Merge branch 'work.autofs' of git://git.kernel.org/pub/scm/linux/kernel/git/viro/vfs
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_dp.h"
52 #include "intel_dp_link_training.h"
53 #include "intel_dp_mst.h"
54 #include "intel_dpio_phy.h"
55 #include "intel_drv.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_vdsc.h"
66
67 #define DP_DPRX_ESI_LEN 14
68
69 /* DP DSC small joiner has 2 FIFOs each of 640 x 6 bytes */
70 #define DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER      61440
71 #define DP_DSC_MIN_SUPPORTED_BPC                8
72 #define DP_DSC_MAX_SUPPORTED_BPC                10
73
74 /* DP DSC throughput values used for slice count calculations KPixels/s */
75 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
76 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
77 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
78
79 /* DP DSC FEC Overhead factor = (100 - 2.4)/100 */
80 #define DP_DSC_FEC_OVERHEAD_FACTOR              976
81
82 /* Compliance test status bits  */
83 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
84 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
85 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
86 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
87
88 struct dp_link_dpll {
89         int clock;
90         struct dpll dpll;
91 };
92
93 static const struct dp_link_dpll g4x_dpll[] = {
94         { 162000,
95                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
96         { 270000,
97                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
98 };
99
100 static const struct dp_link_dpll pch_dpll[] = {
101         { 162000,
102                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
103         { 270000,
104                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
105 };
106
107 static const struct dp_link_dpll vlv_dpll[] = {
108         { 162000,
109                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
110         { 270000,
111                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
112 };
113
114 /*
115  * CHV supports eDP 1.4 that have  more link rates.
116  * Below only provides the fixed rate but exclude variable rate.
117  */
118 static const struct dp_link_dpll chv_dpll[] = {
119         /*
120          * CHV requires to program fractional division for m2.
121          * m2 is stored in fixed point format using formula below
122          * (m2_int << 22) | m2_fraction
123          */
124         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
125                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
126         { 270000,       /* m2_int = 27, m2_fraction = 0 */
127                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
128 };
129
130 /* Constants for DP DSC configurations */
131 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
132
133 /* With Single pipe configuration, HW is capable of supporting maximum
134  * of 4 slices per line.
135  */
136 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
137
138 /**
139  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
140  * @intel_dp: DP struct
141  *
142  * If a CPU or PCH DP output is attached to an eDP panel, this function
143  * will return true, and false otherwise.
144  */
145 bool intel_dp_is_edp(struct intel_dp *intel_dp)
146 {
147         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
148
149         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
150 }
151
152 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
153 {
154         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
155 }
156
157 static void intel_dp_link_down(struct intel_encoder *encoder,
158                                const struct intel_crtc_state *old_crtc_state);
159 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
160 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
161 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
162                                            const struct intel_crtc_state *crtc_state);
163 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
164                                       enum pipe pipe);
165 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
166
167 /* update sink rates from dpcd */
168 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
169 {
170         static const int dp_rates[] = {
171                 162000, 270000, 540000, 810000
172         };
173         int i, max_rate;
174
175         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
176
177         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
178                 if (dp_rates[i] > max_rate)
179                         break;
180                 intel_dp->sink_rates[i] = dp_rates[i];
181         }
182
183         intel_dp->num_sink_rates = i;
184 }
185
186 /* Get length of rates array potentially limited by max_rate. */
187 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
188 {
189         int i;
190
191         /* Limit results by potentially reduced max rate */
192         for (i = 0; i < len; i++) {
193                 if (rates[len - i - 1] <= max_rate)
194                         return len - i;
195         }
196
197         return 0;
198 }
199
200 /* Get length of common rates array potentially limited by max_rate. */
201 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
202                                           int max_rate)
203 {
204         return intel_dp_rate_limit_len(intel_dp->common_rates,
205                                        intel_dp->num_common_rates, max_rate);
206 }
207
208 /* Theoretical max between source and sink */
209 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
210 {
211         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
212 }
213
214 static int intel_dp_get_fia_supported_lane_count(struct intel_dp *intel_dp)
215 {
216         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
217         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
218         enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
219         intel_wakeref_t wakeref;
220         u32 lane_info;
221
222         if (tc_port == PORT_TC_NONE || dig_port->tc_type != TC_PORT_TYPEC)
223                 return 4;
224
225         lane_info = 0;
226         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
227                 lane_info = (I915_READ(PORT_TX_DFLEXDPSP) &
228                              DP_LANE_ASSIGNMENT_MASK(tc_port)) >>
229                                 DP_LANE_ASSIGNMENT_SHIFT(tc_port);
230
231         switch (lane_info) {
232         default:
233                 MISSING_CASE(lane_info);
234                 /* fall through */
235         case 1:
236         case 2:
237         case 4:
238         case 8:
239                 return 1;
240         case 3:
241         case 12:
242                 return 2;
243         case 15:
244                 return 4;
245         }
246 }
247
248 /* Theoretical max between source and sink */
249 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
250 {
251         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
252         int source_max = intel_dig_port->max_lanes;
253         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
254         int fia_max = intel_dp_get_fia_supported_lane_count(intel_dp);
255
256         return min3(source_max, sink_max, fia_max);
257 }
258
259 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
260 {
261         return intel_dp->max_link_lane_count;
262 }
263
264 int
265 intel_dp_link_required(int pixel_clock, int bpp)
266 {
267         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
268         return DIV_ROUND_UP(pixel_clock * bpp, 8);
269 }
270
271 int
272 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
273 {
274         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
275          * link rate that is generally expressed in Gbps. Since, 8 bits of data
276          * is transmitted every LS_Clk per lane, there is no need to account for
277          * the channel encoding that is done in the PHY layer here.
278          */
279
280         return max_link_clock * max_lanes;
281 }
282
283 static int
284 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
285 {
286         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
287         struct intel_encoder *encoder = &intel_dig_port->base;
288         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
289         int max_dotclk = dev_priv->max_dotclk_freq;
290         int ds_max_dotclk;
291
292         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
293
294         if (type != DP_DS_PORT_TYPE_VGA)
295                 return max_dotclk;
296
297         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
298                                                     intel_dp->downstream_ports);
299
300         if (ds_max_dotclk != 0)
301                 max_dotclk = min(max_dotclk, ds_max_dotclk);
302
303         return max_dotclk;
304 }
305
306 static int cnl_max_source_rate(struct intel_dp *intel_dp)
307 {
308         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
309         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
310         enum port port = dig_port->base.port;
311
312         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
313
314         /* Low voltage SKUs are limited to max of 5.4G */
315         if (voltage == VOLTAGE_INFO_0_85V)
316                 return 540000;
317
318         /* For this SKU 8.1G is supported in all ports */
319         if (IS_CNL_WITH_PORT_F(dev_priv))
320                 return 810000;
321
322         /* For other SKUs, max rate on ports A and D is 5.4G */
323         if (port == PORT_A || port == PORT_D)
324                 return 540000;
325
326         return 810000;
327 }
328
329 static int icl_max_source_rate(struct intel_dp *intel_dp)
330 {
331         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
332         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333         enum port port = dig_port->base.port;
334
335         if (intel_port_is_combophy(dev_priv, port) &&
336             !IS_ELKHARTLAKE(dev_priv) &&
337             !intel_dp_is_edp(intel_dp))
338                 return 540000;
339
340         return 810000;
341 }
342
343 static void
344 intel_dp_set_source_rates(struct intel_dp *intel_dp)
345 {
346         /* The values must be in increasing order */
347         static const int cnl_rates[] = {
348                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
349         };
350         static const int bxt_rates[] = {
351                 162000, 216000, 243000, 270000, 324000, 432000, 540000
352         };
353         static const int skl_rates[] = {
354                 162000, 216000, 270000, 324000, 432000, 540000
355         };
356         static const int hsw_rates[] = {
357                 162000, 270000, 540000
358         };
359         static const int g4x_rates[] = {
360                 162000, 270000
361         };
362         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
363         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
364         const struct ddi_vbt_port_info *info =
365                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
366         const int *source_rates;
367         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
368
369         /* This should only be done once */
370         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
371
372         if (INTEL_GEN(dev_priv) >= 10) {
373                 source_rates = cnl_rates;
374                 size = ARRAY_SIZE(cnl_rates);
375                 if (IS_GEN(dev_priv, 10))
376                         max_rate = cnl_max_source_rate(intel_dp);
377                 else
378                         max_rate = icl_max_source_rate(intel_dp);
379         } else if (IS_GEN9_LP(dev_priv)) {
380                 source_rates = bxt_rates;
381                 size = ARRAY_SIZE(bxt_rates);
382         } else if (IS_GEN9_BC(dev_priv)) {
383                 source_rates = skl_rates;
384                 size = ARRAY_SIZE(skl_rates);
385         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
386                    IS_BROADWELL(dev_priv)) {
387                 source_rates = hsw_rates;
388                 size = ARRAY_SIZE(hsw_rates);
389         } else {
390                 source_rates = g4x_rates;
391                 size = ARRAY_SIZE(g4x_rates);
392         }
393
394         if (max_rate && vbt_max_rate)
395                 max_rate = min(max_rate, vbt_max_rate);
396         else if (vbt_max_rate)
397                 max_rate = vbt_max_rate;
398
399         if (max_rate)
400                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
401
402         intel_dp->source_rates = source_rates;
403         intel_dp->num_source_rates = size;
404 }
405
406 static int intersect_rates(const int *source_rates, int source_len,
407                            const int *sink_rates, int sink_len,
408                            int *common_rates)
409 {
410         int i = 0, j = 0, k = 0;
411
412         while (i < source_len && j < sink_len) {
413                 if (source_rates[i] == sink_rates[j]) {
414                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
415                                 return k;
416                         common_rates[k] = source_rates[i];
417                         ++k;
418                         ++i;
419                         ++j;
420                 } else if (source_rates[i] < sink_rates[j]) {
421                         ++i;
422                 } else {
423                         ++j;
424                 }
425         }
426         return k;
427 }
428
429 /* return index of rate in rates array, or -1 if not found */
430 static int intel_dp_rate_index(const int *rates, int len, int rate)
431 {
432         int i;
433
434         for (i = 0; i < len; i++)
435                 if (rate == rates[i])
436                         return i;
437
438         return -1;
439 }
440
441 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
442 {
443         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
444
445         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
446                                                      intel_dp->num_source_rates,
447                                                      intel_dp->sink_rates,
448                                                      intel_dp->num_sink_rates,
449                                                      intel_dp->common_rates);
450
451         /* Paranoia, there should always be something in common. */
452         if (WARN_ON(intel_dp->num_common_rates == 0)) {
453                 intel_dp->common_rates[0] = 162000;
454                 intel_dp->num_common_rates = 1;
455         }
456 }
457
458 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
459                                        u8 lane_count)
460 {
461         /*
462          * FIXME: we need to synchronize the current link parameters with
463          * hardware readout. Currently fast link training doesn't work on
464          * boot-up.
465          */
466         if (link_rate == 0 ||
467             link_rate > intel_dp->max_link_rate)
468                 return false;
469
470         if (lane_count == 0 ||
471             lane_count > intel_dp_max_lane_count(intel_dp))
472                 return false;
473
474         return true;
475 }
476
477 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
478                                                      int link_rate,
479                                                      u8 lane_count)
480 {
481         const struct drm_display_mode *fixed_mode =
482                 intel_dp->attached_connector->panel.fixed_mode;
483         int mode_rate, max_rate;
484
485         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
486         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
487         if (mode_rate > max_rate)
488                 return false;
489
490         return true;
491 }
492
493 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
494                                             int link_rate, u8 lane_count)
495 {
496         int index;
497
498         index = intel_dp_rate_index(intel_dp->common_rates,
499                                     intel_dp->num_common_rates,
500                                     link_rate);
501         if (index > 0) {
502                 if (intel_dp_is_edp(intel_dp) &&
503                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
504                                                               intel_dp->common_rates[index - 1],
505                                                               lane_count)) {
506                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
507                         return 0;
508                 }
509                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
510                 intel_dp->max_link_lane_count = lane_count;
511         } else if (lane_count > 1) {
512                 if (intel_dp_is_edp(intel_dp) &&
513                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
514                                                               intel_dp_max_common_rate(intel_dp),
515                                                               lane_count >> 1)) {
516                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
517                         return 0;
518                 }
519                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
520                 intel_dp->max_link_lane_count = lane_count >> 1;
521         } else {
522                 DRM_ERROR("Link Training Unsuccessful\n");
523                 return -1;
524         }
525
526         return 0;
527 }
528
529 static enum drm_mode_status
530 intel_dp_mode_valid(struct drm_connector *connector,
531                     struct drm_display_mode *mode)
532 {
533         struct intel_dp *intel_dp = intel_attached_dp(connector);
534         struct intel_connector *intel_connector = to_intel_connector(connector);
535         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
536         struct drm_i915_private *dev_priv = to_i915(connector->dev);
537         int target_clock = mode->clock;
538         int max_rate, mode_rate, max_lanes, max_link_clock;
539         int max_dotclk;
540         u16 dsc_max_output_bpp = 0;
541         u8 dsc_slice_count = 0;
542
543         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
544                 return MODE_NO_DBLESCAN;
545
546         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
547
548         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
549                 if (mode->hdisplay > fixed_mode->hdisplay)
550                         return MODE_PANEL;
551
552                 if (mode->vdisplay > fixed_mode->vdisplay)
553                         return MODE_PANEL;
554
555                 target_clock = fixed_mode->clock;
556         }
557
558         max_link_clock = intel_dp_max_link_rate(intel_dp);
559         max_lanes = intel_dp_max_lane_count(intel_dp);
560
561         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
562         mode_rate = intel_dp_link_required(target_clock, 18);
563
564         /*
565          * Output bpp is stored in 6.4 format so right shift by 4 to get the
566          * integer value since we support only integer values of bpp.
567          */
568         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
569             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
570                 if (intel_dp_is_edp(intel_dp)) {
571                         dsc_max_output_bpp =
572                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
573                         dsc_slice_count =
574                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
575                                                                 true);
576                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
577                         dsc_max_output_bpp =
578                                 intel_dp_dsc_get_output_bpp(max_link_clock,
579                                                             max_lanes,
580                                                             target_clock,
581                                                             mode->hdisplay) >> 4;
582                         dsc_slice_count =
583                                 intel_dp_dsc_get_slice_count(intel_dp,
584                                                              target_clock,
585                                                              mode->hdisplay);
586                 }
587         }
588
589         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
590             target_clock > max_dotclk)
591                 return MODE_CLOCK_HIGH;
592
593         if (mode->clock < 10000)
594                 return MODE_CLOCK_LOW;
595
596         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
597                 return MODE_H_ILLEGAL;
598
599         return MODE_OK;
600 }
601
602 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
603 {
604         int i;
605         u32 v = 0;
606
607         if (src_bytes > 4)
608                 src_bytes = 4;
609         for (i = 0; i < src_bytes; i++)
610                 v |= ((u32)src[i]) << ((3 - i) * 8);
611         return v;
612 }
613
614 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
615 {
616         int i;
617         if (dst_bytes > 4)
618                 dst_bytes = 4;
619         for (i = 0; i < dst_bytes; i++)
620                 dst[i] = src >> ((3-i) * 8);
621 }
622
623 static void
624 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
625 static void
626 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
627                                               bool force_disable_vdd);
628 static void
629 intel_dp_pps_init(struct intel_dp *intel_dp);
630
631 static intel_wakeref_t
632 pps_lock(struct intel_dp *intel_dp)
633 {
634         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
635         intel_wakeref_t wakeref;
636
637         /*
638          * See intel_power_sequencer_reset() why we need
639          * a power domain reference here.
640          */
641         wakeref = intel_display_power_get(dev_priv,
642                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
643
644         mutex_lock(&dev_priv->pps_mutex);
645
646         return wakeref;
647 }
648
649 static intel_wakeref_t
650 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
651 {
652         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
653
654         mutex_unlock(&dev_priv->pps_mutex);
655         intel_display_power_put(dev_priv,
656                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
657                                 wakeref);
658         return 0;
659 }
660
661 #define with_pps_lock(dp, wf) \
662         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
663
664 static void
665 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
666 {
667         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
668         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
669         enum pipe pipe = intel_dp->pps_pipe;
670         bool pll_enabled, release_cl_override = false;
671         enum dpio_phy phy = DPIO_PHY(pipe);
672         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
673         u32 DP;
674
675         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
676                  "skipping pipe %c power sequencer kick due to port %c being active\n",
677                  pipe_name(pipe), port_name(intel_dig_port->base.port)))
678                 return;
679
680         DRM_DEBUG_KMS("kicking pipe %c power sequencer for port %c\n",
681                       pipe_name(pipe), port_name(intel_dig_port->base.port));
682
683         /* Preserve the BIOS-computed detected bit. This is
684          * supposed to be read-only.
685          */
686         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
687         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
688         DP |= DP_PORT_WIDTH(1);
689         DP |= DP_LINK_TRAIN_PAT_1;
690
691         if (IS_CHERRYVIEW(dev_priv))
692                 DP |= DP_PIPE_SEL_CHV(pipe);
693         else
694                 DP |= DP_PIPE_SEL(pipe);
695
696         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
697
698         /*
699          * The DPLL for the pipe must be enabled for this to work.
700          * So enable temporarily it if it's not already enabled.
701          */
702         if (!pll_enabled) {
703                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
704                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
705
706                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
707                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
708                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
709                                   pipe_name(pipe));
710                         return;
711                 }
712         }
713
714         /*
715          * Similar magic as in intel_dp_enable_port().
716          * We _must_ do this port enable + disable trick
717          * to make this power sequencer lock onto the port.
718          * Otherwise even VDD force bit won't work.
719          */
720         I915_WRITE(intel_dp->output_reg, DP);
721         POSTING_READ(intel_dp->output_reg);
722
723         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
724         POSTING_READ(intel_dp->output_reg);
725
726         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
727         POSTING_READ(intel_dp->output_reg);
728
729         if (!pll_enabled) {
730                 vlv_force_pll_off(dev_priv, pipe);
731
732                 if (release_cl_override)
733                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
734         }
735 }
736
737 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
738 {
739         struct intel_encoder *encoder;
740         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
741
742         /*
743          * We don't have power sequencer currently.
744          * Pick one that's not used by other ports.
745          */
746         for_each_intel_dp(&dev_priv->drm, encoder) {
747                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
748
749                 if (encoder->type == INTEL_OUTPUT_EDP) {
750                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
751                                 intel_dp->active_pipe != intel_dp->pps_pipe);
752
753                         if (intel_dp->pps_pipe != INVALID_PIPE)
754                                 pipes &= ~(1 << intel_dp->pps_pipe);
755                 } else {
756                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
757
758                         if (intel_dp->active_pipe != INVALID_PIPE)
759                                 pipes &= ~(1 << intel_dp->active_pipe);
760                 }
761         }
762
763         if (pipes == 0)
764                 return INVALID_PIPE;
765
766         return ffs(pipes) - 1;
767 }
768
769 static enum pipe
770 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
771 {
772         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
773         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
774         enum pipe pipe;
775
776         lockdep_assert_held(&dev_priv->pps_mutex);
777
778         /* We should never land here with regular DP ports */
779         WARN_ON(!intel_dp_is_edp(intel_dp));
780
781         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
782                 intel_dp->active_pipe != intel_dp->pps_pipe);
783
784         if (intel_dp->pps_pipe != INVALID_PIPE)
785                 return intel_dp->pps_pipe;
786
787         pipe = vlv_find_free_pps(dev_priv);
788
789         /*
790          * Didn't find one. This should not happen since there
791          * are two power sequencers and up to two eDP ports.
792          */
793         if (WARN_ON(pipe == INVALID_PIPE))
794                 pipe = PIPE_A;
795
796         vlv_steal_power_sequencer(dev_priv, pipe);
797         intel_dp->pps_pipe = pipe;
798
799         DRM_DEBUG_KMS("picked pipe %c power sequencer for port %c\n",
800                       pipe_name(intel_dp->pps_pipe),
801                       port_name(intel_dig_port->base.port));
802
803         /* init power sequencer on this pipe and port */
804         intel_dp_init_panel_power_sequencer(intel_dp);
805         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
806
807         /*
808          * Even vdd force doesn't work until we've made
809          * the power sequencer lock in on the port.
810          */
811         vlv_power_sequencer_kick(intel_dp);
812
813         return intel_dp->pps_pipe;
814 }
815
816 static int
817 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
818 {
819         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
820         int backlight_controller = dev_priv->vbt.backlight.controller;
821
822         lockdep_assert_held(&dev_priv->pps_mutex);
823
824         /* We should never land here with regular DP ports */
825         WARN_ON(!intel_dp_is_edp(intel_dp));
826
827         if (!intel_dp->pps_reset)
828                 return backlight_controller;
829
830         intel_dp->pps_reset = false;
831
832         /*
833          * Only the HW needs to be reprogrammed, the SW state is fixed and
834          * has been setup during connector init.
835          */
836         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
837
838         return backlight_controller;
839 }
840
841 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
842                                enum pipe pipe);
843
844 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
845                                enum pipe pipe)
846 {
847         return I915_READ(PP_STATUS(pipe)) & PP_ON;
848 }
849
850 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
851                                 enum pipe pipe)
852 {
853         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
854 }
855
856 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
857                          enum pipe pipe)
858 {
859         return true;
860 }
861
862 static enum pipe
863 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
864                      enum port port,
865                      vlv_pipe_check pipe_check)
866 {
867         enum pipe pipe;
868
869         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
870                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
871                         PANEL_PORT_SELECT_MASK;
872
873                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
874                         continue;
875
876                 if (!pipe_check(dev_priv, pipe))
877                         continue;
878
879                 return pipe;
880         }
881
882         return INVALID_PIPE;
883 }
884
885 static void
886 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
887 {
888         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
889         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
890         enum port port = intel_dig_port->base.port;
891
892         lockdep_assert_held(&dev_priv->pps_mutex);
893
894         /* try to find a pipe with this port selected */
895         /* first pick one where the panel is on */
896         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
897                                                   vlv_pipe_has_pp_on);
898         /* didn't find one? pick one where vdd is on */
899         if (intel_dp->pps_pipe == INVALID_PIPE)
900                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
901                                                           vlv_pipe_has_vdd_on);
902         /* didn't find one? pick one with just the correct port */
903         if (intel_dp->pps_pipe == INVALID_PIPE)
904                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
905                                                           vlv_pipe_any);
906
907         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
908         if (intel_dp->pps_pipe == INVALID_PIPE) {
909                 DRM_DEBUG_KMS("no initial power sequencer for port %c\n",
910                               port_name(port));
911                 return;
912         }
913
914         DRM_DEBUG_KMS("initial power sequencer for port %c: pipe %c\n",
915                       port_name(port), pipe_name(intel_dp->pps_pipe));
916
917         intel_dp_init_panel_power_sequencer(intel_dp);
918         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
919 }
920
921 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
922 {
923         struct intel_encoder *encoder;
924
925         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
926                     !IS_GEN9_LP(dev_priv)))
927                 return;
928
929         /*
930          * We can't grab pps_mutex here due to deadlock with power_domain
931          * mutex when power_domain functions are called while holding pps_mutex.
932          * That also means that in order to use pps_pipe the code needs to
933          * hold both a power domain reference and pps_mutex, and the power domain
934          * reference get/put must be done while _not_ holding pps_mutex.
935          * pps_{lock,unlock}() do these steps in the correct order, so one
936          * should use them always.
937          */
938
939         for_each_intel_dp(&dev_priv->drm, encoder) {
940                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
941
942                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
943
944                 if (encoder->type != INTEL_OUTPUT_EDP)
945                         continue;
946
947                 if (IS_GEN9_LP(dev_priv))
948                         intel_dp->pps_reset = true;
949                 else
950                         intel_dp->pps_pipe = INVALID_PIPE;
951         }
952 }
953
954 struct pps_registers {
955         i915_reg_t pp_ctrl;
956         i915_reg_t pp_stat;
957         i915_reg_t pp_on;
958         i915_reg_t pp_off;
959         i915_reg_t pp_div;
960 };
961
962 static void intel_pps_get_registers(struct intel_dp *intel_dp,
963                                     struct pps_registers *regs)
964 {
965         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
966         int pps_idx = 0;
967
968         memset(regs, 0, sizeof(*regs));
969
970         if (IS_GEN9_LP(dev_priv))
971                 pps_idx = bxt_power_sequencer_idx(intel_dp);
972         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
973                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
974
975         regs->pp_ctrl = PP_CONTROL(pps_idx);
976         regs->pp_stat = PP_STATUS(pps_idx);
977         regs->pp_on = PP_ON_DELAYS(pps_idx);
978         regs->pp_off = PP_OFF_DELAYS(pps_idx);
979
980         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
981         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
982                 regs->pp_div = INVALID_MMIO_REG;
983         else
984                 regs->pp_div = PP_DIVISOR(pps_idx);
985 }
986
987 static i915_reg_t
988 _pp_ctrl_reg(struct intel_dp *intel_dp)
989 {
990         struct pps_registers regs;
991
992         intel_pps_get_registers(intel_dp, &regs);
993
994         return regs.pp_ctrl;
995 }
996
997 static i915_reg_t
998 _pp_stat_reg(struct intel_dp *intel_dp)
999 {
1000         struct pps_registers regs;
1001
1002         intel_pps_get_registers(intel_dp, &regs);
1003
1004         return regs.pp_stat;
1005 }
1006
1007 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1008    This function only applicable when panel PM state is not to be tracked */
1009 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1010                               void *unused)
1011 {
1012         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1013                                                  edp_notifier);
1014         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1015         intel_wakeref_t wakeref;
1016
1017         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1018                 return 0;
1019
1020         with_pps_lock(intel_dp, wakeref) {
1021                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1022                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1023                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1024                         u32 pp_div;
1025
1026                         pp_ctrl_reg = PP_CONTROL(pipe);
1027                         pp_div_reg  = PP_DIVISOR(pipe);
1028                         pp_div = I915_READ(pp_div_reg);
1029                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1030
1031                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1032                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1033                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1034                         msleep(intel_dp->panel_power_cycle_delay);
1035                 }
1036         }
1037
1038         return 0;
1039 }
1040
1041 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1042 {
1043         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1044
1045         lockdep_assert_held(&dev_priv->pps_mutex);
1046
1047         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1048             intel_dp->pps_pipe == INVALID_PIPE)
1049                 return false;
1050
1051         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1052 }
1053
1054 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1055 {
1056         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1057
1058         lockdep_assert_held(&dev_priv->pps_mutex);
1059
1060         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1061             intel_dp->pps_pipe == INVALID_PIPE)
1062                 return false;
1063
1064         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1065 }
1066
1067 static void
1068 intel_dp_check_edp(struct intel_dp *intel_dp)
1069 {
1070         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1071
1072         if (!intel_dp_is_edp(intel_dp))
1073                 return;
1074
1075         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1076                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1077                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1078                               I915_READ(_pp_stat_reg(intel_dp)),
1079                               I915_READ(_pp_ctrl_reg(intel_dp)));
1080         }
1081 }
1082
1083 static u32
1084 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1085 {
1086         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1087         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1088         u32 status;
1089         bool done;
1090
1091 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1092         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1093                                   msecs_to_jiffies_timeout(10));
1094
1095         /* just trace the final value */
1096         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1097
1098         if (!done)
1099                 DRM_ERROR("dp aux hw did not signal timeout!\n");
1100 #undef C
1101
1102         return status;
1103 }
1104
1105 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1106 {
1107         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1108
1109         if (index)
1110                 return 0;
1111
1112         /*
1113          * The clock divider is based off the hrawclk, and would like to run at
1114          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1115          */
1116         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1117 }
1118
1119 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1120 {
1121         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1122         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1123
1124         if (index)
1125                 return 0;
1126
1127         /*
1128          * The clock divider is based off the cdclk or PCH rawclk, and would
1129          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1130          * divide by 2000 and use that
1131          */
1132         if (dig_port->aux_ch == AUX_CH_A)
1133                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1134         else
1135                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1136 }
1137
1138 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1139 {
1140         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1141         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1142
1143         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1144                 /* Workaround for non-ULT HSW */
1145                 switch (index) {
1146                 case 0: return 63;
1147                 case 1: return 72;
1148                 default: return 0;
1149                 }
1150         }
1151
1152         return ilk_get_aux_clock_divider(intel_dp, index);
1153 }
1154
1155 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1156 {
1157         /*
1158          * SKL doesn't need us to program the AUX clock divider (Hardware will
1159          * derive the clock from CDCLK automatically). We still implement the
1160          * get_aux_clock_divider vfunc to plug-in into the existing code.
