Merge tag 'gvt-next-2020-05-12' of https://github.com/intel/gvt-linux into drm-intel...
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67
68 #define DP_DPRX_ESI_LEN 14
69
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
74
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
77
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
80 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83
84 struct dp_link_dpll {
85         int clock;
86         struct dpll dpll;
87 };
88
89 static const struct dp_link_dpll g4x_dpll[] = {
90         { 162000,
91                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92         { 270000,
93                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95
96 static const struct dp_link_dpll pch_dpll[] = {
97         { 162000,
98                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99         { 270000,
100                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102
103 static const struct dp_link_dpll vlv_dpll[] = {
104         { 162000,
105                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106         { 270000,
107                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115         /*
116          * CHV requires to program fractional division for m2.
117          * m2 is stored in fixed point format using formula below
118          * (m2_int << 22) | m2_fraction
119          */
120         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
121                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122         { 270000,       /* m2_int = 27, m2_fraction = 0 */
123                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144
145         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149                                const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153                                            const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155                                       enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161         static const int dp_rates[] = {
162                 162000, 270000, 540000, 810000
163         };
164         int i, max_rate;
165
166         if (drm_dp_has_quirk(&intel_dp->desc, 0,
167                              DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168                 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169                 static const int quirk_rates[] = { 162000, 270000, 324000 };
170
171                 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172                 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173
174                 return;
175         }
176
177         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178
179         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180                 if (dp_rates[i] > max_rate)
181                         break;
182                 intel_dp->sink_rates[i] = dp_rates[i];
183         }
184
185         intel_dp->num_sink_rates = i;
186 }
187
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191         int i;
192
193         /* Limit results by potentially reduced max rate */
194         for (i = 0; i < len; i++) {
195                 if (rates[len - i - 1] <= max_rate)
196                         return len - i;
197         }
198
199         return 0;
200 }
201
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204                                           int max_rate)
205 {
206         return intel_dp_rate_limit_len(intel_dp->common_rates,
207                                        intel_dp->num_common_rates, max_rate);
208 }
209
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220         int source_max = intel_dig_port->max_lanes;
221         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223
224         return min3(source_max, sink_max, fia_max);
225 }
226
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229         return intel_dp->max_link_lane_count;
230 }
231
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236         return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243          * link rate that is generally expressed in Gbps. Since, 8 bits of data
244          * is transmitted every LS_Clk per lane, there is no need to account for
245          * the channel encoding that is done in the PHY layer here.
246          */
247
248         return max_link_clock * max_lanes;
249 }
250
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255         struct intel_encoder *encoder = &intel_dig_port->base;
256         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257         int max_dotclk = dev_priv->max_dotclk_freq;
258         int ds_max_dotclk;
259
260         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261
262         if (type != DP_DS_PORT_TYPE_VGA)
263                 return max_dotclk;
264
265         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266                                                     intel_dp->downstream_ports);
267
268         if (ds_max_dotclk != 0)
269                 max_dotclk = min(max_dotclk, ds_max_dotclk);
270
271         return max_dotclk;
272 }
273
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278         enum port port = dig_port->base.port;
279
280         u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281
282         /* Low voltage SKUs are limited to max of 5.4G */
283         if (voltage == VOLTAGE_INFO_0_85V)
284                 return 540000;
285
286         /* For this SKU 8.1G is supported in all ports */
287         if (IS_CNL_WITH_PORT_F(dev_priv))
288                 return 810000;
289
290         /* For other SKUs, max rate on ports A and D is 5.4G */
291         if (port == PORT_A || port == PORT_D)
292                 return 540000;
293
294         return 810000;
295 }
296
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302
303         if (intel_phy_is_combo(dev_priv, phy) &&
304             !IS_ELKHARTLAKE(dev_priv) &&
305             !intel_dp_is_edp(intel_dp))
306                 return 540000;
307
308         return 810000;
309 }
310
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314         /* The values must be in increasing order */
315         static const int cnl_rates[] = {
316                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317         };
318         static const int bxt_rates[] = {
319                 162000, 216000, 243000, 270000, 324000, 432000, 540000
320         };
321         static const int skl_rates[] = {
322                 162000, 216000, 270000, 324000, 432000, 540000
323         };
324         static const int hsw_rates[] = {
325                 162000, 270000, 540000
326         };
327         static const int g4x_rates[] = {
328                 162000, 270000
329         };
330         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331         struct intel_encoder *encoder = &dig_port->base;
332         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333         const int *source_rates;
334         int size, max_rate = 0, vbt_max_rate;
335
336         /* This should only be done once */
337         drm_WARN_ON(&dev_priv->drm,
338                     intel_dp->source_rates || intel_dp->num_source_rates);
339
340         if (INTEL_GEN(dev_priv) >= 10) {
341                 source_rates = cnl_rates;
342                 size = ARRAY_SIZE(cnl_rates);
343                 if (IS_GEN(dev_priv, 10))
344                         max_rate = cnl_max_source_rate(intel_dp);
345                 else
346                         max_rate = icl_max_source_rate(intel_dp);
347         } else if (IS_GEN9_LP(dev_priv)) {
348                 source_rates = bxt_rates;
349                 size = ARRAY_SIZE(bxt_rates);
350         } else if (IS_GEN9_BC(dev_priv)) {
351                 source_rates = skl_rates;
352                 size = ARRAY_SIZE(skl_rates);
353         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354                    IS_BROADWELL(dev_priv)) {
355                 source_rates = hsw_rates;
356                 size = ARRAY_SIZE(hsw_rates);
357         } else {
358                 source_rates = g4x_rates;
359                 size = ARRAY_SIZE(g4x_rates);
360         }
361
362         vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363         if (max_rate && vbt_max_rate)
364                 max_rate = min(max_rate, vbt_max_rate);
365         else if (vbt_max_rate)
366                 max_rate = vbt_max_rate;
367
368         if (max_rate)
369                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370
371         intel_dp->source_rates = source_rates;
372         intel_dp->num_source_rates = size;
373 }
374
375 static int intersect_rates(const int *source_rates, int source_len,
376                            const int *sink_rates, int sink_len,
377                            int *common_rates)
378 {
379         int i = 0, j = 0, k = 0;
380
381         while (i < source_len && j < sink_len) {
382                 if (source_rates[i] == sink_rates[j]) {
383                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384                                 return k;
385                         common_rates[k] = source_rates[i];
386                         ++k;
387                         ++i;
388                         ++j;
389                 } else if (source_rates[i] < sink_rates[j]) {
390                         ++i;
391                 } else {
392                         ++j;
393                 }
394         }
395         return k;
396 }
397
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401         int i;
402
403         for (i = 0; i < len; i++)
404                 if (rate == rates[i])
405                         return i;
406
407         return -1;
408 }
409
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413
414         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
415                                                      intel_dp->num_source_rates,
416                                                      intel_dp->sink_rates,
417                                                      intel_dp->num_sink_rates,
418                                                      intel_dp->common_rates);
419
420         /* Paranoia, there should always be something in common. */
421         if (WARN_ON(intel_dp->num_common_rates == 0)) {
422                 intel_dp->common_rates[0] = 162000;
423                 intel_dp->num_common_rates = 1;
424         }
425 }
426
427 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428                                        u8 lane_count)
429 {
430         /*
431          * FIXME: we need to synchronize the current link parameters with
432          * hardware readout. Currently fast link training doesn't work on
433          * boot-up.
