used on this
3888                  * port previously make sure to turn off vdd there while
3889                  * we still have control of it.
3890                  */
3891                 vlv_detach_power_sequencer(intel_dp);
3892         }
3893
3894         /*
3895          * We may be stealing the power
3896          * sequencer from another port.
3897          */
3898         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3899
3900         intel_dp->active_pipe = crtc->pipe;
3901
3902         if (!intel_dp_is_edp(intel_dp))
3903                 return;
3904
3905         /* now it's all ours */
3906         intel_dp->pps_pipe = crtc->pipe;
3907
3908         drm_dbg_kms(&dev_priv->drm,
3909                     "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3910                     pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3911                     encoder->base.name);
3912
3913         /* init power sequencer on this pipe and port */
3914         intel_dp_init_panel_power_sequencer(intel_dp);
3915         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3916 }
3917
3918 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3919                               struct intel_encoder *encoder,
3920                               const struct intel_crtc_state *pipe_config,
3921                               const struct drm_connector_state *conn_state)
3922 {
3923         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3924
3925         intel_enable_dp(state, encoder, pipe_config, conn_state);
3926 }
3927
3928 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3929                                   struct intel_encoder *encoder,
3930                                   const struct intel_crtc_state *pipe_config,
3931                                   const struct drm_connector_state *conn_state)
3932 {
3933         intel_dp_prepare(encoder, pipe_config);
3934
3935         vlv_phy_pre_pll_enable(encoder, pipe_config);
3936 }
3937
3938 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3939                               struct intel_encoder *encoder,
3940                               const struct intel_crtc_state *pipe_config,
3941                               const struct drm_connector_state *conn_state)
3942 {
3943         chv_phy_pre_encoder_enable(encoder, pipe_config);
3944
3945         intel_enable_dp(state, encoder, pipe_config, conn_state);
3946
3947         /* Second common lane will stay alive on its own now */
3948         chv_phy_release_cl2_override(encoder);
3949 }
3950
3951 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3952                                   struct intel_encoder *encoder,
3953                                   const struct intel_crtc_state *pipe_config,
3954                                   const struct drm_connector_state *conn_state)
3955 {
3956         intel_dp_prepare(encoder, pipe_config);
3957
3958         chv_phy_pre_pll_enable(encoder, pipe_config);
3959 }
3960
3961 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3962                                     struct intel_encoder *encoder,
3963                                     const struct intel_crtc_state *old_crtc_state,
3964                                     const struct drm_connector_state *old_conn_state)
3965 {
3966         chv_phy_post_pll_disable(encoder, old_crtc_state);
3967 }
3968
3969 /*
3970  * Fetch AUX CH registers 0x202 - 0x207 which contain
3971  * link status information
3972  */
3973 bool
3974 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3975 {
3976         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3977                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3978 }
3979
3980 /* These are source-specific values. */
3981 u8
3982 intel_dp_voltage_max(struct intel_dp *intel_dp)
3983 {
3984         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3985         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3986         enum port port = encoder->port;
3987
3988         if (HAS_DDI(dev_priv))
3989                 return intel_ddi_dp_voltage_max(encoder);
3990         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3991                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3992         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3993                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3994         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3995                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3996         else
3997                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3998 }
3999
4000 u8
4001 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
4002 {
4003         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4004         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4005         enum port port = encoder->port;
4006
4007         if (HAS_DDI(dev_priv)) {
4008                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4009         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4010                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4011                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4012                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
4013                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4014                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4015                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4016                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4017                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4018                 default:
4019                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4020                 }
4021         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4022                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4023                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4024                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4025                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4026                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4027                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4028                 default:
4029                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4030                 }
4031         } else {
4032                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4033                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4034                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4035                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4036                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4037                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4038                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4039                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4040                 default:
4041                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4042                 }
4043         }
4044 }
4045
4046 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
4047 {
4048         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4049         unsigned long demph_reg_value, preemph_reg_value,
4050                 uniqtranscale_reg_value;
4051         u8 train_set = intel_dp->train_set[0];
4052
4053         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4054         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4055                 preemph_reg_value = 0x0004000;
4056                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4057                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4058                         demph_reg_value = 0x2B405555;
4059                         uniqtranscale_reg_value = 0x552AB83A;
4060                         break;
4061                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4062                         demph_reg_value = 0x2B404040;
4063                         uniqtranscale_reg_value = 0x5548B83A;
4064                         break;
4065                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4066                         demph_reg_value = 0x2B245555;
4067                         uniqtranscale_reg_value = 0x5560B83A;
4068                         break;
4069                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4070                         demph_reg_value = 0x2B405555;
4071                         uniqtranscale_reg_value = 0x5598DA3A;
4072                         break;
4073                 default:
4074                         return 0;
4075                 }
4076                 break;
4077         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4078                 preemph_reg_value = 0x0002000;
4079                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4080                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4081                         demph_reg_value = 0x2B404040;
4082                         uniqtranscale_reg_value = 0x5552B83A;
4083                         break;
4084                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4085                         demph_reg_value = 0x2B404848;
4086                         uniqtranscale_reg_value = 0x5580B83A;
4087                         break;
4088                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4089                         demph_reg_value = 0x2B404040;
4090                         uniqtranscale_reg_value = 0x55ADDA3A;
4091                         break;
4092                 default:
4093                         return 0;
4094                 }
4095                 break;
4096         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4097                 preemph_reg_value = 0x0000000;
4098                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4099                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4100                         demph_reg_value = 0x2B305555;
4101                         uniqtranscale_reg_value = 0x5570B83A;
4102                         break;
4103                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4104                         demph_reg_value = 0x2B2B4040;
4105                         uniqtranscale_reg_value = 0x55ADDA3A;
4106                         break;
4107                 default:
4108                         return 0;
4109                 }
4110                 break;
4111         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4112                 preemph_reg_value = 0x0006000;
4113                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4114                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4115                         demph_reg_value = 0x1B405555;
4116                         uniqtranscale_reg_value = 0x55ADDA3A;
4117                         break;
4118                 default:
4119                         return 0;
4120                 }
4121                 break;
4122         default:
4123                 return 0;
4124         }
4125
4126         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4127                                  uniqtranscale_reg_value, 0);
4128
4129         return 0;
4130 }
4131
4132 static u32 chv_signal_levels(struct intel_dp *intel_dp)
4133 {
4134         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4135         u32 deemph_reg_value, margin_reg_value;
4136         bool uniq_trans_scale = false;
4137         u8 train_set = intel_dp->train_set[0];
4138
4139         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4140         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4141                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4142                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4143                         deemph_reg_value = 128;
4144                         margin_reg_value = 52;
4145                         break;
4146                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4147                         deemph_reg_value = 128;
4148                         margin_reg_value = 77;
4149                         break;
4150                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4151                         deemph_reg_value = 128;
4152                         margin_reg_value = 102;
4153                         break;
4154                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4155                         deemph_reg_value = 128;
4156                         margin_reg_value = 154;
4157                         uniq_trans_scale = true;
4158                         break;
4159                 default:
4160                         return 0;
4161                 }
4162                 break;
4163         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4164                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4165                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4166                         deemph_reg_value = 85;
4167                         margin_reg_value = 78;
4168                         break;
4169                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4170                         deemph_reg_value = 85;
4171                         margin_reg_value = 116;
4172                         break;
4173                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4174                         deemph_reg_value = 85;
4175                         margin_reg_value = 154;
4176                         break;
4177                 default:
4178                         return 0;
4179                 }
4180                 break;
4181         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4182                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4183                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4184                         deemph_reg_value = 64;
4185                         margin_reg_value = 104;
4186                         break;
4187                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4188                         deemph_reg_value = 64;
4189                         margin_reg_value = 154;
4190                         break;
4191                 default:
4192                         return 0;
4193                 }
4194                 break;
4195         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4196                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4197                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4198                         deemph_reg_value = 43;
4199                         margin_reg_value = 154;
4200                         break;
4201                 default:
4202                         return 0;
4203                 }
4204                 break;
4205         default:
4206                 return 0;
4207         }
4208
4209         chv_set_phy_signal_level(encoder, deemph_reg_value,
4210                                  margin_reg_value, uniq_trans_scale);
4211
4212         return 0;
4213 }
4214
4215 static u32
4216 g4x_signal_levels(u8 train_set)
4217 {
4218         u32 signal_levels = 0;
4219
4220         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4221         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4222         default:
4223                 signal_levels |= DP_VOLTAGE_0_4;
4224                 break;
4225         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4226                 signal_levels |= DP_VOLTAGE_0_6;
4227                 break;
4228         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4229                 signal_levels |= DP_VOLTAGE_0_8;
4230                 break;
4231         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4232                 signal_levels |= DP_VOLTAGE_1_2;
4233                 break;
4234         }
4235         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4236         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4237         default:
4238                 signal_levels |= DP_PRE_EMPHASIS_0;
4239                 break;
4240         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4241                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4242                 break;
4243         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4244                 signal_levels |= DP_PRE_EMPHASIS_6;
4245                 break;
4246         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4247                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4248                 break;
4249         }
4250         return signal_levels;
4251 }
4252
4253 /* SNB CPU eDP voltage swing and pre-emphasis control */
4254 static u32
4255 snb_cpu_edp_signal_levels(u8 train_set)
4256 {
4257         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4258                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4259         switch (signal_levels) {
4260         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4261         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4262                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4263         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4264                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4265         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4266         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4267                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4268         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4269         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4270                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4271         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4272         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4273                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4274         default:
4275                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4276                               "0x%x\n", signal_levels);
4277                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4278         }
4279 }
4280
4281 /* IVB CPU eDP voltage swing and pre-emphasis control */
4282 static u32
4283 ivb_cpu_edp_signal_levels(u8 train_set)
4284 {
4285         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4286                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4287         switch (signal_levels) {
4288         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4289                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4290         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4291                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4292         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4293                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4294
4295         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4296                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4297         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4298                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4299
4300         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4301                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4302         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4303                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4304
4305         default:
4306                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4307                               "0x%x\n", signal_levels);
4308                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4309         }
4310 }
4311
4312 void
4313 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4314 {
4315         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4316         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4317         enum port port = intel_dig_port->base.port;
4318         u32 signal_levels, mask = 0;
4319         u8 train_set = intel_dp->train_set[0];
4320
4321         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4322                 signal_levels = bxt_signal_levels(intel_dp);
4323         } else if (HAS_DDI(dev_priv)) {
4324                 signal_levels = ddi_signal_levels(intel_dp);
4325                 mask = DDI_BUF_EMP_MASK;
4326         } else if (IS_CHERRYVIEW(dev_priv)) {
4327                 signal_levels = chv_signal_levels(intel_dp);
4328         } else if (IS_VALLEYVIEW(dev_priv)) {
4329                 signal_levels = vlv_signal_levels(intel_dp);
4330         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4331                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4332                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4333         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4334                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4335                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4336         } else {
4337                 signal_levels = g4x_signal_levels(train_set);
4338                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4339         }
4340
4341         if (mask)
4342                 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4343                             signal_levels);
4344
4345         drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4346                     train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4347                     train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4348         drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4349                     (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4350                     DP_TRAIN_PRE_EMPHASIS_SHIFT,
4351                     train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4352                     " (max)" : "");
4353
4354         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4355
4356         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4357         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4358 }
4359
4360 void
4361 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4362                                        u8 dp_train_pat)
4363 {
4364         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4365         struct drm_i915_private *dev_priv =
4366                 to_i915(intel_dig_port->base.base.dev);
4367
4368         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4369
4370         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4371         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4372 }
4373
4374 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4375 {
4376         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4377         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4378         enum port port = intel_dig_port->base.port;
4379         u32 val;
4380
4381         if (!HAS_DDI(dev_priv))
4382                 return;
4383
4384         val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4385         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4386         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4387         intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4388
4389         /*
4390          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4391          * reason we need to set idle transmission mode is to work around a HW
4392          * issue where we enable the pipe while not in idle link-training mode.
4393          * In this case there is requirement to wait for a minimum number of
4394          * idle patterns to be sent.
4395          */
4396         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4397                 return;
4398
4399         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4400                                   DP_TP_STATUS_IDLE_DONE, 1))
4401                 drm_err(&dev_priv->drm,
4402                         "Timed out waiting for DP idle patterns\n");
4403 }
4404
4405 static void
4406 intel_dp_link_down(struct intel_encoder *encoder,
4407                    const struct intel_crtc_state *old_crtc_state)
4408 {
4409         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4410         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4411         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4412         enum port port = encoder->port;
4413         u32 DP = intel_dp->DP;
4414
4415         if (drm_WARN_ON(&dev_priv->drm,
4416                         (intel_de_read(dev_priv, intel_dp->output_reg) &
4417                          DP_PORT_EN) == 0))
4418                 return;
4419
4420         drm_dbg_kms(&dev_priv->drm, "\n");
4421
4422         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4423             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4424                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4425                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4426         } else {
4427                 DP &= ~DP_LINK_TRAIN_MASK;
4428                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4429         }
4430         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4431         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4432
4433         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4434         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4435         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4436
4437         /*
4438          * HW workaround for IBX, we need to move the port
4439          * to transcoder A after disabling it to allow the
4440          * matching HDMI port to be enabled on transcoder A.
4441          */
4442         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4443                 /*
4444                  * We get CPU/PCH FIFO underruns on the other pipe when
4445                  * doing the workaround. Sweep them under the rug.
4446                  */
4447                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4448                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4449
4450                 /* always enable with pattern 1 (as per spec) */
4451                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4452                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4453                         DP_LINK_TRAIN_PAT_1;
4454                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4455                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4456
4457                 DP &= ~DP_PORT_EN;
4458                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4459                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4460
4461                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4462                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4463                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4464         }
4465
4466         msleep(intel_dp->panel_power_down_delay);
4467
4468         intel_dp->DP = DP;
4469
4470         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4471                 intel_wakeref_t wakeref;
4472
4473                 with_pps_lock(intel_dp, wakeref)
4474                         intel_dp->active_pipe = INVALID_PIPE;
4475         }
4476 }
4477
4478 static void
4479 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4480 {
4481         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4482         u8 dpcd_ext[6];
4483
4484         /*
4485          * Prior to DP1.3 the bit represented by
4486          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4487          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4488          * the true capability of the panel. The only way to check is to
4489          * then compare 0000h and 2200h.
4490          */
4491         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4492               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4493                 return;
4494
4495         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4496                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4497                 drm_err(&i915->drm,
4498                         "DPCD failed read at extended capabilities\n");
4499                 return;
4500         }
4501
4502         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4503                 drm_dbg_kms(&i915->drm,
4504                             "DPCD extended DPCD rev less than base DPCD rev\n");
4505                 return;
4506         }
4507
4508         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4509                 return;
4510
4511         drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4512                     (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4513
4514         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4515 }
4516
4517 bool
4518 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4519 {
4520         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4521
4522         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4523                              sizeof(intel_dp->dpcd)) < 0)
4524                 return false; /* aux transfer failed */
4525
4526         intel_dp_extended_receiver_capabilities(intel_dp);
4527
4528         drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4529                     intel_dp->dpcd);
4530
4531         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4532 }
4533
4534 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4535 {
4536         u8 dprx = 0;
4537
4538         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4539                               &dprx) != 1)
4540                 return false;
4541         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4542 }
4543
4544 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4545 {
4546         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4547
4548         /*
4549          * Clear the cached register set to avoid using stale values
4550          * for the sinks that do not support DSC.
4551          */
4552         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4553
4554         /* Clear fec_capable to avoid using stale values */
4555         intel_dp->fec_capable = 0;
4556
4557         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4558         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4559             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4560                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4561                                      intel_dp->dsc_dpcd,
4562                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4563                         drm_err(&i915->drm,
4564                                 "Failed to read DPCD register 0x%x\n",
4565                                 DP_DSC_SUPPORT);
4566
4567                 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4568                             (int)sizeof(intel_dp->dsc_dpcd),
4569                             intel_dp->dsc_dpcd);
4570
4571                 /* FEC is supported only on DP 1.4 */
4572                 if (!intel_dp_is_edp(intel_dp) &&
4573                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4574                                       &intel_dp->fec_capable) < 0)
4575                         drm_err(&i915->drm,
4576                                 "Failed to read FEC DPCD register\n");
4577
4578                 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4579                             intel_dp->fec_capable);
4580         }
4581 }
4582
4583 static bool
4584 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4585 {
4586         struct drm_i915_private *dev_priv =
4587                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4588
4589         /* this function is meant to be called only once */
4590         drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4591
4592         if (!intel_dp_read_dpcd(intel_dp))
4593                 return false;
4594
4595         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4596                          drm_dp_is_branch(intel_dp->dpcd));
4597
4598         /*
4599          * Read the eDP display control registers.