1161          */
1162         return index ? 0 : 1;
1163 }
1164
1165 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1166                                 int send_bytes,
1167                                 u32 aux_clock_divider)
1168 {
1169         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1170         struct drm_i915_private *dev_priv =
1171                         to_i915(intel_dig_port->base.base.dev);
1172         u32 precharge, timeout;
1173
1174         if (IS_GEN(dev_priv, 6))
1175                 precharge = 3;
1176         else
1177                 precharge = 5;
1178
1179         if (IS_BROADWELL(dev_priv))
1180                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1181         else
1182                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1183
1184         return DP_AUX_CH_CTL_SEND_BUSY |
1185                DP_AUX_CH_CTL_DONE |
1186                DP_AUX_CH_CTL_INTERRUPT |
1187                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1188                timeout |
1189                DP_AUX_CH_CTL_RECEIVE_ERROR |
1190                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1191                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1192                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1193 }
1194
1195 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1196                                 int send_bytes,
1197                                 u32 unused)
1198 {
1199         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1200         u32 ret;
1201
1202         ret = DP_AUX_CH_CTL_SEND_BUSY |
1203               DP_AUX_CH_CTL_DONE |
1204               DP_AUX_CH_CTL_INTERRUPT |
1205               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1206               DP_AUX_CH_CTL_TIME_OUT_MAX |
1207               DP_AUX_CH_CTL_RECEIVE_ERROR |
1208               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1209               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1210               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1211
1212         if (intel_dig_port->tc_type == TC_PORT_TBT)
1213                 ret |= DP_AUX_CH_CTL_TBT_IO;
1214
1215         return ret;
1216 }
1217
1218 static int
1219 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1220                   const u8 *send, int send_bytes,
1221                   u8 *recv, int recv_size,
1222                   u32 aux_send_ctl_flags)
1223 {
1224         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1225         struct drm_i915_private *i915 =
1226                         to_i915(intel_dig_port->base.base.dev);
1227         struct intel_uncore *uncore = &i915->uncore;
1228         i915_reg_t ch_ctl, ch_data[5];
1229         u32 aux_clock_divider;
1230         enum intel_display_power_domain aux_domain =
1231                 intel_aux_power_domain(intel_dig_port);
1232         intel_wakeref_t aux_wakeref;
1233         intel_wakeref_t pps_wakeref;
1234         int i, ret, recv_bytes;
1235         int try, clock = 0;
1236         u32 status;
1237         bool vdd;
1238
1239         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1240         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1241                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1242
1243         aux_wakeref = intel_display_power_get(i915, aux_domain);
1244         pps_wakeref = pps_lock(intel_dp);
1245
1246         /*
1247          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1248          * In such cases we want to leave VDD enabled and it's up to upper layers
1249          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1250          * ourselves.
1251          */
1252         vdd = edp_panel_vdd_on(intel_dp);
1253
1254         /* dp aux is extremely sensitive to irq latency, hence request the
1255          * lowest possible wakeup latency and so prevent the cpu from going into
1256          * deep sleep states.
1257          */
1258         pm_qos_update_request(&i915->pm_qos, 0);
1259
1260         intel_dp_check_edp(intel_dp);
1261
1262         /* Try to wait for any previous AUX channel activity */
1263         for (try = 0; try < 3; try++) {
1264                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1265                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1266                         break;
1267                 msleep(1);
1268         }
1269         /* just trace the final value */
1270         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1271
1272         if (try == 3) {
1273                 static u32 last_status = -1;
1274                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1275
1276                 if (status != last_status) {
1277                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1278                              status);
1279                         last_status = status;
1280                 }
1281
1282                 ret = -EBUSY;
1283                 goto out;
1284         }
1285
1286         /* Only 5 data registers! */
1287         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1288                 ret = -E2BIG;
1289                 goto out;
1290         }
1291
1292         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1293                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1294                                                           send_bytes,
1295                                                           aux_clock_divider);
1296
1297                 send_ctl |= aux_send_ctl_flags;
1298
1299                 /* Must try at least 3 times according to DP spec */
1300                 for (try = 0; try < 5; try++) {
1301                         /* Load the send data into the aux channel data registers */
1302                         for (i = 0; i < send_bytes; i += 4)
1303                                 intel_uncore_write(uncore,
1304                                                    ch_data[i >> 2],
1305                                                    intel_dp_pack_aux(send + i,
1306                                                                      send_bytes - i));
1307
1308                         /* Send the command and wait for it to complete */
1309                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1310
1311                         status = intel_dp_aux_wait_done(intel_dp);
1312
1313                         /* Clear done status and any errors */
1314                         intel_uncore_write(uncore,
1315                                            ch_ctl,
1316                                            status |
1317                                            DP_AUX_CH_CTL_DONE |
1318                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1319                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1320
1321                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1322                          *   400us delay required for errors and timeouts
1323                          *   Timeout errors from the HW already meet this
1324                          *   requirement so skip to next iteration
1325                          */
1326                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1327                                 continue;
1328
1329                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1330                                 usleep_range(400, 500);
1331                                 continue;
1332                         }
1333                         if (status & DP_AUX_CH_CTL_DONE)
1334                                 goto done;
1335                 }
1336         }
1337
1338         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1339                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1340                 ret = -EBUSY;
1341                 goto out;
1342         }
1343
1344 done:
1345         /* Check for timeout or receive error.
1346          * Timeouts occur when the sink is not connected
1347          */
1348         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1349                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1350                 ret = -EIO;
1351                 goto out;
1352         }
1353
1354         /* Timeouts occur when the device isn't connected, so they're
1355          * "normal" -- don't fill the kernel log with these */
1356         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1357                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1358                 ret = -ETIMEDOUT;
1359                 goto out;
1360         }
1361
1362         /* Unload any bytes sent back from the other side */
1363         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1364                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1365
1366         /*
1367          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1368          * We have no idea of what happened so we return -EBUSY so
1369          * drm layer takes care for the necessary retries.
1370          */
1371         if (recv_bytes == 0 || recv_bytes > 20) {
1372                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1373                               recv_bytes);
1374                 ret = -EBUSY;
1375                 goto out;
1376         }
1377
1378         if (recv_bytes > recv_size)
1379                 recv_bytes = recv_size;
1380
1381         for (i = 0; i < recv_bytes; i += 4)
1382                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1383                                     recv + i, recv_bytes - i);
1384
1385         ret = recv_bytes;
1386 out:
1387         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1388
1389         if (vdd)
1390                 edp_panel_vdd_off(intel_dp, false);
1391
1392         pps_unlock(intel_dp, pps_wakeref);
1393         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1394
1395         return ret;
1396 }
1397
1398 #define BARE_ADDRESS_SIZE       3
1399 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1400
1401 static void
1402 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1403                     const struct drm_dp_aux_msg *msg)
1404 {
1405         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1406         txbuf[1] = (msg->address >> 8) & 0xff;
1407         txbuf[2] = msg->address & 0xff;
1408         txbuf[3] = msg->size - 1;
1409 }
1410
1411 static ssize_t
1412 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1413 {
1414         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1415         u8 txbuf[20], rxbuf[20];
1416         size_t txsize, rxsize;
1417         int ret;
1418
1419         intel_dp_aux_header(txbuf, msg);
1420
1421         switch (msg->request & ~DP_AUX_I2C_MOT) {
1422         case DP_AUX_NATIVE_WRITE:
1423         case DP_AUX_I2C_WRITE:
1424         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1425                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1426                 rxsize = 2; /* 0 or 1 data bytes */
1427
1428                 if (WARN_ON(txsize > 20))
1429                         return -E2BIG;
1430
1431                 WARN_ON(!msg->buffer != !msg->size);
1432
1433                 if (msg->buffer)
1434                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1435
1436                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1437                                         rxbuf, rxsize, 0);
1438                 if (ret > 0) {
1439                         msg->reply = rxbuf[0] >> 4;
1440
1441                         if (ret > 1) {
1442                                 /* Number of bytes written in a short write. */
1443                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1444                         } else {
1445                                 /* Return payload size. */
1446                                 ret = msg->size;
1447                         }
1448                 }
1449                 break;
1450
1451         case DP_AUX_NATIVE_READ:
1452         case DP_AUX_I2C_READ:
1453                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1454                 rxsize = msg->size + 1;
1455
1456                 if (WARN_ON(rxsize > 20))
1457                         return -E2BIG;
1458
1459                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1460                                         rxbuf, rxsize, 0);
1461                 if (ret > 0) {
1462                         msg->reply = rxbuf[0] >> 4;
1463                         /*
1464                          * Assume happy day, and copy the data. The caller is
1465                          * expected to check msg->reply before touching it.
1466                          *
1467                          * Return payload size.
1468                          */
1469                         ret--;
1470                         memcpy(msg->buffer, rxbuf + 1, ret);
1471                 }
1472                 break;
1473
1474         default:
1475                 ret = -EINVAL;
1476                 break;
1477         }
1478
1479         return ret;
1480 }
1481
1482
1483 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1484 {
1485         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1486         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1487         enum aux_ch aux_ch = dig_port->aux_ch;
1488
1489         switch (aux_ch) {
1490         case AUX_CH_B:
1491         case AUX_CH_C:
1492         case AUX_CH_D:
1493                 return DP_AUX_CH_CTL(aux_ch);
1494         default:
1495                 MISSING_CASE(aux_ch);
1496                 return DP_AUX_CH_CTL(AUX_CH_B);
1497         }
1498 }
1499
1500 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1501 {
1502         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1503         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1504         enum aux_ch aux_ch = dig_port->aux_ch;
1505
1506         switch (aux_ch) {
1507         case AUX_CH_B:
1508         case AUX_CH_C:
1509         case AUX_CH_D:
1510                 return DP_AUX_CH_DATA(aux_ch, index);
1511         default:
1512                 MISSING_CASE(aux_ch);
1513                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1514         }
1515 }
1516
1517 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1518 {
1519         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1520         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1521         enum aux_ch aux_ch = dig_port->aux_ch;
1522
1523         switch (aux_ch) {
1524         case AUX_CH_A:
1525                 return DP_AUX_CH_CTL(aux_ch);
1526         case AUX_CH_B:
1527         case AUX_CH_C:
1528         case AUX_CH_D:
1529                 return PCH_DP_AUX_CH_CTL(aux_ch);
1530         default:
1531                 MISSING_CASE(aux_ch);
1532                 return DP_AUX_CH_CTL(AUX_CH_A);
1533         }
1534 }
1535
1536 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1537 {
1538         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1539         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1540         enum aux_ch aux_ch = dig_port->aux_ch;
1541
1542         switch (aux_ch) {
1543         case AUX_CH_A:
1544                 return DP_AUX_CH_DATA(aux_ch, index);
1545         case AUX_CH_B:
1546         case AUX_CH_C:
1547         case AUX_CH_D:
1548                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1549         default:
1550                 MISSING_CASE(aux_ch);
1551                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1552         }
1553 }
1554
1555 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1556 {
1557         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1558         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1559         enum aux_ch aux_ch = dig_port->aux_ch;
1560
1561         switch (aux_ch) {
1562         case AUX_CH_A:
1563         case AUX_CH_B:
1564         case AUX_CH_C:
1565         case AUX_CH_D:
1566         case AUX_CH_E:
1567         case AUX_CH_F:
1568                 return DP_AUX_CH_CTL(aux_ch);
1569         default:
1570                 MISSING_CASE(aux_ch);
1571                 return DP_AUX_CH_CTL(AUX_CH_A);
1572         }
1573 }
1574
1575 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1576 {
1577         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1578         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1579         enum aux_ch aux_ch = dig_port->aux_ch;
1580
1581         switch (aux_ch) {
1582         case AUX_CH_A:
1583         case AUX_CH_B:
1584         case AUX_CH_C:
1585         case AUX_CH_D:
1586         case AUX_CH_E:
1587         case AUX_CH_F:
1588                 return DP_AUX_CH_DATA(aux_ch, index);
1589         default:
1590                 MISSING_CASE(aux_ch);
1591                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1592         }
1593 }
1594
1595 static void
1596 intel_dp_aux_fini(struct intel_dp *intel_dp)
1597 {
1598         kfree(intel_dp->aux.name);
1599 }
1600
1601 static void
1602 intel_dp_aux_init(struct intel_dp *intel_dp)
1603 {
1604         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1605         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1606         struct intel_encoder *encoder = &dig_port->base;
1607
1608         if (INTEL_GEN(dev_priv) >= 9) {
1609                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1610                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1611         } else if (HAS_PCH_SPLIT(dev_priv)) {
1612                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1613                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1614         } else {
1615                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1616                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1617         }
1618
1619         if (INTEL_GEN(dev_priv) >= 9)
1620                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1621         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1622                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1623         else if (HAS_PCH_SPLIT(dev_priv))
1624                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1625         else
1626                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1627
1628         if (INTEL_GEN(dev_priv) >= 9)
1629                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1630         else
1631                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1632
1633         drm_dp_aux_init(&intel_dp->aux);
1634
1635         /* Failure to allocate our preferred name is not critical */
1636         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1637                                        port_name(encoder->port));
1638         intel_dp->aux.transfer = intel_dp_aux_transfer;
1639 }
1640
1641 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1642 {
1643         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1644
1645         return max_rate >= 540000;
1646 }
1647
1648 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1649 {
1650         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1651
1652         return max_rate >= 810000;
1653 }
1654
1655 static void
1656 intel_dp_set_clock(struct intel_encoder *encoder,
1657                    struct intel_crtc_state *pipe_config)
1658 {
1659         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1660         const struct dp_link_dpll *divisor = NULL;
1661         int i, count = 0;
1662
1663         if (IS_G4X(dev_priv)) {
1664                 divisor = g4x_dpll;
1665                 count = ARRAY_SIZE(g4x_dpll);
1666         } else if (HAS_PCH_SPLIT(dev_priv)) {
1667                 divisor = pch_dpll;
1668                 count = ARRAY_SIZE(pch_dpll);
1669         } else if (IS_CHERRYVIEW(dev_priv)) {
1670                 divisor = chv_dpll;
1671                 count = ARRAY_SIZE(chv_dpll);
1672         } else if (IS_VALLEYVIEW(dev_priv)) {
1673                 divisor = vlv_dpll;
1674                 count = ARRAY_SIZE(vlv_dpll);
1675         }
1676
1677         if (divisor && count) {
1678                 for (i = 0; i < count; i++) {
1679                         if (pipe_config->port_clock == divisor[i].clock) {
1680                                 pipe_config->dpll = divisor[i].dpll;
1681                                 pipe_config->clock_set = true;
1682                                 break;
1683                         }
1684                 }
1685         }
1686 }
1687
1688 static void snprintf_int_array(char *str, size_t len,
1689                                const int *array, int nelem)
1690 {
1691         int i;
1692
1693         str[0] = '\0';
1694
1695         for (i = 0; i < nelem; i++) {
1696                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1697                 if (r >= len)
1698                         return;
1699                 str += r;
1700                 len -= r;
1701         }
1702 }
1703
1704 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1705 {
1706         char str[128]; /* FIXME: too big for stack? */
1707
1708         if ((drm_debug & DRM_UT_KMS) == 0)
1709                 return;
1710
1711         snprintf_int_array(str, sizeof(str),
1712                            intel_dp->source_rates, intel_dp->num_source_rates);
1713         DRM_DEBUG_KMS("source rates: %s\n", str);
1714
1715         snprintf_int_array(str, sizeof(str),
1716                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1717         DRM_DEBUG_KMS("sink rates: %s\n", str);
1718
1719         snprintf_int_array(str, sizeof(str),
1720                            intel_dp->common_rates, intel_dp->num_common_rates);
1721         DRM_DEBUG_KMS("common rates: %s\n", str);
1722 }
1723
1724 int
1725 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1726 {
1727         int len;
1728
1729         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1730         if (WARN_ON(len <= 0))
1731                 return 162000;
1732
1733         return intel_dp->common_rates[len - 1];
1734 }
1735
1736 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1737 {
1738         int i = intel_dp_rate_index(intel_dp->sink_rates,
1739                                     intel_dp->num_sink_rates, rate);
1740
1741         if (WARN_ON(i < 0))
1742                 i = 0;
1743
1744         return i;
1745 }
1746
1747 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1748                            u8 *link_bw, u8 *rate_select)
1749 {
1750         /* eDP 1.4 rate select method. */
1751         if (intel_dp->use_rate_select) {
1752                 *link_bw = 0;
1753                 *rate_select =
1754                         intel_dp_rate_select(intel_dp, port_clock);
1755         } else {
1756                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1757                 *rate_select = 0;
1758         }
1759 }
1760
1761 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1762                                          const struct intel_crtc_state *pipe_config)
1763 {
1764         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1765
1766         return INTEL_GEN(dev_priv) >= 11 &&
1767                 pipe_config->cpu_transcoder != TRANSCODER_A;
1768 }
1769
1770 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1771                                   const struct intel_crtc_state *pipe_config)
1772 {
1773         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1774                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1775 }
1776
1777 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1778                                          const struct intel_crtc_state *pipe_config)
1779 {
1780         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1781
1782         return INTEL_GEN(dev_priv) >= 10 &&
1783                 pipe_config->cpu_transcoder != TRANSCODER_A;
1784 }
1785
1786 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1787                                   const struct intel_crtc_state *pipe_config)
1788 {
1789         if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1790                 return false;
1791
1792         return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1793                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1794 }
1795
1796 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1797                                 struct intel_crtc_state *pipe_config)
1798 {
1799         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1800         struct intel_connector *intel_connector = intel_dp->attached_connector;
1801         int bpp, bpc;
1802
1803         bpp = pipe_config->pipe_bpp;
1804         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1805
1806         if (bpc > 0)
1807                 bpp = min(bpp, 3*bpc);
1808
1809         if (intel_dp_is_edp(intel_dp)) {
1810                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1811                 if (intel_connector->base.display_info.bpc == 0 &&
1812                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1813                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1814                                       dev_priv->vbt.edp.bpp);
1815                         bpp = dev_priv->vbt.edp.bpp;
1816                 }
1817         }
1818
1819         return bpp;
1820 }
1821
1822 /* Adjust link config limits based on compliance test requests. */
1823 void
1824 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1825                                   struct intel_crtc_state *pipe_config,
1826                                   struct link_config_limits *limits)
1827 {
1828         /* For DP Compliance we override the computed bpp for the pipe */
1829         if (intel_dp->compliance.test_data.bpc != 0) {
1830                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1831
1832                 limits->min_bpp = limits->max_bpp = bpp;
1833                 pipe_config->dither_force_disable = bpp == 6 * 3;
1834
1835                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1836         }
1837
1838         /* Use values requested by Compliance Test Request */
1839         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1840                 int index;
1841
1842                 /* Validate the compliance test data since max values
1843                  * might have changed due to link train fallback.
1844                  */
1845                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1846                                                intel_dp->compliance.test_lane_count)) {
1847                         index = intel_dp_rate_index(intel_dp->common_rates,
1848                                                     intel_dp->num_common_rates,
1849                                                     intel_dp->compliance.test_link_rate);
1850                         if (index >= 0)
1851                                 limits->min_clock = limits->max_clock = index;
1852                         limits->min_lane_count = limits->max_lane_count =
1853                                 intel_dp->compliance.test_lane_count;
1854                 }
1855         }
1856 }
1857
1858 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1859 {
1860         /*
1861          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1862          * format of the number of bytes per pixel will be half the number
1863          * of bytes of RGB pixel.
1864          */
1865         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1866                 bpp /= 2;
1867
1868         return bpp;
1869 }
1870
1871 /* Optimize link config in order: max bpp, min clock, min lanes */
1872 static int
1873 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1874                                   struct intel_crtc_state *pipe_config,
1875                                   const struct link_config_limits *limits)
1876 {
1877         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1878         int bpp, clock, lane_count;
1879         int mode_rate, link_clock, link_avail;
1880
1881         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1882                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1883                                                    bpp);
1884
1885                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1886                         for (lane_count = limits->min_lane_count;
1887                              lane_count <= limits->max_lane_count;
1888                              lane_count <<= 1) {
1889                                 link_clock = intel_dp->common_rates[clock];
1890                                 link_avail = intel_dp_max_data_rate(link_clock,
1891                                                                     lane_count);
1892
1893                                 if (mode_rate <= link_avail) {
1894                                         pipe_config->lane_count = lane_count;
1895                                         pipe_config->pipe_bpp = bpp;
1896                                         pipe_config->port_clock = link_clock;
1897
1898                                         return 0;
1899                                 }
1900                         }
1901                 }
1902         }
1903
1904         return -EINVAL;
1905 }
1906
1907 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
1908 {
1909         int i, num_bpc;
1910         u8 dsc_bpc[3] = {0};
1911
1912         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
1913                                                        dsc_bpc);
1914         for (i = 0; i < num_bpc; i++) {
1915                 if (dsc_max_bpc >= dsc_bpc[i])
1916                         return dsc_bpc[i] * 3;
1917         }
1918
1919         return 0;
1920 }
1921
1922 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
1923                                        struct intel_crtc_state *pipe_config,
1924                                        struct drm_connector_state *conn_state,
1925                                        struct link_config_limits *limits)
1926 {
1927         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1928         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
1929         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1930         u8 dsc_max_bpc;
1931         int pipe_bpp;
1932         int ret;
1933
1934         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
1935                 intel_dp_supports_fec(intel_dp, pipe_config);
1936
1937         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
1938                 return -EINVAL;
1939
1940         dsc_max_bpc = min_t(u8, DP_DSC_MAX_SUPPORTED_BPC,
1941                             conn_state->max_requested_bpc);
1942
1943         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
1944         if (pipe_bpp < DP_DSC_MIN_SUPPORTED_BPC * 3) {
1945                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
1946                 return -EINVAL;
1947         }
1948
1949         /*
1950          * For now enable DSC for max bpp, max link rate, max lane count.
1951          * Optimize this later for the minimum possible link rate/lane count
1952          * with DSC enabled for the requested mode.
1953          */
1954         pipe_config->pipe_bpp = pipe_bpp;
1955         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
1956         pipe_config->lane_count = limits->max_lane_count;
1957
1958         if (intel_dp_is_edp(intel_dp)) {
1959                 pipe_config->dsc_params.compressed_bpp =
1960                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
1961                               pipe_config->pipe_bpp);
1962                 pipe_config->dsc_params.slice_count =
1963                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
1964                                                         true);
1965         } else {
1966                 u16 dsc_max_output_bpp;
1967                 u8 dsc_dp_slice_count;
1968
1969                 dsc_max_output_bpp =
1970                         intel_dp_dsc_get_output_bpp(pipe_config->port_clock,
1971                                                     pipe_config->lane_count,
1972                                                     adjusted_mode->crtc_clock,
1973                                                     adjusted_mode->crtc_hdisplay);
1974                 dsc_dp_slice_count =
1975                         intel_dp_dsc_get_slice_count(intel_dp,
1976                                                      adjusted_mode->crtc_clock,
1977                                                      adjusted_mode->crtc_hdisplay);
1978                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
1979                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
1980                         return -EINVAL;
1981                 }
1982                 pipe_config->dsc_params.compressed_bpp = min_t(u16,
1983                                                                dsc_max_output_bpp >> 4,
1984                                                                pipe_config->pipe_bpp);
1985                 pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
1986         }
1987         /*
1988          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
1989          * is greater than the maximum Cdclock and if slice count is even
1990          * then we need to use 2 VDSC instances.