434          */
435         if (link_rate == 0 ||
436             link_rate > intel_dp->max_link_rate)
437                 return false;
438
439         if (lane_count == 0 ||
440             lane_count > intel_dp_max_lane_count(intel_dp))
441                 return false;
442
443         return true;
444 }
445
446 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
447                                                      int link_rate,
448                                                      u8 lane_count)
449 {
450         const struct drm_display_mode *fixed_mode =
451                 intel_dp->attached_connector->panel.fixed_mode;
452         int mode_rate, max_rate;
453
454         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
455         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
456         if (mode_rate > max_rate)
457                 return false;
458
459         return true;
460 }
461
462 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463                                             int link_rate, u8 lane_count)
464 {
465         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466         int index;
467
468         index = intel_dp_rate_index(intel_dp->common_rates,
469                                     intel_dp->num_common_rates,
470                                     link_rate);
471         if (index > 0) {
472                 if (intel_dp_is_edp(intel_dp) &&
473                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474                                                               intel_dp->common_rates[index - 1],
475                                                               lane_count)) {
476                         drm_dbg_kms(&i915->drm,
477                                     "Retrying Link training for eDP with same parameters\n");
478                         return 0;
479                 }
480                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
481                 intel_dp->max_link_lane_count = lane_count;
482         } else if (lane_count > 1) {
483                 if (intel_dp_is_edp(intel_dp) &&
484                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
485                                                               intel_dp_max_common_rate(intel_dp),
486                                                               lane_count >> 1)) {
487                         drm_dbg_kms(&i915->drm,
488                                     "Retrying Link training for eDP with same parameters\n");
489                         return 0;
490                 }
491                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492                 intel_dp->max_link_lane_count = lane_count >> 1;
493         } else {
494                 drm_err(&i915->drm, "Link Training Unsuccessful\n");
495                 return -1;
496         }
497
498         return 0;
499 }
500
501 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
502 {
503         return div_u64(mul_u32_u32(mode_clock, 1000000U),
504                        DP_DSC_FEC_OVERHEAD_FACTOR);
505 }
506
507 static int
508 small_joiner_ram_size_bits(struct drm_i915_private *i915)
509 {
510         if (INTEL_GEN(i915) >= 11)
511                 return 7680 * 8;
512         else
513                 return 6144 * 8;
514 }
515
516 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
517                                        u32 link_clock, u32 lane_count,
518                                        u32 mode_clock, u32 mode_hdisplay)
519 {
520         u32 bits_per_pixel, max_bpp_small_joiner_ram;
521         int i;
522
523         /*
524          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
525          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
526          * for SST -> TimeSlotsPerMTP is 1,
527          * for MST -> TimeSlotsPerMTP has to be calculated
528          */
529         bits_per_pixel = (link_clock * lane_count * 8) /
530                          intel_dp_mode_to_fec_clock(mode_clock);
531         drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532
533         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
535                 mode_hdisplay;
536         drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
537                     max_bpp_small_joiner_ram);
538
539         /*
540          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
541          * check, output bpp from small joiner RAM check)
542          */
543         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
544
545         /* Error out if the max bpp is less than smallest allowed valid bpp */
546         if (bits_per_pixel < valid_dsc_bpp[0]) {
547                 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
548                             bits_per_pixel, valid_dsc_bpp[0]);
549                 return 0;
550         }
551
552         /* Find the nearest match in the array of known BPPs from VESA */
553         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
554                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
555                         break;
556         }
557         bits_per_pixel = valid_dsc_bpp[i];
558
559         /*
560          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
561          * fractional part is 0
562          */
563         return bits_per_pixel << 4;
564 }
565
566 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
567                                        int mode_clock, int mode_hdisplay)
568 {
569         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570         u8 min_slice_count, i;
571         int max_slice_width;
572
573         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
574                 min_slice_count = DIV_ROUND_UP(mode_clock,
575                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
576         else
577                 min_slice_count = DIV_ROUND_UP(mode_clock,
578                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
579
580         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
581         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582                 drm_dbg_kms(&i915->drm,
583                             "Unsupported slice width %d by DP DSC Sink device\n",
584                             max_slice_width);
585                 return 0;
586         }
587         /* Also take into account max slice width */
588         min_slice_count = min_t(u8, min_slice_count,
589                                 DIV_ROUND_UP(mode_hdisplay,
590                                              max_slice_width));
591
592         /* Find the closest match to the valid slice count values */
593         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
594                 if (valid_dsc_slicecount[i] >
595                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
596                                                     false))
597                         break;
598                 if (min_slice_count  <= valid_dsc_slicecount[i])
599                         return valid_dsc_slicecount[i];
600         }
601
602         drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
603                     min_slice_count);
604         return 0;
605 }
606
607 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
608                                   int hdisplay)
609 {
610         /*
611          * Older platforms don't like hdisplay==4096 with DP.
612          *
613          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
614          * and frame counter increment), but we don't get vblank interrupts,
615          * and the pipe underruns immediately. The link also doesn't seem
616          * to get trained properly.
617          *
618          * On CHV the vblank interrupts don't seem to disappear but
619          * otherwise the symptoms are similar.
620          *
621          * TODO: confirm the behaviour on HSW+
622          */
623         return hdisplay == 4096 && !HAS_DDI(dev_priv);
624 }
625
626 static enum drm_mode_status
627 intel_dp_mode_valid(struct drm_connector *connector,
628                     struct drm_display_mode *mode)
629 {
630         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631         struct intel_connector *intel_connector = to_intel_connector(connector);
632         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633         struct drm_i915_private *dev_priv = to_i915(connector->dev);
634         int target_clock = mode->clock;
635         int max_rate, mode_rate, max_lanes, max_link_clock;
636         int max_dotclk;
637         u16 dsc_max_output_bpp = 0;
638         u8 dsc_slice_count = 0;
639
640         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
641                 return MODE_NO_DBLESCAN;
642
643         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644
645         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646                 if (mode->hdisplay > fixed_mode->hdisplay)
647                         return MODE_PANEL;
648
649                 if (mode->vdisplay > fixed_mode->vdisplay)
650                         return MODE_PANEL;
651
652                 target_clock = fixed_mode->clock;
653         }
654
655         max_link_clock = intel_dp_max_link_rate(intel_dp);
656         max_lanes = intel_dp_max_lane_count(intel_dp);
657
658         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
659         mode_rate = intel_dp_link_required(target_clock, 18);
660
661         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
662                 return MODE_H_ILLEGAL;
663
664         /*
665          * Output bpp is stored in 6.4 format so right shift by 4 to get the
666          * integer value since we support only integer values of bpp.
667          */
668         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
669             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
670                 if (intel_dp_is_edp(intel_dp)) {
671                         dsc_max_output_bpp =
672                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
673                         dsc_slice_count =
674                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
675                                                                 true);
676                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677                         dsc_max_output_bpp =
678                                 intel_dp_dsc_get_output_bpp(dev_priv,
679                                                             max_link_clock,
680                                                             max_lanes,
681                                                             target_clock,
682                                                             mode->hdisplay) >> 4;
683                         dsc_slice_count =
684                                 intel_dp_dsc_get_slice_count(intel_dp,
685                                                              target_clock,
686                                                              mode->hdisplay);
687                 }
688         }
689
690         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
691             target_clock > max_dotclk)
692                 return MODE_CLOCK_HIGH;
693
694         if (mode->clock < 10000)
695                 return MODE_CLOCK_LOW;
696
697         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
698                 return MODE_H_ILLEGAL;
699
700         return intel_mode_valid_max_plane_size(dev_priv, mode);
701 }
702
703 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704 {
705         int i;
706         u32 v = 0;
707
708         if (src_bytes > 4)
709                 src_bytes = 4;
710         for (i = 0; i < src_bytes; i++)
711                 v |= ((u32)src[i]) << ((3 - i) * 8);
712         return v;
713 }
714
715 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 {
717         int i;
718         if (dst_bytes > 4)
719                 dst_bytes = 4;
720         for (i = 0; i < dst_bytes; i++)
721                 dst[i] = src >> ((3-i) * 8);
722 }
723
724 static void
725 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726 static void
727 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728                                               bool force_disable_vdd);
729 static void
730 intel_dp_pps_init(struct intel_dp *intel_dp);
731
732 static intel_wakeref_t
733 pps_lock(struct intel_dp *intel_dp)
734 {
735         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736         intel_wakeref_t wakeref;
737
738         /*
739          * See intel_power_sequencer_reset() why we need
740          * a power domain reference here.
741          */
742         wakeref = intel_display_power_get(dev_priv,
743                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744
745         mutex_lock(&dev_priv->pps_mutex);
746
747         return wakeref;
748 }
749
750 static intel_wakeref_t
751 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752 {
753         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754
755         mutex_unlock(&dev_priv->pps_mutex);
756         intel_display_power_put(dev_priv,
757                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
758                                 wakeref);
759         return 0;
760 }
761
762 #define with_pps_lock(dp, wf) \
763         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
764
765 static void
766 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
767 {
768         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
770         enum pipe pipe = intel_dp->pps_pipe;
771         bool pll_enabled, release_cl_override = false;
772         enum dpio_phy phy = DPIO_PHY(pipe);
773         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774         u32 DP;
775
776         if (drm_WARN(&dev_priv->drm,
777                      intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
778                      "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
779                      pipe_name(pipe), intel_dig_port->base.base.base.id,
780                      intel_dig_port->base.base.name))
781                 return;
782
783         drm_dbg_kms(&dev_priv->drm,
784                     "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
785                     pipe_name(pipe), intel_dig_port->base.base.base.id,
786                     intel_dig_port->base.base.name);
787
788         /* Preserve the BIOS-computed detected bit. This is
789          * supposed to be read-only.
790          */
791         DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
793         DP |= DP_PORT_WIDTH(1);
794         DP |= DP_LINK_TRAIN_PAT_1;
795
796         if (IS_CHERRYVIEW(dev_priv))
797                 DP |= DP_PIPE_SEL_CHV(pipe);
798         else
799                 DP |= DP_PIPE_SEL(pipe);
800
801         pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802
803         /*
804          * The DPLL for the pipe must be enabled for this to work.
805          * So enable temporarily it if it's not already enabled.
806          */
807         if (!pll_enabled) {
808                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
810
811                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813                         drm_err(&dev_priv->drm,
814                                 "Failed to force on pll for pipe %c!\n",
815                                 pipe_name(pipe));
816                         return;
817                 }
818         }
819
820         /*
821          * Similar magic as in intel_dp_enable_port().
822          * We _must_ do this port enable + disable trick
823          * to make this power sequencer lock onto the port.
824          * Otherwise even VDD force bit won't work.
