Merge tag 'for_linus' of git://git.kernel.org/pub/scm/linux/kernel/git/mst/vhost
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_debugfs.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static void intel_dp_link_down(struct intel_encoder *encoder,
150                                const struct intel_crtc_state *old_crtc_state);
151 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
152 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
153 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
154                                            const struct intel_crtc_state *crtc_state);
155 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
156                                       enum pipe pipe);
157 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
158
159 /* update sink rates from dpcd */
160 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
161 {
162         static const int dp_rates[] = {
163                 162000, 270000, 540000, 810000
164         };
165         int i, max_rate;
166
167         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
168
169         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
170                 if (dp_rates[i] > max_rate)
171                         break;
172                 intel_dp->sink_rates[i] = dp_rates[i];
173         }
174
175         intel_dp->num_sink_rates = i;
176 }
177
178 /* Get length of rates array potentially limited by max_rate. */
179 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
180 {
181         int i;
182
183         /* Limit results by potentially reduced max rate */
184         for (i = 0; i < len; i++) {
185                 if (rates[len - i - 1] <= max_rate)
186                         return len - i;
187         }
188
189         return 0;
190 }
191
192 /* Get length of common rates array potentially limited by max_rate. */
193 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
194                                           int max_rate)
195 {
196         return intel_dp_rate_limit_len(intel_dp->common_rates,
197                                        intel_dp->num_common_rates, max_rate);
198 }
199
200 /* Theoretical max between source and sink */
201 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
202 {
203         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
204 }
205
206 /* Theoretical max between source and sink */
207 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
208 {
209         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
210         int source_max = intel_dig_port->max_lanes;
211         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
212         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
213
214         return min3(source_max, sink_max, fia_max);
215 }
216
217 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
218 {
219         return intel_dp->max_link_lane_count;
220 }
221
222 int
223 intel_dp_link_required(int pixel_clock, int bpp)
224 {
225         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
226         return DIV_ROUND_UP(pixel_clock * bpp, 8);
227 }
228
229 int
230 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
231 {
232         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
233          * link rate that is generally expressed in Gbps. Since, 8 bits of data
234          * is transmitted every LS_Clk per lane, there is no need to account for
235          * the channel encoding that is done in the PHY layer here.
236          */
237
238         return max_link_clock * max_lanes;
239 }
240
241 static int
242 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
243 {
244         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
245         struct intel_encoder *encoder = &intel_dig_port->base;
246         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
247         int max_dotclk = dev_priv->max_dotclk_freq;
248         int ds_max_dotclk;
249
250         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
251
252         if (type != DP_DS_PORT_TYPE_VGA)
253                 return max_dotclk;
254
255         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
256                                                     intel_dp->downstream_ports);
257
258         if (ds_max_dotclk != 0)
259                 max_dotclk = min(max_dotclk, ds_max_dotclk);
260
261         return max_dotclk;
262 }
263
264 static int cnl_max_source_rate(struct intel_dp *intel_dp)
265 {
266         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
267         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
268         enum port port = dig_port->base.port;
269
270         u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
271
272         /* Low voltage SKUs are limited to max of 5.4G */
273         if (voltage == VOLTAGE_INFO_0_85V)
274                 return 540000;
275
276         /* For this SKU 8.1G is supported in all ports */
277         if (IS_CNL_WITH_PORT_F(dev_priv))
278                 return 810000;
279
280         /* For other SKUs, max rate on ports A and D is 5.4G */
281         if (port == PORT_A || port == PORT_D)
282                 return 540000;
283
284         return 810000;
285 }
286
287 static int icl_max_source_rate(struct intel_dp *intel_dp)
288 {
289         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
290         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
291         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
292
293         if (intel_phy_is_combo(dev_priv, phy) &&
294             !IS_ELKHARTLAKE(dev_priv) &&
295             !intel_dp_is_edp(intel_dp))
296                 return 540000;
297
298         return 810000;
299 }
300
301 static void
302 intel_dp_set_source_rates(struct intel_dp *intel_dp)
303 {
304         /* The values must be in increasing order */
305         static const int cnl_rates[] = {
306                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
307         };
308         static const int bxt_rates[] = {
309                 162000, 216000, 243000, 270000, 324000, 432000, 540000
310         };
311         static const int skl_rates[] = {
312                 162000, 216000, 270000, 324000, 432000, 540000
313         };
314         static const int hsw_rates[] = {
315                 162000, 270000, 540000
316         };
317         static const int g4x_rates[] = {
318                 162000, 270000
319         };
320         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
321         struct intel_encoder *encoder = &dig_port->base;
322         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
323         const int *source_rates;
324         int size, max_rate = 0, vbt_max_rate;
325
326         /* This should only be done once */
327         drm_WARN_ON(&dev_priv->drm,
328                     intel_dp->source_rates || intel_dp->num_source_rates);
329
330         if (INTEL_GEN(dev_priv) >= 10) {
331                 source_rates = cnl_rates;
332                 size = ARRAY_SIZE(cnl_rates);
333                 if (IS_GEN(dev_priv, 10))
334                         max_rate = cnl_max_source_rate(intel_dp);
335                 else
336                         max_rate = icl_max_source_rate(intel_dp);
337         } else if (IS_GEN9_LP(dev_priv)) {
338                 source_rates = bxt_rates;
339                 size = ARRAY_SIZE(bxt_rates);
340         } else if (IS_GEN9_BC(dev_priv)) {
341                 source_rates = skl_rates;
342                 size = ARRAY_SIZE(skl_rates);
343         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
344                    IS_BROADWELL(dev_priv)) {
345                 source_rates = hsw_rates;
346                 size = ARRAY_SIZE(hsw_rates);
347         } else {
348                 source_rates = g4x_rates;
349                 size = ARRAY_SIZE(g4x_rates);
350         }
351
352         vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
353         if (max_rate && vbt_max_rate)
354                 max_rate = min(max_rate, vbt_max_rate);
355         else if (vbt_max_rate)
356                 max_rate = vbt_max_rate;
357
358         if (max_rate)
359                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
360
361         intel_dp->source_rates = source_rates;
362         intel_dp->num_source_rates = size;
363 }
364
365 static int intersect_rates(const int *source_rates, int source_len,
366                            const int *sink_rates, int sink_len,
367                            int *common_rates)
368 {
369         int i = 0, j = 0, k = 0;
370
371         while (i < source_len && j < sink_len) {
372                 if (source_rates[i] == sink_rates[j]) {
373                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
374                                 return k;
375                         common_rates[k] = source_rates[i];
376                         ++k;
377                         ++i;
378                         ++j;
379                 } else if (source_rates[i] < sink_rates[j]) {
380                         ++i;
381                 } else {
382                         ++j;
383                 }
384         }
385         return k;
386 }
387
388 /* return index of rate in rates array, or -1 if not found */
389 static int intel_dp_rate_index(const int *rates, int len, int rate)
390 {
391         int i;
392
393         for (i = 0; i < len; i++)
394                 if (rate == rates[i])
395                         return i;
396
397         return -1;
398 }
399
400 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
401 {
402         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
403
404         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
405                                                      intel_dp->num_source_rates,
406                                                      intel_dp->sink_rates,
407                                                      intel_dp->num_sink_rates,
408                                                      intel_dp->common_rates);
409
410         /* Paranoia, there should always be something in common. */
411         if (WARN_ON(intel_dp->num_common_rates == 0)) {
412                 intel_dp->common_rates[0] = 162000;
413                 intel_dp->num_common_rates = 1;
414         }
415 }
416
417 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
418                                        u8 lane_count)
419 {
420         /*
421          * FIXME: we need to synchronize the current link parameters with
422          * hardware readout. Currently fast link training doesn't work on
423          * boot-up.
424          */
425         if (link_rate == 0 ||
426             link_rate > intel_dp->max_link_rate)
427                 return false;
428
429         if (lane_count == 0 ||
430             lane_count > intel_dp_max_lane_count(intel_dp))
431                 return false;
432
433         return true;
434 }
435
436 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
437                                                      int link_rate,
438                                                      u8 lane_count)
439 {
440         const struct drm_display_mode *fixed_mode =
441                 intel_dp->attached_connector->panel.fixed_mode;
442         int mode_rate, max_rate;
443
444         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
445         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
446         if (mode_rate > max_rate)
447                 return false;
448
449         return true;
450 }
451
452 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
453                                             int link_rate, u8 lane_count)
454 {
455         int index;
456
457         index = intel_dp_rate_index(intel_dp->common_rates,
458                                     intel_dp->num_common_rates,
459                                     link_rate);
460         if (index > 0) {
461                 if (intel_dp_is_edp(intel_dp) &&
462                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
463                                                               intel_dp->common_rates[index - 1],
464                                                               lane_count)) {
465                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
466                         return 0;
467                 }
468                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
469                 intel_dp->max_link_lane_count = lane_count;
470         } else if (lane_count > 1) {
471                 if (intel_dp_is_edp(intel_dp) &&
472                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
473                                                               intel_dp_max_common_rate(intel_dp),
474                                                               lane_count >> 1)) {
475                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
476                         return 0;
477                 }
478                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
479                 intel_dp->max_link_lane_count = lane_count >> 1;
480         } else {
481                 DRM_ERROR("Link Training Unsuccessful\n");
482                 return -1;
483         }
484
485         return 0;
486 }
487
488 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
489 {
490         return div_u64(mul_u32_u32(mode_clock, 1000000U),
491                        DP_DSC_FEC_OVERHEAD_FACTOR);
492 }
493
494 static int
495 small_joiner_ram_size_bits(struct drm_i915_private *i915)
496 {
497         if (INTEL_GEN(i915) >= 11)
498                 return 7680 * 8;
499         else
500                 return 6144 * 8;
501 }
502
503 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
504                                        u32 link_clock, u32 lane_count,
505                                        u32 mode_clock, u32 mode_hdisplay)
506 {
507         u32 bits_per_pixel, max_bpp_small_joiner_ram;
508         int i;
509
510         /*
511          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
512          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
513          * for SST -> TimeSlotsPerMTP is 1,
514          * for MST -> TimeSlotsPerMTP has to be calculated
515          */
516         bits_per_pixel = (link_clock * lane_count * 8) /
517                          intel_dp_mode_to_fec_clock(mode_clock);
518         drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
519
520         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
521         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
522                 mode_hdisplay;
523         drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
524                     max_bpp_small_joiner_ram);
525
526         /*
527          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
528          * check, output bpp from small joiner RAM check)
529          */
530         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
531
532         /* Error out if the max bpp is less than smallest allowed valid bpp */
533         if (bits_per_pixel < valid_dsc_bpp[0]) {
534                 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
535                             bits_per_pixel, valid_dsc_bpp[0]);
536                 return 0;
537         }
538
539         /* Find the nearest match in the array of known BPPs from VESA */
540         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
541                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
542                         break;
543         }
544         bits_per_pixel = valid_dsc_bpp[i];
545
546         /*
547          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
548          * fractional part is 0
549          */
550         return bits_per_pixel << 4;
551 }
552
553 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
554                                        int mode_clock, int mode_hdisplay)
555 {
556         u8 min_slice_count, i;
557         int max_slice_width;
558
559         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
560                 min_slice_count = DIV_ROUND_UP(mode_clock,
561                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
562         else
563                 min_slice_count = DIV_ROUND_UP(mode_clock,
564                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
565
566         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
567         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
568                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
569                               max_slice_width);
570                 return 0;
571         }
572         /* Also take into account max slice width */
573         min_slice_count = min_t(u8, min_slice_count,
574                                 DIV_ROUND_UP(mode_hdisplay,
575                                              max_slice_width));
576
577         /* Find the closest match to the valid slice count values */
578         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
579                 if (valid_dsc_slicecount[i] >
580                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
581                                                     false))
582                         break;
583                 if (min_slice_count  <= valid_dsc_slicecount[i])
584                         return valid_dsc_slicecount[i];
585         }
586
587         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
588         return 0;
589 }
590
591 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
592                                   int hdisplay)
593 {
594         /*
595          * Older platforms don't like hdisplay==4096 with DP.
596          *
597          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
598          * and frame counter increment), but we don't get vblank interrupts,
599          * and the pipe underruns immediately. The link also doesn't seem
600          * to get trained properly.
601          *
602          * On CHV the vblank interrupts don't seem to disappear but
603          * otherwise the symptoms are similar.
604          *
605          * TODO: confirm the behaviour on HSW+
606          */
607         return hdisplay == 4096 && !HAS_DDI(dev_priv);
608 }
609
610 static enum drm_mode_status
611 intel_dp_mode_valid(struct drm_connector *connector,
612                     struct drm_display_mode *mode)
613 {
614         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
615         struct intel_connector *intel_connector = to_intel_connector(connector);
616         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
617         struct drm_i915_private *dev_priv = to_i915(connector->dev);
618         int target_clock = mode->clock;
619         int max_rate, mode_rate, max_lanes, max_link_clock;
620         int max_dotclk;
621         u16 dsc_max_output_bpp = 0;
622         u8 dsc_slice_count = 0;
623
624         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
625                 return MODE_NO_DBLESCAN;
626
627         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
628
629         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
630                 if (mode->hdisplay > fixed_mode->hdisplay)
631                         return MODE_PANEL;
632
633                 if (mode->vdisplay > fixed_mode->vdisplay)
634                         return MODE_PANEL;
635
636                 target_clock = fixed_mode->clock;
637         }
638
639         max_link_clock = intel_dp_max_link_rate(intel_dp);
640         max_lanes = intel_dp_max_lane_count(intel_dp);
641
642         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
643         mode_rate = intel_dp_link_required(target_clock, 18);
644
645         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
646                 return MODE_H_ILLEGAL;
647
648         /*
649          * Output bpp is stored in 6.4 format so right shift by 4 to get the
650          * integer value since we support only integer values of bpp.
651          */
652         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
653             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
654                 if (intel_dp_is_edp(intel_dp)) {
655                         dsc_max_output_bpp =
656                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
657                         dsc_slice_count =
658                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
659                                                                 true);
660                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
661                         dsc_max_output_bpp =
662                                 intel_dp_dsc_get_output_bpp(dev_priv,
663                                                             max_link_clock,
664                                                             max_lanes,
665                                                             target_clock,
666                                                             mode->hdisplay) >> 4;
667                         dsc_slice_count =
668                                 intel_dp_dsc_get_slice_count(intel_dp,
669                                                              target_clock,
670                                                              mode->hdisplay);
671                 }
672         }
673
674         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
675             target_clock > max_dotclk)
676                 return MODE_CLOCK_HIGH;
677
678         if (mode->clock < 10000)
679                 return MODE_CLOCK_LOW;
680
681         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
682                 return MODE_H_ILLEGAL;
683
684         return intel_mode_valid_max_plane_size(dev_priv, mode);
685 }
686
687 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
688 {
689         int i;
690         u32 v = 0;
691
692         if (src_bytes > 4)
693                 src_bytes = 4;
694         for (i = 0; i < src_bytes; i++)
695                 v |= ((u32)src[i]) << ((3 - i) * 8);
696         return v;
697 }
698
699 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
700 {
701         int i;
702         if (dst_bytes > 4)
703                 dst_bytes = 4;
704         for (i = 0; i < dst_bytes; i++)
705                 dst[i] = src >> ((3-i) * 8);
706 }
707
708 static void
709 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
710 static void
711 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
712                                               bool force_disable_vdd);
713 static void
714 intel_dp_pps_init(struct intel_dp *intel_dp);
715
716 static intel_wakeref_t
717 pps_lock(struct intel_dp *intel_dp)
718 {
719         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
720         intel_wakeref_t wakeref;
721
722         /*
723          * See intel_power_sequencer_reset() why we need
724          * a power domain reference here.
725          */
726         wakeref = intel_display_power_get(dev_priv,
727                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
728
729         mutex_lock(&dev_priv->pps_mutex);
730
731         return wakeref;
732 }
733
734 static intel_wakeref_t
735 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
736 {
737         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
738
739         mutex_unlock(&dev_priv->pps_mutex);
740         intel_display_power_put(dev_priv,
741                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
742                                 wakeref);
743         return 0;
744 }
745
746 #define with_pps_lock(dp, wf) \
747         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
748
749 static void
750 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
751 {
752         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
753         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
754         enum pipe pipe = intel_dp->pps_pipe;
755         bool pll_enabled, release_cl_override = false;
756         enum dpio_phy phy = DPIO_PHY(pipe);
757         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
758         u32 DP;
759
760         if (drm_WARN(&dev_priv->drm,
761                      intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
762                      "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
763                      pipe_name(pipe), intel_dig_port->base.base.base.id,
764                      intel_dig_port->base.base.name))
765                 return;
766
767         drm_dbg_kms(&dev_priv->drm,
768                     "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
769                     pipe_name(pipe), intel_dig_port->base.base.base.id,
770                     intel_dig_port->base.base.name);
771
772         /* Preserve the BIOS-computed detected bit. This is
773          * supposed to be read-only.
774          */
775         DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
776         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
777         DP |= DP_PORT_WIDTH(1);
778         DP |= DP_LINK_TRAIN_PAT_1;
779
780         if (IS_CHERRYVIEW(dev_priv))
781                 DP |= DP_PIPE_SEL_CHV(pipe);
782         else
783                 DP |= DP_PIPE_SEL(pipe);
784
785         pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
786
787         /*
788          * The DPLL for the pipe must be enabled for this to work.
789          * So enable temporarily it if it's not already enabled.
790          */
791         if (!pll_enabled) {
792                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
793                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
794
795                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
796                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
797                         drm_err(&dev_priv->drm,
798                                 "Failed to force on pll for pipe %c!\n",
799                                 pipe_name(pipe));
800                         return;
801                 }
802         }
803
804         /*
805          * Similar magic as in intel_dp_enable_port().
806          * We _must_ do this port enable + disable trick
807          * to make this power sequencer lock onto the port.
808          * Otherwise even VDD force bit won't work.
809          */
810         intel_de_write(dev_priv, intel_dp->output_reg, DP);
811         intel_de_posting_read(dev_priv, intel_dp->output_reg);
812
813         intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
814         intel_de_posting_read(dev_priv, intel_dp->output_reg);
815
816         intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
817         intel_de_posting_read(dev_priv, intel_dp->output_reg);
818
819         if (!pll_enabled) {
820                 vlv_force_pll_off(dev_priv, pipe);
821
822                 if (release_cl_override)
823                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
824         }
825 }
826
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829         struct intel_encoder *encoder;
830         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831
832         /*
833          * We don't have power sequencer currently.
834          * Pick one that's not used by other ports.
835          */
836         for_each_intel_dp(&dev_priv->drm, encoder) {
837                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
838
839                 if (encoder->type == INTEL_OUTPUT_EDP) {
840                         drm_WARN_ON(&dev_priv->drm,
841                                     intel_dp->active_pipe != INVALID_PIPE &&
842                                     intel_dp->active_pipe !=
843                                     intel_dp->pps_pipe);
844
845                         if (intel_dp->pps_pipe != INVALID_PIPE)
846                                 pipes &= ~(1 << intel_dp->pps_pipe);
847                 } else {
848                         drm_WARN_ON(&dev_priv->drm,
849                                     intel_dp->pps_pipe != INVALID_PIPE);
850
851                         if (intel_dp->active_pipe != INVALID_PIPE)
852                                 pipes &= ~(1 << intel_dp->active_pipe);
853                 }
854         }
855
856         if (pipes == 0)
857                 return INVALID_PIPE;
858
859         return ffs(pipes) - 1;
860 }
861
862 static enum pipe
863 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
864 {
865         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
866         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
867         enum pipe pipe;
868
869         lockdep_assert_held(&dev_priv->pps_mutex);
870
871         /* We should never land here with regular DP ports */
872         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
873
874         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
875                     intel_dp->active_pipe != intel_dp->pps_pipe);
876
877         if (intel_dp->pps_pipe != INVALID_PIPE)
878                 return intel_dp->pps_pipe;
879
880         pipe = vlv_find_free_pps(dev_priv);
881
882         /*
883          * Didn't find one. This should not happen since there
884          * are two power sequencers and up to two eDP ports.
885          */
886         if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
887                 pipe = PIPE_A;
888
889         vlv_steal_power_sequencer(dev_priv, pipe);
890         intel_dp->pps_pipe = pipe;
891
892         drm_dbg_kms(&dev_priv->drm,
893                     "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
894                     pipe_name(intel_dp->pps_pipe),
895                     intel_dig_port->base.base.base.id,
896                     intel_dig_port->base.base.name);
897
898         /* init power sequencer on this pipe and port */
899         intel_dp_init_panel_power_sequencer(intel_dp);
900         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
901
902         /*
903          * Even vdd force doesn't work until we've made
904          * the power sequencer lock in on the port.
905          */
906         vlv_power_sequencer_kick(intel_dp);
907
908         return intel_dp->pps_pipe;
909 }
910
911 static int
912 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
913 {
914         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
915         int backlight_controller = dev_priv->vbt.backlight.controller;
916
917         lockdep_assert_held(&dev_priv->pps_mutex);
918
919         /* We should never land here with regular DP ports */
920         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
921
922         if (!intel_dp->pps_reset)
923                 return backlight_controller;
924
925         intel_dp->pps_reset = false;
926
927         /*
928          * Only the HW needs to be reprogrammed, the SW state is fixed and
929          * has been setup during connector init.
930          */
931         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
932
933         return backlight_controller;
934 }
935
936 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
937                                enum pipe pipe);
938
939 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
940                                enum pipe pipe)
941 {
942         return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
943 }
944
945 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
946                                 enum pipe pipe)
947 {
948         return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
949 }
950
951 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
952                          enum pipe pipe)
953 {
954         return true;
955 }
956
957 static enum pipe
958 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
959                      enum port port,
960                      vlv_pipe_check pipe_check)
961 {
962         enum pipe pipe;
963
964         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
965                 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
966                         PANEL_PORT_SELECT_MASK;
967
968                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
969                         continue;
970
971                 if (!pipe_check(dev_priv, pipe))
972                         continue;
973
974                 return pipe;
975         }
976
977         return INVALID_PIPE;
978 }
979
980 static void
981 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
982 {
983         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
984         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
985         enum port port = intel_dig_port->base.port;
986
987         lockdep_assert_held(&dev_priv->pps_mutex);
988
989         /* try to find a pipe with this port selected */
990         /* first pick one where the panel is on */
991         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992                                                   vlv_pipe_has_pp_on);
993         /* didn't find one? pick one where vdd is on */
994         if (intel_dp->pps_pipe == INVALID_PIPE)
995                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996                                                           vlv_pipe_has_vdd_on);
997         /* didn't find one? pick one with just the correct port */
998         if (intel_dp->pps_pipe == INVALID_PIPE)
999                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1000                                                           vlv_pipe_any);
1001
1002         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1003         if (intel_dp->pps_pipe == INVALID_PIPE) {
1004                 drm_dbg_kms(&dev_priv->drm,
1005                             "no initial power sequencer for [ENCODER:%d:%s]\n",
1006                             intel_dig_port->base.base.base.id,
1007                             intel_dig_port->base.base.name);
1008                 return;
1009         }
1010
1011         drm_dbg_kms(&dev_priv->drm,
1012                     "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1013                     intel_dig_port->base.base.base.id,
1014                     intel_dig_port->base.base.name,
1015                     pipe_name(intel_dp->pps_pipe));
1016
1017         intel_dp_init_panel_power_sequencer(intel_dp);
1018         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1019 }
1020
1021 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1022 {
1023         struct intel_encoder *encoder;
1024
1025         if (drm_WARN_ON(&dev_priv->drm,
1026                         !(IS_VALLEYVIEW(dev_priv) ||
1027                           IS_CHERRYVIEW(dev_priv) ||
1028                           IS_GEN9_LP(dev_priv))))
1029                 return;
1030
1031         /*
1032          * We can't grab pps_mutex here due to deadlock with power_domain
1033          * mutex when power_domain functions are called while holding pps_mutex.
1034          * That also means that in order to use pps_pipe the code needs to
1035          * hold both a power domain reference and pps_mutex, and the power domain
1036          * reference get/put must be done while _not_ holding pps_mutex.
1037          * pps_{lock,unlock}() do these steps in the correct order, so one
1038          * should use them always.