1991          */
1992         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
1993                 if (pipe_config->dsc_params.slice_count > 1) {
1994                         pipe_config->dsc_params.dsc_split = true;
1995                 } else {
1996                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
1997                         return -EINVAL;
1998                 }
1999         }
2000
2001         ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2002         if (ret < 0) {
2003                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2004                               "Compressed BPP = %d\n",
2005                               pipe_config->pipe_bpp,
2006                               pipe_config->dsc_params.compressed_bpp);
2007                 return ret;
2008         }
2009
2010         pipe_config->dsc_params.compression_enable = true;
2011         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2012                       "Compressed Bpp = %d Slice Count = %d\n",
2013                       pipe_config->pipe_bpp,
2014                       pipe_config->dsc_params.compressed_bpp,
2015                       pipe_config->dsc_params.slice_count);
2016
2017         return 0;
2018 }
2019
2020 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2021 {
2022         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2023                 return 6 * 3;
2024         else
2025                 return 8 * 3;
2026 }
2027
2028 static int
2029 intel_dp_compute_link_config(struct intel_encoder *encoder,
2030                              struct intel_crtc_state *pipe_config,
2031                              struct drm_connector_state *conn_state)
2032 {
2033         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2034         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2035         struct link_config_limits limits;
2036         int common_len;
2037         int ret;
2038
2039         common_len = intel_dp_common_len_rate_limit(intel_dp,
2040                                                     intel_dp->max_link_rate);
2041
2042         /* No common link rates between source and sink */
2043         WARN_ON(common_len <= 0);
2044
2045         limits.min_clock = 0;
2046         limits.max_clock = common_len - 1;
2047
2048         limits.min_lane_count = 1;
2049         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2050
2051         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2052         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2053
2054         if (intel_dp_is_edp(intel_dp)) {
2055                 /*
2056                  * Use the maximum clock and number of lanes the eDP panel
2057                  * advertizes being capable of. The panels are generally
2058                  * designed to support only a single clock and lane
2059                  * configuration, and typically these values correspond to the
2060                  * native resolution of the panel.
2061                  */
2062                 limits.min_lane_count = limits.max_lane_count;
2063                 limits.min_clock = limits.max_clock;
2064         }
2065
2066         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2067
2068         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2069                       "max rate %d max bpp %d pixel clock %iKHz\n",
2070                       limits.max_lane_count,
2071                       intel_dp->common_rates[limits.max_clock],
2072                       limits.max_bpp, adjusted_mode->crtc_clock);
2073
2074         /*
2075          * Optimize for slow and wide. This is the place to add alternative
2076          * optimization policy.
2077          */
2078         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2079
2080         /* enable compression if the mode doesn't fit available BW */
2081         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2082         if (ret || intel_dp->force_dsc_en) {
2083                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2084                                                   conn_state, &limits);
2085                 if (ret < 0)
2086                         return ret;
2087         }
2088
2089         if (pipe_config->dsc_params.compression_enable) {
2090                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2091                               pipe_config->lane_count, pipe_config->port_clock,
2092                               pipe_config->pipe_bpp,
2093                               pipe_config->dsc_params.compressed_bpp);
2094
2095                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2096                               intel_dp_link_required(adjusted_mode->crtc_clock,
2097                                                      pipe_config->dsc_params.compressed_bpp),
2098                               intel_dp_max_data_rate(pipe_config->port_clock,
2099                                                      pipe_config->lane_count));
2100         } else {
2101                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2102                               pipe_config->lane_count, pipe_config->port_clock,
2103                               pipe_config->pipe_bpp);
2104
2105                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2106                               intel_dp_link_required(adjusted_mode->crtc_clock,
2107                                                      pipe_config->pipe_bpp),
2108                               intel_dp_max_data_rate(pipe_config->port_clock,
2109                                                      pipe_config->lane_count));
2110         }
2111         return 0;
2112 }
2113
2114 static int
2115 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2116                          struct drm_connector *connector,
2117                          struct intel_crtc_state *crtc_state)
2118 {
2119         const struct drm_display_info *info = &connector->display_info;
2120         const struct drm_display_mode *adjusted_mode =
2121                 &crtc_state->base.adjusted_mode;
2122         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2123         int ret;
2124
2125         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2126             !intel_dp_get_colorimetry_status(intel_dp) ||
2127             !connector->ycbcr_420_allowed)
2128                 return 0;
2129
2130         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2131
2132         /* YCBCR 420 output conversion needs a scaler */
2133         ret = skl_update_scaler_crtc(crtc_state);
2134         if (ret) {
2135                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2136                 return ret;
2137         }
2138
2139         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2140
2141         return 0;
2142 }
2143
2144 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2145                                   const struct drm_connector_state *conn_state)
2146 {
2147         const struct intel_digital_connector_state *intel_conn_state =
2148                 to_intel_digital_connector_state(conn_state);
2149         const struct drm_display_mode *adjusted_mode =
2150                 &crtc_state->base.adjusted_mode;
2151
2152         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2153                 /*
2154                  * See:
2155                  * CEA-861-E - 5.1 Default Encoding Parameters
2156                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2157                  */
2158                 return crtc_state->pipe_bpp != 18 &&
2159                         drm_default_rgb_quant_range(adjusted_mode) ==
2160                         HDMI_QUANTIZATION_RANGE_LIMITED;
2161         } else {
2162                 return intel_conn_state->broadcast_rgb ==
2163                         INTEL_BROADCAST_RGB_LIMITED;
2164         }
2165 }
2166
2167 int
2168 intel_dp_compute_config(struct intel_encoder *encoder,
2169                         struct intel_crtc_state *pipe_config,
2170                         struct drm_connector_state *conn_state)
2171 {
2172         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2173         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2174         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2175         struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2176         enum port port = encoder->port;
2177         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2178         struct intel_connector *intel_connector = intel_dp->attached_connector;
2179         struct intel_digital_connector_state *intel_conn_state =
2180                 to_intel_digital_connector_state(conn_state);
2181         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2182                                            DP_DPCD_QUIRK_CONSTANT_N);
2183         int ret = 0, output_bpp;
2184
2185         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2186                 pipe_config->has_pch_encoder = true;
2187
2188         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2189         if (lspcon->active)
2190                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2191         else
2192                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2193                                                pipe_config);
2194
2195         if (ret)
2196                 return ret;
2197
2198         pipe_config->has_drrs = false;
2199         if (IS_G4X(dev_priv) || port == PORT_A)
2200                 pipe_config->has_audio = false;
2201         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2202                 pipe_config->has_audio = intel_dp->has_audio;
2203         else
2204                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2205
2206         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2207                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2208                                        adjusted_mode);
2209
2210                 if (INTEL_GEN(dev_priv) >= 9) {
2211                         ret = skl_update_scaler_crtc(pipe_config);
2212                         if (ret)
2213                                 return ret;
2214                 }
2215
2216                 if (HAS_GMCH(dev_priv))
2217                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2218                                                  conn_state->scaling_mode);
2219                 else
2220                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2221                                                 conn_state->scaling_mode);
2222         }
2223
2224         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2225                 return -EINVAL;
2226
2227         if (HAS_GMCH(dev_priv) &&
2228             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2229                 return -EINVAL;
2230
2231         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2232                 return -EINVAL;
2233
2234         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2235         if (ret < 0)
2236                 return ret;
2237
2238         pipe_config->limited_color_range =
2239                 intel_dp_limited_color_range(pipe_config, conn_state);
2240
2241         if (pipe_config->dsc_params.compression_enable)
2242                 output_bpp = pipe_config->dsc_params.compressed_bpp;
2243         else
2244                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2245
2246         intel_link_compute_m_n(output_bpp,
2247                                pipe_config->lane_count,
2248                                adjusted_mode->crtc_clock,
2249                                pipe_config->port_clock,
2250                                &pipe_config->dp_m_n,
2251                                constant_n);
2252
2253         if (intel_connector->panel.downclock_mode != NULL &&
2254                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2255                         pipe_config->has_drrs = true;
2256                         intel_link_compute_m_n(output_bpp,
2257                                                pipe_config->lane_count,
2258                                                intel_connector->panel.downclock_mode->clock,
2259                                                pipe_config->port_clock,
2260                                                &pipe_config->dp_m2_n2,
2261                                                constant_n);
2262         }
2263
2264         if (!HAS_DDI(dev_priv))
2265                 intel_dp_set_clock(encoder, pipe_config);
2266
2267         intel_psr_compute_config(intel_dp, pipe_config);
2268
2269         return 0;
2270 }
2271
2272 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2273                               int link_rate, u8 lane_count,
2274                               bool link_mst)
2275 {
2276         intel_dp->link_trained = false;
2277         intel_dp->link_rate = link_rate;
2278         intel_dp->lane_count = lane_count;
2279         intel_dp->link_mst = link_mst;
2280 }
2281
2282 static void intel_dp_prepare(struct intel_encoder *encoder,
2283                              const struct intel_crtc_state *pipe_config)
2284 {
2285         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2286         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2287         enum port port = encoder->port;
2288         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2289         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2290
2291         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2292                                  pipe_config->lane_count,
2293                                  intel_crtc_has_type(pipe_config,
2294                                                      INTEL_OUTPUT_DP_MST));
2295
2296         /*
2297          * There are four kinds of DP registers:
2298          *
2299          *      IBX PCH
2300          *      SNB CPU
2301          *      IVB CPU
2302          *      CPT PCH
2303          *
2304          * IBX PCH and CPU are the same for almost everything,
2305          * except that the CPU DP PLL is configured in this
2306          * register
2307          *
2308          * CPT PCH is quite different, having many bits moved
2309          * to the TRANS_DP_CTL register instead. That
2310          * configuration happens (oddly) in ironlake_pch_enable
2311          */
2312
2313         /* Preserve the BIOS-computed detected bit. This is
2314          * supposed to be read-only.
2315          */
2316         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2317
2318         /* Handle DP bits in common between all three register formats */
2319         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2320         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2321
2322         /* Split out the IBX/CPU vs CPT settings */
2323
2324         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2325                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2326                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2327                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2328                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2329                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2330
2331                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2332                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2333
2334                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2335         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2336                 u32 trans_dp;
2337
2338                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2339
2340                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2341                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2342                         trans_dp |= TRANS_DP_ENH_FRAMING;
2343                 else
2344                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2345                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2346         } else {
2347                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2348                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2349
2350                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2351                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2352                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2353                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2354                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2355
2356                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2357                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2358
2359                 if (IS_CHERRYVIEW(dev_priv))
2360                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2361                 else
2362                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2363         }
2364 }
2365
2366 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2367 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2368
2369 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2370 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2371
2372 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2373 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2374
2375 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2376
2377 static void wait_panel_status(struct intel_dp *intel_dp,
2378                                        u32 mask,
2379                                        u32 value)
2380 {
2381         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2382         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2383
2384         lockdep_assert_held(&dev_priv->pps_mutex);
2385
2386         intel_pps_verify_state(intel_dp);
2387
2388         pp_stat_reg = _pp_stat_reg(intel_dp);
2389         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2390
2391         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2392                         mask, value,
2393                         I915_READ(pp_stat_reg),
2394                         I915_READ(pp_ctrl_reg));
2395
2396         if (intel_wait_for_register(&dev_priv->uncore,
2397                                     pp_stat_reg, mask, value,
2398                                     5000))
2399                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2400                                 I915_READ(pp_stat_reg),
2401                                 I915_READ(pp_ctrl_reg));
2402
2403         DRM_DEBUG_KMS("Wait complete\n");
2404 }
2405
2406 static void wait_panel_on(struct intel_dp *intel_dp)
2407 {
2408         DRM_DEBUG_KMS("Wait for panel power on\n");
2409         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2410 }
2411
2412 static void wait_panel_off(struct intel_dp *intel_dp)
2413 {
2414         DRM_DEBUG_KMS("Wait for panel power off time\n");
2415         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2416 }
2417
2418 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2419 {
2420         ktime_t panel_power_on_time;
2421         s64 panel_power_off_duration;
2422
2423         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2424
2425         /* take the difference of currrent time and panel power off time
2426          * and then make panel wait for t11_t12 if needed. */
2427         panel_power_on_time = ktime_get_boottime();
2428         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2429
2430         /* When we disable the VDD override bit last we have to do the manual
2431          * wait. */
2432         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2433                 wait_remaining_ms_from_jiffies(jiffies,
2434                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2435
2436         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2437 }
2438
2439 static void wait_backlight_on(struct intel_dp *intel_dp)
2440 {
2441         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2442                                        intel_dp->backlight_on_delay);
2443 }
2444
2445 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2446 {
2447         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2448                                        intel_dp->backlight_off_delay);
2449 }
2450
2451 /* Read the current pp_control value, unlocking the register if it
2452  * is locked
2453  */
2454
2455 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2456 {
2457         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2458         u32 control;
2459
2460         lockdep_assert_held(&dev_priv->pps_mutex);
2461
2462         control = I915_READ(_pp_ctrl_reg(intel_dp));
2463         if (WARN_ON(!HAS_DDI(dev_priv) &&
2464                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2465                 control &= ~PANEL_UNLOCK_MASK;
2466                 control |= PANEL_UNLOCK_REGS;
2467         }
2468         return control;
2469 }
2470
2471 /*
2472  * Must be paired with edp_panel_vdd_off().
2473  * Must hold pps_mutex around the whole on/off sequence.
2474  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2475  */
2476 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2477 {
2478         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2479         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2480         u32 pp;
2481         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2482         bool need_to_disable = !intel_dp->want_panel_vdd;
2483
2484         lockdep_assert_held(&dev_priv->pps_mutex);
2485
2486         if (!intel_dp_is_edp(intel_dp))
2487                 return false;
2488
2489         cancel_delayed_work(&intel_dp->panel_vdd_work);
2490         intel_dp->want_panel_vdd = true;
2491
2492         if (edp_have_panel_vdd(intel_dp))
2493                 return need_to_disable;
2494
2495         intel_display_power_get(dev_priv,
2496                                 intel_aux_power_domain(intel_dig_port));
2497
2498         DRM_DEBUG_KMS("Turning eDP port %c VDD on\n",
2499                       port_name(intel_dig_port->base.port));
2500
2501         if (!edp_have_panel_power(intel_dp))
2502                 wait_panel_power_cycle(intel_dp);
2503
2504         pp = ironlake_get_pp_control(intel_dp);
2505         pp |= EDP_FORCE_VDD;
2506
2507         pp_stat_reg = _pp_stat_reg(intel_dp);
2508         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2509
2510         I915_WRITE(pp_ctrl_reg, pp);
2511         POSTING_READ(pp_ctrl_reg);
2512         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2513                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2514         /*
2515          * If the panel wasn't on, delay before accessing aux channel
2516          */
2517         if (!edp_have_panel_power(intel_dp)) {
2518                 DRM_DEBUG_KMS("eDP port %c panel power wasn't enabled\n",
2519                               port_name(intel_dig_port->base.port));
2520                 msleep(intel_dp->panel_power_up_delay);
2521         }
2522
2523         return need_to_disable;
2524 }
2525
2526 /*
2527  * Must be paired with intel_edp_panel_vdd_off() or
2528  * intel_edp_panel_off().
2529  * Nested calls to these functions are not allowed since
2530  * we drop the lock. Caller must use some higher level
2531  * locking to prevent nested calls from other threads.
2532  */
2533 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2534 {
2535         intel_wakeref_t wakeref;
2536         bool vdd;
2537
2538         if (!intel_dp_is_edp(intel_dp))
2539                 return;
2540
2541         vdd = false;
2542         with_pps_lock(intel_dp, wakeref)
2543                 vdd = edp_panel_vdd_on(intel_dp);
2544         I915_STATE_WARN(!vdd, "eDP port %c VDD already requested on\n",
2545              port_name(dp_to_dig_port(intel_dp)->base.port));
2546 }
2547
2548 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2549 {
2550         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2551         struct intel_digital_port *intel_dig_port =
2552                 dp_to_dig_port(intel_dp);
2553         u32 pp;
2554         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2555
2556         lockdep_assert_held(&dev_priv->pps_mutex);
2557
2558         WARN_ON(intel_dp->want_panel_vdd);
2559
2560         if (!edp_have_panel_vdd(intel_dp))
2561                 return;
2562
2563         DRM_DEBUG_KMS("Turning eDP port %c VDD off\n",
2564                       port_name(intel_dig_port->base.port));
2565
2566         pp = ironlake_get_pp_control(intel_dp);
2567         pp &= ~EDP_FORCE_VDD;
2568
2569         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2570         pp_stat_reg = _pp_stat_reg(intel_dp);
2571
2572         I915_WRITE(pp_ctrl_reg, pp);
2573         POSTING_READ(pp_ctrl_reg);
2574
2575         /* Make sure sequencer is idle before allowing subsequent activity */
2576         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2577         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2578
2579         if ((pp & PANEL_POWER_ON) == 0)
2580                 intel_dp->panel_power_off_time = ktime_get_boottime();
2581
2582         intel_display_power_put_unchecked(dev_priv,
2583                                           intel_aux_power_domain(intel_dig_port));
2584 }
2585
2586 static void edp_panel_vdd_work(struct work_struct *__work)
2587 {
2588         struct intel_dp *intel_dp =
2589                 container_of(to_delayed_work(__work),
2590                              struct intel_dp, panel_vdd_work);
2591         intel_wakeref_t wakeref;
2592
2593         with_pps_lock(intel_dp, wakeref) {
2594                 if (!intel_dp->want_panel_vdd)
2595                         edp_panel_vdd_off_sync(intel_dp);
2596         }
2597 }
2598
2599 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2600 {
2601         unsigned long delay;
2602
2603         /*
2604          * Queue the timer to fire a long time from now (relative to the power
2605          * down delay) to keep the panel power up across a sequence of
2606          * operations.
2607          */
2608         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2609         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2610 }
2611
2612 /*
2613  * Must be paired with edp_panel_vdd_on().
2614  * Must hold pps_mutex around the whole on/off sequence.
2615  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2616  */
2617 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2618 {
2619         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2620
2621         lockdep_assert_held(&dev_priv->pps_mutex);
2622
2623         if (!intel_dp_is_edp(intel_dp))
2624                 return;
2625
2626         I915_STATE_WARN(!intel_dp->want_panel_vdd, "eDP port %c VDD not forced on",
2627              port_name(dp_to_dig_port(intel_dp)->base.port));
2628
2629         intel_dp->want_panel_vdd = false;
2630
2631         if (sync)
2632                 edp_panel_vdd_off_sync(intel_dp);
2633         else
2634                 edp_panel_vdd_schedule_off(intel_dp);
2635 }
2636
2637 static void edp_panel_on(struct intel_dp *intel_dp)
2638 {
2639         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2640         u32 pp;
2641         i915_reg_t pp_ctrl_reg;
2642
2643         lockdep_assert_held(&dev_priv->pps_mutex);
2644
2645         if (!intel_dp_is_edp(intel_dp))
2646                 return;
2647
2648         DRM_DEBUG_KMS("Turn eDP port %c panel power on\n",
2649                       port_name(dp_to_dig_port(intel_dp)->base.port));
2650
2651         if (WARN(edp_have_panel_power(intel_dp),
2652                  "eDP port %c panel power already on\n",
2653                  port_name(dp_to_dig_port(intel_dp)->base.port)))
2654                 return;
2655
2656         wait_panel_power_cycle(intel_dp);
2657
2658         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2659         pp = ironlake_get_pp_control(intel_dp);
2660         if (IS_GEN(dev_priv, 5)) {
2661                 /* ILK workaround: disable reset around power sequence */
2662                 pp &= ~PANEL_POWER_RESET;
2663                 I915_WRITE(pp_ctrl_reg, pp);
2664                 POSTING_READ(pp_ctrl_reg);
2665         }
2666
2667         pp |= PANEL_POWER_ON;
2668         if (!IS_GEN(dev_priv, 5))
2669                 pp |= PANEL_POWER_RESET;
2670
2671         I915_WRITE(pp_ctrl_reg, pp);
2672         POSTING_READ(pp_ctrl_reg);
2673
2674         wait_panel_on(intel_dp);
2675         intel_dp->last_power_on = jiffies;
2676
2677         if (IS_GEN(dev_priv, 5)) {
2678                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2679                 I915_WRITE(pp_ctrl_reg, pp);
2680                 POSTING_READ(pp_ctrl_reg);
2681         }
2682 }
2683
2684 void intel_edp_panel_on(struct intel_dp *intel_dp)
2685 {
2686         intel_wakeref_t wakeref;
2687
2688         if (!intel_dp_is_edp(intel_dp))
2689                 return;
2690
2691         with_pps_lock(intel_dp, wakeref)
2692                 edp_panel_on(intel_dp);
2693 }
2694
2695
2696 static void edp_panel_off(struct intel_dp *intel_dp)
2697 {
2698         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2699         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2700         u32 pp;
2701         i915_reg_t pp_ctrl_reg;
2702
2703         lockdep_assert_held(&dev_priv->pps_mutex);
2704
2705         if (!intel_dp_is_edp(intel_dp))
2706                 return;
2707
2708         DRM_DEBUG_KMS("Turn eDP port %c panel power off\n",
2709                       port_name(dig_port->base.port));
2710
2711         WARN(!intel_dp->want_panel_vdd, "Need eDP port %c VDD to turn off panel\n",
2712              port_name(dig_port->base.port));
2713
2714         pp = ironlake_get_pp_control(intel_dp);
2715         /* We need to switch off panel power _and_ force vdd, for otherwise some
2716          * panels get very unhappy and cease to work. */
2717         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2718                 EDP_BLC_ENABLE);
2719
2720         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2721
2722         intel_dp->want_panel_vdd = false;
2723
2724         I915_WRITE(pp_ctrl_reg, pp);
2725         POSTING_READ(pp_ctrl_reg);
2726
2727         wait_panel_off(intel_dp);
2728         intel_dp->panel_power_off_time = ktime_get_boottime();
2729
2730         /* We got a reference when we enabled the VDD. */
2731         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2732 }
2733
2734 void intel_edp_panel_off(struct intel_dp *intel_dp)
2735 {
2736         intel_wakeref_t wakeref;
2737
2738         if (!intel_dp_is_edp(intel_dp))
2739                 return;
2740
2741         with_pps_lock(intel_dp, wakeref)
2742                 edp_panel_off(intel_dp);
2743 }
2744
2745 /* Enable backlight in the panel power control. */
2746 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2747 {
2748         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2749         intel_wakeref_t wakeref;
2750
2751         /*
2752          * If we enable the backlight right away following a panel power
2753          * on, we may see slight flicker as the panel syncs with the eDP
2754          * link.  So delay a bit to make sure the image is solid before
2755          * allowing it to appear.
2756          */
2757         wait_backlight_on(intel_dp);
2758
2759         with_pps_lock(intel_dp, wakeref) {
2760                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2761                 u32 pp;
2762
2763                 pp = ironlake_get_pp_control(intel_dp);
2764                 pp |= EDP_BLC_ENABLE;
2765
2766                 I915_WRITE(pp_ctrl_reg, pp);
2767                 POSTING_READ(pp_ctrl_reg);
2768         }
2769 }
2770
2771 /* Enable backlight PWM and backlight PP control. */
2772 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2773                             const struct drm_connector_state *conn_state)
2774 {
2775         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2776
2777         if (!intel_dp_is_edp(intel_dp))
2778                 return;
2779
2780         DRM_DEBUG_KMS("\n");
2781
2782         intel_panel_enable_backlight(crtc_state, conn_state);
2783         _intel_edp_backlight_on(intel_dp);
2784 }
2785
2786 /* Disable backlight in the panel power control. */
2787 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2788 {
2789         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2790         intel_wakeref_t wakeref;
2791
2792         if (!intel_dp_is_edp(intel_dp))
2793                 return;
2794
2795         with_pps_lock(intel_dp, wakeref) {
2796                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2797                 u32 pp;
2798
2799                 pp = ironlake_get_pp_control(intel_dp);
2800                 pp &= ~EDP_BLC_ENABLE;
2801
2802                 I915_WRITE(pp_ctrl_reg, pp);
2803                 POSTING_READ(pp_ctrl_reg);
2804         }
2805
2806         intel_dp->last_backlight_off = jiffies;
2807         edp_wait_backlight_off(intel_dp);
2808 }
2809
2810 /* Disable backlight PP control and backlight PWM. */
2811 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2812 {
2813         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2814
2815         if (!intel_dp_is_edp(intel_dp))
2816                 return;
2817
2818         DRM_DEBUG_KMS("\n");
2819
2820         _intel_edp_backlight_off(intel_dp);
2821         intel_panel_disable_backlight(old_conn_state);
2822 }
2823
2824 /*
2825  * Hook for controlling the panel power control backlight through the bl_power
2826  * sysfs attribute. Take care to handle multiple calls.
2827  */
2828 static void intel_edp_backlight_power(struct intel_connector *connector,
2829                                       bool enable)
2830 {
2831         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2832         intel_wakeref_t wakeref;
2833         bool is_enabled;
2834
2835         is_enabled = false;
2836         with_pps_lock(intel_dp, wakeref)
2837                 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2838         if (is_enabled == enable)
2839                 return;
2840
2841         DRM_DEBUG_KMS("panel power control backlight %s\n",
2842                       enable ? "enable" : "disable");
2843
2844         if (enable)
2845                 _intel_edp_backlight_on(intel_dp);
2846         else
2847                 _intel_edp_backlight_off(intel_dp);
2848 }
2849
2850 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2851 {
2852         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2853         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2854         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2855
2856         I915_STATE_WARN(cur_state != state,
2857                         "DP port %c state assertion failure (expected %s, current %s)\n",
2858                         port_name(dig_port->base.port),
2859                         onoff(state), onoff(cur_state));
2860 }
2861 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2862
2863 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2864 {
2865         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2866
2867         I915_STATE_WARN(cur_state != state,
2868                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2869                         onoff(state), onoff(cur_state));
2870 }
2871 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2872 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2873
2874 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2875                                 const struct intel_crtc_state *pipe_config)
2876 {
2877         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2878         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2879
2880         assert_pipe_disabled(dev_priv, crtc->pipe);
2881         assert_dp_port_disabled(intel_dp);
2882         assert_edp_pll_disabled(dev_priv);
2883
2884         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
2885                       pipe_config->port_clock);
2886
2887         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
2888
2889         if (pipe_config->port_clock == 162000)
2890                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
2891         else
2892                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
2893
2894         I915_WRITE(DP_A, intel_dp->DP);
2895         POSTING_READ(DP_A);
2896         udelay(500);
2897
2898         /*
2899          * [DevILK] Work around required when enabling DP PLL
2900          * while a pipe is enabled going to FDI:
2901          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
2902          * 2. Program DP PLL enable
2903          */
2904         if (IS_GEN(dev_priv, 5))
2905                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
2906
2907         intel_dp->DP |= DP_PLL_ENABLE;
2908
2909         I915_WRITE(DP_A, intel_dp->DP);
2910         POSTING_READ(DP_A);
2911         udelay(200);
2912 }
2913
2914 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
2915                                  const struct intel_crtc_state *old_crtc_state)
2916 {
2917         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
2918         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2919
2920         assert_pipe_disabled(dev_priv, crtc->pipe);
2921         assert_dp_port_disabled(intel_dp);
2922         assert_edp_pll_enabled(dev_priv);
2923
2924         DRM_DEBUG_KMS("disabling eDP PLL\n");
2925
2926         intel_dp->DP &= ~DP_PLL_ENABLE;
2927
2928         I915_WRITE(DP_A, intel_dp->DP);
2929         POSTING_READ(DP_A);
2930         udelay(200);
2931 }
2932
2933 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
2934 {
2935         /*
2936          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
2937          * be capable of signalling downstream hpd with a long pulse.