825          */
826         intel_de_write(dev_priv, intel_dp->output_reg, DP);
827         intel_de_posting_read(dev_priv, intel_dp->output_reg);
828
829         intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
830         intel_de_posting_read(dev_priv, intel_dp->output_reg);
831
832         intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
833         intel_de_posting_read(dev_priv, intel_dp->output_reg);
834
835         if (!pll_enabled) {
836                 vlv_force_pll_off(dev_priv, pipe);
837
838                 if (release_cl_override)
839                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
840         }
841 }
842
843 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
844 {
845         struct intel_encoder *encoder;
846         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
847
848         /*
849          * We don't have power sequencer currently.
850          * Pick one that's not used by other ports.
851          */
852         for_each_intel_dp(&dev_priv->drm, encoder) {
853                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854
855                 if (encoder->type == INTEL_OUTPUT_EDP) {
856                         drm_WARN_ON(&dev_priv->drm,
857                                     intel_dp->active_pipe != INVALID_PIPE &&
858                                     intel_dp->active_pipe !=
859                                     intel_dp->pps_pipe);
860
861                         if (intel_dp->pps_pipe != INVALID_PIPE)
862                                 pipes &= ~(1 << intel_dp->pps_pipe);
863                 } else {
864                         drm_WARN_ON(&dev_priv->drm,
865                                     intel_dp->pps_pipe != INVALID_PIPE);
866
867                         if (intel_dp->active_pipe != INVALID_PIPE)
868                                 pipes &= ~(1 << intel_dp->active_pipe);
869                 }
870         }
871
872         if (pipes == 0)
873                 return INVALID_PIPE;
874
875         return ffs(pipes) - 1;
876 }
877
878 static enum pipe
879 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
880 {
881         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883         enum pipe pipe;
884
885         lockdep_assert_held(&dev_priv->pps_mutex);
886
887         /* We should never land here with regular DP ports */
888         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889
890         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
891                     intel_dp->active_pipe != intel_dp->pps_pipe);
892
893         if (intel_dp->pps_pipe != INVALID_PIPE)
894                 return intel_dp->pps_pipe;
895
896         pipe = vlv_find_free_pps(dev_priv);
897
898         /*
899          * Didn't find one. This should not happen since there
900          * are two power sequencers and up to two eDP ports.
901          */
902         if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903                 pipe = PIPE_A;
904
905         vlv_steal_power_sequencer(dev_priv, pipe);
906         intel_dp->pps_pipe = pipe;
907
908         drm_dbg_kms(&dev_priv->drm,
909                     "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
910                     pipe_name(intel_dp->pps_pipe),
911                     intel_dig_port->base.base.base.id,
912                     intel_dig_port->base.base.name);
913
914         /* init power sequencer on this pipe and port */
915         intel_dp_init_panel_power_sequencer(intel_dp);
916         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917
918         /*
919          * Even vdd force doesn't work until we've made
920          * the power sequencer lock in on the port.
921          */
922         vlv_power_sequencer_kick(intel_dp);
923
924         return intel_dp->pps_pipe;
925 }
926
927 static int
928 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
929 {
930         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931         int backlight_controller = dev_priv->vbt.backlight.controller;
932
933         lockdep_assert_held(&dev_priv->pps_mutex);
934
935         /* We should never land here with regular DP ports */
936         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937
938         if (!intel_dp->pps_reset)
939                 return backlight_controller;
940
941         intel_dp->pps_reset = false;
942
943         /*
944          * Only the HW needs to be reprogrammed, the SW state is fixed and
945          * has been setup during connector init.
946          */
947         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948
949         return backlight_controller;
950 }
951
952 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
953                                enum pipe pipe);
954
955 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
956                                enum pipe pipe)
957 {
958         return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 }
960
961 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
962                                 enum pipe pipe)
963 {
964         return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 }
966
967 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
968                          enum pipe pipe)
969 {
970         return true;
971 }
972
973 static enum pipe
974 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
975                      enum port port,
976                      vlv_pipe_check pipe_check)
977 {
978         enum pipe pipe;
979
980         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981                 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982                         PANEL_PORT_SELECT_MASK;
983
984                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
985                         continue;
986
987                 if (!pipe_check(dev_priv, pipe))
988                         continue;
989
990                 return pipe;
991         }
992
993         return INVALID_PIPE;
994 }
995
996 static void
997 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
998 {
999         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001         enum port port = intel_dig_port->base.port;
1002
1003         lockdep_assert_held(&dev_priv->pps_mutex);
1004
1005         /* try to find a pipe with this port selected */
1006         /* first pick one where the panel is on */
1007         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1008                                                   vlv_pipe_has_pp_on);
1009         /* didn't find one? pick one where vdd is on */
1010         if (intel_dp->pps_pipe == INVALID_PIPE)
1011                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1012                                                           vlv_pipe_has_vdd_on);
1013         /* didn't find one? pick one with just the correct port */
1014         if (intel_dp->pps_pipe == INVALID_PIPE)
1015                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1016                                                           vlv_pipe_any);
1017
1018         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1019         if (intel_dp->pps_pipe == INVALID_PIPE) {
1020                 drm_dbg_kms(&dev_priv->drm,
1021                             "no initial power sequencer for [ENCODER:%d:%s]\n",
1022                             intel_dig_port->base.base.base.id,
1023                             intel_dig_port->base.base.name);
1024                 return;
1025         }
1026
1027         drm_dbg_kms(&dev_priv->drm,
1028                     "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1029                     intel_dig_port->base.base.base.id,
1030                     intel_dig_port->base.base.name,
1031                     pipe_name(intel_dp->pps_pipe));
1032
1033         intel_dp_init_panel_power_sequencer(intel_dp);
1034         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 }
1036
1037 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 {
1039         struct intel_encoder *encoder;
1040
1041         if (drm_WARN_ON(&dev_priv->drm,
1042                         !(IS_VALLEYVIEW(dev_priv) ||
1043                           IS_CHERRYVIEW(dev_priv) ||
1044                           IS_GEN9_LP(dev_priv))))
1045                 return;
1046
1047         /*
1048          * We can't grab pps_mutex here due to deadlock with power_domain
1049          * mutex when power_domain functions are called while holding pps_mutex.
1050          * That also means that in order to use pps_pipe the code needs to
1051          * hold both a power domain reference and pps_mutex, and the power domain
1052          * reference get/put must be done while _not_ holding pps_mutex.
1053          * pps_{lock,unlock}() do these steps in the correct order, so one
1054          * should use them always.