4600          *
4601          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4602          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4603          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4604          * method). The display control registers should read zero if they're
4605          * not supported anyway.
4606          */
4607         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4608                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4609                              sizeof(intel_dp->edp_dpcd))
4610                 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4611                             (int)sizeof(intel_dp->edp_dpcd),
4612                             intel_dp->edp_dpcd);
4613
4614         /*
4615          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4616          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4617          */
4618         intel_psr_init_dpcd(intel_dp);
4619
4620         /* Read the eDP 1.4+ supported link rates. */
4621         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4622                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4623                 int i;
4624
4625                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4626                                 sink_rates, sizeof(sink_rates));
4627
4628                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4629                         int val = le16_to_cpu(sink_rates[i]);
4630
4631                         if (val == 0)
4632                                 break;
4633
4634                         /* Value read multiplied by 200kHz gives the per-lane
4635                          * link rate in kHz. The source rates are, however,
4636                          * stored in terms of LS_Clk kHz. The full conversion
4637                          * back to symbols is
4638                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4639                          */
4640                         intel_dp->sink_rates[i] = (val * 200) / 10;
4641                 }
4642                 intel_dp->num_sink_rates = i;
4643         }
4644
4645         /*
4646          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4647          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4648          */
4649         if (intel_dp->num_sink_rates)
4650                 intel_dp->use_rate_select = true;
4651         else
4652                 intel_dp_set_sink_rates(intel_dp);
4653
4654         intel_dp_set_common_rates(intel_dp);
4655
4656         /* Read the eDP DSC DPCD registers */
4657         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4658                 intel_dp_get_dsc_sink_cap(intel_dp);
4659
4660         return true;
4661 }
4662
4663
4664 static bool
4665 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4666 {
4667         if (!intel_dp_read_dpcd(intel_dp))
4668                 return false;
4669
4670         /*
4671          * Don't clobber cached eDP rates. Also skip re-reading
4672          * the OUI/ID since we know it won't change.
4673          */
4674         if (!intel_dp_is_edp(intel_dp)) {
4675                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4676                                  drm_dp_is_branch(intel_dp->dpcd));
4677
4678                 intel_dp_set_sink_rates(intel_dp);
4679                 intel_dp_set_common_rates(intel_dp);
4680         }
4681
4682         /*
4683          * Some eDP panels do not set a valid value for sink count, that is why
4684          * it don't care about read it here and in intel_edp_init_dpcd().
4685          */
4686         if (!intel_dp_is_edp(intel_dp) &&
4687             !drm_dp_has_quirk(&intel_dp->desc, 0,
4688                               DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4689                 u8 count;
4690                 ssize_t r;
4691
4692                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4693                 if (r < 1)
4694                         return false;
4695
4696                 /*
4697                  * Sink count can change between short pulse hpd hence
4698                  * a member variable in intel_dp will track any changes
4699                  * between short pulse interrupts.
4700                  */
4701                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4702
4703                 /*
4704                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4705                  * a dongle is present but no display. Unless we require to know
4706                  * if a dongle is present or not, we don't need to update
4707                  * downstream port information. So, an early return here saves
4708                  * time from performing other operations which are not required.
4709                  */
4710                 if (!intel_dp->sink_count)
4711                         return false;
4712         }
4713
4714         if (!drm_dp_is_branch(intel_dp->dpcd))
4715                 return true; /* native DP sink */
4716
4717         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4718                 return true; /* no per-port downstream info */
4719
4720         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4721                              intel_dp->downstream_ports,
4722                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4723                 return false; /* downstream port status fetch failed */
4724
4725         return true;
4726 }
4727
4728 static bool
4729 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4730 {
4731         u8 mstm_cap;
4732
4733         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4734                 return false;
4735
4736         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4737                 return false;
4738
4739         return mstm_cap & DP_MST_CAP;
4740 }
4741
4742 static bool
4743 intel_dp_can_mst(struct intel_dp *intel_dp)
4744 {
4745         return i915_modparams.enable_dp_mst &&
4746                 intel_dp->can_mst &&
4747                 intel_dp_sink_can_mst(intel_dp);
4748 }
4749
4750 static void
4751 intel_dp_configure_mst(struct intel_dp *intel_dp)
4752 {
4753         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4754         struct intel_encoder *encoder =
4755                 &dp_to_dig_port(intel_dp)->base;
4756         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4757
4758         drm_dbg_kms(&i915->drm,
4759                     "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4760                     encoder->base.base.id, encoder->base.name,
4761                     yesno(intel_dp->can_mst), yesno(sink_can_mst),
4762                     yesno(i915_modparams.enable_dp_mst));
4763
4764         if (!intel_dp->can_mst)
4765                 return;
4766
4767         intel_dp->is_mst = sink_can_mst &&
4768                 i915_modparams.enable_dp_mst;
4769
4770         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4771                                         intel_dp->is_mst);
4772 }
4773
4774 static bool
4775 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4776 {
4777         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4778                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4779                 DP_DPRX_ESI_LEN;
4780 }
4781
4782 bool
4783 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4784                        const struct drm_connector_state *conn_state)
4785 {
4786         /*
4787          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4788          * of Color Encoding Format and Content Color Gamut], in order to
4789          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4790          */
4791         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4792                 return true;
4793
4794         switch (conn_state->colorspace) {
4795         case DRM_MODE_COLORIMETRY_SYCC_601:
4796         case DRM_MODE_COLORIMETRY_OPYCC_601:
4797         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4798         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4799         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4800                 return true;
4801         default:
4802                 break;
4803         }
4804
4805         return false;
4806 }
4807
4808 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4809                                      struct dp_sdp *sdp, size_t size)
4810 {
4811         size_t length = sizeof(struct dp_sdp);
4812
4813         if (size < length)
4814                 return -ENOSPC;
4815
4816         memset(sdp, 0, size);
4817
4818         /*
4819          * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4820          * VSC SDP Header Bytes
4821          */
4822         sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4823         sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4824         sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4825         sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4826
4827         /* VSC SDP Payload for DB16 through DB18 */
4828         /* Pixel Encoding and Colorimetry Formats  */
4829         sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4830         sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4831
4832         switch (vsc->bpc) {
4833         case 6:
4834                 /* 6bpc: 0x0 */
4835                 break;
4836         case 8:
4837                 sdp->db[17] = 0x1; /* DB17[3:0] */
4838                 break;
4839         case 10:
4840                 sdp->db[17] = 0x2;
4841                 break;
4842         case 12:
4843                 sdp->db[17] = 0x3;
4844                 break;
4845         case 16:
4846                 sdp->db[17] = 0x4;
4847                 break;
4848         default:
4849                 MISSING_CASE(vsc->bpc);
4850                 break;
4851         }
4852         /* Dynamic Range and Component Bit Depth */
4853         if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4854                 sdp->db[17] |= 0x80;  /* DB17[7] */
4855
4856         /* Content Type */
4857         sdp->db[18] = vsc->content_type & 0x7;
4858
4859         return length;
4860 }
4861
4862 static ssize_t
4863 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4864                                          struct dp_sdp *sdp,
4865                                          size_t size)
4866 {
4867         size_t length = sizeof(struct dp_sdp);
4868         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4869         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4870         ssize_t len;
4871
4872         if (size < length)
4873                 return -ENOSPC;
4874
4875         memset(sdp, 0, size);
4876
4877         len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4878         if (len < 0) {
4879                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4880                 return -ENOSPC;
4881         }
4882
4883         if (len != infoframe_size) {
4884                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4885                 return -ENOSPC;
4886         }
4887
4888         /*
4889          * Set up the infoframe sdp packet for HDR static metadata.
4890          * Prepare VSC Header for SU as per DP 1.4a spec,
4891          * Table 2-100 and Table 2-101
4892          */
4893
4894         /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4895         sdp->sdp_header.HB0 = 0;
4896         /*
4897          * Packet Type 80h + Non-audio INFOFRAME Type value
4898          * HDMI_INFOFRAME_TYPE_DRM: 0x87
4899          * - 80h + Non-audio INFOFRAME Type value
4900          * - InfoFrame Type: 0x07
4901          *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4902          */
4903         sdp->sdp_header.HB1 = drm_infoframe->type;
4904         /*
4905          * Least Significant Eight Bits of (Data Byte Count – 1)
4906          * infoframe_size - 1
4907          */
4908         sdp->sdp_header.HB2 = 0x1D;
4909         /* INFOFRAME SDP Version Number */
4910         sdp->sdp_header.HB3 = (0x13 << 2);
4911         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4912         sdp->db[0] = drm_infoframe->version;
4913         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4914         sdp->db[1] = drm_infoframe->length;
4915         /*
4916          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4917          * HDMI_INFOFRAME_HEADER_SIZE
4918          */
4919         BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4920         memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4921                HDMI_DRM_INFOFRAME_SIZE);
4922
4923         /*
4924          * Size of DP infoframe sdp packet for HDR static metadata consists of
4925          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4926          * - Two Data Blocks: 2 bytes
4927          *    CTA Header Byte2 (INFOFRAME Version Number)
4928          *    CTA Header Byte3 (Length of INFOFRAME)
4929          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4930          *
4931          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4932          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4933          * will pad rest of the size.
4934          */
4935         return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4936 }
4937
4938 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4939                                const struct intel_crtc_state *crtc_state,
4940                                unsigned int type)
4941 {
4942         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4943         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4944         struct dp_sdp sdp = {};
4945         ssize_t len;
4946
4947         if ((crtc_state->infoframes.enable &
4948              intel_hdmi_infoframe_enable(type)) == 0)
4949                 return;
4950
4951         switch (type) {
4952         case DP_SDP_VSC:
4953                 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4954                                             sizeof(sdp));
4955                 break;
4956         case HDMI_PACKET_TYPE_GAMUT_METADATA:
4957                 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4958                                                                &sdp, sizeof(sdp));
4959                 break;
4960         default:
4961                 MISSING_CASE(type);
4962                 return;
4963         }
4964
4965         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4966                 return;
4967
4968         intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4969 }
4970
4971 void intel_dp_set_infoframes(struct intel_encoder *encoder,
4972                              bool enable,
4973                              const struct intel_crtc_state *crtc_state,
4974                              const struct drm_connector_state *conn_state)
4975 {
4976         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4977         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4978         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
4979         u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
4980                          VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
4981                          VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
4982         u32 val = intel_de_read(dev_priv, reg);
4983
4984         /* TODO: Add DSC case (DIP_ENABLE_PPS) */
4985         /* When PSR is enabled, this routine doesn't disable VSC DIP */
4986         if (intel_psr_enabled(intel_dp))
4987                 val &= ~dip_enable;
4988         else
4989                 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
4990
4991         if (!enable) {
4992                 intel_de_write(dev_priv, reg, val);
4993                 intel_de_posting_read(dev_priv, reg);
4994                 return;
4995         }
4996
4997         intel_de_write(dev_priv, reg, val);
4998         intel_de_posting_read(dev_priv, reg);
4999
5000         /* When PSR is enabled, VSC SDP is handled by PSR routine */
5001         if (!intel_psr_enabled(intel_dp))
5002                 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5003
5004         intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5005 }
5006
5007 static void
5008 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
5009                        const struct intel_crtc_state *crtc_state,
5010                        const struct drm_connector_state *conn_state)
5011 {
5012         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5013         struct dp_sdp vsc_sdp = {};
5014
5015         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
5016         vsc_sdp.sdp_header.HB0 = 0;
5017         vsc_sdp.sdp_header.HB1 = 0x7;
5018
5019         /*
5020          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
5021          * Colorimetry Format indication.
5022          */
5023         vsc_sdp.sdp_header.HB2 = 0x5;
5024
5025         /*
5026          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
5027          * Colorimetry Format indication (HB2 = 05h).
5028          */
5029         vsc_sdp.sdp_header.HB3 = 0x13;
5030
5031         /* DP 1.4a spec, Table 2-120 */
5032         switch (crtc_state->output_format) {
5033         case INTEL_OUTPUT_FORMAT_YCBCR444:
5034                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
5035                 break;
5036         case INTEL_OUTPUT_FORMAT_YCBCR420:
5037                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
5038                 break;
5039         case INTEL_OUTPUT_FORMAT_RGB:
5040         default:
5041                 /* RGB: DB16[7:4] = 0h */
5042                 break;
5043         }
5044
5045         switch (conn_state->colorspace) {
5046         case DRM_MODE_COLORIMETRY_BT709_YCC:
5047                 vsc_sdp.db[16] |= 0x1;
5048                 break;
5049         case DRM_MODE_COLORIMETRY_XVYCC_601:
5050                 vsc_sdp.db[16] |= 0x2;
5051                 break;
5052         case DRM_MODE_COLORIMETRY_XVYCC_709:
5053                 vsc_sdp.db[16] |= 0x3;
5054                 break;
5055         case DRM_MODE_COLORIMETRY_SYCC_601:
5056                 vsc_sdp.db[16] |= 0x4;
5057                 break;
5058         case DRM_MODE_COLORIMETRY_OPYCC_601:
5059                 vsc_sdp.db[16] |= 0x5;
5060                 break;
5061         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
5062         case DRM_MODE_COLORIMETRY_BT2020_RGB:
5063                 vsc_sdp.db[16] |= 0x6;
5064                 break;
5065         case DRM_MODE_COLORIMETRY_BT2020_YCC:
5066                 vsc_sdp.db[16] |= 0x7;
5067                 break;
5068         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
5069         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
5070                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
5071                 break;
5072         default:
5073                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
5074
5075                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
5076                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5077                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
5078                 break;
5079         }
5080
5081         /*
5082          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
5083          * the following Component Bit Depth values are defined:
5084          * 001b = 8bpc.
5085          * 010b = 10bpc.
5086          * 011b = 12bpc.
5087          * 100b = 16bpc.
5088          */
5089         switch (crtc_state->pipe_bpp) {
5090         case 24: /* 8bpc */
5091                 vsc_sdp.db[17] = 0x1;
5092                 break;
5093         case 30: /* 10bpc */
5094                 vsc_sdp.db[17] = 0x2;
5095                 break;
5096         case 36: /* 12bpc */
5097                 vsc_sdp.db[17] = 0x3;
5098                 break;
5099         case 48: /* 16bpc */
5100                 vsc_sdp.db[17] = 0x4;
5101                 break;
5102         default:
5103                 MISSING_CASE(crtc_state->pipe_bpp);
5104                 break;
5105         }
5106
5107         /*
5108          * Dynamic Range (Bit 7)
5109          * 0 = VESA range, 1 = CTA range.
5110          * all YCbCr are always limited range
5111          */
5112         vsc_sdp.db[17] |= 0x80;
5113
5114         /*
5115          * Content Type (Bits 2:0)
5116          * 000b = Not defined.
5117          * 001b = Graphics.
5118          * 010b = Photo.
5119          * 011b = Video.
5120          * 100b = Game
5121          * All other values are RESERVED.
5122          * Note: See CTA-861-G for the definition and expected
5123          * processing by a stream sink for the above contect types.
5124          */
5125         vsc_sdp.db[18] = 0;
5126
5127         intel_dig_port->write_infoframe(&intel_dig_port->base,
5128                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
5129 }
5130
5131 static void
5132 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
5133                                           const struct intel_crtc_state *crtc_state,
5134                                           const struct drm_connector_state *conn_state)
5135 {
5136         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5137         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5138         struct dp_sdp infoframe_sdp = {};
5139         struct hdmi_drm_infoframe drm_infoframe = {};
5140         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
5141         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
5142         ssize_t len;
5143         int ret;
5144
5145         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
5146         if (ret) {
5147                 drm_dbg_kms(&i915->drm,
5148                             "couldn't set HDR metadata in infoframe\n");
5149                 return;
5150         }
5151
5152         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
5153         if (len < 0) {
5154                 drm_dbg_kms(&i915->drm,
5155                             "buffer size is smaller than hdr metadata infoframe\n");
5156                 return;
5157         }
5158
5159         if (len != infoframe_size) {
5160                 drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n");
5161                 return;
5162         }
5163
5164         /*
5165          * Set up the infoframe sdp packet for HDR static metadata.