2938          * Whether or not that means D3 is safe to use is not clear,
2939          * but let's assume so until proven otherwise.
2940          *
2941          * FIXME should really check all downstream ports...
2942          */
2943         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
2944                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
2945                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
2946 }
2947
2948 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
2949                                            const struct intel_crtc_state *crtc_state,
2950                                            bool enable)
2951 {
2952         int ret;
2953
2954         if (!crtc_state->dsc_params.compression_enable)
2955                 return;
2956
2957         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
2958                                  enable ? DP_DECOMPRESSION_EN : 0);
2959         if (ret < 0)
2960                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
2961                               enable ? "enable" : "disable");
2962 }
2963
2964 /* If the sink supports it, try to set the power state appropriately */
2965 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
2966 {
2967         int ret, i;
2968
2969         /* Should have a valid DPCD by this point */
2970         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
2971                 return;
2972
2973         if (mode != DRM_MODE_DPMS_ON) {
2974                 if (downstream_hpd_needs_d0(intel_dp))
2975                         return;
2976
2977                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2978                                          DP_SET_POWER_D3);
2979         } else {
2980                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
2981
2982                 /*
2983                  * When turning on, we need to retry for 1ms to give the sink
2984                  * time to wake up.
2985                  */
2986                 for (i = 0; i < 3; i++) {
2987                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
2988                                                  DP_SET_POWER_D0);
2989                         if (ret == 1)
2990                                 break;
2991                         msleep(1);
2992                 }
2993
2994                 if (ret == 1 && lspcon->active)
2995                         lspcon_wait_pcon_mode(lspcon);
2996         }
2997
2998         if (ret != 1)
2999                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3000                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3001 }
3002
3003 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3004                                  enum port port, enum pipe *pipe)
3005 {
3006         enum pipe p;
3007
3008         for_each_pipe(dev_priv, p) {
3009                 u32 val = I915_READ(TRANS_DP_CTL(p));
3010
3011                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3012                         *pipe = p;
3013                         return true;
3014                 }
3015         }
3016
3017         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3018
3019         /* must initialize pipe to something for the asserts */
3020         *pipe = PIPE_A;
3021
3022         return false;
3023 }
3024
3025 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3026                            i915_reg_t dp_reg, enum port port,
3027                            enum pipe *pipe)
3028 {
3029         bool ret;
3030         u32 val;
3031
3032         val = I915_READ(dp_reg);
3033
3034         ret = val & DP_PORT_EN;
3035
3036         /* asserts want to know the pipe even if the port is disabled */
3037         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3038                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3039         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3040                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3041         else if (IS_CHERRYVIEW(dev_priv))
3042                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3043         else
3044                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3045
3046         return ret;
3047 }
3048
3049 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3050                                   enum pipe *pipe)
3051 {
3052         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3053         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3054         intel_wakeref_t wakeref;
3055         bool ret;
3056
3057         wakeref = intel_display_power_get_if_enabled(dev_priv,
3058                                                      encoder->power_domain);
3059         if (!wakeref)
3060                 return false;
3061
3062         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3063                                     encoder->port, pipe);
3064
3065         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3066
3067         return ret;
3068 }
3069
3070 static void intel_dp_get_config(struct intel_encoder *encoder,
3071                                 struct intel_crtc_state *pipe_config)
3072 {
3073         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3074         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3075         u32 tmp, flags = 0;
3076         enum port port = encoder->port;
3077         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3078
3079         if (encoder->type == INTEL_OUTPUT_EDP)
3080                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3081         else
3082                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3083
3084         tmp = I915_READ(intel_dp->output_reg);
3085
3086         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3087
3088         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3089                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3090
3091                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3092                         flags |= DRM_MODE_FLAG_PHSYNC;
3093                 else
3094                         flags |= DRM_MODE_FLAG_NHSYNC;
3095
3096                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3097                         flags |= DRM_MODE_FLAG_PVSYNC;
3098                 else
3099                         flags |= DRM_MODE_FLAG_NVSYNC;
3100         } else {
3101                 if (tmp & DP_SYNC_HS_HIGH)
3102                         flags |= DRM_MODE_FLAG_PHSYNC;
3103                 else
3104                         flags |= DRM_MODE_FLAG_NHSYNC;
3105
3106                 if (tmp & DP_SYNC_VS_HIGH)
3107                         flags |= DRM_MODE_FLAG_PVSYNC;
3108                 else
3109                         flags |= DRM_MODE_FLAG_NVSYNC;
3110         }
3111
3112         pipe_config->base.adjusted_mode.flags |= flags;
3113
3114         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3115                 pipe_config->limited_color_range = true;
3116
3117         pipe_config->lane_count =
3118                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3119
3120         intel_dp_get_m_n(crtc, pipe_config);
3121
3122         if (port == PORT_A) {
3123                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3124                         pipe_config->port_clock = 162000;
3125                 else
3126                         pipe_config->port_clock = 270000;
3127         }
3128
3129         pipe_config->base.adjusted_mode.crtc_clock =
3130                 intel_dotclock_calculate(pipe_config->port_clock,
3131                                          &pipe_config->dp_m_n);
3132
3133         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3134             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3135                 /*
3136                  * This is a big fat ugly hack.
3137                  *
3138                  * Some machines in UEFI boot mode provide us a VBT that has 18
3139                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3140                  * unknown we fail to light up. Yet the same BIOS boots up with
3141                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3142                  * max, not what it tells us to use.
3143                  *
3144                  * Note: This will still be broken if the eDP panel is not lit
3145                  * up by the BIOS, and thus we can't get the mode at module
3146                  * load.
3147                  */
3148                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3149                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3150                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3151         }
3152 }
3153
3154 static void intel_disable_dp(struct intel_encoder *encoder,
3155                              const struct intel_crtc_state *old_crtc_state,
3156                              const struct drm_connector_state *old_conn_state)
3157 {
3158         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3159
3160         intel_dp->link_trained = false;
3161
3162         if (old_crtc_state->has_audio)
3163                 intel_audio_codec_disable(encoder,
3164                                           old_crtc_state, old_conn_state);
3165
3166         /* Make sure the panel is off before trying to change the mode. But also
3167          * ensure that we have vdd while we switch off the panel. */
3168         intel_edp_panel_vdd_on(intel_dp);
3169         intel_edp_backlight_off(old_conn_state);
3170         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3171         intel_edp_panel_off(intel_dp);
3172 }
3173
3174 static void g4x_disable_dp(struct intel_encoder *encoder,
3175                            const struct intel_crtc_state *old_crtc_state,
3176                            const struct drm_connector_state *old_conn_state)
3177 {
3178         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3179 }
3180
3181 static void vlv_disable_dp(struct intel_encoder *encoder,
3182                            const struct intel_crtc_state *old_crtc_state,
3183                            const struct drm_connector_state *old_conn_state)
3184 {
3185         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3186 }
3187
3188 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3189                                 const struct intel_crtc_state *old_crtc_state,
3190                                 const struct drm_connector_state *old_conn_state)
3191 {
3192         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3193         enum port port = encoder->port;
3194
3195         /*
3196          * Bspec does not list a specific disable sequence for g4x DP.
3197          * Follow the ilk+ sequence (disable pipe before the port) for
3198          * g4x DP as it does not suffer from underruns like the normal
3199          * g4x modeset sequence (disable pipe after the port).
3200          */
3201         intel_dp_link_down(encoder, old_crtc_state);
3202
3203         /* Only ilk+ has port A */
3204         if (port == PORT_A)
3205                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3206 }
3207
3208 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3209                                 const struct intel_crtc_state *old_crtc_state,
3210                                 const struct drm_connector_state *old_conn_state)
3211 {
3212         intel_dp_link_down(encoder, old_crtc_state);
3213 }
3214
3215 static void chv_post_disable_dp(struct intel_encoder *encoder,
3216                                 const struct intel_crtc_state *old_crtc_state,
3217                                 const struct drm_connector_state *old_conn_state)
3218 {
3219         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3220
3221         intel_dp_link_down(encoder, old_crtc_state);
3222
3223         vlv_dpio_get(dev_priv);
3224
3225         /* Assert data lane reset */
3226         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3227
3228         vlv_dpio_put(dev_priv);
3229 }
3230
3231 static void
3232 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3233                          u32 *DP,
3234                          u8 dp_train_pat)
3235 {
3236         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3237         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3238         enum port port = intel_dig_port->base.port;
3239         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3240
3241         if (dp_train_pat & train_pat_mask)
3242                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3243                               dp_train_pat & train_pat_mask);
3244
3245         if (HAS_DDI(dev_priv)) {
3246                 u32 temp = I915_READ(DP_TP_CTL(port));
3247
3248                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3249                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3250                 else
3251                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3252
3253                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3254                 switch (dp_train_pat & train_pat_mask) {
3255                 case DP_TRAINING_PATTERN_DISABLE:
3256                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3257
3258                         break;
3259                 case DP_TRAINING_PATTERN_1:
3260                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3261                         break;
3262                 case DP_TRAINING_PATTERN_2:
3263                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3264                         break;
3265                 case DP_TRAINING_PATTERN_3:
3266                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3267                         break;
3268                 case DP_TRAINING_PATTERN_4:
3269                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3270                         break;
3271                 }
3272                 I915_WRITE(DP_TP_CTL(port), temp);
3273
3274         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3275                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3276                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3277
3278                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3279                 case DP_TRAINING_PATTERN_DISABLE:
3280                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3281                         break;
3282                 case DP_TRAINING_PATTERN_1:
3283                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3284                         break;
3285                 case DP_TRAINING_PATTERN_2:
3286                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3287                         break;
3288                 case DP_TRAINING_PATTERN_3:
3289                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3290                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3291                         break;
3292                 }
3293
3294         } else {
3295                 *DP &= ~DP_LINK_TRAIN_MASK;
3296
3297                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3298                 case DP_TRAINING_PATTERN_DISABLE:
3299                         *DP |= DP_LINK_TRAIN_OFF;
3300                         break;
3301                 case DP_TRAINING_PATTERN_1:
3302                         *DP |= DP_LINK_TRAIN_PAT_1;
3303                         break;
3304                 case DP_TRAINING_PATTERN_2:
3305                         *DP |= DP_LINK_TRAIN_PAT_2;
3306                         break;
3307                 case DP_TRAINING_PATTERN_3:
3308                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3309                         *DP |= DP_LINK_TRAIN_PAT_2;
3310                         break;
3311                 }
3312         }
3313 }
3314
3315 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3316                                  const struct intel_crtc_state *old_crtc_state)
3317 {
3318         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3319
3320         /* enable with pattern 1 (as per spec) */
3321
3322         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3323
3324         /*
3325          * Magic for VLV/CHV. We _must_ first set up the register
3326          * without actually enabling the port, and then do another
3327          * write to enable the port. Otherwise link training will
3328          * fail when the power sequencer is freshly used for this port.
3329          */
3330         intel_dp->DP |= DP_PORT_EN;
3331         if (old_crtc_state->has_audio)
3332                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3333
3334         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3335         POSTING_READ(intel_dp->output_reg);
3336 }
3337
3338 static void intel_enable_dp(struct intel_encoder *encoder,
3339                             const struct intel_crtc_state *pipe_config,
3340                             const struct drm_connector_state *conn_state)
3341 {
3342         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3343         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3344         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3345         u32 dp_reg = I915_READ(intel_dp->output_reg);
3346         enum pipe pipe = crtc->pipe;
3347         intel_wakeref_t wakeref;
3348
3349         if (WARN_ON(dp_reg & DP_PORT_EN))
3350                 return;
3351
3352         with_pps_lock(intel_dp, wakeref) {
3353                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3354                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3355
3356                 intel_dp_enable_port(intel_dp, pipe_config);
3357
3358                 edp_panel_vdd_on(intel_dp);
3359                 edp_panel_on(intel_dp);
3360                 edp_panel_vdd_off(intel_dp, true);
3361         }
3362
3363         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3364                 unsigned int lane_mask = 0x0;
3365
3366                 if (IS_CHERRYVIEW(dev_priv))
3367                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3368
3369                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3370                                     lane_mask);
3371         }
3372
3373         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3374         intel_dp_start_link_train(intel_dp);
3375         intel_dp_stop_link_train(intel_dp);
3376
3377         if (pipe_config->has_audio) {
3378                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3379                                  pipe_name(pipe));
3380                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3381         }
3382 }
3383
3384 static void g4x_enable_dp(struct intel_encoder *encoder,
3385                           const struct intel_crtc_state *pipe_config,
3386                           const struct drm_connector_state *conn_state)
3387 {
3388         intel_enable_dp(encoder, pipe_config, conn_state);
3389         intel_edp_backlight_on(pipe_config, conn_state);
3390 }
3391
3392 static void vlv_enable_dp(struct intel_encoder *encoder,
3393                           const struct intel_crtc_state *pipe_config,
3394                           const struct drm_connector_state *conn_state)
3395 {
3396         intel_edp_backlight_on(pipe_config, conn_state);
3397 }
3398
3399 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3400                               const struct intel_crtc_state *pipe_config,
3401                               const struct drm_connector_state *conn_state)
3402 {
3403         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3404         enum port port = encoder->port;
3405
3406         intel_dp_prepare(encoder, pipe_config);
3407
3408         /* Only ilk+ has port A */
3409         if (port == PORT_A)
3410                 ironlake_edp_pll_on(intel_dp, pipe_config);
3411 }
3412
3413 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3414 {
3415         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3416         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3417         enum pipe pipe = intel_dp->pps_pipe;
3418         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3419
3420         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3421
3422         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3423                 return;
3424
3425         edp_panel_vdd_off_sync(intel_dp);
3426
3427         /*
3428          * VLV seems to get confused when multiple power sequencers
3429          * have the same port selected (even if only one has power/vdd
3430          * enabled). The failure manifests as vlv_wait_port_ready() failing
3431          * CHV on the other hand doesn't seem to mind having the same port
3432          * selected in multiple power sequencers, but let's clear the
3433          * port select always when logically disconnecting a power sequencer
3434          * from a port.
3435          */
3436         DRM_DEBUG_KMS("detaching pipe %c power sequencer from port %c\n",
3437                       pipe_name(pipe), port_name(intel_dig_port->base.port));
3438         I915_WRITE(pp_on_reg, 0);
3439         POSTING_READ(pp_on_reg);
3440
3441         intel_dp->pps_pipe = INVALID_PIPE;
3442 }
3443
3444 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3445                                       enum pipe pipe)
3446 {
3447         struct intel_encoder *encoder;
3448
3449         lockdep_assert_held(&dev_priv->pps_mutex);
3450
3451         for_each_intel_dp(&dev_priv->drm, encoder) {
3452                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3453                 enum port port = encoder->port;
3454
3455                 WARN(intel_dp->active_pipe == pipe,
3456                      "stealing pipe %c power sequencer from active (e)DP port %c\n",
3457                      pipe_name(pipe), port_name(port));
3458
3459                 if (intel_dp->pps_pipe != pipe)
3460                         continue;
3461
3462                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from port %c\n",
3463                               pipe_name(pipe), port_name(port));
3464
3465                 /* make sure vdd is off before we steal it */
3466                 vlv_detach_power_sequencer(intel_dp);
3467         }
3468 }
3469
3470 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3471                                            const struct intel_crtc_state *crtc_state)
3472 {
3473         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3474         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3475         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3476
3477         lockdep_assert_held(&dev_priv->pps_mutex);
3478
3479         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3480
3481         if (intel_dp->pps_pipe != INVALID_PIPE &&
3482             intel_dp->pps_pipe != crtc->pipe) {
3483                 /*
3484                  * If another power sequencer was being used on this
3485                  * port previously make sure to turn off vdd there while
3486                  * we still have control of it.
3487                  */
3488                 vlv_detach_power_sequencer(intel_dp);
3489         }
3490
3491         /*
3492          * We may be stealing the power
3493          * sequencer from another port.
3494          */
3495         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3496
3497         intel_dp->active_pipe = crtc->pipe;
3498
3499         if (!intel_dp_is_edp(intel_dp))
3500                 return;
3501
3502         /* now it's all ours */
3503         intel_dp->pps_pipe = crtc->pipe;
3504
3505         DRM_DEBUG_KMS("initializing pipe %c power sequencer for port %c\n",
3506                       pipe_name(intel_dp->pps_pipe), port_name(encoder->port));
3507
3508         /* init power sequencer on this pipe and port */
3509         intel_dp_init_panel_power_sequencer(intel_dp);
3510         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3511 }
3512
3513 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3514                               const struct intel_crtc_state *pipe_config,
3515                               const struct drm_connector_state *conn_state)
3516 {
3517         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3518
3519         intel_enable_dp(encoder, pipe_config, conn_state);
3520 }
3521
3522 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3523                                   const struct intel_crtc_state *pipe_config,
3524                                   const struct drm_connector_state *conn_state)
3525 {
3526         intel_dp_prepare(encoder, pipe_config);
3527
3528         vlv_phy_pre_pll_enable(encoder, pipe_config);
3529 }
3530
3531 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3532                               const struct intel_crtc_state *pipe_config,
3533                               const struct drm_connector_state *conn_state)
3534 {
3535         chv_phy_pre_encoder_enable(encoder, pipe_config);
3536
3537         intel_enable_dp(encoder, pipe_config, conn_state);
3538
3539         /* Second common lane will stay alive on its own now */
3540         chv_phy_release_cl2_override(encoder);
3541 }
3542
3543 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3544                                   const struct intel_crtc_state *pipe_config,
3545                                   const struct drm_connector_state *conn_state)
3546 {
3547         intel_dp_prepare(encoder, pipe_config);
3548
3549         chv_phy_pre_pll_enable(encoder, pipe_config);
3550 }
3551
3552 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3553                                     const struct intel_crtc_state *old_crtc_state,
3554                                     const struct drm_connector_state *old_conn_state)
3555 {
3556         chv_phy_post_pll_disable(encoder, old_crtc_state);
3557 }
3558
3559 /*
3560  * Fetch AUX CH registers 0x202 - 0x207 which contain
3561  * link status information
3562  */
3563 bool
3564 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3565 {
3566         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3567                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3568 }
3569
3570 /* These are source-specific values. */
3571 u8
3572 intel_dp_voltage_max(struct intel_dp *intel_dp)
3573 {
3574         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3575         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3576         enum port port = encoder->port;
3577
3578         if (HAS_DDI(dev_priv))
3579                 return intel_ddi_dp_voltage_max(encoder);
3580         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3581                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3582         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3583                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3584         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3585                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3586         else
3587                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3588 }
3589
3590 u8
3591 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3592 {
3593         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3594         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3595         enum port port = encoder->port;
3596
3597         if (HAS_DDI(dev_priv)) {
3598                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3599         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3600                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3601                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3602                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3603                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3604                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3605                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3606                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3607                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3608                 default:
3609                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3610                 }
3611         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3612                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3613                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3614                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3615                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3616                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3617                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3618                 default:
3619                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3620                 }
3621         } else {
3622                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3623                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3624                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3625                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3626                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3627                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3628                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3629                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3630                 default:
3631                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3632                 }
3633         }
3634 }
3635
3636 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3637 {
3638         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3639         unsigned long demph_reg_value, preemph_reg_value,
3640                 uniqtranscale_reg_value;
3641         u8 train_set = intel_dp->train_set[0];
3642
3643         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3644         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3645                 preemph_reg_value = 0x0004000;
3646                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3647                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3648                         demph_reg_value = 0x2B405555;
3649                         uniqtranscale_reg_value = 0x552AB83A;
3650                         break;
3651                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3652                         demph_reg_value = 0x2B404040;
3653                         uniqtranscale_reg_value = 0x5548B83A;
3654                         break;
3655                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3656                         demph_reg_value = 0x2B245555;
3657                         uniqtranscale_reg_value = 0x5560B83A;
3658                         break;
3659                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3660                         demph_reg_value = 0x2B405555;
3661                         uniqtranscale_reg_value = 0x5598DA3A;
3662                         break;
3663                 default:
3664                         return 0;
3665                 }
3666                 break;
3667         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3668                 preemph_reg_value = 0x0002000;
3669                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3670                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3671                         demph_reg_value = 0x2B404040;
3672                         uniqtranscale_reg_value = 0x5552B83A;
3673                         break;
3674                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3675                         demph_reg_value = 0x2B404848;
3676                         uniqtranscale_reg_value = 0x5580B83A;
3677                         break;
3678                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3679                         demph_reg_value = 0x2B404040;
3680                         uniqtranscale_reg_value = 0x55ADDA3A;
3681                         break;
3682                 default:
3683                         return 0;
3684                 }
3685                 break;
3686         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3687                 preemph_reg_value = 0x0000000;
3688                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3689                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3690                         demph_reg_value = 0x2B305555;
3691                         uniqtranscale_reg_value = 0x5570B83A;
3692                         break;
3693                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3694                         demph_reg_value = 0x2B2B4040;
3695                         uniqtranscale_reg_value = 0x55ADDA3A;
3696                         break;
3697                 default:
3698                         return 0;
3699                 }
3700                 break;
3701         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3702                 preemph_reg_value = 0x0006000;
3703                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3704                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3705                         demph_reg_value = 0x1B405555;
3706                         uniqtranscale_reg_value = 0x55ADDA3A;
3707                         break;
3708                 default:
3709                         return 0;
3710                 }
3711                 break;
3712         default:
3713                 return 0;
3714         }
3715
3716         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3717                                  uniqtranscale_reg_value, 0);
3718
3719         return 0;
3720 }
3721
3722 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3723 {
3724         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3725         u32 deemph_reg_value, margin_reg_value;
3726         bool uniq_trans_scale = false;
3727         u8 train_set = intel_dp->train_set[0];
3728
3729         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3730         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3731                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3732                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3733                         deemph_reg_value = 128;
3734                         margin_reg_value = 52;
3735                         break;
3736                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3737                         deemph_reg_value = 128;
3738                         margin_reg_value = 77;
3739                         break;
3740                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3741                         deemph_reg_value = 128;
3742                         margin_reg_value = 102;
3743                         break;
3744                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3745                         deemph_reg_value = 128;
3746                         margin_reg_value = 154;
3747                         uniq_trans_scale = true;
3748                         break;
3749                 default:
3750                         return 0;
3751                 }
3752                 break;
3753         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3754                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3755                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3756                         deemph_reg_value = 85;
3757                         margin_reg_value = 78;
3758                         break;
3759                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3760                         deemph_reg_value = 85;
3761                         margin_reg_value = 116;
3762                         break;
3763                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3764                         deemph_reg_value = 85;
3765                         margin_reg_value = 154;
3766                         break;
3767                 default:
3768                         return 0;
3769                 }
3770                 break;
3771         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3772                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3773                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3774                         deemph_reg_value = 64;
3775                         margin_reg_value = 104;
3776                         break;
3777                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3778                         deemph_reg_value = 64;
3779                         margin_reg_value = 154;
3780                         break;
3781                 default:
3782                         return 0;
3783                 }
3784                 break;
3785         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3786                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3787                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3788                         deemph_reg_value = 43;
3789                         margin_reg_value = 154;
3790                         break;
3791                 default:
3792                         return 0;
3793                 }
3794                 break;
3795         default:
3796                 return 0;
3797         }
3798
3799         chv_set_phy_signal_level(encoder, deemph_reg_value,
3800                                  margin_reg_value, uniq_trans_scale);
3801
3802         return 0;
3803 }
3804
3805 static u32
3806 g4x_signal_levels(u8 train_set)
3807 {
3808         u32 signal_levels = 0;
3809
3810         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3811         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3812         default:
3813                 signal_levels |= DP_VOLTAGE_0_4;
3814                 break;
3815         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3816                 signal_levels |= DP_VOLTAGE_0_6;
3817                 break;
3818         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3819                 signal_levels |= DP_VOLTAGE_0_8;
3820                 break;
3821         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3822                 signal_levels |= DP_VOLTAGE_1_2;
3823                 break;
3824         }
3825         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3826         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3827         default:
3828                 signal_levels |= DP_PRE_EMPHASIS_0;
3829                 break;
3830         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3831                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3832                 break;
3833         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3834                 signal_levels |= DP_PRE_EMPHASIS_6;
3835                 break;
3836         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3837                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3838                 break;
3839         }
3840         return signal_levels;
3841 }
3842
3843 /* SNB CPU eDP voltage swing and pre-emphasis control */
3844 static u32
3845 snb_cpu_edp_signal_levels(u8 train_set)
3846 {
3847         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3848                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3849         switch (signal_levels) {
3850         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3851         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3852                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3853         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3854                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3855         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3856         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3857                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3858         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3859         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3860                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3861         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3862         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3863                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3864         default:
3865                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3866                               "0x%x\n", signal_levels);
3867                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3868         }
3869 }
3870
3871 /* IVB CPU eDP voltage swing and pre-emphasis control */
3872 static u32
3873 ivb_cpu_edp_signal_levels(u8 train_set)
3874 {
3875         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3876                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3877         switch (signal_levels) {
3878         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3879                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
3880         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3881                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
3882         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3883                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
3884
3885         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3886                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
3887         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3888                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
3889
3890         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3891                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
3892         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3893                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
3894
3895         default:
3896                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3897                               "0x%x\n", signal_levels);
3898                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
3899         }
3900 }
3901
3902 void
3903 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
3904 {
3905         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3906         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3907         enum port port = intel_dig_port->base.port;
3908         u32 signal_levels, mask = 0;
3909         u8 train_set = intel_dp->train_set[0];
3910
3911         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
3912                 signal_levels = bxt_signal_levels(intel_dp);
3913         } else if (HAS_DDI(dev_priv)) {
3914                 signal_levels = ddi_signal_levels(intel_dp);
3915                 mask = DDI_BUF_EMP_MASK;
3916         } else if (IS_CHERRYVIEW(dev_priv)) {
3917                 signal_levels = chv_signal_levels(intel_dp);
3918         } else if (IS_VALLEYVIEW(dev_priv)) {
3919                 signal_levels = vlv_signal_levels(intel_dp);
3920         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3921                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
3922                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
3923         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
3924                 signal_levels = snb_cpu_edp_signal_levels(train_set);
3925                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
3926         } else {
3927                 signal_levels = g4x_signal_levels(train_set);
3928                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
3929         }
3930
3931         if (mask)
3932                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
3933
3934         DRM_DEBUG_KMS("Using vswing level %d\n",
3935                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
3936         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
3937                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
3938                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
3939
3940         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
3941
3942         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3943         POSTING_READ(intel_dp->output_reg);
3944 }
3945
3946 void
3947 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
3948                                        u8 dp_train_pat)
3949 {
3950         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3951         struct drm_i915_private *dev_priv =
3952                 to_i915(intel_dig_port->base.base.dev);
3953
3954         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
3955
3956         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3957         POSTING_READ(intel_dp->output_reg);
3958 }
3959
3960 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
3961 {
3962         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3963         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3964         enum port port = intel_dig_port->base.port;
3965         u32 val;
3966
3967         if (!HAS_DDI(dev_priv))
3968                 return;
3969
3970         val = I915_READ(DP_TP_CTL(port));
3971         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3972         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
3973         I915_WRITE(DP_TP_CTL(port), val);
3974
3975         /*
3976          * On PORT_A we can have only eDP in SST mode. There the only reason
3977          * we need to set idle transmission mode is to work around a HW issue
3978          * where we enable the pipe while not in idle link-training mode.
