Merge tag 'drm-misc-next-2019-10-09-2' of git://anongit.freedesktop.org/drm/drm-misc...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
150 {
151         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 }
153
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155                                const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159                                            const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161                                       enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167         static const int dp_rates[] = {
168                 162000, 270000, 540000, 810000
169         };
170         int i, max_rate;
171
172         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173
174         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175                 if (dp_rates[i] > max_rate)
176                         break;
177                 intel_dp->sink_rates[i] = dp_rates[i];
178         }
179
180         intel_dp->num_sink_rates = i;
181 }
182
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186         int i;
187
188         /* Limit results by potentially reduced max rate */
189         for (i = 0; i < len; i++) {
190                 if (rates[len - i - 1] <= max_rate)
191                         return len - i;
192         }
193
194         return 0;
195 }
196
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199                                           int max_rate)
200 {
201         return intel_dp_rate_limit_len(intel_dp->common_rates,
202                                        intel_dp->num_common_rates, max_rate);
203 }
204
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215         int source_max = intel_dig_port->max_lanes;
216         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218
219         return min3(source_max, sink_max, fia_max);
220 }
221
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224         return intel_dp->max_link_lane_count;
225 }
226
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231         return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238          * link rate that is generally expressed in Gbps. Since, 8 bits of data
239          * is transmitted every LS_Clk per lane, there is no need to account for
240          * the channel encoding that is done in the PHY layer here.
241          */
242
243         return max_link_clock * max_lanes;
244 }
245
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250         struct intel_encoder *encoder = &intel_dig_port->base;
251         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252         int max_dotclk = dev_priv->max_dotclk_freq;
253         int ds_max_dotclk;
254
255         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256
257         if (type != DP_DS_PORT_TYPE_VGA)
258                 return max_dotclk;
259
260         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261                                                     intel_dp->downstream_ports);
262
263         if (ds_max_dotclk != 0)
264                 max_dotclk = min(max_dotclk, ds_max_dotclk);
265
266         return max_dotclk;
267 }
268
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273         enum port port = dig_port->base.port;
274
275         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276
277         /* Low voltage SKUs are limited to max of 5.4G */
278         if (voltage == VOLTAGE_INFO_0_85V)
279                 return 540000;
280
281         /* For this SKU 8.1G is supported in all ports */
282         if (IS_CNL_WITH_PORT_F(dev_priv))
283                 return 810000;
284
285         /* For other SKUs, max rate on ports A and D is 5.4G */
286         if (port == PORT_A || port == PORT_D)
287                 return 540000;
288
289         return 810000;
290 }
291
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297
298         if (intel_phy_is_combo(dev_priv, phy) &&
299             !IS_ELKHARTLAKE(dev_priv) &&
300             !intel_dp_is_edp(intel_dp))
301                 return 540000;
302
303         return 810000;
304 }
305
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309         /* The values must be in increasing order */
310         static const int cnl_rates[] = {
311                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312         };
313         static const int bxt_rates[] = {
314                 162000, 216000, 243000, 270000, 324000, 432000, 540000
315         };
316         static const int skl_rates[] = {
317                 162000, 216000, 270000, 324000, 432000, 540000
318         };
319         static const int hsw_rates[] = {
320                 162000, 270000, 540000
321         };
322         static const int g4x_rates[] = {
323                 162000, 270000
324         };
325         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327         const struct ddi_vbt_port_info *info =
328                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
329         const int *source_rates;
330         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331
332         /* This should only be done once */
333         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334
335         if (INTEL_GEN(dev_priv) >= 10) {
336                 source_rates = cnl_rates;
337                 size = ARRAY_SIZE(cnl_rates);
338                 if (IS_GEN(dev_priv, 10))
339                         max_rate = cnl_max_source_rate(intel_dp);
340                 else
341                         max_rate = icl_max_source_rate(intel_dp);
342         } else if (IS_GEN9_LP(dev_priv)) {
343                 source_rates = bxt_rates;
344                 size = ARRAY_SIZE(bxt_rates);
345         } else if (IS_GEN9_BC(dev_priv)) {
346                 source_rates = skl_rates;
347                 size = ARRAY_SIZE(skl_rates);
348         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349                    IS_BROADWELL(dev_priv)) {
350                 source_rates = hsw_rates;
351                 size = ARRAY_SIZE(hsw_rates);
352         } else {
353                 source_rates = g4x_rates;
354                 size = ARRAY_SIZE(g4x_rates);
355         }
356
357         if (max_rate && vbt_max_rate)
358                 max_rate = min(max_rate, vbt_max_rate);
359         else if (vbt_max_rate)
360                 max_rate = vbt_max_rate;
361
362         if (max_rate)
363                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364
365         intel_dp->source_rates = source_rates;
366         intel_dp->num_source_rates = size;
367 }
368
369 static int intersect_rates(const int *source_rates, int source_len,
370                            const int *sink_rates, int sink_len,
371                            int *common_rates)
372 {
373         int i = 0, j = 0, k = 0;
374
375         while (i < source_len && j < sink_len) {
376                 if (source_rates[i] == sink_rates[j]) {
377                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378                                 return k;
379                         common_rates[k] = source_rates[i];
380                         ++k;
381                         ++i;
382                         ++j;
383                 } else if (source_rates[i] < sink_rates[j]) {
384                         ++i;
385                 } else {
386                         ++j;
387                 }
388         }
389         return k;
390 }
391
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395         int i;
396
397         for (i = 0; i < len; i++)
398                 if (rate == rates[i])
399                         return i;
400
401         return -1;
402 }
403
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407
408         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409                                                      intel_dp->num_source_rates,
410                                                      intel_dp->sink_rates,
411                                                      intel_dp->num_sink_rates,
412                                                      intel_dp->common_rates);
413
414         /* Paranoia, there should always be something in common. */
415         if (WARN_ON(intel_dp->num_common_rates == 0)) {
416                 intel_dp->common_rates[0] = 162000;
417                 intel_dp->num_common_rates = 1;
418         }
419 }
420
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422                                        u8 lane_count)
423 {
424         /*
425          * FIXME: we need to synchronize the current link parameters with
426          * hardware readout. Currently fast link training doesn't work on
427          * boot-up.
428          */
429         if (link_rate == 0 ||
430             link_rate > intel_dp->max_link_rate)
431                 return false;
432
433         if (lane_count == 0 ||
434             lane_count > intel_dp_max_lane_count(intel_dp))
435                 return false;
436
437         return true;
438 }
439
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441                                                      int link_rate,
442                                                      u8 lane_count)
443 {
444         const struct drm_display_mode *fixed_mode =
445                 intel_dp->attached_connector->panel.fixed_mode;
446         int mode_rate, max_rate;
447
448         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450         if (mode_rate > max_rate)
451                 return false;
452
453         return true;
454 }
455
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457                                             int link_rate, u8 lane_count)
458 {
459         int index;
460
461         index = intel_dp_rate_index(intel_dp->common_rates,
462                                     intel_dp->num_common_rates,
463                                     link_rate);
464         if (index > 0) {
465                 if (intel_dp_is_edp(intel_dp) &&
466                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467                                                               intel_dp->common_rates[index - 1],
468                                                               lane_count)) {
469                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470                         return 0;
471                 }
472                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473                 intel_dp->max_link_lane_count = lane_count;
474         } else if (lane_count > 1) {
475                 if (intel_dp_is_edp(intel_dp) &&
476                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477                                                               intel_dp_max_common_rate(intel_dp),
478                                                               lane_count >> 1)) {
479                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480                         return 0;
481                 }
482                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483                 intel_dp->max_link_lane_count = lane_count >> 1;
484         } else {
485                 DRM_ERROR("Link Training Unsuccessful\n");
486                 return -1;
487         }
488
489         return 0;
490 }
491
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494         return div_u64(mul_u32_u32(mode_clock, 1000000U),
495                        DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501         if (INTEL_GEN(i915) >= 11)
502                 return 7680 * 8;
503         else
504                 return 6144 * 8;
505 }
506
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508                                        u32 link_clock, u32 lane_count,
509                                        u32 mode_clock, u32 mode_hdisplay)
510 {
511         u32 bits_per_pixel, max_bpp_small_joiner_ram;
512         int i;
513
514         /*
515          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517          * for SST -> TimeSlotsPerMTP is 1,
518          * for MST -> TimeSlotsPerMTP has to be calculated
519          */
520         bits_per_pixel = (link_clock * lane_count * 8) /
521                          intel_dp_mode_to_fec_clock(mode_clock);
522         DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523
524         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526                 mode_hdisplay;
527         DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528
529         /*
530          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531          * check, output bpp from small joiner RAM check)
532          */
533         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534
535         /* Error out if the max bpp is less than smallest allowed valid bpp */
536         if (bits_per_pixel < valid_dsc_bpp[0]) {
537                 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538                               bits_per_pixel, valid_dsc_bpp[0]);
539                 return 0;
540         }
541
542         /* Find the nearest match in the array of known BPPs from VESA */
543         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
545                         break;
546         }
547         bits_per_pixel = valid_dsc_bpp[i];
548
549         /*
550          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551          * fractional part is 0
552          */
553         return bits_per_pixel << 4;
554 }
555
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557                                        int mode_clock, int mode_hdisplay)
558 {
559         u8 min_slice_count, i;
560         int max_slice_width;
561
562         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563                 min_slice_count = DIV_ROUND_UP(mode_clock,
564                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
565         else
566                 min_slice_count = DIV_ROUND_UP(mode_clock,
567                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
568
569         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572                               max_slice_width);
573                 return 0;
574         }
575         /* Also take into account max slice width */
576         min_slice_count = min_t(u8, min_slice_count,
577                                 DIV_ROUND_UP(mode_hdisplay,
578                                              max_slice_width));
579
580         /* Find the closest match to the valid slice count values */
581         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582                 if (valid_dsc_slicecount[i] >
583                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584                                                     false))
585                         break;
586                 if (min_slice_count  <= valid_dsc_slicecount[i])
587                         return valid_dsc_slicecount[i];
588         }
589
590         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591         return 0;
592 }
593
594 static enum drm_mode_status
595 intel_dp_mode_valid(struct drm_connector *connector,
596                     struct drm_display_mode *mode)
597 {
598         struct intel_dp *intel_dp = intel_attached_dp(connector);
599         struct intel_connector *intel_connector = to_intel_connector(connector);
600         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
601         struct drm_i915_private *dev_priv = to_i915(connector->dev);
602         int target_clock = mode->clock;
603         int max_rate, mode_rate, max_lanes, max_link_clock;
604         int max_dotclk;
605         u16 dsc_max_output_bpp = 0;
606         u8 dsc_slice_count = 0;
607
608         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
609                 return MODE_NO_DBLESCAN;
610
611         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
612
613         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
614                 if (mode->hdisplay > fixed_mode->hdisplay)
615                         return MODE_PANEL;
616
617                 if (mode->vdisplay > fixed_mode->vdisplay)
618                         return MODE_PANEL;
619
620                 target_clock = fixed_mode->clock;
621         }
622
623         max_link_clock = intel_dp_max_link_rate(intel_dp);
624         max_lanes = intel_dp_max_lane_count(intel_dp);
625
626         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
627         mode_rate = intel_dp_link_required(target_clock, 18);
628
629         /*
630          * Output bpp is stored in 6.4 format so right shift by 4 to get the
631          * integer value since we support only integer values of bpp.
632          */
633         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
634             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
635                 if (intel_dp_is_edp(intel_dp)) {
636                         dsc_max_output_bpp =
637                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
638                         dsc_slice_count =
639                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
640                                                                 true);
641                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
642                         dsc_max_output_bpp =
643                                 intel_dp_dsc_get_output_bpp(dev_priv,
644                                                             max_link_clock,
645                                                             max_lanes,
646                                                             target_clock,
647                                                             mode->hdisplay) >> 4;
648                         dsc_slice_count =
649                                 intel_dp_dsc_get_slice_count(intel_dp,
650                                                              target_clock,
651                                                              mode->hdisplay);
652                 }
653         }
654
655         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
656             target_clock > max_dotclk)
657                 return MODE_CLOCK_HIGH;
658
659         if (mode->clock < 10000)
660                 return MODE_CLOCK_LOW;
661
662         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
663                 return MODE_H_ILLEGAL;
664
665         return intel_mode_valid_max_plane_size(dev_priv, mode);
666 }
667
668 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
669 {
670         int i;
671         u32 v = 0;
672
673         if (src_bytes > 4)
674                 src_bytes = 4;
675         for (i = 0; i < src_bytes; i++)
676                 v |= ((u32)src[i]) << ((3 - i) * 8);
677         return v;
678 }
679
680 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
681 {
682         int i;
683         if (dst_bytes > 4)
684                 dst_bytes = 4;
685         for (i = 0; i < dst_bytes; i++)
686                 dst[i] = src >> ((3-i) * 8);
687 }
688
689 static void
690 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
691 static void
692 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
693                                               bool force_disable_vdd);
694 static void
695 intel_dp_pps_init(struct intel_dp *intel_dp);
696
697 static intel_wakeref_t
698 pps_lock(struct intel_dp *intel_dp)
699 {
700         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
701         intel_wakeref_t wakeref;
702
703         /*
704          * See intel_power_sequencer_reset() why we need
705          * a power domain reference here.
706          */
707         wakeref = intel_display_power_get(dev_priv,
708                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
709
710         mutex_lock(&dev_priv->pps_mutex);
711
712         return wakeref;
713 }
714
715 static intel_wakeref_t
716 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
717 {
718         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
719
720         mutex_unlock(&dev_priv->pps_mutex);
721         intel_display_power_put(dev_priv,
722                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
723                                 wakeref);
724         return 0;
725 }
726
727 #define with_pps_lock(dp, wf) \
728         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
729
730 static void
731 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
732 {
733         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
734         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
735         enum pipe pipe = intel_dp->pps_pipe;
736         bool pll_enabled, release_cl_override = false;
737         enum dpio_phy phy = DPIO_PHY(pipe);
738         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
739         u32 DP;
740
741         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
742                  "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
743                  pipe_name(pipe), intel_dig_port->base.base.base.id,
744                  intel_dig_port->base.base.name))
745                 return;
746
747         DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
748                       pipe_name(pipe), intel_dig_port->base.base.base.id,
749                       intel_dig_port->base.base.name);
750
751         /* Preserve the BIOS-computed detected bit. This is
752          * supposed to be read-only.
753          */
754         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
755         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
756         DP |= DP_PORT_WIDTH(1);
757         DP |= DP_LINK_TRAIN_PAT_1;
758
759         if (IS_CHERRYVIEW(dev_priv))
760                 DP |= DP_PIPE_SEL_CHV(pipe);
761         else
762                 DP |= DP_PIPE_SEL(pipe);
763
764         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
765
766         /*
767          * The DPLL for the pipe must be enabled for this to work.
768          * So enable temporarily it if it's not already enabled.
769          */
770         if (!pll_enabled) {
771                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
772                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
773
774                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
775                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
776                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
777                                   pipe_name(pipe));
778                         return;
779                 }
780         }
781
782         /*
783          * Similar magic as in intel_dp_enable_port().
784          * We _must_ do this port enable + disable trick
785          * to make this power sequencer lock onto the port.
786          * Otherwise even VDD force bit won't work.
787          */
788         I915_WRITE(intel_dp->output_reg, DP);
789         POSTING_READ(intel_dp->output_reg);
790
791         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
792         POSTING_READ(intel_dp->output_reg);
793
794         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
795         POSTING_READ(intel_dp->output_reg);
796
797         if (!pll_enabled) {
798                 vlv_force_pll_off(dev_priv, pipe);
799
800                 if (release_cl_override)
801                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
802         }
803 }
804
805 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
806 {
807         struct intel_encoder *encoder;
808         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
809
810         /*
811          * We don't have power sequencer currently.
812          * Pick one that's not used by other ports.
813          */
814         for_each_intel_dp(&dev_priv->drm, encoder) {
815                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
816
817                 if (encoder->type == INTEL_OUTPUT_EDP) {
818                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
819                                 intel_dp->active_pipe != intel_dp->pps_pipe);
820
821                         if (intel_dp->pps_pipe != INVALID_PIPE)
822                                 pipes &= ~(1 << intel_dp->pps_pipe);
823                 } else {
824                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
825
826                         if (intel_dp->active_pipe != INVALID_PIPE)
827                                 pipes &= ~(1 << intel_dp->active_pipe);
828                 }
829         }
830
831         if (pipes == 0)
832                 return INVALID_PIPE;
833
834         return ffs(pipes) - 1;
835 }
836
837 static enum pipe
838 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
839 {
840         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
841         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
842         enum pipe pipe;
843
844         lockdep_assert_held(&dev_priv->pps_mutex);
845
846         /* We should never land here with regular DP ports */
847         WARN_ON(!intel_dp_is_edp(intel_dp));
848
849         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
850                 intel_dp->active_pipe != intel_dp->pps_pipe);
851
852         if (intel_dp->pps_pipe != INVALID_PIPE)
853                 return intel_dp->pps_pipe;
854
855         pipe = vlv_find_free_pps(dev_priv);
856
857         /*
858          * Didn't find one. This should not happen since there
859          * are two power sequencers and up to two eDP ports.
860          */
861         if (WARN_ON(pipe == INVALID_PIPE))
862                 pipe = PIPE_A;
863
864         vlv_steal_power_sequencer(dev_priv, pipe);
865         intel_dp->pps_pipe = pipe;
866
867         DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
868                       pipe_name(intel_dp->pps_pipe),
869                       intel_dig_port->base.base.base.id,
870                       intel_dig_port->base.base.name);
871
872         /* init power sequencer on this pipe and port */
873         intel_dp_init_panel_power_sequencer(intel_dp);
874         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
875
876         /*
877          * Even vdd force doesn't work until we've made
878          * the power sequencer lock in on the port.
879          */
880         vlv_power_sequencer_kick(intel_dp);
881
882         return intel_dp->pps_pipe;
883 }
884
885 static int
886 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
887 {
888         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
889         int backlight_controller = dev_priv->vbt.backlight.controller;
890
891         lockdep_assert_held(&dev_priv->pps_mutex);
892
893         /* We should never land here with regular DP ports */
894         WARN_ON(!intel_dp_is_edp(intel_dp));
895
896         if (!intel_dp->pps_reset)
897                 return backlight_controller;
898
899         intel_dp->pps_reset = false;
900
901         /*
902          * Only the HW needs to be reprogrammed, the SW state is fixed and
903          * has been setup during connector init.
904          */
905         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
906
907         return backlight_controller;
908 }
909
910 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
911                                enum pipe pipe);
912
913 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
914                                enum pipe pipe)
915 {
916         return I915_READ(PP_STATUS(pipe)) & PP_ON;
917 }
918
919 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
920                                 enum pipe pipe)
921 {
922         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
923 }
924
925 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
926                          enum pipe pipe)
927 {
928         return true;
929 }
930
931 static enum pipe
932 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
933                      enum port port,
934                      vlv_pipe_check pipe_check)
935 {
936         enum pipe pipe;
937
938         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
939                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
940                         PANEL_PORT_SELECT_MASK;
941
942                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
943                         continue;
944
945                 if (!pipe_check(dev_priv, pipe))
946                         continue;
947
948                 return pipe;
949         }
950
951         return INVALID_PIPE;
952 }
953
954 static void
955 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
956 {
957         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
958         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
959         enum port port = intel_dig_port->base.port;
960
961         lockdep_assert_held(&dev_priv->pps_mutex);
962
963         /* try to find a pipe with this port selected */
964         /* first pick one where the panel is on */
965         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
966                                                   vlv_pipe_has_pp_on);
967         /* didn't find one? pick one where vdd is on */
968         if (intel_dp->pps_pipe == INVALID_PIPE)
969                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
970                                                           vlv_pipe_has_vdd_on);
971         /* didn't find one? pick one with just the correct port */
972         if (intel_dp->pps_pipe == INVALID_PIPE)
973                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
974                                                           vlv_pipe_any);
975
976         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
977         if (intel_dp->pps_pipe == INVALID_PIPE) {
978                 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
979                               intel_dig_port->base.base.base.id,
980                               intel_dig_port->base.base.name);
981                 return;
982         }
983
984         DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
985                       intel_dig_port->base.base.base.id,
986                       intel_dig_port->base.base.name,
987                       pipe_name(intel_dp->pps_pipe));
988
989         intel_dp_init_panel_power_sequencer(intel_dp);
990         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
991 }
992
993 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
994 {
995         struct intel_encoder *encoder;
996
997         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
998                     !IS_GEN9_LP(dev_priv)))
999                 return;
1000
1001         /*
1002          * We can't grab pps_mutex here due to deadlock with power_domain
1003          * mutex when power_domain functions are called while holding pps_mutex.
1004          * That also means that in order to use pps_pipe the code needs to
1005          * hold both a power domain reference and pps_mutex, and the power domain
1006          * reference get/put must be done while _not_ holding pps_mutex.
1007          * pps_{lock,unlock}() do these steps in the correct order, so one
1008          * should use them always.
1009          */
1010
1011         for_each_intel_dp(&dev_priv->drm, encoder) {
1012                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1013
1014                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1015
1016                 if (encoder->type != INTEL_OUTPUT_EDP)
1017                         continue;
1018
1019                 if (IS_GEN9_LP(dev_priv))
1020                         intel_dp->pps_reset = true;
1021                 else
1022                         intel_dp->pps_pipe = INVALID_PIPE;
1023         }
1024 }
1025
1026 struct pps_registers {
1027         i915_reg_t pp_ctrl;
1028         i915_reg_t pp_stat;
1029         i915_reg_t pp_on;
1030         i915_reg_t pp_off;
1031         i915_reg_t pp_div;
1032 };
1033
1034 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1035                                     struct pps_registers *regs)
1036 {
1037         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1038         int pps_idx = 0;
1039
1040         memset(regs, 0, sizeof(*regs));
1041
1042         if (IS_GEN9_LP(dev_priv))
1043                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1044         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1045                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1046
1047         regs->pp_ctrl = PP_CONTROL(pps_idx);
1048         regs->pp_stat = PP_STATUS(pps_idx);
1049         regs->pp_on = PP_ON_DELAYS(pps_idx);
1050         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1051
1052         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1053         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1054                 regs->pp_div = INVALID_MMIO_REG;
1055         else
1056                 regs->pp_div = PP_DIVISOR(pps_idx);
1057 }
1058
1059 static i915_reg_t
1060 _pp_ctrl_reg(struct intel_dp *intel_dp)
1061 {
1062         struct pps_registers regs;
1063
1064         intel_pps_get_registers(intel_dp, &regs);
1065
1066         return regs.pp_ctrl;
1067 }
1068
1069 static i915_reg_t
1070 _pp_stat_reg(struct intel_dp *intel_dp)
1071 {
1072         struct pps_registers regs;
1073
1074         intel_pps_get_registers(intel_dp, &regs);
1075
1076         return regs.pp_stat;
1077 }
1078
1079 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1080    This function only applicable when panel PM state is not to be tracked */
1081 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1082                               void *unused)
1083 {
1084         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1085                                                  edp_notifier);
1086         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1087         intel_wakeref_t wakeref;
1088
1089         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1090                 return 0;
1091
1092         with_pps_lock(intel_dp, wakeref) {
1093                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1094                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1095                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1096                         u32 pp_div;
1097
1098                         pp_ctrl_reg = PP_CONTROL(pipe);
1099                         pp_div_reg  = PP_DIVISOR(pipe);
1100                         pp_div = I915_READ(pp_div_reg);
1101                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1102
1103                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1104                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1105                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1106                         msleep(intel_dp->panel_power_cycle_delay);
1107                 }
1108         }
1109
1110         return 0;
1111 }
1112
1113 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1114 {
1115         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1116
1117         lockdep_assert_held(&dev_priv->pps_mutex);
1118
1119         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1120             intel_dp->pps_pipe == INVALID_PIPE)
1121                 return false;
1122
1123         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1124 }
1125
1126 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1127 {
1128         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1129
1130         lockdep_assert_held(&dev_priv->pps_mutex);
1131
1132         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1133             intel_dp->pps_pipe == INVALID_PIPE)
1134                 return false;
1135
1136         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1137 }
1138
1139 static void
1140 intel_dp_check_edp(struct intel_dp *intel_dp)
1141 {
1142         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1143
1144         if (!intel_dp_is_edp(intel_dp))
1145                 return;
1146
1147         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1148                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1149                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1150                               I915_READ(_pp_stat_reg(intel_dp)),
1151                               I915_READ(_pp_ctrl_reg(intel_dp)));
1152         }
1153 }
1154
1155 static u32
1156 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1157 {
1158         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1159         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1160         u32 status;
1161         bool done;
1162
1163 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1164         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1165                                   msecs_to_jiffies_timeout(10));
1166
1167         /* just trace the final value */
1168         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1169
1170         if (!done)
1171                 DRM_ERROR("dp aux hw did not signal timeout!\n");
1172 #undef C
1173
1174         return status;
1175 }
1176
1177 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1178 {
1179         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1180
1181         if (index)
1182                 return 0;
1183
1184         /*
1185          * The clock divider is based off the hrawclk, and would like to run at
1186          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1187          */
1188         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1189 }
1190
1191 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1192 {
1193         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1194         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1195
1196         if (index)
1197                 return 0;
1198
1199         /*
1200          * The clock divider is based off the cdclk or PCH rawclk, and would
1201          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1202          * divide by 2000 and use that
1203          */
1204         if (dig_port->aux_ch == AUX_CH_A)
1205                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1206         else
1207                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1208 }
1209
1210 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1211 {
1212         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1213         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1214
1215         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1216                 /* Workaround for non-ULT HSW */
1217                 switch (index) {
1218                 case 0: return 63;
1219                 case 1: return 72;
1220                 default: return 0;
1221                 }
1222         }
1223
1224         return ilk_get_aux_clock_divider(intel_dp, index);
1225 }
1226
1227 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1228 {
1229         /*
1230          * SKL doesn't need us to program the AUX clock divider (Hardware will
1231          * derive the clock from CDCLK automatically). We still implement the
1232          * get_aux_clock_divider vfunc to plug-in into the existing code.