1039          */
1040
1041         for_each_intel_dp(&dev_priv->drm, encoder) {
1042                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1043
1044                 drm_WARN_ON(&dev_priv->drm,
1045                             intel_dp->active_pipe != INVALID_PIPE);
1046
1047                 if (encoder->type != INTEL_OUTPUT_EDP)
1048                         continue;
1049
1050                 if (IS_GEN9_LP(dev_priv))
1051                         intel_dp->pps_reset = true;
1052                 else
1053                         intel_dp->pps_pipe = INVALID_PIPE;
1054         }
1055 }
1056
1057 struct pps_registers {
1058         i915_reg_t pp_ctrl;
1059         i915_reg_t pp_stat;
1060         i915_reg_t pp_on;
1061         i915_reg_t pp_off;
1062         i915_reg_t pp_div;
1063 };
1064
1065 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1066                                     struct pps_registers *regs)
1067 {
1068         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1069         int pps_idx = 0;
1070
1071         memset(regs, 0, sizeof(*regs));
1072
1073         if (IS_GEN9_LP(dev_priv))
1074                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1075         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1076                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1077
1078         regs->pp_ctrl = PP_CONTROL(pps_idx);
1079         regs->pp_stat = PP_STATUS(pps_idx);
1080         regs->pp_on = PP_ON_DELAYS(pps_idx);
1081         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1082
1083         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1084         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1085                 regs->pp_div = INVALID_MMIO_REG;
1086         else
1087                 regs->pp_div = PP_DIVISOR(pps_idx);
1088 }
1089
1090 static i915_reg_t
1091 _pp_ctrl_reg(struct intel_dp *intel_dp)
1092 {
1093         struct pps_registers regs;
1094
1095         intel_pps_get_registers(intel_dp, &regs);
1096
1097         return regs.pp_ctrl;
1098 }
1099
1100 static i915_reg_t
1101 _pp_stat_reg(struct intel_dp *intel_dp)
1102 {
1103         struct pps_registers regs;
1104
1105         intel_pps_get_registers(intel_dp, &regs);
1106
1107         return regs.pp_stat;
1108 }
1109
1110 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1111    This function only applicable when panel PM state is not to be tracked */
1112 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1113                               void *unused)
1114 {
1115         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1116                                                  edp_notifier);
1117         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1118         intel_wakeref_t wakeref;
1119
1120         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1121                 return 0;
1122
1123         with_pps_lock(intel_dp, wakeref) {
1124                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1125                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1126                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1127                         u32 pp_div;
1128
1129                         pp_ctrl_reg = PP_CONTROL(pipe);
1130                         pp_div_reg  = PP_DIVISOR(pipe);
1131                         pp_div = intel_de_read(dev_priv, pp_div_reg);
1132                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1133
1134                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1135                         intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1136                         intel_de_write(dev_priv, pp_ctrl_reg,
1137                                        PANEL_UNLOCK_REGS);
1138                         msleep(intel_dp->panel_power_cycle_delay);
1139                 }
1140         }
1141
1142         return 0;
1143 }
1144
1145 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1146 {
1147         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1148
1149         lockdep_assert_held(&dev_priv->pps_mutex);
1150
1151         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1152             intel_dp->pps_pipe == INVALID_PIPE)
1153                 return false;
1154
1155         return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1156 }
1157
1158 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1159 {
1160         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1161
1162         lockdep_assert_held(&dev_priv->pps_mutex);
1163
1164         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1165             intel_dp->pps_pipe == INVALID_PIPE)
1166                 return false;
1167
1168         return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1169 }
1170
1171 static void
1172 intel_dp_check_edp(struct intel_dp *intel_dp)
1173 {
1174         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1175
1176         if (!intel_dp_is_edp(intel_dp))
1177                 return;
1178
1179         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1180                 drm_WARN(&dev_priv->drm, 1,
1181                          "eDP powered off while attempting aux channel communication.\n");
1182                 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1183                             intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1184                             intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1185         }
1186 }
1187
1188 static u32
1189 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1190 {
1191         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1192         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1193         const unsigned int timeout_ms = 10;
1194         u32 status;
1195         bool done;
1196
1197 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1198         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1199                                   msecs_to_jiffies_timeout(timeout_ms));
1200
1201         /* just trace the final value */
1202         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1203
1204         if (!done)
1205                 drm_err(&i915->drm,
1206                         "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1207                         intel_dp->aux.name, timeout_ms, status);
1208 #undef C
1209
1210         return status;
1211 }
1212
1213 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1214 {
1215         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1216
1217         if (index)
1218                 return 0;
1219
1220         /*
1221          * The clock divider is based off the hrawclk, and would like to run at
1222          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1223          */
1224         return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1225 }
1226
1227 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228 {
1229         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1230         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1231         u32 freq;
1232
1233         if (index)
1234                 return 0;
1235
1236         /*
1237          * The clock divider is based off the cdclk or PCH rawclk, and would
1238          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1239          * divide by 2000 and use that
1240          */
1241         if (dig_port->aux_ch == AUX_CH_A)
1242                 freq = dev_priv->cdclk.hw.cdclk;
1243         else
1244                 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1245         return DIV_ROUND_CLOSEST(freq, 2000);
1246 }
1247
1248 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1249 {
1250         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1251         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1252
1253         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1254                 /* Workaround for non-ULT HSW */
1255                 switch (index) {
1256                 case 0: return 63;
1257                 case 1: return 72;
1258                 default: return 0;
1259                 }
1260         }
1261
1262         return ilk_get_aux_clock_divider(intel_dp, index);
1263 }
1264
1265 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1266 {
1267         /*
1268          * SKL doesn't need us to program the AUX clock divider (Hardware will
1269          * derive the clock from CDCLK automatically). We still implement the
1270          * get_aux_clock_divider vfunc to plug-in into the existing code.
1271          */
1272         return index ? 0 : 1;
1273 }
1274
1275 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1276                                 int send_bytes,
1277                                 u32 aux_clock_divider)
1278 {
1279         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1280         struct drm_i915_private *dev_priv =
1281                         to_i915(intel_dig_port->base.base.dev);
1282         u32 precharge, timeout;
1283
1284         if (IS_GEN(dev_priv, 6))
1285                 precharge = 3;
1286         else
1287                 precharge = 5;
1288
1289         if (IS_BROADWELL(dev_priv))
1290                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1291         else
1292                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1293
1294         return DP_AUX_CH_CTL_SEND_BUSY |
1295                DP_AUX_CH_CTL_DONE |
1296                DP_AUX_CH_CTL_INTERRUPT |
1297                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1298                timeout |
1299                DP_AUX_CH_CTL_RECEIVE_ERROR |
1300                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1301                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1302                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1303 }
1304
1305 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1306                                 int send_bytes,
1307                                 u32 unused)
1308 {
1309         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1310         struct drm_i915_private *i915 =
1311                         to_i915(intel_dig_port->base.base.dev);
1312         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1313         u32 ret;
1314
1315         ret = DP_AUX_CH_CTL_SEND_BUSY |
1316               DP_AUX_CH_CTL_DONE |
1317               DP_AUX_CH_CTL_INTERRUPT |
1318               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1319               DP_AUX_CH_CTL_TIME_OUT_MAX |
1320               DP_AUX_CH_CTL_RECEIVE_ERROR |
1321               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1322               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1323               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1324
1325         if (intel_phy_is_tc(i915, phy) &&
1326             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1327                 ret |= DP_AUX_CH_CTL_TBT_IO;
1328
1329         return ret;
1330 }
1331
1332 static int
1333 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1334                   const u8 *send, int send_bytes,
1335                   u8 *recv, int recv_size,
1336                   u32 aux_send_ctl_flags)
1337 {
1338         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1339         struct drm_i915_private *i915 =
1340                         to_i915(intel_dig_port->base.base.dev);
1341         struct intel_uncore *uncore = &i915->uncore;
1342         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1343         bool is_tc_port = intel_phy_is_tc(i915, phy);
1344         i915_reg_t ch_ctl, ch_data[5];
1345         u32 aux_clock_divider;
1346         enum intel_display_power_domain aux_domain =
1347                 intel_aux_power_domain(intel_dig_port);
1348         intel_wakeref_t aux_wakeref;
1349         intel_wakeref_t pps_wakeref;
1350         int i, ret, recv_bytes;
1351         int try, clock = 0;
1352         u32 status;
1353         bool vdd;
1354
1355         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1356         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1357                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1358
1359         if (is_tc_port)
1360                 intel_tc_port_lock(intel_dig_port);
1361
1362         aux_wakeref = intel_display_power_get(i915, aux_domain);
1363         pps_wakeref = pps_lock(intel_dp);
1364
1365         /*
1366          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1367          * In such cases we want to leave VDD enabled and it's up to upper layers
1368          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1369          * ourselves.
1370          */
1371         vdd = edp_panel_vdd_on(intel_dp);
1372
1373         /* dp aux is extremely sensitive to irq latency, hence request the
1374          * lowest possible wakeup latency and so prevent the cpu from going into
1375          * deep sleep states.
1376          */
1377         cpu_latency_qos_update_request(&i915->pm_qos, 0);
1378
1379         intel_dp_check_edp(intel_dp);
1380
1381         /* Try to wait for any previous AUX channel activity */
1382         for (try = 0; try < 3; try++) {
1383                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1384                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1385                         break;
1386                 msleep(1);
1387         }
1388         /* just trace the final value */
1389         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1390
1391         if (try == 3) {
1392                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1393
1394                 if (status != intel_dp->aux_busy_last_status) {
1395                         drm_WARN(&i915->drm, 1,
1396                                  "%s: not started (status 0x%08x)\n",
1397                                  intel_dp->aux.name, status);
1398                         intel_dp->aux_busy_last_status = status;
1399                 }
1400
1401                 ret = -EBUSY;
1402                 goto out;
1403         }
1404
1405         /* Only 5 data registers! */
1406         if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1407                 ret = -E2BIG;
1408                 goto out;
1409         }
1410
1411         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1412                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1413                                                           send_bytes,
1414                                                           aux_clock_divider);
1415
1416                 send_ctl |= aux_send_ctl_flags;
1417
1418                 /* Must try at least 3 times according to DP spec */
1419                 for (try = 0; try < 5; try++) {
1420                         /* Load the send data into the aux channel data registers */
1421                         for (i = 0; i < send_bytes; i += 4)
1422                                 intel_uncore_write(uncore,
1423                                                    ch_data[i >> 2],
1424                                                    intel_dp_pack_aux(send + i,
1425                                                                      send_bytes - i));
1426
1427                         /* Send the command and wait for it to complete */
1428                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1429
1430                         status = intel_dp_aux_wait_done(intel_dp);
1431
1432                         /* Clear done status and any errors */
1433                         intel_uncore_write(uncore,
1434                                            ch_ctl,
1435                                            status |
1436                                            DP_AUX_CH_CTL_DONE |
1437                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1438                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1439
1440                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1441                          *   400us delay required for errors and timeouts
1442                          *   Timeout errors from the HW already meet this
1443                          *   requirement so skip to next iteration
1444                          */
1445                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1446                                 continue;
1447
1448                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1449                                 usleep_range(400, 500);
1450                                 continue;
1451                         }
1452                         if (status & DP_AUX_CH_CTL_DONE)
1453                                 goto done;
1454                 }
1455         }
1456
1457         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1458                 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1459                         intel_dp->aux.name, status);
1460                 ret = -EBUSY;
1461                 goto out;
1462         }
1463
1464 done:
1465         /* Check for timeout or receive error.
1466          * Timeouts occur when the sink is not connected
1467          */
1468         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1469                 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1470                         intel_dp->aux.name, status);
1471                 ret = -EIO;
1472                 goto out;
1473         }
1474
1475         /* Timeouts occur when the device isn't connected, so they're
1476          * "normal" -- don't fill the kernel log with these */
1477         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1478                 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1479                             intel_dp->aux.name, status);
1480                 ret = -ETIMEDOUT;
1481                 goto out;
1482         }
1483
1484         /* Unload any bytes sent back from the other side */
1485         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1486                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1487
1488         /*
1489          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1490          * We have no idea of what happened so we return -EBUSY so
1491          * drm layer takes care for the necessary retries.
1492          */
1493         if (recv_bytes == 0 || recv_bytes > 20) {
1494                 drm_dbg_kms(&i915->drm,
1495                             "%s: Forbidden recv_bytes = %d on aux transaction\n",
1496                             intel_dp->aux.name, recv_bytes);
1497                 ret = -EBUSY;
1498                 goto out;
1499         }
1500
1501         if (recv_bytes > recv_size)
1502                 recv_bytes = recv_size;
1503
1504         for (i = 0; i < recv_bytes; i += 4)
1505                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1506                                     recv + i, recv_bytes - i);
1507
1508         ret = recv_bytes;
1509 out:
1510         cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1511
1512         if (vdd)
1513                 edp_panel_vdd_off(intel_dp, false);
1514
1515         pps_unlock(intel_dp, pps_wakeref);
1516         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1517
1518         if (is_tc_port)
1519                 intel_tc_port_unlock(intel_dig_port);
1520
1521         return ret;
1522 }
1523
1524 #define BARE_ADDRESS_SIZE       3
1525 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1526
1527 static void
1528 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1529                     const struct drm_dp_aux_msg *msg)
1530 {
1531         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1532         txbuf[1] = (msg->address >> 8) & 0xff;
1533         txbuf[2] = msg->address & 0xff;
1534         txbuf[3] = msg->size - 1;
1535 }
1536
1537 static ssize_t
1538 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1539 {
1540         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1541         u8 txbuf[20], rxbuf[20];
1542         size_t txsize, rxsize;
1543         int ret;
1544
1545         intel_dp_aux_header(txbuf, msg);
1546
1547         switch (msg->request & ~DP_AUX_I2C_MOT) {
1548         case DP_AUX_NATIVE_WRITE:
1549         case DP_AUX_I2C_WRITE:
1550         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1551                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1552                 rxsize = 2; /* 0 or 1 data bytes */
1553
1554                 if (WARN_ON(txsize > 20))
1555                         return -E2BIG;
1556
1557                 WARN_ON(!msg->buffer != !msg->size);
1558
1559                 if (msg->buffer)
1560                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1561
1562                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1563                                         rxbuf, rxsize, 0);
1564                 if (ret > 0) {
1565                         msg->reply = rxbuf[0] >> 4;
1566
1567                         if (ret > 1) {
1568                                 /* Number of bytes written in a short write. */
1569                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1570                         } else {
1571                                 /* Return payload size. */
1572                                 ret = msg->size;
1573                         }
1574                 }
1575                 break;
1576
1577         case DP_AUX_NATIVE_READ:
1578         case DP_AUX_I2C_READ:
1579                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1580                 rxsize = msg->size + 1;
1581
1582                 if (WARN_ON(rxsize > 20))
1583                         return -E2BIG;
1584
1585                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1586                                         rxbuf, rxsize, 0);
1587                 if (ret > 0) {
1588                         msg->reply = rxbuf[0] >> 4;
1589                         /*
1590                          * Assume happy day, and copy the data. The caller is
1591                          * expected to check msg->reply before touching it.
1592                          *
1593                          * Return payload size.
1594                          */
1595                         ret--;
1596                         memcpy(msg->buffer, rxbuf + 1, ret);
1597                 }
1598                 break;
1599
1600         default:
1601                 ret = -EINVAL;
1602                 break;
1603         }
1604
1605         return ret;
1606 }
1607
1608
1609 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1610 {
1611         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1612         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1613         enum aux_ch aux_ch = dig_port->aux_ch;
1614
1615         switch (aux_ch) {
1616         case AUX_CH_B:
1617         case AUX_CH_C:
1618         case AUX_CH_D:
1619                 return DP_AUX_CH_CTL(aux_ch);
1620         default:
1621                 MISSING_CASE(aux_ch);
1622                 return DP_AUX_CH_CTL(AUX_CH_B);
1623         }
1624 }
1625
1626 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1627 {
1628         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1629         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1630         enum aux_ch aux_ch = dig_port->aux_ch;
1631
1632         switch (aux_ch) {
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return DP_AUX_CH_DATA(aux_ch, index);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1640         }
1641 }
1642
1643 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_A:
1651                 return DP_AUX_CH_CTL(aux_ch);
1652         case AUX_CH_B:
1653         case AUX_CH_C:
1654         case AUX_CH_D:
1655                 return PCH_DP_AUX_CH_CTL(aux_ch);
1656         default:
1657                 MISSING_CASE(aux_ch);
1658                 return DP_AUX_CH_CTL(AUX_CH_A);
1659         }
1660 }
1661
1662 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1663 {
1664         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666         enum aux_ch aux_ch = dig_port->aux_ch;
1667
1668         switch (aux_ch) {
1669         case AUX_CH_A:
1670                 return DP_AUX_CH_DATA(aux_ch, index);
1671         case AUX_CH_B:
1672         case AUX_CH_C:
1673         case AUX_CH_D:
1674                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1675         default:
1676                 MISSING_CASE(aux_ch);
1677                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1678         }
1679 }
1680
1681 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1682 {
1683         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1684         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1685         enum aux_ch aux_ch = dig_port->aux_ch;
1686
1687         switch (aux_ch) {
1688         case AUX_CH_A:
1689         case AUX_CH_B:
1690         case AUX_CH_C:
1691         case AUX_CH_D:
1692         case AUX_CH_E:
1693         case AUX_CH_F:
1694         case AUX_CH_G:
1695                 return DP_AUX_CH_CTL(aux_ch);
1696         default:
1697                 MISSING_CASE(aux_ch);
1698                 return DP_AUX_CH_CTL(AUX_CH_A);
1699         }
1700 }
1701
1702 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1703 {
1704         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1705         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1706         enum aux_ch aux_ch = dig_port->aux_ch;
1707
1708         switch (aux_ch) {
1709         case AUX_CH_A:
1710         case AUX_CH_B:
1711         case AUX_CH_C:
1712         case AUX_CH_D:
1713         case AUX_CH_E:
1714         case AUX_CH_F:
1715         case AUX_CH_G:
1716                 return DP_AUX_CH_DATA(aux_ch, index);
1717         default:
1718                 MISSING_CASE(aux_ch);
1719                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1720         }
1721 }
1722
1723 static void
1724 intel_dp_aux_fini(struct intel_dp *intel_dp)
1725 {
1726         kfree(intel_dp->aux.name);
1727 }
1728
1729 static void
1730 intel_dp_aux_init(struct intel_dp *intel_dp)
1731 {
1732         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1733         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1734         struct intel_encoder *encoder = &dig_port->base;
1735
1736         if (INTEL_GEN(dev_priv) >= 9) {
1737                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1738                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1739         } else if (HAS_PCH_SPLIT(dev_priv)) {
1740                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1741                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1742         } else {
1743                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1744                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1745         }
1746
1747         if (INTEL_GEN(dev_priv) >= 9)
1748                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1749         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1750                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1751         else if (HAS_PCH_SPLIT(dev_priv))
1752                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1753         else
1754                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1755
1756         if (INTEL_GEN(dev_priv) >= 9)
1757                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1758         else
1759                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1760
1761         drm_dp_aux_init(&intel_dp->aux);
1762
1763         /* Failure to allocate our preferred name is not critical */
1764         intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1765                                        aux_ch_name(dig_port->aux_ch),
1766                                        port_name(encoder->port));
1767         intel_dp->aux.transfer = intel_dp_aux_transfer;
1768 }
1769
1770 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1771 {
1772         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1773
1774         return max_rate >= 540000;
1775 }
1776
1777 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1778 {
1779         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1780
1781         return max_rate >= 810000;
1782 }
1783
1784 static void
1785 intel_dp_set_clock(struct intel_encoder *encoder,
1786                    struct intel_crtc_state *pipe_config)
1787 {
1788         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1789         const struct dp_link_dpll *divisor = NULL;
1790         int i, count = 0;
1791
1792         if (IS_G4X(dev_priv)) {
1793                 divisor = g4x_dpll;
1794                 count = ARRAY_SIZE(g4x_dpll);
1795         } else if (HAS_PCH_SPLIT(dev_priv)) {
1796                 divisor = pch_dpll;
1797                 count = ARRAY_SIZE(pch_dpll);
1798         } else if (IS_CHERRYVIEW(dev_priv)) {
1799                 divisor = chv_dpll;
1800                 count = ARRAY_SIZE(chv_dpll);
1801         } else if (IS_VALLEYVIEW(dev_priv)) {
1802                 divisor = vlv_dpll;
1803                 count = ARRAY_SIZE(vlv_dpll);
1804         }
1805
1806         if (divisor && count) {
1807                 for (i = 0; i < count; i++) {
1808                         if (pipe_config->port_clock == divisor[i].clock) {
1809                                 pipe_config->dpll = divisor[i].dpll;
1810                                 pipe_config->clock_set = true;
1811                                 break;
1812                         }
1813                 }
1814         }
1815 }
1816
1817 static void snprintf_int_array(char *str, size_t len,
1818                                const int *array, int nelem)
1819 {
1820         int i;
1821
1822         str[0] = '\0';
1823
1824         for (i = 0; i < nelem; i++) {
1825                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1826                 if (r >= len)
1827                         return;
1828                 str += r;
1829                 len -= r;
1830         }
1831 }
1832
1833 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1834 {
1835         char str[128]; /* FIXME: too big for stack? */
1836
1837         if (!drm_debug_enabled(DRM_UT_KMS))
1838                 return;
1839
1840         snprintf_int_array(str, sizeof(str),
1841                            intel_dp->source_rates, intel_dp->num_source_rates);
1842         DRM_DEBUG_KMS("source rates: %s\n", str);
1843
1844         snprintf_int_array(str, sizeof(str),
1845                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1846         DRM_DEBUG_KMS("sink rates: %s\n", str);
1847
1848         snprintf_int_array(str, sizeof(str),
1849                            intel_dp->common_rates, intel_dp->num_common_rates);
1850         DRM_DEBUG_KMS("common rates: %s\n", str);
1851 }
1852
1853 int
1854 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1855 {
1856         int len;
1857
1858         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1859         if (WARN_ON(len <= 0))
1860                 return 162000;
1861
1862         return intel_dp->common_rates[len - 1];
1863 }
1864
1865 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1866 {
1867         int i = intel_dp_rate_index(intel_dp->sink_rates,
1868                                     intel_dp->num_sink_rates, rate);
1869
1870         if (WARN_ON(i < 0))
1871                 i = 0;
1872
1873         return i;
1874 }
1875
1876 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1877                            u8 *link_bw, u8 *rate_select)
1878 {
1879         /* eDP 1.4 rate select method. */
1880         if (intel_dp->use_rate_select) {
1881                 *link_bw = 0;
1882                 *rate_select =
1883                         intel_dp_rate_select(intel_dp, port_clock);
1884         } else {
1885                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1886                 *rate_select = 0;
1887         }
1888 }
1889
1890 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1891                                          const struct intel_crtc_state *pipe_config)
1892 {
1893         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1894
1895         /* On TGL, FEC is supported on all Pipes */
1896         if (INTEL_GEN(dev_priv) >= 12)
1897                 return true;
1898
1899         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1900                 return true;
1901
1902         return false;
1903 }
1904
1905 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1906                                   const struct intel_crtc_state *pipe_config)
1907 {
1908         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1909                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1910 }
1911
1912 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1913                                   const struct intel_crtc_state *crtc_state)
1914 {
1915         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1916
1917         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1918                 return false;
1919
1920         return intel_dsc_source_support(encoder, crtc_state) &&
1921                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1922 }
1923
1924 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1925                                 struct intel_crtc_state *pipe_config)
1926 {
1927         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1928         struct intel_connector *intel_connector = intel_dp->attached_connector;
1929         int bpp, bpc;
1930
1931         bpp = pipe_config->pipe_bpp;
1932         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1933
1934         if (bpc > 0)
1935                 bpp = min(bpp, 3*bpc);
1936
1937         if (intel_dp_is_edp(intel_dp)) {
1938                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1939                 if (intel_connector->base.display_info.bpc == 0 &&
1940                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1941                         drm_dbg_kms(&dev_priv->drm,
1942                                     "clamping bpp for eDP panel to BIOS-provided %i\n",
1943                                     dev_priv->vbt.edp.bpp);
1944                         bpp = dev_priv->vbt.edp.bpp;
1945                 }
1946         }
1947
1948         return bpp;
1949 }
1950
1951 /* Adjust link config limits based on compliance test requests. */
1952 void
1953 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1954                                   struct intel_crtc_state *pipe_config,
1955                                   struct link_config_limits *limits)
1956 {
1957         /* For DP Compliance we override the computed bpp for the pipe */
1958         if (intel_dp->compliance.test_data.bpc != 0) {
1959                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1960
1961                 limits->min_bpp = limits->max_bpp = bpp;
1962                 pipe_config->dither_force_disable = bpp == 6 * 3;
1963
1964                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1965         }
1966
1967         /* Use values requested by Compliance Test Request */
1968         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1969                 int index;
1970
1971                 /* Validate the compliance test data since max values
1972                  * might have changed due to link train fallback.
1973                  */
1974                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1975                                                intel_dp->compliance.test_lane_count)) {
1976                         index = intel_dp_rate_index(intel_dp->common_rates,
1977                                                     intel_dp->num_common_rates,
1978                                                     intel_dp->compliance.test_link_rate);
1979                         if (index >= 0)
1980                                 limits->min_clock = limits->max_clock = index;
1981                         limits->min_lane_count = limits->max_lane_count =
1982                                 intel_dp->compliance.test_lane_count;
1983                 }
1984         }
1985 }
1986
1987 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1988 {
1989         /*
1990          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1991          * format of the number of bytes per pixel will be half the number
1992          * of bytes of RGB pixel.
1993          */
1994         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1995                 bpp /= 2;
1996
1997         return bpp;
1998 }
1999
2000 /* Optimize link config in order: max bpp, min clock, min lanes */
2001 static int
2002 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2003                                   struct intel_crtc_state *pipe_config,
2004                                   const struct link_config_limits *limits)
2005 {
2006         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2007         int bpp, clock, lane_count;
2008         int mode_rate, link_clock, link_avail;
2009
2010         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2011                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2012
2013                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2014                                                    output_bpp);
2015
2016                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2017                         for (lane_count = limits->min_lane_count;
2018                              lane_count <= limits->max_lane_count;
2019                              lane_count <<= 1) {
2020                                 link_clock = intel_dp->common_rates[clock];
2021                                 link_avail = intel_dp_max_data_rate(link_clock,
2022                                                                     lane_count);
2023
2024                                 if (mode_rate <= link_avail) {
2025                                         pipe_config->lane_count = lane_count;
2026                                         pipe_config->pipe_bpp = bpp;
2027                                         pipe_config->port_clock = link_clock;
2028
2029                                         return 0;
2030                                 }
2031                         }
2032                 }
2033         }
2034
2035         return -EINVAL;
2036 }
2037
2038 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2039 {
2040         int i, num_bpc;
2041         u8 dsc_bpc[3] = {0};
2042
2043         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2044                                                        dsc_bpc);
2045         for (i = 0; i < num_bpc; i++) {
2046                 if (dsc_max_bpc >= dsc_bpc[i])
2047                         return dsc_bpc[i] * 3;
2048         }
2049
2050         return 0;
2051 }
2052
2053 #define DSC_SUPPORTED_VERSION_MIN               1
2054
2055 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2056                                        struct intel_crtc_state *crtc_state)
2057 {
2058         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2059         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2060         u8 line_buf_depth;
2061         int ret;
2062
2063         ret = intel_dsc_compute_params(encoder, crtc_state);
2064         if (ret)
2065                 return ret;
2066
2067         /*
2068          * Slice Height of 8 works for all currently available panels. So start
2069          * with that if pic_height is an integral multiple of 8. Eventually add
2070          * logic to try multiple slice heights.
2071          */
2072         if (vdsc_cfg->pic_height % 8 == 0)
2073                 vdsc_cfg->slice_height = 8;
2074         else if (vdsc_cfg->pic_height % 4 == 0)
2075                 vdsc_cfg->slice_height = 4;
2076         else
2077                 vdsc_cfg->slice_height = 2;
2078
2079         vdsc_cfg->dsc_version_major =
2080                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2081                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2082         vdsc_cfg->dsc_version_minor =
2083                 min(DSC_SUPPORTED_VERSION_MIN,
2084                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2085                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2086
2087         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2088                 DP_DSC_RGB;
2089
2090         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2091         if (!line_buf_depth) {
2092                 DRM_DEBUG_KMS("DSC Sink Line Buffer Depth invalid\n");
2093                 return -EINVAL;
2094         }
2095
2096         if (vdsc_cfg->dsc_version_minor == 2)
2097                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2098                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2099         else
2100                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2101                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2102
2103         vdsc_cfg->block_pred_enable =
2104                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2105                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2106
2107         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2108 }
2109
2110 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2111                                        struct intel_crtc_state *pipe_config,
2112                                        struct drm_connector_state *conn_state,
2113                                        struct link_config_limits *limits)
2114 {
2115         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2116         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2117         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2118         u8 dsc_max_bpc;
2119         int pipe_bpp;
2120         int ret;
2121
2122         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2123                 intel_dp_supports_fec(intel_dp, pipe_config);
2124
2125         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2126                 return -EINVAL;
2127
2128         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2129         if (INTEL_GEN(dev_priv) >= 12)
2130                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2131         else
2132                 dsc_max_bpc = min_t(u8, 10,
2133                                     conn_state->max_requested_bpc);
2134
2135         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2136
2137         /* Min Input BPC for ICL+ is 8 */
2138         if (pipe_bpp < 8 * 3) {
2139                 drm_dbg_kms(&dev_priv->drm,
2140                             "No DSC support for less than 8bpc\n");
2141                 return -EINVAL;
2142         }
2143
2144         /*
2145          * For now enable DSC for max bpp, max link rate, max lane count.