3979          * In this case there is requirement to wait for a minimum number of
3980          * idle patterns to be sent.
3981          */
3982         if (port == PORT_A)
3983                 return;
3984
3985         if (intel_wait_for_register(&dev_priv->uncore, DP_TP_STATUS(port),
3986                                     DP_TP_STATUS_IDLE_DONE,
3987                                     DP_TP_STATUS_IDLE_DONE,
3988                                     1))
3989                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
3990 }
3991
3992 static void
3993 intel_dp_link_down(struct intel_encoder *encoder,
3994                    const struct intel_crtc_state *old_crtc_state)
3995 {
3996         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3997         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3998         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3999         enum port port = encoder->port;
4000         u32 DP = intel_dp->DP;
4001
4002         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4003                 return;
4004
4005         DRM_DEBUG_KMS("\n");
4006
4007         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4008             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4009                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4010                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4011         } else {
4012                 DP &= ~DP_LINK_TRAIN_MASK;
4013                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4014         }
4015         I915_WRITE(intel_dp->output_reg, DP);
4016         POSTING_READ(intel_dp->output_reg);
4017
4018         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4019         I915_WRITE(intel_dp->output_reg, DP);
4020         POSTING_READ(intel_dp->output_reg);
4021
4022         /*
4023          * HW workaround for IBX, we need to move the port
4024          * to transcoder A after disabling it to allow the
4025          * matching HDMI port to be enabled on transcoder A.
4026          */
4027         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4028                 /*
4029                  * We get CPU/PCH FIFO underruns on the other pipe when
4030                  * doing the workaround. Sweep them under the rug.
4031                  */
4032                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4033                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4034
4035                 /* always enable with pattern 1 (as per spec) */
4036                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4037                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4038                         DP_LINK_TRAIN_PAT_1;
4039                 I915_WRITE(intel_dp->output_reg, DP);
4040                 POSTING_READ(intel_dp->output_reg);
4041
4042                 DP &= ~DP_PORT_EN;
4043                 I915_WRITE(intel_dp->output_reg, DP);
4044                 POSTING_READ(intel_dp->output_reg);
4045
4046                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4047                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4048                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4049         }
4050
4051         msleep(intel_dp->panel_power_down_delay);
4052
4053         intel_dp->DP = DP;
4054
4055         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4056                 intel_wakeref_t wakeref;
4057
4058                 with_pps_lock(intel_dp, wakeref)
4059                         intel_dp->active_pipe = INVALID_PIPE;
4060         }
4061 }
4062
4063 static void
4064 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4065 {
4066         u8 dpcd_ext[6];
4067
4068         /*
4069          * Prior to DP1.3 the bit represented by
4070          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4071          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4072          * the true capability of the panel. The only way to check is to
4073          * then compare 0000h and 2200h.
4074          */
4075         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4076               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4077                 return;
4078
4079         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4080                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4081                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4082                 return;
4083         }
4084
4085         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4086                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4087                 return;
4088         }
4089
4090         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4091                 return;
4092
4093         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4094                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4095
4096         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4097 }
4098
4099 bool
4100 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4101 {
4102         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4103                              sizeof(intel_dp->dpcd)) < 0)
4104                 return false; /* aux transfer failed */
4105
4106         intel_dp_extended_receiver_capabilities(intel_dp);
4107
4108         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4109
4110         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4111 }
4112
4113 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4114 {
4115         u8 dprx = 0;
4116
4117         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4118                               &dprx) != 1)
4119                 return false;
4120         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4121 }
4122
4123 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4124 {
4125         /*
4126          * Clear the cached register set to avoid using stale values
4127          * for the sinks that do not support DSC.
4128          */
4129         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4130
4131         /* Clear fec_capable to avoid using stale values */
4132         intel_dp->fec_capable = 0;
4133
4134         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4135         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4136             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4137                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4138                                      intel_dp->dsc_dpcd,
4139                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4140                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4141                                   DP_DSC_SUPPORT);
4142
4143                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4144                               (int)sizeof(intel_dp->dsc_dpcd),
4145                               intel_dp->dsc_dpcd);
4146
4147                 /* FEC is supported only on DP 1.4 */
4148                 if (!intel_dp_is_edp(intel_dp) &&
4149                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4150                                       &intel_dp->fec_capable) < 0)
4151                         DRM_ERROR("Failed to read FEC DPCD register\n");
4152
4153                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4154         }
4155 }
4156
4157 static bool
4158 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4159 {
4160         struct drm_i915_private *dev_priv =
4161                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4162
4163         /* this function is meant to be called only once */
4164         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4165
4166         if (!intel_dp_read_dpcd(intel_dp))
4167                 return false;
4168
4169         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4170                          drm_dp_is_branch(intel_dp->dpcd));
4171
4172         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11)
4173                 dev_priv->no_aux_handshake = intel_dp->dpcd[DP_MAX_DOWNSPREAD] &
4174                         DP_NO_AUX_HANDSHAKE_LINK_TRAINING;
4175
4176         /*
4177          * Read the eDP display control registers.
4178          *
4179          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4180          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4181          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4182          * method). The display control registers should read zero if they're
4183          * not supported anyway.
4184          */
4185         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4186                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4187                              sizeof(intel_dp->edp_dpcd))
4188                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4189                               intel_dp->edp_dpcd);
4190
4191         /*
4192          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4193          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4194          */
4195         intel_psr_init_dpcd(intel_dp);
4196
4197         /* Read the eDP 1.4+ supported link rates. */
4198         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4199                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4200                 int i;
4201
4202                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4203                                 sink_rates, sizeof(sink_rates));
4204
4205                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4206                         int val = le16_to_cpu(sink_rates[i]);
4207
4208                         if (val == 0)
4209                                 break;
4210
4211                         /* Value read multiplied by 200kHz gives the per-lane
4212                          * link rate in kHz. The source rates are, however,
4213                          * stored in terms of LS_Clk kHz. The full conversion
4214                          * back to symbols is
4215                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4216                          */
4217                         intel_dp->sink_rates[i] = (val * 200) / 10;
4218                 }
4219                 intel_dp->num_sink_rates = i;
4220         }
4221
4222         /*
4223          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4224          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4225          */
4226         if (intel_dp->num_sink_rates)
4227                 intel_dp->use_rate_select = true;
4228         else
4229                 intel_dp_set_sink_rates(intel_dp);
4230
4231         intel_dp_set_common_rates(intel_dp);
4232
4233         /* Read the eDP DSC DPCD registers */
4234         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4235                 intel_dp_get_dsc_sink_cap(intel_dp);
4236
4237         return true;
4238 }
4239
4240
4241 static bool
4242 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4243 {
4244         if (!intel_dp_read_dpcd(intel_dp))
4245                 return false;
4246
4247         /* Don't clobber cached eDP rates. */
4248         if (!intel_dp_is_edp(intel_dp)) {
4249                 intel_dp_set_sink_rates(intel_dp);
4250                 intel_dp_set_common_rates(intel_dp);
4251         }
4252
4253         /*
4254          * Some eDP panels do not set a valid value for sink count, that is why
4255          * it don't care about read it here and in intel_edp_init_dpcd().
4256          */
4257         if (!intel_dp_is_edp(intel_dp)) {
4258                 u8 count;
4259                 ssize_t r;
4260
4261                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4262                 if (r < 1)
4263                         return false;
4264
4265                 /*
4266                  * Sink count can change between short pulse hpd hence
4267                  * a member variable in intel_dp will track any changes
4268                  * between short pulse interrupts.
4269                  */
4270                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4271
4272                 /*
4273                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4274                  * a dongle is present but no display. Unless we require to know
4275                  * if a dongle is present or not, we don't need to update
4276                  * downstream port information. So, an early return here saves
4277                  * time from performing other operations which are not required.
4278                  */
4279                 if (!intel_dp->sink_count)
4280                         return false;
4281         }
4282
4283         if (!drm_dp_is_branch(intel_dp->dpcd))
4284                 return true; /* native DP sink */
4285
4286         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4287                 return true; /* no per-port downstream info */
4288
4289         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4290                              intel_dp->downstream_ports,
4291                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4292                 return false; /* downstream port status fetch failed */
4293
4294         return true;
4295 }
4296
4297 static bool
4298 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4299 {
4300         u8 mstm_cap;
4301
4302         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4303                 return false;
4304
4305         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4306                 return false;
4307
4308         return mstm_cap & DP_MST_CAP;
4309 }
4310
4311 static bool
4312 intel_dp_can_mst(struct intel_dp *intel_dp)
4313 {
4314         return i915_modparams.enable_dp_mst &&
4315                 intel_dp->can_mst &&
4316                 intel_dp_sink_can_mst(intel_dp);
4317 }
4318
4319 static void
4320 intel_dp_configure_mst(struct intel_dp *intel_dp)
4321 {
4322         struct intel_encoder *encoder =
4323                 &dp_to_dig_port(intel_dp)->base;
4324         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4325
4326         DRM_DEBUG_KMS("MST support? port %c: %s, sink: %s, modparam: %s\n",
4327                       port_name(encoder->port), yesno(intel_dp->can_mst),
4328                       yesno(sink_can_mst), yesno(i915_modparams.enable_dp_mst));
4329
4330         if (!intel_dp->can_mst)
4331                 return;
4332
4333         intel_dp->is_mst = sink_can_mst &&
4334                 i915_modparams.enable_dp_mst;
4335
4336         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4337                                         intel_dp->is_mst);
4338 }
4339
4340 static bool
4341 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4342 {
4343         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4344                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4345                 DP_DPRX_ESI_LEN;
4346 }
4347
4348 u16 intel_dp_dsc_get_output_bpp(int link_clock, u8 lane_count,
4349                                 int mode_clock, int mode_hdisplay)
4350 {
4351         u16 bits_per_pixel, max_bpp_small_joiner_ram;
4352         int i;
4353
4354         /*
4355          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
4356          * (LinkSymbolClock)* 8 * ((100-FECOverhead)/100)*(TimeSlotsPerMTP)
4357          * FECOverhead = 2.4%, for SST -> TimeSlotsPerMTP is 1,
4358          * for MST -> TimeSlotsPerMTP has to be calculated
4359          */
4360         bits_per_pixel = (link_clock * lane_count * 8 *
4361                           DP_DSC_FEC_OVERHEAD_FACTOR) /
4362                 mode_clock;
4363
4364         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
4365         max_bpp_small_joiner_ram = DP_DSC_MAX_SMALL_JOINER_RAM_BUFFER /
4366                 mode_hdisplay;
4367
4368         /*
4369          * Greatest allowed DSC BPP = MIN (output BPP from avaialble Link BW
4370          * check, output bpp from small joiner RAM check)
4371          */
4372         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
4373
4374         /* Error out if the max bpp is less than smallest allowed valid bpp */
4375         if (bits_per_pixel < valid_dsc_bpp[0]) {
4376                 DRM_DEBUG_KMS("Unsupported BPP %d\n", bits_per_pixel);
4377                 return 0;
4378         }
4379
4380         /* Find the nearest match in the array of known BPPs from VESA */
4381         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
4382                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
4383                         break;
4384         }
4385         bits_per_pixel = valid_dsc_bpp[i];
4386
4387         /*
4388          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
4389          * fractional part is 0
4390          */
4391         return bits_per_pixel << 4;
4392 }
4393
4394 u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
4395                                 int mode_clock,
4396                                 int mode_hdisplay)
4397 {
4398         u8 min_slice_count, i;
4399         int max_slice_width;
4400
4401         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
4402                 min_slice_count = DIV_ROUND_UP(mode_clock,
4403                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
4404         else
4405                 min_slice_count = DIV_ROUND_UP(mode_clock,
4406                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
4407
4408         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
4409         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
4410                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
4411                               max_slice_width);
4412                 return 0;
4413         }
4414         /* Also take into account max slice width */
4415         min_slice_count = min_t(u8, min_slice_count,
4416                                 DIV_ROUND_UP(mode_hdisplay,
4417                                              max_slice_width));
4418
4419         /* Find the closest match to the valid slice count values */
4420         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
4421                 if (valid_dsc_slicecount[i] >
4422                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
4423                                                     false))
4424                         break;
4425                 if (min_slice_count  <= valid_dsc_slicecount[i])
4426                         return valid_dsc_slicecount[i];
4427         }
4428
4429         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
4430         return 0;
4431 }
4432
4433 static void
4434 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
4435                                const struct intel_crtc_state *crtc_state)
4436 {
4437         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4438         struct dp_sdp vsc_sdp = {};
4439
4440         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4441         vsc_sdp.sdp_header.HB0 = 0;
4442         vsc_sdp.sdp_header.HB1 = 0x7;
4443
4444         /*
4445          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4446          * Colorimetry Format indication.
4447          */
4448         vsc_sdp.sdp_header.HB2 = 0x5;
4449
4450         /*
4451          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4452          * Colorimetry Format indication (HB2 = 05h).
4453          */
4454         vsc_sdp.sdp_header.HB3 = 0x13;
4455
4456         /*
4457          * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
4458          * DB16[3:0] DP 1.4a spec, Table 2-120
4459          */
4460         vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
4461         /* RGB->YCBCR color conversion uses the BT.709 color space. */
4462         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4463
4464         /*
4465          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4466          * the following Component Bit Depth values are defined:
4467          * 001b = 8bpc.
4468          * 010b = 10bpc.
4469          * 011b = 12bpc.
4470          * 100b = 16bpc.
4471          */
4472         switch (crtc_state->pipe_bpp) {
4473         case 24: /* 8bpc */
4474                 vsc_sdp.db[17] = 0x1;
4475                 break;
4476         case 30: /* 10bpc */
4477                 vsc_sdp.db[17] = 0x2;
4478                 break;
4479         case 36: /* 12bpc */
4480                 vsc_sdp.db[17] = 0x3;
4481                 break;
4482         case 48: /* 16bpc */
4483                 vsc_sdp.db[17] = 0x4;
4484                 break;
4485         default:
4486                 MISSING_CASE(crtc_state->pipe_bpp);
4487                 break;
4488         }
4489
4490         /*
4491          * Dynamic Range (Bit 7)
4492          * 0 = VESA range, 1 = CTA range.
4493          * all YCbCr are always limited range
4494          */
4495         vsc_sdp.db[17] |= 0x80;
4496
4497         /*
4498          * Content Type (Bits 2:0)
4499          * 000b = Not defined.
4500          * 001b = Graphics.
4501          * 010b = Photo.
4502          * 011b = Video.
4503          * 100b = Game
4504          * All other values are RESERVED.
4505          * Note: See CTA-861-G for the definition and expected
4506          * processing by a stream sink for the above contect types.
4507          */
4508         vsc_sdp.db[18] = 0;
4509
4510         intel_dig_port->write_infoframe(&intel_dig_port->base,
4511                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4512 }
4513
4514 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
4515                                const struct intel_crtc_state *crtc_state)
4516 {
4517         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
4518                 return;
4519
4520         intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
4521 }
4522
4523 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4524 {
4525         int status = 0;
4526         int test_link_rate;
4527         u8 test_lane_count, test_link_bw;
4528         /* (DP CTS 1.2)
4529          * 4.3.1.11
4530          */
4531         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4532         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4533                                    &test_lane_count);
4534
4535         if (status <= 0) {
4536                 DRM_DEBUG_KMS("Lane count read failed\n");
4537                 return DP_TEST_NAK;
4538         }
4539         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4540
4541         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4542                                    &test_link_bw);
4543         if (status <= 0) {
4544                 DRM_DEBUG_KMS("Link Rate read failed\n");
4545                 return DP_TEST_NAK;
4546         }
4547         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4548
4549         /* Validate the requested link rate and lane count */
4550         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4551                                         test_lane_count))
4552                 return DP_TEST_NAK;
4553
4554         intel_dp->compliance.test_lane_count = test_lane_count;
4555         intel_dp->compliance.test_link_rate = test_link_rate;
4556
4557         return DP_TEST_ACK;
4558 }
4559
4560 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4561 {
4562         u8 test_pattern;
4563         u8 test_misc;
4564         __be16 h_width, v_height;
4565         int status = 0;
4566
4567         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4568         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4569                                    &test_pattern);
4570         if (status <= 0) {
4571                 DRM_DEBUG_KMS("Test pattern read failed\n");
4572                 return DP_TEST_NAK;
4573         }
4574         if (test_pattern != DP_COLOR_RAMP)
4575                 return DP_TEST_NAK;
4576
4577         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4578                                   &h_width, 2);
4579         if (status <= 0) {
4580                 DRM_DEBUG_KMS("H Width read failed\n");
4581                 return DP_TEST_NAK;
4582         }
4583
4584         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4585                                   &v_height, 2);
4586         if (status <= 0) {
4587                 DRM_DEBUG_KMS("V Height read failed\n");
4588                 return DP_TEST_NAK;
4589         }
4590
4591         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4592                                    &test_misc);
4593         if (status <= 0) {
4594                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4595                 return DP_TEST_NAK;
4596         }
4597         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4598                 return DP_TEST_NAK;
4599         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4600                 return DP_TEST_NAK;
4601         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4602         case DP_TEST_BIT_DEPTH_6:
4603                 intel_dp->compliance.test_data.bpc = 6;
4604                 break;
4605         case DP_TEST_BIT_DEPTH_8:
4606                 intel_dp->compliance.test_data.bpc = 8;
4607                 break;
4608         default:
4609                 return DP_TEST_NAK;
4610         }
4611
4612         intel_dp->compliance.test_data.video_pattern = test_pattern;
4613         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4614         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4615         /* Set test active flag here so userspace doesn't interrupt things */
4616         intel_dp->compliance.test_active = 1;
4617
4618         return DP_TEST_ACK;
4619 }
4620
4621 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4622 {
4623         u8 test_result = DP_TEST_ACK;
4624         struct intel_connector *intel_connector = intel_dp->attached_connector;
4625         struct drm_connector *connector = &intel_connector->base;
4626
4627         if (intel_connector->detect_edid == NULL ||
4628             connector->edid_corrupt ||
4629             intel_dp->aux.i2c_defer_count > 6) {
4630                 /* Check EDID read for NACKs, DEFERs and corruption
4631                  * (DP CTS 1.2 Core r1.1)
4632                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4633                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4634                  *    4.2.2.6 : EDID corruption detected
4635                  * Use failsafe mode for all cases
4636                  */
4637                 if (intel_dp->aux.i2c_nack_count > 0 ||
4638                         intel_dp->aux.i2c_defer_count > 0)
4639                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4640                                       intel_dp->aux.i2c_nack_count,
4641                                       intel_dp->aux.i2c_defer_count);
4642                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4643         } else {
4644                 struct edid *block = intel_connector->detect_edid;
4645
4646                 /* We have to write the checksum
4647                  * of the last block read
4648                  */
4649                 block += intel_connector->detect_edid->extensions;
4650
4651                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4652                                        block->checksum) <= 0)
4653                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4654
4655                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4656                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4657         }
4658
4659         /* Set test active flag here so userspace doesn't interrupt things */
4660         intel_dp->compliance.test_active = 1;
4661
4662         return test_result;
4663 }
4664
4665 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4666 {
4667         u8 test_result = DP_TEST_NAK;
4668         return test_result;
4669 }
4670
4671 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4672 {
4673         u8 response = DP_TEST_NAK;
4674         u8 request = 0;
4675         int status;
4676
4677         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4678         if (status <= 0) {
4679                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4680                 goto update_status;
4681         }
4682
4683         switch (request) {
4684         case DP_TEST_LINK_TRAINING:
4685                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4686                 response = intel_dp_autotest_link_training(intel_dp);
4687                 break;
4688         case DP_TEST_LINK_VIDEO_PATTERN:
4689                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4690                 response = intel_dp_autotest_video_pattern(intel_dp);
4691                 break;
4692         case DP_TEST_LINK_EDID_READ:
4693                 DRM_DEBUG_KMS("EDID test requested\n");
4694                 response = intel_dp_autotest_edid(intel_dp);
4695                 break;
4696         case DP_TEST_LINK_PHY_TEST_PATTERN:
4697                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4698                 response = intel_dp_autotest_phy_pattern(intel_dp);
4699                 break;
4700         default:
4701                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4702                 break;
4703         }
4704
4705         if (response & DP_TEST_ACK)
4706                 intel_dp->compliance.test_type = request;
4707
4708 update_status:
4709         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4710         if (status <= 0)
4711                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4712 }
4713
4714 static int
4715 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4716 {
4717         bool bret;
4718
4719         if (intel_dp->is_mst) {
4720                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4721                 int ret = 0;
4722                 int retry;
4723                 bool handled;
4724
4725                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4726                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4727 go_again:
4728                 if (bret == true) {
4729
4730                         /* check link status - esi[10] = 0x200c */
4731                         if (intel_dp->active_mst_links > 0 &&
4732                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4733                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4734                                 intel_dp_start_link_train(intel_dp);
4735                                 intel_dp_stop_link_train(intel_dp);
4736                         }
4737
4738                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4739                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4740
4741                         if (handled) {
4742                                 for (retry = 0; retry < 3; retry++) {
4743                                         int wret;
4744                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4745                                                                  DP_SINK_COUNT_ESI+1,
4746                                                                  &esi[1], 3);
4747                                         if (wret == 3) {
4748                                                 break;
4749                                         }
4750                                 }
4751
4752                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4753                                 if (bret == true) {
4754                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4755                                         goto go_again;
4756                                 }
4757                         } else
4758                                 ret = 0;
4759
4760                         return ret;
4761                 } else {
4762                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4763                         intel_dp->is_mst = false;
4764                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4765                                                         intel_dp->is_mst);
4766                 }
4767         }
4768         return -EINVAL;
4769 }
4770
4771 static bool
4772 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4773 {
4774         u8 link_status[DP_LINK_STATUS_SIZE];
4775
4776         if (!intel_dp->link_trained)
4777                 return false;
4778
4779         /*
4780          * While PSR source HW is enabled, it will control main-link sending
4781          * frames, enabling and disabling it so trying to do a retrain will fail
4782          * as the link would or not be on or it could mix training patterns
4783          * and frame data at the same time causing retrain to fail.
4784          * Also when exiting PSR, HW will retrain the link anyways fixing
4785          * any link status error.
4786          */
4787         if (intel_psr_enabled(intel_dp))
4788                 return false;
4789
4790         if (!intel_dp_get_link_status(intel_dp, link_status))
4791                 return false;
4792
4793         /*
4794          * Validate the cached values of intel_dp->link_rate and
4795          * intel_dp->lane_count before attempting to retrain.
4796          */
4797         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4798                                         intel_dp->lane_count))
4799                 return false;
4800
4801         /* Retrain if Channel EQ or CR not ok */
4802         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4803 }
4804
4805 int intel_dp_retrain_link(struct intel_encoder *encoder,
4806                           struct drm_modeset_acquire_ctx *ctx)
4807 {
4808         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4809         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4810         struct intel_connector *connector = intel_dp->attached_connector;
4811         struct drm_connector_state *conn_state;
4812         struct intel_crtc_state *crtc_state;
4813         struct intel_crtc *crtc;
4814         int ret;
4815
4816         /* FIXME handle the MST connectors as well */
4817
4818         if (!connector || connector->base.status != connector_status_connected)
4819                 return 0;
4820
4821         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4822                                ctx);
4823         if (ret)
4824                 return ret;
4825
4826         conn_state = connector->base.state;
4827
4828         crtc = to_intel_crtc(conn_state->crtc);
4829         if (!crtc)
4830                 return 0;
4831
4832         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4833         if (ret)
4834                 return ret;
4835
4836         crtc_state = to_intel_crtc_state(crtc->base.state);
4837
4838         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4839
4840         if (!crtc_state->base.active)
4841                 return 0;
4842
4843         if (conn_state->commit &&
4844             !try_wait_for_completion(&conn_state->commit->hw_done))
4845                 return 0;
4846
4847         if (!intel_dp_needs_link_retrain(intel_dp))
4848                 return 0;
4849
4850         /* Suppress underruns caused by re-training */
4851         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4852         if (crtc_state->has_pch_encoder)
4853                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4854                                                       intel_crtc_pch_transcoder(crtc), false);
4855
4856         intel_dp_start_link_train(intel_dp);
4857         intel_dp_stop_link_train(intel_dp);
4858
4859         /* Keep underrun reporting disabled until things are stable */
4860         intel_wait_for_vblank(dev_priv, crtc->pipe);
4861
4862         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4863         if (crtc_state->has_pch_encoder)
4864                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4865                                                       intel_crtc_pch_transcoder(crtc), true);
4866
4867         return 0;
4868 }
4869
4870 /*
4871  * If display is now connected check links status,
4872  * there has been known issues of link loss triggering
4873  * long pulse.