1233          */
1234         return index ? 0 : 1;
1235 }
1236
1237 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1238                                 int send_bytes,
1239                                 u32 aux_clock_divider)
1240 {
1241         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1242         struct drm_i915_private *dev_priv =
1243                         to_i915(intel_dig_port->base.base.dev);
1244         u32 precharge, timeout;
1245
1246         if (IS_GEN(dev_priv, 6))
1247                 precharge = 3;
1248         else
1249                 precharge = 5;
1250
1251         if (IS_BROADWELL(dev_priv))
1252                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1253         else
1254                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1255
1256         return DP_AUX_CH_CTL_SEND_BUSY |
1257                DP_AUX_CH_CTL_DONE |
1258                DP_AUX_CH_CTL_INTERRUPT |
1259                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1260                timeout |
1261                DP_AUX_CH_CTL_RECEIVE_ERROR |
1262                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1263                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1264                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1265 }
1266
1267 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1268                                 int send_bytes,
1269                                 u32 unused)
1270 {
1271         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1272         u32 ret;
1273
1274         ret = DP_AUX_CH_CTL_SEND_BUSY |
1275               DP_AUX_CH_CTL_DONE |
1276               DP_AUX_CH_CTL_INTERRUPT |
1277               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1278               DP_AUX_CH_CTL_TIME_OUT_MAX |
1279               DP_AUX_CH_CTL_RECEIVE_ERROR |
1280               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1281               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1282               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1283
1284         if (intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1285                 ret |= DP_AUX_CH_CTL_TBT_IO;
1286
1287         return ret;
1288 }
1289
1290 static int
1291 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1292                   const u8 *send, int send_bytes,
1293                   u8 *recv, int recv_size,
1294                   u32 aux_send_ctl_flags)
1295 {
1296         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1297         struct drm_i915_private *i915 =
1298                         to_i915(intel_dig_port->base.base.dev);
1299         struct intel_uncore *uncore = &i915->uncore;
1300         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1301         bool is_tc_port = intel_phy_is_tc(i915, phy);
1302         i915_reg_t ch_ctl, ch_data[5];
1303         u32 aux_clock_divider;
1304         enum intel_display_power_domain aux_domain =
1305                 intel_aux_power_domain(intel_dig_port);
1306         intel_wakeref_t aux_wakeref;
1307         intel_wakeref_t pps_wakeref;
1308         int i, ret, recv_bytes;
1309         int try, clock = 0;
1310         u32 status;
1311         bool vdd;
1312
1313         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1314         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1315                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1316
1317         if (is_tc_port)
1318                 intel_tc_port_lock(intel_dig_port);
1319
1320         aux_wakeref = intel_display_power_get(i915, aux_domain);
1321         pps_wakeref = pps_lock(intel_dp);
1322
1323         /*
1324          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1325          * In such cases we want to leave VDD enabled and it's up to upper layers
1326          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1327          * ourselves.
1328          */
1329         vdd = edp_panel_vdd_on(intel_dp);
1330
1331         /* dp aux is extremely sensitive to irq latency, hence request the
1332          * lowest possible wakeup latency and so prevent the cpu from going into
1333          * deep sleep states.
1334          */
1335         pm_qos_update_request(&i915->pm_qos, 0);
1336
1337         intel_dp_check_edp(intel_dp);
1338
1339         /* Try to wait for any previous AUX channel activity */
1340         for (try = 0; try < 3; try++) {
1341                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1342                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1343                         break;
1344                 msleep(1);
1345         }
1346         /* just trace the final value */
1347         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1348
1349         if (try == 3) {
1350                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1351
1352                 if (status != intel_dp->aux_busy_last_status) {
1353                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1354                              status);
1355                         intel_dp->aux_busy_last_status = status;
1356                 }
1357
1358                 ret = -EBUSY;
1359                 goto out;
1360         }
1361
1362         /* Only 5 data registers! */
1363         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1364                 ret = -E2BIG;
1365                 goto out;
1366         }
1367
1368         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1369                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1370                                                           send_bytes,
1371                                                           aux_clock_divider);
1372
1373                 send_ctl |= aux_send_ctl_flags;
1374
1375                 /* Must try at least 3 times according to DP spec */
1376                 for (try = 0; try < 5; try++) {
1377                         /* Load the send data into the aux channel data registers */
1378                         for (i = 0; i < send_bytes; i += 4)
1379                                 intel_uncore_write(uncore,
1380                                                    ch_data[i >> 2],
1381                                                    intel_dp_pack_aux(send + i,
1382                                                                      send_bytes - i));
1383
1384                         /* Send the command and wait for it to complete */
1385                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1386
1387                         status = intel_dp_aux_wait_done(intel_dp);
1388
1389                         /* Clear done status and any errors */
1390                         intel_uncore_write(uncore,
1391                                            ch_ctl,
1392                                            status |
1393                                            DP_AUX_CH_CTL_DONE |
1394                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1395                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1396
1397                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1398                          *   400us delay required for errors and timeouts
1399                          *   Timeout errors from the HW already meet this
1400                          *   requirement so skip to next iteration
1401                          */
1402                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1403                                 continue;
1404
1405                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1406                                 usleep_range(400, 500);
1407                                 continue;
1408                         }
1409                         if (status & DP_AUX_CH_CTL_DONE)
1410                                 goto done;
1411                 }
1412         }
1413
1414         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1415                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1416                 ret = -EBUSY;
1417                 goto out;
1418         }
1419
1420 done:
1421         /* Check for timeout or receive error.
1422          * Timeouts occur when the sink is not connected
1423          */
1424         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1425                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1426                 ret = -EIO;
1427                 goto out;
1428         }
1429
1430         /* Timeouts occur when the device isn't connected, so they're
1431          * "normal" -- don't fill the kernel log with these */
1432         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1433                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1434                 ret = -ETIMEDOUT;
1435                 goto out;
1436         }
1437
1438         /* Unload any bytes sent back from the other side */
1439         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1440                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1441
1442         /*
1443          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1444          * We have no idea of what happened so we return -EBUSY so
1445          * drm layer takes care for the necessary retries.
1446          */
1447         if (recv_bytes == 0 || recv_bytes > 20) {
1448                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1449                               recv_bytes);
1450                 ret = -EBUSY;
1451                 goto out;
1452         }
1453
1454         if (recv_bytes > recv_size)
1455                 recv_bytes = recv_size;
1456
1457         for (i = 0; i < recv_bytes; i += 4)
1458                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1459                                     recv + i, recv_bytes - i);
1460
1461         ret = recv_bytes;
1462 out:
1463         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1464
1465         if (vdd)
1466                 edp_panel_vdd_off(intel_dp, false);
1467
1468         pps_unlock(intel_dp, pps_wakeref);
1469         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1470
1471         if (is_tc_port)
1472                 intel_tc_port_unlock(intel_dig_port);
1473
1474         return ret;
1475 }
1476
1477 #define BARE_ADDRESS_SIZE       3
1478 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1479
1480 static void
1481 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1482                     const struct drm_dp_aux_msg *msg)
1483 {
1484         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1485         txbuf[1] = (msg->address >> 8) & 0xff;
1486         txbuf[2] = msg->address & 0xff;
1487         txbuf[3] = msg->size - 1;
1488 }
1489
1490 static ssize_t
1491 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1492 {
1493         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1494         u8 txbuf[20], rxbuf[20];
1495         size_t txsize, rxsize;
1496         int ret;
1497
1498         intel_dp_aux_header(txbuf, msg);
1499
1500         switch (msg->request & ~DP_AUX_I2C_MOT) {
1501         case DP_AUX_NATIVE_WRITE:
1502         case DP_AUX_I2C_WRITE:
1503         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1504                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1505                 rxsize = 2; /* 0 or 1 data bytes */
1506
1507                 if (WARN_ON(txsize > 20))
1508                         return -E2BIG;
1509
1510                 WARN_ON(!msg->buffer != !msg->size);
1511
1512                 if (msg->buffer)
1513                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1514
1515                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1516                                         rxbuf, rxsize, 0);
1517                 if (ret > 0) {
1518                         msg->reply = rxbuf[0] >> 4;
1519
1520                         if (ret > 1) {
1521                                 /* Number of bytes written in a short write. */
1522                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1523                         } else {
1524                                 /* Return payload size. */
1525                                 ret = msg->size;
1526                         }
1527                 }
1528                 break;
1529
1530         case DP_AUX_NATIVE_READ:
1531         case DP_AUX_I2C_READ:
1532                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1533                 rxsize = msg->size + 1;
1534
1535                 if (WARN_ON(rxsize > 20))
1536                         return -E2BIG;
1537
1538                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1539                                         rxbuf, rxsize, 0);
1540                 if (ret > 0) {
1541                         msg->reply = rxbuf[0] >> 4;
1542                         /*
1543                          * Assume happy day, and copy the data. The caller is
1544                          * expected to check msg->reply before touching it.
1545                          *
1546                          * Return payload size.
1547                          */
1548                         ret--;
1549                         memcpy(msg->buffer, rxbuf + 1, ret);
1550                 }
1551                 break;
1552
1553         default:
1554                 ret = -EINVAL;
1555                 break;
1556         }
1557
1558         return ret;
1559 }
1560
1561
1562 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1563 {
1564         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1565         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1566         enum aux_ch aux_ch = dig_port->aux_ch;
1567
1568         switch (aux_ch) {
1569         case AUX_CH_B:
1570         case AUX_CH_C:
1571         case AUX_CH_D:
1572                 return DP_AUX_CH_CTL(aux_ch);
1573         default:
1574                 MISSING_CASE(aux_ch);
1575                 return DP_AUX_CH_CTL(AUX_CH_B);
1576         }
1577 }
1578
1579 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1580 {
1581         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1582         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1583         enum aux_ch aux_ch = dig_port->aux_ch;
1584
1585         switch (aux_ch) {
1586         case AUX_CH_B:
1587         case AUX_CH_C:
1588         case AUX_CH_D:
1589                 return DP_AUX_CH_DATA(aux_ch, index);
1590         default:
1591                 MISSING_CASE(aux_ch);
1592                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1593         }
1594 }
1595
1596 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1597 {
1598         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1599         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1600         enum aux_ch aux_ch = dig_port->aux_ch;
1601
1602         switch (aux_ch) {
1603         case AUX_CH_A:
1604                 return DP_AUX_CH_CTL(aux_ch);
1605         case AUX_CH_B:
1606         case AUX_CH_C:
1607         case AUX_CH_D:
1608                 return PCH_DP_AUX_CH_CTL(aux_ch);
1609         default:
1610                 MISSING_CASE(aux_ch);
1611                 return DP_AUX_CH_CTL(AUX_CH_A);
1612         }
1613 }
1614
1615 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1616 {
1617         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1618         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1619         enum aux_ch aux_ch = dig_port->aux_ch;
1620
1621         switch (aux_ch) {
1622         case AUX_CH_A:
1623                 return DP_AUX_CH_DATA(aux_ch, index);
1624         case AUX_CH_B:
1625         case AUX_CH_C:
1626         case AUX_CH_D:
1627                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1628         default:
1629                 MISSING_CASE(aux_ch);
1630                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1631         }
1632 }
1633
1634 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1635 {
1636         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1637         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1638         enum aux_ch aux_ch = dig_port->aux_ch;
1639
1640         switch (aux_ch) {
1641         case AUX_CH_A:
1642         case AUX_CH_B:
1643         case AUX_CH_C:
1644         case AUX_CH_D:
1645         case AUX_CH_E:
1646         case AUX_CH_F:
1647                 return DP_AUX_CH_CTL(aux_ch);
1648         default:
1649                 MISSING_CASE(aux_ch);
1650                 return DP_AUX_CH_CTL(AUX_CH_A);
1651         }
1652 }
1653
1654 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1655 {
1656         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1657         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1658         enum aux_ch aux_ch = dig_port->aux_ch;
1659
1660         switch (aux_ch) {
1661         case AUX_CH_A:
1662         case AUX_CH_B:
1663         case AUX_CH_C:
1664         case AUX_CH_D:
1665         case AUX_CH_E:
1666         case AUX_CH_F:
1667                 return DP_AUX_CH_DATA(aux_ch, index);
1668         default:
1669                 MISSING_CASE(aux_ch);
1670                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1671         }
1672 }
1673
1674 static void
1675 intel_dp_aux_fini(struct intel_dp *intel_dp)
1676 {
1677         kfree(intel_dp->aux.name);
1678 }
1679
1680 static void
1681 intel_dp_aux_init(struct intel_dp *intel_dp)
1682 {
1683         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1684         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1685         struct intel_encoder *encoder = &dig_port->base;
1686
1687         if (INTEL_GEN(dev_priv) >= 9) {
1688                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1689                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1690         } else if (HAS_PCH_SPLIT(dev_priv)) {
1691                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1692                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1693         } else {
1694                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1695                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1696         }
1697
1698         if (INTEL_GEN(dev_priv) >= 9)
1699                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1700         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1701                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1702         else if (HAS_PCH_SPLIT(dev_priv))
1703                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1704         else
1705                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1706
1707         if (INTEL_GEN(dev_priv) >= 9)
1708                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1709         else
1710                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1711
1712         drm_dp_aux_init(&intel_dp->aux);
1713
1714         /* Failure to allocate our preferred name is not critical */
1715         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1716                                        port_name(encoder->port));
1717         intel_dp->aux.transfer = intel_dp_aux_transfer;
1718 }
1719
1720 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1721 {
1722         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1723
1724         return max_rate >= 540000;
1725 }
1726
1727 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1728 {
1729         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1730
1731         return max_rate >= 810000;
1732 }
1733
1734 static void
1735 intel_dp_set_clock(struct intel_encoder *encoder,
1736                    struct intel_crtc_state *pipe_config)
1737 {
1738         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1739         const struct dp_link_dpll *divisor = NULL;
1740         int i, count = 0;
1741
1742         if (IS_G4X(dev_priv)) {
1743                 divisor = g4x_dpll;
1744                 count = ARRAY_SIZE(g4x_dpll);
1745         } else if (HAS_PCH_SPLIT(dev_priv)) {
1746                 divisor = pch_dpll;
1747                 count = ARRAY_SIZE(pch_dpll);
1748         } else if (IS_CHERRYVIEW(dev_priv)) {
1749                 divisor = chv_dpll;
1750                 count = ARRAY_SIZE(chv_dpll);
1751         } else if (IS_VALLEYVIEW(dev_priv)) {
1752                 divisor = vlv_dpll;
1753                 count = ARRAY_SIZE(vlv_dpll);
1754         }
1755
1756         if (divisor && count) {
1757                 for (i = 0; i < count; i++) {
1758                         if (pipe_config->port_clock == divisor[i].clock) {
1759                                 pipe_config->dpll = divisor[i].dpll;
1760                                 pipe_config->clock_set = true;
1761                                 break;
1762                         }
1763                 }
1764         }
1765 }
1766
1767 static void snprintf_int_array(char *str, size_t len,
1768                                const int *array, int nelem)
1769 {
1770         int i;
1771
1772         str[0] = '\0';
1773
1774         for (i = 0; i < nelem; i++) {
1775                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1776                 if (r >= len)
1777                         return;
1778                 str += r;
1779                 len -= r;
1780         }
1781 }
1782
1783 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1784 {
1785         char str[128]; /* FIXME: too big for stack? */
1786
1787         if ((drm_debug & DRM_UT_KMS) == 0)
1788                 return;
1789
1790         snprintf_int_array(str, sizeof(str),
1791                            intel_dp->source_rates, intel_dp->num_source_rates);
1792         DRM_DEBUG_KMS("source rates: %s\n", str);
1793
1794         snprintf_int_array(str, sizeof(str),
1795                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1796         DRM_DEBUG_KMS("sink rates: %s\n", str);
1797
1798         snprintf_int_array(str, sizeof(str),
1799                            intel_dp->common_rates, intel_dp->num_common_rates);
1800         DRM_DEBUG_KMS("common rates: %s\n", str);
1801 }
1802
1803 int
1804 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1805 {
1806         int len;
1807
1808         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1809         if (WARN_ON(len <= 0))
1810                 return 162000;
1811
1812         return intel_dp->common_rates[len - 1];
1813 }
1814
1815 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1816 {
1817         int i = intel_dp_rate_index(intel_dp->sink_rates,
1818                                     intel_dp->num_sink_rates, rate);
1819
1820         if (WARN_ON(i < 0))
1821                 i = 0;
1822
1823         return i;
1824 }
1825
1826 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1827                            u8 *link_bw, u8 *rate_select)
1828 {
1829         /* eDP 1.4 rate select method. */
1830         if (intel_dp->use_rate_select) {
1831                 *link_bw = 0;
1832                 *rate_select =
1833                         intel_dp_rate_select(intel_dp, port_clock);
1834         } else {
1835                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1836                 *rate_select = 0;
1837         }
1838 }
1839
1840 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1841                                          const struct intel_crtc_state *pipe_config)
1842 {
1843         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1844
1845         /* On TGL, FEC is supported on all Pipes */
1846         if (INTEL_GEN(dev_priv) >= 12)
1847                 return true;
1848
1849         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1850                 return true;
1851
1852         return false;
1853 }
1854
1855 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1856                                   const struct intel_crtc_state *pipe_config)
1857 {
1858         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1859                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1860 }
1861
1862 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1863                                          const struct intel_crtc_state *pipe_config)
1864 {
1865         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1866
1867         /* On TGL, DSC is supported on all Pipes */
1868         if (INTEL_GEN(dev_priv) >= 12)
1869                 return true;
1870
1871         if (INTEL_GEN(dev_priv) >= 10 &&
1872             pipe_config->cpu_transcoder != TRANSCODER_A)
1873                 return true;
1874
1875         return false;
1876 }
1877
1878 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1879                                   const struct intel_crtc_state *pipe_config)
1880 {
1881         if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1882                 return false;
1883
1884         return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1885                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1886 }
1887
1888 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1889                                 struct intel_crtc_state *pipe_config)
1890 {
1891         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1892         struct intel_connector *intel_connector = intel_dp->attached_connector;
1893         int bpp, bpc;
1894
1895         bpp = pipe_config->pipe_bpp;
1896         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1897
1898         if (bpc > 0)
1899                 bpp = min(bpp, 3*bpc);
1900
1901         if (intel_dp_is_edp(intel_dp)) {
1902                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1903                 if (intel_connector->base.display_info.bpc == 0 &&
1904                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1905                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1906                                       dev_priv->vbt.edp.bpp);
1907                         bpp = dev_priv->vbt.edp.bpp;
1908                 }
1909         }
1910
1911         return bpp;
1912 }
1913
1914 /* Adjust link config limits based on compliance test requests. */
1915 void
1916 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1917                                   struct intel_crtc_state *pipe_config,
1918                                   struct link_config_limits *limits)
1919 {
1920         /* For DP Compliance we override the computed bpp for the pipe */
1921         if (intel_dp->compliance.test_data.bpc != 0) {
1922                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1923
1924                 limits->min_bpp = limits->max_bpp = bpp;
1925                 pipe_config->dither_force_disable = bpp == 6 * 3;
1926
1927                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1928         }
1929
1930         /* Use values requested by Compliance Test Request */
1931         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1932                 int index;
1933
1934                 /* Validate the compliance test data since max values
1935                  * might have changed due to link train fallback.
1936                  */
1937                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1938                                                intel_dp->compliance.test_lane_count)) {
1939                         index = intel_dp_rate_index(intel_dp->common_rates,
1940                                                     intel_dp->num_common_rates,
1941                                                     intel_dp->compliance.test_link_rate);
1942                         if (index >= 0)
1943                                 limits->min_clock = limits->max_clock = index;
1944                         limits->min_lane_count = limits->max_lane_count =
1945                                 intel_dp->compliance.test_lane_count;
1946                 }
1947         }
1948 }
1949
1950 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1951 {
1952         /*
1953          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1954          * format of the number of bytes per pixel will be half the number
1955          * of bytes of RGB pixel.
1956          */
1957         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1958                 bpp /= 2;
1959
1960         return bpp;
1961 }
1962
1963 /* Optimize link config in order: max bpp, min clock, min lanes */
1964 static int
1965 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1966                                   struct intel_crtc_state *pipe_config,
1967                                   const struct link_config_limits *limits)
1968 {
1969         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
1970         int bpp, clock, lane_count;
1971         int mode_rate, link_clock, link_avail;
1972
1973         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
1974                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
1975
1976                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
1977                                                    output_bpp);
1978
1979                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
1980                         for (lane_count = limits->min_lane_count;
1981                              lane_count <= limits->max_lane_count;
1982                              lane_count <<= 1) {
1983                                 link_clock = intel_dp->common_rates[clock];
1984                                 link_avail = intel_dp_max_data_rate(link_clock,
1985                                                                     lane_count);
1986
1987                                 if (mode_rate <= link_avail) {
1988                                         pipe_config->lane_count = lane_count;
1989                                         pipe_config->pipe_bpp = bpp;
1990                                         pipe_config->port_clock = link_clock;
1991
1992                                         return 0;
1993                                 }
1994                         }
1995                 }
1996         }
1997
1998         return -EINVAL;
1999 }
2000
2001 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2002 {
2003         int i, num_bpc;
2004         u8 dsc_bpc[3] = {0};
2005
2006         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2007                                                        dsc_bpc);
2008         for (i = 0; i < num_bpc; i++) {
2009                 if (dsc_max_bpc >= dsc_bpc[i])
2010                         return dsc_bpc[i] * 3;
2011         }
2012
2013         return 0;
2014 }
2015
2016 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2017                                        struct intel_crtc_state *pipe_config,
2018                                        struct drm_connector_state *conn_state,
2019                                        struct link_config_limits *limits)
2020 {
2021         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2022         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2023         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2024         u8 dsc_max_bpc;
2025         int pipe_bpp;
2026         int ret;
2027
2028         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2029                 intel_dp_supports_fec(intel_dp, pipe_config);
2030
2031         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2032                 return -EINVAL;
2033
2034         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2035         if (INTEL_GEN(dev_priv) >= 12)
2036                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2037         else
2038                 dsc_max_bpc = min_t(u8, 10,
2039                                     conn_state->max_requested_bpc);
2040
2041         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2042
2043         /* Min Input BPC for ICL+ is 8 */
2044         if (pipe_bpp < 8 * 3) {
2045                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2046                 return -EINVAL;
2047         }
2048
2049         /*
2050          * For now enable DSC for max bpp, max link rate, max lane count.
2051          * Optimize this later for the minimum possible link rate/lane count
2052          * with DSC enabled for the requested mode.