5166          * Prepare VSC Header for SU as per DP 1.4a spec,
5167          * Table 2-100 and Table 2-101
5168          */
5169
5170         /* Packet ID, 00h for non-Audio INFOFRAME */
5171         infoframe_sdp.sdp_header.HB0 = 0;
5172         /*
5173          * Packet Type 80h + Non-audio INFOFRAME Type value
5174          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
5175          */
5176         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
5177         /*
5178          * Least Significant Eight Bits of (Data Byte Count – 1)
5179          * infoframe_size - 1,
5180          */
5181         infoframe_sdp.sdp_header.HB2 = 0x1D;
5182         /* INFOFRAME SDP Version Number */
5183         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
5184         /* CTA Header Byte 2 (INFOFRAME Version Number) */
5185         infoframe_sdp.db[0] = drm_infoframe.version;
5186         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5187         infoframe_sdp.db[1] = drm_infoframe.length;
5188         /*
5189          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
5190          * HDMI_INFOFRAME_HEADER_SIZE
5191          */
5192         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
5193         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
5194                HDMI_DRM_INFOFRAME_SIZE);
5195
5196         /*
5197          * Size of DP infoframe sdp packet for HDR static metadata is consist of
5198          * - DP SDP Header(struct dp_sdp_header): 4 bytes
5199          * - Two Data Blocks: 2 bytes
5200          *    CTA Header Byte2 (INFOFRAME Version Number)
5201          *    CTA Header Byte3 (Length of INFOFRAME)
5202          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
5203          *
5204          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
5205          * infoframe size. But GEN11+ has larger than that size, write_infoframe
5206          * will pad rest of the size.
5207          */
5208         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
5209                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
5210                                         &infoframe_sdp,
5211                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
5212 }
5213
5214 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
5215                          const struct intel_crtc_state *crtc_state,
5216                          const struct drm_connector_state *conn_state)
5217 {
5218         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
5219                 return;
5220
5221         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
5222 }
5223
5224 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
5225                                   const struct intel_crtc_state *crtc_state,
5226                                   const struct drm_connector_state *conn_state)
5227 {
5228         if (!conn_state->hdr_output_metadata)
5229                 return;
5230
5231         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
5232                                                   crtc_state,
5233                                                   conn_state);
5234 }
5235
5236 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5237 {
5238         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5239         int status = 0;
5240         int test_link_rate;
5241         u8 test_lane_count, test_link_bw;
5242         /* (DP CTS 1.2)
5243          * 4.3.1.11
5244          */
5245         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5246         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5247                                    &test_lane_count);
5248
5249         if (status <= 0) {
5250                 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5251                 return DP_TEST_NAK;
5252         }
5253         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5254
5255         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5256                                    &test_link_bw);
5257         if (status <= 0) {
5258                 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5259                 return DP_TEST_NAK;
5260         }
5261         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5262
5263         /* Validate the requested link rate and lane count */
5264         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5265                                         test_lane_count))
5266                 return DP_TEST_NAK;
5267
5268         intel_dp->compliance.test_lane_count = test_lane_count;
5269         intel_dp->compliance.test_link_rate = test_link_rate;
5270
5271         return DP_TEST_ACK;
5272 }
5273
5274 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5275 {
5276         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5277         u8 test_pattern;
5278         u8 test_misc;
5279         __be16 h_width, v_height;
5280         int status = 0;
5281
5282         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5283         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5284                                    &test_pattern);
5285         if (status <= 0) {
5286                 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5287                 return DP_TEST_NAK;
5288         }
5289         if (test_pattern != DP_COLOR_RAMP)
5290                 return DP_TEST_NAK;
5291
5292         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5293                                   &h_width, 2);
5294         if (status <= 0) {
5295                 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5296                 return DP_TEST_NAK;
5297         }
5298
5299         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5300                                   &v_height, 2);
5301         if (status <= 0) {
5302                 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5303                 return DP_TEST_NAK;
5304         }
5305
5306         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5307                                    &test_misc);
5308         if (status <= 0) {
5309                 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5310                 return DP_TEST_NAK;
5311         }
5312         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5313                 return DP_TEST_NAK;
5314         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5315                 return DP_TEST_NAK;
5316         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5317         case DP_TEST_BIT_DEPTH_6:
5318                 intel_dp->compliance.test_data.bpc = 6;
5319                 break;
5320         case DP_TEST_BIT_DEPTH_8:
5321                 intel_dp->compliance.test_data.bpc = 8;
5322                 break;
5323         default:
5324                 return DP_TEST_NAK;
5325         }
5326
5327         intel_dp->compliance.test_data.video_pattern = test_pattern;
5328         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5329         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5330         /* Set test active flag here so userspace doesn't interrupt things */
5331         intel_dp->compliance.test_active = true;
5332
5333         return DP_TEST_ACK;
5334 }
5335
5336 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5337 {
5338         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5339         u8 test_result = DP_TEST_ACK;
5340         struct intel_connector *intel_connector = intel_dp->attached_connector;
5341         struct drm_connector *connector = &intel_connector->base;
5342
5343         if (intel_connector->detect_edid == NULL ||
5344             connector->edid_corrupt ||
5345             intel_dp->aux.i2c_defer_count > 6) {
5346                 /* Check EDID read for NACKs, DEFERs and corruption
5347                  * (DP CTS 1.2 Core r1.1)
5348                  *    4.2.2.4 : Failed EDID read, I2C_NAK
5349                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
5350                  *    4.2.2.6 : EDID corruption detected
5351                  * Use failsafe mode for all cases
5352                  */
5353                 if (intel_dp->aux.i2c_nack_count > 0 ||
5354                         intel_dp->aux.i2c_defer_count > 0)
5355                         drm_dbg_kms(&i915->drm,
5356                                     "EDID read had %d NACKs, %d DEFERs\n",
5357                                     intel_dp->aux.i2c_nack_count,
5358                                     intel_dp->aux.i2c_defer_count);
5359                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5360         } else {
5361                 struct edid *block = intel_connector->detect_edid;
5362
5363                 /* We have to write the checksum
5364                  * of the last block read
5365                  */
5366                 block += intel_connector->detect_edid->extensions;
5367
5368                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5369                                        block->checksum) <= 0)
5370                         drm_dbg_kms(&i915->drm,
5371                                     "Failed to write EDID checksum\n");
5372
5373                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5374                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5375         }
5376
5377         /* Set test active flag here so userspace doesn't interrupt things */
5378         intel_dp->compliance.test_active = true;
5379
5380         return test_result;
5381 }
5382
5383 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5384 {
5385         struct drm_dp_phy_test_params *data =
5386                 &intel_dp->compliance.test_data.phytest;
5387
5388         if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5389                 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5390                 return DP_TEST_NAK;
5391         }
5392
5393         /*
5394          * link_mst is set to false to avoid executing mst related code
5395          * during compliance testing.
5396          */
5397         intel_dp->link_mst = false;
5398
5399         return DP_TEST_ACK;
5400 }
5401
5402 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5403 {
5404         struct drm_i915_private *dev_priv =
5405                         to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5406         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5407         struct drm_dp_phy_test_params *data =
5408                         &intel_dp->compliance.test_data.phytest;
5409         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5410         enum pipe pipe = crtc->pipe;
5411         u32 pattern_val;
5412
5413         switch (data->phy_pattern) {
5414         case DP_PHY_TEST_PATTERN_NONE:
5415                 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5416                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5417                 break;
5418         case DP_PHY_TEST_PATTERN_D10_2:
5419                 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5420                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5421                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5422                 break;
5423         case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5424                 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5425                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5426                                DDI_DP_COMP_CTL_ENABLE |
5427                                DDI_DP_COMP_CTL_SCRAMBLED_0);
5428                 break;
5429         case DP_PHY_TEST_PATTERN_PRBS7:
5430                 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5431                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5432                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5433                 break;
5434         case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5435                 /*
5436                  * FIXME: Ideally pattern should come from DPCD 0x250. As
5437                  * current firmware of DPR-100 could not set it, so hardcoding
5438                  * now for complaince test.
5439                  */
5440                 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5441                 pattern_val = 0x3e0f83e0;
5442                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5443                 pattern_val = 0x0f83e0f8;
5444                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5445                 pattern_val = 0x0000f83e;
5446                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5447                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5448                                DDI_DP_COMP_CTL_ENABLE |
5449                                DDI_DP_COMP_CTL_CUSTOM80);
5450                 break;
5451         case DP_PHY_TEST_PATTERN_CP2520:
5452                 /*
5453                  * FIXME: Ideally pattern should come from DPCD 0x24A. As
5454                  * current firmware of DPR-100 could not set it, so hardcoding
5455                  * now for complaince test.
5456                  */
5457                 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5458                 pattern_val = 0xFB;
5459                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5460                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5461                                pattern_val);
5462                 break;
5463         default:
5464                 WARN(1, "Invalid Phy Test Pattern\n");
5465         }
5466 }
5467
5468 static void
5469 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5470 {
5471         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5472         struct drm_device *dev = intel_dig_port->base.base.dev;
5473         struct drm_i915_private *dev_priv = to_i915(dev);
5474         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5475         enum pipe pipe = crtc->pipe;
5476         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5477
5478         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5479                                                  TRANS_DDI_FUNC_CTL(pipe));
5480         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5481         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5482
5483         trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5484                                       TGL_TRANS_DDI_PORT_MASK);
5485         trans_conf_value &= ~PIPECONF_ENABLE;
5486         dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5487
5488         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5489         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5490                        trans_ddi_func_ctl_value);
5491         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5492 }
5493
5494 static void
5495 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5496 {
5497         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5498         struct drm_device *dev = intel_dig_port->base.base.dev;
5499         struct drm_i915_private *dev_priv = to_i915(dev);
5500         enum port port = intel_dig_port->base.port;
5501         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5502         enum pipe pipe = crtc->pipe;
5503         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5504
5505         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5506                                                  TRANS_DDI_FUNC_CTL(pipe));
5507         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5508         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5509
5510         trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5511                                     TGL_TRANS_DDI_SELECT_PORT(port);
5512         trans_conf_value |= PIPECONF_ENABLE;
5513         dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5514
5515         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5516         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5517         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5518                        trans_ddi_func_ctl_value);
5519 }
5520
5521 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5522 {
5523         struct drm_dp_phy_test_params *data =
5524                 &intel_dp->compliance.test_data.phytest;
5525         u8 link_status[DP_LINK_STATUS_SIZE];
5526
5527         if (!intel_dp_get_link_status(intel_dp, link_status)) {
5528                 DRM_DEBUG_KMS("failed to get link status\n");
5529                 return;
5530         }
5531
5532         /* retrieve vswing & pre-emphasis setting */
5533         intel_dp_get_adjust_train(intel_dp, link_status);
5534
5535         intel_dp_autotest_phy_ddi_disable(intel_dp);
5536
5537         intel_dp_set_signal_levels(intel_dp);
5538
5539         intel_dp_phy_pattern_update(intel_dp);
5540
5541         intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5542
5543         drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5544                                     link_status[DP_DPCD_REV]);
5545 }
5546
5547 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5548 {
5549         u8 test_result;
5550
5551         test_result = intel_dp_prepare_phytest(intel_dp);
5552         if (test_result != DP_TEST_ACK)
5553                 DRM_ERROR("Phy test preparation failed\n");
5554
5555         intel_dp_process_phy_request(intel_dp);
5556
5557         return test_result;
5558 }
5559
5560 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5561 {
5562         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5563         u8 response = DP_TEST_NAK;
5564         u8 request = 0;
5565         int status;
5566
5567         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5568         if (status <= 0) {
5569                 drm_dbg_kms(&i915->drm,
5570                             "Could not read test request from sink\n");
5571                 goto update_status;
5572         }
5573
5574         switch (request) {
5575         case DP_TEST_LINK_TRAINING:
5576                 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5577                 response = intel_dp_autotest_link_training(intel_dp);
5578                 break;
5579         case DP_TEST_LINK_VIDEO_PATTERN:
5580                 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5581                 response = intel_dp_autotest_video_pattern(intel_dp);
5582                 break;
5583         case DP_TEST_LINK_EDID_READ:
5584                 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5585                 response = intel_dp_autotest_edid(intel_dp);
5586                 break;
5587         case DP_TEST_LINK_PHY_TEST_PATTERN:
5588                 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5589                 response = intel_dp_autotest_phy_pattern(intel_dp);
5590                 break;
5591         default:
5592                 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5593                             request);
5594                 break;
5595         }
5596
5597         if (response & DP_TEST_ACK)
5598                 intel_dp->compliance.test_type = request;
5599
5600 update_status:
5601         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5602         if (status <= 0)
5603                 drm_dbg_kms(&i915->drm,
5604                             "Could not write test response to sink\n");
5605 }
5606
5607 static int
5608 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5609 {
5610         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5611         bool need_retrain = false;
5612
5613         if (!intel_dp->is_mst)
5614                 return -EINVAL;
5615
5616         WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5617
5618         for (;;) {
5619                 u8 esi[DP_DPRX_ESI_LEN] = {};
5620                 bool bret, handled;
5621                 int retry;
5622
5623                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5624                 if (!bret) {
5625                         drm_dbg_kms(&i915->drm,
5626                                     "failed to get ESI - device may have failed\n");
5627                         return -EINVAL;
5628                 }
5629
5630                 /* check link status - esi[10] = 0x200c */
5631                 if (intel_dp->active_mst_links > 0 && !need_retrain &&
5632                     !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5633                         drm_dbg_kms(&i915->drm,
5634                                     "channel EQ not ok, retraining\n");
5635                         need_retrain = true;
5636                 }
5637
5638                 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5639
5640                 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5641                 if (!handled)
5642                         break;
5643
5644                 for (retry = 0; retry < 3; retry++) {
5645                         int wret;
5646
5647                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5648                                                  DP_SINK_COUNT_ESI+1,
5649                                                  &esi[1], 3);
5650                         if (wret == 3)
5651                                 break;
5652                 }
5653         }
5654
5655         return need_retrain;
5656 }
5657
5658 static bool
5659 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5660 {
5661         u8 link_status[DP_LINK_STATUS_SIZE];
5662
5663         if (!intel_dp->link_trained)
5664                 return false;
5665
5666         /*
5667          * While PSR source HW is enabled, it will control main-link sending
5668          * frames, enabling and disabling it so trying to do a retrain will fail
5669          * as the link would or not be on or it could mix training patterns
5670          * and frame data at the same time causing retrain to fail.
5671          * Also when exiting PSR, HW will retrain the link anyways fixing
5672          * any link status error.
5673          */
5674         if (intel_psr_enabled(intel_dp))
5675                 return false;
5676
5677         if (!intel_dp_get_link_status(intel_dp, link_status))
5678                 return false;
5679
5680         /*
5681          * Validate the cached values of intel_dp->link_rate and
5682          * intel_dp->lane_count before attempting to retrain.