4874  *
4875  * Some sinks (eg. ASUS PB287Q) seem to perform some
4876  * weird HPD ping pong during modesets. So we can apparently
4877  * end up with HPD going low during a modeset, and then
4878  * going back up soon after. And once that happens we must
4879  * retrain the link to get a picture. That's in case no
4880  * userspace component reacted to intermittent HPD dip.
4881  */
4882 static bool intel_dp_hotplug(struct intel_encoder *encoder,
4883                              struct intel_connector *connector)
4884 {
4885         struct drm_modeset_acquire_ctx ctx;
4886         bool changed;
4887         int ret;
4888
4889         changed = intel_encoder_hotplug(encoder, connector);
4890
4891         drm_modeset_acquire_init(&ctx, 0);
4892
4893         for (;;) {
4894                 ret = intel_dp_retrain_link(encoder, &ctx);
4895
4896                 if (ret == -EDEADLK) {
4897                         drm_modeset_backoff(&ctx);
4898                         continue;
4899                 }
4900
4901                 break;
4902         }
4903
4904         drm_modeset_drop_locks(&ctx);
4905         drm_modeset_acquire_fini(&ctx);
4906         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4907
4908         return changed;
4909 }
4910
4911 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4912 {
4913         u8 val;
4914
4915         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4916                 return;
4917
4918         if (drm_dp_dpcd_readb(&intel_dp->aux,
4919                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4920                 return;
4921
4922         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4923
4924         if (val & DP_AUTOMATED_TEST_REQUEST)
4925                 intel_dp_handle_test_request(intel_dp);
4926
4927         if (val & DP_CP_IRQ)
4928                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4929
4930         if (val & DP_SINK_SPECIFIC_IRQ)
4931                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4932 }
4933
4934 /*
4935  * According to DP spec
4936  * 5.1.2:
4937  *  1. Read DPCD
4938  *  2. Configure link according to Receiver Capabilities
4939  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4940  *  4. Check link status on receipt of hot-plug interrupt
4941  *
4942  * intel_dp_short_pulse -  handles short pulse interrupts
4943  * when full detection is not required.
4944  * Returns %true if short pulse is handled and full detection
4945  * is NOT required and %false otherwise.
4946  */
4947 static bool
4948 intel_dp_short_pulse(struct intel_dp *intel_dp)
4949 {
4950         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4951         u8 old_sink_count = intel_dp->sink_count;
4952         bool ret;
4953
4954         /*
4955          * Clearing compliance test variables to allow capturing
4956          * of values for next automated test request.
4957          */
4958         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
4959
4960         /*
4961          * Now read the DPCD to see if it's actually running
4962          * If the current value of sink count doesn't match with
4963          * the value that was stored earlier or dpcd read failed
4964          * we need to do full detection
4965          */
4966         ret = intel_dp_get_dpcd(intel_dp);
4967
4968         if ((old_sink_count != intel_dp->sink_count) || !ret) {
4969                 /* No need to proceed if we are going to do full detect */
4970                 return false;
4971         }
4972
4973         intel_dp_check_service_irq(intel_dp);
4974
4975         /* Handle CEC interrupts, if any */
4976         drm_dp_cec_irq(&intel_dp->aux);
4977
4978         /* defer to the hotplug work for link retraining if needed */
4979         if (intel_dp_needs_link_retrain(intel_dp))
4980                 return false;
4981
4982         intel_psr_short_pulse(intel_dp);
4983
4984         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
4985                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
4986                 /* Send a Hotplug Uevent to userspace to start modeset */
4987                 drm_kms_helper_hotplug_event(&dev_priv->drm);
4988         }
4989
4990         return true;
4991 }
4992
4993 /* XXX this is probably wrong for multiple downstream ports */
4994 static enum drm_connector_status
4995 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
4996 {
4997         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
4998         u8 *dpcd = intel_dp->dpcd;
4999         u8 type;
5000
5001         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5002                 return connector_status_connected;
5003
5004         if (lspcon->active)
5005                 lspcon_resume(lspcon);
5006
5007         if (!intel_dp_get_dpcd(intel_dp))
5008                 return connector_status_disconnected;
5009
5010         /* if there's no downstream port, we're done */
5011         if (!drm_dp_is_branch(dpcd))
5012                 return connector_status_connected;
5013
5014         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5015         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5016             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5017
5018                 return intel_dp->sink_count ?
5019                 connector_status_connected : connector_status_disconnected;
5020         }
5021
5022         if (intel_dp_can_mst(intel_dp))
5023                 return connector_status_connected;
5024
5025         /* If no HPD, poke DDC gently */
5026         if (drm_probe_ddc(&intel_dp->aux.ddc))
5027                 return connector_status_connected;
5028
5029         /* Well we tried, say unknown for unreliable port types */
5030         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5031                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5032                 if (type == DP_DS_PORT_TYPE_VGA ||
5033                     type == DP_DS_PORT_TYPE_NON_EDID)
5034                         return connector_status_unknown;
5035         } else {
5036                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5037                         DP_DWN_STRM_PORT_TYPE_MASK;
5038                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5039                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5040                         return connector_status_unknown;
5041         }
5042
5043         /* Anything else is out of spec, warn and ignore */
5044         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5045         return connector_status_disconnected;
5046 }
5047
5048 static enum drm_connector_status
5049 edp_detect(struct intel_dp *intel_dp)
5050 {
5051         return connector_status_connected;
5052 }
5053
5054 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5055 {
5056         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5057         u32 bit;
5058
5059         switch (encoder->hpd_pin) {
5060         case HPD_PORT_B:
5061                 bit = SDE_PORTB_HOTPLUG;
5062                 break;
5063         case HPD_PORT_C:
5064                 bit = SDE_PORTC_HOTPLUG;
5065                 break;
5066         case HPD_PORT_D:
5067                 bit = SDE_PORTD_HOTPLUG;
5068                 break;
5069         default:
5070                 MISSING_CASE(encoder->hpd_pin);
5071                 return false;
5072         }
5073
5074         return I915_READ(SDEISR) & bit;
5075 }
5076
5077 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5078 {
5079         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5080         u32 bit;
5081
5082         switch (encoder->hpd_pin) {
5083         case HPD_PORT_B:
5084                 bit = SDE_PORTB_HOTPLUG_CPT;
5085                 break;
5086         case HPD_PORT_C:
5087                 bit = SDE_PORTC_HOTPLUG_CPT;
5088                 break;
5089         case HPD_PORT_D:
5090                 bit = SDE_PORTD_HOTPLUG_CPT;
5091                 break;
5092         default:
5093                 MISSING_CASE(encoder->hpd_pin);
5094                 return false;
5095         }
5096
5097         return I915_READ(SDEISR) & bit;
5098 }
5099
5100 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5101 {
5102         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5103         u32 bit;
5104
5105         switch (encoder->hpd_pin) {
5106         case HPD_PORT_A:
5107                 bit = SDE_PORTA_HOTPLUG_SPT;
5108                 break;
5109         case HPD_PORT_E:
5110                 bit = SDE_PORTE_HOTPLUG_SPT;
5111                 break;
5112         default:
5113                 return cpt_digital_port_connected(encoder);
5114         }
5115
5116         return I915_READ(SDEISR) & bit;
5117 }
5118
5119 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5120 {
5121         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5122         u32 bit;
5123
5124         switch (encoder->hpd_pin) {
5125         case HPD_PORT_B:
5126                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5127                 break;
5128         case HPD_PORT_C:
5129                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5130                 break;
5131         case HPD_PORT_D:
5132                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5133                 break;
5134         default:
5135                 MISSING_CASE(encoder->hpd_pin);
5136                 return false;
5137         }
5138
5139         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5140 }
5141
5142 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5143 {
5144         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5145         u32 bit;
5146
5147         switch (encoder->hpd_pin) {
5148         case HPD_PORT_B:
5149                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5150                 break;
5151         case HPD_PORT_C:
5152                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5153                 break;
5154         case HPD_PORT_D:
5155                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5156                 break;
5157         default:
5158                 MISSING_CASE(encoder->hpd_pin);
5159                 return false;
5160         }
5161
5162         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5163 }
5164
5165 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5166 {
5167         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5168
5169         if (encoder->hpd_pin == HPD_PORT_A)
5170                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5171         else
5172                 return ibx_digital_port_connected(encoder);
5173 }
5174
5175 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5176 {
5177         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5178
5179         if (encoder->hpd_pin == HPD_PORT_A)
5180                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5181         else
5182                 return cpt_digital_port_connected(encoder);
5183 }
5184
5185 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5186 {
5187         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5188
5189         if (encoder->hpd_pin == HPD_PORT_A)
5190                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5191         else
5192                 return cpt_digital_port_connected(encoder);
5193 }
5194
5195 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5196 {
5197         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5198
5199         if (encoder->hpd_pin == HPD_PORT_A)
5200                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5201         else
5202                 return cpt_digital_port_connected(encoder);
5203 }
5204
5205 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5206 {
5207         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5208         u32 bit;
5209
5210         switch (encoder->hpd_pin) {
5211         case HPD_PORT_A:
5212                 bit = BXT_DE_PORT_HP_DDIA;
5213                 break;
5214         case HPD_PORT_B:
5215                 bit = BXT_DE_PORT_HP_DDIB;
5216                 break;
5217         case HPD_PORT_C:
5218                 bit = BXT_DE_PORT_HP_DDIC;
5219                 break;
5220         default:
5221                 MISSING_CASE(encoder->hpd_pin);
5222                 return false;
5223         }
5224
5225         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5226 }
5227
5228 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5229                                      struct intel_digital_port *intel_dig_port)
5230 {
5231         enum port port = intel_dig_port->base.port;
5232
5233         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5234 }
5235
5236 static const char *tc_type_name(enum tc_port_type type)
5237 {
5238         static const char * const names[] = {
5239                 [TC_PORT_UNKNOWN] = "unknown",
5240                 [TC_PORT_LEGACY] = "legacy",
5241                 [TC_PORT_TYPEC] = "typec",
5242                 [TC_PORT_TBT] = "tbt",
5243         };
5244
5245         if (WARN_ON(type >= ARRAY_SIZE(names)))
5246                 type = TC_PORT_UNKNOWN;
5247
5248         return names[type];
5249 }
5250
5251 static void icl_update_tc_port_type(struct drm_i915_private *dev_priv,
5252                                     struct intel_digital_port *intel_dig_port,
5253                                     bool is_legacy, bool is_typec, bool is_tbt)
5254 {
5255         enum port port = intel_dig_port->base.port;
5256         enum tc_port_type old_type = intel_dig_port->tc_type;
5257
5258         WARN_ON(is_legacy + is_typec + is_tbt != 1);
5259
5260         if (is_legacy)
5261                 intel_dig_port->tc_type = TC_PORT_LEGACY;
5262         else if (is_typec)
5263                 intel_dig_port->tc_type = TC_PORT_TYPEC;
5264         else if (is_tbt)
5265                 intel_dig_port->tc_type = TC_PORT_TBT;
5266         else
5267                 return;
5268
5269         /* Types are not supposed to be changed at runtime. */
5270         WARN_ON(old_type != TC_PORT_UNKNOWN &&
5271                 old_type != intel_dig_port->tc_type);
5272
5273         if (old_type != intel_dig_port->tc_type)
5274                 DRM_DEBUG_KMS("Port %c has TC type %s\n", port_name(port),
5275                               tc_type_name(intel_dig_port->tc_type));
5276 }
5277
5278 /*
5279  * This function implements the first part of the Connect Flow described by our
5280  * specification, Gen11 TypeC Programming chapter. The rest of the flow (reading
5281  * lanes, EDID, etc) is done as needed in the typical places.
5282  *
5283  * Unlike the other ports, type-C ports are not available to use as soon as we
5284  * get a hotplug. The type-C PHYs can be shared between multiple controllers:
5285  * display, USB, etc. As a result, handshaking through FIA is required around
5286  * connect and disconnect to cleanly transfer ownership with the controller and
5287  * set the type-C power state.
5288  *
5289  * We could opt to only do the connect flow when we actually try to use the AUX
5290  * channels or do a modeset, then immediately run the disconnect flow after
5291  * usage, but there are some implications on this for a dynamic environment:
5292  * things may go away or change behind our backs. So for now our driver is
5293  * always trying to acquire ownership of the controller as soon as it gets an
5294  * interrupt (or polls state and sees a port is connected) and only gives it
5295  * back when it sees a disconnect. Implementation of a more fine-grained model
5296  * will require a lot of coordination with user space and thorough testing for
5297  * the extra possible cases.
5298  */
5299 static bool icl_tc_phy_connect(struct drm_i915_private *dev_priv,
5300                                struct intel_digital_port *dig_port)
5301 {
5302         enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5303         u32 val;
5304
5305         if (dig_port->tc_type != TC_PORT_LEGACY &&
5306             dig_port->tc_type != TC_PORT_TYPEC)
5307                 return true;
5308
5309         val = I915_READ(PORT_TX_DFLEXDPPMS);
5310         if (!(val & DP_PHY_MODE_STATUS_COMPLETED(tc_port))) {
5311                 DRM_DEBUG_KMS("DP PHY for TC port %d not ready\n", tc_port);
5312                 WARN_ON(dig_port->tc_legacy_port);
5313                 return false;
5314         }
5315
5316         /*
5317          * This function may be called many times in a row without an HPD event
5318          * in between, so try to avoid the write when we can.
5319          */
5320         val = I915_READ(PORT_TX_DFLEXDPCSSS);
5321         if (!(val & DP_PHY_MODE_STATUS_NOT_SAFE(tc_port))) {
5322                 val |= DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5323                 I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5324         }
5325
5326         /*
5327          * Now we have to re-check the live state, in case the port recently
5328          * became disconnected. Not necessary for legacy mode.
5329          */
5330         if (dig_port->tc_type == TC_PORT_TYPEC &&
5331             !(I915_READ(PORT_TX_DFLEXDPSP) & TC_LIVE_STATE_TC(tc_port))) {
5332                 DRM_DEBUG_KMS("TC PHY %d sudden disconnect.\n", tc_port);
5333                 icl_tc_phy_disconnect(dev_priv, dig_port);
5334                 return false;
5335         }
5336
5337         return true;
5338 }
5339
5340 /*
5341  * See the comment at the connect function. This implements the Disconnect
5342  * Flow.
5343  */
5344 void icl_tc_phy_disconnect(struct drm_i915_private *dev_priv,
5345                            struct intel_digital_port *dig_port)
5346 {
5347         enum tc_port tc_port = intel_port_to_tc(dev_priv, dig_port->base.port);
5348
5349         if (dig_port->tc_type == TC_PORT_UNKNOWN)
5350                 return;
5351
5352         /*
5353          * TBT disconnection flow is read the live status, what was done in
5354          * caller.
5355          */
5356         if (dig_port->tc_type == TC_PORT_TYPEC ||
5357             dig_port->tc_type == TC_PORT_LEGACY) {
5358                 u32 val;
5359
5360                 val = I915_READ(PORT_TX_DFLEXDPCSSS);
5361                 val &= ~DP_PHY_MODE_STATUS_NOT_SAFE(tc_port);
5362                 I915_WRITE(PORT_TX_DFLEXDPCSSS, val);
5363         }
5364
5365         DRM_DEBUG_KMS("Port %c TC type %s disconnected\n",
5366                       port_name(dig_port->base.port),
5367                       tc_type_name(dig_port->tc_type));
5368
5369         dig_port->tc_type = TC_PORT_UNKNOWN;
5370 }
5371
5372 /*
5373  * The type-C ports are different because even when they are connected, they may
5374  * not be available/usable by the graphics driver: see the comment on
5375  * icl_tc_phy_connect(). So in our driver instead of adding the additional
5376  * concept of "usable" and make everything check for "connected and usable" we
5377  * define a port as "connected" when it is not only connected, but also when it
5378  * is usable by the rest of the driver. That maintains the old assumption that
5379  * connected ports are usable, and avoids exposing to the users objects they
5380  * can't really use.
5381  */
5382 static bool icl_tc_port_connected(struct drm_i915_private *dev_priv,
5383                                   struct intel_digital_port *intel_dig_port)
5384 {
5385         enum port port = intel_dig_port->base.port;
5386         enum tc_port tc_port = intel_port_to_tc(dev_priv, port);
5387         bool is_legacy, is_typec, is_tbt;
5388         u32 dpsp;
5389
5390         /*
5391          * Complain if we got a legacy port HPD, but VBT didn't mark the port as
5392          * legacy. Treat the port as legacy from now on.
5393          */
5394         if (!intel_dig_port->tc_legacy_port &&
5395             I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(tc_port)) {
5396                 DRM_ERROR("VBT incorrectly claims port %c is not TypeC legacy\n",
5397                           port_name(port));
5398                 intel_dig_port->tc_legacy_port = true;
5399         }
5400         is_legacy = intel_dig_port->tc_legacy_port;
5401
5402         /*
5403          * The spec says we shouldn't be using the ISR bits for detecting
5404          * between TC and TBT. We should use DFLEXDPSP.
5405          */
5406         dpsp = I915_READ(PORT_TX_DFLEXDPSP);
5407         is_typec = dpsp & TC_LIVE_STATE_TC(tc_port);
5408         is_tbt = dpsp & TC_LIVE_STATE_TBT(tc_port);
5409
5410         if (!is_legacy && !is_typec && !is_tbt) {
5411                 icl_tc_phy_disconnect(dev_priv, intel_dig_port);
5412
5413                 return false;
5414         }
5415
5416         icl_update_tc_port_type(dev_priv, intel_dig_port, is_legacy, is_typec,
5417                                 is_tbt);
5418
5419         if (!icl_tc_phy_connect(dev_priv, intel_dig_port))
5420                 return false;
5421
5422         return true;
5423 }
5424
5425 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5426 {
5427         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5428         struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5429
5430         if (intel_port_is_combophy(dev_priv, encoder->port))
5431                 return icl_combo_port_connected(dev_priv, dig_port);
5432         else if (intel_port_is_tc(dev_priv, encoder->port))
5433                 return icl_tc_port_connected(dev_priv, dig_port);
5434         else
5435                 MISSING_CASE(encoder->hpd_pin);
5436
5437         return false;
5438 }
5439
5440 /*
5441  * intel_digital_port_connected - is the specified port connected?
5442  * @encoder: intel_encoder
5443  *
5444  * In cases where there's a connector physically connected but it can't be used
5445  * by our hardware we also return false, since the rest of the driver should
5446  * pretty much treat the port as disconnected. This is relevant for type-C
5447  * (starting on ICL) where there's ownership involved.
5448  *
5449  * Return %true if port is connected, %false otherwise.
5450  */
5451 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5452 {
5453         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5454
5455         if (HAS_GMCH(dev_priv)) {
5456                 if (IS_GM45(dev_priv))
5457                         return gm45_digital_port_connected(encoder);
5458                 else
5459                         return g4x_digital_port_connected(encoder);
5460         }
5461
5462         if (INTEL_GEN(dev_priv) >= 11)
5463                 return icl_digital_port_connected(encoder);
5464         else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5465                 return spt_digital_port_connected(encoder);
5466         else if (IS_GEN9_LP(dev_priv))
5467                 return bxt_digital_port_connected(encoder);
5468         else if (IS_GEN(dev_priv, 8))
5469                 return bdw_digital_port_connected(encoder);
5470         else if (IS_GEN(dev_priv, 7))
5471                 return ivb_digital_port_connected(encoder);
5472         else if (IS_GEN(dev_priv, 6))
5473                 return snb_digital_port_connected(encoder);
5474         else if (IS_GEN(dev_priv, 5))
5475                 return ilk_digital_port_connected(encoder);
5476
5477         MISSING_CASE(INTEL_GEN(dev_priv));
5478         return false;
5479 }
5480
5481 bool intel_digital_port_connected(struct intel_encoder *encoder)
5482 {
5483         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5484         bool is_connected = false;
5485         intel_wakeref_t wakeref;
5486
5487         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5488                 is_connected = __intel_digital_port_connected(encoder);
5489
5490         return is_connected;
5491 }
5492
5493 static struct edid *
5494 intel_dp_get_edid(struct intel_dp *intel_dp)
5495 {
5496         struct intel_connector *intel_connector = intel_dp->attached_connector;
5497
5498         /* use cached edid if we have one */
5499         if (intel_connector->edid) {
5500                 /* invalid edid */
5501                 if (IS_ERR(intel_connector->edid))
5502                         return NULL;
5503
5504                 return drm_edid_duplicate(intel_connector->edid);
5505         } else
5506                 return drm_get_edid(&intel_connector->base,
5507                                     &intel_dp->aux.ddc);
5508 }
5509
5510 static void
5511 intel_dp_set_edid(struct intel_dp *intel_dp)
5512 {
5513         struct intel_connector *intel_connector = intel_dp->attached_connector;
5514         struct edid *edid;
5515
5516         intel_dp_unset_edid(intel_dp);
5517         edid = intel_dp_get_edid(intel_dp);
5518         intel_connector->detect_edid = edid;
5519
5520         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5521         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5522 }
5523
5524 static void
5525 intel_dp_unset_edid(struct intel_dp *intel_dp)
5526 {
5527         struct intel_connector *intel_connector = intel_dp->attached_connector;
5528
5529         drm_dp_cec_unset_edid(&intel_dp->aux);
5530         kfree(intel_connector->detect_edid);
5531         intel_connector->detect_edid = NULL;
5532
5533         intel_dp->has_audio = false;
5534 }
5535
5536 static int
5537 intel_dp_detect(struct drm_connector *connector,
5538                 struct drm_modeset_acquire_ctx *ctx,
5539                 bool force)
5540 {
5541         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5542         struct intel_dp *intel_dp = intel_attached_dp(connector);
5543         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5544         struct intel_encoder *encoder = &dig_port->base;
5545         enum drm_connector_status status;
5546
5547         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5548                       connector->base.id, connector->name);
5549         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5550
5551         /* Can't disconnect eDP */
5552         if (intel_dp_is_edp(intel_dp))
5553                 status = edp_detect(intel_dp);
5554         else if (intel_digital_port_connected(encoder))
5555                 status = intel_dp_detect_dpcd(intel_dp);
5556         else
5557                 status = connector_status_disconnected;
5558
5559         if (status == connector_status_disconnected) {
5560                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5561                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5562
5563                 if (intel_dp->is_mst) {
5564                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5565                                       intel_dp->is_mst,
5566                                       intel_dp->mst_mgr.mst_state);
5567                         intel_dp->is_mst = false;
5568                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5569                                                         intel_dp->is_mst);
5570                 }
5571
5572                 goto out;
5573         }
5574
5575         if (intel_dp->reset_link_params) {
5576                 /* Initial max link lane count */
5577                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5578
5579                 /* Initial max link rate */
5580                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5581
5582                 intel_dp->reset_link_params = false;
5583         }
5584
5585         intel_dp_print_rates(intel_dp);
5586
5587         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5588         if (INTEL_GEN(dev_priv) >= 11)
5589                 intel_dp_get_dsc_sink_cap(intel_dp);
5590
5591         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
5592                          drm_dp_is_branch(intel_dp->dpcd));
5593
5594         intel_dp_configure_mst(intel_dp);
5595
5596         if (intel_dp->is_mst) {
5597                 /*
5598                  * If we are in MST mode then this connector
5599                  * won't appear connected or have anything
5600                  * with EDID on it
5601                  */
5602                 status = connector_status_disconnected;
5603                 goto out;
5604         }
5605
5606         /*
5607          * Some external monitors do not signal loss of link synchronization
5608          * with an IRQ_HPD, so force a link status check.
5609          */
5610         if (!intel_dp_is_edp(intel_dp)) {
5611                 int ret;
5612
5613                 ret = intel_dp_retrain_link(encoder, ctx);
5614                 if (ret)
5615                         return ret;
5616         }
5617
5618         /*
5619          * Clearing NACK and defer counts to get their exact values
5620          * while reading EDID which are required by Compliance tests
5621          * 4.2.2.4 and 4.2.2.5
5622          */
5623         intel_dp->aux.i2c_nack_count = 0;
5624         intel_dp->aux.i2c_defer_count = 0;
5625
5626         intel_dp_set_edid(intel_dp);
5627         if (intel_dp_is_edp(intel_dp) ||
5628             to_intel_connector(connector)->detect_edid)
5629                 status = connector_status_connected;
5630
5631         intel_dp_check_service_irq(intel_dp);
5632
5633 out:
5634         if (status != connector_status_connected && !intel_dp->is_mst)
5635                 intel_dp_unset_edid(intel_dp);
5636
5637         return status;
5638 }
5639
5640 static void
5641 intel_dp_force(struct drm_connector *connector)
5642 {
5643         struct intel_dp *intel_dp = intel_attached_dp(connector);
5644         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5645         struct intel_encoder *intel_encoder = &dig_port->base;
5646         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5647         enum intel_display_power_domain aux_domain =
5648                 intel_aux_power_domain(dig_port);
5649         intel_wakeref_t wakeref;
5650
5651         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5652                       connector->base.id, connector->name);
5653         intel_dp_unset_edid(intel_dp);
5654
5655         if (connector->status != connector_status_connected)
5656                 return;
5657
5658         wakeref = intel_display_power_get(dev_priv, aux_domain);
5659
5660         intel_dp_set_edid(intel_dp);
5661
5662         intel_display_power_put(dev_priv, aux_domain, wakeref);
5663 }
5664
5665 static int intel_dp_get_modes(struct drm_connector *connector)
5666 {
5667         struct intel_connector *intel_connector = to_intel_connector(connector);
5668         struct edid *edid;
5669
5670         edid = intel_connector->detect_edid;
5671         if (edid) {
5672                 int ret = intel_connector_update_modes(connector, edid);
5673                 if (ret)
5674                         return ret;
5675         }
5676
5677         /* if eDP has no EDID, fall back to fixed mode */
5678         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5679             intel_connector->panel.fixed_mode) {
5680                 struct drm_display_mode *mode;
5681
5682                 mode = drm_mode_duplicate(connector->dev,
5683                                           intel_connector->panel.fixed_mode);
5684                 if (mode) {
5685                         drm_mode_probed_add(connector, mode);
5686                         return 1;
5687                 }
5688         }
5689
5690         return 0;
5691 }
5692
5693 static int
5694 intel_dp_connector_register(struct drm_connector *connector)
5695 {
5696         struct intel_dp *intel_dp = intel_attached_dp(connector);
5697         struct drm_device *dev = connector->dev;
5698         int ret;
5699
5700         ret = intel_connector_register(connector);
5701         if (ret)
5702                 return ret;
5703
5704         i915_debugfs_connector_add(connector);
5705
5706         DRM_DEBUG_KMS("registering %s bus for %s\n",
5707                       intel_dp->aux.name, connector->kdev->kobj.name);
5708
5709         intel_dp->aux.dev = connector->kdev;
5710         ret = drm_dp_aux_register(&intel_dp->aux);
5711         if (!ret)
5712                 drm_dp_cec_register_connector(&intel_dp->aux,
5713                                               connector->name, dev->dev);
5714         return ret;
5715 }
5716
5717 static void
5718 intel_dp_connector_unregister(struct drm_connector *connector)
5719 {
5720         struct intel_dp *intel_dp = intel_attached_dp(connector);
5721
5722         drm_dp_cec_unregister_connector(&intel_dp->aux);
5723         drm_dp_aux_unregister(&intel_dp->aux);
5724         intel_connector_unregister(connector);
5725 }
5726
5727 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5728 {
5729         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5730         struct intel_dp *intel_dp = &intel_dig_port->dp;
5731
5732         intel_dp_mst_encoder_cleanup(intel_dig_port);
5733         if (intel_dp_is_edp(intel_dp)) {
5734                 intel_wakeref_t wakeref;
5735
5736                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5737                 /*
5738                  * vdd might still be enabled do to the delayed vdd off.