2053          */
2054         pipe_config->pipe_bpp = pipe_bpp;
2055         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2056         pipe_config->lane_count = limits->max_lane_count;
2057
2058         if (intel_dp_is_edp(intel_dp)) {
2059                 pipe_config->dsc_params.compressed_bpp =
2060                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2061                               pipe_config->pipe_bpp);
2062                 pipe_config->dsc_params.slice_count =
2063                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2064                                                         true);
2065         } else {
2066                 u16 dsc_max_output_bpp;
2067                 u8 dsc_dp_slice_count;
2068
2069                 dsc_max_output_bpp =
2070                         intel_dp_dsc_get_output_bpp(dev_priv,
2071                                                     pipe_config->port_clock,
2072                                                     pipe_config->lane_count,
2073                                                     adjusted_mode->crtc_clock,
2074                                                     adjusted_mode->crtc_hdisplay);
2075                 dsc_dp_slice_count =
2076                         intel_dp_dsc_get_slice_count(intel_dp,
2077                                                      adjusted_mode->crtc_clock,
2078                                                      adjusted_mode->crtc_hdisplay);
2079                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2080                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2081                         return -EINVAL;
2082                 }
2083                 pipe_config->dsc_params.compressed_bpp = min_t(u16,
2084                                                                dsc_max_output_bpp >> 4,
2085                                                                pipe_config->pipe_bpp);
2086                 pipe_config->dsc_params.slice_count = dsc_dp_slice_count;
2087         }
2088         /*
2089          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2090          * is greater than the maximum Cdclock and if slice count is even
2091          * then we need to use 2 VDSC instances.
2092          */
2093         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2094                 if (pipe_config->dsc_params.slice_count > 1) {
2095                         pipe_config->dsc_params.dsc_split = true;
2096                 } else {
2097                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2098                         return -EINVAL;
2099                 }
2100         }
2101
2102         ret = intel_dp_compute_dsc_params(intel_dp, pipe_config);
2103         if (ret < 0) {
2104                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2105                               "Compressed BPP = %d\n",
2106                               pipe_config->pipe_bpp,
2107                               pipe_config->dsc_params.compressed_bpp);
2108                 return ret;
2109         }
2110
2111         pipe_config->dsc_params.compression_enable = true;
2112         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2113                       "Compressed Bpp = %d Slice Count = %d\n",
2114                       pipe_config->pipe_bpp,
2115                       pipe_config->dsc_params.compressed_bpp,
2116                       pipe_config->dsc_params.slice_count);
2117
2118         return 0;
2119 }
2120
2121 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2122 {
2123         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2124                 return 6 * 3;
2125         else
2126                 return 8 * 3;
2127 }
2128
2129 static int
2130 intel_dp_compute_link_config(struct intel_encoder *encoder,
2131                              struct intel_crtc_state *pipe_config,
2132                              struct drm_connector_state *conn_state)
2133 {
2134         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2135         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2136         struct link_config_limits limits;
2137         int common_len;
2138         int ret;
2139
2140         common_len = intel_dp_common_len_rate_limit(intel_dp,
2141                                                     intel_dp->max_link_rate);
2142
2143         /* No common link rates between source and sink */
2144         WARN_ON(common_len <= 0);
2145
2146         limits.min_clock = 0;
2147         limits.max_clock = common_len - 1;
2148
2149         limits.min_lane_count = 1;
2150         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2151
2152         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2153         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2154
2155         if (intel_dp_is_edp(intel_dp)) {
2156                 /*
2157                  * Use the maximum clock and number of lanes the eDP panel
2158                  * advertizes being capable of. The panels are generally
2159                  * designed to support only a single clock and lane
2160                  * configuration, and typically these values correspond to the
2161                  * native resolution of the panel.
2162                  */
2163                 limits.min_lane_count = limits.max_lane_count;
2164                 limits.min_clock = limits.max_clock;
2165         }
2166
2167         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2168
2169         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2170                       "max rate %d max bpp %d pixel clock %iKHz\n",
2171                       limits.max_lane_count,
2172                       intel_dp->common_rates[limits.max_clock],
2173                       limits.max_bpp, adjusted_mode->crtc_clock);
2174
2175         /*
2176          * Optimize for slow and wide. This is the place to add alternative
2177          * optimization policy.
2178          */
2179         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2180
2181         /* enable compression if the mode doesn't fit available BW */
2182         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2183         if (ret || intel_dp->force_dsc_en) {
2184                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2185                                                   conn_state, &limits);
2186                 if (ret < 0)
2187                         return ret;
2188         }
2189
2190         if (pipe_config->dsc_params.compression_enable) {
2191                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2192                               pipe_config->lane_count, pipe_config->port_clock,
2193                               pipe_config->pipe_bpp,
2194                               pipe_config->dsc_params.compressed_bpp);
2195
2196                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2197                               intel_dp_link_required(adjusted_mode->crtc_clock,
2198                                                      pipe_config->dsc_params.compressed_bpp),
2199                               intel_dp_max_data_rate(pipe_config->port_clock,
2200                                                      pipe_config->lane_count));
2201         } else {
2202                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2203                               pipe_config->lane_count, pipe_config->port_clock,
2204                               pipe_config->pipe_bpp);
2205
2206                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2207                               intel_dp_link_required(adjusted_mode->crtc_clock,
2208                                                      pipe_config->pipe_bpp),
2209                               intel_dp_max_data_rate(pipe_config->port_clock,
2210                                                      pipe_config->lane_count));
2211         }
2212         return 0;
2213 }
2214
2215 static int
2216 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2217                          struct drm_connector *connector,
2218                          struct intel_crtc_state *crtc_state)
2219 {
2220         const struct drm_display_info *info = &connector->display_info;
2221         const struct drm_display_mode *adjusted_mode =
2222                 &crtc_state->base.adjusted_mode;
2223         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
2224         int ret;
2225
2226         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2227             !intel_dp_get_colorimetry_status(intel_dp) ||
2228             !connector->ycbcr_420_allowed)
2229                 return 0;
2230
2231         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2232
2233         /* YCBCR 420 output conversion needs a scaler */
2234         ret = skl_update_scaler_crtc(crtc_state);
2235         if (ret) {
2236                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2237                 return ret;
2238         }
2239
2240         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2241
2242         return 0;
2243 }
2244
2245 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2246                                   const struct drm_connector_state *conn_state)
2247 {
2248         const struct intel_digital_connector_state *intel_conn_state =
2249                 to_intel_digital_connector_state(conn_state);
2250         const struct drm_display_mode *adjusted_mode =
2251                 &crtc_state->base.adjusted_mode;
2252
2253         /*
2254          * Our YCbCr output is always limited range.
2255          * crtc_state->limited_color_range only applies to RGB,
2256          * and it must never be set for YCbCr or we risk setting
2257          * some conflicting bits in PIPECONF which will mess up
2258          * the colors on the monitor.
2259          */
2260         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2261                 return false;
2262
2263         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2264                 /*
2265                  * See:
2266                  * CEA-861-E - 5.1 Default Encoding Parameters
2267                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2268                  */
2269                 return crtc_state->pipe_bpp != 18 &&
2270                         drm_default_rgb_quant_range(adjusted_mode) ==
2271                         HDMI_QUANTIZATION_RANGE_LIMITED;
2272         } else {
2273                 return intel_conn_state->broadcast_rgb ==
2274                         INTEL_BROADCAST_RGB_LIMITED;
2275         }
2276 }
2277
2278 int
2279 intel_dp_compute_config(struct intel_encoder *encoder,
2280                         struct intel_crtc_state *pipe_config,
2281                         struct drm_connector_state *conn_state)
2282 {
2283         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2284         struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2285         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2286         struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2287         enum port port = encoder->port;
2288         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->base.crtc);
2289         struct intel_connector *intel_connector = intel_dp->attached_connector;
2290         struct intel_digital_connector_state *intel_conn_state =
2291                 to_intel_digital_connector_state(conn_state);
2292         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2293                                            DP_DPCD_QUIRK_CONSTANT_N);
2294         int ret = 0, output_bpp;
2295
2296         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2297                 pipe_config->has_pch_encoder = true;
2298
2299         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2300         if (lspcon->active)
2301                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2302         else
2303                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2304                                                pipe_config);
2305
2306         if (ret)
2307                 return ret;
2308
2309         pipe_config->has_drrs = false;
2310         if (IS_G4X(dev_priv) || port == PORT_A)
2311                 pipe_config->has_audio = false;
2312         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2313                 pipe_config->has_audio = intel_dp->has_audio;
2314         else
2315                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2316
2317         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2318                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2319                                        adjusted_mode);
2320
2321                 if (INTEL_GEN(dev_priv) >= 9) {
2322                         ret = skl_update_scaler_crtc(pipe_config);
2323                         if (ret)
2324                                 return ret;
2325                 }
2326
2327                 if (HAS_GMCH(dev_priv))
2328                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2329                                                  conn_state->scaling_mode);
2330                 else
2331                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2332                                                 conn_state->scaling_mode);
2333         }
2334
2335         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2336                 return -EINVAL;
2337
2338         if (HAS_GMCH(dev_priv) &&
2339             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2340                 return -EINVAL;
2341
2342         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2343                 return -EINVAL;
2344
2345         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2346         if (ret < 0)
2347                 return ret;
2348
2349         pipe_config->limited_color_range =
2350                 intel_dp_limited_color_range(pipe_config, conn_state);
2351
2352         if (pipe_config->dsc_params.compression_enable)
2353                 output_bpp = pipe_config->dsc_params.compressed_bpp;
2354         else
2355                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2356
2357         intel_link_compute_m_n(output_bpp,
2358                                pipe_config->lane_count,
2359                                adjusted_mode->crtc_clock,
2360                                pipe_config->port_clock,
2361                                &pipe_config->dp_m_n,
2362                                constant_n, pipe_config->fec_enable);
2363
2364         if (intel_connector->panel.downclock_mode != NULL &&
2365                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2366                         pipe_config->has_drrs = true;
2367                         intel_link_compute_m_n(output_bpp,
2368                                                pipe_config->lane_count,
2369                                                intel_connector->panel.downclock_mode->clock,
2370                                                pipe_config->port_clock,
2371                                                &pipe_config->dp_m2_n2,
2372                                                constant_n, pipe_config->fec_enable);
2373         }
2374
2375         if (!HAS_DDI(dev_priv))
2376                 intel_dp_set_clock(encoder, pipe_config);
2377
2378         intel_psr_compute_config(intel_dp, pipe_config);
2379
2380         intel_hdcp_transcoder_config(intel_connector,
2381                                      pipe_config->cpu_transcoder);
2382
2383         return 0;
2384 }
2385
2386 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2387                               int link_rate, u8 lane_count,
2388                               bool link_mst)
2389 {
2390         intel_dp->link_trained = false;
2391         intel_dp->link_rate = link_rate;
2392         intel_dp->lane_count = lane_count;
2393         intel_dp->link_mst = link_mst;
2394 }
2395
2396 static void intel_dp_prepare(struct intel_encoder *encoder,
2397                              const struct intel_crtc_state *pipe_config)
2398 {
2399         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2400         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2401         enum port port = encoder->port;
2402         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
2403         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
2404
2405         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2406                                  pipe_config->lane_count,
2407                                  intel_crtc_has_type(pipe_config,
2408                                                      INTEL_OUTPUT_DP_MST));
2409
2410         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2411         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2412
2413         /*
2414          * There are four kinds of DP registers:
2415          *
2416          *      IBX PCH
2417          *      SNB CPU
2418          *      IVB CPU
2419          *      CPT PCH
2420          *
2421          * IBX PCH and CPU are the same for almost everything,
2422          * except that the CPU DP PLL is configured in this
2423          * register
2424          *
2425          * CPT PCH is quite different, having many bits moved
2426          * to the TRANS_DP_CTL register instead. That
2427          * configuration happens (oddly) in ironlake_pch_enable
2428          */
2429
2430         /* Preserve the BIOS-computed detected bit. This is
2431          * supposed to be read-only.
2432          */
2433         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2434
2435         /* Handle DP bits in common between all three register formats */
2436         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2437         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2438
2439         /* Split out the IBX/CPU vs CPT settings */
2440
2441         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2442                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2443                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2444                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2445                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2446                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2447
2448                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2449                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2450
2451                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2452         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2453                 u32 trans_dp;
2454
2455                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2456
2457                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2458                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2459                         trans_dp |= TRANS_DP_ENH_FRAMING;
2460                 else
2461                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2462                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2463         } else {
2464                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2465                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2466
2467                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2468                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2469                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2470                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2471                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2472
2473                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2474                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2475
2476                 if (IS_CHERRYVIEW(dev_priv))
2477                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2478                 else
2479                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2480         }
2481 }
2482
2483 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2484 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2485
2486 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2487 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2488
2489 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2490 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2491
2492 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2493
2494 static void wait_panel_status(struct intel_dp *intel_dp,
2495                                        u32 mask,
2496                                        u32 value)
2497 {
2498         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2499         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2500
2501         lockdep_assert_held(&dev_priv->pps_mutex);
2502
2503         intel_pps_verify_state(intel_dp);
2504
2505         pp_stat_reg = _pp_stat_reg(intel_dp);
2506         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2507
2508         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2509                         mask, value,
2510                         I915_READ(pp_stat_reg),
2511                         I915_READ(pp_ctrl_reg));
2512
2513         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2514                                        mask, value, 5000))
2515                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2516                                 I915_READ(pp_stat_reg),
2517                                 I915_READ(pp_ctrl_reg));
2518
2519         DRM_DEBUG_KMS("Wait complete\n");
2520 }
2521
2522 static void wait_panel_on(struct intel_dp *intel_dp)
2523 {
2524         DRM_DEBUG_KMS("Wait for panel power on\n");
2525         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2526 }
2527
2528 static void wait_panel_off(struct intel_dp *intel_dp)
2529 {
2530         DRM_DEBUG_KMS("Wait for panel power off time\n");
2531         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2532 }
2533
2534 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2535 {
2536         ktime_t panel_power_on_time;
2537         s64 panel_power_off_duration;
2538
2539         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2540
2541         /* take the difference of currrent time and panel power off time
2542          * and then make panel wait for t11_t12 if needed. */
2543         panel_power_on_time = ktime_get_boottime();
2544         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2545
2546         /* When we disable the VDD override bit last we have to do the manual
2547          * wait. */
2548         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2549                 wait_remaining_ms_from_jiffies(jiffies,
2550                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2551
2552         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2553 }
2554
2555 static void wait_backlight_on(struct intel_dp *intel_dp)
2556 {
2557         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2558                                        intel_dp->backlight_on_delay);
2559 }
2560
2561 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2562 {
2563         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2564                                        intel_dp->backlight_off_delay);
2565 }
2566
2567 /* Read the current pp_control value, unlocking the register if it
2568  * is locked
2569  */
2570
2571 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2572 {
2573         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2574         u32 control;
2575
2576         lockdep_assert_held(&dev_priv->pps_mutex);
2577
2578         control = I915_READ(_pp_ctrl_reg(intel_dp));
2579         if (WARN_ON(!HAS_DDI(dev_priv) &&
2580                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2581                 control &= ~PANEL_UNLOCK_MASK;
2582                 control |= PANEL_UNLOCK_REGS;
2583         }
2584         return control;
2585 }
2586
2587 /*
2588  * Must be paired with edp_panel_vdd_off().
2589  * Must hold pps_mutex around the whole on/off sequence.
2590  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2591  */
2592 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2593 {
2594         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2595         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2596         u32 pp;
2597         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2598         bool need_to_disable = !intel_dp->want_panel_vdd;
2599
2600         lockdep_assert_held(&dev_priv->pps_mutex);
2601
2602         if (!intel_dp_is_edp(intel_dp))
2603                 return false;
2604
2605         cancel_delayed_work(&intel_dp->panel_vdd_work);
2606         intel_dp->want_panel_vdd = true;
2607
2608         if (edp_have_panel_vdd(intel_dp))
2609                 return need_to_disable;
2610
2611         intel_display_power_get(dev_priv,
2612                                 intel_aux_power_domain(intel_dig_port));
2613
2614         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2615                       intel_dig_port->base.base.base.id,
2616                       intel_dig_port->base.base.name);
2617
2618         if (!edp_have_panel_power(intel_dp))
2619                 wait_panel_power_cycle(intel_dp);
2620
2621         pp = ironlake_get_pp_control(intel_dp);
2622         pp |= EDP_FORCE_VDD;
2623
2624         pp_stat_reg = _pp_stat_reg(intel_dp);
2625         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2626
2627         I915_WRITE(pp_ctrl_reg, pp);
2628         POSTING_READ(pp_ctrl_reg);
2629         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2630                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2631         /*
2632          * If the panel wasn't on, delay before accessing aux channel
2633          */
2634         if (!edp_have_panel_power(intel_dp)) {
2635                 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2636                               intel_dig_port->base.base.base.id,
2637                               intel_dig_port->base.base.name);
2638                 msleep(intel_dp->panel_power_up_delay);
2639         }
2640
2641         return need_to_disable;
2642 }
2643
2644 /*
2645  * Must be paired with intel_edp_panel_vdd_off() or
2646  * intel_edp_panel_off().
2647  * Nested calls to these functions are not allowed since
2648  * we drop the lock. Caller must use some higher level
2649  * locking to prevent nested calls from other threads.
2650  */
2651 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2652 {
2653         intel_wakeref_t wakeref;
2654         bool vdd;
2655
2656         if (!intel_dp_is_edp(intel_dp))
2657                 return;
2658
2659         vdd = false;
2660         with_pps_lock(intel_dp, wakeref)
2661                 vdd = edp_panel_vdd_on(intel_dp);
2662         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2663                         dp_to_dig_port(intel_dp)->base.base.base.id,
2664                         dp_to_dig_port(intel_dp)->base.base.name);
2665 }
2666
2667 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2668 {
2669         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2670         struct intel_digital_port *intel_dig_port =
2671                 dp_to_dig_port(intel_dp);
2672         u32 pp;
2673         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2674
2675         lockdep_assert_held(&dev_priv->pps_mutex);
2676
2677         WARN_ON(intel_dp->want_panel_vdd);
2678
2679         if (!edp_have_panel_vdd(intel_dp))
2680                 return;
2681
2682         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2683                       intel_dig_port->base.base.base.id,
2684                       intel_dig_port->base.base.name);
2685
2686         pp = ironlake_get_pp_control(intel_dp);
2687         pp &= ~EDP_FORCE_VDD;
2688
2689         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2690         pp_stat_reg = _pp_stat_reg(intel_dp);
2691
2692         I915_WRITE(pp_ctrl_reg, pp);
2693         POSTING_READ(pp_ctrl_reg);
2694
2695         /* Make sure sequencer is idle before allowing subsequent activity */
2696         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2697         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2698
2699         if ((pp & PANEL_POWER_ON) == 0)
2700                 intel_dp->panel_power_off_time = ktime_get_boottime();
2701
2702         intel_display_power_put_unchecked(dev_priv,
2703                                           intel_aux_power_domain(intel_dig_port));
2704 }
2705
2706 static void edp_panel_vdd_work(struct work_struct *__work)
2707 {
2708         struct intel_dp *intel_dp =
2709                 container_of(to_delayed_work(__work),
2710                              struct intel_dp, panel_vdd_work);
2711         intel_wakeref_t wakeref;
2712
2713         with_pps_lock(intel_dp, wakeref) {
2714                 if (!intel_dp->want_panel_vdd)
2715                         edp_panel_vdd_off_sync(intel_dp);
2716         }
2717 }
2718
2719 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2720 {
2721         unsigned long delay;
2722
2723         /*
2724          * Queue the timer to fire a long time from now (relative to the power
2725          * down delay) to keep the panel power up across a sequence of
2726          * operations.
2727          */
2728         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2729         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2730 }
2731
2732 /*
2733  * Must be paired with edp_panel_vdd_on().
2734  * Must hold pps_mutex around the whole on/off sequence.
2735  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2736  */
2737 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2738 {
2739         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2740
2741         lockdep_assert_held(&dev_priv->pps_mutex);
2742
2743         if (!intel_dp_is_edp(intel_dp))
2744                 return;
2745
2746         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2747                         dp_to_dig_port(intel_dp)->base.base.base.id,
2748                         dp_to_dig_port(intel_dp)->base.base.name);
2749
2750         intel_dp->want_panel_vdd = false;
2751
2752         if (sync)
2753                 edp_panel_vdd_off_sync(intel_dp);
2754         else
2755                 edp_panel_vdd_schedule_off(intel_dp);
2756 }
2757
2758 static void edp_panel_on(struct intel_dp *intel_dp)
2759 {
2760         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2761         u32 pp;
2762         i915_reg_t pp_ctrl_reg;
2763
2764         lockdep_assert_held(&dev_priv->pps_mutex);
2765
2766         if (!intel_dp_is_edp(intel_dp))
2767                 return;
2768
2769         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2770                       dp_to_dig_port(intel_dp)->base.base.base.id,
2771                       dp_to_dig_port(intel_dp)->base.base.name);
2772
2773         if (WARN(edp_have_panel_power(intel_dp),
2774                  "[ENCODER:%d:%s] panel power already on\n",
2775                  dp_to_dig_port(intel_dp)->base.base.base.id,
2776                  dp_to_dig_port(intel_dp)->base.base.name))
2777                 return;
2778
2779         wait_panel_power_cycle(intel_dp);
2780
2781         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2782         pp = ironlake_get_pp_control(intel_dp);
2783         if (IS_GEN(dev_priv, 5)) {
2784                 /* ILK workaround: disable reset around power sequence */
2785                 pp &= ~PANEL_POWER_RESET;
2786                 I915_WRITE(pp_ctrl_reg, pp);
2787                 POSTING_READ(pp_ctrl_reg);
2788         }
2789
2790         pp |= PANEL_POWER_ON;
2791         if (!IS_GEN(dev_priv, 5))
2792                 pp |= PANEL_POWER_RESET;
2793
2794         I915_WRITE(pp_ctrl_reg, pp);
2795         POSTING_READ(pp_ctrl_reg);
2796
2797         wait_panel_on(intel_dp);
2798         intel_dp->last_power_on = jiffies;
2799
2800         if (IS_GEN(dev_priv, 5)) {
2801                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2802                 I915_WRITE(pp_ctrl_reg, pp);
2803                 POSTING_READ(pp_ctrl_reg);
2804         }
2805 }
2806
2807 void intel_edp_panel_on(struct intel_dp *intel_dp)
2808 {
2809         intel_wakeref_t wakeref;
2810
2811         if (!intel_dp_is_edp(intel_dp))
2812                 return;
2813
2814         with_pps_lock(intel_dp, wakeref)
2815                 edp_panel_on(intel_dp);
2816 }
2817
2818
2819 static void edp_panel_off(struct intel_dp *intel_dp)
2820 {
2821         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2822         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2823         u32 pp;
2824         i915_reg_t pp_ctrl_reg;
2825
2826         lockdep_assert_held(&dev_priv->pps_mutex);
2827
2828         if (!intel_dp_is_edp(intel_dp))
2829                 return;
2830
2831         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2832                       dig_port->base.base.base.id, dig_port->base.base.name);
2833
2834         WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2835              dig_port->base.base.base.id, dig_port->base.base.name);
2836
2837         pp = ironlake_get_pp_control(intel_dp);
2838         /* We need to switch off panel power _and_ force vdd, for otherwise some
2839          * panels get very unhappy and cease to work. */
2840         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2841                 EDP_BLC_ENABLE);
2842
2843         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2844
2845         intel_dp->want_panel_vdd = false;
2846
2847         I915_WRITE(pp_ctrl_reg, pp);
2848         POSTING_READ(pp_ctrl_reg);
2849
2850         wait_panel_off(intel_dp);
2851         intel_dp->panel_power_off_time = ktime_get_boottime();
2852
2853         /* We got a reference when we enabled the VDD. */
2854         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2855 }
2856
2857 void intel_edp_panel_off(struct intel_dp *intel_dp)
2858 {
2859         intel_wakeref_t wakeref;
2860
2861         if (!intel_dp_is_edp(intel_dp))
2862                 return;
2863
2864         with_pps_lock(intel_dp, wakeref)
2865                 edp_panel_off(intel_dp);
2866 }
2867
2868 /* Enable backlight in the panel power control. */
2869 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2870 {
2871         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2872         intel_wakeref_t wakeref;
2873
2874         /*
2875          * If we enable the backlight right away following a panel power
2876          * on, we may see slight flicker as the panel syncs with the eDP
2877          * link.  So delay a bit to make sure the image is solid before
2878          * allowing it to appear.