5683          */
5684         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5685                                         intel_dp->lane_count))
5686                 return false;
5687
5688         /* Retrain if Channel EQ or CR not ok */
5689         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5690 }
5691
5692 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5693                                    const struct drm_connector_state *conn_state)
5694 {
5695         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5696         struct intel_encoder *encoder;
5697         enum pipe pipe;
5698
5699         if (!conn_state->best_encoder)
5700                 return false;
5701
5702         /* SST */
5703         encoder = &dp_to_dig_port(intel_dp)->base;
5704         if (conn_state->best_encoder == &encoder->base)
5705                 return true;
5706
5707         /* MST */
5708         for_each_pipe(i915, pipe) {
5709                 encoder = &intel_dp->mst_encoders[pipe]->base;
5710                 if (conn_state->best_encoder == &encoder->base)
5711                         return true;
5712         }
5713
5714         return false;
5715 }
5716
5717 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5718                                       struct drm_modeset_acquire_ctx *ctx,
5719                                       u32 *crtc_mask)
5720 {
5721         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5722         struct drm_connector_list_iter conn_iter;
5723         struct intel_connector *connector;
5724         int ret = 0;
5725
5726         *crtc_mask = 0;
5727
5728         if (!intel_dp_needs_link_retrain(intel_dp))
5729                 return 0;
5730
5731         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5732         for_each_intel_connector_iter(connector, &conn_iter) {
5733                 struct drm_connector_state *conn_state =
5734                         connector->base.state;
5735                 struct intel_crtc_state *crtc_state;
5736                 struct intel_crtc *crtc;
5737
5738                 if (!intel_dp_has_connector(intel_dp, conn_state))
5739                         continue;
5740
5741                 crtc = to_intel_crtc(conn_state->crtc);
5742                 if (!crtc)
5743                         continue;
5744
5745                 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5746                 if (ret)
5747                         break;
5748
5749                 crtc_state = to_intel_crtc_state(crtc->base.state);
5750
5751                 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5752
5753                 if (!crtc_state->hw.active)
5754                         continue;
5755
5756                 if (conn_state->commit &&
5757                     !try_wait_for_completion(&conn_state->commit->hw_done))
5758                         continue;
5759
5760                 *crtc_mask |= drm_crtc_mask(&crtc->base);
5761         }
5762         drm_connector_list_iter_end(&conn_iter);
5763
5764         if (!intel_dp_needs_link_retrain(intel_dp))
5765                 *crtc_mask = 0;
5766
5767         return ret;
5768 }
5769
5770 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5771 {
5772         struct intel_connector *connector = intel_dp->attached_connector;
5773
5774         return connector->base.status == connector_status_connected ||
5775                 intel_dp->is_mst;
5776 }
5777
5778 int intel_dp_retrain_link(struct intel_encoder *encoder,
5779                           struct drm_modeset_acquire_ctx *ctx)
5780 {
5781         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5782         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5783         struct intel_crtc *crtc;
5784         u32 crtc_mask;
5785         int ret;
5786
5787         if (!intel_dp_is_connected(intel_dp))
5788                 return 0;
5789
5790         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5791                                ctx);
5792         if (ret)
5793                 return ret;
5794
5795         ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5796         if (ret)
5797                 return ret;
5798
5799         if (crtc_mask == 0)
5800                 return 0;
5801
5802         drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5803                     encoder->base.base.id, encoder->base.name);
5804
5805         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5806                 const struct intel_crtc_state *crtc_state =
5807                         to_intel_crtc_state(crtc->base.state);
5808
5809                 /* Suppress underruns caused by re-training */
5810                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5811                 if (crtc_state->has_pch_encoder)
5812                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5813                                                               intel_crtc_pch_transcoder(crtc), false);
5814         }
5815
5816         intel_dp_start_link_train(intel_dp);
5817         intel_dp_stop_link_train(intel_dp);
5818
5819         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5820                 const struct intel_crtc_state *crtc_state =
5821                         to_intel_crtc_state(crtc->base.state);
5822
5823                 /* Keep underrun reporting disabled until things are stable */
5824                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5825
5826                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5827                 if (crtc_state->has_pch_encoder)
5828                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5829                                                               intel_crtc_pch_transcoder(crtc), true);
5830         }
5831
5832         return 0;
5833 }
5834
5835 /*
5836  * If display is now connected check links status,
5837  * there has been known issues of link loss triggering
5838  * long pulse.
5839  *
5840  * Some sinks (eg. ASUS PB287Q) seem to perform some
5841  * weird HPD ping pong during modesets. So we can apparently
5842  * end up with HPD going low during a modeset, and then
5843  * going back up soon after. And once that happens we must
5844  * retrain the link to get a picture. That's in case no
5845  * userspace component reacted to intermittent HPD dip.
5846  */
5847 static enum intel_hotplug_state
5848 intel_dp_hotplug(struct intel_encoder *encoder,
5849                  struct intel_connector *connector)
5850 {
5851         struct drm_modeset_acquire_ctx ctx;
5852         enum intel_hotplug_state state;
5853         int ret;
5854
5855         state = intel_encoder_hotplug(encoder, connector);
5856
5857         drm_modeset_acquire_init(&ctx, 0);
5858
5859         for (;;) {
5860                 ret = intel_dp_retrain_link(encoder, &ctx);
5861
5862                 if (ret == -EDEADLK) {
5863                         drm_modeset_backoff(&ctx);
5864                         continue;
5865                 }
5866
5867                 break;
5868         }
5869
5870         drm_modeset_drop_locks(&ctx);
5871         drm_modeset_acquire_fini(&ctx);
5872         drm_WARN(encoder->base.dev, ret,
5873                  "Acquiring modeset locks failed with %i\n", ret);
5874
5875         /*
5876          * Keeping it consistent with intel_ddi_hotplug() and
5877          * intel_hdmi_hotplug().
5878          */
5879         if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5880                 state = INTEL_HOTPLUG_RETRY;
5881
5882         return state;
5883 }
5884
5885 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5886 {
5887         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5888         u8 val;
5889
5890         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5891                 return;
5892
5893         if (drm_dp_dpcd_readb(&intel_dp->aux,
5894                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5895                 return;
5896
5897         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5898
5899         if (val & DP_AUTOMATED_TEST_REQUEST)
5900                 intel_dp_handle_test_request(intel_dp);
5901
5902         if (val & DP_CP_IRQ)
5903                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5904
5905         if (val & DP_SINK_SPECIFIC_IRQ)
5906                 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5907 }
5908
5909 /*
5910  * According to DP spec
5911  * 5.1.2:
5912  *  1. Read DPCD
5913  *  2. Configure link according to Receiver Capabilities
5914  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5915  *  4. Check link status on receipt of hot-plug interrupt
5916  *
5917  * intel_dp_short_pulse -  handles short pulse interrupts
5918  * when full detection is not required.
5919  * Returns %true if short pulse is handled and full detection
5920  * is NOT required and %false otherwise.
5921  */
5922 static bool
5923 intel_dp_short_pulse(struct intel_dp *intel_dp)
5924 {
5925         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5926         u8 old_sink_count = intel_dp->sink_count;
5927         bool ret;
5928
5929         /*
5930          * Clearing compliance test variables to allow capturing
5931          * of values for next automated test request.
5932          */
5933         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5934
5935         /*
5936          * Now read the DPCD to see if it's actually running
5937          * If the current value of sink count doesn't match with
5938          * the value that was stored earlier or dpcd read failed
5939          * we need to do full detection
5940          */
5941         ret = intel_dp_get_dpcd(intel_dp);
5942
5943         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5944                 /* No need to proceed if we are going to do full detect */
5945                 return false;
5946         }
5947
5948         intel_dp_check_service_irq(intel_dp);
5949
5950         /* Handle CEC interrupts, if any */
5951         drm_dp_cec_irq(&intel_dp->aux);
5952
5953         /* defer to the hotplug work for link retraining if needed */
5954         if (intel_dp_needs_link_retrain(intel_dp))
5955                 return false;
5956
5957         intel_psr_short_pulse(intel_dp);
5958
5959         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5960                 drm_dbg_kms(&dev_priv->drm,
5961                             "Link Training Compliance Test requested\n");
5962                 /* Send a Hotplug Uevent to userspace to start modeset */
5963                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5964         }
5965
5966         return true;
5967 }
5968
5969 /* XXX this is probably wrong for multiple downstream ports */
5970 static enum drm_connector_status
5971 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5972 {
5973         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5974         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5975         u8 *dpcd = intel_dp->dpcd;
5976         u8 type;
5977
5978         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5979                 return connector_status_connected;
5980
5981         if (lspcon->active)
5982                 lspcon_resume(lspcon);
5983
5984         if (!intel_dp_get_dpcd(intel_dp))
5985                 return connector_status_disconnected;
5986
5987         /* if there's no downstream port, we're done */
5988         if (!drm_dp_is_branch(dpcd))
5989                 return connector_status_connected;
5990
5991         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5992         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5993             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5994
5995                 return intel_dp->sink_count ?
5996                 connector_status_connected : connector_status_disconnected;
5997         }
5998
5999         if (intel_dp_can_mst(intel_dp))
6000                 return connector_status_connected;
6001
6002         /* If no HPD, poke DDC gently */
6003         if (drm_probe_ddc(&intel_dp->aux.ddc))
6004                 return connector_status_connected;
6005
6006         /* Well we tried, say unknown for unreliable port types */
6007         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6008                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6009                 if (type == DP_DS_PORT_TYPE_VGA ||
6010                     type == DP_DS_PORT_TYPE_NON_EDID)
6011                         return connector_status_unknown;
6012         } else {
6013                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6014                         DP_DWN_STRM_PORT_TYPE_MASK;
6015                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6016                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
6017                         return connector_status_unknown;
6018         }
6019
6020         /* Anything else is out of spec, warn and ignore */
6021         drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6022         return connector_status_disconnected;
6023 }
6024
6025 static enum drm_connector_status
6026 edp_detect(struct intel_dp *intel_dp)
6027 {
6028         return connector_status_connected;
6029 }
6030
6031 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6032 {
6033         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6034         u32 bit;
6035
6036         switch (encoder->hpd_pin) {
6037         case HPD_PORT_B:
6038                 bit = SDE_PORTB_HOTPLUG;
6039                 break;
6040         case HPD_PORT_C:
6041                 bit = SDE_PORTC_HOTPLUG;
6042                 break;
6043         case HPD_PORT_D:
6044                 bit = SDE_PORTD_HOTPLUG;
6045                 break;
6046         default:
6047                 MISSING_CASE(encoder->hpd_pin);
6048                 return false;
6049         }
6050
6051         return intel_de_read(dev_priv, SDEISR) & bit;
6052 }
6053
6054 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
6055 {
6056         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6057         u32 bit;
6058
6059         switch (encoder->hpd_pin) {
6060         case HPD_PORT_B:
6061                 bit = SDE_PORTB_HOTPLUG_CPT;
6062                 break;
6063         case HPD_PORT_C:
6064                 bit = SDE_PORTC_HOTPLUG_CPT;
6065                 break;
6066         case HPD_PORT_D:
6067                 bit = SDE_PORTD_HOTPLUG_CPT;
6068                 break;
6069         default:
6070                 MISSING_CASE(encoder->hpd_pin);
6071                 return false;
6072         }
6073
6074         return intel_de_read(dev_priv, SDEISR) & bit;
6075 }
6076
6077 static bool spt_digital_port_connected(struct intel_encoder *encoder)
6078 {
6079         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6080         u32 bit;
6081
6082         switch (encoder->hpd_pin) {
6083         case HPD_PORT_A:
6084                 bit = SDE_PORTA_HOTPLUG_SPT;
6085                 break;
6086         case HPD_PORT_E:
6087                 bit = SDE_PORTE_HOTPLUG_SPT;
6088                 break;
6089         default:
6090                 return cpt_digital_port_connected(encoder);
6091         }
6092
6093         return intel_de_read(dev_priv, SDEISR) & bit;
6094 }
6095
6096 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6097 {
6098         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6099         u32 bit;
6100
6101         switch (encoder->hpd_pin) {
6102         case HPD_PORT_B:
6103                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6104                 break;
6105         case HPD_PORT_C:
6106                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6107                 break;
6108         case HPD_PORT_D:
6109                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6110                 break;
6111         default:
6112                 MISSING_CASE(encoder->hpd_pin);
6113                 return false;
6114         }
6115
6116         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6117 }
6118
6119 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6120 {
6121         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6122         u32 bit;
6123
6124         switch (encoder->hpd_pin) {
6125         case HPD_PORT_B:
6126                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6127                 break;
6128         case HPD_PORT_C:
6129                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6130                 break;
6131         case HPD_PORT_D:
6132                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6133                 break;
6134         default:
6135                 MISSING_CASE(encoder->hpd_pin);
6136                 return false;
6137         }
6138
6139         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6140 }
6141
6142 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6143 {
6144         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6145
6146         if (encoder->hpd_pin == HPD_PORT_A)
6147                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
6148         else
6149                 return ibx_digital_port_connected(encoder);
6150 }
6151
6152 static bool snb_digital_port_connected(struct intel_encoder *encoder)
6153 {
6154         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6155
6156         if (encoder->hpd_pin == HPD_PORT_A)
6157                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
6158         else
6159                 return cpt_digital_port_connected(encoder);
6160 }
6161
6162 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
6163 {
6164         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6165
6166         if (encoder->hpd_pin == HPD_PORT_A)
6167                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
6168         else
6169                 return cpt_digital_port_connected(encoder);
6170 }
6171
6172 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
6173 {
6174         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6175
6176         if (encoder->hpd_pin == HPD_PORT_A)
6177                 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
6178         else
6179                 return cpt_digital_port_connected(encoder);
6180 }
6181
6182 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
6183 {
6184         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6185         u32 bit;
6186
6187         switch (encoder->hpd_pin) {
6188         case HPD_PORT_A:
6189                 bit = BXT_DE_PORT_HP_DDIA;
6190                 break;
6191         case HPD_PORT_B:
6192                 bit = BXT_DE_PORT_HP_DDIB;
6193                 break;
6194         case HPD_PORT_C:
6195                 bit = BXT_DE_PORT_HP_DDIC;
6196                 break;
6197         default:
6198                 MISSING_CASE(encoder->hpd_pin);
6199                 return false;
6200         }
6201
6202         return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
6203 }
6204
6205 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
6206                                       enum phy phy)
6207 {
6208         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
6209                 return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
6210
6211         return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
6212 }
6213
6214 static bool icp_digital_port_connected(struct intel_encoder *encoder)
6215 {
6216         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6217         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6218         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
6219
6220         if (intel_phy_is_combo(dev_priv, phy))
6221                 return intel_combo_phy_connected(dev_priv, phy);
6222         else if (intel_phy_is_tc(dev_priv, phy))
6223                 return intel_tc_port_connected(dig_port);
6224         else
6225                 MISSING_CASE(encoder->hpd_pin);
6226
6227         return false;
6228 }
6229
6230 /*
6231  * intel_digital_port_connected - is the specified port connected?
6232  * @encoder: intel_encoder
6233  *
6234  * In cases where there's a connector physically connected but it can't be used
6235  * by our hardware we also return false, since the rest of the driver should
6236  * pretty much treat the port as disconnected. This is relevant for type-C
6237  * (starting on ICL) where there's ownership involved.
6238  *
6239  * Return %true if port is connected, %false otherwise.
6240  */
6241 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
6242 {
6243         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6244
6245         if (HAS_GMCH(dev_priv)) {
6246                 if (IS_GM45(dev_priv))
6247                         return gm45_digital_port_connected(encoder);
6248                 else
6249                         return g4x_digital_port_connected(encoder);
6250         }
6251
6252         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
6253                 return icp_digital_port_connected(encoder);
6254         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
6255                 return spt_digital_port_connected(encoder);
6256         else if (IS_GEN9_LP(dev_priv))
6257                 return bxt_digital_port_connected(encoder);
6258         else if (IS_GEN(dev_priv, 8))
6259                 return bdw_digital_port_connected(encoder);
6260         else if (IS_GEN(dev_priv, 7))
6261                 return ivb_digital_port_connected(encoder);
6262         else if (IS_GEN(dev_priv, 6))
6263                 return snb_digital_port_connected(encoder);
6264         else if (IS_GEN(dev_priv, 5))
6265                 return ilk_digital_port_connected(encoder);
6266
6267         MISSING_CASE(INTEL_GEN(dev_priv));
6268         return false;
6269 }
6270
6271 bool intel_digital_port_connected(struct intel_encoder *encoder)
6272 {
6273         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6274         bool is_connected = false;
6275         intel_wakeref_t wakeref;
6276
6277         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6278                 is_connected = __intel_digital_port_connected(encoder);
6279
6280         return is_connected;
6281 }
6282
6283 static struct edid *
6284 intel_dp_get_edid(struct intel_dp *intel_dp)
6285 {
6286         struct intel_connector *intel_connector = intel_dp->attached_connector;
6287
6288         /* use cached edid if we have one */
6289         if (intel_connector->edid) {
6290                 /* invalid edid */
6291                 if (IS_ERR(intel_connector->edid))
6292                         return NULL;
6293
6294                 return drm_edid_duplicate(intel_connector->edid);
6295         } else
6296                 return drm_get_edid(&intel_connector->base,
6297                                     &intel_dp->aux.ddc);
6298 }
6299
6300 static void
6301 intel_dp_set_edid(struct intel_dp *intel_dp)
6302 {
6303         struct intel_connector *intel_connector = intel_dp->attached_connector;
6304         struct edid *edid;
6305
6306         intel_dp_unset_edid(intel_dp);
6307         edid = intel_dp_get_edid(intel_dp);
6308         intel_connector->detect_edid = edid;
6309
6310         intel_dp->has_audio = drm_detect_monitor_audio(edid);
6311         drm_dp_cec_set_edid(&intel_dp->aux, edid);
6312         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6313 }
6314
6315 static void
6316 intel_dp_unset_edid(struct intel_dp *intel_dp)
6317 {
6318         struct intel_connector *intel_connector = intel_dp->attached_connector;
6319
6320         drm_dp_cec_unset_edid(&intel_dp->aux);
6321         kfree(intel_connector->detect_edid);
6322         intel_connector->detect_edid = NULL;
6323
6324         intel_dp->has_audio = false;
6325         intel_dp->edid_quirks = 0;
6326 }
6327
6328 static int
6329 intel_dp_detect(struct drm_connector *connector,
6330                 struct drm_modeset_acquire_ctx *ctx,
6331                 bool force)
6332 {
6333         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6334         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6335         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6336         struct intel_encoder *encoder = &dig_port->base;
6337         enum drm_connector_status status;
6338
6339         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6340                     connector->base.id, connector->name);
6341         drm_WARN_ON(&dev_priv->drm,
6342                     !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6343
6344         /* Can't disconnect eDP */
6345         if (intel_dp_is_edp(intel_dp))
6346                 status = edp_detect(intel_dp);
6347         else if (intel_digital_port_connected(encoder))
6348                 status = intel_dp_detect_dpcd(intel_dp);
6349         else
6350                 status = connector_status_disconnected;
6351
6352         if (status == connector_status_disconnected) {
6353                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6354                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6355
6356                 if (intel_dp->is_mst) {
6357                         drm_dbg_kms(&dev_priv->drm,
6358                                     "MST device may have disappeared %d vs %d\n",
6359                                     intel_dp->is_mst,
6360                                     intel_dp->mst_mgr.mst_state);
6361                         intel_dp->is_mst = false;
6362                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6363                                                         intel_dp->is_mst);
6364                 }
6365
6366                 goto out;
6367         }
6368
6369         if (intel_dp->reset_link_params) {
6370                 /* Initial max link lane count */
6371                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6372
6373                 /* Initial max link rate */
6374                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6375
6376                 intel_dp->reset_link_params = false;
6377         }
6378
6379         intel_dp_print_rates(intel_dp);
6380
6381         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6382         if (INTEL_GEN(dev_priv) >= 11)
6383                 intel_dp_get_dsc_sink_cap(intel_dp);
6384
6385         intel_dp_configure_mst(intel_dp);
6386
6387         if (intel_dp->is_mst) {
6388                 /*
6389                  * If we are in MST mode then this connector
6390                  * won't appear connected or have anything
6391                  * with EDID on it
6392                  */
6393                 status = connector_status_disconnected;
6394                 goto out;
6395         }
6396
6397         /*
6398          * Some external monitors do not signal loss of link synchronization
6399          * with an IRQ_HPD, so force a link status check.