5739                  * Make sure vdd is actually turned off here.
5740                  */
5741                 with_pps_lock(intel_dp, wakeref)
5742                         edp_panel_vdd_off_sync(intel_dp);
5743
5744                 if (intel_dp->edp_notifier.notifier_call) {
5745                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5746                         intel_dp->edp_notifier.notifier_call = NULL;
5747                 }
5748         }
5749
5750         intel_dp_aux_fini(intel_dp);
5751 }
5752
5753 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5754 {
5755         intel_dp_encoder_flush_work(encoder);
5756
5757         drm_encoder_cleanup(encoder);
5758         kfree(enc_to_dig_port(encoder));
5759 }
5760
5761 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5762 {
5763         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5764         intel_wakeref_t wakeref;
5765
5766         if (!intel_dp_is_edp(intel_dp))
5767                 return;
5768
5769         /*
5770          * vdd might still be enabled do to the delayed vdd off.
5771          * Make sure vdd is actually turned off here.
5772          */
5773         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5774         with_pps_lock(intel_dp, wakeref)
5775                 edp_panel_vdd_off_sync(intel_dp);
5776 }
5777
5778 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5779 {
5780         long ret;
5781
5782 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5783         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5784                                                msecs_to_jiffies(timeout));
5785
5786         if (!ret)
5787                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5788 }
5789
5790 static
5791 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5792                                 u8 *an)
5793 {
5794         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5795         static const struct drm_dp_aux_msg msg = {
5796                 .request = DP_AUX_NATIVE_WRITE,
5797                 .address = DP_AUX_HDCP_AKSV,
5798                 .size = DRM_HDCP_KSV_LEN,
5799         };
5800         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5801         ssize_t dpcd_ret;
5802         int ret;
5803
5804         /* Output An first, that's easy */
5805         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5806                                      an, DRM_HDCP_AN_LEN);
5807         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5808                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5809                               dpcd_ret);
5810                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5811         }
5812
5813         /*
5814          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5815          * order to get it on the wire, we need to create the AUX header as if
5816          * we were writing the data, and then tickle the hardware to output the
5817          * data once the header is sent out.
5818          */
5819         intel_dp_aux_header(txbuf, &msg);
5820
5821         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5822                                 rxbuf, sizeof(rxbuf),
5823                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5824         if (ret < 0) {
5825                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5826                 return ret;
5827         } else if (ret == 0) {
5828                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5829                 return -EIO;
5830         }
5831
5832         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5833         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5834                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5835                               reply);
5836                 return -EIO;
5837         }
5838         return 0;
5839 }
5840
5841 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5842                                    u8 *bksv)
5843 {
5844         ssize_t ret;
5845         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5846                                DRM_HDCP_KSV_LEN);
5847         if (ret != DRM_HDCP_KSV_LEN) {
5848                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5849                 return ret >= 0 ? -EIO : ret;
5850         }
5851         return 0;
5852 }
5853
5854 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5855                                       u8 *bstatus)
5856 {
5857         ssize_t ret;
5858         /*
5859          * For some reason the HDMI and DP HDCP specs call this register
5860          * definition by different names. In the HDMI spec, it's called BSTATUS,
5861          * but in DP it's called BINFO.
5862          */
5863         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5864                                bstatus, DRM_HDCP_BSTATUS_LEN);
5865         if (ret != DRM_HDCP_BSTATUS_LEN) {
5866                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5867                 return ret >= 0 ? -EIO : ret;
5868         }
5869         return 0;
5870 }
5871
5872 static
5873 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5874                              u8 *bcaps)
5875 {
5876         ssize_t ret;
5877
5878         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5879                                bcaps, 1);
5880         if (ret != 1) {
5881                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5882                 return ret >= 0 ? -EIO : ret;
5883         }
5884
5885         return 0;
5886 }
5887
5888 static
5889 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5890                                    bool *repeater_present)
5891 {
5892         ssize_t ret;
5893         u8 bcaps;
5894
5895         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5896         if (ret)
5897                 return ret;
5898
5899         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5900         return 0;
5901 }
5902
5903 static
5904 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5905                                 u8 *ri_prime)
5906 {
5907         ssize_t ret;
5908         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5909                                ri_prime, DRM_HDCP_RI_LEN);
5910         if (ret != DRM_HDCP_RI_LEN) {
5911                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5912                 return ret >= 0 ? -EIO : ret;
5913         }
5914         return 0;
5915 }
5916
5917 static
5918 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5919                                  bool *ksv_ready)
5920 {
5921         ssize_t ret;
5922         u8 bstatus;
5923         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5924                                &bstatus, 1);
5925         if (ret != 1) {
5926                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5927                 return ret >= 0 ? -EIO : ret;
5928         }
5929         *ksv_ready = bstatus & DP_BSTATUS_READY;
5930         return 0;
5931 }
5932
5933 static
5934 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5935                                 int num_downstream, u8 *ksv_fifo)
5936 {
5937         ssize_t ret;
5938         int i;
5939
5940         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5941         for (i = 0; i < num_downstream; i += 3) {
5942                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5943                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5944                                        DP_AUX_HDCP_KSV_FIFO,
5945                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
5946                                        len);
5947                 if (ret != len) {
5948                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5949                                       i, ret);
5950                         return ret >= 0 ? -EIO : ret;
5951                 }
5952         }
5953         return 0;
5954 }
5955
5956 static
5957 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5958                                     int i, u32 *part)
5959 {
5960         ssize_t ret;
5961
5962         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5963                 return -EINVAL;
5964
5965         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5966                                DP_AUX_HDCP_V_PRIME(i), part,
5967                                DRM_HDCP_V_PRIME_PART_LEN);
5968         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5969                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5970                 return ret >= 0 ? -EIO : ret;
5971         }
5972         return 0;
5973 }
5974
5975 static
5976 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5977                                     bool enable)
5978 {
5979         /* Not used for single stream DisplayPort setups */
5980         return 0;
5981 }
5982
5983 static
5984 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5985 {
5986         ssize_t ret;
5987         u8 bstatus;
5988
5989         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5990                                &bstatus, 1);
5991         if (ret != 1) {
5992                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5993                 return false;
5994         }
5995
5996         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5997 }
5998
5999 static
6000 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6001                           bool *hdcp_capable)
6002 {
6003         ssize_t ret;
6004         u8 bcaps;
6005
6006         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6007         if (ret)
6008                 return ret;
6009
6010         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6011         return 0;
6012 }
6013
6014 struct hdcp2_dp_errata_stream_type {
6015         u8      msg_id;
6016         u8      stream_type;
6017 } __packed;
6018
6019 static struct hdcp2_dp_msg_data {
6020         u8 msg_id;
6021         u32 offset;
6022         bool msg_detectable;
6023         u32 timeout;
6024         u32 timeout2; /* Added for non_paired situation */
6025         } hdcp2_msg_data[] = {
6026                 {HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0},
6027                 {HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6028                                 false, HDCP_2_2_CERT_TIMEOUT_MS, 0},
6029                 {HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6030                                 false, 0, 0},
6031                 {HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6032                                 false, 0, 0},
6033                 {HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6034                                 true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6035                                 HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS},
6036                 {HDCP_2_2_AKE_SEND_PAIRING_INFO,
6037                                 DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6038                                 HDCP_2_2_PAIRING_TIMEOUT_MS, 0},
6039                 {HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0},
6040                 {HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6041                                 false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0},
6042                 {HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6043                                 0, 0},
6044                 {HDCP_2_2_REP_SEND_RECVID_LIST,
6045                                 DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6046                                 HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0},
6047                 {HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6048                                 0, 0},
6049                 {HDCP_2_2_REP_STREAM_MANAGE,
6050                                 DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6051                                 0, 0},
6052                 {HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6053                                 false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0},
6054 /* local define to shovel this through the write_2_2 interface */
6055 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6056                 {HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6057                                 DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6058                                 0, 0},
6059                 };
6060
6061 static inline
6062 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6063                                   u8 *rx_status)
6064 {
6065         ssize_t ret;
6066
6067         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6068                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6069                                HDCP_2_2_DP_RXSTATUS_LEN);
6070         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6071                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6072                 return ret >= 0 ? -EIO : ret;
6073         }
6074
6075         return 0;
6076 }
6077
6078 static
6079 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6080                                   u8 msg_id, bool *msg_ready)
6081 {
6082         u8 rx_status;
6083         int ret;
6084
6085         *msg_ready = false;
6086         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6087         if (ret < 0)
6088                 return ret;
6089
6090         switch (msg_id) {
6091         case HDCP_2_2_AKE_SEND_HPRIME:
6092                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6093                         *msg_ready = true;
6094                 break;
6095         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6096                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6097                         *msg_ready = true;
6098                 break;
6099         case HDCP_2_2_REP_SEND_RECVID_LIST:
6100                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6101                         *msg_ready = true;
6102                 break;
6103         default:
6104                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6105                 return -EINVAL;
6106         }
6107
6108         return 0;
6109 }
6110
6111 static ssize_t
6112 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6113                             struct hdcp2_dp_msg_data *hdcp2_msg_data)
6114 {
6115         struct intel_dp *dp = &intel_dig_port->dp;
6116         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6117         u8 msg_id = hdcp2_msg_data->msg_id;
6118         int ret, timeout;
6119         bool msg_ready = false;
6120
6121         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6122                 timeout = hdcp2_msg_data->timeout2;
6123         else
6124                 timeout = hdcp2_msg_data->timeout;
6125
6126         /*
6127          * There is no way to detect the CERT, LPRIME and STREAM_READY
6128          * availability. So Wait for timeout and read the msg.
6129          */
6130         if (!hdcp2_msg_data->msg_detectable) {
6131                 mdelay(timeout);
6132                 ret = 0;
6133         } else {
6134                 /*
6135                  * As we want to check the msg availability at timeout, Ignoring
6136                  * the timeout at wait for CP_IRQ.
6137                  */
6138                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6139                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6140                                                     msg_id, &msg_ready);
6141                 if (!msg_ready)
6142                         ret = -ETIMEDOUT;
6143         }
6144
6145         if (ret)
6146                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6147                               hdcp2_msg_data->msg_id, ret, timeout);
6148
6149         return ret;
6150 }
6151
6152 static struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6153 {
6154         int i;
6155
6156         for (i = 0; i < ARRAY_SIZE(hdcp2_msg_data); i++)
6157                 if (hdcp2_msg_data[i].msg_id == msg_id)
6158                         return &hdcp2_msg_data[i];
6159
6160         return NULL;
6161 }
6162
6163 static
6164 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6165                              void *buf, size_t size)
6166 {
6167         struct intel_dp *dp = &intel_dig_port->dp;
6168         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6169         unsigned int offset;
6170         u8 *byte = buf;
6171         ssize_t ret, bytes_to_write, len;
6172         struct hdcp2_dp_msg_data *hdcp2_msg_data;
6173
6174         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6175         if (!hdcp2_msg_data)
6176                 return -EINVAL;
6177
6178         offset = hdcp2_msg_data->offset;
6179
6180         /* No msg_id in DP HDCP2.2 msgs */
6181         bytes_to_write = size - 1;
6182         byte++;
6183
6184         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6185
6186         while (bytes_to_write) {
6187                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6188                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6189
6190                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6191                                         offset, (void *)byte, len);
6192                 if (ret < 0)
6193                         return ret;
6194
6195                 bytes_to_write -= ret;
6196                 byte += ret;
6197                 offset += ret;
6198         }
6199
6200         return size;
6201 }
6202
6203 static
6204 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6205 {
6206         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6207         u32 dev_cnt;
6208         ssize_t ret;
6209
6210         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6211                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6212                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6213         if (ret != HDCP_2_2_RXINFO_LEN)
6214                 return ret >= 0 ? -EIO : ret;
6215
6216         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6217                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6218
6219         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6220                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6221
6222         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6223                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6224                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6225
6226         return ret;
6227 }
6228
6229 static
6230 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6231                             u8 msg_id, void *buf, size_t size)
6232 {
6233         unsigned int offset;
6234         u8 *byte = buf;
6235         ssize_t ret, bytes_to_recv, len;
6236         struct hdcp2_dp_msg_data *hdcp2_msg_data;
6237
6238         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6239         if (!hdcp2_msg_data)
6240                 return -EINVAL;
6241         offset = hdcp2_msg_data->offset;
6242
6243         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6244         if (ret < 0)
6245                 return ret;
6246
6247         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6248                 ret = get_receiver_id_list_size(intel_dig_port);
6249                 if (ret < 0)
6250                         return ret;
6251
6252                 size = ret;
6253         }
6254         bytes_to_recv = size - 1;
6255
6256         /* DP adaptation msgs has no msg_id */
6257         byte++;
6258
6259         while (bytes_to_recv) {
6260                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6261                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6262
6263                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6264                                        (void *)byte, len);
6265                 if (ret < 0) {
6266                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6267                         return ret;
6268                 }
6269
6270                 bytes_to_recv -= ret;
6271                 byte += ret;
6272                 offset += ret;
6273         }
6274         byte = buf;
6275         *byte = msg_id;
6276
6277         return size;
6278 }
6279
6280 static
6281 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6282                                       bool is_repeater, u8 content_type)
6283 {
6284         struct hdcp2_dp_errata_stream_type stream_type_msg;
6285
6286         if (is_repeater)
6287                 return 0;
6288
6289         /*
6290          * Errata for DP: As Stream type is used for encryption, Receiver
6291          * should be communicated with stream type for the decryption of the
6292          * content.
6293          * Repeater will be communicated with stream type as a part of it's
6294          * auth later in time.
6295          */
6296         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6297         stream_type_msg.stream_type = content_type;
6298
6299         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6300                                         sizeof(stream_type_msg));
6301 }
6302
6303 static
6304 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6305 {
6306         u8 rx_status;
6307         int ret;
6308
6309         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6310         if (ret)
6311                 return ret;
6312
6313         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6314                 ret = HDCP_REAUTH_REQUEST;
6315         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6316                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6317         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6318                 ret = HDCP_TOPOLOGY_CHANGE;
6319
6320         return ret;
6321 }
6322
6323 static
6324 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6325                            bool *capable)
6326 {
6327         u8 rx_caps[3];
6328         int ret;
6329
6330         *capable = false;
6331         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6332                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6333                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6334         if (ret != HDCP_2_2_RXCAPS_LEN)
6335                 return ret >= 0 ? -EIO : ret;
6336
6337         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6338             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6339                 *capable = true;
6340
6341         return 0;
6342 }
6343
6344 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6345         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6346         .read_bksv = intel_dp_hdcp_read_bksv,
6347         .read_bstatus = intel_dp_hdcp_read_bstatus,
6348         .repeater_present = intel_dp_hdcp_repeater_present,
6349         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6350         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6351         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6352         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6353         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6354         .check_link = intel_dp_hdcp_check_link,
6355         .hdcp_capable = intel_dp_hdcp_capable,
6356         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6357         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6358         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6359         .check_2_2_link = intel_dp_hdcp2_check_link,
6360         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6361         .protocol = HDCP_PROTOCOL_DP,
6362 };
6363
6364 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6365 {
6366         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6367         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6368
6369         lockdep_assert_held(&dev_priv->pps_mutex);
6370
6371         if (!edp_have_panel_vdd(intel_dp))
6372                 return;
6373
6374         /*
6375          * The VDD bit needs a power domain reference, so if the bit is
6376          * already enabled when we boot or resume, grab this reference and
6377          * schedule a vdd off, so we don't hold on to the reference
6378          * indefinitely.
6379          */
6380         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6381         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6382
6383         edp_panel_vdd_schedule_off(intel_dp);
6384 }
6385
6386 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6387 {
6388         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6389         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6390         enum pipe pipe;
6391
6392         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6393                                   encoder->port, &pipe))
6394                 return pipe;
6395
6396         return INVALID_PIPE;
6397 }
6398
6399 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6400 {
6401         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6402         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6403         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6404         intel_wakeref_t wakeref;
6405
6406         if (!HAS_DDI(dev_priv))
6407                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6408
6409         if (lspcon->active)
6410                 lspcon_resume(lspcon);
6411
6412         intel_dp->reset_link_params = true;
6413
6414         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6415             !intel_dp_is_edp(intel_dp))
6416                 return;
6417
6418         with_pps_lock(intel_dp, wakeref) {
6419                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6420                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6421
6422                 if (intel_dp_is_edp(intel_dp)) {
6423                         /*
6424                          * Reinit the power sequencer, in case BIOS did
6425                          * something nasty with it.
6426                          */
6427                         intel_dp_pps_init(intel_dp);
6428                         intel_edp_panel_vdd_sanitize(intel_dp);
6429                 }
6430         }
6431 }
6432
6433 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6434         .force = intel_dp_force,
6435         .fill_modes = drm_helper_probe_single_connector_modes,
6436         .atomic_get_property = intel_digital_connector_atomic_get_property,
6437         .atomic_set_property = intel_digital_connector_atomic_set_property,
6438         .late_register = intel_dp_connector_register,
6439         .early_unregister = intel_dp_connector_unregister,
6440         .destroy = intel_connector_destroy,
6441         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6442         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6443 };
6444
6445 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6446         .detect_ctx = intel_dp_detect,
6447         .get_modes = intel_dp_get_modes,
6448         .mode_valid = intel_dp_mode_valid,
6449         .atomic_check = intel_digital_connector_atomic_check,
6450 };
6451
6452 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6453         .reset = intel_dp_encoder_reset,
6454         .destroy = intel_dp_encoder_destroy,
6455 };
6456
6457 enum irqreturn
6458 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6459 {
6460         struct intel_dp *intel_dp = &intel_dig_port->dp;
6461
6462         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6463                 /*
6464                  * vdd off can generate a long pulse on eDP which
6465                  * would require vdd on to handle it, and thus we
6466                  * would end up in an endless cycle of
6467                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6468                  */
6469                 DRM_DEBUG_KMS("ignoring long hpd on eDP port %c\n",
6470                               port_name(intel_dig_port->base.port));
6471                 return IRQ_HANDLED;
6472         }
6473
6474         DRM_DEBUG_KMS("got hpd irq on port %c - %s\n",
6475                       port_name(intel_dig_port->base.port),
6476                       long_hpd ? "long" : "short");
6477
6478         if (long_hpd) {
6479                 intel_dp->reset_link_params = true;
6480                 return IRQ_NONE;
6481         }
6482
6483         if (intel_dp->is_mst) {
6484                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6485                         /*
6486                          * If we were in MST mode, and device is not
6487                          * there, get out of MST mode
6488                          */
6489                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6490                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6491                         intel_dp->is_mst = false;
6492                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6493                                                         intel_dp->is_mst);
6494
6495                         return IRQ_NONE;
6496                 }
6497         }
6498
6499         if (!intel_dp->is_mst) {
6500                 bool handled;
6501
6502                 handled = intel_dp_short_pulse(intel_dp);
6503
6504                 if (!handled)
6505                         return IRQ_NONE;
6506         }
6507
6508         return IRQ_HANDLED;
6509 }
6510
6511 /* check the VBT to see whether the eDP is on another port */
6512 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6513 {
6514         /*
6515          * eDP not supported on g4x. so bail out early just
6516          * for a bit extra safety in case the VBT is bonkers.
6517          */
6518         if (INTEL_GEN(dev_priv) < 5)
6519                 return false;
6520
6521         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6522                 return true;
6523
6524         return intel_bios_is_port_edp(dev_priv, port);
6525 }
6526
6527 static void
6528 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6529 {
6530         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6531         enum port port = dp_to_dig_port(intel_dp)->base.port;
6532
6533         if (!IS_G4X(dev_priv) && port != PORT_A)
6534                 intel_attach_force_audio_property(connector);
6535
6536         intel_attach_broadcast_rgb_property(connector);
6537         if (HAS_GMCH(dev_priv))
6538                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6539         else if (INTEL_GEN(dev_priv) >= 5)
6540                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6541
6542         if (intel_dp_is_edp(intel_dp)) {
6543                 u32 allowed_scalers;
6544
6545                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6546                 if (!HAS_GMCH(dev_priv))
6547                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6548
6549                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6550
6551                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6552
6553         }
6554 }
6555
6556 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6557 {
6558         intel_dp->panel_power_off_time = ktime_get_boottime();
6559         intel_dp->last_power_on = jiffies;
6560         intel_dp->last_backlight_off = jiffies;
6561 }
6562
6563 static void
6564 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6565 {
6566         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6567         u32 pp_on, pp_off, pp_ctl;
6568         struct pps_registers regs;
6569
6570         intel_pps_get_registers(intel_dp, &regs);
6571
6572         pp_ctl = ironlake_get_pp_control(intel_dp);
6573
6574         /* Ensure PPS is unlocked */
6575         if (!HAS_DDI(dev_priv))
6576                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6577
6578         pp_on = I915_READ(regs.pp_on);
6579         pp_off = I915_READ(regs.pp_off);
6580
6581         /* Pull timing values out of registers */
6582         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6583         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6584         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6585         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6586
6587         if (i915_mmio_reg_valid(regs.pp_div)) {
6588                 u32 pp_div;
6589
6590                 pp_div = I915_READ(regs.pp_div);
6591
6592                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6593         } else {
6594                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6595         }
6596 }
6597
6598 static void
6599 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6600 {
6601         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6602                       state_name,
6603                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6604 }
6605
6606 static void
6607 intel_pps_verify_state(struct intel_dp *intel_dp)
6608 {
6609         struct edp_power_seq hw;
6610         struct edp_power_seq *sw = &intel_dp->pps_delays;
6611
6612         intel_pps_readout_hw_state(intel_dp, &hw);
6613
6614         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6615             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6616                 DRM_ERROR("PPS state mismatch\n");
6617                 intel_pps_dump_state("sw", sw);
6618                 intel_pps_dump_state("hw", &hw);
6619         }
6620 }
6621
6622 static void
6623 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6624 {
6625         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6626         struct edp_power_seq cur, vbt, spec,
6627                 *final = &intel_dp->pps_delays;
6628
6629         lockdep_assert_held(&dev_priv->pps_mutex);
6630
6631         /* already initialized? */
6632         if (final->t11_t12 != 0)
6633                 return;
6634
6635         intel_pps_readout_hw_state(intel_dp, &cur);
6636
6637         intel_pps_dump_state("cur", &cur);
6638
6639         vbt = dev_priv->vbt.edp.pps;
6640         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6641          * of 500ms appears to be too short. Ocassionally the panel
6642          * just fails to power back on. Increasing the delay to 800ms
6643          * seems sufficient to avoid this problem.
6644          */
6645         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6646                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6647                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6648                               vbt.t11_t12);
6649         }
6650         /* T11_T12 delay is special and actually in units of 100ms, but zero
6651          * based in the hw (so we need to add 100 ms). But the sw vbt
6652          * table multiplies it with 1000 to make it in units of 100usec,
6653          * too. */
6654         vbt.t11_t12 += 100 * 10;
6655
6656         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6657          * our hw here, which are all in 100usec. */
6658         spec.t1_t3 = 210 * 10;
6659         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6660         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6661         spec.t10 = 500 * 10;
6662         /* This one is special and actually in units of 100ms, but zero
6663          * based in the hw (so we need to add 100 ms). But the sw vbt
6664          * table multiplies it with 1000 to make it in units of 100usec,
6665          * too. */
6666         spec.t11_t12 = (510 + 100) * 10;
6667
6668         intel_pps_dump_state("vbt", &vbt);
6669
6670         /* Use the max of the register settings and vbt. If both are
6671          * unset, fall back to the spec limits. */
6672 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6673                                        spec.field : \
6674                                        max(cur.field, vbt.field))
6675         assign_final(t1_t3);
6676         assign_final(t8);
6677         assign_final(t9);
6678         assign_final(t10);
6679         assign_final(t11_t12);
6680 #undef assign_final
6681
6682 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6683         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6684         intel_dp->backlight_on_delay = get_delay(t8);
6685         intel_dp->backlight_off_delay = get_delay(t9);
6686         intel_dp->panel_power_down_delay = get_delay(t10);
6687         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6688 #undef get_delay
6689
6690         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6691                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6692                       intel_dp->panel_power_cycle_delay);
6693
6694         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6695                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6696
6697         /*
6698          * We override the HW backlight delays to 1 because we do manual waits
6699          * on them. For T8, even BSpec recommends doing it. For T9, if we
6700          * don't do this, we'll end up waiting for the backlight off delay
6701          * twice: once when we do the manual sleep, and once when we disable
6702          * the panel and wait for the PP_STATUS bit to become zero.