2879          */
2880         wait_backlight_on(intel_dp);
2881
2882         with_pps_lock(intel_dp, wakeref) {
2883                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2884                 u32 pp;
2885
2886                 pp = ironlake_get_pp_control(intel_dp);
2887                 pp |= EDP_BLC_ENABLE;
2888
2889                 I915_WRITE(pp_ctrl_reg, pp);
2890                 POSTING_READ(pp_ctrl_reg);
2891         }
2892 }
2893
2894 /* Enable backlight PWM and backlight PP control. */
2895 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2896                             const struct drm_connector_state *conn_state)
2897 {
2898         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2899
2900         if (!intel_dp_is_edp(intel_dp))
2901                 return;
2902
2903         DRM_DEBUG_KMS("\n");
2904
2905         intel_panel_enable_backlight(crtc_state, conn_state);
2906         _intel_edp_backlight_on(intel_dp);
2907 }
2908
2909 /* Disable backlight in the panel power control. */
2910 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2911 {
2912         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2913         intel_wakeref_t wakeref;
2914
2915         if (!intel_dp_is_edp(intel_dp))
2916                 return;
2917
2918         with_pps_lock(intel_dp, wakeref) {
2919                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2920                 u32 pp;
2921
2922                 pp = ironlake_get_pp_control(intel_dp);
2923                 pp &= ~EDP_BLC_ENABLE;
2924
2925                 I915_WRITE(pp_ctrl_reg, pp);
2926                 POSTING_READ(pp_ctrl_reg);
2927         }
2928
2929         intel_dp->last_backlight_off = jiffies;
2930         edp_wait_backlight_off(intel_dp);
2931 }
2932
2933 /* Disable backlight PP control and backlight PWM. */
2934 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2935 {
2936         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2937
2938         if (!intel_dp_is_edp(intel_dp))
2939                 return;
2940
2941         DRM_DEBUG_KMS("\n");
2942
2943         _intel_edp_backlight_off(intel_dp);
2944         intel_panel_disable_backlight(old_conn_state);
2945 }
2946
2947 /*
2948  * Hook for controlling the panel power control backlight through the bl_power
2949  * sysfs attribute. Take care to handle multiple calls.
2950  */
2951 static void intel_edp_backlight_power(struct intel_connector *connector,
2952                                       bool enable)
2953 {
2954         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
2955         intel_wakeref_t wakeref;
2956         bool is_enabled;
2957
2958         is_enabled = false;
2959         with_pps_lock(intel_dp, wakeref)
2960                 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
2961         if (is_enabled == enable)
2962                 return;
2963
2964         DRM_DEBUG_KMS("panel power control backlight %s\n",
2965                       enable ? "enable" : "disable");
2966
2967         if (enable)
2968                 _intel_edp_backlight_on(intel_dp);
2969         else
2970                 _intel_edp_backlight_off(intel_dp);
2971 }
2972
2973 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
2974 {
2975         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2976         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2977         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
2978
2979         I915_STATE_WARN(cur_state != state,
2980                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
2981                         dig_port->base.base.base.id, dig_port->base.base.name,
2982                         onoff(state), onoff(cur_state));
2983 }
2984 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
2985
2986 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
2987 {
2988         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
2989
2990         I915_STATE_WARN(cur_state != state,
2991                         "eDP PLL state assertion failure (expected %s, current %s)\n",
2992                         onoff(state), onoff(cur_state));
2993 }
2994 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
2995 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
2996
2997 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
2998                                 const struct intel_crtc_state *pipe_config)
2999 {
3000         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3001         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3002
3003         assert_pipe_disabled(dev_priv, crtc->pipe);
3004         assert_dp_port_disabled(intel_dp);
3005         assert_edp_pll_disabled(dev_priv);
3006
3007         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3008                       pipe_config->port_clock);
3009
3010         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3011
3012         if (pipe_config->port_clock == 162000)
3013                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3014         else
3015                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3016
3017         I915_WRITE(DP_A, intel_dp->DP);
3018         POSTING_READ(DP_A);
3019         udelay(500);
3020
3021         /*
3022          * [DevILK] Work around required when enabling DP PLL
3023          * while a pipe is enabled going to FDI:
3024          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3025          * 2. Program DP PLL enable
3026          */
3027         if (IS_GEN(dev_priv, 5))
3028                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3029
3030         intel_dp->DP |= DP_PLL_ENABLE;
3031
3032         I915_WRITE(DP_A, intel_dp->DP);
3033         POSTING_READ(DP_A);
3034         udelay(200);
3035 }
3036
3037 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
3038                                  const struct intel_crtc_state *old_crtc_state)
3039 {
3040         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
3041         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3042
3043         assert_pipe_disabled(dev_priv, crtc->pipe);
3044         assert_dp_port_disabled(intel_dp);
3045         assert_edp_pll_enabled(dev_priv);
3046
3047         DRM_DEBUG_KMS("disabling eDP PLL\n");
3048
3049         intel_dp->DP &= ~DP_PLL_ENABLE;
3050
3051         I915_WRITE(DP_A, intel_dp->DP);
3052         POSTING_READ(DP_A);
3053         udelay(200);
3054 }
3055
3056 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3057 {
3058         /*
3059          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3060          * be capable of signalling downstream hpd with a long pulse.
3061          * Whether or not that means D3 is safe to use is not clear,
3062          * but let's assume so until proven otherwise.
3063          *
3064          * FIXME should really check all downstream ports...
3065          */
3066         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3067                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3068                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3069 }
3070
3071 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3072                                            const struct intel_crtc_state *crtc_state,
3073                                            bool enable)
3074 {
3075         int ret;
3076
3077         if (!crtc_state->dsc_params.compression_enable)
3078                 return;
3079
3080         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3081                                  enable ? DP_DECOMPRESSION_EN : 0);
3082         if (ret < 0)
3083                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3084                               enable ? "enable" : "disable");
3085 }
3086
3087 /* If the sink supports it, try to set the power state appropriately */
3088 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3089 {
3090         int ret, i;
3091
3092         /* Should have a valid DPCD by this point */
3093         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3094                 return;
3095
3096         if (mode != DRM_MODE_DPMS_ON) {
3097                 if (downstream_hpd_needs_d0(intel_dp))
3098                         return;
3099
3100                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3101                                          DP_SET_POWER_D3);
3102         } else {
3103                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3104
3105                 /*
3106                  * When turning on, we need to retry for 1ms to give the sink
3107                  * time to wake up.
3108                  */
3109                 for (i = 0; i < 3; i++) {
3110                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3111                                                  DP_SET_POWER_D0);
3112                         if (ret == 1)
3113                                 break;
3114                         msleep(1);
3115                 }
3116
3117                 if (ret == 1 && lspcon->active)
3118                         lspcon_wait_pcon_mode(lspcon);
3119         }
3120
3121         if (ret != 1)
3122                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3123                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3124 }
3125
3126 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3127                                  enum port port, enum pipe *pipe)
3128 {
3129         enum pipe p;
3130
3131         for_each_pipe(dev_priv, p) {
3132                 u32 val = I915_READ(TRANS_DP_CTL(p));
3133
3134                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3135                         *pipe = p;
3136                         return true;
3137                 }
3138         }
3139
3140         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3141
3142         /* must initialize pipe to something for the asserts */
3143         *pipe = PIPE_A;
3144
3145         return false;
3146 }
3147
3148 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3149                            i915_reg_t dp_reg, enum port port,
3150                            enum pipe *pipe)
3151 {
3152         bool ret;
3153         u32 val;
3154
3155         val = I915_READ(dp_reg);
3156
3157         ret = val & DP_PORT_EN;
3158
3159         /* asserts want to know the pipe even if the port is disabled */
3160         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3161                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3162         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3163                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3164         else if (IS_CHERRYVIEW(dev_priv))
3165                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3166         else
3167                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3168
3169         return ret;
3170 }
3171
3172 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3173                                   enum pipe *pipe)
3174 {
3175         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3176         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3177         intel_wakeref_t wakeref;
3178         bool ret;
3179
3180         wakeref = intel_display_power_get_if_enabled(dev_priv,
3181                                                      encoder->power_domain);
3182         if (!wakeref)
3183                 return false;
3184
3185         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3186                                     encoder->port, pipe);
3187
3188         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3189
3190         return ret;
3191 }
3192
3193 static void intel_dp_get_config(struct intel_encoder *encoder,
3194                                 struct intel_crtc_state *pipe_config)
3195 {
3196         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3197         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3198         u32 tmp, flags = 0;
3199         enum port port = encoder->port;
3200         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3201
3202         if (encoder->type == INTEL_OUTPUT_EDP)
3203                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3204         else
3205                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3206
3207         tmp = I915_READ(intel_dp->output_reg);
3208
3209         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3210
3211         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3212                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3213
3214                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3215                         flags |= DRM_MODE_FLAG_PHSYNC;
3216                 else
3217                         flags |= DRM_MODE_FLAG_NHSYNC;
3218
3219                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3220                         flags |= DRM_MODE_FLAG_PVSYNC;
3221                 else
3222                         flags |= DRM_MODE_FLAG_NVSYNC;
3223         } else {
3224                 if (tmp & DP_SYNC_HS_HIGH)
3225                         flags |= DRM_MODE_FLAG_PHSYNC;
3226                 else
3227                         flags |= DRM_MODE_FLAG_NHSYNC;
3228
3229                 if (tmp & DP_SYNC_VS_HIGH)
3230                         flags |= DRM_MODE_FLAG_PVSYNC;
3231                 else
3232                         flags |= DRM_MODE_FLAG_NVSYNC;
3233         }
3234
3235         pipe_config->base.adjusted_mode.flags |= flags;
3236
3237         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3238                 pipe_config->limited_color_range = true;
3239
3240         pipe_config->lane_count =
3241                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3242
3243         intel_dp_get_m_n(crtc, pipe_config);
3244
3245         if (port == PORT_A) {
3246                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3247                         pipe_config->port_clock = 162000;
3248                 else
3249                         pipe_config->port_clock = 270000;
3250         }
3251
3252         pipe_config->base.adjusted_mode.crtc_clock =
3253                 intel_dotclock_calculate(pipe_config->port_clock,
3254                                          &pipe_config->dp_m_n);
3255
3256         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3257             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3258                 /*
3259                  * This is a big fat ugly hack.
3260                  *
3261                  * Some machines in UEFI boot mode provide us a VBT that has 18
3262                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3263                  * unknown we fail to light up. Yet the same BIOS boots up with
3264                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3265                  * max, not what it tells us to use.
3266                  *
3267                  * Note: This will still be broken if the eDP panel is not lit
3268                  * up by the BIOS, and thus we can't get the mode at module
3269                  * load.
3270                  */
3271                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3272                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3273                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3274         }
3275 }
3276
3277 static void intel_disable_dp(struct intel_encoder *encoder,
3278                              const struct intel_crtc_state *old_crtc_state,
3279                              const struct drm_connector_state *old_conn_state)
3280 {
3281         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3282
3283         intel_dp->link_trained = false;
3284
3285         if (old_crtc_state->has_audio)
3286                 intel_audio_codec_disable(encoder,
3287                                           old_crtc_state, old_conn_state);
3288
3289         /* Make sure the panel is off before trying to change the mode. But also
3290          * ensure that we have vdd while we switch off the panel. */
3291         intel_edp_panel_vdd_on(intel_dp);
3292         intel_edp_backlight_off(old_conn_state);
3293         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3294         intel_edp_panel_off(intel_dp);
3295 }
3296
3297 static void g4x_disable_dp(struct intel_encoder *encoder,
3298                            const struct intel_crtc_state *old_crtc_state,
3299                            const struct drm_connector_state *old_conn_state)
3300 {
3301         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3302 }
3303
3304 static void vlv_disable_dp(struct intel_encoder *encoder,
3305                            const struct intel_crtc_state *old_crtc_state,
3306                            const struct drm_connector_state *old_conn_state)
3307 {
3308         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3309 }
3310
3311 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3312                                 const struct intel_crtc_state *old_crtc_state,
3313                                 const struct drm_connector_state *old_conn_state)
3314 {
3315         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3316         enum port port = encoder->port;
3317
3318         /*
3319          * Bspec does not list a specific disable sequence for g4x DP.
3320          * Follow the ilk+ sequence (disable pipe before the port) for
3321          * g4x DP as it does not suffer from underruns like the normal
3322          * g4x modeset sequence (disable pipe after the port).
3323          */
3324         intel_dp_link_down(encoder, old_crtc_state);
3325
3326         /* Only ilk+ has port A */
3327         if (port == PORT_A)
3328                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3329 }
3330
3331 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3332                                 const struct intel_crtc_state *old_crtc_state,
3333                                 const struct drm_connector_state *old_conn_state)
3334 {
3335         intel_dp_link_down(encoder, old_crtc_state);
3336 }
3337
3338 static void chv_post_disable_dp(struct intel_encoder *encoder,
3339                                 const struct intel_crtc_state *old_crtc_state,
3340                                 const struct drm_connector_state *old_conn_state)
3341 {
3342         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3343
3344         intel_dp_link_down(encoder, old_crtc_state);
3345
3346         vlv_dpio_get(dev_priv);
3347
3348         /* Assert data lane reset */
3349         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3350
3351         vlv_dpio_put(dev_priv);
3352 }
3353
3354 static void
3355 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3356                          u32 *DP,
3357                          u8 dp_train_pat)
3358 {
3359         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3360         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3361         enum port port = intel_dig_port->base.port;
3362         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3363
3364         if (dp_train_pat & train_pat_mask)
3365                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3366                               dp_train_pat & train_pat_mask);
3367
3368         if (HAS_DDI(dev_priv)) {
3369                 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3370
3371                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3372                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3373                 else
3374                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3375
3376                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3377                 switch (dp_train_pat & train_pat_mask) {
3378                 case DP_TRAINING_PATTERN_DISABLE:
3379                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3380
3381                         break;
3382                 case DP_TRAINING_PATTERN_1:
3383                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3384                         break;
3385                 case DP_TRAINING_PATTERN_2:
3386                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3387                         break;
3388                 case DP_TRAINING_PATTERN_3:
3389                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3390                         break;
3391                 case DP_TRAINING_PATTERN_4:
3392                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3393                         break;
3394                 }
3395                 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3396
3397         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3398                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3399                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3400
3401                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3402                 case DP_TRAINING_PATTERN_DISABLE:
3403                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3404                         break;
3405                 case DP_TRAINING_PATTERN_1:
3406                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3407                         break;
3408                 case DP_TRAINING_PATTERN_2:
3409                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3410                         break;
3411                 case DP_TRAINING_PATTERN_3:
3412                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3413                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3414                         break;
3415                 }
3416
3417         } else {
3418                 *DP &= ~DP_LINK_TRAIN_MASK;
3419
3420                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3421                 case DP_TRAINING_PATTERN_DISABLE:
3422                         *DP |= DP_LINK_TRAIN_OFF;
3423                         break;
3424                 case DP_TRAINING_PATTERN_1:
3425                         *DP |= DP_LINK_TRAIN_PAT_1;
3426                         break;
3427                 case DP_TRAINING_PATTERN_2:
3428                         *DP |= DP_LINK_TRAIN_PAT_2;
3429                         break;
3430                 case DP_TRAINING_PATTERN_3:
3431                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3432                         *DP |= DP_LINK_TRAIN_PAT_2;
3433                         break;
3434                 }
3435         }
3436 }
3437
3438 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3439                                  const struct intel_crtc_state *old_crtc_state)
3440 {
3441         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3442
3443         /* enable with pattern 1 (as per spec) */
3444
3445         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3446
3447         /*
3448          * Magic for VLV/CHV. We _must_ first set up the register
3449          * without actually enabling the port, and then do another
3450          * write to enable the port. Otherwise link training will
3451          * fail when the power sequencer is freshly used for this port.
3452          */
3453         intel_dp->DP |= DP_PORT_EN;
3454         if (old_crtc_state->has_audio)
3455                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3456
3457         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3458         POSTING_READ(intel_dp->output_reg);
3459 }
3460
3461 static void intel_enable_dp(struct intel_encoder *encoder,
3462                             const struct intel_crtc_state *pipe_config,
3463                             const struct drm_connector_state *conn_state)
3464 {
3465         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3466         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3467         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
3468         u32 dp_reg = I915_READ(intel_dp->output_reg);
3469         enum pipe pipe = crtc->pipe;
3470         intel_wakeref_t wakeref;
3471
3472         if (WARN_ON(dp_reg & DP_PORT_EN))
3473                 return;
3474
3475         with_pps_lock(intel_dp, wakeref) {
3476                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3477                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3478
3479                 intel_dp_enable_port(intel_dp, pipe_config);
3480
3481                 edp_panel_vdd_on(intel_dp);
3482                 edp_panel_on(intel_dp);
3483                 edp_panel_vdd_off(intel_dp, true);
3484         }
3485
3486         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3487                 unsigned int lane_mask = 0x0;
3488
3489                 if (IS_CHERRYVIEW(dev_priv))
3490                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3491
3492                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3493                                     lane_mask);
3494         }
3495
3496         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3497         intel_dp_start_link_train(intel_dp);
3498         intel_dp_stop_link_train(intel_dp);
3499
3500         if (pipe_config->has_audio) {
3501                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3502                                  pipe_name(pipe));
3503                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3504         }
3505 }
3506
3507 static void g4x_enable_dp(struct intel_encoder *encoder,
3508                           const struct intel_crtc_state *pipe_config,
3509                           const struct drm_connector_state *conn_state)
3510 {
3511         intel_enable_dp(encoder, pipe_config, conn_state);
3512         intel_edp_backlight_on(pipe_config, conn_state);
3513 }
3514
3515 static void vlv_enable_dp(struct intel_encoder *encoder,
3516                           const struct intel_crtc_state *pipe_config,
3517                           const struct drm_connector_state *conn_state)
3518 {
3519         intel_edp_backlight_on(pipe_config, conn_state);
3520 }
3521
3522 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3523                               const struct intel_crtc_state *pipe_config,
3524                               const struct drm_connector_state *conn_state)
3525 {
3526         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3527         enum port port = encoder->port;
3528
3529         intel_dp_prepare(encoder, pipe_config);
3530
3531         /* Only ilk+ has port A */
3532         if (port == PORT_A)
3533                 ironlake_edp_pll_on(intel_dp, pipe_config);
3534 }
3535
3536 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3537 {
3538         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3539         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3540         enum pipe pipe = intel_dp->pps_pipe;
3541         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3542
3543         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3544
3545         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3546                 return;
3547
3548         edp_panel_vdd_off_sync(intel_dp);
3549
3550         /*
3551          * VLV seems to get confused when multiple power sequencers
3552          * have the same port selected (even if only one has power/vdd
3553          * enabled). The failure manifests as vlv_wait_port_ready() failing
3554          * CHV on the other hand doesn't seem to mind having the same port
3555          * selected in multiple power sequencers, but let's clear the
3556          * port select always when logically disconnecting a power sequencer
3557          * from a port.
3558          */
3559         DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3560                       pipe_name(pipe), intel_dig_port->base.base.base.id,
3561                       intel_dig_port->base.base.name);
3562         I915_WRITE(pp_on_reg, 0);
3563         POSTING_READ(pp_on_reg);
3564
3565         intel_dp->pps_pipe = INVALID_PIPE;
3566 }
3567
3568 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3569                                       enum pipe pipe)
3570 {
3571         struct intel_encoder *encoder;
3572
3573         lockdep_assert_held(&dev_priv->pps_mutex);
3574
3575         for_each_intel_dp(&dev_priv->drm, encoder) {
3576                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3577
3578                 WARN(intel_dp->active_pipe == pipe,
3579                      "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3580                      pipe_name(pipe), encoder->base.base.id,
3581                      encoder->base.name);
3582
3583                 if (intel_dp->pps_pipe != pipe)
3584                         continue;
3585
3586                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3587                               pipe_name(pipe), encoder->base.base.id,
3588                               encoder->base.name);
3589
3590                 /* make sure vdd is off before we steal it */
3591                 vlv_detach_power_sequencer(intel_dp);
3592         }
3593 }
3594
3595 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3596                                            const struct intel_crtc_state *crtc_state)
3597 {
3598         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3599         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3600         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3601
3602         lockdep_assert_held(&dev_priv->pps_mutex);
3603
3604         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3605
3606         if (intel_dp->pps_pipe != INVALID_PIPE &&
3607             intel_dp->pps_pipe != crtc->pipe) {
3608                 /*
3609                  * If another power sequencer was being used on this
3610                  * port previously make sure to turn off vdd there while
3611                  * we still have control of it.
3612                  */
3613                 vlv_detach_power_sequencer(intel_dp);
3614         }
3615
3616         /*
3617          * We may be stealing the power
3618          * sequencer from another port.