6400          */
6401         if (!intel_dp_is_edp(intel_dp)) {
6402                 int ret;
6403
6404                 ret = intel_dp_retrain_link(encoder, ctx);
6405                 if (ret)
6406                         return ret;
6407         }
6408
6409         /*
6410          * Clearing NACK and defer counts to get their exact values
6411          * while reading EDID which are required by Compliance tests
6412          * 4.2.2.4 and 4.2.2.5
6413          */
6414         intel_dp->aux.i2c_nack_count = 0;
6415         intel_dp->aux.i2c_defer_count = 0;
6416
6417         intel_dp_set_edid(intel_dp);
6418         if (intel_dp_is_edp(intel_dp) ||
6419             to_intel_connector(connector)->detect_edid)
6420                 status = connector_status_connected;
6421
6422         intel_dp_check_service_irq(intel_dp);
6423
6424 out:
6425         if (status != connector_status_connected && !intel_dp->is_mst)
6426                 intel_dp_unset_edid(intel_dp);
6427
6428         /*
6429          * Make sure the refs for power wells enabled during detect are
6430          * dropped to avoid a new detect cycle triggered by HPD polling.
6431          */
6432         intel_display_power_flush_work(dev_priv);
6433
6434         return status;
6435 }
6436
6437 static void
6438 intel_dp_force(struct drm_connector *connector)
6439 {
6440         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6441         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6442         struct intel_encoder *intel_encoder = &dig_port->base;
6443         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6444         enum intel_display_power_domain aux_domain =
6445                 intel_aux_power_domain(dig_port);
6446         intel_wakeref_t wakeref;
6447
6448         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6449                     connector->base.id, connector->name);
6450         intel_dp_unset_edid(intel_dp);
6451
6452         if (connector->status != connector_status_connected)
6453                 return;
6454
6455         wakeref = intel_display_power_get(dev_priv, aux_domain);
6456
6457         intel_dp_set_edid(intel_dp);
6458
6459         intel_display_power_put(dev_priv, aux_domain, wakeref);
6460 }
6461
6462 static int intel_dp_get_modes(struct drm_connector *connector)
6463 {
6464         struct intel_connector *intel_connector = to_intel_connector(connector);
6465         struct edid *edid;
6466
6467         edid = intel_connector->detect_edid;
6468         if (edid) {
6469                 int ret = intel_connector_update_modes(connector, edid);
6470                 if (ret)
6471                         return ret;
6472         }
6473
6474         /* if eDP has no EDID, fall back to fixed mode */
6475         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6476             intel_connector->panel.fixed_mode) {
6477                 struct drm_display_mode *mode;
6478
6479                 mode = drm_mode_duplicate(connector->dev,
6480                                           intel_connector->panel.fixed_mode);
6481                 if (mode) {
6482                         drm_mode_probed_add(connector, mode);
6483                         return 1;
6484                 }
6485         }
6486
6487         return 0;
6488 }
6489
6490 static int
6491 intel_dp_connector_register(struct drm_connector *connector)
6492 {
6493         struct drm_i915_private *i915 = to_i915(connector->dev);
6494         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6495         int ret;
6496
6497         ret = intel_connector_register(connector);
6498         if (ret)
6499                 return ret;
6500
6501         drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6502                     intel_dp->aux.name, connector->kdev->kobj.name);
6503
6504         intel_dp->aux.dev = connector->kdev;
6505         ret = drm_dp_aux_register(&intel_dp->aux);
6506         if (!ret)
6507                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6508         return ret;
6509 }
6510
6511 static void
6512 intel_dp_connector_unregister(struct drm_connector *connector)
6513 {
6514         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6515
6516         drm_dp_cec_unregister_connector(&intel_dp->aux);
6517         drm_dp_aux_unregister(&intel_dp->aux);
6518         intel_connector_unregister(connector);
6519 }
6520
6521 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6522 {
6523         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6524         struct intel_dp *intel_dp = &intel_dig_port->dp;
6525
6526         intel_dp_mst_encoder_cleanup(intel_dig_port);
6527         if (intel_dp_is_edp(intel_dp)) {
6528                 intel_wakeref_t wakeref;
6529
6530                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6531                 /*
6532                  * vdd might still be enabled do to the delayed vdd off.
6533                  * Make sure vdd is actually turned off here.
6534                  */
6535                 with_pps_lock(intel_dp, wakeref)
6536                         edp_panel_vdd_off_sync(intel_dp);
6537
6538                 if (intel_dp->edp_notifier.notifier_call) {
6539                         unregister_reboot_notifier(&intel_dp->edp_notifier);
6540                         intel_dp->edp_notifier.notifier_call = NULL;
6541                 }
6542         }
6543
6544         intel_dp_aux_fini(intel_dp);
6545 }
6546
6547 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6548 {
6549         intel_dp_encoder_flush_work(encoder);
6550
6551         drm_encoder_cleanup(encoder);
6552         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6553 }
6554
6555 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6556 {
6557         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6558         intel_wakeref_t wakeref;
6559
6560         if (!intel_dp_is_edp(intel_dp))
6561                 return;
6562
6563         /*
6564          * vdd might still be enabled do to the delayed vdd off.
6565          * Make sure vdd is actually turned off here.
6566          */
6567         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6568         with_pps_lock(intel_dp, wakeref)
6569                 edp_panel_vdd_off_sync(intel_dp);
6570 }
6571
6572 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6573 {
6574         long ret;
6575
6576 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6577         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6578                                                msecs_to_jiffies(timeout));
6579
6580         if (!ret)
6581                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6582 }
6583
6584 static
6585 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6586                                 u8 *an)
6587 {
6588         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6589         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6590         static const struct drm_dp_aux_msg msg = {
6591                 .request = DP_AUX_NATIVE_WRITE,
6592                 .address = DP_AUX_HDCP_AKSV,
6593                 .size = DRM_HDCP_KSV_LEN,
6594         };
6595         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6596         ssize_t dpcd_ret;
6597         int ret;
6598
6599         /* Output An first, that's easy */
6600         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6601                                      an, DRM_HDCP_AN_LEN);
6602         if (dpcd_ret != DRM_HDCP_AN_LEN) {
6603                 drm_dbg_kms(&i915->drm,
6604                             "Failed to write An over DP/AUX (%zd)\n",
6605                             dpcd_ret);
6606                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6607         }
6608
6609         /*
6610          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6611          * order to get it on the wire, we need to create the AUX header as if
6612          * we were writing the data, and then tickle the hardware to output the
6613          * data once the header is sent out.
6614          */
6615         intel_dp_aux_header(txbuf, &msg);
6616
6617         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6618                                 rxbuf, sizeof(rxbuf),
6619                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6620         if (ret < 0) {
6621                 drm_dbg_kms(&i915->drm,
6622                             "Write Aksv over DP/AUX failed (%d)\n", ret);
6623                 return ret;
6624         } else if (ret == 0) {
6625                 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6626                 return -EIO;
6627         }
6628
6629         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6630         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6631                 drm_dbg_kms(&i915->drm,
6632                             "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6633                             reply);
6634                 return -EIO;
6635         }
6636         return 0;
6637 }
6638
6639 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6640                                    u8 *bksv)
6641 {
6642         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6643         ssize_t ret;
6644
6645         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6646                                DRM_HDCP_KSV_LEN);
6647         if (ret != DRM_HDCP_KSV_LEN) {
6648                 drm_dbg_kms(&i915->drm,
6649                             "Read Bksv from DP/AUX failed (%zd)\n", ret);
6650                 return ret >= 0 ? -EIO : ret;
6651         }
6652         return 0;
6653 }
6654
6655 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6656                                       u8 *bstatus)
6657 {
6658         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6659         ssize_t ret;
6660
6661         /*
6662          * For some reason the HDMI and DP HDCP specs call this register
6663          * definition by different names. In the HDMI spec, it's called BSTATUS,
6664          * but in DP it's called BINFO.
6665          */
6666         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6667                                bstatus, DRM_HDCP_BSTATUS_LEN);
6668         if (ret != DRM_HDCP_BSTATUS_LEN) {
6669                 drm_dbg_kms(&i915->drm,
6670                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6671                 return ret >= 0 ? -EIO : ret;
6672         }
6673         return 0;
6674 }
6675
6676 static
6677 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6678                              u8 *bcaps)
6679 {
6680         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6681         ssize_t ret;
6682
6683         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6684                                bcaps, 1);
6685         if (ret != 1) {
6686                 drm_dbg_kms(&i915->drm,
6687                             "Read bcaps from DP/AUX failed (%zd)\n", ret);
6688                 return ret >= 0 ? -EIO : ret;
6689         }
6690
6691         return 0;
6692 }
6693
6694 static
6695 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6696                                    bool *repeater_present)
6697 {
6698         ssize_t ret;
6699         u8 bcaps;
6700
6701         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6702         if (ret)
6703                 return ret;
6704
6705         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6706         return 0;
6707 }
6708
6709 static
6710 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6711                                 u8 *ri_prime)
6712 {
6713         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6714         ssize_t ret;
6715
6716         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6717                                ri_prime, DRM_HDCP_RI_LEN);
6718         if (ret != DRM_HDCP_RI_LEN) {
6719                 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6720                             ret);
6721                 return ret >= 0 ? -EIO : ret;
6722         }
6723         return 0;
6724 }
6725
6726 static
6727 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6728                                  bool *ksv_ready)
6729 {
6730         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6731         ssize_t ret;
6732         u8 bstatus;
6733
6734         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6735                                &bstatus, 1);
6736         if (ret != 1) {
6737                 drm_dbg_kms(&i915->drm,
6738                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6739                 return ret >= 0 ? -EIO : ret;
6740         }
6741         *ksv_ready = bstatus & DP_BSTATUS_READY;
6742         return 0;
6743 }
6744
6745 static
6746 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6747                                 int num_downstream, u8 *ksv_fifo)
6748 {
6749         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6750         ssize_t ret;
6751         int i;
6752
6753         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6754         for (i = 0; i < num_downstream; i += 3) {
6755                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6756                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6757                                        DP_AUX_HDCP_KSV_FIFO,
6758                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6759                                        len);
6760                 if (ret != len) {
6761                         drm_dbg_kms(&i915->drm,
6762                                     "Read ksv[%d] from DP/AUX failed (%zd)\n",
6763                                     i, ret);
6764                         return ret >= 0 ? -EIO : ret;
6765                 }
6766         }
6767         return 0;
6768 }
6769
6770 static
6771 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6772                                     int i, u32 *part)
6773 {
6774         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6775         ssize_t ret;
6776
6777         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6778                 return -EINVAL;
6779
6780         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6781                                DP_AUX_HDCP_V_PRIME(i), part,
6782                                DRM_HDCP_V_PRIME_PART_LEN);
6783         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6784                 drm_dbg_kms(&i915->drm,
6785                             "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6786                 return ret >= 0 ? -EIO : ret;
6787         }
6788         return 0;
6789 }
6790
6791 static
6792 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6793                                     bool enable)
6794 {
6795         /* Not used for single stream DisplayPort setups */
6796         return 0;
6797 }
6798
6799 static
6800 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6801 {
6802         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6803         ssize_t ret;
6804         u8 bstatus;
6805
6806         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6807                                &bstatus, 1);
6808         if (ret != 1) {
6809                 drm_dbg_kms(&i915->drm,
6810                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6811                 return false;
6812         }
6813
6814         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6815 }
6816
6817 static
6818 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6819                           bool *hdcp_capable)
6820 {
6821         ssize_t ret;
6822         u8 bcaps;
6823
6824         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6825         if (ret)
6826                 return ret;
6827
6828         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6829         return 0;
6830 }
6831
6832 struct hdcp2_dp_errata_stream_type {
6833         u8      msg_id;
6834         u8      stream_type;
6835 } __packed;
6836
6837 struct hdcp2_dp_msg_data {
6838         u8 msg_id;
6839         u32 offset;
6840         bool msg_detectable;
6841         u32 timeout;
6842         u32 timeout2; /* Added for non_paired situation */
6843 };
6844
6845 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6846         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6847         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6848           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6849         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6850           false, 0, 0 },
6851         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6852           false, 0, 0 },
6853         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6854           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6855           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6856         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6857           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6858           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6859         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6860         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6861           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6862         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6863           0, 0 },
6864         { HDCP_2_2_REP_SEND_RECVID_LIST,
6865           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6866           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6867         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6868           0, 0 },
6869         { HDCP_2_2_REP_STREAM_MANAGE,
6870           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6871           0, 0 },
6872         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6873           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6874 /* local define to shovel this through the write_2_2 interface */
6875 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6876         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6877           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6878           0, 0 },
6879 };
6880
6881 static int
6882 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6883                               u8 *rx_status)
6884 {
6885         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6886         ssize_t ret;
6887
6888         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6889                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6890                                HDCP_2_2_DP_RXSTATUS_LEN);
6891         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6892                 drm_dbg_kms(&i915->drm,
6893                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6894                 return ret >= 0 ? -EIO : ret;
6895         }
6896
6897         return 0;
6898 }
6899
6900 static
6901 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6902                                   u8 msg_id, bool *msg_ready)
6903 {
6904         u8 rx_status;
6905         int ret;
6906
6907         *msg_ready = false;
6908         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6909         if (ret < 0)
6910                 return ret;
6911
6912         switch (msg_id) {
6913         case HDCP_2_2_AKE_SEND_HPRIME:
6914                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6915                         *msg_ready = true;
6916                 break;
6917         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6918                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6919                         *msg_ready = true;
6920                 break;
6921         case HDCP_2_2_REP_SEND_RECVID_LIST:
6922                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6923                         *msg_ready = true;
6924                 break;
6925         default:
6926                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6927                 return -EINVAL;
6928         }
6929
6930         return 0;
6931 }
6932
6933 static ssize_t
6934 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6935                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6936 {
6937         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6938         struct intel_dp *dp = &intel_dig_port->dp;
6939         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6940         u8 msg_id = hdcp2_msg_data->msg_id;
6941         int ret, timeout;
6942         bool msg_ready = false;
6943
6944         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6945                 timeout = hdcp2_msg_data->timeout2;
6946         else
6947                 timeout = hdcp2_msg_data->timeout;
6948
6949         /*
6950          * There is no way to detect the CERT, LPRIME and STREAM_READY
6951          * availability. So Wait for timeout and read the msg.