1055          */
1056
1057         for_each_intel_dp(&dev_priv->drm, encoder) {
1058                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059
1060                 drm_WARN_ON(&dev_priv->drm,
1061                             intel_dp->active_pipe != INVALID_PIPE);
1062
1063                 if (encoder->type != INTEL_OUTPUT_EDP)
1064                         continue;
1065
1066                 if (IS_GEN9_LP(dev_priv))
1067                         intel_dp->pps_reset = true;
1068                 else
1069                         intel_dp->pps_pipe = INVALID_PIPE;
1070         }
1071 }
1072
1073 struct pps_registers {
1074         i915_reg_t pp_ctrl;
1075         i915_reg_t pp_stat;
1076         i915_reg_t pp_on;
1077         i915_reg_t pp_off;
1078         i915_reg_t pp_div;
1079 };
1080
1081 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082                                     struct pps_registers *regs)
1083 {
1084         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085         int pps_idx = 0;
1086
1087         memset(regs, 0, sizeof(*regs));
1088
1089         if (IS_GEN9_LP(dev_priv))
1090                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1091         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1092                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093
1094         regs->pp_ctrl = PP_CONTROL(pps_idx);
1095         regs->pp_stat = PP_STATUS(pps_idx);
1096         regs->pp_on = PP_ON_DELAYS(pps_idx);
1097         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098
1099         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101                 regs->pp_div = INVALID_MMIO_REG;
1102         else
1103                 regs->pp_div = PP_DIVISOR(pps_idx);
1104 }
1105
1106 static i915_reg_t
1107 _pp_ctrl_reg(struct intel_dp *intel_dp)
1108 {
1109         struct pps_registers regs;
1110
1111         intel_pps_get_registers(intel_dp, &regs);
1112
1113         return regs.pp_ctrl;
1114 }
1115
1116 static i915_reg_t
1117 _pp_stat_reg(struct intel_dp *intel_dp)
1118 {
1119         struct pps_registers regs;
1120
1121         intel_pps_get_registers(intel_dp, &regs);
1122
1123         return regs.pp_stat;
1124 }
1125
1126 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1127    This function only applicable when panel PM state is not to be tracked */
1128 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1129                               void *unused)
1130 {
1131         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1132                                                  edp_notifier);
1133         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134         intel_wakeref_t wakeref;
1135
1136         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137                 return 0;
1138
1139         with_pps_lock(intel_dp, wakeref) {
1140                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1141                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1142                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1143                         u32 pp_div;
1144
1145                         pp_ctrl_reg = PP_CONTROL(pipe);
1146                         pp_div_reg  = PP_DIVISOR(pipe);
1147                         pp_div = intel_de_read(dev_priv, pp_div_reg);
1148                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1149
1150                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1151                         intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1152                         intel_de_write(dev_priv, pp_ctrl_reg,
1153                                        PANEL_UNLOCK_REGS);
1154                         msleep(intel_dp->panel_power_cycle_delay);
1155                 }
1156         }
1157
1158         return 0;
1159 }
1160
1161 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162 {
1163         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164
1165         lockdep_assert_held(&dev_priv->pps_mutex);
1166
1167         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168             intel_dp->pps_pipe == INVALID_PIPE)
1169                 return false;
1170
1171         return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 }
1173
1174 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175 {
1176         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177
1178         lockdep_assert_held(&dev_priv->pps_mutex);
1179
1180         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181             intel_dp->pps_pipe == INVALID_PIPE)
1182                 return false;
1183
1184         return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 }
1186
1187 static void
1188 intel_dp_check_edp(struct intel_dp *intel_dp)
1189 {
1190         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191
1192         if (!intel_dp_is_edp(intel_dp))
1193                 return;
1194
1195         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196                 drm_WARN(&dev_priv->drm, 1,
1197                          "eDP powered off while attempting aux channel communication.\n");
1198                 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199                             intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1200                             intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201         }
1202 }
1203
1204 static u32
1205 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206 {
1207         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209         const unsigned int timeout_ms = 10;
1210         u32 status;
1211         bool done;
1212
1213 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1214         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215                                   msecs_to_jiffies_timeout(timeout_ms));
1216
1217         /* just trace the final value */
1218         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1219
1220         if (!done)
1221                 drm_err(&i915->drm,
1222                         "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223                         intel_dp->aux.name, timeout_ms, status);
1224 #undef C
1225
1226         return status;
1227 }
1228
1229 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230 {
1231         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232
1233         if (index)
1234                 return 0;
1235
1236         /*
1237          * The clock divider is based off the hrawclk, and would like to run at
1238          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1239          */
1240         return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 }
1242
1243 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247         u32 freq;
1248
1249         if (index)
1250                 return 0;
1251
1252         /*
1253          * The clock divider is based off the cdclk or PCH rawclk, and would
1254          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1255          * divide by 2000 and use that
1256          */
1257         if (dig_port->aux_ch == AUX_CH_A)
1258                 freq = dev_priv->cdclk.hw.cdclk;
1259         else
1260                 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1261         return DIV_ROUND_CLOSEST(freq, 2000);
1262 }
1263
1264 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265 {
1266         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268
1269         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270                 /* Workaround for non-ULT HSW */
1271                 switch (index) {
1272                 case 0: return 63;
1273                 case 1: return 72;
1274                 default: return 0;
1275                 }
1276         }
1277
1278         return ilk_get_aux_clock_divider(intel_dp, index);
1279 }
1280
1281 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 {
1283         /*
1284          * SKL doesn't need us to program the AUX clock divider (Hardware will
1285          * derive the clock from CDCLK automatically). We still implement the
1286          * get_aux_clock_divider vfunc to plug-in into the existing code.
1287          */
1288         return index ? 0 : 1;
1289 }
1290
1291 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 aux_clock_divider)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *dev_priv =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         u32 precharge, timeout;
1299
1300         if (IS_GEN(dev_priv, 6))
1301                 precharge = 3;
1302         else
1303                 precharge = 5;
1304
1305         if (IS_BROADWELL(dev_priv))
1306                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1307         else
1308                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1309
1310         return DP_AUX_CH_CTL_SEND_BUSY |
1311                DP_AUX_CH_CTL_DONE |
1312                DP_AUX_CH_CTL_INTERRUPT |
1313                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314                timeout |
1315                DP_AUX_CH_CTL_RECEIVE_ERROR |
1316                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1317                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 }
1320
1321 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1322                                 int send_bytes,
1323                                 u32 unused)
1324 {
1325         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326         struct drm_i915_private *i915 =
1327                         to_i915(intel_dig_port->base.base.dev);
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         u32 ret;
1330
1331         ret = DP_AUX_CH_CTL_SEND_BUSY |
1332               DP_AUX_CH_CTL_DONE |
1333               DP_AUX_CH_CTL_INTERRUPT |
1334               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1335               DP_AUX_CH_CTL_TIME_OUT_MAX |
1336               DP_AUX_CH_CTL_RECEIVE_ERROR |
1337               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1338               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1339               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1340
1341         if (intel_phy_is_tc(i915, phy) &&
1342             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343                 ret |= DP_AUX_CH_CTL_TBT_IO;
1344
1345         return ret;
1346 }
1347
1348 static int
1349 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350                   const u8 *send, int send_bytes,
1351                   u8 *recv, int recv_size,
1352                   u32 aux_send_ctl_flags)
1353 {
1354         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355         struct drm_i915_private *i915 =
1356                         to_i915(intel_dig_port->base.base.dev);
1357         struct intel_uncore *uncore = &i915->uncore;
1358         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1359         bool is_tc_port = intel_phy_is_tc(i915, phy);
1360         i915_reg_t ch_ctl, ch_data[5];
1361         u32 aux_clock_divider;
1362         enum intel_display_power_domain aux_domain =
1363                 intel_aux_power_domain(intel_dig_port);
1364         intel_wakeref_t aux_wakeref;
1365         intel_wakeref_t pps_wakeref;
1366         int i, ret, recv_bytes;
1367         int try, clock = 0;
1368         u32 status;
1369         bool vdd;
1370
1371         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1372         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1373                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1374
1375         if (is_tc_port)
1376                 intel_tc_port_lock(intel_dig_port);
1377
1378         aux_wakeref = intel_display_power_get(i915, aux_domain);
1379         pps_wakeref = pps_lock(intel_dp);
1380
1381         /*
1382          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1383          * In such cases we want to leave VDD enabled and it's up to upper layers
1384          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1385          * ourselves.
1386          */
1387         vdd = edp_panel_vdd_on(intel_dp);
1388
1389         /* dp aux is extremely sensitive to irq latency, hence request the
1390          * lowest possible wakeup latency and so prevent the cpu from going into
1391          * deep sleep states.
1392          */
1393         cpu_latency_qos_update_request(&i915->pm_qos, 0);
1394
1395         intel_dp_check_edp(intel_dp);
1396
1397         /* Try to wait for any previous AUX channel activity */
1398         for (try = 0; try < 3; try++) {
1399                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1400                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1401                         break;
1402                 msleep(1);
1403         }
1404         /* just trace the final value */
1405         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1406
1407         if (try == 3) {
1408                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1409
1410                 if (status != intel_dp->aux_busy_last_status) {
1411                         drm_WARN(&i915->drm, 1,
1412                                  "%s: not started (status 0x%08x)\n",
1413                                  intel_dp->aux.name, status);
1414                         intel_dp->aux_busy_last_status = status;
1415                 }
1416
1417                 ret = -EBUSY;
1418                 goto out;
1419         }
1420
1421         /* Only 5 data registers! */
1422         if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1423                 ret = -E2BIG;
1424                 goto out;
1425         }
1426
1427         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1428                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1429                                                           send_bytes,
1430                                                           aux_clock_divider);
1431
1432                 send_ctl |= aux_send_ctl_flags;
1433
1434                 /* Must try at least 3 times according to DP spec */
1435                 for (try = 0; try < 5; try++) {
1436                         /* Load the send data into the aux channel data registers */
1437                         for (i = 0; i < send_bytes; i += 4)
1438                                 intel_uncore_write(uncore,
1439                                                    ch_data[i >> 2],
1440                                                    intel_dp_pack_aux(send + i,
1441                                                                      send_bytes - i));
1442
1443                         /* Send the command and wait for it to complete */
1444                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1445
1446                         status = intel_dp_aux_wait_done(intel_dp);
1447
1448                         /* Clear done status and any errors */
1449                         intel_uncore_write(uncore,
1450                                            ch_ctl,
1451                                            status |
1452                                            DP_AUX_CH_CTL_DONE |
1453                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1454                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1455
1456                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1457                          *   400us delay required for errors and timeouts
1458                          *   Timeout errors from the HW already meet this
1459                          *   requirement so skip to next iteration
1460                          */
1461                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1462                                 continue;
1463
1464                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1465                                 usleep_range(400, 500);
1466                                 continue;
1467                         }
1468                         if (status & DP_AUX_CH_CTL_DONE)
1469                                 goto done;
1470                 }
1471         }
1472
1473         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1474                 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1475                         intel_dp->aux.name, status);
1476                 ret = -EBUSY;
1477                 goto out;
1478         }
1479
1480 done:
1481         /* Check for timeout or receive error.
1482          * Timeouts occur when the sink is not connected
1483          */
1484         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1485                 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1486                         intel_dp->aux.name, status);
1487                 ret = -EIO;
1488                 goto out;
1489         }
1490
1491         /* Timeouts occur when the device isn't connected, so they're
1492          * "normal" -- don't fill the kernel log with these */
1493         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1494                 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1495                             intel_dp->aux.name, status);
1496                 ret = -ETIMEDOUT;
1497                 goto out;
1498         }
1499
1500         /* Unload any bytes sent back from the other side */
1501         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1502                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1503
1504         /*
1505          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1506          * We have no idea of what happened so we return -EBUSY so
1507          * drm layer takes care for the necessary retries.