2146          * Optimize this later for the minimum possible link rate/lane count
2147          * with DSC enabled for the requested mode.
2148          */
2149         pipe_config->pipe_bpp = pipe_bpp;
2150         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2151         pipe_config->lane_count = limits->max_lane_count;
2152
2153         if (intel_dp_is_edp(intel_dp)) {
2154                 pipe_config->dsc.compressed_bpp =
2155                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2156                               pipe_config->pipe_bpp);
2157                 pipe_config->dsc.slice_count =
2158                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2159                                                         true);
2160         } else {
2161                 u16 dsc_max_output_bpp;
2162                 u8 dsc_dp_slice_count;
2163
2164                 dsc_max_output_bpp =
2165                         intel_dp_dsc_get_output_bpp(dev_priv,
2166                                                     pipe_config->port_clock,
2167                                                     pipe_config->lane_count,
2168                                                     adjusted_mode->crtc_clock,
2169                                                     adjusted_mode->crtc_hdisplay);
2170                 dsc_dp_slice_count =
2171                         intel_dp_dsc_get_slice_count(intel_dp,
2172                                                      adjusted_mode->crtc_clock,
2173                                                      adjusted_mode->crtc_hdisplay);
2174                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2175                         drm_dbg_kms(&dev_priv->drm,
2176                                     "Compressed BPP/Slice Count not supported\n");
2177                         return -EINVAL;
2178                 }
2179                 pipe_config->dsc.compressed_bpp = min_t(u16,
2180                                                                dsc_max_output_bpp >> 4,
2181                                                                pipe_config->pipe_bpp);
2182                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2183         }
2184         /*
2185          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2186          * is greater than the maximum Cdclock and if slice count is even
2187          * then we need to use 2 VDSC instances.
2188          */
2189         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2190                 if (pipe_config->dsc.slice_count > 1) {
2191                         pipe_config->dsc.dsc_split = true;
2192                 } else {
2193                         drm_dbg_kms(&dev_priv->drm,
2194                                     "Cannot split stream to use 2 VDSC instances\n");
2195                         return -EINVAL;
2196                 }
2197         }
2198
2199         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2200         if (ret < 0) {
2201                 drm_dbg_kms(&dev_priv->drm,
2202                             "Cannot compute valid DSC parameters for Input Bpp = %d "
2203                             "Compressed BPP = %d\n",
2204                             pipe_config->pipe_bpp,
2205                             pipe_config->dsc.compressed_bpp);
2206                 return ret;
2207         }
2208
2209         pipe_config->dsc.compression_enable = true;
2210         drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2211                     "Compressed Bpp = %d Slice Count = %d\n",
2212                     pipe_config->pipe_bpp,
2213                     pipe_config->dsc.compressed_bpp,
2214                     pipe_config->dsc.slice_count);
2215
2216         return 0;
2217 }
2218
2219 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2220 {
2221         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2222                 return 6 * 3;
2223         else
2224                 return 8 * 3;
2225 }
2226
2227 static int
2228 intel_dp_compute_link_config(struct intel_encoder *encoder,
2229                              struct intel_crtc_state *pipe_config,
2230                              struct drm_connector_state *conn_state)
2231 {
2232         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2233         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2234         struct link_config_limits limits;
2235         int common_len;
2236         int ret;
2237
2238         common_len = intel_dp_common_len_rate_limit(intel_dp,
2239                                                     intel_dp->max_link_rate);
2240
2241         /* No common link rates between source and sink */
2242         drm_WARN_ON(encoder->base.dev, common_len <= 0);
2243
2244         limits.min_clock = 0;
2245         limits.max_clock = common_len - 1;
2246
2247         limits.min_lane_count = 1;
2248         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2249
2250         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2251         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2252
2253         if (intel_dp_is_edp(intel_dp)) {
2254                 /*
2255                  * Use the maximum clock and number of lanes the eDP panel
2256                  * advertizes being capable of. The panels are generally
2257                  * designed to support only a single clock and lane
2258                  * configuration, and typically these values correspond to the
2259                  * native resolution of the panel.
2260                  */
2261                 limits.min_lane_count = limits.max_lane_count;
2262                 limits.min_clock = limits.max_clock;
2263         }
2264
2265         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2266
2267         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2268                       "max rate %d max bpp %d pixel clock %iKHz\n",
2269                       limits.max_lane_count,
2270                       intel_dp->common_rates[limits.max_clock],
2271                       limits.max_bpp, adjusted_mode->crtc_clock);
2272
2273         /*
2274          * Optimize for slow and wide. This is the place to add alternative
2275          * optimization policy.
2276          */
2277         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2278
2279         /* enable compression if the mode doesn't fit available BW */
2280         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2281         if (ret || intel_dp->force_dsc_en) {
2282                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2283                                                   conn_state, &limits);
2284                 if (ret < 0)
2285                         return ret;
2286         }
2287
2288         if (pipe_config->dsc.compression_enable) {
2289                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2290                               pipe_config->lane_count, pipe_config->port_clock,
2291                               pipe_config->pipe_bpp,
2292                               pipe_config->dsc.compressed_bpp);
2293
2294                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2295                               intel_dp_link_required(adjusted_mode->crtc_clock,
2296                                                      pipe_config->dsc.compressed_bpp),
2297                               intel_dp_max_data_rate(pipe_config->port_clock,
2298                                                      pipe_config->lane_count));
2299         } else {
2300                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2301                               pipe_config->lane_count, pipe_config->port_clock,
2302                               pipe_config->pipe_bpp);
2303
2304                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2305                               intel_dp_link_required(adjusted_mode->crtc_clock,
2306                                                      pipe_config->pipe_bpp),
2307                               intel_dp_max_data_rate(pipe_config->port_clock,
2308                                                      pipe_config->lane_count));
2309         }
2310         return 0;
2311 }
2312
2313 static int
2314 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2315                          struct drm_connector *connector,
2316                          struct intel_crtc_state *crtc_state)
2317 {
2318         const struct drm_display_info *info = &connector->display_info;
2319         const struct drm_display_mode *adjusted_mode =
2320                 &crtc_state->hw.adjusted_mode;
2321         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2322         int ret;
2323
2324         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2325             !intel_dp_get_colorimetry_status(intel_dp) ||
2326             !connector->ycbcr_420_allowed)
2327                 return 0;
2328
2329         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2330
2331         /* YCBCR 420 output conversion needs a scaler */
2332         ret = skl_update_scaler_crtc(crtc_state);
2333         if (ret) {
2334                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2335                 return ret;
2336         }
2337
2338         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2339
2340         return 0;
2341 }
2342
2343 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2344                                   const struct drm_connector_state *conn_state)
2345 {
2346         const struct intel_digital_connector_state *intel_conn_state =
2347                 to_intel_digital_connector_state(conn_state);
2348         const struct drm_display_mode *adjusted_mode =
2349                 &crtc_state->hw.adjusted_mode;
2350
2351         /*
2352          * Our YCbCr output is always limited range.
2353          * crtc_state->limited_color_range only applies to RGB,
2354          * and it must never be set for YCbCr or we risk setting
2355          * some conflicting bits in PIPECONF which will mess up
2356          * the colors on the monitor.
2357          */
2358         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2359                 return false;
2360
2361         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2362                 /*
2363                  * See:
2364                  * CEA-861-E - 5.1 Default Encoding Parameters
2365                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2366                  */
2367                 return crtc_state->pipe_bpp != 18 &&
2368                         drm_default_rgb_quant_range(adjusted_mode) ==
2369                         HDMI_QUANTIZATION_RANGE_LIMITED;
2370         } else {
2371                 return intel_conn_state->broadcast_rgb ==
2372                         INTEL_BROADCAST_RGB_LIMITED;
2373         }
2374 }
2375
2376 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2377                                     enum port port)
2378 {
2379         if (IS_G4X(dev_priv))
2380                 return false;
2381         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2382                 return false;
2383
2384         return true;
2385 }
2386
2387 int
2388 intel_dp_compute_config(struct intel_encoder *encoder,
2389                         struct intel_crtc_state *pipe_config,
2390                         struct drm_connector_state *conn_state)
2391 {
2392         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2393         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2394         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2395         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2396         enum port port = encoder->port;
2397         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2398         struct intel_connector *intel_connector = intel_dp->attached_connector;
2399         struct intel_digital_connector_state *intel_conn_state =
2400                 to_intel_digital_connector_state(conn_state);
2401         bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2402                                            DP_DPCD_QUIRK_CONSTANT_N);
2403         int ret = 0, output_bpp;
2404
2405         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2406                 pipe_config->has_pch_encoder = true;
2407
2408         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2409
2410         if (lspcon->active)
2411                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2412         else
2413                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2414                                                pipe_config);
2415
2416         if (ret)
2417                 return ret;
2418
2419         pipe_config->has_drrs = false;
2420         if (!intel_dp_port_has_audio(dev_priv, port))
2421                 pipe_config->has_audio = false;
2422         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2423                 pipe_config->has_audio = intel_dp->has_audio;
2424         else
2425                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2426
2427         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2428                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2429                                        adjusted_mode);
2430
2431                 if (INTEL_GEN(dev_priv) >= 9) {
2432                         ret = skl_update_scaler_crtc(pipe_config);
2433                         if (ret)
2434                                 return ret;
2435                 }
2436
2437                 if (HAS_GMCH(dev_priv))
2438                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2439                                                  conn_state->scaling_mode);
2440                 else
2441                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2442                                                 conn_state->scaling_mode);
2443         }
2444
2445         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2446                 return -EINVAL;
2447
2448         if (HAS_GMCH(dev_priv) &&
2449             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2450                 return -EINVAL;
2451
2452         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2453                 return -EINVAL;
2454
2455         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2456                 return -EINVAL;
2457
2458         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2459         if (ret < 0)
2460                 return ret;
2461
2462         pipe_config->limited_color_range =
2463                 intel_dp_limited_color_range(pipe_config, conn_state);
2464
2465         if (pipe_config->dsc.compression_enable)
2466                 output_bpp = pipe_config->dsc.compressed_bpp;
2467         else
2468                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2469
2470         intel_link_compute_m_n(output_bpp,
2471                                pipe_config->lane_count,
2472                                adjusted_mode->crtc_clock,
2473                                pipe_config->port_clock,
2474                                &pipe_config->dp_m_n,
2475                                constant_n, pipe_config->fec_enable);
2476
2477         if (intel_connector->panel.downclock_mode != NULL &&
2478                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2479                         pipe_config->has_drrs = true;
2480                         intel_link_compute_m_n(output_bpp,
2481                                                pipe_config->lane_count,
2482                                                intel_connector->panel.downclock_mode->clock,
2483                                                pipe_config->port_clock,
2484                                                &pipe_config->dp_m2_n2,
2485                                                constant_n, pipe_config->fec_enable);
2486         }
2487
2488         if (!HAS_DDI(dev_priv))
2489                 intel_dp_set_clock(encoder, pipe_config);
2490
2491         intel_psr_compute_config(intel_dp, pipe_config);
2492
2493         return 0;
2494 }
2495
2496 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2497                               int link_rate, u8 lane_count,
2498                               bool link_mst)
2499 {
2500         intel_dp->link_trained = false;
2501         intel_dp->link_rate = link_rate;
2502         intel_dp->lane_count = lane_count;
2503         intel_dp->link_mst = link_mst;
2504 }
2505
2506 static void intel_dp_prepare(struct intel_encoder *encoder,
2507                              const struct intel_crtc_state *pipe_config)
2508 {
2509         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2510         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2511         enum port port = encoder->port;
2512         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2513         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2514
2515         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2516                                  pipe_config->lane_count,
2517                                  intel_crtc_has_type(pipe_config,
2518                                                      INTEL_OUTPUT_DP_MST));
2519
2520         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2521         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2522
2523         /*
2524          * There are four kinds of DP registers:
2525          *
2526          *      IBX PCH
2527          *      SNB CPU
2528          *      IVB CPU
2529          *      CPT PCH
2530          *
2531          * IBX PCH and CPU are the same for almost everything,
2532          * except that the CPU DP PLL is configured in this
2533          * register
2534          *
2535          * CPT PCH is quite different, having many bits moved
2536          * to the TRANS_DP_CTL register instead. That
2537          * configuration happens (oddly) in ilk_pch_enable
2538          */
2539
2540         /* Preserve the BIOS-computed detected bit. This is
2541          * supposed to be read-only.
2542          */
2543         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2544
2545         /* Handle DP bits in common between all three register formats */
2546         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2547         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2548
2549         /* Split out the IBX/CPU vs CPT settings */
2550
2551         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2552                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2553                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2554                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2555                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2556                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2557
2558                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2559                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2560
2561                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2562         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2563                 u32 trans_dp;
2564
2565                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2566
2567                 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2568                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2569                         trans_dp |= TRANS_DP_ENH_FRAMING;
2570                 else
2571                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2572                 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2573         } else {
2574                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2575                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2576
2577                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2578                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2579                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2580                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2581                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2582
2583                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2584                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2585
2586                 if (IS_CHERRYVIEW(dev_priv))
2587                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2588                 else
2589                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2590         }
2591 }
2592
2593 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2594 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2595
2596 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2597 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2598
2599 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2600 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2601
2602 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2603
2604 static void wait_panel_status(struct intel_dp *intel_dp,
2605                                        u32 mask,
2606                                        u32 value)
2607 {
2608         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2609         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2610
2611         lockdep_assert_held(&dev_priv->pps_mutex);
2612
2613         intel_pps_verify_state(intel_dp);
2614
2615         pp_stat_reg = _pp_stat_reg(intel_dp);
2616         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2617
2618         drm_dbg_kms(&dev_priv->drm,
2619                     "mask %08x value %08x status %08x control %08x\n",
2620                     mask, value,
2621                     intel_de_read(dev_priv, pp_stat_reg),
2622                     intel_de_read(dev_priv, pp_ctrl_reg));
2623
2624         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2625                                        mask, value, 5000))
2626                 drm_err(&dev_priv->drm,
2627                         "Panel status timeout: status %08x control %08x\n",
2628                         intel_de_read(dev_priv, pp_stat_reg),
2629                         intel_de_read(dev_priv, pp_ctrl_reg));
2630
2631         drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2632 }
2633
2634 static void wait_panel_on(struct intel_dp *intel_dp)
2635 {
2636         DRM_DEBUG_KMS("Wait for panel power on\n");
2637         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2638 }
2639
2640 static void wait_panel_off(struct intel_dp *intel_dp)
2641 {
2642         DRM_DEBUG_KMS("Wait for panel power off time\n");
2643         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2644 }
2645
2646 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2647 {
2648         ktime_t panel_power_on_time;
2649         s64 panel_power_off_duration;
2650
2651         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2652
2653         /* take the difference of currrent time and panel power off time
2654          * and then make panel wait for t11_t12 if needed. */
2655         panel_power_on_time = ktime_get_boottime();
2656         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2657
2658         /* When we disable the VDD override bit last we have to do the manual
2659          * wait. */
2660         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2661                 wait_remaining_ms_from_jiffies(jiffies,
2662                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2663
2664         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2665 }
2666
2667 static void wait_backlight_on(struct intel_dp *intel_dp)
2668 {
2669         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2670                                        intel_dp->backlight_on_delay);
2671 }
2672
2673 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2674 {
2675         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2676                                        intel_dp->backlight_off_delay);
2677 }
2678
2679 /* Read the current pp_control value, unlocking the register if it
2680  * is locked
2681  */
2682
2683 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2684 {
2685         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2686         u32 control;
2687
2688         lockdep_assert_held(&dev_priv->pps_mutex);
2689
2690         control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2691         if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2692                         (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2693                 control &= ~PANEL_UNLOCK_MASK;
2694                 control |= PANEL_UNLOCK_REGS;
2695         }
2696         return control;
2697 }
2698
2699 /*
2700  * Must be paired with edp_panel_vdd_off().
2701  * Must hold pps_mutex around the whole on/off sequence.
2702  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2703  */
2704 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2705 {
2706         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2707         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2708         u32 pp;
2709         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2710         bool need_to_disable = !intel_dp->want_panel_vdd;
2711
2712         lockdep_assert_held(&dev_priv->pps_mutex);
2713
2714         if (!intel_dp_is_edp(intel_dp))
2715                 return false;
2716
2717         cancel_delayed_work(&intel_dp->panel_vdd_work);
2718         intel_dp->want_panel_vdd = true;
2719
2720         if (edp_have_panel_vdd(intel_dp))
2721                 return need_to_disable;
2722
2723         intel_display_power_get(dev_priv,
2724                                 intel_aux_power_domain(intel_dig_port));
2725
2726         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2727                     intel_dig_port->base.base.base.id,
2728                     intel_dig_port->base.base.name);
2729
2730         if (!edp_have_panel_power(intel_dp))
2731                 wait_panel_power_cycle(intel_dp);
2732
2733         pp = ilk_get_pp_control(intel_dp);
2734         pp |= EDP_FORCE_VDD;
2735
2736         pp_stat_reg = _pp_stat_reg(intel_dp);
2737         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2738
2739         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2740         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2741         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2742                     intel_de_read(dev_priv, pp_stat_reg),
2743                     intel_de_read(dev_priv, pp_ctrl_reg));
2744         /*
2745          * If the panel wasn't on, delay before accessing aux channel
2746          */
2747         if (!edp_have_panel_power(intel_dp)) {
2748                 drm_dbg_kms(&dev_priv->drm,
2749                             "[ENCODER:%d:%s] panel power wasn't enabled\n",
2750                             intel_dig_port->base.base.base.id,
2751                             intel_dig_port->base.base.name);
2752                 msleep(intel_dp->panel_power_up_delay);
2753         }
2754
2755         return need_to_disable;
2756 }
2757
2758 /*
2759  * Must be paired with intel_edp_panel_vdd_off() or
2760  * intel_edp_panel_off().
2761  * Nested calls to these functions are not allowed since
2762  * we drop the lock. Caller must use some higher level
2763  * locking to prevent nested calls from other threads.
2764  */
2765 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2766 {
2767         intel_wakeref_t wakeref;
2768         bool vdd;
2769
2770         if (!intel_dp_is_edp(intel_dp))
2771                 return;
2772
2773         vdd = false;
2774         with_pps_lock(intel_dp, wakeref)
2775                 vdd = edp_panel_vdd_on(intel_dp);
2776         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2777                         dp_to_dig_port(intel_dp)->base.base.base.id,
2778                         dp_to_dig_port(intel_dp)->base.base.name);
2779 }
2780
2781 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2782 {
2783         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2784         struct intel_digital_port *intel_dig_port =
2785                 dp_to_dig_port(intel_dp);
2786         u32 pp;
2787         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2788
2789         lockdep_assert_held(&dev_priv->pps_mutex);
2790
2791         drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2792
2793         if (!edp_have_panel_vdd(intel_dp))
2794                 return;
2795
2796         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2797                     intel_dig_port->base.base.base.id,
2798                     intel_dig_port->base.base.name);
2799
2800         pp = ilk_get_pp_control(intel_dp);
2801         pp &= ~EDP_FORCE_VDD;
2802
2803         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2804         pp_stat_reg = _pp_stat_reg(intel_dp);
2805
2806         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2807         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2808
2809         /* Make sure sequencer is idle before allowing subsequent activity */
2810         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2811                     intel_de_read(dev_priv, pp_stat_reg),
2812                     intel_de_read(dev_priv, pp_ctrl_reg));
2813
2814         if ((pp & PANEL_POWER_ON) == 0)
2815                 intel_dp->panel_power_off_time = ktime_get_boottime();
2816
2817         intel_display_power_put_unchecked(dev_priv,
2818                                           intel_aux_power_domain(intel_dig_port));
2819 }
2820
2821 static void edp_panel_vdd_work(struct work_struct *__work)
2822 {
2823         struct intel_dp *intel_dp =
2824                 container_of(to_delayed_work(__work),
2825                              struct intel_dp, panel_vdd_work);
2826         intel_wakeref_t wakeref;
2827
2828         with_pps_lock(intel_dp, wakeref) {
2829                 if (!intel_dp->want_panel_vdd)
2830                         edp_panel_vdd_off_sync(intel_dp);
2831         }
2832 }
2833
2834 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2835 {
2836         unsigned long delay;
2837
2838         /*
2839          * Queue the timer to fire a long time from now (relative to the power
2840          * down delay) to keep the panel power up across a sequence of
2841          * operations.
2842          */
2843         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2844         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2845 }
2846
2847 /*
2848  * Must be paired with edp_panel_vdd_on().
2849  * Must hold pps_mutex around the whole on/off sequence.
2850  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2851  */
2852 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2853 {
2854         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2855
2856         lockdep_assert_held(&dev_priv->pps_mutex);
2857
2858         if (!intel_dp_is_edp(intel_dp))
2859                 return;
2860
2861         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2862                         dp_to_dig_port(intel_dp)->base.base.base.id,
2863                         dp_to_dig_port(intel_dp)->base.base.name);
2864
2865         intel_dp->want_panel_vdd = false;
2866
2867         if (sync)
2868                 edp_panel_vdd_off_sync(intel_dp);
2869         else
2870                 edp_panel_vdd_schedule_off(intel_dp);
2871 }
2872
2873 static void edp_panel_on(struct intel_dp *intel_dp)
2874 {
2875         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2876         u32 pp;
2877         i915_reg_t pp_ctrl_reg;
2878
2879         lockdep_assert_held(&dev_priv->pps_mutex);
2880
2881         if (!intel_dp_is_edp(intel_dp))
2882                 return;
2883
2884         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
2885                     dp_to_dig_port(intel_dp)->base.base.base.id,
2886                     dp_to_dig_port(intel_dp)->base.base.name);
2887
2888         if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
2889                      "[ENCODER:%d:%s] panel power already on\n",
2890                      dp_to_dig_port(intel_dp)->base.base.base.id,
2891                      dp_to_dig_port(intel_dp)->base.base.name))
2892                 return;
2893
2894         wait_panel_power_cycle(intel_dp);
2895
2896         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2897         pp = ilk_get_pp_control(intel_dp);
2898         if (IS_GEN(dev_priv, 5)) {
2899                 /* ILK workaround: disable reset around power sequence */
2900                 pp &= ~PANEL_POWER_RESET;
2901                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
2902                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
2903         }
2904
2905         pp |= PANEL_POWER_ON;
2906         if (!IS_GEN(dev_priv, 5))
2907                 pp |= PANEL_POWER_RESET;
2908
2909         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2910         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2911
2912         wait_panel_on(intel_dp);
2913         intel_dp->last_power_on = jiffies;
2914
2915         if (IS_GEN(dev_priv, 5)) {
2916                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2917                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
2918                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
2919         }
2920 }
2921
2922 void intel_edp_panel_on(struct intel_dp *intel_dp)
2923 {
2924         intel_wakeref_t wakeref;
2925
2926         if (!intel_dp_is_edp(intel_dp))
2927                 return;
2928
2929         with_pps_lock(intel_dp, wakeref)
2930                 edp_panel_on(intel_dp);
2931 }
2932
2933
2934 static void edp_panel_off(struct intel_dp *intel_dp)
2935 {
2936         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2937         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2938         u32 pp;
2939         i915_reg_t pp_ctrl_reg;
2940
2941         lockdep_assert_held(&dev_priv->pps_mutex);
2942
2943         if (!intel_dp_is_edp(intel_dp))
2944                 return;
2945
2946         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
2947                     dig_port->base.base.base.id, dig_port->base.base.name);
2948
2949         drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
2950                  "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2951                  dig_port->base.base.base.id, dig_port->base.base.name);
2952
2953         pp = ilk_get_pp_control(intel_dp);
2954         /* We need to switch off panel power _and_ force vdd, for otherwise some
2955          * panels get very unhappy and cease to work. */
2956         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2957                 EDP_BLC_ENABLE);
2958
2959         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2960
2961         intel_dp->want_panel_vdd = false;
2962
2963         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2964         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2965
2966         wait_panel_off(intel_dp);
2967         intel_dp->panel_power_off_time = ktime_get_boottime();
2968
2969         /* We got a reference when we enabled the VDD. */
2970         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2971 }
2972
2973 void intel_edp_panel_off(struct intel_dp *intel_dp)
2974 {
2975         intel_wakeref_t wakeref;
2976
2977         if (!intel_dp_is_edp(intel_dp))
2978                 return;
2979
2980         with_pps_lock(intel_dp, wakeref)
2981                 edp_panel_off(intel_dp);
2982 }
2983
2984 /* Enable backlight in the panel power control. */
2985 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2986 {
2987         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2988         intel_wakeref_t wakeref;
2989
2990         /*
2991          * If we enable the backlight right away following a panel power
2992          * on, we may see slight flicker as the panel syncs with the eDP
2993          * link.  So delay a bit to make sure the image is solid before
2994          * allowing it to appear.