6952          */
6953         if (!hdcp2_msg_data->msg_detectable) {
6954                 mdelay(timeout);
6955                 ret = 0;
6956         } else {
6957                 /*
6958                  * As we want to check the msg availability at timeout, Ignoring
6959                  * the timeout at wait for CP_IRQ.
6960                  */
6961                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6962                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6963                                                     msg_id, &msg_ready);
6964                 if (!msg_ready)
6965                         ret = -ETIMEDOUT;
6966         }
6967
6968         if (ret)
6969                 drm_dbg_kms(&i915->drm,
6970                             "msg_id %d, ret %d, timeout(mSec): %d\n",
6971                             hdcp2_msg_data->msg_id, ret, timeout);
6972
6973         return ret;
6974 }
6975
6976 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6977 {
6978         int i;
6979
6980         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6981                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6982                         return &hdcp2_dp_msg_data[i];
6983
6984         return NULL;
6985 }
6986
6987 static
6988 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6989                              void *buf, size_t size)
6990 {
6991         struct intel_dp *dp = &intel_dig_port->dp;
6992         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6993         unsigned int offset;
6994         u8 *byte = buf;
6995         ssize_t ret, bytes_to_write, len;
6996         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6997
6998         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6999         if (!hdcp2_msg_data)
7000                 return -EINVAL;
7001
7002         offset = hdcp2_msg_data->offset;
7003
7004         /* No msg_id in DP HDCP2.2 msgs */
7005         bytes_to_write = size - 1;
7006         byte++;
7007
7008         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
7009
7010         while (bytes_to_write) {
7011                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
7012                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
7013
7014                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
7015                                         offset, (void *)byte, len);
7016                 if (ret < 0)
7017                         return ret;
7018
7019                 bytes_to_write -= ret;
7020                 byte += ret;
7021                 offset += ret;
7022         }
7023
7024         return size;
7025 }
7026
7027 static
7028 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
7029 {
7030         u8 rx_info[HDCP_2_2_RXINFO_LEN];
7031         u32 dev_cnt;
7032         ssize_t ret;
7033
7034         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
7035                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
7036                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
7037         if (ret != HDCP_2_2_RXINFO_LEN)
7038                 return ret >= 0 ? -EIO : ret;
7039
7040         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
7041                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
7042
7043         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
7044                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
7045
7046         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
7047                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
7048                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
7049
7050         return ret;
7051 }
7052
7053 static
7054 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
7055                             u8 msg_id, void *buf, size_t size)
7056 {
7057         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7058         unsigned int offset;
7059         u8 *byte = buf;
7060         ssize_t ret, bytes_to_recv, len;
7061         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
7062
7063         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
7064         if (!hdcp2_msg_data)
7065                 return -EINVAL;
7066         offset = hdcp2_msg_data->offset;
7067
7068         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
7069         if (ret < 0)
7070                 return ret;
7071
7072         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
7073                 ret = get_receiver_id_list_size(intel_dig_port);
7074                 if (ret < 0)
7075                         return ret;
7076
7077                 size = ret;
7078         }
7079         bytes_to_recv = size - 1;
7080
7081         /* DP adaptation msgs has no msg_id */
7082         byte++;
7083
7084         while (bytes_to_recv) {
7085                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
7086                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
7087
7088                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
7089                                        (void *)byte, len);
7090                 if (ret < 0) {
7091                         drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
7092                                     msg_id, ret);
7093                         return ret;
7094                 }
7095
7096                 bytes_to_recv -= ret;
7097                 byte += ret;
7098                 offset += ret;
7099         }
7100         byte = buf;
7101         *byte = msg_id;
7102
7103         return size;
7104 }
7105
7106 static
7107 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
7108                                       bool is_repeater, u8 content_type)
7109 {
7110         int ret;
7111         struct hdcp2_dp_errata_stream_type stream_type_msg;
7112
7113         if (is_repeater)
7114                 return 0;
7115
7116         /*
7117          * Errata for DP: As Stream type is used for encryption, Receiver
7118          * should be communicated with stream type for the decryption of the
7119          * content.
7120          * Repeater will be communicated with stream type as a part of it's
7121          * auth later in time.
7122          */
7123         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
7124         stream_type_msg.stream_type = content_type;
7125
7126         ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
7127                                         sizeof(stream_type_msg));
7128
7129         return ret < 0 ? ret : 0;
7130
7131 }
7132
7133 static
7134 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
7135 {
7136         u8 rx_status;
7137         int ret;
7138
7139         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
7140         if (ret)
7141                 return ret;
7142
7143         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
7144                 ret = HDCP_REAUTH_REQUEST;
7145         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
7146                 ret = HDCP_LINK_INTEGRITY_FAILURE;
7147         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
7148                 ret = HDCP_TOPOLOGY_CHANGE;
7149
7150         return ret;
7151 }
7152
7153 static
7154 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
7155                            bool *capable)
7156 {
7157         u8 rx_caps[3];
7158         int ret;
7159
7160         *capable = false;
7161         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
7162                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
7163                                rx_caps, HDCP_2_2_RXCAPS_LEN);
7164         if (ret != HDCP_2_2_RXCAPS_LEN)
7165                 return ret >= 0 ? -EIO : ret;
7166
7167         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
7168             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
7169                 *capable = true;
7170
7171         return 0;
7172 }
7173
7174 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
7175         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
7176         .read_bksv = intel_dp_hdcp_read_bksv,
7177         .read_bstatus = intel_dp_hdcp_read_bstatus,
7178         .repeater_present = intel_dp_hdcp_repeater_present,
7179         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
7180         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
7181         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
7182         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
7183         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
7184         .check_link = intel_dp_hdcp_check_link,
7185         .hdcp_capable = intel_dp_hdcp_capable,
7186         .write_2_2_msg = intel_dp_hdcp2_write_msg,
7187         .read_2_2_msg = intel_dp_hdcp2_read_msg,
7188         .config_stream_type = intel_dp_hdcp2_config_stream_type,
7189         .check_2_2_link = intel_dp_hdcp2_check_link,
7190         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
7191         .protocol = HDCP_PROTOCOL_DP,
7192 };
7193
7194 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7195 {
7196         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7197         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7198
7199         lockdep_assert_held(&dev_priv->pps_mutex);
7200
7201         if (!edp_have_panel_vdd(intel_dp))
7202                 return;
7203
7204         /*
7205          * The VDD bit needs a power domain reference, so if the bit is
7206          * already enabled when we boot or resume, grab this reference and
7207          * schedule a vdd off, so we don't hold on to the reference
7208          * indefinitely.
7209          */
7210         drm_dbg_kms(&dev_priv->drm,
7211                     "VDD left on by BIOS, adjusting state tracking\n");
7212         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7213
7214         edp_panel_vdd_schedule_off(intel_dp);
7215 }
7216
7217 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7218 {
7219         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7220         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7221         enum pipe pipe;
7222
7223         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7224                                   encoder->port, &pipe))
7225                 return pipe;
7226
7227         return INVALID_PIPE;
7228 }
7229
7230 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7231 {
7232         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7233         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7234         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7235         intel_wakeref_t wakeref;
7236
7237         if (!HAS_DDI(dev_priv))
7238                 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7239
7240         if (lspcon->active)
7241                 lspcon_resume(lspcon);
7242
7243         intel_dp->reset_link_params = true;
7244
7245         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7246             !intel_dp_is_edp(intel_dp))
7247                 return;
7248
7249         with_pps_lock(intel_dp, wakeref) {
7250                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7251                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7252
7253                 if (intel_dp_is_edp(intel_dp)) {
7254                         /*
7255                          * Reinit the power sequencer, in case BIOS did
7256                          * something nasty with it.
7257                          */
7258                         intel_dp_pps_init(intel_dp);
7259                         intel_edp_panel_vdd_sanitize(intel_dp);
7260                 }
7261         }
7262 }
7263
7264 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7265                                     int tile_group_id)
7266 {
7267         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7268         struct drm_connector_list_iter conn_iter;
7269         struct drm_connector *connector;
7270         int ret = 0;
7271
7272         drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7273         drm_for_each_connector_iter(connector, &conn_iter) {
7274                 struct drm_connector_state *conn_state;
7275                 struct intel_crtc_state *crtc_state;
7276                 struct intel_crtc *crtc;
7277
7278                 if (!connector->has_tile ||
7279                     connector->tile_group->id != tile_group_id)
7280                         continue;
7281
7282                 conn_state = drm_atomic_get_connector_state(&state->base,
7283                                                             connector);
7284                 if (IS_ERR(conn_state)) {
7285                         ret = PTR_ERR(conn_state);
7286                         break;
7287                 }
7288
7289                 crtc = to_intel_crtc(conn_state->crtc);
7290
7291                 if (!crtc)
7292                         continue;
7293
7294                 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7295                 crtc_state->uapi.mode_changed = true;
7296
7297                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7298                 if (ret)
7299                         break;
7300         }
7301         drm_connector_list_iter_end(&conn_iter);
7302
7303         return ret;
7304 }
7305
7306 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7307 {
7308         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7309         struct intel_crtc *crtc;
7310
7311         if (transcoders == 0)
7312                 return 0;
7313
7314         for_each_intel_crtc(&dev_priv->drm, crtc) {
7315                 struct intel_crtc_state *crtc_state;
7316                 int ret;
7317
7318                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7319                 if (IS_ERR(crtc_state))
7320                         return PTR_ERR(crtc_state);
7321
7322                 if (!crtc_state->hw.enable)
7323                         continue;
7324
7325                 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7326                         continue;
7327
7328                 crtc_state->uapi.mode_changed = true;
7329
7330                 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7331                 if (ret)
7332                         return ret;
7333
7334                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7335                 if (ret)
7336                         return ret;
7337
7338                 transcoders &= ~BIT(crtc_state->cpu_transcoder);
7339         }
7340
7341         drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7342
7343         return 0;
7344 }
7345
7346 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7347                                       struct drm_connector *connector)
7348 {
7349         const struct drm_connector_state *old_conn_state =
7350                 drm_atomic_get_old_connector_state(&state->base, connector);
7351         const struct intel_crtc_state *old_crtc_state;
7352         struct intel_crtc *crtc;
7353         u8 transcoders;
7354
7355         crtc = to_intel_crtc(old_conn_state->crtc);
7356         if (!crtc)
7357                 return 0;
7358
7359         old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7360
7361         if (!old_crtc_state->hw.active)
7362                 return 0;
7363
7364         transcoders = old_crtc_state->sync_mode_slaves_mask;
7365         if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7366                 transcoders |= BIT(old_crtc_state->master_transcoder);
7367
7368         return intel_modeset_affected_transcoders(state,
7369                                                   transcoders);
7370 }
7371
7372 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7373                                            struct drm_atomic_state *_state)
7374 {
7375         struct drm_i915_private *dev_priv = to_i915(conn->dev);
7376         struct intel_atomic_state *state = to_intel_atomic_state(_state);
7377         int ret;
7378
7379         ret = intel_digital_connector_atomic_check(conn, &state->base);
7380         if (ret)
7381                 return ret;
7382
7383         /*
7384          * We don't enable port sync on BDW due to missing w/as and
7385          * due to not having adjusted the modeset sequence appropriately.
7386          */
7387         if (INTEL_GEN(dev_priv) < 9)
7388                 return 0;
7389
7390         if (!intel_connector_needs_modeset(state, conn))
7391                 return 0;
7392
7393         if (conn->has_tile) {
7394                 ret = intel_modeset_tile_group(state, conn->tile_group->id);
7395                 if (ret)
7396                         return ret;
7397         }
7398
7399         return intel_modeset_synced_crtcs(state, conn);
7400 }
7401
7402 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7403         .force = intel_dp_force,
7404         .fill_modes = drm_helper_probe_single_connector_modes,
7405         .atomic_get_property = intel_digital_connector_atomic_get_property,
7406         .atomic_set_property = intel_digital_connector_atomic_set_property,
7407         .late_register = intel_dp_connector_register,
7408         .early_unregister = intel_dp_connector_unregister,
7409         .destroy = intel_connector_destroy,
7410         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7411         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
7412 };
7413
7414 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7415         .detect_ctx = intel_dp_detect,
7416         .get_modes = intel_dp_get_modes,
7417         .mode_valid = intel_dp_mode_valid,
7418         .atomic_check = intel_dp_connector_atomic_check,
7419 };
7420
7421 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7422         .reset = intel_dp_encoder_reset,
7423         .destroy = intel_dp_encoder_destroy,
7424 };
7425
7426 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7427 {
7428         intel_wakeref_t wakeref;
7429         bool have_power = false;
7430
7431         with_pps_lock(intel_dp, wakeref) {
7432                 have_power = edp_have_panel_power(intel_dp) &&
7433                                                   edp_have_panel_vdd(intel_dp);
7434         }
7435
7436         return have_power;
7437 }
7438
7439 enum irqreturn
7440 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7441 {
7442         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7443         struct intel_dp *intel_dp = &intel_dig_port->dp;
7444
7445         if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7446             (long_hpd || !intel_edp_have_power(intel_dp))) {
7447                 /*
7448                  * vdd off can generate a long/short pulse on eDP which
7449                  * would require vdd on to handle it, and thus we
7450                  * would end up in an endless cycle of
7451                  * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7452                  */
7453                 drm_dbg_kms(&i915->drm,
7454                             "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7455                             long_hpd ? "long" : "short",
7456                             intel_dig_port->base.base.base.id,
7457                             intel_dig_port->base.base.name);
7458                 return IRQ_HANDLED;
7459         }
7460
7461         drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7462                     intel_dig_port->base.base.base.id,
7463                     intel_dig_port->base.base.name,
7464                     long_hpd ? "long" : "short");
7465
7466         if (long_hpd) {
7467                 intel_dp->reset_link_params = true;
7468                 return IRQ_NONE;
7469         }
7470
7471         if (intel_dp->is_mst) {
7472                 switch (intel_dp_check_mst_status(intel_dp)) {
7473                 case -EINVAL:
7474                         /*
7475                          * If we were in MST mode, and device is not
7476                          * there, get out of MST mode
7477                          */
7478                         drm_dbg_kms(&i915->drm,
7479                                     "MST device may have disappeared %d vs %d\n",
7480                                     intel_dp->is_mst,
7481                                     intel_dp->mst_mgr.mst_state);
7482                         intel_dp->is_mst = false;
7483                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7484                                                         intel_dp->is_mst);
7485
7486                         return IRQ_NONE;
7487                 case 1:
7488                         return IRQ_NONE;
7489                 default:
7490                         break;
7491                 }
7492         }
7493
7494         if (!intel_dp->is_mst) {
7495                 bool handled;
7496
7497                 handled = intel_dp_short_pulse(intel_dp);
7498
7499                 if (!handled)
7500                         return IRQ_NONE;
7501         }
7502
7503         return IRQ_HANDLED;
7504 }
7505
7506 /* check the VBT to see whether the eDP is on another port */
7507 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7508 {
7509         /*
7510          * eDP not supported on g4x. so bail out early just
7511          * for a bit extra safety in case the VBT is bonkers.