1508          */
1509         if (recv_bytes == 0 || recv_bytes > 20) {
1510                 drm_dbg_kms(&i915->drm,
1511                             "%s: Forbidden recv_bytes = %d on aux transaction\n",
1512                             intel_dp->aux.name, recv_bytes);
1513                 ret = -EBUSY;
1514                 goto out;
1515         }
1516
1517         if (recv_bytes > recv_size)
1518                 recv_bytes = recv_size;
1519
1520         for (i = 0; i < recv_bytes; i += 4)
1521                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1522                                     recv + i, recv_bytes - i);
1523
1524         ret = recv_bytes;
1525 out:
1526         cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1527
1528         if (vdd)
1529                 edp_panel_vdd_off(intel_dp, false);
1530
1531         pps_unlock(intel_dp, pps_wakeref);
1532         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1533
1534         if (is_tc_port)
1535                 intel_tc_port_unlock(intel_dig_port);
1536
1537         return ret;
1538 }
1539
1540 #define BARE_ADDRESS_SIZE       3
1541 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1542
1543 static void
1544 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1545                     const struct drm_dp_aux_msg *msg)
1546 {
1547         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1548         txbuf[1] = (msg->address >> 8) & 0xff;
1549         txbuf[2] = msg->address & 0xff;
1550         txbuf[3] = msg->size - 1;
1551 }
1552
1553 static ssize_t
1554 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1555 {
1556         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1557         u8 txbuf[20], rxbuf[20];
1558         size_t txsize, rxsize;
1559         int ret;
1560
1561         intel_dp_aux_header(txbuf, msg);
1562
1563         switch (msg->request & ~DP_AUX_I2C_MOT) {
1564         case DP_AUX_NATIVE_WRITE:
1565         case DP_AUX_I2C_WRITE:
1566         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1567                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1568                 rxsize = 2; /* 0 or 1 data bytes */
1569
1570                 if (WARN_ON(txsize > 20))
1571                         return -E2BIG;
1572
1573                 WARN_ON(!msg->buffer != !msg->size);
1574
1575                 if (msg->buffer)
1576                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1577
1578                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1579                                         rxbuf, rxsize, 0);
1580                 if (ret > 0) {
1581                         msg->reply = rxbuf[0] >> 4;
1582
1583                         if (ret > 1) {
1584                                 /* Number of bytes written in a short write. */
1585                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1586                         } else {
1587                                 /* Return payload size. */
1588                                 ret = msg->size;
1589                         }
1590                 }
1591                 break;
1592
1593         case DP_AUX_NATIVE_READ:
1594         case DP_AUX_I2C_READ:
1595                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1596                 rxsize = msg->size + 1;
1597
1598                 if (WARN_ON(rxsize > 20))
1599                         return -E2BIG;
1600
1601                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1602                                         rxbuf, rxsize, 0);
1603                 if (ret > 0) {
1604                         msg->reply = rxbuf[0] >> 4;
1605                         /*
1606                          * Assume happy day, and copy the data. The caller is
1607                          * expected to check msg->reply before touching it.
1608                          *
1609                          * Return payload size.
1610                          */
1611                         ret--;
1612                         memcpy(msg->buffer, rxbuf + 1, ret);
1613                 }
1614                 break;
1615
1616         default:
1617                 ret = -EINVAL;
1618                 break;
1619         }
1620
1621         return ret;
1622 }
1623
1624
1625 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1626 {
1627         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1628         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1629         enum aux_ch aux_ch = dig_port->aux_ch;
1630
1631         switch (aux_ch) {
1632         case AUX_CH_B:
1633         case AUX_CH_C:
1634         case AUX_CH_D:
1635                 return DP_AUX_CH_CTL(aux_ch);
1636         default:
1637                 MISSING_CASE(aux_ch);
1638                 return DP_AUX_CH_CTL(AUX_CH_B);
1639         }
1640 }
1641
1642 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1643 {
1644         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1645         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1646         enum aux_ch aux_ch = dig_port->aux_ch;
1647
1648         switch (aux_ch) {
1649         case AUX_CH_B:
1650         case AUX_CH_C:
1651         case AUX_CH_D:
1652                 return DP_AUX_CH_DATA(aux_ch, index);
1653         default:
1654                 MISSING_CASE(aux_ch);
1655                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1656         }
1657 }
1658
1659 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1660 {
1661         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1662         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1663         enum aux_ch aux_ch = dig_port->aux_ch;
1664
1665         switch (aux_ch) {
1666         case AUX_CH_A:
1667                 return DP_AUX_CH_CTL(aux_ch);
1668         case AUX_CH_B:
1669         case AUX_CH_C:
1670         case AUX_CH_D:
1671                 return PCH_DP_AUX_CH_CTL(aux_ch);
1672         default:
1673                 MISSING_CASE(aux_ch);
1674                 return DP_AUX_CH_CTL(AUX_CH_A);
1675         }
1676 }
1677
1678 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1679 {
1680         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1681         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1682         enum aux_ch aux_ch = dig_port->aux_ch;
1683
1684         switch (aux_ch) {
1685         case AUX_CH_A:
1686                 return DP_AUX_CH_DATA(aux_ch, index);
1687         case AUX_CH_B:
1688         case AUX_CH_C:
1689         case AUX_CH_D:
1690                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1691         default:
1692                 MISSING_CASE(aux_ch);
1693                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1694         }
1695 }
1696
1697 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1698 {
1699         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1700         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1701         enum aux_ch aux_ch = dig_port->aux_ch;
1702
1703         switch (aux_ch) {
1704         case AUX_CH_A:
1705         case AUX_CH_B:
1706         case AUX_CH_C:
1707         case AUX_CH_D:
1708         case AUX_CH_E:
1709         case AUX_CH_F:
1710         case AUX_CH_G:
1711                 return DP_AUX_CH_CTL(aux_ch);
1712         default:
1713                 MISSING_CASE(aux_ch);
1714                 return DP_AUX_CH_CTL(AUX_CH_A);
1715         }
1716 }
1717
1718 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1719 {
1720         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1721         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1722         enum aux_ch aux_ch = dig_port->aux_ch;
1723
1724         switch (aux_ch) {
1725         case AUX_CH_A:
1726         case AUX_CH_B:
1727         case AUX_CH_C:
1728         case AUX_CH_D:
1729         case AUX_CH_E:
1730         case AUX_CH_F:
1731         case AUX_CH_G:
1732                 return DP_AUX_CH_DATA(aux_ch, index);
1733         default:
1734                 MISSING_CASE(aux_ch);
1735                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1736         }
1737 }
1738
1739 static void
1740 intel_dp_aux_fini(struct intel_dp *intel_dp)
1741 {
1742         kfree(intel_dp->aux.name);
1743 }
1744
1745 static void
1746 intel_dp_aux_init(struct intel_dp *intel_dp)
1747 {
1748         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1749         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1750         struct intel_encoder *encoder = &dig_port->base;
1751
1752         if (INTEL_GEN(dev_priv) >= 9) {
1753                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1754                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1755         } else if (HAS_PCH_SPLIT(dev_priv)) {
1756                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1757                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1758         } else {
1759                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1760                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1761         }
1762
1763         if (INTEL_GEN(dev_priv) >= 9)
1764                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1765         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1766                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1767         else if (HAS_PCH_SPLIT(dev_priv))
1768                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1769         else
1770                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1771
1772         if (INTEL_GEN(dev_priv) >= 9)
1773                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1774         else
1775                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1776
1777         drm_dp_aux_init(&intel_dp->aux);
1778
1779         /* Failure to allocate our preferred name is not critical */
1780         intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1781                                        aux_ch_name(dig_port->aux_ch),
1782                                        port_name(encoder->port));
1783         intel_dp->aux.transfer = intel_dp_aux_transfer;
1784 }
1785
1786 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1787 {
1788         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1789
1790         return max_rate >= 540000;
1791 }
1792
1793 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1794 {
1795         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1796
1797         return max_rate >= 810000;
1798 }
1799
1800 static void
1801 intel_dp_set_clock(struct intel_encoder *encoder,
1802                    struct intel_crtc_state *pipe_config)
1803 {
1804         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1805         const struct dp_link_dpll *divisor = NULL;
1806         int i, count = 0;
1807
1808         if (IS_G4X(dev_priv)) {
1809                 divisor = g4x_dpll;
1810                 count = ARRAY_SIZE(g4x_dpll);
1811         } else if (HAS_PCH_SPLIT(dev_priv)) {
1812                 divisor = pch_dpll;
1813                 count = ARRAY_SIZE(pch_dpll);
1814         } else if (IS_CHERRYVIEW(dev_priv)) {
1815                 divisor = chv_dpll;
1816                 count = ARRAY_SIZE(chv_dpll);
1817         } else if (IS_VALLEYVIEW(dev_priv)) {
1818                 divisor = vlv_dpll;
1819                 count = ARRAY_SIZE(vlv_dpll);
1820         }
1821
1822         if (divisor && count) {
1823                 for (i = 0; i < count; i++) {
1824                         if (pipe_config->port_clock == divisor[i].clock) {
1825                                 pipe_config->dpll = divisor[i].dpll;
1826                                 pipe_config->clock_set = true;
1827                                 break;
1828                         }
1829                 }
1830         }
1831 }
1832
1833 static void snprintf_int_array(char *str, size_t len,
1834                                const int *array, int nelem)
1835 {
1836         int i;
1837
1838         str[0] = '\0';
1839
1840         for (i = 0; i < nelem; i++) {
1841                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1842                 if (r >= len)
1843                         return;
1844                 str += r;
1845                 len -= r;
1846         }
1847 }
1848
1849 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1850 {
1851         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1852         char str[128]; /* FIXME: too big for stack? */
1853
1854         if (!drm_debug_enabled(DRM_UT_KMS))
1855                 return;
1856
1857         snprintf_int_array(str, sizeof(str),
1858                            intel_dp->source_rates, intel_dp->num_source_rates);
1859         drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1860