2995          */
2996         wait_backlight_on(intel_dp);
2997
2998         with_pps_lock(intel_dp, wakeref) {
2999                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3000                 u32 pp;
3001
3002                 pp = ilk_get_pp_control(intel_dp);
3003                 pp |= EDP_BLC_ENABLE;
3004
3005                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3006                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3007         }
3008 }
3009
3010 /* Enable backlight PWM and backlight PP control. */
3011 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3012                             const struct drm_connector_state *conn_state)
3013 {
3014         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3015
3016         if (!intel_dp_is_edp(intel_dp))
3017                 return;
3018
3019         DRM_DEBUG_KMS("\n");
3020
3021         intel_panel_enable_backlight(crtc_state, conn_state);
3022         _intel_edp_backlight_on(intel_dp);
3023 }
3024
3025 /* Disable backlight in the panel power control. */
3026 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3027 {
3028         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3029         intel_wakeref_t wakeref;
3030
3031         if (!intel_dp_is_edp(intel_dp))
3032                 return;
3033
3034         with_pps_lock(intel_dp, wakeref) {
3035                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3036                 u32 pp;
3037
3038                 pp = ilk_get_pp_control(intel_dp);
3039                 pp &= ~EDP_BLC_ENABLE;
3040
3041                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3042                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3043         }
3044
3045         intel_dp->last_backlight_off = jiffies;
3046         edp_wait_backlight_off(intel_dp);
3047 }
3048
3049 /* Disable backlight PP control and backlight PWM. */
3050 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3051 {
3052         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3053
3054         if (!intel_dp_is_edp(intel_dp))
3055                 return;
3056
3057         DRM_DEBUG_KMS("\n");
3058
3059         _intel_edp_backlight_off(intel_dp);
3060         intel_panel_disable_backlight(old_conn_state);
3061 }
3062
3063 /*
3064  * Hook for controlling the panel power control backlight through the bl_power
3065  * sysfs attribute. Take care to handle multiple calls.
3066  */
3067 static void intel_edp_backlight_power(struct intel_connector *connector,
3068                                       bool enable)
3069 {
3070         struct intel_dp *intel_dp = intel_attached_dp(connector);
3071         intel_wakeref_t wakeref;
3072         bool is_enabled;
3073
3074         is_enabled = false;
3075         with_pps_lock(intel_dp, wakeref)
3076                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3077         if (is_enabled == enable)
3078                 return;
3079
3080         DRM_DEBUG_KMS("panel power control backlight %s\n",
3081                       enable ? "enable" : "disable");
3082
3083         if (enable)
3084                 _intel_edp_backlight_on(intel_dp);
3085         else
3086                 _intel_edp_backlight_off(intel_dp);
3087 }
3088
3089 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3090 {
3091         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3092         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3093         bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3094
3095         I915_STATE_WARN(cur_state != state,
3096                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3097                         dig_port->base.base.base.id, dig_port->base.base.name,
3098                         onoff(state), onoff(cur_state));
3099 }
3100 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3101
3102 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3103 {
3104         bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3105
3106         I915_STATE_WARN(cur_state != state,
3107                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3108                         onoff(state), onoff(cur_state));
3109 }
3110 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3111 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3112
3113 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3114                            const struct intel_crtc_state *pipe_config)
3115 {
3116         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3117         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3118
3119         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3120         assert_dp_port_disabled(intel_dp);
3121         assert_edp_pll_disabled(dev_priv);
3122
3123         drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3124                     pipe_config->port_clock);
3125
3126         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3127
3128         if (pipe_config->port_clock == 162000)
3129                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3130         else
3131                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3132
3133         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3134         intel_de_posting_read(dev_priv, DP_A);
3135         udelay(500);
3136
3137         /*
3138          * [DevILK] Work around required when enabling DP PLL
3139          * while a pipe is enabled going to FDI:
3140          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3141          * 2. Program DP PLL enable
3142          */
3143         if (IS_GEN(dev_priv, 5))
3144                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3145
3146         intel_dp->DP |= DP_PLL_ENABLE;
3147
3148         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3149         intel_de_posting_read(dev_priv, DP_A);
3150         udelay(200);
3151 }
3152
3153 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3154                             const struct intel_crtc_state *old_crtc_state)
3155 {
3156         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3157         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3158
3159         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3160         assert_dp_port_disabled(intel_dp);
3161         assert_edp_pll_enabled(dev_priv);
3162
3163         drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3164
3165         intel_dp->DP &= ~DP_PLL_ENABLE;
3166
3167         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3168         intel_de_posting_read(dev_priv, DP_A);
3169         udelay(200);
3170 }
3171
3172 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3173 {
3174         /*
3175          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3176          * be capable of signalling downstream hpd with a long pulse.
3177          * Whether or not that means D3 is safe to use is not clear,
3178          * but let's assume so until proven otherwise.
3179          *
3180          * FIXME should really check all downstream ports...
3181          */
3182         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3183                 drm_dp_is_branch(intel_dp->dpcd) &&
3184                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3185 }
3186
3187 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3188                                            const struct intel_crtc_state *crtc_state,
3189                                            bool enable)
3190 {
3191         int ret;
3192
3193         if (!crtc_state->dsc.compression_enable)
3194                 return;
3195
3196         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3197                                  enable ? DP_DECOMPRESSION_EN : 0);
3198         if (ret < 0)
3199                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3200                               enable ? "enable" : "disable");
3201 }
3202
3203 /* If the sink supports it, try to set the power state appropriately */
3204 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3205 {
3206         int ret, i;
3207
3208         /* Should have a valid DPCD by this point */
3209         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3210                 return;
3211
3212         if (mode != DRM_MODE_DPMS_ON) {
3213                 if (downstream_hpd_needs_d0(intel_dp))
3214                         return;
3215
3216                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3217                                          DP_SET_POWER_D3);
3218         } else {
3219                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3220
3221                 /*
3222                  * When turning on, we need to retry for 1ms to give the sink
3223                  * time to wake up.
3224                  */
3225                 for (i = 0; i < 3; i++) {
3226                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3227                                                  DP_SET_POWER_D0);
3228                         if (ret == 1)
3229                                 break;
3230                         msleep(1);
3231                 }
3232
3233                 if (ret == 1 && lspcon->active)
3234                         lspcon_wait_pcon_mode(lspcon);
3235         }
3236
3237         if (ret != 1)
3238                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3239                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3240 }
3241
3242 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3243                                  enum port port, enum pipe *pipe)
3244 {
3245         enum pipe p;
3246
3247         for_each_pipe(dev_priv, p) {
3248                 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3249
3250                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3251                         *pipe = p;
3252                         return true;
3253                 }
3254         }
3255
3256         drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3257                     port_name(port));
3258
3259         /* must initialize pipe to something for the asserts */
3260         *pipe = PIPE_A;
3261
3262         return false;
3263 }
3264
3265 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3266                            i915_reg_t dp_reg, enum port port,
3267                            enum pipe *pipe)
3268 {
3269         bool ret;
3270         u32 val;
3271
3272         val = intel_de_read(dev_priv, dp_reg);
3273
3274         ret = val & DP_PORT_EN;
3275
3276         /* asserts want to know the pipe even if the port is disabled */
3277         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3278                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3279         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3280                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3281         else if (IS_CHERRYVIEW(dev_priv))
3282                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3283         else
3284                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3285
3286         return ret;
3287 }
3288
3289 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3290                                   enum pipe *pipe)
3291 {
3292         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3293         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3294         intel_wakeref_t wakeref;
3295         bool ret;
3296
3297         wakeref = intel_display_power_get_if_enabled(dev_priv,
3298                                                      encoder->power_domain);
3299         if (!wakeref)
3300                 return false;
3301
3302         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3303                                     encoder->port, pipe);
3304
3305         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3306
3307         return ret;
3308 }
3309
3310 static void intel_dp_get_config(struct intel_encoder *encoder,
3311                                 struct intel_crtc_state *pipe_config)
3312 {
3313         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3314         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3315         u32 tmp, flags = 0;
3316         enum port port = encoder->port;
3317         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3318
3319         if (encoder->type == INTEL_OUTPUT_EDP)
3320                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3321         else
3322                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3323
3324         tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3325
3326         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3327
3328         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3329                 u32 trans_dp = intel_de_read(dev_priv,
3330                                              TRANS_DP_CTL(crtc->pipe));
3331
3332                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3333                         flags |= DRM_MODE_FLAG_PHSYNC;
3334                 else
3335                         flags |= DRM_MODE_FLAG_NHSYNC;
3336
3337                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3338                         flags |= DRM_MODE_FLAG_PVSYNC;
3339                 else
3340                         flags |= DRM_MODE_FLAG_NVSYNC;
3341         } else {
3342                 if (tmp & DP_SYNC_HS_HIGH)
3343                         flags |= DRM_MODE_FLAG_PHSYNC;
3344                 else
3345                         flags |= DRM_MODE_FLAG_NHSYNC;
3346
3347                 if (tmp & DP_SYNC_VS_HIGH)
3348                         flags |= DRM_MODE_FLAG_PVSYNC;
3349                 else
3350                         flags |= DRM_MODE_FLAG_NVSYNC;
3351         }
3352
3353         pipe_config->hw.adjusted_mode.flags |= flags;
3354
3355         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3356                 pipe_config->limited_color_range = true;
3357
3358         pipe_config->lane_count =
3359                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3360
3361         intel_dp_get_m_n(crtc, pipe_config);
3362
3363         if (port == PORT_A) {
3364                 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3365                         pipe_config->port_clock = 162000;
3366                 else
3367                         pipe_config->port_clock = 270000;
3368         }
3369
3370         pipe_config->hw.adjusted_mode.crtc_clock =
3371                 intel_dotclock_calculate(pipe_config->port_clock,
3372                                          &pipe_config->dp_m_n);
3373
3374         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3375             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3376                 /*
3377                  * This is a big fat ugly hack.
3378                  *
3379                  * Some machines in UEFI boot mode provide us a VBT that has 18
3380                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3381                  * unknown we fail to light up. Yet the same BIOS boots up with
3382                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3383                  * max, not what it tells us to use.
3384                  *
3385                  * Note: This will still be broken if the eDP panel is not lit
3386                  * up by the BIOS, and thus we can't get the mode at module
3387                  * load.
3388                  */
3389                 drm_dbg_kms(&dev_priv->drm,
3390                             "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3391                             pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3392                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3393         }
3394 }
3395
3396 static void intel_disable_dp(struct intel_encoder *encoder,
3397                              const struct intel_crtc_state *old_crtc_state,
3398                              const struct drm_connector_state *old_conn_state)
3399 {
3400         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3401
3402         intel_dp->link_trained = false;
3403
3404         if (old_crtc_state->has_audio)
3405                 intel_audio_codec_disable(encoder,
3406                                           old_crtc_state, old_conn_state);
3407
3408         /* Make sure the panel is off before trying to change the mode. But also
3409          * ensure that we have vdd while we switch off the panel. */
3410         intel_edp_panel_vdd_on(intel_dp);
3411         intel_edp_backlight_off(old_conn_state);
3412         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3413         intel_edp_panel_off(intel_dp);
3414 }
3415
3416 static void g4x_disable_dp(struct intel_encoder *encoder,
3417                            const struct intel_crtc_state *old_crtc_state,
3418                            const struct drm_connector_state *old_conn_state)
3419 {
3420         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3421 }
3422
3423 static void vlv_disable_dp(struct intel_encoder *encoder,
3424                            const struct intel_crtc_state *old_crtc_state,
3425                            const struct drm_connector_state *old_conn_state)
3426 {
3427         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3428 }
3429
3430 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3431                                 const struct intel_crtc_state *old_crtc_state,
3432                                 const struct drm_connector_state *old_conn_state)
3433 {
3434         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3435         enum port port = encoder->port;
3436
3437         /*
3438          * Bspec does not list a specific disable sequence for g4x DP.
3439          * Follow the ilk+ sequence (disable pipe before the port) for
3440          * g4x DP as it does not suffer from underruns like the normal
3441          * g4x modeset sequence (disable pipe after the port).
3442          */
3443         intel_dp_link_down(encoder, old_crtc_state);
3444
3445         /* Only ilk+ has port A */
3446         if (port == PORT_A)
3447                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3448 }
3449
3450 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3451                                 const struct intel_crtc_state *old_crtc_state,
3452                                 const struct drm_connector_state *old_conn_state)
3453 {
3454         intel_dp_link_down(encoder, old_crtc_state);
3455 }
3456
3457 static void chv_post_disable_dp(struct intel_encoder *encoder,
3458                                 const struct intel_crtc_state *old_crtc_state,
3459                                 const struct drm_connector_state *old_conn_state)
3460 {
3461         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3462
3463         intel_dp_link_down(encoder, old_crtc_state);
3464
3465         vlv_dpio_get(dev_priv);
3466
3467         /* Assert data lane reset */
3468         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3469
3470         vlv_dpio_put(dev_priv);
3471 }
3472
3473 static void
3474 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3475                          u32 *DP,
3476                          u8 dp_train_pat)
3477 {
3478         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3479         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3480         enum port port = intel_dig_port->base.port;
3481         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3482
3483         if (dp_train_pat & train_pat_mask)
3484                 drm_dbg_kms(&dev_priv->drm,
3485                             "Using DP training pattern TPS%d\n",
3486                             dp_train_pat & train_pat_mask);
3487
3488         if (HAS_DDI(dev_priv)) {
3489                 u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3490
3491                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3492                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3493                 else
3494                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3495
3496                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3497                 switch (dp_train_pat & train_pat_mask) {
3498                 case DP_TRAINING_PATTERN_DISABLE:
3499                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3500
3501                         break;
3502                 case DP_TRAINING_PATTERN_1:
3503                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3504                         break;
3505                 case DP_TRAINING_PATTERN_2:
3506                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3507                         break;
3508                 case DP_TRAINING_PATTERN_3:
3509                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3510                         break;
3511                 case DP_TRAINING_PATTERN_4:
3512                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3513                         break;
3514                 }
3515                 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3516
3517         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3518                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3519                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3520
3521                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3522                 case DP_TRAINING_PATTERN_DISABLE:
3523                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3524                         break;
3525                 case DP_TRAINING_PATTERN_1:
3526                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3527                         break;
3528                 case DP_TRAINING_PATTERN_2:
3529                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3530                         break;
3531                 case DP_TRAINING_PATTERN_3:
3532                         drm_dbg_kms(&dev_priv->drm,
3533                                     "TPS3 not supported, using TPS2 instead\n");
3534                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3535                         break;
3536                 }
3537
3538         } else {
3539                 *DP &= ~DP_LINK_TRAIN_MASK;
3540
3541                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3542                 case DP_TRAINING_PATTERN_DISABLE:
3543                         *DP |= DP_LINK_TRAIN_OFF;
3544                         break;
3545                 case DP_TRAINING_PATTERN_1:
3546                         *DP |= DP_LINK_TRAIN_PAT_1;
3547                         break;
3548                 case DP_TRAINING_PATTERN_2:
3549                         *DP |= DP_LINK_TRAIN_PAT_2;
3550                         break;
3551                 case DP_TRAINING_PATTERN_3:
3552                         drm_dbg_kms(&dev_priv->drm,
3553                                     "TPS3 not supported, using TPS2 instead\n");
3554                         *DP |= DP_LINK_TRAIN_PAT_2;
3555                         break;
3556                 }
3557         }
3558 }
3559
3560 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3561                                  const struct intel_crtc_state *old_crtc_state)
3562 {
3563         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3564
3565         /* enable with pattern 1 (as per spec) */
3566
3567         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3568
3569         /*
3570          * Magic for VLV/CHV. We _must_ first set up the register
3571          * without actually enabling the port, and then do another
3572          * write to enable the port. Otherwise link training will
3573          * fail when the power sequencer is freshly used for this port.
3574          */
3575         intel_dp->DP |= DP_PORT_EN;
3576         if (old_crtc_state->has_audio)
3577                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3578
3579         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3580         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3581 }
3582
3583 static void intel_enable_dp(struct intel_encoder *encoder,
3584                             const struct intel_crtc_state *pipe_config,
3585                             const struct drm_connector_state *conn_state)
3586 {
3587         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3588         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3589         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3590         u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3591         enum pipe pipe = crtc->pipe;
3592         intel_wakeref_t wakeref;
3593
3594         if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3595                 return;
3596
3597         with_pps_lock(intel_dp, wakeref) {
3598                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3599                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3600
3601                 intel_dp_enable_port(intel_dp, pipe_config);
3602
3603                 edp_panel_vdd_on(intel_dp);
3604                 edp_panel_on(intel_dp);
3605                 edp_panel_vdd_off(intel_dp, true);
3606         }
3607
3608         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3609                 unsigned int lane_mask = 0x0;
3610
3611                 if (IS_CHERRYVIEW(dev_priv))
3612                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3613
3614                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3615                                     lane_mask);
3616         }
3617
3618         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3619         intel_dp_start_link_train(intel_dp);
3620         intel_dp_stop_link_train(intel_dp);
3621
3622         if (pipe_config->has_audio) {
3623                 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3624                         pipe_name(pipe));
3625                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3626         }
3627 }
3628
3629 static void g4x_enable_dp(struct intel_encoder *encoder,
3630                           const struct intel_crtc_state *pipe_config,
3631                           const struct drm_connector_state *conn_state)
3632 {
3633         intel_enable_dp(encoder, pipe_config, conn_state);
3634         intel_edp_backlight_on(pipe_config, conn_state);
3635 }
3636
3637 static void vlv_enable_dp(struct intel_encoder *encoder,
3638                           const struct intel_crtc_state *pipe_config,
3639                           const struct drm_connector_state *conn_state)
3640 {
3641         intel_edp_backlight_on(pipe_config, conn_state);
3642 }
3643
3644 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3645                               const struct intel_crtc_state *pipe_config,
3646                               const struct drm_connector_state *conn_state)
3647 {
3648         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3649         enum port port = encoder->port;
3650
3651         intel_dp_prepare(encoder, pipe_config);
3652
3653         /* Only ilk+ has port A */
3654         if (port == PORT_A)
3655                 ilk_edp_pll_on(intel_dp, pipe_config);
3656 }
3657
3658 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3659 {
3660         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3661         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3662         enum pipe pipe = intel_dp->pps_pipe;
3663         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3664
3665         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3666
3667         if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3668                 return;
3669
3670         edp_panel_vdd_off_sync(intel_dp);
3671
3672         /*
3673          * VLV seems to get confused when multiple power sequencers
3674          * have the same port selected (even if only one has power/vdd
3675          * enabled). The failure manifests as vlv_wait_port_ready() failing
3676          * CHV on the other hand doesn't seem to mind having the same port
3677          * selected in multiple power sequencers, but let's clear the
3678          * port select always when logically disconnecting a power sequencer
3679          * from a port.
3680          */
3681         drm_dbg_kms(&dev_priv->drm,
3682                     "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3683                     pipe_name(pipe), intel_dig_port->base.base.base.id,
3684                     intel_dig_port->base.base.name);
3685         intel_de_write(dev_priv, pp_on_reg, 0);
3686         intel_de_posting_read(dev_priv, pp_on_reg);
3687
3688         intel_dp->pps_pipe = INVALID_PIPE;
3689 }
3690
3691 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3692                                       enum pipe pipe)
3693 {
3694         struct intel_encoder *encoder;
3695
3696         lockdep_assert_held(&dev_priv->pps_mutex);
3697
3698         for_each_intel_dp(&dev_priv->drm, encoder) {
3699                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3700
3701                 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3702                          "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3703                          pipe_name(pipe), encoder->base.base.id,
3704                          encoder->base.name);
3705
3706                 if (intel_dp->pps_pipe != pipe)
3707                         continue;
3708
3709                 drm_dbg_kms(&dev_priv->drm,
3710                             "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3711                             pipe_name(pipe), encoder->base.base.id,
3712                             encoder->base.name);
3713
3714                 /* make sure vdd is off before we steal it */
3715                 vlv_detach_power_sequencer(intel_dp);
3716         }
3717 }
3718
3719 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3720                                            const struct intel_crtc_state *crtc_state)
3721 {
3722         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3723         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3724         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3725
3726         lockdep_assert_held(&dev_priv->pps_mutex);
3727
3728         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3729
3730         if (intel_dp->pps_pipe != INVALID_PIPE &&
3731             intel_dp->pps_pipe != crtc->pipe) {
3732                 /*
3733                  * If another power sequencer was being used on this
3734                  * port previously make sure to turn off vdd there while
3735                  * we still have control of it.
3736                  */
3737                 vlv_detach_power_sequencer(intel_dp);
3738         }
3739
3740         /*
3741          * We may be stealing the power
3742          * sequencer from another port.
3743          */
3744         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3745
3746         intel_dp->active_pipe = crtc->pipe;
3747
3748         if (!intel_dp_is_edp(intel_dp))
3749                 return;
3750
3751         /* now it's all ours */
3752         intel_dp->pps_pipe = crtc->pipe;
3753
3754         drm_dbg_kms(&dev_priv->drm,
3755                     "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3756                     pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3757                     encoder->base.name);
3758
3759         /* init power sequencer on this pipe and port */
3760         intel_dp_init_panel_power_sequencer(intel_dp);
3761         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3762 }
3763
3764 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3765                               const struct intel_crtc_state *pipe_config,
3766                               const struct drm_connector_state *conn_state)
3767 {
3768         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3769
3770         intel_enable_dp(encoder, pipe_config, conn_state);
3771 }
3772
3773 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3774                                   const struct intel_crtc_state *pipe_config,
3775                                   const struct drm_connector_state *conn_state)
3776 {
3777         intel_dp_prepare(encoder, pipe_config);
3778
3779         vlv_phy_pre_pll_enable(encoder, pipe_config);
3780 }
3781
3782 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3783                               const struct intel_crtc_state *pipe_config,
3784                               const struct drm_connector_state *conn_state)
3785 {
3786         chv_phy_pre_encoder_enable(encoder, pipe_config);
3787
3788         intel_enable_dp(encoder, pipe_config, conn_state);
3789
3790         /* Second common lane will stay alive on its own now */
3791         chv_phy_release_cl2_override(encoder);
3792 }
3793
3794 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3795                                   const struct intel_crtc_state *pipe_config,
3796                                   const struct drm_connector_state *conn_state)
3797 {
3798         intel_dp_prepare(encoder, pipe_config);
3799
3800         chv_phy_pre_pll_enable(encoder, pipe_config);
3801 }
3802
3803 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3804                                     const struct intel_crtc_state *old_crtc_state,
3805                                     const struct drm_connector_state *old_conn_state)
3806 {
3807         chv_phy_post_pll_disable(encoder, old_crtc_state);
3808 }
3809
3810 /*
3811  * Fetch AUX CH registers 0x202 - 0x207 which contain
3812  * link status information
3813  */
3814 bool
3815 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3816 {
3817         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3818                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3819 }
3820
3821 /* These are source-specific values. */
3822 u8
3823 intel_dp_voltage_max(struct intel_dp *intel_dp)
3824 {
3825         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3826         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3827         enum port port = encoder->port;
3828
3829         if (HAS_DDI(dev_priv))
3830                 return intel_ddi_dp_voltage_max(encoder);
3831         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3832                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3833         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3834                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3835         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3836                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3837         else
3838                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3839 }
3840
3841 u8
3842 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3843 {
3844         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3845         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3846         enum port port = encoder->port;
3847
3848         if (HAS_DDI(dev_priv)) {
3849                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3850         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3851                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3852                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3853                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3854                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3855                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3856                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3857                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3858                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3859                 default:
3860                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3861                 }
3862         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3863                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3864                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3865                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3866                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3867                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3868                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3869                 default:
3870                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3871                 }
3872         } else {
3873                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3874                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3875                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3876                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3877                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3878                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3879                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3880                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3881                 default:
3882                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3883                 }
3884         }
3885 }
3886
3887 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3888 {
3889         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3890         unsigned long demph_reg_value, preemph_reg_value,
3891                 uniqtranscale_reg_value;
3892         u8 train_set = intel_dp->train_set[0];
3893
3894         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3895         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3896                 preemph_reg_value = 0x0004000;
3897                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3898                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3899                         demph_reg_value = 0x2B405555;
3900                         uniqtranscale_reg_value = 0x552AB83A;
3901                         break;
3902                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3903                         demph_reg_value = 0x2B404040;
3904                         uniqtranscale_reg_value = 0x5548B83A;
3905                         break;
3906                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3907                         demph_reg_value = 0x2B245555;
3908                         uniqtranscale_reg_value = 0x5560B83A;
3909                         break;
3910                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3911                         demph_reg_value = 0x2B405555;
3912                         uniqtranscale_reg_value = 0x5598DA3A;
3913                         break;
3914                 default:
3915                         return 0;
3916                 }
3917                 break;
3918         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3919                 preemph_reg_value = 0x0002000;
3920                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3921                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3922                         demph_reg_value = 0x2B404040;
3923                         uniqtranscale_reg_value = 0x5552B83A;
3924                         break;
3925                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3926                         demph_reg_value = 0x2B404848;
3927                         uniqtranscale_reg_value = 0x5580B83A;
3928                         break;
3929                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3930                         demph_reg_value = 0x2B404040;
3931                         uniqtranscale_reg_value = 0x55ADDA3A;
3932                         break;
3933                 default:
3934                         return 0;
3935                 }
3936                 break;
3937         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3938                 preemph_reg_value = 0x0000000;
3939                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3940                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3941                         demph_reg_value = 0x2B305555;
3942                         uniqtranscale_reg_value = 0x5570B83A;
3943                         break;
3944                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3945                         demph_reg_value = 0x2B2B4040;
3946                         uniqtranscale_reg_value = 0x55ADDA3A;
3947                         break;
3948                 default:
3949                         return 0;
3950                 }
3951                 break;
3952         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3953                 preemph_reg_value = 0x0006000;
3954                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3955                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3956                         demph_reg_value = 0x1B405555;
3957                         uniqtranscale_reg_value = 0x55ADDA3A;
3958                         break;
3959                 default:
3960                         return 0;
3961                 }
3962                 break;
3963         default:
3964                 return 0;
3965         }
3966
3967         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3968                                  uniqtranscale_reg_value, 0);
3969
3970         return 0;
3971 }
3972
3973 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3974 {
3975         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3976         u32 deemph_reg_value, margin_reg_value;
3977         bool uniq_trans_scale = false;
3978         u8 train_set = intel_dp->train_set[0];
3979
3980         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3981         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3982                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3983                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3984                         deemph_reg_value = 128;
3985                         margin_reg_value = 52;
3986                         break;
3987                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3988                         deemph_reg_value = 128;
3989                         margin_reg_value = 77;
3990                         break;
3991                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3992                         deemph_reg_value = 128;
3993                         margin_reg_value = 102;
3994                         break;
3995                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3996                         deemph_reg_value = 128;
3997                         margin_reg_value = 154;
3998                         uniq_trans_scale = true;
3999                         break;
4000                 default:
4001                         return 0;
4002                 }
4003                 break;
4004         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4005                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4006                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4007                         deemph_reg_value = 85;
4008                         margin_reg_value = 78;
4009                         break;
4010                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4011                         deemph_reg_value = 85;
4012                         margin_reg_value = 116;
4013                         break;
4014                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4015                         deemph_reg_value = 85;
4016                         margin_reg_value = 154;
4017                         break;
4018                 default:
4019                         return 0;
4020                 }
4021                 break;
4022         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4023                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4024                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4025                         deemph_reg_value = 64;
4026                         margin_reg_value = 104;
4027                         break;
4028                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4029                         deemph_reg_value = 64;
4030                         margin_reg_value = 154;
4031                         break;
4032                 default:
4033                         return 0;
4034                 }
4035                 break;
4036         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4037                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4038                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4039                         deemph_reg_value = 43;
4040                         margin_reg_value = 154;
4041                         break;
4042                 default:
4043                         return 0;
4044                 }
4045                 break;
4046         default:
4047                 return 0;
4048         }
4049
4050         chv_set_phy_signal_level(encoder, deemph_reg_value,
4051                                  margin_reg_value, uniq_trans_scale);
4052
4053         return 0;
4054 }
4055
4056 static u32
4057 g4x_signal_levels(u8 train_set)
4058 {
4059         u32 signal_levels = 0;
4060
4061         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4062         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4063         default:
4064                 signal_levels |= DP_VOLTAGE_0_4;
4065                 break;
4066         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4067                 signal_levels |= DP_VOLTAGE_0_6;
4068                 break;
4069         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4070                 signal_levels |= DP_VOLTAGE_0_8;
4071                 break;
4072         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4073                 signal_levels |= DP_VOLTAGE_1_2;
4074                 break;
4075         }
4076         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4077         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4078         default:
4079                 signal_levels |= DP_PRE_EMPHASIS_0;
4080                 break;
4081         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4082                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4083                 break;
4084         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4085                 signal_levels |= DP_PRE_EMPHASIS_6;
4086                 break;
4087         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4088                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4089                 break;
4090         }
4091         return signal_levels;
4092 }
4093
4094 /* SNB CPU eDP voltage swing and pre-emphasis control */
4095 static u32
4096 snb_cpu_edp_signal_levels(u8 train_set)
4097 {
4098         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4099                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4100         switch (signal_levels) {
4101         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4102         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4103                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4104         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4105                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4106         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4107         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4108                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4109         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4110         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4111                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4112         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4113         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4114                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4115         default:
4116                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4117                               "0x%x\n", signal_levels);
4118                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4119         }
4120 }
4121
4122 /* IVB CPU eDP voltage swing and pre-emphasis control */
4123 static u32
4124 ivb_cpu_edp_signal_levels(u8 train_set)
4125 {
4126         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4127                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4128         switch (signal_levels) {
4129         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4130                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4131         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4132                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4133         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4134                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4135
4136         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4137                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4138         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4139                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4140
4141         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4142                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4143         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4144                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4145
4146         default:
4147                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4148                               "0x%x\n", signal_levels);
4149                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4150         }
4151 }
4152
4153 void
4154 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4155 {
4156         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4157         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4158         enum port port = intel_dig_port->base.port;
4159         u32 signal_levels, mask = 0;
4160         u8 train_set = intel_dp->train_set[0];
4161
4162         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4163                 signal_levels = bxt_signal_levels(intel_dp);
4164         } else if (HAS_DDI(dev_priv)) {
4165                 signal_levels = ddi_signal_levels(intel_dp);
4166                 mask = DDI_BUF_EMP_MASK;
4167         } else if (IS_CHERRYVIEW(dev_priv)) {
4168                 signal_levels = chv_signal_levels(intel_dp);
4169         } else if (IS_VALLEYVIEW(dev_priv)) {
4170                 signal_levels = vlv_signal_levels(intel_dp);
4171         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4172                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4173                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4174         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4175                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4176                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4177         } else {
4178                 signal_levels = g4x_signal_levels(train_set);
4179                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4180         }
4181
4182         if (mask)
4183                 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4184                             signal_levels);
4185
4186         drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4187                     train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4188                     train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4189         drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4190                     (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4191                     DP_TRAIN_PRE_EMPHASIS_SHIFT,
4192                     train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4193                     " (max)" : "");
4194
4195         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4196
4197         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4198         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4199 }
4200
4201 void
4202 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4203                                        u8 dp_train_pat)
4204 {
4205         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4206         struct drm_i915_private *dev_priv =
4207                 to_i915(intel_dig_port->base.base.dev);
4208
4209         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4210
4211         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4212         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4213 }
4214
4215 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4216 {
4217         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4218         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4219         enum port port = intel_dig_port->base.port;
4220         u32 val;
4221
4222         if (!HAS_DDI(dev_priv))
4223                 return;
4224
4225         val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4226         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4227         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4228         intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4229
4230         /*
4231          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4232          * reason we need to set idle transmission mode is to work around a HW
4233          * issue where we enable the pipe while not in idle link-training mode.