6703          */
6704         final->t8 = 1;
6705         final->t9 = 1;
6706
6707         /*
6708          * HW has only a 100msec granularity for t11_t12 so round it up
6709          * accordingly.
6710          */
6711         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6712 }
6713
6714 static void
6715 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6716                                               bool force_disable_vdd)
6717 {
6718         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6719         u32 pp_on, pp_off, port_sel = 0;
6720         int div = dev_priv->rawclk_freq / 1000;
6721         struct pps_registers regs;
6722         enum port port = dp_to_dig_port(intel_dp)->base.port;
6723         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6724
6725         lockdep_assert_held(&dev_priv->pps_mutex);
6726
6727         intel_pps_get_registers(intel_dp, &regs);
6728
6729         /*
6730          * On some VLV machines the BIOS can leave the VDD
6731          * enabled even on power sequencers which aren't
6732          * hooked up to any port. This would mess up the
6733          * power domain tracking the first time we pick
6734          * one of these power sequencers for use since
6735          * edp_panel_vdd_on() would notice that the VDD was
6736          * already on and therefore wouldn't grab the power
6737          * domain reference. Disable VDD first to avoid this.
6738          * This also avoids spuriously turning the VDD on as
6739          * soon as the new power sequencer gets initialized.
6740          */
6741         if (force_disable_vdd) {
6742                 u32 pp = ironlake_get_pp_control(intel_dp);
6743
6744                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6745
6746                 if (pp & EDP_FORCE_VDD)
6747                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6748
6749                 pp &= ~EDP_FORCE_VDD;
6750
6751                 I915_WRITE(regs.pp_ctrl, pp);
6752         }
6753
6754         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6755                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6756         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6757                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6758
6759         /* Haswell doesn't have any port selection bits for the panel
6760          * power sequencer any more. */
6761         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6762                 port_sel = PANEL_PORT_SELECT_VLV(port);
6763         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6764                 switch (port) {
6765                 case PORT_A:
6766                         port_sel = PANEL_PORT_SELECT_DPA;
6767                         break;
6768                 case PORT_C:
6769                         port_sel = PANEL_PORT_SELECT_DPC;
6770                         break;
6771                 case PORT_D:
6772                         port_sel = PANEL_PORT_SELECT_DPD;
6773                         break;
6774                 default:
6775                         MISSING_CASE(port);
6776                         break;
6777                 }
6778         }
6779
6780         pp_on |= port_sel;
6781
6782         I915_WRITE(regs.pp_on, pp_on);
6783         I915_WRITE(regs.pp_off, pp_off);
6784
6785         /*
6786          * Compute the divisor for the pp clock, simply match the Bspec formula.
6787          */
6788         if (i915_mmio_reg_valid(regs.pp_div)) {
6789                 I915_WRITE(regs.pp_div,
6790                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6791                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6792         } else {
6793                 u32 pp_ctl;
6794
6795                 pp_ctl = I915_READ(regs.pp_ctrl);
6796                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6797                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6798                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6799         }
6800
6801         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6802                       I915_READ(regs.pp_on),
6803                       I915_READ(regs.pp_off),
6804                       i915_mmio_reg_valid(regs.pp_div) ?
6805                       I915_READ(regs.pp_div) :
6806                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6807 }
6808
6809 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6810 {
6811         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6812
6813         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6814                 vlv_initial_power_sequencer_setup(intel_dp);
6815         } else {
6816                 intel_dp_init_panel_power_sequencer(intel_dp);
6817                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6818         }
6819 }
6820
6821 /**
6822  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6823  * @dev_priv: i915 device
6824  * @crtc_state: a pointer to the active intel_crtc_state
6825  * @refresh_rate: RR to be programmed
6826  *
6827  * This function gets called when refresh rate (RR) has to be changed from
6828  * one frequency to another. Switches can be between high and low RR
6829  * supported by the panel or to any other RR based on media playback (in
6830  * this case, RR value needs to be passed from user space).
6831  *
6832  * The caller of this function needs to take a lock on dev_priv->drrs.
6833  */
6834 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6835                                     const struct intel_crtc_state *crtc_state,
6836                                     int refresh_rate)
6837 {
6838         struct intel_encoder *encoder;
6839         struct intel_digital_port *dig_port = NULL;
6840         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6841         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6842         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6843
6844         if (refresh_rate <= 0) {
6845                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6846                 return;
6847         }
6848
6849         if (intel_dp == NULL) {
6850                 DRM_DEBUG_KMS("DRRS not supported.\n");
6851                 return;
6852         }
6853
6854         dig_port = dp_to_dig_port(intel_dp);
6855         encoder = &dig_port->base;
6856
6857         if (!intel_crtc) {
6858                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6859                 return;
6860         }
6861
6862         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6863                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6864                 return;
6865         }
6866
6867         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6868                         refresh_rate)
6869                 index = DRRS_LOW_RR;
6870
6871         if (index == dev_priv->drrs.refresh_rate_type) {
6872                 DRM_DEBUG_KMS(
6873                         "DRRS requested for previously set RR...ignoring\n");
6874                 return;
6875         }
6876
6877         if (!crtc_state->base.active) {
6878                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6879                 return;
6880         }
6881
6882         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6883                 switch (index) {
6884                 case DRRS_HIGH_RR:
6885                         intel_dp_set_m_n(crtc_state, M1_N1);
6886                         break;
6887                 case DRRS_LOW_RR:
6888                         intel_dp_set_m_n(crtc_state, M2_N2);
6889                         break;
6890                 case DRRS_MAX_RR:
6891                 default:
6892                         DRM_ERROR("Unsupported refreshrate type\n");
6893                 }
6894         } else if (INTEL_GEN(dev_priv) > 6) {
6895                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6896                 u32 val;
6897
6898                 val = I915_READ(reg);
6899                 if (index > DRRS_HIGH_RR) {
6900                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6901                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6902                         else
6903                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6904                 } else {
6905                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6906                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6907                         else
6908                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6909                 }
6910                 I915_WRITE(reg, val);
6911         }
6912
6913         dev_priv->drrs.refresh_rate_type = index;
6914
6915         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6916 }
6917
6918 /**
6919  * intel_edp_drrs_enable - init drrs struct if supported
6920  * @intel_dp: DP struct
6921  * @crtc_state: A pointer to the active crtc state.
6922  *
6923  * Initializes frontbuffer_bits and drrs.dp
6924  */
6925 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6926                            const struct intel_crtc_state *crtc_state)
6927 {
6928         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6929
6930         if (!crtc_state->has_drrs) {
6931                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6932                 return;
6933         }
6934
6935         if (dev_priv->psr.enabled) {
6936                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6937                 return;
6938         }
6939
6940         mutex_lock(&dev_priv->drrs.mutex);
6941         if (dev_priv->drrs.dp) {
6942                 DRM_DEBUG_KMS("DRRS already enabled\n");
6943                 goto unlock;
6944         }
6945
6946         dev_priv->drrs.busy_frontbuffer_bits = 0;
6947
6948         dev_priv->drrs.dp = intel_dp;
6949
6950 unlock:
6951         mutex_unlock(&dev_priv->drrs.mutex);
6952 }
6953
6954 /**
6955  * intel_edp_drrs_disable - Disable DRRS
6956  * @intel_dp: DP struct
6957  * @old_crtc_state: Pointer to old crtc_state.
6958  *
6959  */
6960 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6961                             const struct intel_crtc_state *old_crtc_state)
6962 {
6963         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6964
6965         if (!old_crtc_state->has_drrs)
6966                 return;
6967
6968         mutex_lock(&dev_priv->drrs.mutex);
6969         if (!dev_priv->drrs.dp) {
6970                 mutex_unlock(&dev_priv->drrs.mutex);
6971                 return;
6972         }
6973
6974         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6975                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6976                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6977
6978         dev_priv->drrs.dp = NULL;
6979         mutex_unlock(&dev_priv->drrs.mutex);
6980
6981         cancel_delayed_work_sync(&dev_priv->drrs.work);
6982 }
6983
6984 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6985 {
6986         struct drm_i915_private *dev_priv =
6987                 container_of(work, typeof(*dev_priv), drrs.work.work);
6988         struct intel_dp *intel_dp;
6989
6990         mutex_lock(&dev_priv->drrs.mutex);
6991
6992         intel_dp = dev_priv->drrs.dp;
6993
6994         if (!intel_dp)
6995                 goto unlock;
6996
6997         /*
6998          * The delayed work can race with an invalidate hence we need to
6999          * recheck.
7000          */
7001
7002         if (dev_priv->drrs.busy_frontbuffer_bits)
7003                 goto unlock;
7004
7005         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7006                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7007
7008                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7009                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7010         }
7011
7012 unlock:
7013         mutex_unlock(&dev_priv->drrs.mutex);
7014 }
7015
7016 /**
7017  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7018  * @dev_priv: i915 device
7019  * @frontbuffer_bits: frontbuffer plane tracking bits
7020  *
7021  * This function gets called everytime rendering on the given planes start.
7022  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7023  *
7024  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7025  */
7026 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7027                                unsigned int frontbuffer_bits)
7028 {
7029         struct drm_crtc *crtc;
7030         enum pipe pipe;
7031
7032         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7033                 return;
7034
7035         cancel_delayed_work(&dev_priv->drrs.work);
7036
7037         mutex_lock(&dev_priv->drrs.mutex);
7038         if (!dev_priv->drrs.dp) {
7039                 mutex_unlock(&dev_priv->drrs.mutex);
7040                 return;
7041         }
7042
7043         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7044         pipe = to_intel_crtc(crtc)->pipe;
7045
7046         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7047         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7048
7049         /* invalidate means busy screen hence upclock */
7050         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7051                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7052                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7053
7054         mutex_unlock(&dev_priv->drrs.mutex);
7055 }
7056
7057 /**
7058  * intel_edp_drrs_flush - Restart Idleness DRRS
7059  * @dev_priv: i915 device
7060  * @frontbuffer_bits: frontbuffer plane tracking bits
7061  *
7062  * This function gets called every time rendering on the given planes has
7063  * completed or flip on a crtc is completed. So DRRS should be upclocked
7064  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7065  * if no other planes are dirty.
7066  *
7067  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7068  */
7069 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7070                           unsigned int frontbuffer_bits)
7071 {
7072         struct drm_crtc *crtc;
7073         enum pipe pipe;
7074
7075         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7076                 return;
7077
7078         cancel_delayed_work(&dev_priv->drrs.work);
7079
7080         mutex_lock(&dev_priv->drrs.mutex);
7081         if (!dev_priv->drrs.dp) {
7082                 mutex_unlock(&dev_priv->drrs.mutex);
7083                 return;
7084         }
7085
7086         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7087         pipe = to_intel_crtc(crtc)->pipe;
7088
7089         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7090         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7091
7092         /* flush means busy screen hence upclock */
7093         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7094                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7095                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7096
7097         /*
7098          * flush also means no more activity hence schedule downclock, if all
7099          * other fbs are quiescent too
7100          */
7101         if (!dev_priv->drrs.busy_frontbuffer_bits)
7102                 schedule_delayed_work(&dev_priv->drrs.work,
7103                                 msecs_to_jiffies(1000));
7104         mutex_unlock(&dev_priv->drrs.mutex);
7105 }
7106
7107 /**
7108  * DOC: Display Refresh Rate Switching (DRRS)
7109  *
7110  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7111  * which enables swtching between low and high refresh rates,
7112  * dynamically, based on the usage scenario. This feature is applicable
7113  * for internal panels.
7114  *
7115  * Indication that the panel supports DRRS is given by the panel EDID, which
7116  * would list multiple refresh rates for one resolution.
7117  *
7118  * DRRS is of 2 types - static and seamless.
7119  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7120  * (may appear as a blink on screen) and is used in dock-undock scenario.
7121  * Seamless DRRS involves changing RR without any visual effect to the user
7122  * and can be used during normal system usage. This is done by programming
7123  * certain registers.
7124  *
7125  * Support for static/seamless DRRS may be indicated in the VBT based on
7126  * inputs from the panel spec.
7127  *
7128  * DRRS saves power by switching to low RR based on usage scenarios.
7129  *
7130  * The implementation is based on frontbuffer tracking implementation.  When
7131  * there is a disturbance on the screen triggered by user activity or a periodic
7132  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7133  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7134  * made.
7135  *
7136  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7137  * and intel_edp_drrs_flush() are called.
7138  *
7139  * DRRS can be further extended to support other internal panels and also
7140  * the scenario of video playback wherein RR is set based on the rate
7141  * requested by userspace.
7142  */
7143
7144 /**
7145  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7146  * @connector: eDP connector
7147  * @fixed_mode: preferred mode of panel
7148  *
7149  * This function is  called only once at driver load to initialize basic
7150  * DRRS stuff.
7151  *
7152  * Returns:
7153  * Downclock mode if panel supports it, else return NULL.
7154  * DRRS support is determined by the presence of downclock mode (apart
7155  * from VBT setting).
7156  */
7157 static struct drm_display_mode *
7158 intel_dp_drrs_init(struct intel_connector *connector,
7159                    struct drm_display_mode *fixed_mode)
7160 {
7161         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7162         struct drm_display_mode *downclock_mode = NULL;
7163
7164         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7165         mutex_init(&dev_priv->drrs.mutex);
7166
7167         if (INTEL_GEN(dev_priv) <= 6) {
7168                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7169                 return NULL;
7170         }
7171
7172         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7173                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7174                 return NULL;
7175         }
7176
7177         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7178         if (!downclock_mode) {
7179                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7180                 return NULL;
7181         }
7182
7183         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7184
7185         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7186         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7187         return downclock_mode;
7188 }
7189
7190 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7191                                      struct intel_connector *intel_connector)
7192 {
7193         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7194         struct drm_device *dev = &dev_priv->drm;
7195         struct drm_connector *connector = &intel_connector->base;
7196         struct drm_display_mode *fixed_mode = NULL;
7197         struct drm_display_mode *downclock_mode = NULL;
7198         bool has_dpcd;
7199         enum pipe pipe = INVALID_PIPE;
7200         intel_wakeref_t wakeref;
7201         struct edid *edid;
7202
7203         if (!intel_dp_is_edp(intel_dp))
7204                 return true;
7205
7206         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7207
7208         /*
7209          * On IBX/CPT we may get here with LVDS already registered. Since the
7210          * driver uses the only internal power sequencer available for both
7211          * eDP and LVDS bail out early in this case to prevent interfering
7212          * with an already powered-on LVDS power sequencer.
7213          */
7214         if (intel_get_lvds_encoder(dev_priv)) {
7215                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7216                 DRM_INFO("LVDS was detected, not registering eDP\n");
7217
7218                 return false;
7219         }
7220
7221         with_pps_lock(intel_dp, wakeref) {
7222                 intel_dp_init_panel_power_timestamps(intel_dp);
7223                 intel_dp_pps_init(intel_dp);
7224                 intel_edp_panel_vdd_sanitize(intel_dp);
7225         }
7226
7227         /* Cache DPCD and EDID for edp. */
7228         has_dpcd = intel_edp_init_dpcd(intel_dp);
7229
7230         if (!has_dpcd) {
7231                 /* if this fails, presume the device is a ghost */
7232                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7233                 goto out_vdd_off;
7234         }
7235
7236         mutex_lock(&dev->mode_config.mutex);
7237         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7238         if (edid) {
7239                 if (drm_add_edid_modes(connector, edid)) {
7240                         drm_connector_update_edid_property(connector,
7241                                                                 edid);
7242                 } else {
7243                         kfree(edid);
7244                         edid = ERR_PTR(-EINVAL);
7245                 }
7246         } else {
7247                 edid = ERR_PTR(-ENOENT);
7248         }
7249         intel_connector->edid = edid;
7250
7251         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7252         if (fixed_mode)
7253                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7254
7255         /* fallback to VBT if available for eDP */
7256         if (!fixed_mode)
7257                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7258         mutex_unlock(&dev->mode_config.mutex);
7259
7260         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7261                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7262                 register_reboot_notifier(&intel_dp->edp_notifier);
7263
7264                 /*
7265                  * Figure out the current pipe for the initial backlight setup.
7266                  * If the current pipe isn't valid, try the PPS pipe, and if that
7267                  * fails just assume pipe A.
7268                  */
7269                 pipe = vlv_active_pipe(intel_dp);
7270
7271                 if (pipe != PIPE_A && pipe != PIPE_B)
7272                         pipe = intel_dp->pps_pipe;
7273
7274                 if (pipe != PIPE_A && pipe != PIPE_B)
7275                         pipe = PIPE_A;
7276
7277                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7278                               pipe_name(pipe));
7279         }
7280
7281         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7282         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7283         intel_panel_setup_backlight(connector, pipe);
7284
7285         if (fixed_mode)
7286                 drm_connector_init_panel_orientation_property(
7287                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7288
7289         return true;
7290
7291 out_vdd_off:
7292         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7293         /*
7294          * vdd might still be enabled do to the delayed vdd off.
7295          * Make sure vdd is actually turned off here.
7296          */
7297         with_pps_lock(intel_dp, wakeref)
7298                 edp_panel_vdd_off_sync(intel_dp);
7299
7300         return false;
7301 }
7302
7303 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7304 {
7305         struct intel_connector *intel_connector;
7306         struct drm_connector *connector;
7307
7308         intel_connector = container_of(work, typeof(*intel_connector),
7309                                        modeset_retry_work);
7310         connector = &intel_connector->base;
7311         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7312                       connector->name);
7313
7314         /* Grab the locks before changing connector property*/
7315         mutex_lock(&connector->dev->mode_config.mutex);
7316         /* Set connector link status to BAD and send a Uevent to notify
7317          * userspace to do a modeset.
7318          */
7319         drm_connector_set_link_status_property(connector,
7320                                                DRM_MODE_LINK_STATUS_BAD);
7321         mutex_unlock(&connector->dev->mode_config.mutex);
7322         /* Send Hotplug uevent so userspace can reprobe */
7323         drm_kms_helper_hotplug_event(connector->dev);
7324 }
7325
7326 bool
7327 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7328                         struct intel_connector *intel_connector)
7329 {
7330         struct drm_connector *connector = &intel_connector->base;
7331         struct intel_dp *intel_dp = &intel_dig_port->dp;
7332         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7333         struct drm_device *dev = intel_encoder->base.dev;
7334         struct drm_i915_private *dev_priv = to_i915(dev);
7335         enum port port = intel_encoder->port;
7336         int type;
7337
7338         /* Initialize the work for modeset in case of link train failure */
7339         INIT_WORK(&intel_connector->modeset_retry_work,
7340                   intel_dp_modeset_retry_work_fn);
7341
7342         if (WARN(intel_dig_port->max_lanes < 1,
7343                  "Not enough lanes (%d) for DP on port %c\n",
7344                  intel_dig_port->max_lanes, port_name(port)))
7345                 return false;
7346
7347         intel_dp_set_source_rates(intel_dp);
7348
7349         intel_dp->reset_link_params = true;
7350         intel_dp->pps_pipe = INVALID_PIPE;
7351         intel_dp->active_pipe = INVALID_PIPE;
7352
7353         /* Preserve the current hw state. */
7354         intel_dp->DP = I915_READ(intel_dp->output_reg);
7355         intel_dp->attached_connector = intel_connector;
7356
7357         if (intel_dp_is_port_edp(dev_priv, port)) {
7358                 /*
7359                  * Currently we don't support eDP on TypeC ports, although in
7360                  * theory it could work on TypeC legacy ports.
7361                  */
7362                 WARN_ON(intel_port_is_tc(dev_priv, port));
7363                 type = DRM_MODE_CONNECTOR_eDP;
7364         } else {
7365                 type = DRM_MODE_CONNECTOR_DisplayPort;
7366         }
7367
7368         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7369                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7370
7371         /*
7372          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7373          * for DP the encoder type can be set by the caller to
7374          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7375          */
7376         if (type == DRM_MODE_CONNECTOR_eDP)
7377                 intel_encoder->type = INTEL_OUTPUT_EDP;
7378
7379         /* eDP only on port B and/or C on vlv/chv */
7380         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7381                     intel_dp_is_edp(intel_dp) &&
7382                     port != PORT_B && port != PORT_C))
7383                 return false;
7384
7385         DRM_DEBUG_KMS("Adding %s connector on port %c\n",
7386                         type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7387                         port_name(port));
7388
7389         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7390         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7391
7392         if (!HAS_GMCH(dev_priv))
7393                 connector->interlace_allowed = true;
7394         connector->doublescan_allowed = 0;
7395
7396         if (INTEL_GEN(dev_priv) >= 11)
7397                 connector->ycbcr_420_allowed = true;
7398
7399         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7400
7401         intel_dp_aux_init(intel_dp);
7402
7403         intel_connector_attach_encoder(intel_connector, intel_encoder);
7404
7405         if (HAS_DDI(dev_priv))
7406                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7407         else
7408                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7409
7410         /* init MST on ports that can support it */
7411         if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7412             (port == PORT_B || port == PORT_C ||
7413              port == PORT_D || port == PORT_F))
7414                 intel_dp_mst_encoder_init(intel_dig_port,
7415                                           intel_connector->base.base.id);
7416
7417         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7418                 intel_dp_aux_fini(intel_dp);
7419                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7420                 goto fail;
7421         }
7422
7423         intel_dp_add_properties(intel_dp, connector);
7424
7425         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7426                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7427                 if (ret)
7428                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7429         }
7430
7431         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7432          * 0xd.  Failure to do so will result in spurious interrupts being
7433          * generated on the port when a cable is not attached.
7434          */
7435         if (IS_G45(dev_priv)) {
7436                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7437                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7438         }
7439
7440         return true;
7441
7442 fail:
7443         drm_connector_cleanup(connector);
7444
7445         return false;
7446 }
7447
7448 bool intel_dp_init(struct drm_i915_private *dev_priv,
7449                    i915_reg_t output_reg,
7450                    enum port port)
7451 {
7452         struct intel_digital_port *intel_dig_port;
7453         struct intel_encoder *intel_encoder;
7454         struct drm_encoder *encoder;
7455         struct intel_connector *intel_connector;
7456
7457         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7458         if (!intel_dig_port)
7459                 return false;
7460
7461         intel_connector = intel_connector_alloc();
7462         if (!intel_connector)
7463                 goto err_connector_alloc;
7464
7465         intel_encoder = &intel_dig_port->base;
7466         encoder = &intel_encoder->base;
7467
7468         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7469                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7470                              "DP %c", port_name(port)))
7471                 goto err_encoder_init;
7472
7473         intel_encoder->hotplug = intel_dp_hotplug;
7474         intel_encoder->compute_config = intel_dp_compute_config;
7475         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7476         intel_encoder->get_config = intel_dp_get_config;
7477         intel_encoder->update_pipe = intel_panel_update_backlight;
7478         intel_encoder->suspend = intel_dp_encoder_suspend;
7479         if (IS_CHERRYVIEW(dev_priv)) {
7480                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7481                 intel_encoder->pre_enable = chv_pre_enable_dp;
7482                 intel_encoder->enable = vlv_enable_dp;
7483                 intel_encoder->disable = vlv_disable_dp;
7484                 intel_encoder->post_disable = chv_post_disable_dp;
7485                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7486         } else if (IS_VALLEYVIEW(dev_priv)) {
7487                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7488                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7489                 intel_encoder->enable = vlv_enable_dp;
7490                 intel_encoder->disable = vlv_disable_dp;
7491                 intel_encoder->post_disable = vlv_post_disable_dp;
7492         } else {
7493                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7494                 intel_encoder->enable = g4x_enable_dp;
7495                 intel_encoder->disable = g4x_disable_dp;
7496                 intel_encoder->post_disable = g4x_post_disable_dp;
7497         }
7498
7499         intel_dig_port->dp.output_reg = output_reg;
7500         intel_dig_port->max_lanes = 4;
7501
7502         intel_encoder->type = INTEL_OUTPUT_DP;
7503         intel_encoder->power_domain = intel_port_to_power_domain(port);
7504         if (IS_CHERRYVIEW(dev_priv)) {
7505                 if (port == PORT_D)
7506                         intel_encoder->crtc_mask = 1 << 2;
7507                 else
7508                         intel_encoder->crtc_mask = (1 << 0) | (1 << 1);
7509         } else {
7510                 intel_encoder->crtc_mask = (1 << 0) | (1 << 1) | (1 << 2);
7511         }
7512         intel_encoder->cloneable = 0;
7513         intel_encoder->port = port;
7514
7515         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7516
7517         if (port != PORT_A)
7518                 intel_infoframe_init(intel_dig_port);
7519
7520         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7521         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7522                 goto err_init_connector;
7523
7524         return true;
7525
7526 err_init_connector:
7527         drm_encoder_cleanup(encoder);
7528 err_encoder_init:
7529         kfree(intel_connector);
7530 err_connector_alloc:
7531         kfree(intel_dig_port);
7532         return false;
7533 }
7534
7535 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7536 {
7537         struct intel_encoder *encoder;
7538
7539         for_each_intel_encoder(&dev_priv->drm, encoder) {
7540                 struct intel_dp *intel_dp;
7541
7542                 if (encoder->type != INTEL_OUTPUT_DDI)
7543                         continue;
7544
7545                 intel_dp = enc_to_intel_dp(&encoder->base);
7546
7547                 if (!intel_dp->can_mst)
7548                         continue;
7549
7550                 if (intel_dp->is_mst)
7551                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7552         }
7553 }
7554
7555 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7556 {
7557         struct intel_encoder *encoder;
7558
7559         for_each_intel_encoder(&dev_priv->drm, encoder) {
7560                 struct intel_dp *intel_dp;
7561                 int ret;
7562
7563                 if (encoder->type != INTEL_OUTPUT_DDI)
7564                         continue;
7565
7566                 intel_dp = enc_to_intel_dp(&encoder->base);
7567
7568                 if (!intel_dp->can_mst)
7569                         continue;
7570
7571                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7572                 if (ret) {
7573                         intel_dp->is_mst = false;
7574                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7575                                                         false);
7576                 }
7577         }
7578 }