1861         snprintf_int_array(str, sizeof(str),
1862                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1863         drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1864
1865         snprintf_int_array(str, sizeof(str),
1866                            intel_dp->common_rates, intel_dp->num_common_rates);
1867         drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1868 }
1869
1870 int
1871 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1872 {
1873         int len;
1874
1875         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1876         if (WARN_ON(len <= 0))
1877                 return 162000;
1878
1879         return intel_dp->common_rates[len - 1];
1880 }
1881
1882 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1883 {
1884         int i = intel_dp_rate_index(intel_dp->sink_rates,
1885                                     intel_dp->num_sink_rates, rate);
1886
1887         if (WARN_ON(i < 0))
1888                 i = 0;
1889
1890         return i;
1891 }
1892
1893 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1894                            u8 *link_bw, u8 *rate_select)
1895 {
1896         /* eDP 1.4 rate select method. */
1897         if (intel_dp->use_rate_select) {
1898                 *link_bw = 0;
1899                 *rate_select =
1900                         intel_dp_rate_select(intel_dp, port_clock);
1901         } else {
1902                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1903                 *rate_select = 0;
1904         }
1905 }
1906
1907 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1908                                          const struct intel_crtc_state *pipe_config)
1909 {
1910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1911
1912         /* On TGL, FEC is supported on all Pipes */
1913         if (INTEL_GEN(dev_priv) >= 12)
1914                 return true;
1915
1916         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1917                 return true;
1918
1919         return false;
1920 }
1921
1922 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1923                                   const struct intel_crtc_state *pipe_config)
1924 {
1925         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1926                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1927 }
1928
1929 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1930                                   const struct intel_crtc_state *crtc_state)
1931 {
1932         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1933
1934         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1935                 return false;
1936
1937         return intel_dsc_source_support(encoder, crtc_state) &&
1938                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1939 }
1940
1941 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1942                                 struct intel_crtc_state *pipe_config)
1943 {
1944         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1945         struct intel_connector *intel_connector = intel_dp->attached_connector;
1946         int bpp, bpc;
1947
1948         bpp = pipe_config->pipe_bpp;
1949         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1950
1951         if (bpc > 0)
1952                 bpp = min(bpp, 3*bpc);
1953
1954         if (intel_dp_is_edp(intel_dp)) {
1955                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1956                 if (intel_connector->base.display_info.bpc == 0 &&
1957                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1958                         drm_dbg_kms(&dev_priv->drm,
1959                                     "clamping bpp for eDP panel to BIOS-provided %i\n",
1960                                     dev_priv->vbt.edp.bpp);
1961                         bpp = dev_priv->vbt.edp.bpp;
1962                 }
1963         }
1964
1965         return bpp;
1966 }
1967
1968 /* Adjust link config limits based on compliance test requests. */
1969 void
1970 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1971                                   struct intel_crtc_state *pipe_config,
1972                                   struct link_config_limits *limits)
1973 {
1974         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1975
1976         /* For DP Compliance we override the computed bpp for the pipe */
1977         if (intel_dp->compliance.test_data.bpc != 0) {
1978                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1979
1980                 limits->min_bpp = limits->max_bpp = bpp;
1981                 pipe_config->dither_force_disable = bpp == 6 * 3;
1982
1983                 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1984         }
1985
1986         /* Use values requested by Compliance Test Request */
1987         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1988                 int index;
1989
1990                 /* Validate the compliance test data since max values
1991                  * might have changed due to link train fallback.
1992                  */
1993                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1994                                                intel_dp->compliance.test_lane_count)) {
1995                         index = intel_dp_rate_index(intel_dp->common_rates,
1996                                                     intel_dp->num_common_rates,
1997                                                     intel_dp->compliance.test_link_rate);
1998                         if (index >= 0)
1999                                 limits->min_clock = limits->max_clock = index;
2000                         limits->min_lane_count = limits->max_lane_count =
2001                                 intel_dp->compliance.test_lane_count;
2002                 }
2003         }
2004 }
2005
2006 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2007 {
2008         /*
2009          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2010          * format of the number of bytes per pixel will be half the number
2011          * of bytes of RGB pixel.
2012          */
2013         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2014                 bpp /= 2;
2015
2016         return bpp;
2017 }
2018
2019 /* Optimize link config in order: max bpp, min clock, min lanes */
2020 static int
2021 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2022                                   struct intel_crtc_state *pipe_config,
2023                                   const struct link_config_limits *limits)
2024 {
2025         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2026         int bpp, clock, lane_count;
2027         int mode_rate, link_clock, link_avail;
2028
2029         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2030                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2031
2032                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2033                                                    output_bpp);
2034
2035                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2036                         for (lane_count = limits->min_lane_count;
2037                              lane_count <= limits->max_lane_count;
2038                              lane_count <<= 1) {
2039                                 link_clock = intel_dp->common_rates[clock];
2040                                 link_avail = intel_dp_max_data_rate(link_clock,
2041                                                                     lane_count);
2042
2043                                 if (mode_rate <= link_avail) {
2044                                         pipe_config->lane_count = lane_count;
2045                                         pipe_config->pipe_bpp = bpp;
2046                                         pipe_config->port_clock = link_clock;
2047
2048                                         return 0;
2049                                 }
2050                         }
2051                 }
2052         }
2053
2054         return -EINVAL;
2055 }
2056
2057 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2058 {
2059         int i, num_bpc;
2060         u8 dsc_bpc[3] = {0};
2061
2062         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2063                                                        dsc_bpc);
2064         for (i = 0; i < num_bpc; i++) {
2065                 if (dsc_max_bpc >= dsc_bpc[i])
2066                         return dsc_bpc[i] * 3;
2067         }
2068
2069         return 0;
2070 }
2071
2072 #define DSC_SUPPORTED_VERSION_MIN               1
2073
2074 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2075                                        struct intel_crtc_state *crtc_state)
2076 {
2077         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2078         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2079         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2080         u8 line_buf_depth;
2081         int ret;
2082
2083         ret = intel_dsc_compute_params(encoder, crtc_state);
2084         if (ret)
2085                 return ret;
2086
2087         /*
2088          * Slice Height of 8 works for all currently available panels. So start
2089          * with that if pic_height is an integral multiple of 8. Eventually add
2090          * logic to try multiple slice heights.
2091          */
2092         if (vdsc_cfg->pic_height % 8 == 0)
2093                 vdsc_cfg->slice_height = 8;
2094         else if (vdsc_cfg->pic_height % 4 == 0)
2095                 vdsc_cfg->slice_height = 4;
2096         else
2097                 vdsc_cfg->slice_height = 2;
2098
2099         vdsc_cfg->dsc_version_major =
2100                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2101                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2102         vdsc_cfg->dsc_version_minor =
2103                 min(DSC_SUPPORTED_VERSION_MIN,
2104                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2105                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2106
2107         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2108                 DP_DSC_RGB;
2109
2110         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2111         if (!line_buf_depth) {
2112                 drm_dbg_kms(&i915->drm,
2113                             "DSC Sink Line Buffer Depth invalid\n");
2114                 return -EINVAL;
2115         }
2116
2117         if (vdsc_cfg->dsc_version_minor == 2)
2118                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2119                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2120         else
2121                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2122                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2123
2124         vdsc_cfg->block_pred_enable =
2125                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2126                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2127
2128         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2129 }
2130
2131 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2132                                        struct intel_crtc_state *pipe_config,
2133                                        struct drm_connector_state *conn_state,
2134                                        struct link_config_limits *limits)
2135 {
2136         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2137         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2138         const struct drm_display_mode *adjusted_mode =
2139                 &pipe_config->hw.adjusted_mode;
2140         u8 dsc_max_bpc;
2141         int pipe_bpp;
2142         int ret;
2143
2144         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2145                 intel_dp_supports_fec(intel_dp, pipe_config);
2146
2147         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2148                 return -EINVAL;
2149
2150         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2151         if (INTEL_GEN(dev_priv) >= 12)
2152                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2153         else
2154                 dsc_max_bpc = min_t(u8, 10,
2155                                     conn_state->max_requested_bpc);
2156
2157         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2158
2159         /* Min Input BPC for ICL+ is 8 */
2160         if (pipe_bpp < 8 * 3) {
2161                 drm_dbg_kms(&dev_priv->drm,
2162                             "No DSC support for less than 8bpc\n");
2163                 return -EINVAL;
2164         }
2165
2166         /*
2167          * For now enable DSC for max bpp, max link rate, max lane count.