4234          * In this case there is requirement to wait for a minimum number of
4235          * idle patterns to be sent.
4236          */
4237         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4238                 return;
4239
4240         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4241                                   DP_TP_STATUS_IDLE_DONE, 1))
4242                 drm_err(&dev_priv->drm,
4243                         "Timed out waiting for DP idle patterns\n");
4244 }
4245
4246 static void
4247 intel_dp_link_down(struct intel_encoder *encoder,
4248                    const struct intel_crtc_state *old_crtc_state)
4249 {
4250         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4251         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4252         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4253         enum port port = encoder->port;
4254         u32 DP = intel_dp->DP;
4255
4256         if (drm_WARN_ON(&dev_priv->drm,
4257                         (intel_de_read(dev_priv, intel_dp->output_reg) &
4258                          DP_PORT_EN) == 0))
4259                 return;
4260
4261         drm_dbg_kms(&dev_priv->drm, "\n");
4262
4263         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4264             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4265                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4266                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4267         } else {
4268                 DP &= ~DP_LINK_TRAIN_MASK;
4269                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4270         }
4271         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4272         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4273
4274         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4275         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4276         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4277
4278         /*
4279          * HW workaround for IBX, we need to move the port
4280          * to transcoder A after disabling it to allow the
4281          * matching HDMI port to be enabled on transcoder A.
4282          */
4283         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4284                 /*
4285                  * We get CPU/PCH FIFO underruns on the other pipe when
4286                  * doing the workaround. Sweep them under the rug.
4287                  */
4288                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4289                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4290
4291                 /* always enable with pattern 1 (as per spec) */
4292                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4293                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4294                         DP_LINK_TRAIN_PAT_1;
4295                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4296                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4297
4298                 DP &= ~DP_PORT_EN;
4299                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4300                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4301
4302                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4303                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4304                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4305         }
4306
4307         msleep(intel_dp->panel_power_down_delay);
4308
4309         intel_dp->DP = DP;
4310
4311         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4312                 intel_wakeref_t wakeref;
4313
4314                 with_pps_lock(intel_dp, wakeref)
4315                         intel_dp->active_pipe = INVALID_PIPE;
4316         }
4317 }
4318
4319 static void
4320 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4321 {
4322         u8 dpcd_ext[6];
4323
4324         /*
4325          * Prior to DP1.3 the bit represented by
4326          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4327          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4328          * the true capability of the panel. The only way to check is to
4329          * then compare 0000h and 2200h.
4330          */
4331         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4332               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4333                 return;
4334
4335         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4336                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4337                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4338                 return;
4339         }
4340
4341         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4342                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4343                 return;
4344         }
4345
4346         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4347                 return;
4348
4349         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4350                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4351
4352         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4353 }
4354
4355 bool
4356 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4357 {
4358         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4359                              sizeof(intel_dp->dpcd)) < 0)
4360                 return false; /* aux transfer failed */
4361
4362         intel_dp_extended_receiver_capabilities(intel_dp);
4363
4364         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4365
4366         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4367 }
4368
4369 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4370 {
4371         u8 dprx = 0;
4372
4373         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4374                               &dprx) != 1)
4375                 return false;
4376         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4377 }
4378
4379 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4380 {
4381         /*
4382          * Clear the cached register set to avoid using stale values
4383          * for the sinks that do not support DSC.
4384          */
4385         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4386
4387         /* Clear fec_capable to avoid using stale values */
4388         intel_dp->fec_capable = 0;
4389
4390         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4391         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4392             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4393                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4394                                      intel_dp->dsc_dpcd,
4395                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4396                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4397                                   DP_DSC_SUPPORT);
4398
4399                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4400                               (int)sizeof(intel_dp->dsc_dpcd),
4401                               intel_dp->dsc_dpcd);
4402
4403                 /* FEC is supported only on DP 1.4 */
4404                 if (!intel_dp_is_edp(intel_dp) &&
4405                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4406                                       &intel_dp->fec_capable) < 0)
4407                         DRM_ERROR("Failed to read FEC DPCD register\n");
4408
4409                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4410         }
4411 }
4412
4413 static bool
4414 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4415 {
4416         struct drm_i915_private *dev_priv =
4417                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4418
4419         /* this function is meant to be called only once */
4420         drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4421
4422         if (!intel_dp_read_dpcd(intel_dp))
4423                 return false;
4424
4425         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4426                          drm_dp_is_branch(intel_dp->dpcd));
4427
4428         /*
4429          * Read the eDP display control registers.
4430          *
4431          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4432          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4433          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4434          * method). The display control registers should read zero if they're
4435          * not supported anyway.
4436          */
4437         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4438                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4439                              sizeof(intel_dp->edp_dpcd))
4440                 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4441                             (int)sizeof(intel_dp->edp_dpcd),
4442                             intel_dp->edp_dpcd);
4443
4444         /*
4445          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4446          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4447          */
4448         intel_psr_init_dpcd(intel_dp);
4449
4450         /* Read the eDP 1.4+ supported link rates. */
4451         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4452                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4453                 int i;
4454
4455                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4456                                 sink_rates, sizeof(sink_rates));
4457
4458                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4459                         int val = le16_to_cpu(sink_rates[i]);
4460
4461                         if (val == 0)
4462                                 break;
4463
4464                         /* Value read multiplied by 200kHz gives the per-lane
4465                          * link rate in kHz. The source rates are, however,
4466                          * stored in terms of LS_Clk kHz. The full conversion
4467                          * back to symbols is
4468                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4469                          */
4470                         intel_dp->sink_rates[i] = (val * 200) / 10;
4471                 }
4472                 intel_dp->num_sink_rates = i;
4473         }
4474
4475         /*
4476          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4477          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4478          */
4479         if (intel_dp->num_sink_rates)
4480                 intel_dp->use_rate_select = true;
4481         else
4482                 intel_dp_set_sink_rates(intel_dp);
4483
4484         intel_dp_set_common_rates(intel_dp);
4485
4486         /* Read the eDP DSC DPCD registers */
4487         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4488                 intel_dp_get_dsc_sink_cap(intel_dp);
4489
4490         return true;
4491 }
4492
4493
4494 static bool
4495 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4496 {
4497         if (!intel_dp_read_dpcd(intel_dp))
4498                 return false;
4499
4500         /*
4501          * Don't clobber cached eDP rates. Also skip re-reading
4502          * the OUI/ID since we know it won't change.
4503          */
4504         if (!intel_dp_is_edp(intel_dp)) {
4505                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4506                                  drm_dp_is_branch(intel_dp->dpcd));
4507
4508                 intel_dp_set_sink_rates(intel_dp);
4509                 intel_dp_set_common_rates(intel_dp);
4510         }
4511
4512         /*
4513          * Some eDP panels do not set a valid value for sink count, that is why
4514          * it don't care about read it here and in intel_edp_init_dpcd().
4515          */
4516         if (!intel_dp_is_edp(intel_dp) &&
4517             !drm_dp_has_quirk(&intel_dp->desc, 0,
4518                               DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4519                 u8 count;
4520                 ssize_t r;
4521
4522                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4523                 if (r < 1)
4524                         return false;
4525
4526                 /*
4527                  * Sink count can change between short pulse hpd hence
4528                  * a member variable in intel_dp will track any changes
4529                  * between short pulse interrupts.
4530                  */
4531                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4532
4533                 /*
4534                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4535                  * a dongle is present but no display. Unless we require to know
4536                  * if a dongle is present or not, we don't need to update
4537                  * downstream port information. So, an early return here saves
4538                  * time from performing other operations which are not required.
4539                  */
4540                 if (!intel_dp->sink_count)
4541                         return false;
4542         }
4543
4544         if (!drm_dp_is_branch(intel_dp->dpcd))
4545                 return true; /* native DP sink */
4546
4547         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4548                 return true; /* no per-port downstream info */
4549
4550         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4551                              intel_dp->downstream_ports,
4552                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4553                 return false; /* downstream port status fetch failed */
4554
4555         return true;
4556 }
4557
4558 static bool
4559 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4560 {
4561         u8 mstm_cap;
4562
4563         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4564                 return false;
4565
4566         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4567                 return false;
4568
4569         return mstm_cap & DP_MST_CAP;
4570 }
4571
4572 static bool
4573 intel_dp_can_mst(struct intel_dp *intel_dp)
4574 {
4575         return i915_modparams.enable_dp_mst &&
4576                 intel_dp->can_mst &&
4577                 intel_dp_sink_can_mst(intel_dp);
4578 }
4579
4580 static void
4581 intel_dp_configure_mst(struct intel_dp *intel_dp)
4582 {
4583         struct intel_encoder *encoder =
4584                 &dp_to_dig_port(intel_dp)->base;
4585         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4586
4587         DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4588                       encoder->base.base.id, encoder->base.name,
4589                       yesno(intel_dp->can_mst), yesno(sink_can_mst),
4590                       yesno(i915_modparams.enable_dp_mst));
4591
4592         if (!intel_dp->can_mst)
4593                 return;
4594
4595         intel_dp->is_mst = sink_can_mst &&
4596                 i915_modparams.enable_dp_mst;
4597
4598         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4599                                         intel_dp->is_mst);
4600 }
4601
4602 static bool
4603 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4604 {
4605         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4606                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4607                 DP_DPRX_ESI_LEN;
4608 }
4609
4610 bool
4611 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4612                        const struct drm_connector_state *conn_state)
4613 {
4614         /*
4615          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4616          * of Color Encoding Format and Content Color Gamut], in order to
4617          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4618          */
4619         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4620                 return true;
4621
4622         switch (conn_state->colorspace) {
4623         case DRM_MODE_COLORIMETRY_SYCC_601:
4624         case DRM_MODE_COLORIMETRY_OPYCC_601:
4625         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4626         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4627         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4628                 return true;
4629         default:
4630                 break;
4631         }
4632
4633         return false;
4634 }
4635
4636 static void
4637 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4638                        const struct intel_crtc_state *crtc_state,
4639                        const struct drm_connector_state *conn_state)
4640 {
4641         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4642         struct dp_sdp vsc_sdp = {};
4643
4644         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4645         vsc_sdp.sdp_header.HB0 = 0;
4646         vsc_sdp.sdp_header.HB1 = 0x7;
4647
4648         /*
4649          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4650          * Colorimetry Format indication.
4651          */
4652         vsc_sdp.sdp_header.HB2 = 0x5;
4653
4654         /*
4655          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4656          * Colorimetry Format indication (HB2 = 05h).
4657          */
4658         vsc_sdp.sdp_header.HB3 = 0x13;
4659
4660         /* DP 1.4a spec, Table 2-120 */
4661         switch (crtc_state->output_format) {
4662         case INTEL_OUTPUT_FORMAT_YCBCR444:
4663                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4664                 break;
4665         case INTEL_OUTPUT_FORMAT_YCBCR420:
4666                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4667                 break;
4668         case INTEL_OUTPUT_FORMAT_RGB:
4669         default:
4670                 /* RGB: DB16[7:4] = 0h */
4671                 break;
4672         }
4673
4674         switch (conn_state->colorspace) {
4675         case DRM_MODE_COLORIMETRY_BT709_YCC:
4676                 vsc_sdp.db[16] |= 0x1;
4677                 break;
4678         case DRM_MODE_COLORIMETRY_XVYCC_601:
4679                 vsc_sdp.db[16] |= 0x2;
4680                 break;
4681         case DRM_MODE_COLORIMETRY_XVYCC_709:
4682                 vsc_sdp.db[16] |= 0x3;
4683                 break;
4684         case DRM_MODE_COLORIMETRY_SYCC_601:
4685                 vsc_sdp.db[16] |= 0x4;
4686                 break;
4687         case DRM_MODE_COLORIMETRY_OPYCC_601:
4688                 vsc_sdp.db[16] |= 0x5;
4689                 break;
4690         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4691         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4692                 vsc_sdp.db[16] |= 0x6;
4693                 break;
4694         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4695                 vsc_sdp.db[16] |= 0x7;
4696                 break;
4697         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4698         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4699                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4700                 break;
4701         default:
4702                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4703
4704                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4705                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4706                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4707                 break;
4708         }
4709
4710         /*
4711          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4712          * the following Component Bit Depth values are defined:
4713          * 001b = 8bpc.
4714          * 010b = 10bpc.
4715          * 011b = 12bpc.
4716          * 100b = 16bpc.
4717          */
4718         switch (crtc_state->pipe_bpp) {
4719         case 24: /* 8bpc */
4720                 vsc_sdp.db[17] = 0x1;
4721                 break;
4722         case 30: /* 10bpc */
4723                 vsc_sdp.db[17] = 0x2;
4724                 break;
4725         case 36: /* 12bpc */
4726                 vsc_sdp.db[17] = 0x3;
4727                 break;
4728         case 48: /* 16bpc */
4729                 vsc_sdp.db[17] = 0x4;
4730                 break;
4731         default:
4732                 MISSING_CASE(crtc_state->pipe_bpp);
4733                 break;
4734         }
4735
4736         /*
4737          * Dynamic Range (Bit 7)
4738          * 0 = VESA range, 1 = CTA range.
4739          * all YCbCr are always limited range
4740          */
4741         vsc_sdp.db[17] |= 0x80;
4742
4743         /*
4744          * Content Type (Bits 2:0)
4745          * 000b = Not defined.
4746          * 001b = Graphics.
4747          * 010b = Photo.
4748          * 011b = Video.
4749          * 100b = Game
4750          * All other values are RESERVED.
4751          * Note: See CTA-861-G for the definition and expected
4752          * processing by a stream sink for the above contect types.
4753          */
4754         vsc_sdp.db[18] = 0;
4755
4756         intel_dig_port->write_infoframe(&intel_dig_port->base,
4757                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4758 }
4759
4760 static void
4761 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4762                                           const struct intel_crtc_state *crtc_state,
4763                                           const struct drm_connector_state *conn_state)
4764 {
4765         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4766         struct dp_sdp infoframe_sdp = {};
4767         struct hdmi_drm_infoframe drm_infoframe = {};
4768         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4769         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4770         ssize_t len;
4771         int ret;
4772
4773         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4774         if (ret) {
4775                 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4776                 return;
4777         }
4778
4779         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4780         if (len < 0) {
4781                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4782                 return;
4783         }
4784
4785         if (len != infoframe_size) {
4786                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4787                 return;
4788         }
4789
4790         /*
4791          * Set up the infoframe sdp packet for HDR static metadata.
4792          * Prepare VSC Header for SU as per DP 1.4a spec,
4793          * Table 2-100 and Table 2-101
4794          */
4795
4796         /* Packet ID, 00h for non-Audio INFOFRAME */
4797         infoframe_sdp.sdp_header.HB0 = 0;
4798         /*
4799          * Packet Type 80h + Non-audio INFOFRAME Type value
4800          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4801          */
4802         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4803         /*
4804          * Least Significant Eight Bits of (Data Byte Count – 1)
4805          * infoframe_size - 1,
4806          */
4807         infoframe_sdp.sdp_header.HB2 = 0x1D;
4808         /* INFOFRAME SDP Version Number */
4809         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4810         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4811         infoframe_sdp.db[0] = drm_infoframe.version;
4812         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4813         infoframe_sdp.db[1] = drm_infoframe.length;
4814         /*
4815          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4816          * HDMI_INFOFRAME_HEADER_SIZE
4817          */
4818         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4819         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4820                HDMI_DRM_INFOFRAME_SIZE);
4821
4822         /*
4823          * Size of DP infoframe sdp packet for HDR static metadata is consist of
4824          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4825          * - Two Data Blocks: 2 bytes
4826          *    CTA Header Byte2 (INFOFRAME Version Number)
4827          *    CTA Header Byte3 (Length of INFOFRAME)
4828          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4829          *
4830          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4831          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4832          * will pad rest of the size.
4833          */
4834         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4835                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
4836                                         &infoframe_sdp,
4837                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4838 }
4839
4840 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4841                          const struct intel_crtc_state *crtc_state,
4842                          const struct drm_connector_state *conn_state)
4843 {
4844         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4845                 return;
4846
4847         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4848 }
4849
4850 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4851                                   const struct intel_crtc_state *crtc_state,
4852                                   const struct drm_connector_state *conn_state)
4853 {
4854         if (!conn_state->hdr_output_metadata)
4855                 return;
4856
4857         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4858                                                   crtc_state,
4859                                                   conn_state);
4860 }
4861
4862 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4863 {
4864         int status = 0;
4865         int test_link_rate;
4866         u8 test_lane_count, test_link_bw;
4867         /* (DP CTS 1.2)
4868          * 4.3.1.11
4869          */
4870         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4871         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4872                                    &test_lane_count);
4873
4874         if (status <= 0) {
4875                 DRM_DEBUG_KMS("Lane count read failed\n");
4876                 return DP_TEST_NAK;
4877         }
4878         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4879
4880         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4881                                    &test_link_bw);
4882         if (status <= 0) {
4883                 DRM_DEBUG_KMS("Link Rate read failed\n");
4884                 return DP_TEST_NAK;
4885         }
4886         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4887
4888         /* Validate the requested link rate and lane count */
4889         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4890                                         test_lane_count))
4891                 return DP_TEST_NAK;
4892
4893         intel_dp->compliance.test_lane_count = test_lane_count;
4894         intel_dp->compliance.test_link_rate = test_link_rate;
4895
4896         return DP_TEST_ACK;
4897 }
4898
4899 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4900 {
4901         u8 test_pattern;
4902         u8 test_misc;
4903         __be16 h_width, v_height;
4904         int status = 0;
4905
4906         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4907         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4908                                    &test_pattern);
4909         if (status <= 0) {
4910                 DRM_DEBUG_KMS("Test pattern read failed\n");
4911                 return DP_TEST_NAK;
4912         }
4913         if (test_pattern != DP_COLOR_RAMP)
4914                 return DP_TEST_NAK;
4915
4916         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4917                                   &h_width, 2);
4918         if (status <= 0) {
4919                 DRM_DEBUG_KMS("H Width read failed\n");
4920                 return DP_TEST_NAK;
4921         }
4922
4923         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4924                                   &v_height, 2);
4925         if (status <= 0) {
4926                 DRM_DEBUG_KMS("V Height read failed\n");
4927                 return DP_TEST_NAK;
4928         }
4929
4930         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4931                                    &test_misc);
4932         if (status <= 0) {
4933                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4934                 return DP_TEST_NAK;
4935         }
4936         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4937                 return DP_TEST_NAK;
4938         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4939                 return DP_TEST_NAK;
4940         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4941         case DP_TEST_BIT_DEPTH_6:
4942                 intel_dp->compliance.test_data.bpc = 6;
4943                 break;
4944         case DP_TEST_BIT_DEPTH_8:
4945                 intel_dp->compliance.test_data.bpc = 8;
4946                 break;
4947         default:
4948                 return DP_TEST_NAK;
4949         }
4950
4951         intel_dp->compliance.test_data.video_pattern = test_pattern;
4952         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4953         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4954         /* Set test active flag here so userspace doesn't interrupt things */
4955         intel_dp->compliance.test_active = true;
4956
4957         return DP_TEST_ACK;
4958 }
4959
4960 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4961 {
4962         u8 test_result = DP_TEST_ACK;
4963         struct intel_connector *intel_connector = intel_dp->attached_connector;
4964         struct drm_connector *connector = &intel_connector->base;
4965
4966         if (intel_connector->detect_edid == NULL ||
4967             connector->edid_corrupt ||
4968             intel_dp->aux.i2c_defer_count > 6) {
4969                 /* Check EDID read for NACKs, DEFERs and corruption
4970                  * (DP CTS 1.2 Core r1.1)
4971                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4972                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4973                  *    4.2.2.6 : EDID corruption detected
4974                  * Use failsafe mode for all cases
4975                  */
4976                 if (intel_dp->aux.i2c_nack_count > 0 ||
4977                         intel_dp->aux.i2c_defer_count > 0)
4978                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4979                                       intel_dp->aux.i2c_nack_count,
4980                                       intel_dp->aux.i2c_defer_count);
4981                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4982         } else {
4983                 struct edid *block = intel_connector->detect_edid;
4984
4985                 /* We have to write the checksum
4986                  * of the last block read
4987                  */
4988                 block += intel_connector->detect_edid->extensions;
4989
4990                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4991                                        block->checksum) <= 0)
4992                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4993
4994                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4995                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4996         }
4997
4998         /* Set test active flag here so userspace doesn't interrupt things */
4999         intel_dp->compliance.test_active = true;
5000
5001         return test_result;
5002 }
5003
5004 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5005 {
5006         u8 test_result = DP_TEST_NAK;
5007         return test_result;
5008 }
5009
5010 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5011 {
5012         u8 response = DP_TEST_NAK;
5013         u8 request = 0;
5014         int status;
5015
5016         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5017         if (status <= 0) {
5018                 DRM_DEBUG_KMS("Could not read test request from sink\n");
5019                 goto update_status;
5020         }
5021
5022         switch (request) {
5023         case DP_TEST_LINK_TRAINING:
5024                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
5025                 response = intel_dp_autotest_link_training(intel_dp);
5026                 break;
5027         case DP_TEST_LINK_VIDEO_PATTERN:
5028                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
5029                 response = intel_dp_autotest_video_pattern(intel_dp);
5030                 break;
5031         case DP_TEST_LINK_EDID_READ:
5032                 DRM_DEBUG_KMS("EDID test requested\n");
5033                 response = intel_dp_autotest_edid(intel_dp);
5034                 break;
5035         case DP_TEST_LINK_PHY_TEST_PATTERN:
5036                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
5037                 response = intel_dp_autotest_phy_pattern(intel_dp);
5038                 break;
5039         default:
5040                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
5041                 break;
5042         }
5043
5044         if (response & DP_TEST_ACK)
5045                 intel_dp->compliance.test_type = request;
5046
5047 update_status:
5048         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5049         if (status <= 0)
5050                 DRM_DEBUG_KMS("Could not write test response to sink\n");
5051 }
5052
5053 static int
5054 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5055 {
5056         bool bret;
5057
5058         if (intel_dp->is_mst) {
5059                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
5060                 int ret = 0;
5061                 int retry;
5062                 bool handled;
5063
5064                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5065                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5066 go_again:
5067                 if (bret == true) {
5068
5069                         /* check link status - esi[10] = 0x200c */
5070                         if (intel_dp->active_mst_links > 0 &&
5071                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5072                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
5073                                 intel_dp_start_link_train(intel_dp);
5074                                 intel_dp_stop_link_train(intel_dp);
5075                         }
5076
5077                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
5078                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5079
5080                         if (handled) {
5081                                 for (retry = 0; retry < 3; retry++) {
5082                                         int wret;
5083                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5084                                                                  DP_SINK_COUNT_ESI+1,
5085                                                                  &esi[1], 3);
5086                                         if (wret == 3) {
5087                                                 break;
5088                                         }
5089                                 }
5090
5091                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5092                                 if (bret == true) {
5093                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5094                                         goto go_again;
5095                                 }
5096                         } else
5097                                 ret = 0;
5098
5099                         return ret;
5100                 } else {
5101                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5102                         intel_dp->is_mst = false;
5103                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5104                                                         intel_dp->is_mst);
5105                 }
5106         }
5107         return -EINVAL;
5108 }
5109
5110 static bool
5111 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5112 {
5113         u8 link_status[DP_LINK_STATUS_SIZE];
5114
5115         if (!intel_dp->link_trained)
5116                 return false;
5117
5118         /*
5119          * While PSR source HW is enabled, it will control main-link sending
5120          * frames, enabling and disabling it so trying to do a retrain will fail
5121          * as the link would or not be on or it could mix training patterns
5122          * and frame data at the same time causing retrain to fail.