7512          */
7513         if (INTEL_GEN(dev_priv) < 5)
7514                 return false;
7515
7516         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7517                 return true;
7518
7519         return intel_bios_is_port_edp(dev_priv, port);
7520 }
7521
7522 static void
7523 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7524 {
7525         struct drm_i915_private *dev_priv = to_i915(connector->dev);
7526         enum port port = dp_to_dig_port(intel_dp)->base.port;
7527
7528         if (!IS_G4X(dev_priv) && port != PORT_A)
7529                 intel_attach_force_audio_property(connector);
7530
7531         intel_attach_broadcast_rgb_property(connector);
7532         if (HAS_GMCH(dev_priv))
7533                 drm_connector_attach_max_bpc_property(connector, 6, 10);
7534         else if (INTEL_GEN(dev_priv) >= 5)
7535                 drm_connector_attach_max_bpc_property(connector, 6, 12);
7536
7537         intel_attach_colorspace_property(connector);
7538
7539         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7540                 drm_object_attach_property(&connector->base,
7541                                            connector->dev->mode_config.hdr_output_metadata_property,
7542                                            0);
7543
7544         if (intel_dp_is_edp(intel_dp)) {
7545                 u32 allowed_scalers;
7546
7547                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7548                 if (!HAS_GMCH(dev_priv))
7549                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7550
7551                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7552
7553                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7554
7555         }
7556 }
7557
7558 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7559 {
7560         intel_dp->panel_power_off_time = ktime_get_boottime();
7561         intel_dp->last_power_on = jiffies;
7562         intel_dp->last_backlight_off = jiffies;
7563 }
7564
7565 static void
7566 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7567 {
7568         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7569         u32 pp_on, pp_off, pp_ctl;
7570         struct pps_registers regs;
7571
7572         intel_pps_get_registers(intel_dp, &regs);
7573
7574         pp_ctl = ilk_get_pp_control(intel_dp);
7575
7576         /* Ensure PPS is unlocked */
7577         if (!HAS_DDI(dev_priv))
7578                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7579
7580         pp_on = intel_de_read(dev_priv, regs.pp_on);
7581         pp_off = intel_de_read(dev_priv, regs.pp_off);
7582
7583         /* Pull timing values out of registers */
7584         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7585         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7586         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7587         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7588
7589         if (i915_mmio_reg_valid(regs.pp_div)) {
7590                 u32 pp_div;
7591
7592                 pp_div = intel_de_read(dev_priv, regs.pp_div);
7593
7594                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7595         } else {
7596                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7597         }
7598 }
7599
7600 static void
7601 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7602 {
7603         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7604                       state_name,
7605                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7606 }
7607
7608 static void
7609 intel_pps_verify_state(struct intel_dp *intel_dp)
7610 {
7611         struct edp_power_seq hw;
7612         struct edp_power_seq *sw = &intel_dp->pps_delays;
7613
7614         intel_pps_readout_hw_state(intel_dp, &hw);
7615
7616         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7617             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7618                 DRM_ERROR("PPS state mismatch\n");
7619                 intel_pps_dump_state("sw", sw);
7620                 intel_pps_dump_state("hw", &hw);
7621         }
7622 }
7623
7624 static void
7625 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7626 {
7627         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7628         struct edp_power_seq cur, vbt, spec,
7629                 *final = &intel_dp->pps_delays;
7630
7631         lockdep_assert_held(&dev_priv->pps_mutex);
7632
7633         /* already initialized? */
7634         if (final->t11_t12 != 0)
7635                 return;
7636
7637         intel_pps_readout_hw_state(intel_dp, &cur);
7638
7639         intel_pps_dump_state("cur", &cur);
7640
7641         vbt = dev_priv->vbt.edp.pps;
7642         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7643          * of 500ms appears to be too short. Ocassionally the panel
7644          * just fails to power back on. Increasing the delay to 800ms
7645          * seems sufficient to avoid this problem.
7646          */
7647         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7648                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7649                 drm_dbg_kms(&dev_priv->drm,
7650                             "Increasing T12 panel delay as per the quirk to %d\n",
7651                             vbt.t11_t12);
7652         }
7653         /* T11_T12 delay is special and actually in units of 100ms, but zero
7654          * based in the hw (so we need to add 100 ms). But the sw vbt
7655          * table multiplies it with 1000 to make it in units of 100usec,
7656          * too. */
7657         vbt.t11_t12 += 100 * 10;
7658
7659         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7660          * our hw here, which are all in 100usec. */
7661         spec.t1_t3 = 210 * 10;
7662         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7663         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7664         spec.t10 = 500 * 10;
7665         /* This one is special and actually in units of 100ms, but zero
7666          * based in the hw (so we need to add 100 ms). But the sw vbt
7667          * table multiplies it with 1000 to make it in units of 100usec,
7668          * too. */
7669         spec.t11_t12 = (510 + 100) * 10;
7670
7671         intel_pps_dump_state("vbt", &vbt);
7672
7673         /* Use the max of the register settings and vbt. If both are
7674          * unset, fall back to the spec limits. */
7675 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
7676                                        spec.field : \
7677                                        max(cur.field, vbt.field))
7678         assign_final(t1_t3);
7679         assign_final(t8);
7680         assign_final(t9);
7681         assign_final(t10);
7682         assign_final(t11_t12);
7683 #undef assign_final
7684
7685 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
7686         intel_dp->panel_power_up_delay = get_delay(t1_t3);
7687         intel_dp->backlight_on_delay = get_delay(t8);
7688         intel_dp->backlight_off_delay = get_delay(t9);
7689         intel_dp->panel_power_down_delay = get_delay(t10);
7690         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7691 #undef get_delay
7692
7693         drm_dbg_kms(&dev_priv->drm,
7694                     "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7695                     intel_dp->panel_power_up_delay,
7696                     intel_dp->panel_power_down_delay,
7697                     intel_dp->panel_power_cycle_delay);
7698
7699         drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7700                     intel_dp->backlight_on_delay,
7701                     intel_dp->backlight_off_delay);
7702
7703         /*
7704          * We override the HW backlight delays to 1 because we do manual waits
7705          * on them. For T8, even BSpec recommends doing it. For T9, if we
7706          * don't do this, we'll end up waiting for the backlight off delay
7707          * twice: once when we do the manual sleep, and once when we disable
7708          * the panel and wait for the PP_STATUS bit to become zero.
7709          */
7710         final->t8 = 1;
7711         final->t9 = 1;
7712
7713         /*
7714          * HW has only a 100msec granularity for t11_t12 so round it up
7715          * accordingly.
7716          */
7717         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7718 }
7719
7720 static void
7721 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7722                                               bool force_disable_vdd)
7723 {
7724         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7725         u32 pp_on, pp_off, port_sel = 0;
7726         int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7727         struct pps_registers regs;
7728         enum port port = dp_to_dig_port(intel_dp)->base.port;
7729         const struct edp_power_seq *seq = &intel_dp->pps_delays;
7730
7731         lockdep_assert_held(&dev_priv->pps_mutex);
7732
7733         intel_pps_get_registers(intel_dp, &regs);
7734
7735         /*
7736          * On some VLV machines the BIOS can leave the VDD
7737          * enabled even on power sequencers which aren't
7738          * hooked up to any port. This would mess up the
7739          * power domain tracking the first time we pick
7740          * one of these power sequencers for use since
7741          * edp_panel_vdd_on() would notice that the VDD was
7742          * already on and therefore wouldn't grab the power
7743          * domain reference. Disable VDD first to avoid this.
7744          * This also avoids spuriously turning the VDD on as
7745          * soon as the new power sequencer gets initialized.
7746          */
7747         if (force_disable_vdd) {
7748                 u32 pp = ilk_get_pp_control(intel_dp);
7749
7750                 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7751                          "Panel power already on\n");
7752
7753                 if (pp & EDP_FORCE_VDD)
7754                         drm_dbg_kms(&dev_priv->drm,
7755                                     "VDD already on, disabling first\n");
7756
7757                 pp &= ~EDP_FORCE_VDD;
7758
7759                 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7760         }
7761
7762         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7763                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7764         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7765                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7766
7767         /* Haswell doesn't have any port selection bits for the panel
7768          * power sequencer any more. */
7769         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7770                 port_sel = PANEL_PORT_SELECT_VLV(port);
7771         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7772                 switch (port) {
7773                 case PORT_A:
7774                         port_sel = PANEL_PORT_SELECT_DPA;
7775                         break;
7776                 case PORT_C:
7777                         port_sel = PANEL_PORT_SELECT_DPC;
7778                         break;
7779                 case PORT_D:
7780                         port_sel = PANEL_PORT_SELECT_DPD;
7781                         break;
7782                 default:
7783                         MISSING_CASE(port);
7784                         break;
7785                 }
7786         }
7787
7788         pp_on |= port_sel;
7789
7790         intel_de_write(dev_priv, regs.pp_on, pp_on);
7791         intel_de_write(dev_priv, regs.pp_off, pp_off);
7792
7793         /*
7794          * Compute the divisor for the pp clock, simply match the Bspec formula.
7795          */
7796         if (i915_mmio_reg_valid(regs.pp_div)) {
7797                 intel_de_write(dev_priv, regs.pp_div,
7798                                REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7799         } else {
7800                 u32 pp_ctl;
7801
7802                 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7803                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7804                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7805                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7806         }
7807
7808         drm_dbg_kms(&dev_priv->drm,
7809                     "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7810                     intel_de_read(dev_priv, regs.pp_on),
7811                     intel_de_read(dev_priv, regs.pp_off),
7812                     i915_mmio_reg_valid(regs.pp_div) ?
7813                     intel_de_read(dev_priv, regs.pp_div) :
7814                     (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7815 }
7816
7817 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7818 {
7819         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7820
7821         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7822                 vlv_initial_power_sequencer_setup(intel_dp);
7823         } else {
7824                 intel_dp_init_panel_power_sequencer(intel_dp);
7825                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7826         }
7827 }
7828
7829 /**
7830  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7831  * @dev_priv: i915 device
7832  * @crtc_state: a pointer to the active intel_crtc_state
7833  * @refresh_rate: RR to be programmed
7834  *
7835  * This function gets called when refresh rate (RR) has to be changed from
7836  * one frequency to another. Switches can be between high and low RR
7837  * supported by the panel or to any other RR based on media playback (in
7838  * this case, RR value needs to be passed from user space).
7839  *
7840  * The caller of this function needs to take a lock on dev_priv->drrs.
7841  */
7842 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7843                                     const struct intel_crtc_state *crtc_state,
7844                                     int refresh_rate)
7845 {
7846         struct intel_dp *intel_dp = dev_priv->drrs.dp;
7847         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7848         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7849
7850         if (refresh_rate <= 0) {
7851                 drm_dbg_kms(&dev_priv->drm,
7852                             "Refresh rate should be positive non-zero.\n");
7853                 return;
7854         }
7855
7856         if (intel_dp == NULL) {
7857                 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7858                 return;
7859         }
7860
7861         if (!intel_crtc) {
7862                 drm_dbg_kms(&dev_priv->drm,
7863                             "DRRS: intel_crtc not initialized\n");
7864                 return;
7865         }
7866
7867         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7868                 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7869                 return;
7870         }
7871
7872         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7873                         refresh_rate)
7874                 index = DRRS_LOW_RR;
7875
7876         if (index == dev_priv->drrs.refresh_rate_type) {
7877                 drm_dbg_kms(&dev_priv->drm,
7878                             "DRRS requested for previously set RR...ignoring\n");
7879                 return;
7880         }
7881
7882         if (!crtc_state->hw.active) {
7883                 drm_dbg_kms(&dev_priv->drm,
7884                             "eDP encoder disabled. CRTC not Active\n");
7885                 return;
7886         }
7887
7888         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7889                 switch (index) {
7890                 case DRRS_HIGH_RR:
7891                         intel_dp_set_m_n(crtc_state, M1_N1);
7892                         break;
7893                 case DRRS_LOW_RR:
7894                         intel_dp_set_m_n(crtc_state, M2_N2);
7895                         break;
7896                 case DRRS_MAX_RR:
7897                 default:
7898                         drm_err(&dev_priv->drm,
7899                                 "Unsupported refreshrate type\n");
7900                 }
7901         } else if (INTEL_GEN(dev_priv) > 6) {
7902                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7903                 u32 val;
7904
7905                 val = intel_de_read(dev_priv, reg);
7906                 if (index > DRRS_HIGH_RR) {
7907                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7908                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7909                         else
7910                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7911                 } else {
7912                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7913                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7914                         else
7915                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7916                 }
7917                 intel_de_write(dev_priv, reg, val);
7918         }
7919
7920         dev_priv->drrs.refresh_rate_type = index;
7921
7922         drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7923                     refresh_rate);
7924 }
7925
7926 /**
7927  * intel_edp_drrs_enable - init drrs struct if supported
7928  * @intel_dp: DP struct
7929  * @crtc_state: A pointer to the active crtc state.
7930  *
7931  * Initializes frontbuffer_bits and drrs.dp
7932  */
7933 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7934                            const struct intel_crtc_state *crtc_state)
7935 {
7936         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7937
7938         if (!crtc_state->has_drrs) {
7939                 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7940                 return;
7941         }
7942
7943         if (dev_priv->psr.enabled) {
7944                 drm_dbg_kms(&dev_priv->drm,
7945                             "PSR enabled. Not enabling DRRS.\n");
7946                 return;
7947         }
7948
7949         mutex_lock(&dev_priv->drrs.mutex);
7950         if (dev_priv->drrs.dp) {
7951                 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7952                 goto unlock;
7953         }
7954
7955         dev_priv->drrs.busy_frontbuffer_bits = 0;
7956
7957         dev_priv->drrs.dp = intel_dp;
7958
7959 unlock:
7960         mutex_unlock(&dev_priv->drrs.mutex);
7961 }
7962
7963 /**
7964  * intel_edp_drrs_disable - Disable DRRS
7965  * @intel_dp: DP struct
7966  * @old_crtc_state: Pointer to old crtc_state.
7967  *
7968  */
7969 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7970                             const struct intel_crtc_state *old_crtc_state)
7971 {
7972         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7973
7974         if (!old_crtc_state->has_drrs)
7975                 return;
7976
7977         mutex_lock(&dev_priv->drrs.mutex);
7978         if (!dev_priv->drrs.dp) {
7979                 mutex_unlock(&dev_priv->drrs.mutex);
7980                 return;
7981         }
7982
7983         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7984                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7985                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7986
7987         dev_priv->drrs.dp = NULL;
7988         mutex_unlock(&dev_priv->drrs.mutex);
7989
7990         cancel_delayed_work_sync(&dev_priv->drrs.work);
7991 }
7992
7993 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7994 {
7995         struct drm_i915_private *dev_priv =
7996                 container_of(work, typeof(*dev_priv), drrs.work.work);
7997         struct intel_dp *intel_dp;
7998
7999         mutex_lock(&dev_priv->drrs.mutex);
8000
8001         intel_dp = dev_priv->drrs.dp;
8002
8003         if (!intel_dp)
8004                 goto unlock;
8005
8006         /*
8007          * The delayed work can race with an invalidate hence we need to
8008          * recheck.
8009          */
8010
8011         if (dev_priv->drrs.busy_frontbuffer_bits)
8012                 goto unlock;
8013
8014         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
8015                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
8016
8017                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
8018                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
8019         }
8020
8021 unlock:
8022         mutex_unlock(&dev_priv->drrs.mutex);
8023 }
8024
8025 /**
8026  * intel_edp_drrs_invalidate - Disable Idleness DRRS
8027  * @dev_priv: i915 device
8028  * @frontbuffer_bits: frontbuffer plane tracking bits
8029  *
8030  * This function gets called everytime rendering on the given planes start.
8031  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
8032  *
8033  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
8034  */
8035 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
8036                                unsigned int frontbuffer_bits)
8037 {
8038         struct drm_crtc *crtc;
8039         enum pipe pipe;
8040
8041         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
8042                 return;
8043
8044         cancel_delayed_work(&dev_priv->drrs.work);
8045
8046         mutex_lock(&dev_priv->drrs.mutex);
8047         if (!dev_priv->drrs.dp) {
8048                 mutex_unlock(&dev_priv->drrs.mutex);
8049                 return;
8050         }
8051
8052         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
8053         pipe = to_intel_crtc(crtc)->pipe;
8054
8055         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
8056         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
8057
8058         /* invalidate means busy screen hence upclock */
8059         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
8060                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
8061                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
8062
8063         mutex_unlock(&dev_priv->drrs.mutex);
8064 }
8065
8066 /**
8067  * intel_edp_drrs_flush - Restart Idleness DRRS
8068  * @dev_priv: i915 device
8069  * @frontbuffer_bits: frontbuffer plane tracking bits
8070  *
8071  * This function gets called every time rendering on the given planes has
8072  * completed or flip on a crtc is completed. So DRRS should be upclocked
8073  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
8074  * if no other planes are dirty.
8075  *
8076  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
8077  */
8078 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
8079                           unsigned int frontbuffer_bits)
8080 {
8081         struct drm_crtc *crtc;
8082         enum pipe pipe;
8083
8084         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
8085                 return;
8086
8087         cancel_delayed_work(&dev_priv->drrs.work);
8088
8089         mutex_lock(&dev_priv->drrs.mutex);
8090         if (!dev_priv->drrs.dp) {
8091                 mutex_unlock(&dev_priv->drrs.mutex);
8092                 return;
8093         }
8094
8095         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
8096         pipe = to_intel_crtc(crtc)->pipe;
8097
8098         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
8099         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
8100
8101         /* flush means busy screen hence upclock */
8102         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
8103                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
8104                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
8105
8106         /*
8107          * flush also means no more activity hence schedule downclock, if all
8108          * other fbs are quiescent too
8109          */
8110         if (!dev_priv->drrs.busy_frontbuffer_bits)
8111                 schedule_delayed_work(&dev_priv->drrs.work,
8112                                 msecs_to_jiffies(1000));
8113         mutex_unlock(&dev_priv->drrs.mutex);
8114 }
8115
8116 /**
8117  * DOC: Display Refresh Rate Switching (DRRS)
8118  *
8119  * Display Refresh Rate Switching (DRRS) is a power conservation feature
8120  * which enables swtching between low and high refresh rates,
8121  * dynamically, based on the usage scenario. This feature is applicable
8122  * for internal panels.