2168          * Optimize this later for the minimum possible link rate/lane count
2169          * with DSC enabled for the requested mode.
2170          */
2171         pipe_config->pipe_bpp = pipe_bpp;
2172         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2173         pipe_config->lane_count = limits->max_lane_count;
2174
2175         if (intel_dp_is_edp(intel_dp)) {
2176                 pipe_config->dsc.compressed_bpp =
2177                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2178                               pipe_config->pipe_bpp);
2179                 pipe_config->dsc.slice_count =
2180                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2181                                                         true);
2182         } else {
2183                 u16 dsc_max_output_bpp;
2184                 u8 dsc_dp_slice_count;
2185
2186                 dsc_max_output_bpp =
2187                         intel_dp_dsc_get_output_bpp(dev_priv,
2188                                                     pipe_config->port_clock,
2189                                                     pipe_config->lane_count,
2190                                                     adjusted_mode->crtc_clock,
2191                                                     adjusted_mode->crtc_hdisplay);
2192                 dsc_dp_slice_count =
2193                         intel_dp_dsc_get_slice_count(intel_dp,
2194                                                      adjusted_mode->crtc_clock,
2195                                                      adjusted_mode->crtc_hdisplay);
2196                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2197                         drm_dbg_kms(&dev_priv->drm,
2198                                     "Compressed BPP/Slice Count not supported\n");
2199                         return -EINVAL;
2200                 }
2201                 pipe_config->dsc.compressed_bpp = min_t(u16,
2202                                                                dsc_max_output_bpp >> 4,
2203                                                                pipe_config->pipe_bpp);
2204                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2205         }
2206         /*
2207          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2208          * is greater than the maximum Cdclock and if slice count is even
2209          * then we need to use 2 VDSC instances.
2210          */
2211         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2212                 if (pipe_config->dsc.slice_count > 1) {
2213                         pipe_config->dsc.dsc_split = true;
2214                 } else {
2215                         drm_dbg_kms(&dev_priv->drm,
2216                                     "Cannot split stream to use 2 VDSC instances\n");
2217                         return -EINVAL;
2218                 }
2219         }
2220
2221         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2222         if (ret < 0) {
2223                 drm_dbg_kms(&dev_priv->drm,
2224                             "Cannot compute valid DSC parameters for Input Bpp = %d "
2225                             "Compressed BPP = %d\n",
2226                             pipe_config->pipe_bpp,
2227                             pipe_config->dsc.compressed_bpp);
2228                 return ret;
2229         }
2230
2231         pipe_config->dsc.compression_enable = true;
2232         drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2233                     "Compressed Bpp = %d Slice Count = %d\n",
2234                     pipe_config->pipe_bpp,
2235                     pipe_config->dsc.compressed_bpp,
2236                     pipe_config->dsc.slice_count);
2237
2238         return 0;
2239 }
2240
2241 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2242 {
2243         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2244                 return 6 * 3;
2245         else
2246                 return 8 * 3;
2247 }
2248
2249 static int
2250 intel_dp_compute_link_config(struct intel_encoder *encoder,
2251                              struct intel_crtc_state *pipe_config,
2252                              struct drm_connector_state *conn_state)
2253 {
2254         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2255         const struct drm_display_mode *adjusted_mode =
2256                 &pipe_config->hw.adjusted_mode;
2257         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2258         struct link_config_limits limits;
2259         int common_len;
2260         int ret;
2261
2262         common_len = intel_dp_common_len_rate_limit(intel_dp,
2263                                                     intel_dp->max_link_rate);
2264
2265         /* No common link rates between source and sink */
2266         drm_WARN_ON(encoder->base.dev, common_len <= 0);
2267
2268         limits.min_clock = 0;
2269         limits.max_clock = common_len - 1;
2270
2271         limits.min_lane_count = 1;
2272         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2273
2274         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2275         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2276
2277         if (intel_dp_is_edp(intel_dp)) {
2278                 /*
2279                  * Use the maximum clock and number of lanes the eDP panel
2280                  * advertizes being capable of. The panels are generally
2281                  * designed to support only a single clock and lane
2282                  * configuration, and typically these values correspond to the
2283                  * native resolution of the panel.
2284                  */
2285                 limits.min_lane_count = limits.max_lane_count;
2286                 limits.min_clock = limits.max_clock;
2287         }
2288
2289         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2290
2291         drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2292                     "max rate %d max bpp %d pixel clock %iKHz\n",
2293                     limits.max_lane_count,
2294                     intel_dp->common_rates[limits.max_clock],
2295                     limits.max_bpp, adjusted_mode->crtc_clock);
2296
2297         /*
2298          * Optimize for slow and wide. This is the place to add alternative
2299          * optimization policy.
2300          */
2301         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2302
2303         /* enable compression if the mode doesn't fit available BW */
2304         drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2305         if (ret || intel_dp->force_dsc_en) {
2306                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2307                                                   conn_state, &limits);
2308                 if (ret < 0)
2309                         return ret;
2310         }
2311
2312         if (pipe_config->dsc.compression_enable) {
2313                 drm_dbg_kms(&i915->drm,
2314                             "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2315                             pipe_config->lane_count, pipe_config->port_clock,
2316                             pipe_config->pipe_bpp,
2317                             pipe_config->dsc.compressed_bpp);
2318
2319                 drm_dbg_kms(&i915->drm,
2320                             "DP link rate required %i available %i\n",
2321                             intel_dp_link_required(adjusted_mode->crtc_clock,
2322                                                    pipe_config->dsc.compressed_bpp),
2323                             intel_dp_max_data_rate(pipe_config->port_clock,
2324                                                    pipe_config->lane_count));
2325         } else {
2326                 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2327                             pipe_config->lane_count, pipe_config->port_clock,
2328                             pipe_config->pipe_bpp);
2329
2330                 drm_dbg_kms(&i915->drm,
2331                             "DP link rate required %i available %i\n",
2332                             intel_dp_link_required(adjusted_mode->crtc_clock,
2333                                                    pipe_config->pipe_bpp),
2334                             intel_dp_max_data_rate(pipe_config->port_clock,
2335                                                    pipe_config->lane_count));
2336         }
2337         return 0;
2338 }
2339
2340 static int
2341 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2342                          struct intel_crtc_state *crtc_state,
2343                          const struct drm_connector_state *conn_state)
2344 {
2345         struct drm_connector *connector = conn_state->connector;
2346         const struct drm_display_info *info = &connector->display_info;
2347         const struct drm_display_mode *adjusted_mode =
2348                 &crtc_state->hw.adjusted_mode;
2349
2350         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2351             !intel_dp_get_colorimetry_status(intel_dp) ||
2352             !connector->ycbcr_420_allowed)
2353                 return 0;
2354
2355         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2356
2357         return intel_pch_panel_fitting(crtc_state, conn_state);
2358 }
2359
2360 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2361                                   const struct drm_connector_state *conn_state)
2362 {
2363         const struct intel_digital_connector_state *intel_conn_state =
2364                 to_intel_digital_connector_state(conn_state);
2365         const struct drm_display_mode *adjusted_mode =
2366                 &crtc_state->hw.adjusted_mode;
2367
2368         /*
2369          * Our YCbCr output is always limited range.
2370          * crtc_state->limited_color_range only applies to RGB,
2371          * and it must never be set for YCbCr or we risk setting
2372          * some conflicting bits in PIPECONF which will mess up
2373          * the colors on the monitor.
2374          */
2375         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2376                 return false;
2377
2378         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2379                 /*
2380                  * See:
2381                  * CEA-861-E - 5.1 Default Encoding Parameters
2382                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2383                  */
2384                 return crtc_state->pipe_bpp != 18 &&
2385                         drm_default_rgb_quant_range(adjusted_mode) ==
2386                         HDMI_QUANTIZATION_RANGE_LIMITED;
2387         } else {
2388                 return intel_conn_state->broadcast_rgb ==
2389                         INTEL_BROADCAST_RGB_LIMITED;
2390         }
2391 }
2392
2393 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2394                                     enum port port)
2395 {
2396         if (IS_G4X(dev_priv))
2397                 return false;
2398         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2399                 return false;
2400
2401         return true;
2402 }
2403
2404 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2405                                              const struct drm_connector_state *conn_state,
2406                                              struct drm_dp_vsc_sdp *vsc)
2407 {
2408         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2409         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2410
2411         /*
2412          * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2413          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2414          * Colorimetry Format indication.