5123          * Also when exiting PSR, HW will retrain the link anyways fixing
5124          * any link status error.
5125          */
5126         if (intel_psr_enabled(intel_dp))
5127                 return false;
5128
5129         if (!intel_dp_get_link_status(intel_dp, link_status))
5130                 return false;
5131
5132         /*
5133          * Validate the cached values of intel_dp->link_rate and
5134          * intel_dp->lane_count before attempting to retrain.
5135          */
5136         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5137                                         intel_dp->lane_count))
5138                 return false;
5139
5140         /* Retrain if Channel EQ or CR not ok */
5141         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5142 }
5143
5144 int intel_dp_retrain_link(struct intel_encoder *encoder,
5145                           struct drm_modeset_acquire_ctx *ctx)
5146 {
5147         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5148         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5149         struct intel_connector *connector = intel_dp->attached_connector;
5150         struct drm_connector_state *conn_state;
5151         struct intel_crtc_state *crtc_state;
5152         struct intel_crtc *crtc;
5153         int ret;
5154
5155         /* FIXME handle the MST connectors as well */
5156
5157         if (!connector || connector->base.status != connector_status_connected)
5158                 return 0;
5159
5160         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5161                                ctx);
5162         if (ret)
5163                 return ret;
5164
5165         conn_state = connector->base.state;
5166
5167         crtc = to_intel_crtc(conn_state->crtc);
5168         if (!crtc)
5169                 return 0;
5170
5171         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5172         if (ret)
5173                 return ret;
5174
5175         crtc_state = to_intel_crtc_state(crtc->base.state);
5176
5177         drm_WARN_ON(&dev_priv->drm, !intel_crtc_has_dp_encoder(crtc_state));
5178
5179         if (!crtc_state->hw.active)
5180                 return 0;
5181
5182         if (conn_state->commit &&
5183             !try_wait_for_completion(&conn_state->commit->hw_done))
5184                 return 0;
5185
5186         if (!intel_dp_needs_link_retrain(intel_dp))
5187                 return 0;
5188
5189         /* Suppress underruns caused by re-training */
5190         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5191         if (crtc_state->has_pch_encoder)
5192                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5193                                                       intel_crtc_pch_transcoder(crtc), false);
5194
5195         intel_dp_start_link_train(intel_dp);
5196         intel_dp_stop_link_train(intel_dp);
5197
5198         /* Keep underrun reporting disabled until things are stable */
5199         intel_wait_for_vblank(dev_priv, crtc->pipe);
5200
5201         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5202         if (crtc_state->has_pch_encoder)
5203                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5204                                                       intel_crtc_pch_transcoder(crtc), true);
5205
5206         return 0;
5207 }
5208
5209 /*
5210  * If display is now connected check links status,
5211  * there has been known issues of link loss triggering
5212  * long pulse.
5213  *
5214  * Some sinks (eg. ASUS PB287Q) seem to perform some
5215  * weird HPD ping pong during modesets. So we can apparently
5216  * end up with HPD going low during a modeset, and then
5217  * going back up soon after. And once that happens we must
5218  * retrain the link to get a picture. That's in case no
5219  * userspace component reacted to intermittent HPD dip.
5220  */
5221 static enum intel_hotplug_state
5222 intel_dp_hotplug(struct intel_encoder *encoder,
5223                  struct intel_connector *connector,
5224                  bool irq_received)
5225 {
5226         struct drm_modeset_acquire_ctx ctx;
5227         enum intel_hotplug_state state;
5228         int ret;
5229
5230         state = intel_encoder_hotplug(encoder, connector, irq_received);
5231
5232         drm_modeset_acquire_init(&ctx, 0);
5233
5234         for (;;) {
5235                 ret = intel_dp_retrain_link(encoder, &ctx);
5236
5237                 if (ret == -EDEADLK) {
5238                         drm_modeset_backoff(&ctx);
5239                         continue;
5240                 }
5241
5242                 break;
5243         }
5244
5245         drm_modeset_drop_locks(&ctx);
5246         drm_modeset_acquire_fini(&ctx);
5247         drm_WARN(encoder->base.dev, ret,
5248                  "Acquiring modeset locks failed with %i\n", ret);
5249
5250         /*
5251          * Keeping it consistent with intel_ddi_hotplug() and
5252          * intel_hdmi_hotplug().
5253          */
5254         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5255                 state = INTEL_HOTPLUG_RETRY;
5256
5257         return state;
5258 }
5259
5260 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5261 {
5262         u8 val;
5263
5264         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5265                 return;
5266
5267         if (drm_dp_dpcd_readb(&intel_dp->aux,
5268                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5269                 return;
5270
5271         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5272
5273         if (val & DP_AUTOMATED_TEST_REQUEST)
5274                 intel_dp_handle_test_request(intel_dp);
5275
5276         if (val & DP_CP_IRQ)
5277                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5278
5279         if (val & DP_SINK_SPECIFIC_IRQ)
5280                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5281 }
5282
5283 /*
5284  * According to DP spec
5285  * 5.1.2:
5286  *  1. Read DPCD
5287  *  2. Configure link according to Receiver Capabilities
5288  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5289  *  4. Check link status on receipt of hot-plug interrupt
5290  *
5291  * intel_dp_short_pulse -  handles short pulse interrupts
5292  * when full detection is not required.
5293  * Returns %true if short pulse is handled and full detection
5294  * is NOT required and %false otherwise.
5295  */
5296 static bool
5297 intel_dp_short_pulse(struct intel_dp *intel_dp)
5298 {
5299         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5300         u8 old_sink_count = intel_dp->sink_count;
5301         bool ret;
5302
5303         /*
5304          * Clearing compliance test variables to allow capturing
5305          * of values for next automated test request.
5306          */
5307         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5308
5309         /*
5310          * Now read the DPCD to see if it's actually running
5311          * If the current value of sink count doesn't match with
5312          * the value that was stored earlier or dpcd read failed
5313          * we need to do full detection
5314          */
5315         ret = intel_dp_get_dpcd(intel_dp);
5316
5317         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5318                 /* No need to proceed if we are going to do full detect */
5319                 return false;
5320         }
5321
5322         intel_dp_check_service_irq(intel_dp);
5323
5324         /* Handle CEC interrupts, if any */
5325         drm_dp_cec_irq(&intel_dp->aux);
5326
5327         /* defer to the hotplug work for link retraining if needed */
5328         if (intel_dp_needs_link_retrain(intel_dp))
5329                 return false;
5330
5331         intel_psr_short_pulse(intel_dp);
5332
5333         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5334                 drm_dbg_kms(&dev_priv->drm,
5335                             "Link Training Compliance Test requested\n");
5336                 /* Send a Hotplug Uevent to userspace to start modeset */
5337                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5338         }
5339
5340         return true;
5341 }
5342
5343 /* XXX this is probably wrong for multiple downstream ports */
5344 static enum drm_connector_status
5345 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5346 {
5347         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5348         u8 *dpcd = intel_dp->dpcd;
5349         u8 type;
5350
5351         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5352                 return connector_status_connected;
5353
5354         if (lspcon->active)
5355                 lspcon_resume(lspcon);
5356
5357         if (!intel_dp_get_dpcd(intel_dp))
5358                 return connector_status_disconnected;
5359
5360         /* if there's no downstream port, we're done */
5361         if (!drm_dp_is_branch(dpcd))
5362                 return connector_status_connected;
5363
5364         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5365         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5366             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5367
5368                 return intel_dp->sink_count ?
5369                 connector_status_connected : connector_status_disconnected;
5370         }
5371
5372         if (intel_dp_can_mst(intel_dp))
5373                 return connector_status_connected;
5374
5375         /* If no HPD, poke DDC gently */
5376         if (drm_probe_ddc(&intel_dp->aux.ddc))
5377                 return connector_status_connected;
5378
5379         /* Well we tried, say unknown for unreliable port types */
5380         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5381                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5382                 if (type == DP_DS_PORT_TYPE_VGA ||
5383                     type == DP_DS_PORT_TYPE_NON_EDID)
5384                         return connector_status_unknown;
5385         } else {
5386                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5387                         DP_DWN_STRM_PORT_TYPE_MASK;
5388                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5389                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5390                         return connector_status_unknown;
5391         }
5392
5393         /* Anything else is out of spec, warn and ignore */
5394         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5395         return connector_status_disconnected;
5396 }
5397
5398 static enum drm_connector_status
5399 edp_detect(struct intel_dp *intel_dp)
5400 {
5401         return connector_status_connected;
5402 }
5403
5404 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5405 {
5406         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5407         u32 bit;
5408
5409         switch (encoder->hpd_pin) {
5410         case HPD_PORT_B:
5411                 bit = SDE_PORTB_HOTPLUG;
5412                 break;
5413         case HPD_PORT_C:
5414                 bit = SDE_PORTC_HOTPLUG;
5415                 break;
5416         case HPD_PORT_D:
5417                 bit = SDE_PORTD_HOTPLUG;
5418                 break;
5419         default:
5420                 MISSING_CASE(encoder->hpd_pin);
5421                 return false;
5422         }
5423
5424         return intel_de_read(dev_priv, SDEISR) & bit;
5425 }
5426
5427 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5428 {
5429         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5430         u32 bit;
5431
5432         switch (encoder->hpd_pin) {
5433         case HPD_PORT_B:
5434                 bit = SDE_PORTB_HOTPLUG_CPT;
5435                 break;
5436         case HPD_PORT_C:
5437                 bit = SDE_PORTC_HOTPLUG_CPT;
5438                 break;
5439         case HPD_PORT_D:
5440                 bit = SDE_PORTD_HOTPLUG_CPT;
5441                 break;
5442         default:
5443                 MISSING_CASE(encoder->hpd_pin);
5444                 return false;
5445         }
5446
5447         return intel_de_read(dev_priv, SDEISR) & bit;
5448 }
5449
5450 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5451 {
5452         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5453         u32 bit;
5454
5455         switch (encoder->hpd_pin) {
5456         case HPD_PORT_A:
5457                 bit = SDE_PORTA_HOTPLUG_SPT;
5458                 break;
5459         case HPD_PORT_E:
5460                 bit = SDE_PORTE_HOTPLUG_SPT;
5461                 break;
5462         default:
5463                 return cpt_digital_port_connected(encoder);
5464         }
5465
5466         return intel_de_read(dev_priv, SDEISR) & bit;
5467 }
5468
5469 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5470 {
5471         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5472         u32 bit;
5473
5474         switch (encoder->hpd_pin) {
5475         case HPD_PORT_B:
5476                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5477                 break;
5478         case HPD_PORT_C:
5479                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5480                 break;
5481         case HPD_PORT_D:
5482                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5483                 break;
5484         default:
5485                 MISSING_CASE(encoder->hpd_pin);
5486                 return false;
5487         }
5488
5489         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5490 }
5491
5492 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5493 {
5494         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5495         u32 bit;
5496
5497         switch (encoder->hpd_pin) {
5498         case HPD_PORT_B:
5499                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5500                 break;
5501         case HPD_PORT_C:
5502                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5503                 break;
5504         case HPD_PORT_D:
5505                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5506                 break;
5507         default:
5508                 MISSING_CASE(encoder->hpd_pin);
5509                 return false;
5510         }
5511
5512         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
5513 }
5514
5515 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5516 {
5517         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5518
5519         if (encoder->hpd_pin == HPD_PORT_A)
5520                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5521         else
5522                 return ibx_digital_port_connected(encoder);
5523 }
5524
5525 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5526 {
5527         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5528
5529         if (encoder->hpd_pin == HPD_PORT_A)
5530                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
5531         else
5532                 return cpt_digital_port_connected(encoder);
5533 }
5534
5535 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5536 {
5537         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5538
5539         if (encoder->hpd_pin == HPD_PORT_A)
5540                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
5541         else
5542                 return cpt_digital_port_connected(encoder);
5543 }
5544
5545 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5546 {
5547         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5548
5549         if (encoder->hpd_pin == HPD_PORT_A)
5550                 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5551         else
5552                 return cpt_digital_port_connected(encoder);
5553 }
5554
5555 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5556 {
5557         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5558         u32 bit;
5559
5560         switch (encoder->hpd_pin) {
5561         case HPD_PORT_A:
5562                 bit = BXT_DE_PORT_HP_DDIA;
5563                 break;
5564         case HPD_PORT_B:
5565                 bit = BXT_DE_PORT_HP_DDIB;
5566                 break;
5567         case HPD_PORT_C:
5568                 bit = BXT_DE_PORT_HP_DDIC;
5569                 break;
5570         default:
5571                 MISSING_CASE(encoder->hpd_pin);
5572                 return false;
5573         }
5574
5575         return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
5576 }
5577
5578 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5579                                       enum phy phy)
5580 {
5581         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5582                 return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5583
5584         return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5585 }
5586
5587 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5588 {
5589         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5590         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
5591         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5592
5593         if (intel_phy_is_combo(dev_priv, phy))
5594                 return intel_combo_phy_connected(dev_priv, phy);
5595         else if (intel_phy_is_tc(dev_priv, phy))
5596                 return intel_tc_port_connected(dig_port);
5597         else
5598                 MISSING_CASE(encoder->hpd_pin);
5599
5600         return false;
5601 }
5602
5603 /*
5604  * intel_digital_port_connected - is the specified port connected?
5605  * @encoder: intel_encoder
5606  *
5607  * In cases where there's a connector physically connected but it can't be used
5608  * by our hardware we also return false, since the rest of the driver should
5609  * pretty much treat the port as disconnected. This is relevant for type-C
5610  * (starting on ICL) where there's ownership involved.
5611  *
5612  * Return %true if port is connected, %false otherwise.
5613  */
5614 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5615 {
5616         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5617
5618         if (HAS_GMCH(dev_priv)) {
5619                 if (IS_GM45(dev_priv))
5620                         return gm45_digital_port_connected(encoder);
5621                 else
5622                         return g4x_digital_port_connected(encoder);
5623         }
5624
5625         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5626                 return icp_digital_port_connected(encoder);
5627         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5628                 return spt_digital_port_connected(encoder);
5629         else if (IS_GEN9_LP(dev_priv))
5630                 return bxt_digital_port_connected(encoder);
5631         else if (IS_GEN(dev_priv, 8))
5632                 return bdw_digital_port_connected(encoder);
5633         else if (IS_GEN(dev_priv, 7))
5634                 return ivb_digital_port_connected(encoder);
5635         else if (IS_GEN(dev_priv, 6))
5636                 return snb_digital_port_connected(encoder);
5637         else if (IS_GEN(dev_priv, 5))
5638                 return ilk_digital_port_connected(encoder);
5639
5640         MISSING_CASE(INTEL_GEN(dev_priv));
5641         return false;
5642 }
5643
5644 bool intel_digital_port_connected(struct intel_encoder *encoder)
5645 {
5646         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5647         bool is_connected = false;
5648         intel_wakeref_t wakeref;
5649
5650         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5651                 is_connected = __intel_digital_port_connected(encoder);
5652
5653         return is_connected;
5654 }
5655
5656 static struct edid *
5657 intel_dp_get_edid(struct intel_dp *intel_dp)
5658 {
5659         struct intel_connector *intel_connector = intel_dp->attached_connector;
5660
5661         /* use cached edid if we have one */
5662         if (intel_connector->edid) {
5663                 /* invalid edid */
5664                 if (IS_ERR(intel_connector->edid))
5665                         return NULL;
5666
5667                 return drm_edid_duplicate(intel_connector->edid);
5668         } else
5669                 return drm_get_edid(&intel_connector->base,
5670                                     &intel_dp->aux.ddc);
5671 }
5672
5673 static void
5674 intel_dp_set_edid(struct intel_dp *intel_dp)
5675 {
5676         struct intel_connector *intel_connector = intel_dp->attached_connector;
5677         struct edid *edid;
5678
5679         intel_dp_unset_edid(intel_dp);
5680         edid = intel_dp_get_edid(intel_dp);
5681         intel_connector->detect_edid = edid;
5682
5683         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5684         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5685         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
5686 }
5687
5688 static void
5689 intel_dp_unset_edid(struct intel_dp *intel_dp)
5690 {
5691         struct intel_connector *intel_connector = intel_dp->attached_connector;
5692
5693         drm_dp_cec_unset_edid(&intel_dp->aux);
5694         kfree(intel_connector->detect_edid);
5695         intel_connector->detect_edid = NULL;
5696
5697         intel_dp->has_audio = false;
5698         intel_dp->edid_quirks = 0;
5699 }
5700
5701 static int
5702 intel_dp_detect(struct drm_connector *connector,
5703                 struct drm_modeset_acquire_ctx *ctx,
5704                 bool force)
5705 {
5706         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5707         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5708         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5709         struct intel_encoder *encoder = &dig_port->base;
5710         enum drm_connector_status status;
5711
5712         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5713                     connector->base.id, connector->name);
5714         drm_WARN_ON(&dev_priv->drm,
5715                     !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5716
5717         /* Can't disconnect eDP */
5718         if (intel_dp_is_edp(intel_dp))
5719                 status = edp_detect(intel_dp);
5720         else if (intel_digital_port_connected(encoder))
5721                 status = intel_dp_detect_dpcd(intel_dp);
5722         else
5723                 status = connector_status_disconnected;
5724
5725         if (status == connector_status_disconnected) {
5726                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5727                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5728
5729                 if (intel_dp->is_mst) {
5730                         drm_dbg_kms(&dev_priv->drm,
5731                                     "MST device may have disappeared %d vs %d\n",
5732                                     intel_dp->is_mst,
5733                                     intel_dp->mst_mgr.mst_state);
5734                         intel_dp->is_mst = false;
5735                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5736                                                         intel_dp->is_mst);
5737                 }
5738
5739                 goto out;
5740         }
5741
5742         if (intel_dp->reset_link_params) {
5743                 /* Initial max link lane count */
5744                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5745
5746                 /* Initial max link rate */
5747                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5748
5749                 intel_dp->reset_link_params = false;
5750         }
5751
5752         intel_dp_print_rates(intel_dp);
5753
5754         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5755         if (INTEL_GEN(dev_priv) >= 11)
5756                 intel_dp_get_dsc_sink_cap(intel_dp);
5757
5758         intel_dp_configure_mst(intel_dp);
5759
5760         if (intel_dp->is_mst) {
5761                 /*
5762                  * If we are in MST mode then this connector
5763                  * won't appear connected or have anything
5764                  * with EDID on it
5765                  */
5766                 status = connector_status_disconnected;
5767                 goto out;
5768         }
5769
5770         /*
5771          * Some external monitors do not signal loss of link synchronization
5772          * with an IRQ_HPD, so force a link status check.
5773          */
5774         if (!intel_dp_is_edp(intel_dp)) {
5775                 int ret;
5776
5777                 ret = intel_dp_retrain_link(encoder, ctx);
5778                 if (ret)
5779                         return ret;
5780         }
5781
5782         /*
5783          * Clearing NACK and defer counts to get their exact values
5784          * while reading EDID which are required by Compliance tests
5785          * 4.2.2.4 and 4.2.2.5
5786          */
5787         intel_dp->aux.i2c_nack_count = 0;
5788         intel_dp->aux.i2c_defer_count = 0;
5789
5790         intel_dp_set_edid(intel_dp);
5791         if (intel_dp_is_edp(intel_dp) ||
5792             to_intel_connector(connector)->detect_edid)
5793                 status = connector_status_connected;
5794
5795         intel_dp_check_service_irq(intel_dp);
5796
5797 out:
5798         if (status != connector_status_connected && !intel_dp->is_mst)
5799                 intel_dp_unset_edid(intel_dp);
5800
5801         /*
5802          * Make sure the refs for power wells enabled during detect are
5803          * dropped to avoid a new detect cycle triggered by HPD polling.
5804          */
5805         intel_display_power_flush_work(dev_priv);
5806
5807         return status;
5808 }
5809
5810 static void
5811 intel_dp_force(struct drm_connector *connector)
5812 {
5813         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5814         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5815         struct intel_encoder *intel_encoder = &dig_port->base;
5816         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5817         enum intel_display_power_domain aux_domain =
5818                 intel_aux_power_domain(dig_port);
5819         intel_wakeref_t wakeref;
5820
5821         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
5822                     connector->base.id, connector->name);
5823         intel_dp_unset_edid(intel_dp);
5824
5825         if (connector->status != connector_status_connected)
5826                 return;
5827
5828         wakeref = intel_display_power_get(dev_priv, aux_domain);
5829
5830         intel_dp_set_edid(intel_dp);
5831
5832         intel_display_power_put(dev_priv, aux_domain, wakeref);
5833 }
5834
5835 static int intel_dp_get_modes(struct drm_connector *connector)
5836 {
5837         struct intel_connector *intel_connector = to_intel_connector(connector);
5838         struct edid *edid;
5839
5840         edid = intel_connector->detect_edid;
5841         if (edid) {
5842                 int ret = intel_connector_update_modes(connector, edid);
5843                 if (ret)
5844                         return ret;
5845         }
5846
5847         /* if eDP has no EDID, fall back to fixed mode */
5848         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
5849             intel_connector->panel.fixed_mode) {
5850                 struct drm_display_mode *mode;
5851
5852                 mode = drm_mode_duplicate(connector->dev,
5853                                           intel_connector->panel.fixed_mode);
5854                 if (mode) {
5855                         drm_mode_probed_add(connector, mode);
5856                         return 1;
5857                 }
5858         }
5859
5860         return 0;
5861 }
5862
5863 static int
5864 intel_dp_connector_register(struct drm_connector *connector)
5865 {
5866         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5867         int ret;
5868
5869         ret = intel_connector_register(connector);
5870         if (ret)
5871                 return ret;
5872
5873         intel_connector_debugfs_add(connector);
5874
5875         DRM_DEBUG_KMS("registering %s bus for %s\n",
5876                       intel_dp->aux.name, connector->kdev->kobj.name);
5877
5878         intel_dp->aux.dev = connector->kdev;
5879         ret = drm_dp_aux_register(&intel_dp->aux);
5880         if (!ret)
5881                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5882         return ret;
5883 }
5884
5885 static void
5886 intel_dp_connector_unregister(struct drm_connector *connector)
5887 {
5888         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
5889
5890         drm_dp_cec_unregister_connector(&intel_dp->aux);
5891         drm_dp_aux_unregister(&intel_dp->aux);
5892         intel_connector_unregister(connector);
5893 }
5894
5895 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5896 {
5897         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
5898         struct intel_dp *intel_dp = &intel_dig_port->dp;
5899
5900         intel_dp_mst_encoder_cleanup(intel_dig_port);
5901         if (intel_dp_is_edp(intel_dp)) {
5902                 intel_wakeref_t wakeref;
5903
5904                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5905                 /*
5906                  * vdd might still be enabled do to the delayed vdd off.
5907                  * Make sure vdd is actually turned off here.
5908                  */
5909                 with_pps_lock(intel_dp, wakeref)
5910                         edp_panel_vdd_off_sync(intel_dp);
5911
5912                 if (intel_dp->edp_notifier.notifier_call) {
5913                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5914                         intel_dp->edp_notifier.notifier_call = NULL;
5915                 }
5916         }
5917
5918         intel_dp_aux_fini(intel_dp);
5919 }
5920
5921 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5922 {
5923         intel_dp_encoder_flush_work(encoder);
5924
5925         drm_encoder_cleanup(encoder);
5926         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
5927 }
5928
5929 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5930 {
5931         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
5932         intel_wakeref_t wakeref;
5933
5934         if (!intel_dp_is_edp(intel_dp))
5935                 return;
5936
5937         /*
5938          * vdd might still be enabled do to the delayed vdd off.
5939          * Make sure vdd is actually turned off here.
5940          */
5941         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5942         with_pps_lock(intel_dp, wakeref)
5943                 edp_panel_vdd_off_sync(intel_dp);
5944 }
5945
5946 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5947 {
5948         long ret;
5949
5950 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5951         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5952                                                msecs_to_jiffies(timeout));
5953
5954         if (!ret)
5955                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5956 }
5957
5958 static
5959 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5960                                 u8 *an)
5961 {
5962         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
5963         static const struct drm_dp_aux_msg msg = {
5964                 .request = DP_AUX_NATIVE_WRITE,
5965                 .address = DP_AUX_HDCP_AKSV,
5966                 .size = DRM_HDCP_KSV_LEN,
5967         };
5968         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5969         ssize_t dpcd_ret;
5970         int ret;
5971
5972         /* Output An first, that's easy */
5973         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5974                                      an, DRM_HDCP_AN_LEN);
5975         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5976                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5977                               dpcd_ret);
5978                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5979         }
5980
5981         /*
5982          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5983          * order to get it on the wire, we need to create the AUX header as if
5984          * we were writing the data, and then tickle the hardware to output the
5985          * data once the header is sent out.