3619          */
3620         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3621
3622         intel_dp->active_pipe = crtc->pipe;
3623
3624         if (!intel_dp_is_edp(intel_dp))
3625                 return;
3626
3627         /* now it's all ours */
3628         intel_dp->pps_pipe = crtc->pipe;
3629
3630         DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3631                       pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3632                       encoder->base.name);
3633
3634         /* init power sequencer on this pipe and port */
3635         intel_dp_init_panel_power_sequencer(intel_dp);
3636         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3637 }
3638
3639 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3640                               const struct intel_crtc_state *pipe_config,
3641                               const struct drm_connector_state *conn_state)
3642 {
3643         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3644
3645         intel_enable_dp(encoder, pipe_config, conn_state);
3646 }
3647
3648 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3649                                   const struct intel_crtc_state *pipe_config,
3650                                   const struct drm_connector_state *conn_state)
3651 {
3652         intel_dp_prepare(encoder, pipe_config);
3653
3654         vlv_phy_pre_pll_enable(encoder, pipe_config);
3655 }
3656
3657 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3658                               const struct intel_crtc_state *pipe_config,
3659                               const struct drm_connector_state *conn_state)
3660 {
3661         chv_phy_pre_encoder_enable(encoder, pipe_config);
3662
3663         intel_enable_dp(encoder, pipe_config, conn_state);
3664
3665         /* Second common lane will stay alive on its own now */
3666         chv_phy_release_cl2_override(encoder);
3667 }
3668
3669 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3670                                   const struct intel_crtc_state *pipe_config,
3671                                   const struct drm_connector_state *conn_state)
3672 {
3673         intel_dp_prepare(encoder, pipe_config);
3674
3675         chv_phy_pre_pll_enable(encoder, pipe_config);
3676 }
3677
3678 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3679                                     const struct intel_crtc_state *old_crtc_state,
3680                                     const struct drm_connector_state *old_conn_state)
3681 {
3682         chv_phy_post_pll_disable(encoder, old_crtc_state);
3683 }
3684
3685 /*
3686  * Fetch AUX CH registers 0x202 - 0x207 which contain
3687  * link status information
3688  */
3689 bool
3690 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3691 {
3692         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3693                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3694 }
3695
3696 /* These are source-specific values. */
3697 u8
3698 intel_dp_voltage_max(struct intel_dp *intel_dp)
3699 {
3700         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3701         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3702         enum port port = encoder->port;
3703
3704         if (HAS_DDI(dev_priv))
3705                 return intel_ddi_dp_voltage_max(encoder);
3706         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3707                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3708         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3709                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3710         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3711                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3712         else
3713                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3714 }
3715
3716 u8
3717 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3718 {
3719         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3720         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3721         enum port port = encoder->port;
3722
3723         if (HAS_DDI(dev_priv)) {
3724                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3725         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3726                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3727                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3728                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3729                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3730                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3731                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3732                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3733                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3734                 default:
3735                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3736                 }
3737         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3738                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3739                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3740                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3741                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3742                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3743                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3744                 default:
3745                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3746                 }
3747         } else {
3748                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3749                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3750                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3751                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3752                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3753                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3754                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3755                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3756                 default:
3757                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3758                 }
3759         }
3760 }
3761
3762 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3763 {
3764         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3765         unsigned long demph_reg_value, preemph_reg_value,
3766                 uniqtranscale_reg_value;
3767         u8 train_set = intel_dp->train_set[0];
3768
3769         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3770         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3771                 preemph_reg_value = 0x0004000;
3772                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3773                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3774                         demph_reg_value = 0x2B405555;
3775                         uniqtranscale_reg_value = 0x552AB83A;
3776                         break;
3777                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3778                         demph_reg_value = 0x2B404040;
3779                         uniqtranscale_reg_value = 0x5548B83A;
3780                         break;
3781                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3782                         demph_reg_value = 0x2B245555;
3783                         uniqtranscale_reg_value = 0x5560B83A;
3784                         break;
3785                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3786                         demph_reg_value = 0x2B405555;
3787                         uniqtranscale_reg_value = 0x5598DA3A;
3788                         break;
3789                 default:
3790                         return 0;
3791                 }
3792                 break;
3793         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3794                 preemph_reg_value = 0x0002000;
3795                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3796                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3797                         demph_reg_value = 0x2B404040;
3798                         uniqtranscale_reg_value = 0x5552B83A;
3799                         break;
3800                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3801                         demph_reg_value = 0x2B404848;
3802                         uniqtranscale_reg_value = 0x5580B83A;
3803                         break;
3804                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3805                         demph_reg_value = 0x2B404040;
3806                         uniqtranscale_reg_value = 0x55ADDA3A;
3807                         break;
3808                 default:
3809                         return 0;
3810                 }
3811                 break;
3812         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3813                 preemph_reg_value = 0x0000000;
3814                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3815                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3816                         demph_reg_value = 0x2B305555;
3817                         uniqtranscale_reg_value = 0x5570B83A;
3818                         break;
3819                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3820                         demph_reg_value = 0x2B2B4040;
3821                         uniqtranscale_reg_value = 0x55ADDA3A;
3822                         break;
3823                 default:
3824                         return 0;
3825                 }
3826                 break;
3827         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3828                 preemph_reg_value = 0x0006000;
3829                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3830                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3831                         demph_reg_value = 0x1B405555;
3832                         uniqtranscale_reg_value = 0x55ADDA3A;
3833                         break;
3834                 default:
3835                         return 0;
3836                 }
3837                 break;
3838         default:
3839                 return 0;
3840         }
3841
3842         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3843                                  uniqtranscale_reg_value, 0);
3844
3845         return 0;
3846 }
3847
3848 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3849 {
3850         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3851         u32 deemph_reg_value, margin_reg_value;
3852         bool uniq_trans_scale = false;
3853         u8 train_set = intel_dp->train_set[0];
3854
3855         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3856         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3857                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3858                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3859                         deemph_reg_value = 128;
3860                         margin_reg_value = 52;
3861                         break;
3862                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3863                         deemph_reg_value = 128;
3864                         margin_reg_value = 77;
3865                         break;
3866                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3867                         deemph_reg_value = 128;
3868                         margin_reg_value = 102;
3869                         break;
3870                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3871                         deemph_reg_value = 128;
3872                         margin_reg_value = 154;
3873                         uniq_trans_scale = true;
3874                         break;
3875                 default:
3876                         return 0;
3877                 }
3878                 break;
3879         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3880                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3881                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3882                         deemph_reg_value = 85;
3883                         margin_reg_value = 78;
3884                         break;
3885                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3886                         deemph_reg_value = 85;
3887                         margin_reg_value = 116;
3888                         break;
3889                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3890                         deemph_reg_value = 85;
3891                         margin_reg_value = 154;
3892                         break;
3893                 default:
3894                         return 0;
3895                 }
3896                 break;
3897         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3898                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3899                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3900                         deemph_reg_value = 64;
3901                         margin_reg_value = 104;
3902                         break;
3903                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3904                         deemph_reg_value = 64;
3905                         margin_reg_value = 154;
3906                         break;
3907                 default:
3908                         return 0;
3909                 }
3910                 break;
3911         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3912                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3913                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3914                         deemph_reg_value = 43;
3915                         margin_reg_value = 154;
3916                         break;
3917                 default:
3918                         return 0;
3919                 }
3920                 break;
3921         default:
3922                 return 0;
3923         }
3924
3925         chv_set_phy_signal_level(encoder, deemph_reg_value,
3926                                  margin_reg_value, uniq_trans_scale);
3927
3928         return 0;
3929 }
3930
3931 static u32
3932 g4x_signal_levels(u8 train_set)
3933 {
3934         u32 signal_levels = 0;
3935
3936         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3937         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3938         default:
3939                 signal_levels |= DP_VOLTAGE_0_4;
3940                 break;
3941         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3942                 signal_levels |= DP_VOLTAGE_0_6;
3943                 break;
3944         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3945                 signal_levels |= DP_VOLTAGE_0_8;
3946                 break;
3947         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3948                 signal_levels |= DP_VOLTAGE_1_2;
3949                 break;
3950         }
3951         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3952         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3953         default:
3954                 signal_levels |= DP_PRE_EMPHASIS_0;
3955                 break;
3956         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3957                 signal_levels |= DP_PRE_EMPHASIS_3_5;
3958                 break;
3959         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3960                 signal_levels |= DP_PRE_EMPHASIS_6;
3961                 break;
3962         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3963                 signal_levels |= DP_PRE_EMPHASIS_9_5;
3964                 break;
3965         }
3966         return signal_levels;
3967 }
3968
3969 /* SNB CPU eDP voltage swing and pre-emphasis control */
3970 static u32
3971 snb_cpu_edp_signal_levels(u8 train_set)
3972 {
3973         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
3974                                          DP_TRAIN_PRE_EMPHASIS_MASK);
3975         switch (signal_levels) {
3976         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3977         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3978                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3979         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3980                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
3981         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3982         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
3983                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
3984         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3985         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
3986                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
3987         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3988         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
3989                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
3990         default:
3991                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
3992                               "0x%x\n", signal_levels);
3993                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
3994         }
3995 }
3996
3997 /* IVB CPU eDP voltage swing and pre-emphasis control */
3998 static u32
3999 ivb_cpu_edp_signal_levels(u8 train_set)
4000 {
4001         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4002                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4003         switch (signal_levels) {
4004         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4005                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4006         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4007                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4008         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4009                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4010
4011         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4012                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4013         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4014                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4015
4016         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4017                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4018         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4019                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4020
4021         default:
4022                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4023                               "0x%x\n", signal_levels);
4024                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4025         }
4026 }
4027
4028 void
4029 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4030 {
4031         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4032         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4033         enum port port = intel_dig_port->base.port;
4034         u32 signal_levels, mask = 0;
4035         u8 train_set = intel_dp->train_set[0];
4036
4037         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4038                 signal_levels = bxt_signal_levels(intel_dp);
4039         } else if (HAS_DDI(dev_priv)) {
4040                 signal_levels = ddi_signal_levels(intel_dp);
4041                 mask = DDI_BUF_EMP_MASK;
4042         } else if (IS_CHERRYVIEW(dev_priv)) {
4043                 signal_levels = chv_signal_levels(intel_dp);
4044         } else if (IS_VALLEYVIEW(dev_priv)) {
4045                 signal_levels = vlv_signal_levels(intel_dp);
4046         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4047                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4048                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4049         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4050                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4051                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4052         } else {
4053                 signal_levels = g4x_signal_levels(train_set);
4054                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4055         }
4056
4057         if (mask)
4058                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4059
4060         DRM_DEBUG_KMS("Using vswing level %d\n",
4061                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4062         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4063                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4064                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
4065
4066         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4067
4068         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4069         POSTING_READ(intel_dp->output_reg);
4070 }
4071
4072 void
4073 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4074                                        u8 dp_train_pat)
4075 {
4076         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4077         struct drm_i915_private *dev_priv =
4078                 to_i915(intel_dig_port->base.base.dev);
4079
4080         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4081
4082         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4083         POSTING_READ(intel_dp->output_reg);
4084 }
4085
4086 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4087 {
4088         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4089         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4090         enum port port = intel_dig_port->base.port;
4091         u32 val;
4092
4093         if (!HAS_DDI(dev_priv))
4094                 return;
4095
4096         val = I915_READ(intel_dp->regs.dp_tp_ctl);
4097         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4098         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4099         I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4100
4101         /*
4102          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4103          * reason we need to set idle transmission mode is to work around a HW
4104          * issue where we enable the pipe while not in idle link-training mode.
4105          * In this case there is requirement to wait for a minimum number of
4106          * idle patterns to be sent.
4107          */
4108         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4109                 return;
4110
4111         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4112                                   DP_TP_STATUS_IDLE_DONE, 1))
4113                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4114 }
4115
4116 static void
4117 intel_dp_link_down(struct intel_encoder *encoder,
4118                    const struct intel_crtc_state *old_crtc_state)
4119 {
4120         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4121         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4122         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4123         enum port port = encoder->port;
4124         u32 DP = intel_dp->DP;
4125
4126         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4127                 return;
4128
4129         DRM_DEBUG_KMS("\n");
4130
4131         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4132             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4133                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4134                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4135         } else {
4136                 DP &= ~DP_LINK_TRAIN_MASK;
4137                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4138         }
4139         I915_WRITE(intel_dp->output_reg, DP);
4140         POSTING_READ(intel_dp->output_reg);
4141
4142         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4143         I915_WRITE(intel_dp->output_reg, DP);
4144         POSTING_READ(intel_dp->output_reg);
4145
4146         /*
4147          * HW workaround for IBX, we need to move the port
4148          * to transcoder A after disabling it to allow the
4149          * matching HDMI port to be enabled on transcoder A.
4150          */
4151         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4152                 /*
4153                  * We get CPU/PCH FIFO underruns on the other pipe when
4154                  * doing the workaround. Sweep them under the rug.
4155                  */
4156                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4157                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4158
4159                 /* always enable with pattern 1 (as per spec) */
4160                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4161                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4162                         DP_LINK_TRAIN_PAT_1;
4163                 I915_WRITE(intel_dp->output_reg, DP);
4164                 POSTING_READ(intel_dp->output_reg);
4165
4166                 DP &= ~DP_PORT_EN;
4167                 I915_WRITE(intel_dp->output_reg, DP);
4168                 POSTING_READ(intel_dp->output_reg);
4169
4170                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4171                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4172                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4173         }
4174
4175         msleep(intel_dp->panel_power_down_delay);
4176
4177         intel_dp->DP = DP;
4178
4179         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4180                 intel_wakeref_t wakeref;
4181
4182                 with_pps_lock(intel_dp, wakeref)
4183                         intel_dp->active_pipe = INVALID_PIPE;
4184         }
4185 }
4186
4187 static void
4188 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4189 {
4190         u8 dpcd_ext[6];
4191
4192         /*
4193          * Prior to DP1.3 the bit represented by
4194          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4195          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4196          * the true capability of the panel. The only way to check is to
4197          * then compare 0000h and 2200h.
4198          */
4199         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4200               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4201                 return;
4202
4203         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4204                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4205                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4206                 return;
4207         }
4208
4209         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4210                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4211                 return;
4212         }
4213
4214         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4215                 return;
4216
4217         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4218                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4219
4220         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4221 }
4222
4223 bool
4224 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4225 {
4226         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4227                              sizeof(intel_dp->dpcd)) < 0)
4228                 return false; /* aux transfer failed */
4229
4230         intel_dp_extended_receiver_capabilities(intel_dp);
4231
4232         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4233
4234         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4235 }
4236
4237 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4238 {
4239         u8 dprx = 0;
4240
4241         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4242                               &dprx) != 1)
4243                 return false;
4244         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4245 }
4246
4247 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4248 {
4249         /*
4250          * Clear the cached register set to avoid using stale values
4251          * for the sinks that do not support DSC.
4252          */
4253         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4254
4255         /* Clear fec_capable to avoid using stale values */
4256         intel_dp->fec_capable = 0;
4257
4258         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4259         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4260             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4261                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4262                                      intel_dp->dsc_dpcd,
4263                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4264                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4265                                   DP_DSC_SUPPORT);
4266
4267                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4268                               (int)sizeof(intel_dp->dsc_dpcd),
4269                               intel_dp->dsc_dpcd);
4270
4271                 /* FEC is supported only on DP 1.4 */
4272                 if (!intel_dp_is_edp(intel_dp) &&
4273                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4274                                       &intel_dp->fec_capable) < 0)
4275                         DRM_ERROR("Failed to read FEC DPCD register\n");
4276
4277                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4278         }
4279 }
4280
4281 static bool
4282 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4283 {
4284         struct drm_i915_private *dev_priv =
4285                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4286
4287         /* this function is meant to be called only once */
4288         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4289
4290         if (!intel_dp_read_dpcd(intel_dp))
4291                 return false;
4292
4293         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4294                          drm_dp_is_branch(intel_dp->dpcd));
4295
4296         /*
4297          * Read the eDP display control registers.
4298          *
4299          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4300          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4301          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4302          * method). The display control registers should read zero if they're
4303          * not supported anyway.
4304          */
4305         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4306                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4307                              sizeof(intel_dp->edp_dpcd))
4308                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4309                               intel_dp->edp_dpcd);
4310
4311         /*
4312          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4313          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4314          */
4315         intel_psr_init_dpcd(intel_dp);
4316
4317         /* Read the eDP 1.4+ supported link rates. */
4318         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4319                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4320                 int i;
4321
4322                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4323                                 sink_rates, sizeof(sink_rates));
4324
4325                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4326                         int val = le16_to_cpu(sink_rates[i]);
4327
4328                         if (val == 0)
4329                                 break;
4330
4331                         /* Value read multiplied by 200kHz gives the per-lane
4332                          * link rate in kHz. The source rates are, however,
4333                          * stored in terms of LS_Clk kHz. The full conversion
4334                          * back to symbols is
4335                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4336                          */
4337                         intel_dp->sink_rates[i] = (val * 200) / 10;
4338                 }
4339                 intel_dp->num_sink_rates = i;
4340         }
4341
4342         /*
4343          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4344          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4345          */
4346         if (intel_dp->num_sink_rates)
4347                 intel_dp->use_rate_select = true;
4348         else
4349                 intel_dp_set_sink_rates(intel_dp);
4350
4351         intel_dp_set_common_rates(intel_dp);
4352
4353         /* Read the eDP DSC DPCD registers */
4354         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4355                 intel_dp_get_dsc_sink_cap(intel_dp);
4356
4357         return true;
4358 }
4359
4360
4361 static bool
4362 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4363 {
4364         if (!intel_dp_read_dpcd(intel_dp))
4365                 return false;
4366
4367         /*
4368          * Don't clobber cached eDP rates. Also skip re-reading
4369          * the OUI/ID since we know it won't change.
4370          */
4371         if (!intel_dp_is_edp(intel_dp)) {
4372                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4373                                  drm_dp_is_branch(intel_dp->dpcd));
4374
4375                 intel_dp_set_sink_rates(intel_dp);
4376                 intel_dp_set_common_rates(intel_dp);
4377         }
4378
4379         /*
4380          * Some eDP panels do not set a valid value for sink count, that is why
4381          * it don't care about read it here and in intel_edp_init_dpcd().
4382          */
4383         if (!intel_dp_is_edp(intel_dp) &&
4384             !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4385                 u8 count;
4386                 ssize_t r;
4387
4388                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4389                 if (r < 1)
4390                         return false;
4391
4392                 /*
4393                  * Sink count can change between short pulse hpd hence
4394                  * a member variable in intel_dp will track any changes
4395                  * between short pulse interrupts.
4396                  */
4397                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4398
4399                 /*
4400                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4401                  * a dongle is present but no display. Unless we require to know
4402                  * if a dongle is present or not, we don't need to update
4403                  * downstream port information. So, an early return here saves
4404                  * time from performing other operations which are not required.
4405                  */
4406                 if (!intel_dp->sink_count)
4407                         return false;
4408         }
4409
4410         if (!drm_dp_is_branch(intel_dp->dpcd))
4411                 return true; /* native DP sink */
4412
4413         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4414                 return true; /* no per-port downstream info */
4415
4416         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4417                              intel_dp->downstream_ports,
4418                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4419                 return false; /* downstream port status fetch failed */
4420
4421         return true;
4422 }
4423
4424 static bool
4425 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4426 {
4427         u8 mstm_cap;
4428
4429         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4430                 return false;
4431
4432         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4433                 return false;
4434
4435         return mstm_cap & DP_MST_CAP;
4436 }
4437
4438 static bool
4439 intel_dp_can_mst(struct intel_dp *intel_dp)
4440 {
4441         return i915_modparams.enable_dp_mst &&
4442                 intel_dp->can_mst &&
4443                 intel_dp_sink_can_mst(intel_dp);
4444 }
4445
4446 static void
4447 intel_dp_configure_mst(struct intel_dp *intel_dp)
4448 {
4449         struct intel_encoder *encoder =
4450                 &dp_to_dig_port(intel_dp)->base;
4451         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4452
4453         DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support? port: %s, sink: %s, modparam: %s\n",
4454                       encoder->base.base.id, encoder->base.name,
4455                       yesno(intel_dp->can_mst), yesno(sink_can_mst),
4456                       yesno(i915_modparams.enable_dp_mst));
4457
4458         if (!intel_dp->can_mst)
4459                 return;
4460
4461         intel_dp->is_mst = sink_can_mst &&
4462                 i915_modparams.enable_dp_mst;
4463
4464         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4465                                         intel_dp->is_mst);
4466 }
4467
4468 static bool
4469 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4470 {
4471         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4472                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4473                 DP_DPRX_ESI_LEN;
4474 }
4475
4476 static void
4477 intel_pixel_encoding_setup_vsc(struct intel_dp *intel_dp,
4478                                const struct intel_crtc_state *crtc_state)
4479 {
4480         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4481         struct dp_sdp vsc_sdp = {};
4482
4483         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4484         vsc_sdp.sdp_header.HB0 = 0;
4485         vsc_sdp.sdp_header.HB1 = 0x7;
4486
4487         /*
4488          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4489          * Colorimetry Format indication.
4490          */
4491         vsc_sdp.sdp_header.HB2 = 0x5;
4492
4493         /*
4494          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4495          * Colorimetry Format indication (HB2 = 05h).
4496          */
4497         vsc_sdp.sdp_header.HB3 = 0x13;
4498
4499         /*
4500          * YCbCr 420 = 3h DB16[7:4] ITU-R BT.601 = 0h, ITU-R BT.709 = 1h
4501          * DB16[3:0] DP 1.4a spec, Table 2-120
4502          */
4503         vsc_sdp.db[16] = 0x3 << 4; /* 0x3 << 4 , YCbCr 420*/
4504         /* RGB->YCBCR color conversion uses the BT.709 color space. */
4505         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4506
4507         /*
4508          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4509          * the following Component Bit Depth values are defined:
4510          * 001b = 8bpc.
4511          * 010b = 10bpc.
4512          * 011b = 12bpc.
4513          * 100b = 16bpc.
4514          */
4515         switch (crtc_state->pipe_bpp) {
4516         case 24: /* 8bpc */
4517                 vsc_sdp.db[17] = 0x1;
4518                 break;
4519         case 30: /* 10bpc */
4520                 vsc_sdp.db[17] = 0x2;
4521                 break;
4522         case 36: /* 12bpc */
4523                 vsc_sdp.db[17] = 0x3;
4524                 break;
4525         case 48: /* 16bpc */
4526                 vsc_sdp.db[17] = 0x4;
4527                 break;
4528         default:
4529                 MISSING_CASE(crtc_state->pipe_bpp);
4530                 break;
4531         }
4532
4533         /*
4534          * Dynamic Range (Bit 7)
4535          * 0 = VESA range, 1 = CTA range.
4536          * all YCbCr are always limited range
4537          */
4538         vsc_sdp.db[17] |= 0x80;
4539
4540         /*
4541          * Content Type (Bits 2:0)
4542          * 000b = Not defined.
4543          * 001b = Graphics.
4544          * 010b = Photo.
4545          * 011b = Video.
4546          * 100b = Game
4547          * All other values are RESERVED.
4548          * Note: See CTA-861-G for the definition and expected
4549          * processing by a stream sink for the above contect types.
4550          */
4551         vsc_sdp.db[18] = 0;
4552
4553         intel_dig_port->write_infoframe(&intel_dig_port->base,
4554                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4555 }
4556
4557 void intel_dp_ycbcr_420_enable(struct intel_dp *intel_dp,
4558                                const struct intel_crtc_state *crtc_state)
4559 {
4560         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_YCBCR420)
4561                 return;
4562
4563         intel_pixel_encoding_setup_vsc(intel_dp, crtc_state);
4564 }
4565
4566 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4567 {
4568         int status = 0;
4569         int test_link_rate;
4570         u8 test_lane_count, test_link_bw;
4571         /* (DP CTS 1.2)
4572          * 4.3.1.11
4573          */
4574         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4575         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4576                                    &test_lane_count);
4577
4578         if (status <= 0) {
4579                 DRM_DEBUG_KMS("Lane count read failed\n");
4580                 return DP_TEST_NAK;
4581         }
4582         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4583
4584         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4585                                    &test_link_bw);
4586         if (status <= 0) {
4587                 DRM_DEBUG_KMS("Link Rate read failed\n");
4588                 return DP_TEST_NAK;
4589         }
4590         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4591
4592         /* Validate the requested link rate and lane count */
4593         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4594                                         test_lane_count))
4595                 return DP_TEST_NAK;
4596
4597         intel_dp->compliance.test_lane_count = test_lane_count;
4598         intel_dp->compliance.test_link_rate = test_link_rate;
4599
4600         return DP_TEST_ACK;
4601 }
4602
4603 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4604 {
4605         u8 test_pattern;
4606         u8 test_misc;
4607         __be16 h_width, v_height;
4608         int status = 0;
4609
4610         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4611         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4612                                    &test_pattern);
4613         if (status <= 0) {
4614                 DRM_DEBUG_KMS("Test pattern read failed\n");
4615                 return DP_TEST_NAK;
4616         }
4617         if (test_pattern != DP_COLOR_RAMP)
4618                 return DP_TEST_NAK;
4619
4620         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4621                                   &h_width, 2);
4622         if (status <= 0) {
4623                 DRM_DEBUG_KMS("H Width read failed\n");
4624                 return DP_TEST_NAK;
4625         }
4626
4627         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4628                                   &v_height, 2);
4629         if (status <= 0) {
4630                 DRM_DEBUG_KMS("V Height read failed\n");
4631                 return DP_TEST_NAK;
4632         }
4633
4634         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4635                                    &test_misc);
4636         if (status <= 0) {
4637                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4638                 return DP_TEST_NAK;
4639         }
4640         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4641                 return DP_TEST_NAK;
4642         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4643                 return DP_TEST_NAK;
4644         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4645         case DP_TEST_BIT_DEPTH_6:
4646                 intel_dp->compliance.test_data.bpc = 6;
4647                 break;
4648         case DP_TEST_BIT_DEPTH_8:
4649                 intel_dp->compliance.test_data.bpc = 8;
4650                 break;
4651         default:
4652                 return DP_TEST_NAK;
4653         }
4654
4655         intel_dp->compliance.test_data.video_pattern = test_pattern;
4656         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4657         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4658         /* Set test active flag here so userspace doesn't interrupt things */
4659         intel_dp->compliance.test_active = 1;
4660
4661         return DP_TEST_ACK;
4662 }
4663
4664 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4665 {
4666         u8 test_result = DP_TEST_ACK;
4667         struct intel_connector *intel_connector = intel_dp->attached_connector;
4668         struct drm_connector *connector = &intel_connector->base;
4669
4670         if (intel_connector->detect_edid == NULL ||
4671             connector->edid_corrupt ||
4672             intel_dp->aux.i2c_defer_count > 6) {
4673                 /* Check EDID read for NACKs, DEFERs and corruption
4674                  * (DP CTS 1.2 Core r1.1)
4675                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4676                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4677                  *    4.2.2.6 : EDID corruption detected
4678                  * Use failsafe mode for all cases
4679                  */
4680                 if (intel_dp->aux.i2c_nack_count > 0 ||
4681                         intel_dp->aux.i2c_defer_count > 0)
4682                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4683                                       intel_dp->aux.i2c_nack_count,
4684                                       intel_dp->aux.i2c_defer_count);
4685                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4686         } else {
4687                 struct edid *block = intel_connector->detect_edid;
4688
4689                 /* We have to write the checksum
4690                  * of the last block read
4691                  */
4692                 block += intel_connector->detect_edid->extensions;
4693
4694                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4695                                        block->checksum) <= 0)
4696                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4697
4698                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4699                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4700         }
4701
4702         /* Set test active flag here so userspace doesn't interrupt things */
4703         intel_dp->compliance.test_active = 1;
4704
4705         return test_result;
4706 }
4707
4708 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4709 {
4710         u8 test_result = DP_TEST_NAK;
4711         return test_result;
4712 }
4713
4714 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4715 {
4716         u8 response = DP_TEST_NAK;
4717         u8 request = 0;
4718         int status;
4719
4720         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4721         if (status <= 0) {
4722                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4723                 goto update_status;
4724         }
4725
4726         switch (request) {
4727         case DP_TEST_LINK_TRAINING:
4728                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4729                 response = intel_dp_autotest_link_training(intel_dp);
4730                 break;
4731         case DP_TEST_LINK_VIDEO_PATTERN:
4732                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4733                 response = intel_dp_autotest_video_pattern(intel_dp);
4734                 break;
4735         case DP_TEST_LINK_EDID_READ:
4736                 DRM_DEBUG_KMS("EDID test requested\n");
4737                 response = intel_dp_autotest_edid(intel_dp);
4738                 break;
4739         case DP_TEST_LINK_PHY_TEST_PATTERN:
4740                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4741                 response = intel_dp_autotest_phy_pattern(intel_dp);
4742                 break;
4743         default:
4744                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4745                 break;
4746         }
4747
4748         if (response & DP_TEST_ACK)
4749                 intel_dp->compliance.test_type = request;
4750
4751 update_status:
4752         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4753         if (status <= 0)
4754                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4755 }
4756
4757 static int
4758 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4759 {
4760         bool bret;
4761
4762         if (intel_dp->is_mst) {
4763                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4764                 int ret = 0;
4765                 int retry;
4766                 bool handled;
4767
4768                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4769                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4770 go_again:
4771                 if (bret == true) {
4772
4773                         /* check link status - esi[10] = 0x200c */
4774                         if (intel_dp->active_mst_links > 0 &&
4775                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4776                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4777                                 intel_dp_start_link_train(intel_dp);
4778                                 intel_dp_stop_link_train(intel_dp);
4779                         }
4780
4781                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4782                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4783
4784                         if (handled) {
4785                                 for (retry = 0; retry < 3; retry++) {
4786                                         int wret;
4787                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4788                                                                  DP_SINK_COUNT_ESI+1,
4789                                                                  &esi[1], 3);
4790                                         if (wret == 3) {
4791                                                 break;
4792                                         }
4793                                 }
4794
4795                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4796                                 if (bret == true) {
4797                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
4798                                         goto go_again;
4799                                 }
4800                         } else
4801                                 ret = 0;
4802
4803                         return ret;
4804                 } else {
4805                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
4806                         intel_dp->is_mst = false;
4807                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4808                                                         intel_dp->is_mst);
4809                 }
4810         }
4811         return -EINVAL;
4812 }
4813
4814 static bool
4815 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
4816 {
4817         u8 link_status[DP_LINK_STATUS_SIZE];
4818
4819         if (!intel_dp->link_trained)
4820                 return false;
4821
4822         /*
4823          * While PSR source HW is enabled, it will control main-link sending
4824          * frames, enabling and disabling it so trying to do a retrain will fail
4825          * as the link would or not be on or it could mix training patterns
4826          * and frame data at the same time causing retrain to fail.