8123  *
8124  * Indication that the panel supports DRRS is given by the panel EDID, which
8125  * would list multiple refresh rates for one resolution.
8126  *
8127  * DRRS is of 2 types - static and seamless.
8128  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
8129  * (may appear as a blink on screen) and is used in dock-undock scenario.
8130  * Seamless DRRS involves changing RR without any visual effect to the user
8131  * and can be used during normal system usage. This is done by programming
8132  * certain registers.
8133  *
8134  * Support for static/seamless DRRS may be indicated in the VBT based on
8135  * inputs from the panel spec.
8136  *
8137  * DRRS saves power by switching to low RR based on usage scenarios.
8138  *
8139  * The implementation is based on frontbuffer tracking implementation.  When
8140  * there is a disturbance on the screen triggered by user activity or a periodic
8141  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
8142  * no movement on screen, after a timeout of 1 second, a switch to low RR is
8143  * made.
8144  *
8145  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
8146  * and intel_edp_drrs_flush() are called.
8147  *
8148  * DRRS can be further extended to support other internal panels and also
8149  * the scenario of video playback wherein RR is set based on the rate
8150  * requested by userspace.
8151  */
8152
8153 /**
8154  * intel_dp_drrs_init - Init basic DRRS work and mutex.
8155  * @connector: eDP connector
8156  * @fixed_mode: preferred mode of panel
8157  *
8158  * This function is  called only once at driver load to initialize basic
8159  * DRRS stuff.
8160  *
8161  * Returns:
8162  * Downclock mode if panel supports it, else return NULL.
8163  * DRRS support is determined by the presence of downclock mode (apart
8164  * from VBT setting).
8165  */
8166 static struct drm_display_mode *
8167 intel_dp_drrs_init(struct intel_connector *connector,
8168                    struct drm_display_mode *fixed_mode)
8169 {
8170         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
8171         struct drm_display_mode *downclock_mode = NULL;
8172
8173         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
8174         mutex_init(&dev_priv->drrs.mutex);
8175
8176         if (INTEL_GEN(dev_priv) <= 6) {
8177                 drm_dbg_kms(&dev_priv->drm,
8178                             "DRRS supported for Gen7 and above\n");
8179                 return NULL;
8180         }
8181
8182         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
8183                 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
8184                 return NULL;
8185         }
8186
8187         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
8188         if (!downclock_mode) {
8189                 drm_dbg_kms(&dev_priv->drm,
8190                             "Downclock mode is not found. DRRS not supported\n");
8191                 return NULL;
8192         }
8193
8194         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
8195
8196         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
8197         drm_dbg_kms(&dev_priv->drm,
8198                     "seamless DRRS supported for eDP panel.\n");
8199         return downclock_mode;
8200 }
8201
8202 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8203                                      struct intel_connector *intel_connector)
8204 {
8205         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8206         struct drm_device *dev = &dev_priv->drm;
8207         struct drm_connector *connector = &intel_connector->base;
8208         struct drm_display_mode *fixed_mode = NULL;
8209         struct drm_display_mode *downclock_mode = NULL;
8210         bool has_dpcd;
8211         enum pipe pipe = INVALID_PIPE;
8212         intel_wakeref_t wakeref;
8213         struct edid *edid;
8214
8215         if (!intel_dp_is_edp(intel_dp))
8216                 return true;
8217
8218         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8219
8220         /*
8221          * On IBX/CPT we may get here with LVDS already registered. Since the
8222          * driver uses the only internal power sequencer available for both
8223          * eDP and LVDS bail out early in this case to prevent interfering
8224          * with an already powered-on LVDS power sequencer.
8225          */
8226         if (intel_get_lvds_encoder(dev_priv)) {
8227                 drm_WARN_ON(dev,
8228                             !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8229                 drm_info(&dev_priv->drm,
8230                          "LVDS was detected, not registering eDP\n");
8231
8232                 return false;
8233         }
8234
8235         with_pps_lock(intel_dp, wakeref) {
8236                 intel_dp_init_panel_power_timestamps(intel_dp);
8237                 intel_dp_pps_init(intel_dp);
8238                 intel_edp_panel_vdd_sanitize(intel_dp);
8239         }
8240
8241         /* Cache DPCD and EDID for edp. */
8242         has_dpcd = intel_edp_init_dpcd(intel_dp);
8243
8244         if (!has_dpcd) {
8245                 /* if this fails, presume the device is a ghost */
8246                 drm_info(&dev_priv->drm,
8247                          "failed to retrieve link info, disabling eDP\n");
8248                 goto out_vdd_off;
8249         }
8250
8251         mutex_lock(&dev->mode_config.mutex);
8252         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8253         if (edid) {
8254                 if (drm_add_edid_modes(connector, edid)) {
8255                         drm_connector_update_edid_property(connector, edid);
8256                         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8257                 } else {
8258                         kfree(edid);
8259                         edid = ERR_PTR(-EINVAL);
8260                 }
8261         } else {
8262                 edid = ERR_PTR(-ENOENT);
8263         }
8264         intel_connector->edid = edid;
8265
8266         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8267         if (fixed_mode)
8268                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8269
8270         /* fallback to VBT if available for eDP */
8271         if (!fixed_mode)
8272                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8273         mutex_unlock(&dev->mode_config.mutex);
8274
8275         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8276                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8277                 register_reboot_notifier(&intel_dp->edp_notifier);
8278
8279                 /*
8280                  * Figure out the current pipe for the initial backlight setup.
8281                  * If the current pipe isn't valid, try the PPS pipe, and if that
8282                  * fails just assume pipe A.
8283                  */
8284                 pipe = vlv_active_pipe(intel_dp);
8285
8286                 if (pipe != PIPE_A && pipe != PIPE_B)
8287                         pipe = intel_dp->pps_pipe;
8288
8289                 if (pipe != PIPE_A && pipe != PIPE_B)
8290                         pipe = PIPE_A;
8291
8292                 drm_dbg_kms(&dev_priv->drm,
8293                             "using pipe %c for initial backlight setup\n",
8294                             pipe_name(pipe));
8295         }
8296
8297         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8298         intel_connector->panel.backlight.power = intel_edp_backlight_power;
8299         intel_panel_setup_backlight(connector, pipe);
8300
8301         if (fixed_mode) {
8302                 drm_connector_set_panel_orientation_with_quirk(connector,
8303                                 dev_priv->vbt.orientation,
8304                                 fixed_mode->hdisplay, fixed_mode->vdisplay);
8305         }
8306
8307         return true;
8308
8309 out_vdd_off:
8310         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8311         /*
8312          * vdd might still be enabled do to the delayed vdd off.
8313          * Make sure vdd is actually turned off here.
8314          */
8315         with_pps_lock(intel_dp, wakeref)
8316                 edp_panel_vdd_off_sync(intel_dp);
8317
8318         return false;
8319 }
8320
8321 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8322 {
8323         struct intel_connector *intel_connector;
8324         struct drm_connector *connector;
8325
8326         intel_connector = container_of(work, typeof(*intel_connector),
8327                                        modeset_retry_work);
8328         connector = &intel_connector->base;
8329         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8330                       connector->name);
8331
8332         /* Grab the locks before changing connector property*/
8333         mutex_lock(&connector->dev->mode_config.mutex);
8334         /* Set connector link status to BAD and send a Uevent to notify
8335          * userspace to do a modeset.
8336          */
8337         drm_connector_set_link_status_property(connector,
8338                                                DRM_MODE_LINK_STATUS_BAD);
8339         mutex_unlock(&connector->dev->mode_config.mutex);
8340         /* Send Hotplug uevent so userspace can reprobe */
8341         drm_kms_helper_hotplug_event(connector->dev);
8342 }
8343
8344 bool
8345 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8346                         struct intel_connector *intel_connector)
8347 {
8348         struct drm_connector *connector = &intel_connector->base;
8349         struct intel_dp *intel_dp = &intel_dig_port->dp;
8350         struct intel_encoder *intel_encoder = &intel_dig_port->base;
8351         struct drm_device *dev = intel_encoder->base.dev;
8352         struct drm_i915_private *dev_priv = to_i915(dev);
8353         enum port port = intel_encoder->port;
8354         enum phy phy = intel_port_to_phy(dev_priv, port);
8355         int type;
8356
8357         /* Initialize the work for modeset in case of link train failure */
8358         INIT_WORK(&intel_connector->modeset_retry_work,
8359                   intel_dp_modeset_retry_work_fn);
8360
8361         if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8362                      "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8363                      intel_dig_port->max_lanes, intel_encoder->base.base.id,
8364                      intel_encoder->base.name))
8365                 return false;
8366
8367         intel_dp_set_source_rates(intel_dp);
8368
8369         intel_dp->reset_link_params = true;
8370         intel_dp->pps_pipe = INVALID_PIPE;
8371         intel_dp->active_pipe = INVALID_PIPE;
8372
8373         /* Preserve the current hw state. */
8374         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8375         intel_dp->attached_connector = intel_connector;
8376
8377         if (intel_dp_is_port_edp(dev_priv, port)) {
8378                 /*
8379                  * Currently we don't support eDP on TypeC ports, although in
8380                  * theory it could work on TypeC legacy ports.
8381                  */
8382                 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8383                 type = DRM_MODE_CONNECTOR_eDP;
8384         } else {
8385                 type = DRM_MODE_CONNECTOR_DisplayPort;
8386         }
8387
8388         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8389                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8390
8391         /*
8392          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8393          * for DP the encoder type can be set by the caller to
8394          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8395          */
8396         if (type == DRM_MODE_CONNECTOR_eDP)
8397                 intel_encoder->type = INTEL_OUTPUT_EDP;
8398
8399         /* eDP only on port B and/or C on vlv/chv */
8400         if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8401                               IS_CHERRYVIEW(dev_priv)) &&
8402                         intel_dp_is_edp(intel_dp) &&
8403                         port != PORT_B && port != PORT_C))
8404                 return false;
8405
8406         drm_dbg_kms(&dev_priv->drm,
8407                     "Adding %s connector on [ENCODER:%d:%s]\n",
8408                     type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8409                     intel_encoder->base.base.id, intel_encoder->base.name);
8410
8411         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8412         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8413
8414         if (!HAS_GMCH(dev_priv))
8415                 connector->interlace_allowed = true;
8416         connector->doublescan_allowed = 0;
8417
8418         if (INTEL_GEN(dev_priv) >= 11)
8419                 connector->ycbcr_420_allowed = true;
8420
8421         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8422         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8423
8424         intel_dp_aux_init(intel_dp);
8425
8426         intel_connector_attach_encoder(intel_connector, intel_encoder);
8427
8428         if (HAS_DDI(dev_priv))
8429                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8430         else
8431                 intel_connector->get_hw_state = intel_connector_get_hw_state;
8432
8433         /* init MST on ports that can support it */
8434         intel_dp_mst_encoder_init(intel_dig_port,
8435                                   intel_connector->base.base.id);
8436
8437         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8438                 intel_dp_aux_fini(intel_dp);
8439                 intel_dp_mst_encoder_cleanup(intel_dig_port);
8440                 goto fail;
8441         }
8442
8443         intel_dp_add_properties(intel_dp, connector);
8444
8445         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8446                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8447                 if (ret)
8448                         drm_dbg_kms(&dev_priv->drm,
8449                                     "HDCP init failed, skipping.\n");
8450         }
8451
8452         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8453          * 0xd.  Failure to do so will result in spurious interrupts being
8454          * generated on the port when a cable is not attached.
8455          */
8456         if (IS_G45(dev_priv)) {
8457                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8458                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8459                                (temp & ~0xf) | 0xd);
8460         }
8461
8462         return true;
8463
8464 fail:
8465         drm_connector_cleanup(connector);
8466
8467         return false;
8468 }
8469
8470 bool intel_dp_init(struct drm_i915_private *dev_priv,
8471                    i915_reg_t output_reg,
8472                    enum port port)
8473 {
8474         struct intel_digital_port *intel_dig_port;
8475         struct intel_encoder *intel_encoder;
8476         struct drm_encoder *encoder;
8477         struct intel_connector *intel_connector;
8478
8479         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8480         if (!intel_dig_port)
8481                 return false;
8482
8483         intel_connector = intel_connector_alloc();
8484         if (!intel_connector)
8485                 goto err_connector_alloc;
8486
8487         intel_encoder = &intel_dig_port->base;
8488         encoder = &intel_encoder->base;
8489
8490         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8491                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8492                              "DP %c", port_name(port)))
8493                 goto err_encoder_init;
8494
8495         intel_encoder->hotplug = intel_dp_hotplug;
8496         intel_encoder->compute_config = intel_dp_compute_config;
8497         intel_encoder->get_hw_state = intel_dp_get_hw_state;
8498         intel_encoder->get_config = intel_dp_get_config;
8499         intel_encoder->update_pipe = intel_panel_update_backlight;
8500         intel_encoder->suspend = intel_dp_encoder_suspend;
8501         if (IS_CHERRYVIEW(dev_priv)) {
8502                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8503                 intel_encoder->pre_enable = chv_pre_enable_dp;
8504                 intel_encoder->enable = vlv_enable_dp;
8505                 intel_encoder->disable = vlv_disable_dp;
8506                 intel_encoder->post_disable = chv_post_disable_dp;
8507                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8508         } else if (IS_VALLEYVIEW(dev_priv)) {
8509                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8510                 intel_encoder->pre_enable = vlv_pre_enable_dp;
8511                 intel_encoder->enable = vlv_enable_dp;
8512                 intel_encoder->disable = vlv_disable_dp;
8513                 intel_encoder->post_disable = vlv_post_disable_dp;
8514         } else {
8515                 intel_encoder->pre_enable = g4x_pre_enable_dp;
8516                 intel_encoder->enable = g4x_enable_dp;
8517                 intel_encoder->disable = g4x_disable_dp;
8518                 intel_encoder->post_disable = g4x_post_disable_dp;
8519         }
8520
8521         intel_dig_port->dp.output_reg = output_reg;
8522         intel_dig_port->max_lanes = 4;
8523         intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8524         intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8525
8526         intel_encoder->type = INTEL_OUTPUT_DP;
8527         intel_encoder->power_domain = intel_port_to_power_domain(port);
8528         if (IS_CHERRYVIEW(dev_priv)) {
8529                 if (port == PORT_D)
8530                         intel_encoder->pipe_mask = BIT(PIPE_C);
8531                 else
8532                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8533         } else {
8534                 intel_encoder->pipe_mask = ~0;
8535         }
8536         intel_encoder->cloneable = 0;
8537         intel_encoder->port = port;
8538
8539         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8540
8541         if (port != PORT_A)
8542                 intel_infoframe_init(intel_dig_port);
8543
8544         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8545         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8546                 goto err_init_connector;
8547
8548         return true;
8549
8550 err_init_connector:
8551         drm_encoder_cleanup(encoder);
8552 err_encoder_init:
8553         kfree(intel_connector);
8554 err_connector_alloc:
8555         kfree(intel_dig_port);
8556         return false;
8557 }
8558
8559 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8560 {
8561         struct intel_encoder *encoder;
8562
8563         for_each_intel_encoder(&dev_priv->drm, encoder) {
8564                 struct intel_dp *intel_dp;
8565
8566                 if (encoder->type != INTEL_OUTPUT_DDI)
8567                         continue;
8568
8569                 intel_dp = enc_to_intel_dp(encoder);
8570
8571                 if (!intel_dp->can_mst)
8572                         continue;
8573
8574                 if (intel_dp->is_mst)
8575                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8576         }
8577 }
8578
8579 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8580 {
8581         struct intel_encoder *encoder;
8582
8583         for_each_intel_encoder(&dev_priv->drm, encoder) {
8584                 struct intel_dp *intel_dp;
8585                 int ret;
8586
8587                 if (encoder->type != INTEL_OUTPUT_DDI)
8588                         continue;
8589
8590                 intel_dp = enc_to_intel_dp(encoder);
8591
8592                 if (!intel_dp->can_mst)
8593                         continue;
8594
8595                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8596                                                      true);
8597                 if (ret) {
8598                         intel_dp->is_mst = false;
8599                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8600                                                         false);
8601                 }
8602         }
8603 }