5986          */
5987         intel_dp_aux_header(txbuf, &msg);
5988
5989         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5990                                 rxbuf, sizeof(rxbuf),
5991                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5992         if (ret < 0) {
5993                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5994                 return ret;
5995         } else if (ret == 0) {
5996                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5997                 return -EIO;
5998         }
5999
6000         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6001         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6002                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6003                               reply);
6004                 return -EIO;
6005         }
6006         return 0;
6007 }
6008
6009 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6010                                    u8 *bksv)
6011 {
6012         ssize_t ret;
6013         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6014                                DRM_HDCP_KSV_LEN);
6015         if (ret != DRM_HDCP_KSV_LEN) {
6016                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
6017                 return ret >= 0 ? -EIO : ret;
6018         }
6019         return 0;
6020 }
6021
6022 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6023                                       u8 *bstatus)
6024 {
6025         ssize_t ret;
6026         /*
6027          * For some reason the HDMI and DP HDCP specs call this register
6028          * definition by different names. In the HDMI spec, it's called BSTATUS,
6029          * but in DP it's called BINFO.
6030          */
6031         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6032                                bstatus, DRM_HDCP_BSTATUS_LEN);
6033         if (ret != DRM_HDCP_BSTATUS_LEN) {
6034                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6035                 return ret >= 0 ? -EIO : ret;
6036         }
6037         return 0;
6038 }
6039
6040 static
6041 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6042                              u8 *bcaps)
6043 {
6044         ssize_t ret;
6045
6046         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6047                                bcaps, 1);
6048         if (ret != 1) {
6049                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
6050                 return ret >= 0 ? -EIO : ret;
6051         }
6052
6053         return 0;
6054 }
6055
6056 static
6057 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6058                                    bool *repeater_present)
6059 {
6060         ssize_t ret;
6061         u8 bcaps;
6062
6063         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6064         if (ret)
6065                 return ret;
6066
6067         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6068         return 0;
6069 }
6070
6071 static
6072 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6073                                 u8 *ri_prime)
6074 {
6075         ssize_t ret;
6076         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6077                                ri_prime, DRM_HDCP_RI_LEN);
6078         if (ret != DRM_HDCP_RI_LEN) {
6079                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
6080                 return ret >= 0 ? -EIO : ret;
6081         }
6082         return 0;
6083 }
6084
6085 static
6086 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6087                                  bool *ksv_ready)
6088 {
6089         ssize_t ret;
6090         u8 bstatus;
6091         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6092                                &bstatus, 1);
6093         if (ret != 1) {
6094                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6095                 return ret >= 0 ? -EIO : ret;
6096         }
6097         *ksv_ready = bstatus & DP_BSTATUS_READY;
6098         return 0;
6099 }
6100
6101 static
6102 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6103                                 int num_downstream, u8 *ksv_fifo)
6104 {
6105         ssize_t ret;
6106         int i;
6107
6108         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6109         for (i = 0; i < num_downstream; i += 3) {
6110                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6111                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6112                                        DP_AUX_HDCP_KSV_FIFO,
6113                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6114                                        len);
6115                 if (ret != len) {
6116                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6117                                       i, ret);
6118                         return ret >= 0 ? -EIO : ret;
6119                 }
6120         }
6121         return 0;
6122 }
6123
6124 static
6125 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6126                                     int i, u32 *part)
6127 {
6128         ssize_t ret;
6129
6130         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6131                 return -EINVAL;
6132
6133         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6134                                DP_AUX_HDCP_V_PRIME(i), part,
6135                                DRM_HDCP_V_PRIME_PART_LEN);
6136         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6137                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6138                 return ret >= 0 ? -EIO : ret;
6139         }
6140         return 0;
6141 }
6142
6143 static
6144 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6145                                     bool enable)
6146 {
6147         /* Not used for single stream DisplayPort setups */
6148         return 0;
6149 }
6150
6151 static
6152 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6153 {
6154         ssize_t ret;
6155         u8 bstatus;
6156
6157         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6158                                &bstatus, 1);
6159         if (ret != 1) {
6160                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6161                 return false;
6162         }
6163
6164         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6165 }
6166
6167 static
6168 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6169                           bool *hdcp_capable)
6170 {
6171         ssize_t ret;
6172         u8 bcaps;
6173
6174         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6175         if (ret)
6176                 return ret;
6177
6178         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6179         return 0;
6180 }
6181
6182 struct hdcp2_dp_errata_stream_type {
6183         u8      msg_id;
6184         u8      stream_type;
6185 } __packed;
6186
6187 struct hdcp2_dp_msg_data {
6188         u8 msg_id;
6189         u32 offset;
6190         bool msg_detectable;
6191         u32 timeout;
6192         u32 timeout2; /* Added for non_paired situation */
6193 };
6194
6195 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6196         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6197         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6198           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6199         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6200           false, 0, 0 },
6201         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6202           false, 0, 0 },
6203         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6204           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6205           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6206         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6207           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6208           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6209         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6210         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6211           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6212         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6213           0, 0 },
6214         { HDCP_2_2_REP_SEND_RECVID_LIST,
6215           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6216           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6217         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6218           0, 0 },
6219         { HDCP_2_2_REP_STREAM_MANAGE,
6220           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6221           0, 0 },
6222         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6223           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6224 /* local define to shovel this through the write_2_2 interface */
6225 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6226         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6227           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6228           0, 0 },
6229 };
6230
6231 static inline
6232 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6233                                   u8 *rx_status)
6234 {
6235         ssize_t ret;
6236
6237         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6238                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6239                                HDCP_2_2_DP_RXSTATUS_LEN);
6240         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6241                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6242                 return ret >= 0 ? -EIO : ret;
6243         }
6244
6245         return 0;
6246 }
6247
6248 static
6249 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6250                                   u8 msg_id, bool *msg_ready)
6251 {
6252         u8 rx_status;
6253         int ret;
6254
6255         *msg_ready = false;
6256         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6257         if (ret < 0)
6258                 return ret;
6259
6260         switch (msg_id) {
6261         case HDCP_2_2_AKE_SEND_HPRIME:
6262                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6263                         *msg_ready = true;
6264                 break;
6265         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6266                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6267                         *msg_ready = true;
6268                 break;
6269         case HDCP_2_2_REP_SEND_RECVID_LIST:
6270                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6271                         *msg_ready = true;
6272                 break;
6273         default:
6274                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6275                 return -EINVAL;
6276         }
6277
6278         return 0;
6279 }
6280
6281 static ssize_t
6282 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6283                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6284 {
6285         struct intel_dp *dp = &intel_dig_port->dp;
6286         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6287         u8 msg_id = hdcp2_msg_data->msg_id;
6288         int ret, timeout;
6289         bool msg_ready = false;
6290
6291         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6292                 timeout = hdcp2_msg_data->timeout2;
6293         else
6294                 timeout = hdcp2_msg_data->timeout;
6295
6296         /*
6297          * There is no way to detect the CERT, LPRIME and STREAM_READY
6298          * availability. So Wait for timeout and read the msg.
6299          */
6300         if (!hdcp2_msg_data->msg_detectable) {
6301                 mdelay(timeout);
6302                 ret = 0;
6303         } else {
6304                 /*
6305                  * As we want to check the msg availability at timeout, Ignoring
6306                  * the timeout at wait for CP_IRQ.
6307                  */
6308                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6309                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6310                                                     msg_id, &msg_ready);
6311                 if (!msg_ready)
6312                         ret = -ETIMEDOUT;
6313         }
6314
6315         if (ret)
6316                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6317                               hdcp2_msg_data->msg_id, ret, timeout);
6318
6319         return ret;
6320 }
6321
6322 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6323 {
6324         int i;
6325
6326         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6327                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6328                         return &hdcp2_dp_msg_data[i];
6329
6330         return NULL;
6331 }
6332
6333 static
6334 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6335                              void *buf, size_t size)
6336 {
6337         struct intel_dp *dp = &intel_dig_port->dp;
6338         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6339         unsigned int offset;
6340         u8 *byte = buf;
6341         ssize_t ret, bytes_to_write, len;
6342         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6343
6344         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6345         if (!hdcp2_msg_data)
6346                 return -EINVAL;
6347
6348         offset = hdcp2_msg_data->offset;
6349
6350         /* No msg_id in DP HDCP2.2 msgs */
6351         bytes_to_write = size - 1;
6352         byte++;
6353
6354         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6355
6356         while (bytes_to_write) {
6357                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6358                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6359
6360                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6361                                         offset, (void *)byte, len);
6362                 if (ret < 0)
6363                         return ret;
6364
6365                 bytes_to_write -= ret;
6366                 byte += ret;
6367                 offset += ret;
6368         }
6369
6370         return size;
6371 }
6372
6373 static
6374 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6375 {
6376         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6377         u32 dev_cnt;
6378         ssize_t ret;
6379
6380         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6381                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6382                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6383         if (ret != HDCP_2_2_RXINFO_LEN)
6384                 return ret >= 0 ? -EIO : ret;
6385
6386         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6387                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6388
6389         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6390                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6391
6392         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6393                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6394                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6395
6396         return ret;
6397 }
6398
6399 static
6400 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6401                             u8 msg_id, void *buf, size_t size)
6402 {
6403         unsigned int offset;
6404         u8 *byte = buf;
6405         ssize_t ret, bytes_to_recv, len;
6406         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6407
6408         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6409         if (!hdcp2_msg_data)
6410                 return -EINVAL;
6411         offset = hdcp2_msg_data->offset;
6412
6413         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6414         if (ret < 0)
6415                 return ret;
6416
6417         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6418                 ret = get_receiver_id_list_size(intel_dig_port);
6419                 if (ret < 0)
6420                         return ret;
6421
6422                 size = ret;
6423         }
6424         bytes_to_recv = size - 1;
6425
6426         /* DP adaptation msgs has no msg_id */
6427         byte++;
6428
6429         while (bytes_to_recv) {
6430                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6431                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6432
6433                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6434                                        (void *)byte, len);
6435                 if (ret < 0) {
6436                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6437                         return ret;
6438                 }
6439
6440                 bytes_to_recv -= ret;
6441                 byte += ret;
6442                 offset += ret;
6443         }
6444         byte = buf;
6445         *byte = msg_id;
6446
6447         return size;
6448 }
6449
6450 static
6451 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6452                                       bool is_repeater, u8 content_type)
6453 {
6454         int ret;
6455         struct hdcp2_dp_errata_stream_type stream_type_msg;
6456
6457         if (is_repeater)
6458                 return 0;
6459
6460         /*
6461          * Errata for DP: As Stream type is used for encryption, Receiver
6462          * should be communicated with stream type for the decryption of the
6463          * content.
6464          * Repeater will be communicated with stream type as a part of it's
6465          * auth later in time.
6466          */
6467         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6468         stream_type_msg.stream_type = content_type;
6469
6470         ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6471                                         sizeof(stream_type_msg));
6472
6473         return ret < 0 ? ret : 0;
6474
6475 }
6476
6477 static
6478 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6479 {
6480         u8 rx_status;
6481         int ret;
6482
6483         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6484         if (ret)
6485                 return ret;
6486
6487         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6488                 ret = HDCP_REAUTH_REQUEST;
6489         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6490                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6491         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6492                 ret = HDCP_TOPOLOGY_CHANGE;
6493
6494         return ret;
6495 }
6496
6497 static
6498 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6499                            bool *capable)
6500 {
6501         u8 rx_caps[3];
6502         int ret;
6503
6504         *capable = false;
6505         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6506                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6507                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6508         if (ret != HDCP_2_2_RXCAPS_LEN)
6509                 return ret >= 0 ? -EIO : ret;
6510
6511         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6512             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6513                 *capable = true;
6514
6515         return 0;
6516 }
6517
6518 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6519         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6520         .read_bksv = intel_dp_hdcp_read_bksv,
6521         .read_bstatus = intel_dp_hdcp_read_bstatus,
6522         .repeater_present = intel_dp_hdcp_repeater_present,
6523         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6524         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6525         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6526         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6527         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6528         .check_link = intel_dp_hdcp_check_link,
6529         .hdcp_capable = intel_dp_hdcp_capable,
6530         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6531         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6532         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6533         .check_2_2_link = intel_dp_hdcp2_check_link,
6534         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6535         .protocol = HDCP_PROTOCOL_DP,
6536 };
6537
6538 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6539 {
6540         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6541         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6542
6543         lockdep_assert_held(&dev_priv->pps_mutex);
6544
6545         if (!edp_have_panel_vdd(intel_dp))
6546                 return;
6547
6548         /*
6549          * The VDD bit needs a power domain reference, so if the bit is
6550          * already enabled when we boot or resume, grab this reference and
6551          * schedule a vdd off, so we don't hold on to the reference
6552          * indefinitely.
6553          */
6554         drm_dbg_kms(&dev_priv->drm,
6555                     "VDD left on by BIOS, adjusting state tracking\n");
6556         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6557
6558         edp_panel_vdd_schedule_off(intel_dp);
6559 }
6560
6561 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6562 {
6563         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6564         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6565         enum pipe pipe;
6566
6567         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6568                                   encoder->port, &pipe))
6569                 return pipe;
6570
6571         return INVALID_PIPE;
6572 }
6573
6574 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6575 {
6576         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6577         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
6578         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6579         intel_wakeref_t wakeref;
6580
6581         if (!HAS_DDI(dev_priv))
6582                 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
6583
6584         if (lspcon->active)
6585                 lspcon_resume(lspcon);
6586
6587         intel_dp->reset_link_params = true;
6588
6589         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6590             !intel_dp_is_edp(intel_dp))
6591                 return;
6592
6593         with_pps_lock(intel_dp, wakeref) {
6594                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6595                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6596
6597                 if (intel_dp_is_edp(intel_dp)) {
6598                         /*
6599                          * Reinit the power sequencer, in case BIOS did
6600                          * something nasty with it.
6601                          */
6602                         intel_dp_pps_init(intel_dp);
6603                         intel_edp_panel_vdd_sanitize(intel_dp);
6604                 }
6605         }
6606 }
6607
6608 static int intel_modeset_tile_group(struct intel_atomic_state *state,
6609                                     int tile_group_id)
6610 {
6611         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6612         struct drm_connector_list_iter conn_iter;
6613         struct drm_connector *connector;
6614         int ret = 0;
6615
6616         drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
6617         drm_for_each_connector_iter(connector, &conn_iter) {
6618                 struct drm_connector_state *conn_state;
6619                 struct intel_crtc_state *crtc_state;
6620                 struct intel_crtc *crtc;
6621
6622                 if (!connector->has_tile ||
6623                     connector->tile_group->id != tile_group_id)
6624                         continue;
6625
6626                 conn_state = drm_atomic_get_connector_state(&state->base,
6627                                                             connector);
6628                 if (IS_ERR(conn_state)) {
6629                         ret = PTR_ERR(conn_state);
6630                         break;
6631                 }
6632
6633                 crtc = to_intel_crtc(conn_state->crtc);
6634
6635                 if (!crtc)
6636                         continue;
6637
6638                 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
6639                 crtc_state->uapi.mode_changed = true;
6640
6641                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6642                 if (ret)
6643                         break;
6644         }
6645         drm_connector_list_iter_end(&conn_iter);
6646
6647         return ret;
6648 }
6649
6650 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
6651 {
6652         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
6653         struct intel_crtc *crtc;
6654
6655         if (transcoders == 0)
6656                 return 0;
6657
6658         for_each_intel_crtc(&dev_priv->drm, crtc) {
6659                 struct intel_crtc_state *crtc_state;
6660                 int ret;
6661
6662                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
6663                 if (IS_ERR(crtc_state))
6664                         return PTR_ERR(crtc_state);
6665
6666                 if (!crtc_state->hw.enable)
6667                         continue;
6668
6669                 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
6670                         continue;
6671
6672                 crtc_state->uapi.mode_changed = true;
6673
6674                 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
6675                 if (ret)
6676                         return ret;
6677
6678                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
6679                 if (ret)
6680                         return ret;
6681
6682                 transcoders &= ~BIT(crtc_state->cpu_transcoder);
6683         }
6684
6685         drm_WARN_ON(&dev_priv->drm, transcoders != 0);
6686
6687         return 0;
6688 }
6689
6690 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
6691                                       struct drm_connector *connector)
6692 {
6693         const struct drm_connector_state *old_conn_state =
6694                 drm_atomic_get_old_connector_state(&state->base, connector);
6695         const struct intel_crtc_state *old_crtc_state;
6696         struct intel_crtc *crtc;
6697         u8 transcoders;
6698
6699         crtc = to_intel_crtc(old_conn_state->crtc);
6700         if (!crtc)
6701                 return 0;
6702
6703         old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
6704
6705         if (!old_crtc_state->hw.active)
6706                 return 0;
6707
6708         transcoders = old_crtc_state->sync_mode_slaves_mask;
6709         if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
6710                 transcoders |= BIT(old_crtc_state->master_transcoder);
6711
6712         return intel_modeset_affected_transcoders(state,
6713                                                   transcoders);
6714 }
6715
6716 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
6717                                            struct drm_atomic_state *_state)
6718 {
6719         struct drm_i915_private *dev_priv = to_i915(conn->dev);
6720         struct intel_atomic_state *state = to_intel_atomic_state(_state);
6721         int ret;
6722
6723         ret = intel_digital_connector_atomic_check(conn, &state->base);
6724         if (ret)
6725                 return ret;
6726
6727         if (INTEL_GEN(dev_priv) < 11)
6728                 return 0;
6729
6730         if (!intel_connector_needs_modeset(state, conn))
6731                 return 0;
6732
6733         if (conn->has_tile) {
6734                 ret = intel_modeset_tile_group(state, conn->tile_group->id);
6735                 if (ret)
6736                         return ret;
6737         }
6738
6739         return intel_modeset_synced_crtcs(state, conn);
6740 }
6741
6742 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6743         .force = intel_dp_force,
6744         .fill_modes = drm_helper_probe_single_connector_modes,
6745         .atomic_get_property = intel_digital_connector_atomic_get_property,
6746         .atomic_set_property = intel_digital_connector_atomic_set_property,
6747         .late_register = intel_dp_connector_register,
6748         .early_unregister = intel_dp_connector_unregister,
6749         .destroy = intel_connector_destroy,
6750         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6751         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6752 };
6753
6754 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6755         .detect_ctx = intel_dp_detect,
6756         .get_modes = intel_dp_get_modes,
6757         .mode_valid = intel_dp_mode_valid,
6758         .atomic_check = intel_dp_connector_atomic_check,
6759 };
6760
6761 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6762         .reset = intel_dp_encoder_reset,
6763         .destroy = intel_dp_encoder_destroy,
6764 };
6765
6766 enum irqreturn
6767 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6768 {
6769         struct intel_dp *intel_dp = &intel_dig_port->dp;
6770
6771         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6772                 /*
6773                  * vdd off can generate a long pulse on eDP which
6774                  * would require vdd on to handle it, and thus we
6775                  * would end up in an endless cycle of
6776                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6777                  */
6778                 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6779                               intel_dig_port->base.base.base.id,
6780                               intel_dig_port->base.base.name);
6781                 return IRQ_HANDLED;
6782         }
6783
6784         DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6785                       intel_dig_port->base.base.base.id,
6786                       intel_dig_port->base.base.name,
6787                       long_hpd ? "long" : "short");
6788
6789         if (long_hpd) {
6790                 intel_dp->reset_link_params = true;
6791                 return IRQ_NONE;
6792         }
6793
6794         if (intel_dp->is_mst) {
6795                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6796                         /*
6797                          * If we were in MST mode, and device is not
6798                          * there, get out of MST mode
6799                          */
6800                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6801                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6802                         intel_dp->is_mst = false;
6803                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6804                                                         intel_dp->is_mst);
6805
6806                         return IRQ_NONE;
6807                 }
6808         }
6809
6810         if (!intel_dp->is_mst) {
6811                 bool handled;
6812
6813                 handled = intel_dp_short_pulse(intel_dp);
6814
6815                 if (!handled)
6816                         return IRQ_NONE;
6817         }
6818
6819         return IRQ_HANDLED;
6820 }
6821
6822 /* check the VBT to see whether the eDP is on another port */
6823 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6824 {
6825         /*
6826          * eDP not supported on g4x. so bail out early just
6827          * for a bit extra safety in case the VBT is bonkers.
6828          */
6829         if (INTEL_GEN(dev_priv) < 5)
6830                 return false;
6831
6832         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6833                 return true;
6834
6835         return intel_bios_is_port_edp(dev_priv, port);
6836 }
6837
6838 static void
6839 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6840 {
6841         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6842         enum port port = dp_to_dig_port(intel_dp)->base.port;
6843
6844         if (!IS_G4X(dev_priv) && port != PORT_A)
6845                 intel_attach_force_audio_property(connector);
6846
6847         intel_attach_broadcast_rgb_property(connector);
6848         if (HAS_GMCH(dev_priv))
6849                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6850         else if (INTEL_GEN(dev_priv) >= 5)
6851                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6852
6853         intel_attach_colorspace_property(connector);
6854
6855         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6856                 drm_object_attach_property(&connector->base,
6857                                            connector->dev->mode_config.hdr_output_metadata_property,
6858                                            0);
6859
6860         if (intel_dp_is_edp(intel_dp)) {
6861                 u32 allowed_scalers;
6862
6863                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6864                 if (!HAS_GMCH(dev_priv))
6865                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6866
6867                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6868
6869                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6870
6871         }
6872 }
6873
6874 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6875 {
6876         intel_dp->panel_power_off_time = ktime_get_boottime();
6877         intel_dp->last_power_on = jiffies;
6878         intel_dp->last_backlight_off = jiffies;
6879 }
6880
6881 static void
6882 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6883 {
6884         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6885         u32 pp_on, pp_off, pp_ctl;
6886         struct pps_registers regs;
6887
6888         intel_pps_get_registers(intel_dp, &regs);
6889
6890         pp_ctl = ilk_get_pp_control(intel_dp);
6891
6892         /* Ensure PPS is unlocked */
6893         if (!HAS_DDI(dev_priv))
6894                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
6895
6896         pp_on = intel_de_read(dev_priv, regs.pp_on);
6897         pp_off = intel_de_read(dev_priv, regs.pp_off);
6898
6899         /* Pull timing values out of registers */
6900         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6901         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6902         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6903         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6904
6905         if (i915_mmio_reg_valid(regs.pp_div)) {
6906                 u32 pp_div;
6907
6908                 pp_div = intel_de_read(dev_priv, regs.pp_div);
6909
6910                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6911         } else {
6912                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6913         }
6914 }
6915
6916 static void
6917 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6918 {
6919         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6920                       state_name,
6921                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6922 }
6923
6924 static void
6925 intel_pps_verify_state(struct intel_dp *intel_dp)
6926 {
6927         struct edp_power_seq hw;
6928         struct edp_power_seq *sw = &intel_dp->pps_delays;
6929
6930         intel_pps_readout_hw_state(intel_dp, &hw);
6931
6932         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6933             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6934                 DRM_ERROR("PPS state mismatch\n");
6935                 intel_pps_dump_state("sw", sw);
6936                 intel_pps_dump_state("hw", &hw);
6937         }
6938 }
6939
6940 static void
6941 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6942 {
6943         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6944         struct edp_power_seq cur, vbt, spec,
6945                 *final = &intel_dp->pps_delays;
6946
6947         lockdep_assert_held(&dev_priv->pps_mutex);
6948
6949         /* already initialized? */
6950         if (final->t11_t12 != 0)
6951                 return;
6952
6953         intel_pps_readout_hw_state(intel_dp, &cur);
6954
6955         intel_pps_dump_state("cur", &cur);
6956
6957         vbt = dev_priv->vbt.edp.pps;
6958         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6959          * of 500ms appears to be too short. Ocassionally the panel
6960          * just fails to power back on. Increasing the delay to 800ms
6961          * seems sufficient to avoid this problem.
6962          */
6963         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6964                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6965                 drm_dbg_kms(&dev_priv->drm,
6966                             "Increasing T12 panel delay as per the quirk to %d\n",
6967                             vbt.t11_t12);
6968         }
6969         /* T11_T12 delay is special and actually in units of 100ms, but zero
6970          * based in the hw (so we need to add 100 ms). But the sw vbt
6971          * table multiplies it with 1000 to make it in units of 100usec,
6972          * too. */
6973         vbt.t11_t12 += 100 * 10;
6974
6975         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6976          * our hw here, which are all in 100usec. */
6977         spec.t1_t3 = 210 * 10;
6978         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6979         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6980         spec.t10 = 500 * 10;
6981         /* This one is special and actually in units of 100ms, but zero
6982          * based in the hw (so we need to add 100 ms). But the sw vbt
6983          * table multiplies it with 1000 to make it in units of 100usec,
6984          * too. */
6985         spec.t11_t12 = (510 + 100) * 10;
6986
6987         intel_pps_dump_state("vbt", &vbt);
6988
6989         /* Use the max of the register settings and vbt. If both are
6990          * unset, fall back to the spec limits. */
6991 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6992                                        spec.field : \
6993                                        max(cur.field, vbt.field))
6994         assign_final(t1_t3);
6995         assign_final(t8);
6996         assign_final(t9);
6997         assign_final(t10);
6998         assign_final(t11_t12);
6999 #undef assign_final
7000
7001 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
7002         intel_dp->panel_power_up_delay = get_delay(t1_t3);
7003         intel_dp->backlight_on_delay = get_delay(t8);
7004         intel_dp->backlight_off_delay = get_delay(t9);
7005         intel_dp->panel_power_down_delay = get_delay(t10);
7006         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7007 #undef get_delay
7008
7009         drm_dbg_kms(&dev_priv->drm,
7010                     "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7011                     intel_dp->panel_power_up_delay,
7012                     intel_dp->panel_power_down_delay,
7013                     intel_dp->panel_power_cycle_delay);
7014
7015         drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7016                     intel_dp->backlight_on_delay,
7017                     intel_dp->backlight_off_delay);
7018
7019         /*
7020          * We override the HW backlight delays to 1 because we do manual waits
7021          * on them. For T8, even BSpec recommends doing it. For T9, if we
7022          * don't do this, we'll end up waiting for the backlight off delay
7023          * twice: once when we do the manual sleep, and once when we disable
7024          * the panel and wait for the PP_STATUS bit to become zero.
7025          */
7026         final->t8 = 1;
7027         final->t9 = 1;
7028
7029         /*
7030          * HW has only a 100msec granularity for t11_t12 so round it up
7031          * accordingly.
7032          */
7033         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7034 }
7035
7036 static void
7037 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7038                                               bool force_disable_vdd)
7039 {
7040         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7041         u32 pp_on, pp_off, port_sel = 0;
7042         int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7043         struct pps_registers regs;
7044         enum port port = dp_to_dig_port(intel_dp)->base.port;
7045         const struct edp_power_seq *seq = &intel_dp->pps_delays;
7046
7047         lockdep_assert_held(&dev_priv->pps_mutex);
7048
7049         intel_pps_get_registers(intel_dp, &regs);
7050
7051         /*
7052          * On some VLV machines the BIOS can leave the VDD
7053          * enabled even on power sequencers which aren't
7054          * hooked up to any port. This would mess up the
7055          * power domain tracking the first time we pick
7056          * one of these power sequencers for use since
7057          * edp_panel_vdd_on() would notice that the VDD was
7058          * already on and therefore wouldn't grab the power
7059          * domain reference. Disable VDD first to avoid this.