4827          * Also when exiting PSR, HW will retrain the link anyways fixing
4828          * any link status error.
4829          */
4830         if (intel_psr_enabled(intel_dp))
4831                 return false;
4832
4833         if (!intel_dp_get_link_status(intel_dp, link_status))
4834                 return false;
4835
4836         /*
4837          * Validate the cached values of intel_dp->link_rate and
4838          * intel_dp->lane_count before attempting to retrain.
4839          */
4840         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
4841                                         intel_dp->lane_count))
4842                 return false;
4843
4844         /* Retrain if Channel EQ or CR not ok */
4845         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
4846 }
4847
4848 int intel_dp_retrain_link(struct intel_encoder *encoder,
4849                           struct drm_modeset_acquire_ctx *ctx)
4850 {
4851         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4852         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4853         struct intel_connector *connector = intel_dp->attached_connector;
4854         struct drm_connector_state *conn_state;
4855         struct intel_crtc_state *crtc_state;
4856         struct intel_crtc *crtc;
4857         int ret;
4858
4859         /* FIXME handle the MST connectors as well */
4860
4861         if (!connector || connector->base.status != connector_status_connected)
4862                 return 0;
4863
4864         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
4865                                ctx);
4866         if (ret)
4867                 return ret;
4868
4869         conn_state = connector->base.state;
4870
4871         crtc = to_intel_crtc(conn_state->crtc);
4872         if (!crtc)
4873                 return 0;
4874
4875         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
4876         if (ret)
4877                 return ret;
4878
4879         crtc_state = to_intel_crtc_state(crtc->base.state);
4880
4881         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
4882
4883         if (!crtc_state->base.active)
4884                 return 0;
4885
4886         if (conn_state->commit &&
4887             !try_wait_for_completion(&conn_state->commit->hw_done))
4888                 return 0;
4889
4890         if (!intel_dp_needs_link_retrain(intel_dp))
4891                 return 0;
4892
4893         /* Suppress underruns caused by re-training */
4894         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
4895         if (crtc_state->has_pch_encoder)
4896                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4897                                                       intel_crtc_pch_transcoder(crtc), false);
4898
4899         intel_dp_start_link_train(intel_dp);
4900         intel_dp_stop_link_train(intel_dp);
4901
4902         /* Keep underrun reporting disabled until things are stable */
4903         intel_wait_for_vblank(dev_priv, crtc->pipe);
4904
4905         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
4906         if (crtc_state->has_pch_encoder)
4907                 intel_set_pch_fifo_underrun_reporting(dev_priv,
4908                                                       intel_crtc_pch_transcoder(crtc), true);
4909
4910         return 0;
4911 }
4912
4913 /*
4914  * If display is now connected check links status,
4915  * there has been known issues of link loss triggering
4916  * long pulse.
4917  *
4918  * Some sinks (eg. ASUS PB287Q) seem to perform some
4919  * weird HPD ping pong during modesets. So we can apparently
4920  * end up with HPD going low during a modeset, and then
4921  * going back up soon after. And once that happens we must
4922  * retrain the link to get a picture. That's in case no
4923  * userspace component reacted to intermittent HPD dip.
4924  */
4925 static enum intel_hotplug_state
4926 intel_dp_hotplug(struct intel_encoder *encoder,
4927                  struct intel_connector *connector,
4928                  bool irq_received)
4929 {
4930         struct drm_modeset_acquire_ctx ctx;
4931         enum intel_hotplug_state state;
4932         int ret;
4933
4934         state = intel_encoder_hotplug(encoder, connector, irq_received);
4935
4936         drm_modeset_acquire_init(&ctx, 0);
4937
4938         for (;;) {
4939                 ret = intel_dp_retrain_link(encoder, &ctx);
4940
4941                 if (ret == -EDEADLK) {
4942                         drm_modeset_backoff(&ctx);
4943                         continue;
4944                 }
4945
4946                 break;
4947         }
4948
4949         drm_modeset_drop_locks(&ctx);
4950         drm_modeset_acquire_fini(&ctx);
4951         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
4952
4953         /*
4954          * Keeping it consistent with intel_ddi_hotplug() and
4955          * intel_hdmi_hotplug().
4956          */
4957         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
4958                 state = INTEL_HOTPLUG_RETRY;
4959
4960         return state;
4961 }
4962
4963 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
4964 {
4965         u8 val;
4966
4967         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
4968                 return;
4969
4970         if (drm_dp_dpcd_readb(&intel_dp->aux,
4971                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
4972                 return;
4973
4974         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
4975
4976         if (val & DP_AUTOMATED_TEST_REQUEST)
4977                 intel_dp_handle_test_request(intel_dp);
4978
4979         if (val & DP_CP_IRQ)
4980                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
4981
4982         if (val & DP_SINK_SPECIFIC_IRQ)
4983                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
4984 }
4985
4986 /*
4987  * According to DP spec
4988  * 5.1.2:
4989  *  1. Read DPCD
4990  *  2. Configure link according to Receiver Capabilities
4991  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
4992  *  4. Check link status on receipt of hot-plug interrupt
4993  *
4994  * intel_dp_short_pulse -  handles short pulse interrupts
4995  * when full detection is not required.
4996  * Returns %true if short pulse is handled and full detection
4997  * is NOT required and %false otherwise.
4998  */
4999 static bool
5000 intel_dp_short_pulse(struct intel_dp *intel_dp)
5001 {
5002         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5003         u8 old_sink_count = intel_dp->sink_count;
5004         bool ret;
5005
5006         /*
5007          * Clearing compliance test variables to allow capturing
5008          * of values for next automated test request.
5009          */
5010         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5011
5012         /*
5013          * Now read the DPCD to see if it's actually running
5014          * If the current value of sink count doesn't match with
5015          * the value that was stored earlier or dpcd read failed
5016          * we need to do full detection
5017          */
5018         ret = intel_dp_get_dpcd(intel_dp);
5019
5020         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5021                 /* No need to proceed if we are going to do full detect */
5022                 return false;
5023         }
5024
5025         intel_dp_check_service_irq(intel_dp);
5026
5027         /* Handle CEC interrupts, if any */
5028         drm_dp_cec_irq(&intel_dp->aux);
5029
5030         /* defer to the hotplug work for link retraining if needed */
5031         if (intel_dp_needs_link_retrain(intel_dp))
5032                 return false;
5033
5034         intel_psr_short_pulse(intel_dp);
5035
5036         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5037                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5038                 /* Send a Hotplug Uevent to userspace to start modeset */
5039                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5040         }
5041
5042         return true;
5043 }
5044
5045 /* XXX this is probably wrong for multiple downstream ports */
5046 static enum drm_connector_status
5047 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5048 {
5049         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5050         u8 *dpcd = intel_dp->dpcd;
5051         u8 type;
5052
5053         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5054                 return connector_status_connected;
5055
5056         if (lspcon->active)
5057                 lspcon_resume(lspcon);
5058
5059         if (!intel_dp_get_dpcd(intel_dp))
5060                 return connector_status_disconnected;
5061
5062         /* if there's no downstream port, we're done */
5063         if (!drm_dp_is_branch(dpcd))
5064                 return connector_status_connected;
5065
5066         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5067         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5068             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5069
5070                 return intel_dp->sink_count ?
5071                 connector_status_connected : connector_status_disconnected;
5072         }
5073
5074         if (intel_dp_can_mst(intel_dp))
5075                 return connector_status_connected;
5076
5077         /* If no HPD, poke DDC gently */
5078         if (drm_probe_ddc(&intel_dp->aux.ddc))
5079                 return connector_status_connected;
5080
5081         /* Well we tried, say unknown for unreliable port types */
5082         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5083                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5084                 if (type == DP_DS_PORT_TYPE_VGA ||
5085                     type == DP_DS_PORT_TYPE_NON_EDID)
5086                         return connector_status_unknown;
5087         } else {
5088                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5089                         DP_DWN_STRM_PORT_TYPE_MASK;
5090                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5091                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5092                         return connector_status_unknown;
5093         }
5094
5095         /* Anything else is out of spec, warn and ignore */
5096         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5097         return connector_status_disconnected;
5098 }
5099
5100 static enum drm_connector_status
5101 edp_detect(struct intel_dp *intel_dp)
5102 {
5103         return connector_status_connected;
5104 }
5105
5106 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5107 {
5108         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5109         u32 bit;
5110
5111         switch (encoder->hpd_pin) {
5112         case HPD_PORT_B:
5113                 bit = SDE_PORTB_HOTPLUG;
5114                 break;
5115         case HPD_PORT_C:
5116                 bit = SDE_PORTC_HOTPLUG;
5117                 break;
5118         case HPD_PORT_D:
5119                 bit = SDE_PORTD_HOTPLUG;
5120                 break;
5121         default:
5122                 MISSING_CASE(encoder->hpd_pin);
5123                 return false;
5124         }
5125
5126         return I915_READ(SDEISR) & bit;
5127 }
5128
5129 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5130 {
5131         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5132         u32 bit;
5133
5134         switch (encoder->hpd_pin) {
5135         case HPD_PORT_B:
5136                 bit = SDE_PORTB_HOTPLUG_CPT;
5137                 break;
5138         case HPD_PORT_C:
5139                 bit = SDE_PORTC_HOTPLUG_CPT;
5140                 break;
5141         case HPD_PORT_D:
5142                 bit = SDE_PORTD_HOTPLUG_CPT;
5143                 break;
5144         default:
5145                 MISSING_CASE(encoder->hpd_pin);
5146                 return false;
5147         }
5148
5149         return I915_READ(SDEISR) & bit;
5150 }
5151
5152 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5153 {
5154         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5155         u32 bit;
5156
5157         switch (encoder->hpd_pin) {
5158         case HPD_PORT_A:
5159                 bit = SDE_PORTA_HOTPLUG_SPT;
5160                 break;
5161         case HPD_PORT_E:
5162                 bit = SDE_PORTE_HOTPLUG_SPT;
5163                 break;
5164         default:
5165                 return cpt_digital_port_connected(encoder);
5166         }
5167
5168         return I915_READ(SDEISR) & bit;
5169 }
5170
5171 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5172 {
5173         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5174         u32 bit;
5175
5176         switch (encoder->hpd_pin) {
5177         case HPD_PORT_B:
5178                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5179                 break;
5180         case HPD_PORT_C:
5181                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5182                 break;
5183         case HPD_PORT_D:
5184                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5185                 break;
5186         default:
5187                 MISSING_CASE(encoder->hpd_pin);
5188                 return false;
5189         }
5190
5191         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5192 }
5193
5194 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5195 {
5196         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5197         u32 bit;
5198
5199         switch (encoder->hpd_pin) {
5200         case HPD_PORT_B:
5201                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5202                 break;
5203         case HPD_PORT_C:
5204                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5205                 break;
5206         case HPD_PORT_D:
5207                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5208                 break;
5209         default:
5210                 MISSING_CASE(encoder->hpd_pin);
5211                 return false;
5212         }
5213
5214         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5215 }
5216
5217 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5218 {
5219         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5220
5221         if (encoder->hpd_pin == HPD_PORT_A)
5222                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5223         else
5224                 return ibx_digital_port_connected(encoder);
5225 }
5226
5227 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5228 {
5229         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5230
5231         if (encoder->hpd_pin == HPD_PORT_A)
5232                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5233         else
5234                 return cpt_digital_port_connected(encoder);
5235 }
5236
5237 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5238 {
5239         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5240
5241         if (encoder->hpd_pin == HPD_PORT_A)
5242                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5243         else
5244                 return cpt_digital_port_connected(encoder);
5245 }
5246
5247 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5248 {
5249         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5250
5251         if (encoder->hpd_pin == HPD_PORT_A)
5252                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5253         else
5254                 return cpt_digital_port_connected(encoder);
5255 }
5256
5257 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5258 {
5259         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5260         u32 bit;
5261
5262         switch (encoder->hpd_pin) {
5263         case HPD_PORT_A:
5264                 bit = BXT_DE_PORT_HP_DDIA;
5265                 break;
5266         case HPD_PORT_B:
5267                 bit = BXT_DE_PORT_HP_DDIB;
5268                 break;
5269         case HPD_PORT_C:
5270                 bit = BXT_DE_PORT_HP_DDIC;
5271                 break;
5272         default:
5273                 MISSING_CASE(encoder->hpd_pin);
5274                 return false;
5275         }
5276
5277         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5278 }
5279
5280 static bool icl_combo_port_connected(struct drm_i915_private *dev_priv,
5281                                      struct intel_digital_port *intel_dig_port)
5282 {
5283         enum port port = intel_dig_port->base.port;
5284
5285         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(port);
5286 }
5287
5288 static bool icl_digital_port_connected(struct intel_encoder *encoder)
5289 {
5290         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5291         struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5292         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5293
5294         if (intel_phy_is_combo(dev_priv, phy))
5295                 return icl_combo_port_connected(dev_priv, dig_port);
5296         else if (intel_phy_is_tc(dev_priv, phy))
5297                 return intel_tc_port_connected(dig_port);
5298         else
5299                 MISSING_CASE(encoder->hpd_pin);
5300
5301         return false;
5302 }
5303
5304 /*
5305  * intel_digital_port_connected - is the specified port connected?
5306  * @encoder: intel_encoder
5307  *
5308  * In cases where there's a connector physically connected but it can't be used
5309  * by our hardware we also return false, since the rest of the driver should
5310  * pretty much treat the port as disconnected. This is relevant for type-C
5311  * (starting on ICL) where there's ownership involved.
5312  *
5313  * Return %true if port is connected, %false otherwise.
5314  */
5315 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5316 {
5317         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5318
5319         if (HAS_GMCH(dev_priv)) {
5320                 if (IS_GM45(dev_priv))
5321                         return gm45_digital_port_connected(encoder);
5322                 else
5323                         return g4x_digital_port_connected(encoder);
5324         }
5325
5326         if (INTEL_GEN(dev_priv) >= 11)
5327                 return icl_digital_port_connected(encoder);
5328         else if (IS_GEN(dev_priv, 10) || IS_GEN9_BC(dev_priv))
5329                 return spt_digital_port_connected(encoder);
5330         else if (IS_GEN9_LP(dev_priv))
5331                 return bxt_digital_port_connected(encoder);
5332         else if (IS_GEN(dev_priv, 8))
5333                 return bdw_digital_port_connected(encoder);
5334         else if (IS_GEN(dev_priv, 7))
5335                 return ivb_digital_port_connected(encoder);
5336         else if (IS_GEN(dev_priv, 6))
5337                 return snb_digital_port_connected(encoder);
5338         else if (IS_GEN(dev_priv, 5))
5339                 return ilk_digital_port_connected(encoder);
5340
5341         MISSING_CASE(INTEL_GEN(dev_priv));
5342         return false;
5343 }
5344
5345 bool intel_digital_port_connected(struct intel_encoder *encoder)
5346 {
5347         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5348         bool is_connected = false;
5349         intel_wakeref_t wakeref;
5350
5351         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5352                 is_connected = __intel_digital_port_connected(encoder);
5353
5354         return is_connected;
5355 }
5356
5357 static struct edid *
5358 intel_dp_get_edid(struct intel_dp *intel_dp)
5359 {
5360         struct intel_connector *intel_connector = intel_dp->attached_connector;
5361
5362         /* use cached edid if we have one */
5363         if (intel_connector->edid) {
5364                 /* invalid edid */
5365                 if (IS_ERR(intel_connector->edid))
5366                         return NULL;
5367
5368                 return drm_edid_duplicate(intel_connector->edid);
5369         } else
5370                 return drm_get_edid(&intel_connector->base,
5371                                     &intel_dp->aux.ddc);
5372 }
5373
5374 static void
5375 intel_dp_set_edid(struct intel_dp *intel_dp)
5376 {
5377         struct intel_connector *intel_connector = intel_dp->attached_connector;
5378         struct edid *edid;
5379
5380         intel_dp_unset_edid(intel_dp);
5381         edid = intel_dp_get_edid(intel_dp);
5382         intel_connector->detect_edid = edid;
5383
5384         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5385         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5386 }
5387
5388 static void
5389 intel_dp_unset_edid(struct intel_dp *intel_dp)
5390 {
5391         struct intel_connector *intel_connector = intel_dp->attached_connector;
5392
5393         drm_dp_cec_unset_edid(&intel_dp->aux);
5394         kfree(intel_connector->detect_edid);
5395         intel_connector->detect_edid = NULL;
5396
5397         intel_dp->has_audio = false;
5398 }
5399
5400 static int
5401 intel_dp_detect(struct drm_connector *connector,
5402                 struct drm_modeset_acquire_ctx *ctx,
5403                 bool force)
5404 {
5405         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5406         struct intel_dp *intel_dp = intel_attached_dp(connector);
5407         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5408         struct intel_encoder *encoder = &dig_port->base;
5409         enum drm_connector_status status;
5410
5411         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5412                       connector->base.id, connector->name);
5413         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5414
5415         /* Can't disconnect eDP */
5416         if (intel_dp_is_edp(intel_dp))
5417                 status = edp_detect(intel_dp);
5418         else if (intel_digital_port_connected(encoder))
5419                 status = intel_dp_detect_dpcd(intel_dp);
5420         else
5421                 status = connector_status_disconnected;
5422
5423         if (status == connector_status_disconnected) {
5424                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5425                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5426
5427                 if (intel_dp->is_mst) {
5428                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5429                                       intel_dp->is_mst,
5430                                       intel_dp->mst_mgr.mst_state);
5431                         intel_dp->is_mst = false;
5432                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5433                                                         intel_dp->is_mst);
5434                 }
5435
5436                 goto out;
5437         }
5438
5439         if (intel_dp->reset_link_params) {
5440                 /* Initial max link lane count */
5441                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5442
5443                 /* Initial max link rate */
5444                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5445
5446                 intel_dp->reset_link_params = false;
5447         }
5448
5449         intel_dp_print_rates(intel_dp);
5450
5451         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5452         if (INTEL_GEN(dev_priv) >= 11)
5453                 intel_dp_get_dsc_sink_cap(intel_dp);
5454
5455         intel_dp_configure_mst(intel_dp);
5456
5457         if (intel_dp->is_mst) {
5458                 /*
5459                  * If we are in MST mode then this connector
5460                  * won't appear connected or have anything
5461                  * with EDID on it
5462                  */
5463                 status = connector_status_disconnected;
5464                 goto out;
5465         }
5466
5467         /*
5468          * Some external monitors do not signal loss of link synchronization
5469          * with an IRQ_HPD, so force a link status check.
5470          */
5471         if (!intel_dp_is_edp(intel_dp)) {
5472                 int ret;
5473
5474                 ret = intel_dp_retrain_link(encoder, ctx);
5475                 if (ret)
5476                         return ret;
5477         }
5478
5479         /*
5480          * Clearing NACK and defer counts to get their exact values
5481          * while reading EDID which are required by Compliance tests
5482          * 4.2.2.4 and 4.2.2.5
5483          */
5484         intel_dp->aux.i2c_nack_count = 0;
5485         intel_dp->aux.i2c_defer_count = 0;
5486
5487         intel_dp_set_edid(intel_dp);
5488         if (intel_dp_is_edp(intel_dp) ||
5489             to_intel_connector(connector)->detect_edid)
5490                 status = connector_status_connected;
5491
5492         intel_dp_check_service_irq(intel_dp);
5493
5494 out:
5495         if (status != connector_status_connected && !intel_dp->is_mst)
5496                 intel_dp_unset_edid(intel_dp);
5497
5498         return status;
5499 }
5500
5501 static void
5502 intel_dp_force(struct drm_connector *connector)
5503 {
5504         struct intel_dp *intel_dp = intel_attached_dp(connector);
5505         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5506         struct intel_encoder *intel_encoder = &dig_port->base;
5507         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5508         enum intel_display_power_domain aux_domain =
5509                 intel_aux_power_domain(dig_port);
5510         intel_wakeref_t wakeref;
5511
5512         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5513                       connector->base.id, connector->name);
5514         intel_dp_unset_edid(intel_dp);
5515
5516         if (connector->status != connector_status_connected)
5517                 return;
5518
5519         wakeref = intel_display_power_get(dev_priv, aux_domain);
5520
5521         intel_dp_set_edid(intel_dp);
5522
5523         intel_display_power_put(dev_priv, aux_domain, wakeref);
5524 }
5525
5526 static int intel_dp_get_modes(struct drm_connector *connector)
5527 {
5528         struct intel_connector *intel_connector = to_intel_connector(connector);
5529         struct edid *edid;
5530
5531         edid = intel_connector->detect_edid;
5532         if (edid) {
5533                 int ret = intel_connector_update_modes(connector, edid);
5534                 if (ret)
5535                         return ret;
5536         }
5537
5538         /* if eDP has no EDID, fall back to fixed mode */
5539         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5540             intel_connector->panel.fixed_mode) {
5541                 struct drm_display_mode *mode;
5542
5543                 mode = drm_mode_duplicate(connector->dev,
5544                                           intel_connector->panel.fixed_mode);
5545                 if (mode) {
5546                         drm_mode_probed_add(connector, mode);
5547                         return 1;
5548                 }
5549         }
5550
5551         return 0;
5552 }
5553
5554 static int
5555 intel_dp_connector_register(struct drm_connector *connector)
5556 {
5557         struct intel_dp *intel_dp = intel_attached_dp(connector);
5558         int ret;
5559
5560         ret = intel_connector_register(connector);
5561         if (ret)
5562                 return ret;
5563
5564         i915_debugfs_connector_add(connector);
5565
5566         DRM_DEBUG_KMS("registering %s bus for %s\n",
5567                       intel_dp->aux.name, connector->kdev->kobj.name);
5568
5569         intel_dp->aux.dev = connector->kdev;
5570         ret = drm_dp_aux_register(&intel_dp->aux);
5571         if (!ret)
5572                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5573         return ret;
5574 }
5575
5576 static void
5577 intel_dp_connector_unregister(struct drm_connector *connector)
5578 {
5579         struct intel_dp *intel_dp = intel_attached_dp(connector);
5580
5581         drm_dp_cec_unregister_connector(&intel_dp->aux);
5582         drm_dp_aux_unregister(&intel_dp->aux);
5583         intel_connector_unregister(connector);
5584 }
5585
5586 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5587 {
5588         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5589         struct intel_dp *intel_dp = &intel_dig_port->dp;
5590
5591         intel_dp_mst_encoder_cleanup(intel_dig_port);
5592         if (intel_dp_is_edp(intel_dp)) {
5593                 intel_wakeref_t wakeref;
5594
5595                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5596                 /*
5597                  * vdd might still be enabled do to the delayed vdd off.
5598                  * Make sure vdd is actually turned off here.
5599                  */
5600                 with_pps_lock(intel_dp, wakeref)
5601                         edp_panel_vdd_off_sync(intel_dp);
5602
5603                 if (intel_dp->edp_notifier.notifier_call) {
5604                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5605                         intel_dp->edp_notifier.notifier_call = NULL;
5606                 }
5607         }
5608
5609         intel_dp_aux_fini(intel_dp);
5610 }
5611
5612 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5613 {
5614         intel_dp_encoder_flush_work(encoder);
5615
5616         drm_encoder_cleanup(encoder);
5617         kfree(enc_to_dig_port(encoder));
5618 }
5619
5620 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5621 {
5622         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5623         intel_wakeref_t wakeref;
5624
5625         if (!intel_dp_is_edp(intel_dp))
5626                 return;
5627
5628         /*
5629          * vdd might still be enabled do to the delayed vdd off.
5630          * Make sure vdd is actually turned off here.
5631          */
5632         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5633         with_pps_lock(intel_dp, wakeref)
5634                 edp_panel_vdd_off_sync(intel_dp);
5635 }
5636
5637 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5638 {
5639         long ret;
5640
5641 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5642         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5643                                                msecs_to_jiffies(timeout));
5644
5645         if (!ret)
5646                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5647 }
5648
5649 static
5650 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5651                                 u8 *an)
5652 {
5653         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5654         static const struct drm_dp_aux_msg msg = {
5655                 .request = DP_AUX_NATIVE_WRITE,
5656                 .address = DP_AUX_HDCP_AKSV,
5657                 .size = DRM_HDCP_KSV_LEN,
5658         };
5659         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5660         ssize_t dpcd_ret;
5661         int ret;
5662
5663         /* Output An first, that's easy */
5664         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5665                                      an, DRM_HDCP_AN_LEN);
5666         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5667                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5668                               dpcd_ret);
5669                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5670         }
5671
5672         /*
5673          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5674          * order to get it on the wire, we need to create the AUX header as if
5675          * we were writing the data, and then tickle the hardware to output the
5676          * data once the header is sent out.
5677          */
5678         intel_dp_aux_header(txbuf, &msg);
5679
5680         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5681                                 rxbuf, sizeof(rxbuf),
5682                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5683         if (ret < 0) {
5684                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5685                 return ret;
5686         } else if (ret == 0) {
5687                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5688                 return -EIO;
5689         }
5690
5691         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5692         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5693                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5694                               reply);
5695                 return -EIO;
5696         }
5697         return 0;
5698 }
5699
5700 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5701                                    u8 *bksv)
5702 {
5703         ssize_t ret;
5704         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5705                                DRM_HDCP_KSV_LEN);
5706         if (ret != DRM_HDCP_KSV_LEN) {
5707                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5708                 return ret >= 0 ? -EIO : ret;
5709         }
5710         return 0;
5711 }
5712
5713 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5714                                       u8 *bstatus)
5715 {
5716         ssize_t ret;
5717         /*
5718          * For some reason the HDMI and DP HDCP specs call this register
5719          * definition by different names. In the HDMI spec, it's called BSTATUS,
5720          * but in DP it's called BINFO.
5721          */
5722         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5723                                bstatus, DRM_HDCP_BSTATUS_LEN);
5724         if (ret != DRM_HDCP_BSTATUS_LEN) {
5725                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5726                 return ret >= 0 ? -EIO : ret;
5727         }
5728         return 0;
5729 }
5730
5731 static
5732 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5733                              u8 *bcaps)
5734 {
5735         ssize_t ret;
5736
5737         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5738                                bcaps, 1);
5739         if (ret != 1) {
5740                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5741                 return ret >= 0 ? -EIO : ret;
5742         }
5743
5744         return 0;
5745 }
5746
5747 static
5748 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5749                                    bool *repeater_present)
5750 {
5751         ssize_t ret;
5752         u8 bcaps;
5753
5754         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5755         if (ret)
5756                 return ret;
5757
5758         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5759         return 0;
5760 }
5761
5762 static
5763 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5764                                 u8 *ri_prime)
5765 {
5766         ssize_t ret;
5767         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5768                                ri_prime, DRM_HDCP_RI_LEN);
5769         if (ret != DRM_HDCP_RI_LEN) {
5770                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5771                 return ret >= 0 ? -EIO : ret;
5772         }
5773         return 0;
5774 }
5775
5776 static
5777 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5778                                  bool *ksv_ready)
5779 {
5780         ssize_t ret;
5781         u8 bstatus;
5782         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5783                                &bstatus, 1);
5784         if (ret != 1) {
5785                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5786                 return ret >= 0 ? -EIO : ret;
5787         }
5788         *ksv_ready = bstatus & DP_BSTATUS_READY;
5789         return 0;
5790 }
5791
5792 static
5793 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
5794                                 int num_downstream, u8 *ksv_fifo)
5795 {
5796         ssize_t ret;
5797         int i;
5798
5799         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
5800         for (i = 0; i < num_downstream; i += 3) {
5801                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
5802                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5803                                        DP_AUX_HDCP_KSV_FIFO,
5804                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
5805                                        len);
5806                 if (ret != len) {
5807                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
5808                                       i, ret);
5809                         return ret >= 0 ? -EIO : ret;
5810                 }
5811         }
5812         return 0;
5813 }
5814
5815 static
5816 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
5817                                     int i, u32 *part)
5818 {
5819         ssize_t ret;
5820
5821         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
5822                 return -EINVAL;
5823
5824         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5825                                DP_AUX_HDCP_V_PRIME(i), part,
5826                                DRM_HDCP_V_PRIME_PART_LEN);
5827         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
5828                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
5829                 return ret >= 0 ? -EIO : ret;
5830         }
5831         return 0;
5832 }
5833
5834 static
5835 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
5836                                     bool enable)
5837 {
5838         /* Not used for single stream DisplayPort setups */
5839         return 0;
5840 }
5841
5842 static
5843 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
5844 {
5845         ssize_t ret;
5846         u8 bstatus;
5847
5848         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
5849                                &bstatus, 1);
5850         if (ret != 1) {
5851                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5852                 return false;
5853         }
5854
5855         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
5856 }
5857
5858 static
5859 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
5860                           bool *hdcp_capable)
5861 {
5862         ssize_t ret;
5863         u8 bcaps;
5864
5865         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5866         if (ret)
5867                 return ret;
5868
5869         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
5870         return 0;
5871 }
5872
5873 struct hdcp2_dp_errata_stream_type {
5874         u8      msg_id;
5875         u8      stream_type;
5876 } __packed;
5877
5878 struct hdcp2_dp_msg_data {
5879         u8 msg_id;
5880         u32 offset;
5881         bool msg_detectable;
5882         u32 timeout;
5883         u32 timeout2; /* Added for non_paired situation */
5884 };
5885
5886 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
5887         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
5888         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
5889           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
5890         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
5891           false, 0, 0 },
5892         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
5893           false, 0, 0 },
5894         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
5895           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
5896           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
5897         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
5898           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
5899           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
5900         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
5901         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
5902           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
5903         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
5904           0, 0 },
5905         { HDCP_2_2_REP_SEND_RECVID_LIST,
5906           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
5907           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
5908         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
5909           0, 0 },
5910         { HDCP_2_2_REP_STREAM_MANAGE,
5911           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
5912           0, 0 },
5913         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
5914           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
5915 /* local define to shovel this through the write_2_2 interface */
5916 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
5917         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
5918           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
5919           0, 0 },
5920 };
5921
5922 static inline
5923 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
5924                                   u8 *rx_status)
5925 {
5926         ssize_t ret;
5927
5928         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
5929                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
5930                                HDCP_2_2_DP_RXSTATUS_LEN);
5931         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
5932                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5933                 return ret >= 0 ? -EIO : ret;
5934         }
5935
5936         return 0;
5937 }
5938
5939 static
5940 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
5941                                   u8 msg_id, bool *msg_ready)
5942 {
5943         u8 rx_status;
5944         int ret;
5945
5946         *msg_ready = false;
5947         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
5948         if (ret < 0)
5949                 return ret;
5950
5951         switch (msg_id) {
5952         case HDCP_2_2_AKE_SEND_HPRIME:
5953                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
5954                         *msg_ready = true;
5955                 break;
5956         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
5957                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
5958                         *msg_ready = true;
5959                 break;
5960         case HDCP_2_2_REP_SEND_RECVID_LIST:
5961                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
5962                         *msg_ready = true;
5963                 break;
5964         default:
5965                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
5966                 return -EINVAL;
5967         }
5968
5969         return 0;
5970 }
5971
5972 static ssize_t
5973 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
5974                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
5975 {
5976         struct intel_dp *dp = &intel_dig_port->dp;
5977         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
5978         u8 msg_id = hdcp2_msg_data->msg_id;
5979         int ret, timeout;
5980         bool msg_ready = false;
5981
5982         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
5983                 timeout = hdcp2_msg_data->timeout2;
5984         else
5985                 timeout = hdcp2_msg_data->timeout;
5986
5987         /*
5988          * There is no way to detect the CERT, LPRIME and STREAM_READY
5989          * availability. So Wait for timeout and read the msg.
5990          */
5991         if (!hdcp2_msg_data->msg_detectable) {
5992                 mdelay(timeout);
5993                 ret = 0;
5994         } else {
5995                 /*
5996                  * As we want to check the msg availability at timeout, Ignoring
5997                  * the timeout at wait for CP_IRQ.
5998                  */
5999                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6000                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6001                                                     msg_id, &msg_ready);
6002                 if (!msg_ready)
6003                         ret = -ETIMEDOUT;
6004         }
6005
6006         if (ret)
6007                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6008                               hdcp2_msg_data->msg_id, ret, timeout);
6009
6010         return ret;
6011 }
6012
6013 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6014 {
6015         int i;
6016
6017         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6018                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6019                         return &hdcp2_dp_msg_data[i];
6020
6021         return NULL;
6022 }
6023
6024 static
6025 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6026                              void *buf, size_t size)
6027 {
6028         struct intel_dp *dp = &intel_dig_port->dp;
6029         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6030         unsigned int offset;
6031         u8 *byte = buf;
6032         ssize_t ret, bytes_to_write, len;
6033         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6034
6035         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6036         if (!hdcp2_msg_data)
6037                 return -EINVAL;
6038
6039         offset = hdcp2_msg_data->offset;
6040
6041         /* No msg_id in DP HDCP2.2 msgs */
6042         bytes_to_write = size - 1;
6043         byte++;
6044
6045         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6046
6047         while (bytes_to_write) {
6048                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6049                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6050
6051                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6052                                         offset, (void *)byte, len);
6053                 if (ret < 0)
6054                         return ret;
6055
6056                 bytes_to_write -= ret;
6057                 byte += ret;
6058                 offset += ret;
6059         }
6060
6061         return size;
6062 }
6063
6064 static
6065 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6066 {
6067         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6068         u32 dev_cnt;
6069         ssize_t ret;
6070
6071         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6072                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6073                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6074         if (ret != HDCP_2_2_RXINFO_LEN)
6075                 return ret >= 0 ? -EIO : ret;
6076
6077         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6078                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6079
6080         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6081                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6082
6083         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6084                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6085                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6086
6087         return ret;
6088 }
6089
6090 static
6091 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6092                             u8 msg_id, void *buf, size_t size)
6093 {
6094         unsigned int offset;
6095         u8 *byte = buf;
6096         ssize_t ret, bytes_to_recv, len;
6097         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6098
6099         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6100         if (!hdcp2_msg_data)
6101                 return -EINVAL;
6102         offset = hdcp2_msg_data->offset;
6103
6104         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6105         if (ret < 0)
6106                 return ret;
6107
6108         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6109                 ret = get_receiver_id_list_size(intel_dig_port);
6110                 if (ret < 0)
6111                         return ret;
6112
6113                 size = ret;
6114         }
6115         bytes_to_recv = size - 1;
6116
6117         /* DP adaptation msgs has no msg_id */
6118         byte++;
6119
6120         while (bytes_to_recv) {
6121                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6122                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6123
6124                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6125                                        (void *)byte, len);
6126                 if (ret < 0) {
6127                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6128                         return ret;
6129                 }
6130
6131                 bytes_to_recv -= ret;
6132                 byte += ret;
6133                 offset += ret;
6134         }
6135         byte = buf;
6136         *byte = msg_id;
6137
6138         return size;
6139 }
6140
6141 static
6142 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6143                                       bool is_repeater, u8 content_type)
6144 {
6145         struct hdcp2_dp_errata_stream_type stream_type_msg;
6146
6147         if (is_repeater)
6148                 return 0;
6149
6150         /*
6151          * Errata for DP: As Stream type is used for encryption, Receiver
6152          * should be communicated with stream type for the decryption of the
6153          * content.
6154          * Repeater will be communicated with stream type as a part of it's
6155          * auth later in time.
6156          */
6157         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6158         stream_type_msg.stream_type = content_type;
6159
6160         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6161                                         sizeof(stream_type_msg));
6162 }
6163
6164 static
6165 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6166 {
6167         u8 rx_status;
6168         int ret;
6169
6170         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6171         if (ret)
6172                 return ret;
6173
6174         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6175                 ret = HDCP_REAUTH_REQUEST;
6176         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6177                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6178         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6179                 ret = HDCP_TOPOLOGY_CHANGE;
6180
6181         return ret;
6182 }
6183
6184 static
6185 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6186                            bool *capable)
6187 {
6188         u8 rx_caps[3];
6189         int ret;
6190
6191         *capable = false;
6192         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6193                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6194                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6195         if (ret != HDCP_2_2_RXCAPS_LEN)
6196                 return ret >= 0 ? -EIO : ret;
6197
6198         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6199             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6200                 *capable = true;
6201
6202         return 0;
6203 }
6204
6205 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6206         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6207         .read_bksv = intel_dp_hdcp_read_bksv,
6208         .read_bstatus = intel_dp_hdcp_read_bstatus,
6209         .repeater_present = intel_dp_hdcp_repeater_present,
6210         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6211         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6212         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6213         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6214         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6215         .check_link = intel_dp_hdcp_check_link,
6216         .hdcp_capable = intel_dp_hdcp_capable,
6217         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6218         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6219         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6220         .check_2_2_link = intel_dp_hdcp2_check_link,
6221         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6222         .protocol = HDCP_PROTOCOL_DP,
6223 };
6224
6225 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6226 {
6227         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6228         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6229
6230         lockdep_assert_held(&dev_priv->pps_mutex);
6231
6232         if (!edp_have_panel_vdd(intel_dp))
6233                 return;
6234
6235         /*
6236          * The VDD bit needs a power domain reference, so if the bit is
6237          * already enabled when we boot or resume, grab this reference and
6238          * schedule a vdd off, so we don't hold on to the reference
6239          * indefinitely.
6240          */
6241         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6242         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6243
6244         edp_panel_vdd_schedule_off(intel_dp);
6245 }
6246
6247 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6248 {
6249         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6250         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6251         enum pipe pipe;
6252
6253         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6254                                   encoder->port, &pipe))
6255                 return pipe;
6256
6257         return INVALID_PIPE;
6258 }
6259
6260 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6261 {
6262         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6263         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6264         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6265         intel_wakeref_t wakeref;
6266
6267         if (!HAS_DDI(dev_priv))
6268                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6269
6270         if (lspcon->active)
6271                 lspcon_resume(lspcon);
6272
6273         intel_dp->reset_link_params = true;
6274
6275         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6276             !intel_dp_is_edp(intel_dp))
6277                 return;
6278
6279         with_pps_lock(intel_dp, wakeref) {
6280                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6281                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6282
6283                 if (intel_dp_is_edp(intel_dp)) {
6284                         /*
6285                          * Reinit the power sequencer, in case BIOS did
6286                          * something nasty with it.
6287                          */
6288                         intel_dp_pps_init(intel_dp);
6289                         intel_edp_panel_vdd_sanitize(intel_dp);
6290                 }
6291         }
6292 }
6293
6294 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6295         .force = intel_dp_force,
6296         .fill_modes = drm_helper_probe_single_connector_modes,
6297         .atomic_get_property = intel_digital_connector_atomic_get_property,
6298         .atomic_set_property = intel_digital_connector_atomic_set_property,
6299         .late_register = intel_dp_connector_register,
6300         .early_unregister = intel_dp_connector_unregister,
6301         .destroy = intel_connector_destroy,
6302         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6303         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6304 };
6305
6306 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6307         .detect_ctx = intel_dp_detect,
6308         .get_modes = intel_dp_get_modes,
6309         .mode_valid = intel_dp_mode_valid,
6310         .atomic_check = intel_digital_connector_atomic_check,
6311 };
6312
6313 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6314         .reset = intel_dp_encoder_reset,
6315         .destroy = intel_dp_encoder_destroy,
6316 };
6317
6318 enum irqreturn
6319 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6320 {
6321         struct intel_dp *intel_dp = &intel_dig_port->dp;
6322
6323         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6324                 /*
6325                  * vdd off can generate a long pulse on eDP which
6326                  * would require vdd on to handle it, and thus we
6327                  * would end up in an endless cycle of
6328                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6329                  */
6330                 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6331                               intel_dig_port->base.base.base.id,
6332                               intel_dig_port->base.base.name);
6333                 return IRQ_HANDLED;
6334         }
6335
6336         DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6337                       intel_dig_port->base.base.base.id,
6338                       intel_dig_port->base.base.name,
6339                       long_hpd ? "long" : "short");
6340
6341         if (long_hpd) {
6342                 intel_dp->reset_link_params = true;
6343                 return IRQ_NONE;
6344         }
6345
6346         if (intel_dp->is_mst) {
6347                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6348                         /*
6349                          * If we were in MST mode, and device is not
6350                          * there, get out of MST mode
6351                          */
6352                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6353                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6354                         intel_dp->is_mst = false;
6355                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6356                                                         intel_dp->is_mst);
6357
6358                         return IRQ_NONE;
6359                 }
6360         }
6361
6362         if (!intel_dp->is_mst) {
6363                 bool handled;
6364
6365                 handled = intel_dp_short_pulse(intel_dp);
6366
6367                 if (!handled)
6368                         return IRQ_NONE;
6369         }
6370
6371         return IRQ_HANDLED;
6372 }
6373
6374 /* check the VBT to see whether the eDP is on another port */
6375 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6376 {
6377         /*
6378          * eDP not supported on g4x. so bail out early just
6379          * for a bit extra safety in case the VBT is bonkers.
6380          */
6381         if (INTEL_GEN(dev_priv) < 5)
6382                 return false;
6383
6384         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6385                 return true;
6386
6387         return intel_bios_is_port_edp(dev_priv, port);
6388 }
6389
6390 static void
6391 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6392 {
6393         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6394         enum port port = dp_to_dig_port(intel_dp)->base.port;
6395
6396         if (!IS_G4X(dev_priv) && port != PORT_A)
6397                 intel_attach_force_audio_property(connector);
6398
6399         intel_attach_broadcast_rgb_property(connector);
6400         if (HAS_GMCH(dev_priv))
6401                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6402         else if (INTEL_GEN(dev_priv) >= 5)
6403                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6404
6405         if (intel_dp_is_edp(intel_dp)) {
6406                 u32 allowed_scalers;
6407
6408                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6409                 if (!HAS_GMCH(dev_priv))
6410                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6411
6412                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6413
6414                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6415
6416         }
6417 }
6418
6419 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6420 {
6421         intel_dp->panel_power_off_time = ktime_get_boottime();
6422         intel_dp->last_power_on = jiffies;
6423         intel_dp->last_backlight_off = jiffies;
6424 }
6425
6426 static void
6427 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6428 {
6429         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6430         u32 pp_on, pp_off, pp_ctl;
6431         struct pps_registers regs;
6432
6433         intel_pps_get_registers(intel_dp, &regs);
6434
6435         pp_ctl = ironlake_get_pp_control(intel_dp);
6436
6437         /* Ensure PPS is unlocked */
6438         if (!HAS_DDI(dev_priv))
6439                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6440
6441         pp_on = I915_READ(regs.pp_on);
6442         pp_off = I915_READ(regs.pp_off);
6443
6444         /* Pull timing values out of registers */
6445         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6446         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6447         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6448         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6449
6450         if (i915_mmio_reg_valid(regs.pp_div)) {
6451                 u32 pp_div;
6452
6453                 pp_div = I915_READ(regs.pp_div);
6454
6455                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6456         } else {
6457                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6458         }
6459 }
6460
6461 static void
6462 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6463 {
6464         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6465                       state_name,
6466                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6467 }
6468
6469 static void
6470 intel_pps_verify_state(struct intel_dp *intel_dp)
6471 {
6472         struct edp_power_seq hw;
6473         struct edp_power_seq *sw = &intel_dp->pps_delays;
6474
6475         intel_pps_readout_hw_state(intel_dp, &hw);
6476
6477         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6478             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6479                 DRM_ERROR("PPS state mismatch\n");
6480                 intel_pps_dump_state("sw", sw);
6481                 intel_pps_dump_state("hw", &hw);
6482         }
6483 }
6484
6485 static void
6486 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6487 {
6488         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6489         struct edp_power_seq cur, vbt, spec,
6490                 *final = &intel_dp->pps_delays;
6491
6492         lockdep_assert_held(&dev_priv->pps_mutex);
6493
6494         /* already initialized? */
6495         if (final->t11_t12 != 0)
6496                 return;
6497
6498         intel_pps_readout_hw_state(intel_dp, &cur);
6499
6500         intel_pps_dump_state("cur", &cur);
6501
6502         vbt = dev_priv->vbt.edp.pps;
6503         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6504          * of 500ms appears to be too short. Ocassionally the panel
6505          * just fails to power back on. Increasing the delay to 800ms
6506          * seems sufficient to avoid this problem.
6507          */
6508         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6509                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6510                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6511                               vbt.t11_t12);
6512         }
6513         /* T11_T12 delay is special and actually in units of 100ms, but zero
6514          * based in the hw (so we need to add 100 ms). But the sw vbt
6515          * table multiplies it with 1000 to make it in units of 100usec,
6516          * too. */
6517         vbt.t11_t12 += 100 * 10;
6518
6519         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6520          * our hw here, which are all in 100usec. */
6521         spec.t1_t3 = 210 * 10;
6522         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6523         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6524         spec.t10 = 500 * 10;
6525         /* This one is special and actually in units of 100ms, but zero
6526          * based in the hw (so we need to add 100 ms). But the sw vbt
6527          * table multiplies it with 1000 to make it in units of 100usec,
6528          * too. */
6529         spec.t11_t12 = (510 + 100) * 10;
6530
6531         intel_pps_dump_state("vbt", &vbt);
6532
6533         /* Use the max of the register settings and vbt. If both are
6534          * unset, fall back to the spec limits. */
6535 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6536                                        spec.field : \
6537                                        max(cur.field, vbt.field))
6538         assign_final(t1_t3);
6539         assign_final(t8);
6540         assign_final(t9);
6541         assign_final(t10);
6542         assign_final(t11_t12);
6543 #undef assign_final
6544
6545 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6546         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6547         intel_dp->backlight_on_delay = get_delay(t8);
6548         intel_dp->backlight_off_delay = get_delay(t9);
6549         intel_dp->panel_power_down_delay = get_delay(t10);
6550         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6551 #undef get_delay
6552
6553         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6554                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6555                       intel_dp->panel_power_cycle_delay);
6556
6557         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6558                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6559
6560         /*
6561          * We override the HW backlight delays to 1 because we do manual waits
6562          * on them. For T8, even BSpec recommends doing it. For T9, if we
6563          * don't do this, we'll end up waiting for the backlight off delay
6564          * twice: once when we do the manual sleep, and once when we disable
6565          * the panel and wait for the PP_STATUS bit to become zero.
6566          */
6567         final->t8 = 1;
6568         final->t9 = 1;
6569
6570         /*
6571          * HW has only a 100msec granularity for t11_t12 so round it up
6572          * accordingly.
6573          */
6574         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6575 }
6576
6577 static void
6578 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6579                                               bool force_disable_vdd)
6580 {
6581         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6582         u32 pp_on, pp_off, port_sel = 0;
6583         int div = dev_priv->rawclk_freq / 1000;
6584         struct pps_registers regs;
6585         enum port port = dp_to_dig_port(intel_dp)->base.port;
6586         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6587
6588         lockdep_assert_held(&dev_priv->pps_mutex);
6589
6590         intel_pps_get_registers(intel_dp, &regs);
6591
6592         /*
6593          * On some VLV machines the BIOS can leave the VDD
6594          * enabled even on power sequencers which aren't
6595          * hooked up to any port. This would mess up the
6596          * power domain tracking the first time we pick
6597          * one of these power sequencers for use since
6598          * edp_panel_vdd_on() would notice that the VDD was
6599          * already on and therefore wouldn't grab the power
6600          * domain reference. Disable VDD first to avoid this.
6601          * This also avoids spuriously turning the VDD on as
6602          * soon as the new power sequencer gets initialized.