7060          * This also avoids spuriously turning the VDD on as
7061          * soon as the new power sequencer gets initialized.
7062          */
7063         if (force_disable_vdd) {
7064                 u32 pp = ilk_get_pp_control(intel_dp);
7065
7066                 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7067                          "Panel power already on\n");
7068
7069                 if (pp & EDP_FORCE_VDD)
7070                         drm_dbg_kms(&dev_priv->drm,
7071                                     "VDD already on, disabling first\n");
7072
7073                 pp &= ~EDP_FORCE_VDD;
7074
7075                 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7076         }
7077
7078         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7079                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7080         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7081                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7082
7083         /* Haswell doesn't have any port selection bits for the panel
7084          * power sequencer any more. */
7085         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7086                 port_sel = PANEL_PORT_SELECT_VLV(port);
7087         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7088                 switch (port) {
7089                 case PORT_A:
7090                         port_sel = PANEL_PORT_SELECT_DPA;
7091                         break;
7092                 case PORT_C:
7093                         port_sel = PANEL_PORT_SELECT_DPC;
7094                         break;
7095                 case PORT_D:
7096                         port_sel = PANEL_PORT_SELECT_DPD;
7097                         break;
7098                 default:
7099                         MISSING_CASE(port);
7100                         break;
7101                 }
7102         }
7103
7104         pp_on |= port_sel;
7105
7106         intel_de_write(dev_priv, regs.pp_on, pp_on);
7107         intel_de_write(dev_priv, regs.pp_off, pp_off);
7108
7109         /*
7110          * Compute the divisor for the pp clock, simply match the Bspec formula.
7111          */
7112         if (i915_mmio_reg_valid(regs.pp_div)) {
7113                 intel_de_write(dev_priv, regs.pp_div,
7114                                REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7115         } else {
7116                 u32 pp_ctl;
7117
7118                 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7119                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7120                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7121                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7122         }
7123
7124         drm_dbg_kms(&dev_priv->drm,
7125                     "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7126                     intel_de_read(dev_priv, regs.pp_on),
7127                     intel_de_read(dev_priv, regs.pp_off),
7128                     i915_mmio_reg_valid(regs.pp_div) ?
7129                     intel_de_read(dev_priv, regs.pp_div) :
7130                     (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7131 }
7132
7133 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7134 {
7135         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7136
7137         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7138                 vlv_initial_power_sequencer_setup(intel_dp);
7139         } else {
7140                 intel_dp_init_panel_power_sequencer(intel_dp);
7141                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7142         }
7143 }
7144
7145 /**
7146  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7147  * @dev_priv: i915 device
7148  * @crtc_state: a pointer to the active intel_crtc_state
7149  * @refresh_rate: RR to be programmed
7150  *
7151  * This function gets called when refresh rate (RR) has to be changed from
7152  * one frequency to another. Switches can be between high and low RR
7153  * supported by the panel or to any other RR based on media playback (in
7154  * this case, RR value needs to be passed from user space).
7155  *
7156  * The caller of this function needs to take a lock on dev_priv->drrs.
7157  */
7158 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7159                                     const struct intel_crtc_state *crtc_state,
7160                                     int refresh_rate)
7161 {
7162         struct intel_dp *intel_dp = dev_priv->drrs.dp;
7163         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7164         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7165
7166         if (refresh_rate <= 0) {
7167                 drm_dbg_kms(&dev_priv->drm,
7168                             "Refresh rate should be positive non-zero.\n");
7169                 return;
7170         }
7171
7172         if (intel_dp == NULL) {
7173                 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7174                 return;
7175         }
7176
7177         if (!intel_crtc) {
7178                 drm_dbg_kms(&dev_priv->drm,
7179                             "DRRS: intel_crtc not initialized\n");
7180                 return;
7181         }
7182
7183         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7184                 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7185                 return;
7186         }
7187
7188         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7189                         refresh_rate)
7190                 index = DRRS_LOW_RR;
7191
7192         if (index == dev_priv->drrs.refresh_rate_type) {
7193                 drm_dbg_kms(&dev_priv->drm,
7194                             "DRRS requested for previously set RR...ignoring\n");
7195                 return;
7196         }
7197
7198         if (!crtc_state->hw.active) {
7199                 drm_dbg_kms(&dev_priv->drm,
7200                             "eDP encoder disabled. CRTC not Active\n");
7201                 return;
7202         }
7203
7204         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7205                 switch (index) {
7206                 case DRRS_HIGH_RR:
7207                         intel_dp_set_m_n(crtc_state, M1_N1);
7208                         break;
7209                 case DRRS_LOW_RR:
7210                         intel_dp_set_m_n(crtc_state, M2_N2);
7211                         break;
7212                 case DRRS_MAX_RR:
7213                 default:
7214                         drm_err(&dev_priv->drm,
7215                                 "Unsupported refreshrate type\n");
7216                 }
7217         } else if (INTEL_GEN(dev_priv) > 6) {
7218                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7219                 u32 val;
7220
7221                 val = intel_de_read(dev_priv, reg);
7222                 if (index > DRRS_HIGH_RR) {
7223                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7224                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7225                         else
7226                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7227                 } else {
7228                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7229                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7230                         else
7231                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7232                 }
7233                 intel_de_write(dev_priv, reg, val);
7234         }
7235
7236         dev_priv->drrs.refresh_rate_type = index;
7237
7238         drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7239                     refresh_rate);
7240 }
7241
7242 /**
7243  * intel_edp_drrs_enable - init drrs struct if supported
7244  * @intel_dp: DP struct
7245  * @crtc_state: A pointer to the active crtc state.
7246  *
7247  * Initializes frontbuffer_bits and drrs.dp
7248  */
7249 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7250                            const struct intel_crtc_state *crtc_state)
7251 {
7252         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7253
7254         if (!crtc_state->has_drrs) {
7255                 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7256                 return;
7257         }
7258
7259         if (dev_priv->psr.enabled) {
7260                 drm_dbg_kms(&dev_priv->drm,
7261                             "PSR enabled. Not enabling DRRS.\n");
7262                 return;
7263         }
7264
7265         mutex_lock(&dev_priv->drrs.mutex);
7266         if (dev_priv->drrs.dp) {
7267                 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7268                 goto unlock;
7269         }
7270
7271         dev_priv->drrs.busy_frontbuffer_bits = 0;
7272
7273         dev_priv->drrs.dp = intel_dp;
7274
7275 unlock:
7276         mutex_unlock(&dev_priv->drrs.mutex);
7277 }
7278
7279 /**
7280  * intel_edp_drrs_disable - Disable DRRS
7281  * @intel_dp: DP struct
7282  * @old_crtc_state: Pointer to old crtc_state.
7283  *
7284  */
7285 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7286                             const struct intel_crtc_state *old_crtc_state)
7287 {
7288         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7289
7290         if (!old_crtc_state->has_drrs)
7291                 return;
7292
7293         mutex_lock(&dev_priv->drrs.mutex);
7294         if (!dev_priv->drrs.dp) {
7295                 mutex_unlock(&dev_priv->drrs.mutex);
7296                 return;
7297         }
7298
7299         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7300                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7301                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7302
7303         dev_priv->drrs.dp = NULL;
7304         mutex_unlock(&dev_priv->drrs.mutex);
7305
7306         cancel_delayed_work_sync(&dev_priv->drrs.work);
7307 }
7308
7309 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7310 {
7311         struct drm_i915_private *dev_priv =
7312                 container_of(work, typeof(*dev_priv), drrs.work.work);
7313         struct intel_dp *intel_dp;
7314
7315         mutex_lock(&dev_priv->drrs.mutex);
7316
7317         intel_dp = dev_priv->drrs.dp;
7318
7319         if (!intel_dp)
7320                 goto unlock;
7321
7322         /*
7323          * The delayed work can race with an invalidate hence we need to
7324          * recheck.
7325          */
7326
7327         if (dev_priv->drrs.busy_frontbuffer_bits)
7328                 goto unlock;
7329
7330         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7331                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7332
7333                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7334                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7335         }
7336
7337 unlock:
7338         mutex_unlock(&dev_priv->drrs.mutex);
7339 }
7340
7341 /**
7342  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7343  * @dev_priv: i915 device
7344  * @frontbuffer_bits: frontbuffer plane tracking bits
7345  *
7346  * This function gets called everytime rendering on the given planes start.
7347  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7348  *
7349  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7350  */
7351 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7352                                unsigned int frontbuffer_bits)
7353 {
7354         struct drm_crtc *crtc;
7355         enum pipe pipe;
7356
7357         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7358                 return;
7359
7360         cancel_delayed_work(&dev_priv->drrs.work);
7361
7362         mutex_lock(&dev_priv->drrs.mutex);
7363         if (!dev_priv->drrs.dp) {
7364                 mutex_unlock(&dev_priv->drrs.mutex);
7365                 return;
7366         }
7367
7368         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7369         pipe = to_intel_crtc(crtc)->pipe;
7370
7371         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7372         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7373
7374         /* invalidate means busy screen hence upclock */
7375         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7376                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7377                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7378
7379         mutex_unlock(&dev_priv->drrs.mutex);
7380 }
7381
7382 /**
7383  * intel_edp_drrs_flush - Restart Idleness DRRS
7384  * @dev_priv: i915 device
7385  * @frontbuffer_bits: frontbuffer plane tracking bits
7386  *
7387  * This function gets called every time rendering on the given planes has
7388  * completed or flip on a crtc is completed. So DRRS should be upclocked
7389  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7390  * if no other planes are dirty.
7391  *
7392  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7393  */
7394 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7395                           unsigned int frontbuffer_bits)
7396 {
7397         struct drm_crtc *crtc;
7398         enum pipe pipe;
7399
7400         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7401                 return;
7402
7403         cancel_delayed_work(&dev_priv->drrs.work);
7404
7405         mutex_lock(&dev_priv->drrs.mutex);
7406         if (!dev_priv->drrs.dp) {
7407                 mutex_unlock(&dev_priv->drrs.mutex);
7408                 return;
7409         }
7410
7411         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7412         pipe = to_intel_crtc(crtc)->pipe;
7413
7414         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7415         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7416
7417         /* flush means busy screen hence upclock */
7418         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7419                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7420                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7421
7422         /*
7423          * flush also means no more activity hence schedule downclock, if all
7424          * other fbs are quiescent too
7425          */
7426         if (!dev_priv->drrs.busy_frontbuffer_bits)
7427                 schedule_delayed_work(&dev_priv->drrs.work,
7428                                 msecs_to_jiffies(1000));
7429         mutex_unlock(&dev_priv->drrs.mutex);
7430 }
7431
7432 /**
7433  * DOC: Display Refresh Rate Switching (DRRS)
7434  *
7435  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7436  * which enables swtching between low and high refresh rates,
7437  * dynamically, based on the usage scenario. This feature is applicable
7438  * for internal panels.
7439  *
7440  * Indication that the panel supports DRRS is given by the panel EDID, which
7441  * would list multiple refresh rates for one resolution.
7442  *
7443  * DRRS is of 2 types - static and seamless.
7444  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7445  * (may appear as a blink on screen) and is used in dock-undock scenario.
7446  * Seamless DRRS involves changing RR without any visual effect to the user
7447  * and can be used during normal system usage. This is done by programming
7448  * certain registers.
7449  *
7450  * Support for static/seamless DRRS may be indicated in the VBT based on
7451  * inputs from the panel spec.
7452  *
7453  * DRRS saves power by switching to low RR based on usage scenarios.
7454  *
7455  * The implementation is based on frontbuffer tracking implementation.  When
7456  * there is a disturbance on the screen triggered by user activity or a periodic
7457  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7458  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7459  * made.
7460  *
7461  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7462  * and intel_edp_drrs_flush() are called.
7463  *
7464  * DRRS can be further extended to support other internal panels and also
7465  * the scenario of video playback wherein RR is set based on the rate
7466  * requested by userspace.
7467  */
7468
7469 /**
7470  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7471  * @connector: eDP connector
7472  * @fixed_mode: preferred mode of panel
7473  *
7474  * This function is  called only once at driver load to initialize basic
7475  * DRRS stuff.
7476  *
7477  * Returns:
7478  * Downclock mode if panel supports it, else return NULL.
7479  * DRRS support is determined by the presence of downclock mode (apart
7480  * from VBT setting).
7481  */
7482 static struct drm_display_mode *
7483 intel_dp_drrs_init(struct intel_connector *connector,
7484                    struct drm_display_mode *fixed_mode)
7485 {
7486         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7487         struct drm_display_mode *downclock_mode = NULL;
7488
7489         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7490         mutex_init(&dev_priv->drrs.mutex);
7491
7492         if (INTEL_GEN(dev_priv) <= 6) {
7493                 drm_dbg_kms(&dev_priv->drm,
7494                             "DRRS supported for Gen7 and above\n");
7495                 return NULL;
7496         }
7497
7498         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7499                 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
7500                 return NULL;
7501         }
7502
7503         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7504         if (!downclock_mode) {
7505                 drm_dbg_kms(&dev_priv->drm,
7506                             "Downclock mode is not found. DRRS not supported\n");
7507                 return NULL;
7508         }
7509
7510         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7511
7512         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7513         drm_dbg_kms(&dev_priv->drm,
7514                     "seamless DRRS supported for eDP panel.\n");
7515         return downclock_mode;
7516 }
7517
7518 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7519                                      struct intel_connector *intel_connector)
7520 {
7521         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7522         struct drm_device *dev = &dev_priv->drm;
7523         struct drm_connector *connector = &intel_connector->base;
7524         struct drm_display_mode *fixed_mode = NULL;
7525         struct drm_display_mode *downclock_mode = NULL;
7526         bool has_dpcd;
7527         enum pipe pipe = INVALID_PIPE;
7528         intel_wakeref_t wakeref;
7529         struct edid *edid;
7530
7531         if (!intel_dp_is_edp(intel_dp))
7532                 return true;
7533
7534         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7535
7536         /*
7537          * On IBX/CPT we may get here with LVDS already registered. Since the
7538          * driver uses the only internal power sequencer available for both
7539          * eDP and LVDS bail out early in this case to prevent interfering
7540          * with an already powered-on LVDS power sequencer.
7541          */
7542         if (intel_get_lvds_encoder(dev_priv)) {
7543                 drm_WARN_ON(dev,
7544                             !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7545                 drm_info(&dev_priv->drm,
7546                          "LVDS was detected, not registering eDP\n");
7547
7548                 return false;
7549         }
7550
7551         with_pps_lock(intel_dp, wakeref) {
7552                 intel_dp_init_panel_power_timestamps(intel_dp);
7553                 intel_dp_pps_init(intel_dp);
7554                 intel_edp_panel_vdd_sanitize(intel_dp);
7555         }
7556
7557         /* Cache DPCD and EDID for edp. */
7558         has_dpcd = intel_edp_init_dpcd(intel_dp);
7559
7560         if (!has_dpcd) {
7561                 /* if this fails, presume the device is a ghost */
7562                 drm_info(&dev_priv->drm,
7563                          "failed to retrieve link info, disabling eDP\n");
7564                 goto out_vdd_off;
7565         }
7566
7567         mutex_lock(&dev->mode_config.mutex);
7568         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7569         if (edid) {
7570                 if (drm_add_edid_modes(connector, edid)) {
7571                         drm_connector_update_edid_property(connector, edid);
7572                         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
7573                 } else {
7574                         kfree(edid);
7575                         edid = ERR_PTR(-EINVAL);
7576                 }
7577         } else {
7578                 edid = ERR_PTR(-ENOENT);
7579         }
7580         intel_connector->edid = edid;
7581
7582         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7583         if (fixed_mode)
7584                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7585
7586         /* fallback to VBT if available for eDP */
7587         if (!fixed_mode)
7588                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7589         mutex_unlock(&dev->mode_config.mutex);
7590
7591         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7592                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7593                 register_reboot_notifier(&intel_dp->edp_notifier);
7594
7595                 /*
7596                  * Figure out the current pipe for the initial backlight setup.
7597                  * If the current pipe isn't valid, try the PPS pipe, and if that
7598                  * fails just assume pipe A.
7599                  */
7600                 pipe = vlv_active_pipe(intel_dp);
7601
7602                 if (pipe != PIPE_A && pipe != PIPE_B)
7603                         pipe = intel_dp->pps_pipe;
7604
7605                 if (pipe != PIPE_A && pipe != PIPE_B)
7606                         pipe = PIPE_A;
7607
7608                 drm_dbg_kms(&dev_priv->drm,
7609                             "using pipe %c for initial backlight setup\n",
7610                             pipe_name(pipe));
7611         }
7612
7613         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7614         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7615         intel_panel_setup_backlight(connector, pipe);
7616
7617         if (fixed_mode) {
7618                 drm_connector_set_panel_orientation_with_quirk(connector,
7619                                 dev_priv->vbt.orientation,
7620                                 fixed_mode->hdisplay, fixed_mode->vdisplay);
7621         }
7622
7623         return true;
7624
7625 out_vdd_off:
7626         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7627         /*
7628          * vdd might still be enabled do to the delayed vdd off.
7629          * Make sure vdd is actually turned off here.
7630          */
7631         with_pps_lock(intel_dp, wakeref)
7632                 edp_panel_vdd_off_sync(intel_dp);
7633
7634         return false;
7635 }
7636
7637 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7638 {
7639         struct intel_connector *intel_connector;
7640         struct drm_connector *connector;
7641
7642         intel_connector = container_of(work, typeof(*intel_connector),
7643                                        modeset_retry_work);
7644         connector = &intel_connector->base;
7645         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7646                       connector->name);
7647
7648         /* Grab the locks before changing connector property*/
7649         mutex_lock(&connector->dev->mode_config.mutex);
7650         /* Set connector link status to BAD and send a Uevent to notify
7651          * userspace to do a modeset.
7652          */
7653         drm_connector_set_link_status_property(connector,
7654                                                DRM_MODE_LINK_STATUS_BAD);
7655         mutex_unlock(&connector->dev->mode_config.mutex);
7656         /* Send Hotplug uevent so userspace can reprobe */
7657         drm_kms_helper_hotplug_event(connector->dev);
7658 }
7659
7660 bool
7661 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7662                         struct intel_connector *intel_connector)
7663 {
7664         struct drm_connector *connector = &intel_connector->base;
7665         struct intel_dp *intel_dp = &intel_dig_port->dp;
7666         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7667         struct drm_device *dev = intel_encoder->base.dev;
7668         struct drm_i915_private *dev_priv = to_i915(dev);
7669         enum port port = intel_encoder->port;
7670         enum phy phy = intel_port_to_phy(dev_priv, port);
7671         int type;
7672
7673         /* Initialize the work for modeset in case of link train failure */
7674         INIT_WORK(&intel_connector->modeset_retry_work,
7675                   intel_dp_modeset_retry_work_fn);
7676
7677         if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
7678                      "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7679                      intel_dig_port->max_lanes, intel_encoder->base.base.id,
7680                      intel_encoder->base.name))
7681                 return false;
7682
7683         intel_dp_set_source_rates(intel_dp);
7684
7685         intel_dp->reset_link_params = true;
7686         intel_dp->pps_pipe = INVALID_PIPE;
7687         intel_dp->active_pipe = INVALID_PIPE;
7688
7689         /* Preserve the current hw state. */
7690         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7691         intel_dp->attached_connector = intel_connector;
7692
7693         if (intel_dp_is_port_edp(dev_priv, port)) {
7694                 /*
7695                  * Currently we don't support eDP on TypeC ports, although in
7696                  * theory it could work on TypeC legacy ports.
7697                  */
7698                 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
7699                 type = DRM_MODE_CONNECTOR_eDP;
7700         } else {
7701                 type = DRM_MODE_CONNECTOR_DisplayPort;
7702         }
7703
7704         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7705                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7706
7707         /*
7708          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7709          * for DP the encoder type can be set by the caller to
7710          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7711          */
7712         if (type == DRM_MODE_CONNECTOR_eDP)
7713                 intel_encoder->type = INTEL_OUTPUT_EDP;
7714
7715         /* eDP only on port B and/or C on vlv/chv */
7716         if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
7717                               IS_CHERRYVIEW(dev_priv)) &&
7718                         intel_dp_is_edp(intel_dp) &&
7719                         port != PORT_B && port != PORT_C))
7720                 return false;
7721
7722         drm_dbg_kms(&dev_priv->drm,
7723                     "Adding %s connector on [ENCODER:%d:%s]\n",
7724                     type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7725                     intel_encoder->base.base.id, intel_encoder->base.name);
7726
7727         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7728         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7729
7730         if (!HAS_GMCH(dev_priv))
7731                 connector->interlace_allowed = true;
7732         connector->doublescan_allowed = 0;
7733
7734         if (INTEL_GEN(dev_priv) >= 11)
7735                 connector->ycbcr_420_allowed = true;
7736
7737         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7738         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
7739
7740         intel_dp_aux_init(intel_dp);
7741
7742         intel_connector_attach_encoder(intel_connector, intel_encoder);
7743
7744         if (HAS_DDI(dev_priv))
7745                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7746         else
7747                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7748
7749         /* init MST on ports that can support it */
7750         intel_dp_mst_encoder_init(intel_dig_port,
7751                                   intel_connector->base.base.id);
7752
7753         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7754                 intel_dp_aux_fini(intel_dp);
7755                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7756                 goto fail;
7757         }
7758
7759         intel_dp_add_properties(intel_dp, connector);
7760
7761         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7762                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7763                 if (ret)
7764                         drm_dbg_kms(&dev_priv->drm,
7765                                     "HDCP init failed, skipping.\n");
7766         }
7767
7768         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7769          * 0xd.  Failure to do so will result in spurious interrupts being
7770          * generated on the port when a cable is not attached.
7771          */
7772         if (IS_G45(dev_priv)) {
7773                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
7774                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
7775                                (temp & ~0xf) | 0xd);
7776         }
7777
7778         return true;
7779
7780 fail:
7781         drm_connector_cleanup(connector);
7782
7783         return false;
7784 }
7785
7786 bool intel_dp_init(struct drm_i915_private *dev_priv,
7787                    i915_reg_t output_reg,
7788                    enum port port)
7789 {
7790         struct intel_digital_port *intel_dig_port;
7791         struct intel_encoder *intel_encoder;
7792         struct drm_encoder *encoder;
7793         struct intel_connector *intel_connector;
7794
7795         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7796         if (!intel_dig_port)
7797                 return false;
7798
7799         intel_connector = intel_connector_alloc();
7800         if (!intel_connector)
7801                 goto err_connector_alloc;
7802
7803         intel_encoder = &intel_dig_port->base;
7804         encoder = &intel_encoder->base;
7805
7806         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7807                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7808                              "DP %c", port_name(port)))
7809                 goto err_encoder_init;
7810
7811         intel_encoder->hotplug = intel_dp_hotplug;
7812         intel_encoder->compute_config = intel_dp_compute_config;
7813         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7814         intel_encoder->get_config = intel_dp_get_config;
7815         intel_encoder->update_pipe = intel_panel_update_backlight;
7816         intel_encoder->suspend = intel_dp_encoder_suspend;
7817         if (IS_CHERRYVIEW(dev_priv)) {
7818                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7819                 intel_encoder->pre_enable = chv_pre_enable_dp;
7820                 intel_encoder->enable = vlv_enable_dp;
7821                 intel_encoder->disable = vlv_disable_dp;
7822                 intel_encoder->post_disable = chv_post_disable_dp;
7823                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7824         } else if (IS_VALLEYVIEW(dev_priv)) {
7825                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7826                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7827                 intel_encoder->enable = vlv_enable_dp;
7828                 intel_encoder->disable = vlv_disable_dp;
7829                 intel_encoder->post_disable = vlv_post_disable_dp;
7830         } else {
7831                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7832                 intel_encoder->enable = g4x_enable_dp;
7833                 intel_encoder->disable = g4x_disable_dp;
7834                 intel_encoder->post_disable = g4x_post_disable_dp;
7835         }
7836
7837         intel_dig_port->dp.output_reg = output_reg;
7838         intel_dig_port->max_lanes = 4;
7839
7840         intel_encoder->type = INTEL_OUTPUT_DP;
7841         intel_encoder->power_domain = intel_port_to_power_domain(port);
7842         if (IS_CHERRYVIEW(dev_priv)) {
7843                 if (port == PORT_D)
7844                         intel_encoder->pipe_mask = BIT(PIPE_C);
7845                 else
7846                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7847         } else {
7848                 intel_encoder->pipe_mask = ~0;
7849         }
7850         intel_encoder->cloneable = 0;
7851         intel_encoder->port = port;
7852
7853         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7854
7855         if (port != PORT_A)
7856                 intel_infoframe_init(intel_dig_port);
7857
7858         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7859         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7860                 goto err_init_connector;
7861
7862         return true;
7863
7864 err_init_connector:
7865         drm_encoder_cleanup(encoder);
7866 err_encoder_init:
7867         kfree(intel_connector);
7868 err_connector_alloc:
7869         kfree(intel_dig_port);
7870         return false;
7871 }
7872
7873 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7874 {
7875         struct intel_encoder *encoder;
7876
7877         for_each_intel_encoder(&dev_priv->drm, encoder) {
7878                 struct intel_dp *intel_dp;
7879
7880                 if (encoder->type != INTEL_OUTPUT_DDI)
7881                         continue;
7882
7883                 intel_dp = enc_to_intel_dp(encoder);
7884
7885                 if (!intel_dp->can_mst)
7886                         continue;
7887
7888                 if (intel_dp->is_mst)
7889                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7890         }
7891 }
7892
7893 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7894 {
7895         struct intel_encoder *encoder;
7896
7897         for_each_intel_encoder(&dev_priv->drm, encoder) {
7898                 struct intel_dp *intel_dp;
7899                 int ret;
7900
7901                 if (encoder->type != INTEL_OUTPUT_DDI)
7902                         continue;
7903
7904                 intel_dp = enc_to_intel_dp(encoder);
7905
7906                 if (!intel_dp->can_mst)
7907                         continue;
7908
7909                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7910                                                      true);
7911                 if (ret) {
7912                         intel_dp->is_mst = false;
7913                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7914                                                         false);
7915                 }
7916         }
7917 }