6603          */
6604         if (force_disable_vdd) {
6605                 u32 pp = ironlake_get_pp_control(intel_dp);
6606
6607                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6608
6609                 if (pp & EDP_FORCE_VDD)
6610                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6611
6612                 pp &= ~EDP_FORCE_VDD;
6613
6614                 I915_WRITE(regs.pp_ctrl, pp);
6615         }
6616
6617         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6618                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6619         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6620                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6621
6622         /* Haswell doesn't have any port selection bits for the panel
6623          * power sequencer any more. */
6624         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6625                 port_sel = PANEL_PORT_SELECT_VLV(port);
6626         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6627                 switch (port) {
6628                 case PORT_A:
6629                         port_sel = PANEL_PORT_SELECT_DPA;
6630                         break;
6631                 case PORT_C:
6632                         port_sel = PANEL_PORT_SELECT_DPC;
6633                         break;
6634                 case PORT_D:
6635                         port_sel = PANEL_PORT_SELECT_DPD;
6636                         break;
6637                 default:
6638                         MISSING_CASE(port);
6639                         break;
6640                 }
6641         }
6642
6643         pp_on |= port_sel;
6644
6645         I915_WRITE(regs.pp_on, pp_on);
6646         I915_WRITE(regs.pp_off, pp_off);
6647
6648         /*
6649          * Compute the divisor for the pp clock, simply match the Bspec formula.
6650          */
6651         if (i915_mmio_reg_valid(regs.pp_div)) {
6652                 I915_WRITE(regs.pp_div,
6653                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6654                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6655         } else {
6656                 u32 pp_ctl;
6657
6658                 pp_ctl = I915_READ(regs.pp_ctrl);
6659                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6660                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6661                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6662         }
6663
6664         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6665                       I915_READ(regs.pp_on),
6666                       I915_READ(regs.pp_off),
6667                       i915_mmio_reg_valid(regs.pp_div) ?
6668                       I915_READ(regs.pp_div) :
6669                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6670 }
6671
6672 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6673 {
6674         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6675
6676         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6677                 vlv_initial_power_sequencer_setup(intel_dp);
6678         } else {
6679                 intel_dp_init_panel_power_sequencer(intel_dp);
6680                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6681         }
6682 }
6683
6684 /**
6685  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6686  * @dev_priv: i915 device
6687  * @crtc_state: a pointer to the active intel_crtc_state
6688  * @refresh_rate: RR to be programmed
6689  *
6690  * This function gets called when refresh rate (RR) has to be changed from
6691  * one frequency to another. Switches can be between high and low RR
6692  * supported by the panel or to any other RR based on media playback (in
6693  * this case, RR value needs to be passed from user space).
6694  *
6695  * The caller of this function needs to take a lock on dev_priv->drrs.
6696  */
6697 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6698                                     const struct intel_crtc_state *crtc_state,
6699                                     int refresh_rate)
6700 {
6701         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6702         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
6703         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6704
6705         if (refresh_rate <= 0) {
6706                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6707                 return;
6708         }
6709
6710         if (intel_dp == NULL) {
6711                 DRM_DEBUG_KMS("DRRS not supported.\n");
6712                 return;
6713         }
6714
6715         if (!intel_crtc) {
6716                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6717                 return;
6718         }
6719
6720         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6721                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6722                 return;
6723         }
6724
6725         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6726                         refresh_rate)
6727                 index = DRRS_LOW_RR;
6728
6729         if (index == dev_priv->drrs.refresh_rate_type) {
6730                 DRM_DEBUG_KMS(
6731                         "DRRS requested for previously set RR...ignoring\n");
6732                 return;
6733         }
6734
6735         if (!crtc_state->base.active) {
6736                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6737                 return;
6738         }
6739
6740         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6741                 switch (index) {
6742                 case DRRS_HIGH_RR:
6743                         intel_dp_set_m_n(crtc_state, M1_N1);
6744                         break;
6745                 case DRRS_LOW_RR:
6746                         intel_dp_set_m_n(crtc_state, M2_N2);
6747                         break;
6748                 case DRRS_MAX_RR:
6749                 default:
6750                         DRM_ERROR("Unsupported refreshrate type\n");
6751                 }
6752         } else if (INTEL_GEN(dev_priv) > 6) {
6753                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6754                 u32 val;
6755
6756                 val = I915_READ(reg);
6757                 if (index > DRRS_HIGH_RR) {
6758                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6759                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6760                         else
6761                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6762                 } else {
6763                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6764                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6765                         else
6766                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6767                 }
6768                 I915_WRITE(reg, val);
6769         }
6770
6771         dev_priv->drrs.refresh_rate_type = index;
6772
6773         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6774 }
6775
6776 /**
6777  * intel_edp_drrs_enable - init drrs struct if supported
6778  * @intel_dp: DP struct
6779  * @crtc_state: A pointer to the active crtc state.
6780  *
6781  * Initializes frontbuffer_bits and drrs.dp
6782  */
6783 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
6784                            const struct intel_crtc_state *crtc_state)
6785 {
6786         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6787
6788         if (!crtc_state->has_drrs) {
6789                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
6790                 return;
6791         }
6792
6793         if (dev_priv->psr.enabled) {
6794                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
6795                 return;
6796         }
6797
6798         mutex_lock(&dev_priv->drrs.mutex);
6799         if (dev_priv->drrs.dp) {
6800                 DRM_DEBUG_KMS("DRRS already enabled\n");
6801                 goto unlock;
6802         }
6803
6804         dev_priv->drrs.busy_frontbuffer_bits = 0;
6805
6806         dev_priv->drrs.dp = intel_dp;
6807
6808 unlock:
6809         mutex_unlock(&dev_priv->drrs.mutex);
6810 }
6811
6812 /**
6813  * intel_edp_drrs_disable - Disable DRRS
6814  * @intel_dp: DP struct
6815  * @old_crtc_state: Pointer to old crtc_state.
6816  *
6817  */
6818 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
6819                             const struct intel_crtc_state *old_crtc_state)
6820 {
6821         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6822
6823         if (!old_crtc_state->has_drrs)
6824                 return;
6825
6826         mutex_lock(&dev_priv->drrs.mutex);
6827         if (!dev_priv->drrs.dp) {
6828                 mutex_unlock(&dev_priv->drrs.mutex);
6829                 return;
6830         }
6831
6832         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6833                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
6834                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
6835
6836         dev_priv->drrs.dp = NULL;
6837         mutex_unlock(&dev_priv->drrs.mutex);
6838
6839         cancel_delayed_work_sync(&dev_priv->drrs.work);
6840 }
6841
6842 static void intel_edp_drrs_downclock_work(struct work_struct *work)
6843 {
6844         struct drm_i915_private *dev_priv =
6845                 container_of(work, typeof(*dev_priv), drrs.work.work);
6846         struct intel_dp *intel_dp;
6847
6848         mutex_lock(&dev_priv->drrs.mutex);
6849
6850         intel_dp = dev_priv->drrs.dp;
6851
6852         if (!intel_dp)
6853                 goto unlock;
6854
6855         /*
6856          * The delayed work can race with an invalidate hence we need to
6857          * recheck.
6858          */
6859
6860         if (dev_priv->drrs.busy_frontbuffer_bits)
6861                 goto unlock;
6862
6863         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
6864                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
6865
6866                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6867                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
6868         }
6869
6870 unlock:
6871         mutex_unlock(&dev_priv->drrs.mutex);
6872 }
6873
6874 /**
6875  * intel_edp_drrs_invalidate - Disable Idleness DRRS
6876  * @dev_priv: i915 device
6877  * @frontbuffer_bits: frontbuffer plane tracking bits
6878  *
6879  * This function gets called everytime rendering on the given planes start.
6880  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
6881  *
6882  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6883  */
6884 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
6885                                unsigned int frontbuffer_bits)
6886 {
6887         struct drm_crtc *crtc;
6888         enum pipe pipe;
6889
6890         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6891                 return;
6892
6893         cancel_delayed_work(&dev_priv->drrs.work);
6894
6895         mutex_lock(&dev_priv->drrs.mutex);
6896         if (!dev_priv->drrs.dp) {
6897                 mutex_unlock(&dev_priv->drrs.mutex);
6898                 return;
6899         }
6900
6901         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6902         pipe = to_intel_crtc(crtc)->pipe;
6903
6904         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6905         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
6906
6907         /* invalidate means busy screen hence upclock */
6908         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6909                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6910                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6911
6912         mutex_unlock(&dev_priv->drrs.mutex);
6913 }
6914
6915 /**
6916  * intel_edp_drrs_flush - Restart Idleness DRRS
6917  * @dev_priv: i915 device
6918  * @frontbuffer_bits: frontbuffer plane tracking bits
6919  *
6920  * This function gets called every time rendering on the given planes has
6921  * completed or flip on a crtc is completed. So DRRS should be upclocked
6922  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
6923  * if no other planes are dirty.
6924  *
6925  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
6926  */
6927 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
6928                           unsigned int frontbuffer_bits)
6929 {
6930         struct drm_crtc *crtc;
6931         enum pipe pipe;
6932
6933         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
6934                 return;
6935
6936         cancel_delayed_work(&dev_priv->drrs.work);
6937
6938         mutex_lock(&dev_priv->drrs.mutex);
6939         if (!dev_priv->drrs.dp) {
6940                 mutex_unlock(&dev_priv->drrs.mutex);
6941                 return;
6942         }
6943
6944         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
6945         pipe = to_intel_crtc(crtc)->pipe;
6946
6947         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
6948         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
6949
6950         /* flush means busy screen hence upclock */
6951         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
6952                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
6953                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
6954
6955         /*
6956          * flush also means no more activity hence schedule downclock, if all
6957          * other fbs are quiescent too
6958          */
6959         if (!dev_priv->drrs.busy_frontbuffer_bits)
6960                 schedule_delayed_work(&dev_priv->drrs.work,
6961                                 msecs_to_jiffies(1000));
6962         mutex_unlock(&dev_priv->drrs.mutex);
6963 }
6964
6965 /**
6966  * DOC: Display Refresh Rate Switching (DRRS)
6967  *
6968  * Display Refresh Rate Switching (DRRS) is a power conservation feature
6969  * which enables swtching between low and high refresh rates,
6970  * dynamically, based on the usage scenario. This feature is applicable
6971  * for internal panels.
6972  *
6973  * Indication that the panel supports DRRS is given by the panel EDID, which
6974  * would list multiple refresh rates for one resolution.
6975  *
6976  * DRRS is of 2 types - static and seamless.
6977  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
6978  * (may appear as a blink on screen) and is used in dock-undock scenario.
6979  * Seamless DRRS involves changing RR without any visual effect to the user
6980  * and can be used during normal system usage. This is done by programming
6981  * certain registers.
6982  *
6983  * Support for static/seamless DRRS may be indicated in the VBT based on
6984  * inputs from the panel spec.
6985  *
6986  * DRRS saves power by switching to low RR based on usage scenarios.
6987  *
6988  * The implementation is based on frontbuffer tracking implementation.  When
6989  * there is a disturbance on the screen triggered by user activity or a periodic
6990  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
6991  * no movement on screen, after a timeout of 1 second, a switch to low RR is
6992  * made.
6993  *
6994  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
6995  * and intel_edp_drrs_flush() are called.
6996  *
6997  * DRRS can be further extended to support other internal panels and also
6998  * the scenario of video playback wherein RR is set based on the rate
6999  * requested by userspace.
7000  */
7001
7002 /**
7003  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7004  * @connector: eDP connector
7005  * @fixed_mode: preferred mode of panel
7006  *
7007  * This function is  called only once at driver load to initialize basic
7008  * DRRS stuff.
7009  *
7010  * Returns:
7011  * Downclock mode if panel supports it, else return NULL.
7012  * DRRS support is determined by the presence of downclock mode (apart
7013  * from VBT setting).
7014  */
7015 static struct drm_display_mode *
7016 intel_dp_drrs_init(struct intel_connector *connector,
7017                    struct drm_display_mode *fixed_mode)
7018 {
7019         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7020         struct drm_display_mode *downclock_mode = NULL;
7021
7022         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7023         mutex_init(&dev_priv->drrs.mutex);
7024
7025         if (INTEL_GEN(dev_priv) <= 6) {
7026                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7027                 return NULL;
7028         }
7029
7030         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7031                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7032                 return NULL;
7033         }
7034
7035         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7036         if (!downclock_mode) {
7037                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7038                 return NULL;
7039         }
7040
7041         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7042
7043         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7044         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7045         return downclock_mode;
7046 }
7047
7048 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7049                                      struct intel_connector *intel_connector)
7050 {
7051         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7052         struct drm_device *dev = &dev_priv->drm;
7053         struct drm_connector *connector = &intel_connector->base;
7054         struct drm_display_mode *fixed_mode = NULL;
7055         struct drm_display_mode *downclock_mode = NULL;
7056         bool has_dpcd;
7057         enum pipe pipe = INVALID_PIPE;
7058         intel_wakeref_t wakeref;
7059         struct edid *edid;
7060
7061         if (!intel_dp_is_edp(intel_dp))
7062                 return true;
7063
7064         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7065
7066         /*
7067          * On IBX/CPT we may get here with LVDS already registered. Since the
7068          * driver uses the only internal power sequencer available for both
7069          * eDP and LVDS bail out early in this case to prevent interfering
7070          * with an already powered-on LVDS power sequencer.
7071          */
7072         if (intel_get_lvds_encoder(dev_priv)) {
7073                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7074                 DRM_INFO("LVDS was detected, not registering eDP\n");
7075
7076                 return false;
7077         }
7078
7079         with_pps_lock(intel_dp, wakeref) {
7080                 intel_dp_init_panel_power_timestamps(intel_dp);
7081                 intel_dp_pps_init(intel_dp);
7082                 intel_edp_panel_vdd_sanitize(intel_dp);
7083         }
7084
7085         /* Cache DPCD and EDID for edp. */
7086         has_dpcd = intel_edp_init_dpcd(intel_dp);
7087
7088         if (!has_dpcd) {
7089                 /* if this fails, presume the device is a ghost */
7090                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7091                 goto out_vdd_off;
7092         }
7093
7094         mutex_lock(&dev->mode_config.mutex);
7095         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7096         if (edid) {
7097                 if (drm_add_edid_modes(connector, edid)) {
7098                         drm_connector_update_edid_property(connector,
7099                                                                 edid);
7100                 } else {
7101                         kfree(edid);
7102                         edid = ERR_PTR(-EINVAL);
7103                 }
7104         } else {
7105                 edid = ERR_PTR(-ENOENT);
7106         }
7107         intel_connector->edid = edid;
7108
7109         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7110         if (fixed_mode)
7111                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7112
7113         /* fallback to VBT if available for eDP */
7114         if (!fixed_mode)
7115                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7116         mutex_unlock(&dev->mode_config.mutex);
7117
7118         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7119                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7120                 register_reboot_notifier(&intel_dp->edp_notifier);
7121
7122                 /*
7123                  * Figure out the current pipe for the initial backlight setup.
7124                  * If the current pipe isn't valid, try the PPS pipe, and if that
7125                  * fails just assume pipe A.
7126                  */
7127                 pipe = vlv_active_pipe(intel_dp);
7128
7129                 if (pipe != PIPE_A && pipe != PIPE_B)
7130                         pipe = intel_dp->pps_pipe;
7131
7132                 if (pipe != PIPE_A && pipe != PIPE_B)
7133                         pipe = PIPE_A;
7134
7135                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7136                               pipe_name(pipe));
7137         }
7138
7139         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7140         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7141         intel_panel_setup_backlight(connector, pipe);
7142
7143         if (fixed_mode)
7144                 drm_connector_init_panel_orientation_property(
7145                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7146
7147         return true;
7148
7149 out_vdd_off:
7150         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7151         /*
7152          * vdd might still be enabled do to the delayed vdd off.
7153          * Make sure vdd is actually turned off here.
7154          */
7155         with_pps_lock(intel_dp, wakeref)
7156                 edp_panel_vdd_off_sync(intel_dp);
7157
7158         return false;
7159 }
7160
7161 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7162 {
7163         struct intel_connector *intel_connector;
7164         struct drm_connector *connector;
7165
7166         intel_connector = container_of(work, typeof(*intel_connector),
7167                                        modeset_retry_work);
7168         connector = &intel_connector->base;
7169         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7170                       connector->name);
7171
7172         /* Grab the locks before changing connector property*/
7173         mutex_lock(&connector->dev->mode_config.mutex);
7174         /* Set connector link status to BAD and send a Uevent to notify
7175          * userspace to do a modeset.
7176          */
7177         drm_connector_set_link_status_property(connector,
7178                                                DRM_MODE_LINK_STATUS_BAD);
7179         mutex_unlock(&connector->dev->mode_config.mutex);
7180         /* Send Hotplug uevent so userspace can reprobe */
7181         drm_kms_helper_hotplug_event(connector->dev);
7182 }
7183
7184 bool
7185 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7186                         struct intel_connector *intel_connector)
7187 {
7188         struct drm_connector *connector = &intel_connector->base;
7189         struct intel_dp *intel_dp = &intel_dig_port->dp;
7190         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7191         struct drm_device *dev = intel_encoder->base.dev;
7192         struct drm_i915_private *dev_priv = to_i915(dev);
7193         enum port port = intel_encoder->port;
7194         enum phy phy = intel_port_to_phy(dev_priv, port);
7195         int type;
7196
7197         /* Initialize the work for modeset in case of link train failure */
7198         INIT_WORK(&intel_connector->modeset_retry_work,
7199                   intel_dp_modeset_retry_work_fn);
7200
7201         if (WARN(intel_dig_port->max_lanes < 1,
7202                  "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7203                  intel_dig_port->max_lanes, intel_encoder->base.base.id,
7204                  intel_encoder->base.name))
7205                 return false;
7206
7207         intel_dp_set_source_rates(intel_dp);
7208
7209         intel_dp->reset_link_params = true;
7210         intel_dp->pps_pipe = INVALID_PIPE;
7211         intel_dp->active_pipe = INVALID_PIPE;
7212
7213         /* Preserve the current hw state. */
7214         intel_dp->DP = I915_READ(intel_dp->output_reg);
7215         intel_dp->attached_connector = intel_connector;
7216
7217         if (intel_dp_is_port_edp(dev_priv, port)) {
7218                 /*
7219                  * Currently we don't support eDP on TypeC ports, although in
7220                  * theory it could work on TypeC legacy ports.
7221                  */
7222                 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7223                 type = DRM_MODE_CONNECTOR_eDP;
7224         } else {
7225                 type = DRM_MODE_CONNECTOR_DisplayPort;
7226         }
7227
7228         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7229                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7230
7231         /*
7232          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7233          * for DP the encoder type can be set by the caller to
7234          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7235          */
7236         if (type == DRM_MODE_CONNECTOR_eDP)
7237                 intel_encoder->type = INTEL_OUTPUT_EDP;
7238
7239         /* eDP only on port B and/or C on vlv/chv */
7240         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7241                     intel_dp_is_edp(intel_dp) &&
7242                     port != PORT_B && port != PORT_C))
7243                 return false;
7244
7245         DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7246                       type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7247                       intel_encoder->base.base.id, intel_encoder->base.name);
7248
7249         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7250         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7251
7252         if (!HAS_GMCH(dev_priv))
7253                 connector->interlace_allowed = true;
7254         connector->doublescan_allowed = 0;
7255
7256         if (INTEL_GEN(dev_priv) >= 11)
7257                 connector->ycbcr_420_allowed = true;
7258
7259         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7260
7261         intel_dp_aux_init(intel_dp);
7262
7263         intel_connector_attach_encoder(intel_connector, intel_encoder);
7264
7265         if (HAS_DDI(dev_priv))
7266                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7267         else
7268                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7269
7270         /* init MST on ports that can support it */
7271         if (HAS_DP_MST(dev_priv) && !intel_dp_is_edp(intel_dp) &&
7272             (port == PORT_B || port == PORT_C ||
7273              port == PORT_D || port == PORT_F))
7274                 intel_dp_mst_encoder_init(intel_dig_port,
7275                                           intel_connector->base.base.id);
7276
7277         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7278                 intel_dp_aux_fini(intel_dp);
7279                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7280                 goto fail;
7281         }
7282
7283         intel_dp_add_properties(intel_dp, connector);
7284
7285         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7286                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7287                 if (ret)
7288                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7289         }
7290
7291         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7292          * 0xd.  Failure to do so will result in spurious interrupts being
7293          * generated on the port when a cable is not attached.
7294          */
7295         if (IS_G45(dev_priv)) {
7296                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7297                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7298         }
7299
7300         return true;
7301
7302 fail:
7303         drm_connector_cleanup(connector);
7304
7305         return false;
7306 }
7307
7308 bool intel_dp_init(struct drm_i915_private *dev_priv,
7309                    i915_reg_t output_reg,
7310                    enum port port)
7311 {
7312         struct intel_digital_port *intel_dig_port;
7313         struct intel_encoder *intel_encoder;
7314         struct drm_encoder *encoder;
7315         struct intel_connector *intel_connector;
7316
7317         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7318         if (!intel_dig_port)
7319                 return false;
7320
7321         intel_connector = intel_connector_alloc();
7322         if (!intel_connector)
7323                 goto err_connector_alloc;
7324
7325         intel_encoder = &intel_dig_port->base;
7326         encoder = &intel_encoder->base;
7327
7328         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7329                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7330                              "DP %c", port_name(port)))
7331                 goto err_encoder_init;
7332
7333         intel_encoder->hotplug = intel_dp_hotplug;
7334         intel_encoder->compute_config = intel_dp_compute_config;
7335         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7336         intel_encoder->get_config = intel_dp_get_config;
7337         intel_encoder->update_pipe = intel_panel_update_backlight;
7338         intel_encoder->suspend = intel_dp_encoder_suspend;
7339         if (IS_CHERRYVIEW(dev_priv)) {
7340                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7341                 intel_encoder->pre_enable = chv_pre_enable_dp;
7342                 intel_encoder->enable = vlv_enable_dp;
7343                 intel_encoder->disable = vlv_disable_dp;
7344                 intel_encoder->post_disable = chv_post_disable_dp;
7345                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7346         } else if (IS_VALLEYVIEW(dev_priv)) {
7347                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7348                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7349                 intel_encoder->enable = vlv_enable_dp;
7350                 intel_encoder->disable = vlv_disable_dp;
7351                 intel_encoder->post_disable = vlv_post_disable_dp;
7352         } else {
7353                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7354                 intel_encoder->enable = g4x_enable_dp;
7355                 intel_encoder->disable = g4x_disable_dp;
7356                 intel_encoder->post_disable = g4x_post_disable_dp;
7357         }
7358
7359         intel_dig_port->dp.output_reg = output_reg;
7360         intel_dig_port->max_lanes = 4;
7361
7362         intel_encoder->type = INTEL_OUTPUT_DP;
7363         intel_encoder->power_domain = intel_port_to_power_domain(port);
7364         if (IS_CHERRYVIEW(dev_priv)) {
7365                 if (port == PORT_D)
7366                         intel_encoder->crtc_mask = BIT(PIPE_C);
7367                 else
7368                         intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B);
7369         } else {
7370                 intel_encoder->crtc_mask = BIT(PIPE_A) | BIT(PIPE_B) | BIT(PIPE_C);
7371         }
7372         intel_encoder->cloneable = 0;
7373         intel_encoder->port = port;
7374
7375         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7376
7377         if (port != PORT_A)
7378                 intel_infoframe_init(intel_dig_port);
7379
7380         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7381         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7382                 goto err_init_connector;
7383
7384         return true;
7385
7386 err_init_connector:
7387         drm_encoder_cleanup(encoder);
7388 err_encoder_init:
7389         kfree(intel_connector);
7390 err_connector_alloc:
7391         kfree(intel_dig_port);
7392         return false;
7393 }
7394
7395 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7396 {
7397         struct intel_encoder *encoder;
7398
7399         for_each_intel_encoder(&dev_priv->drm, encoder) {
7400                 struct intel_dp *intel_dp;
7401
7402                 if (encoder->type != INTEL_OUTPUT_DDI)
7403                         continue;
7404
7405                 intel_dp = enc_to_intel_dp(&encoder->base);
7406
7407                 if (!intel_dp->can_mst)
7408                         continue;
7409
7410                 if (intel_dp->is_mst)
7411                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7412         }
7413 }
7414
7415 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7416 {
7417         struct intel_encoder *encoder;
7418
7419         for_each_intel_encoder(&dev_priv->drm, encoder) {
7420                 struct intel_dp *intel_dp;
7421                 int ret;
7422
7423                 if (encoder->type != INTEL_OUTPUT_DDI)
7424                         continue;
7425
7426                 intel_dp = enc_to_intel_dp(&encoder->base);
7427
7428                 if (!intel_dp->can_mst)
7429                         continue;
7430
7431                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr);
7432                 if (ret) {
7433                         intel_dp->is_mst = false;
7434                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7435                                                         false);
7436                 }
7437         }
7438 }