2415          */
2416         vsc->revision = 0x5;
2417         vsc->length = 0x13;
2418
2419         /* DP 1.4a spec, Table 2-120 */
2420         switch (crtc_state->output_format) {
2421         case INTEL_OUTPUT_FORMAT_YCBCR444:
2422                 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2423                 break;
2424         case INTEL_OUTPUT_FORMAT_YCBCR420:
2425                 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2426                 break;
2427         case INTEL_OUTPUT_FORMAT_RGB:
2428         default:
2429                 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2430         }
2431
2432         switch (conn_state->colorspace) {
2433         case DRM_MODE_COLORIMETRY_BT709_YCC:
2434                 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2435                 break;
2436         case DRM_MODE_COLORIMETRY_XVYCC_601:
2437                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2438                 break;
2439         case DRM_MODE_COLORIMETRY_XVYCC_709:
2440                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2441                 break;
2442         case DRM_MODE_COLORIMETRY_SYCC_601:
2443                 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2444                 break;
2445         case DRM_MODE_COLORIMETRY_OPYCC_601:
2446                 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2447                 break;
2448         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2449                 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2450                 break;
2451         case DRM_MODE_COLORIMETRY_BT2020_RGB:
2452                 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2453                 break;
2454         case DRM_MODE_COLORIMETRY_BT2020_YCC:
2455                 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2456                 break;
2457         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2458         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2459                 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2460                 break;
2461         default:
2462                 /*
2463                  * RGB->YCBCR color conversion uses the BT.709
2464                  * color space.
2465                  */
2466                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2467                         vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2468                 else
2469                         vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2470                 break;
2471         }
2472
2473         vsc->bpc = crtc_state->pipe_bpp / 3;
2474
2475         /* only RGB pixelformat supports 6 bpc */
2476         drm_WARN_ON(&dev_priv->drm,
2477                     vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2478
2479         /* all YCbCr are always limited range */
2480         vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2481         vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2482 }
2483
2484 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2485                                      struct intel_crtc_state *crtc_state,
2486                                      const struct drm_connector_state *conn_state)
2487 {
2488         struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2489
2490         /* When a crtc state has PSR, VSC SDP will be handled by PSR routine */
2491         if (crtc_state->has_psr)
2492                 return;
2493
2494         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2495                 return;
2496
2497         crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2498         vsc->sdp_type = DP_SDP_VSC;
2499         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2500                                          &crtc_state->infoframes.vsc);
2501 }
2502
2503 void intel_dp_compute_psr_vsc_sdp(struct intel_dp *intel_dp,
2504                                   const struct intel_crtc_state *crtc_state,
2505                                   const struct drm_connector_state *conn_state,
2506                                   struct drm_dp_vsc_sdp *vsc)
2507 {
2508         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2509
2510         vsc->sdp_type = DP_SDP_VSC;
2511
2512         if (dev_priv->psr.psr2_enabled) {
2513                 if (dev_priv->psr.colorimetry_support &&
2514                     intel_dp_needs_vsc_sdp(crtc_state, conn_state)) {
2515                         /* [PSR2, +Colorimetry] */
2516                         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2517                                                          vsc);
2518                 } else {
2519                         /*
2520                          * [PSR2, -Colorimetry]
2521                          * Prepare VSC Header for SU as per eDP 1.4 spec, Table 6-11
2522                          * 3D stereo + PSR/PSR2 + Y-coordinate.
2523                          */
2524                         vsc->revision = 0x4;
2525                         vsc->length = 0xe;
2526                 }
2527         } else {
2528                 /*
2529                  * [PSR1]
2530                  * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2531                  * VSC SDP supporting 3D stereo + PSR (applies to eDP v1.3 or
2532                  * higher).
2533                  */
2534                 vsc->revision = 0x2;
2535                 vsc->length = 0x8;
2536         }
2537 }
2538
2539 static void
2540 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2541                                             struct intel_crtc_state *crtc_state,
2542                                             const struct drm_connector_state *conn_state)
2543 {
2544         int ret;
2545         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2546         struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2547
2548         if (!conn_state->hdr_output_metadata)
2549                 return;
2550
2551         ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2552
2553         if (ret) {
2554                 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2555                 return;
2556         }
2557
2558         crtc_state->infoframes.enable |=
2559                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2560 }
2561
2562 int
2563 intel_dp_compute_config(struct intel_encoder *encoder,
2564                         struct intel_crtc_state *pipe_config,
2565                         struct drm_connector_state *conn_state)
2566 {
2567         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2568         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2569         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2570         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2571         enum port port = encoder->port;
2572         struct intel_connector *intel_connector = intel_dp->attached_connector;
2573         struct intel_digital_connector_state *intel_conn_state =
2574                 to_intel_digital_connector_state(conn_state);
2575         bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2576                                            DP_DPCD_QUIRK_CONSTANT_N);
2577         int ret = 0, output_bpp;
2578
2579         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2580                 pipe_config->has_pch_encoder = true;
2581
2582         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2583
2584         if (lspcon->active)
2585                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2586         else
2587                 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2588                                                conn_state);
2589         if (ret)
2590                 return ret;
2591
2592         pipe_config->has_drrs = false;
2593         if (!intel_dp_port_has_audio(dev_priv, port))
2594                 pipe_config->has_audio = false;
2595         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2596                 pipe_config->has_audio = intel_dp->has_audio;
2597         else
2598                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2599
2600         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2601                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2602                                        adjusted_mode);
2603
2604                 if (HAS_GMCH(dev_priv))
2605                         ret = intel_gmch_panel_fitting(pipe_config, conn_state);
2606                 else
2607                         ret = intel_pch_panel_fitting(pipe_config, conn_state);
2608                 if (ret)
2609                         return ret;
2610         }
2611
2612         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2613                 return -EINVAL;
2614
2615         if (HAS_GMCH(dev_priv) &&
2616             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2617                 return -EINVAL;
2618
2619         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2620                 return -EINVAL;
2621
2622         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2623                 return -EINVAL;
2624
2625         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2626         if (ret < 0)
2627                 return ret;
2628
2629         pipe_config->limited_color_range =
2630                 intel_dp_limited_color_range(pipe_config, conn_state);
2631
2632         if (pipe_config->dsc.compression_enable)
2633                 output_bpp = pipe_config->dsc.compressed_bpp;
2634         else
2635                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2636
2637         intel_link_compute_m_n(output_bpp,
2638                                pipe_config->lane_count,
2639                                adjusted_mode->crtc_clock,
2640                                pipe_config->port_clock,
2641                                &pipe_config->dp_m_n,
2642                                constant_n, pipe_config->fec_enable);
2643
2644         if (intel_connector->panel.downclock_mode != NULL &&
2645                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2646                         pipe_config->has_drrs = true;
2647                         intel_link_compute_m_n(output_bpp,
2648                                                pipe_config->lane_count,
2649                                                intel_connector->panel.downclock_mode->clock,
2650                                                pipe_config->port_clock,
2651                                                &pipe_config->dp_m2_n2,
2652                                                constant_n, pipe_config->fec_enable);
2653         }
2654
2655         if (!HAS_DDI(dev_priv))
2656                 intel_dp_set_clock(encoder, pipe_config);
2657
2658         intel_psr_compute_config(intel_dp, pipe_config);
2659         intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2660         intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2661
2662         return 0;
2663 }
2664
2665 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2666                               int link_rate, u8 lane_count,
2667                               bool link_mst)
2668 {
2669         intel_dp->link_trained = false;
2670         intel_dp->link_rate = link_rate;
2671         intel_dp->lane_count = lane_count;
2672         intel_dp->link_mst = link_mst;
2673 }
2674
2675 static void intel_dp_prepare(struct intel_encoder *encoder,
2676                              const struct intel_crtc_state *pipe_config)
2677 {
2678         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2679         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2680         enum port port = encoder->port;
2681         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2682         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2683
2684         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2685                                  pipe_config->lane_count,
2686                                  intel_crtc_has_type(pipe_config,
2687                                                      INTEL_OUTPUT_DP_MST));
2688
2689         /*
2690          * There are four kinds of DP registers:
2691          *
2692          *      IBX PCH
2693          *      SNB CPU
2694          *      IVB CPU
2695          *      CPT PCH
2696          *
2697          * IBX PCH and CPU are the same for almost everything,
2698          * except that the CPU DP PLL is configured in this
2699          * register
2700          *
2701          * CPT PCH is quite different, having many bits moved
2702          * to the TRANS_DP_CTL register instead. That
2703          * configuration happens (oddly) in ilk_pch_enable
2704          */
2705
2706         /* Preserve the BIOS-computed detected bit. This is
2707          * supposed to be read-only.
2708          */
2709         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2710
2711         /* Handle DP bits in common between all three register formats */
2712         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2713         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2714
2715         /* Split out the IBX/CPU vs CPT settings */
2716
2717         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2718                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2719                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2720                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2721                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2722                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2723
2724                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2725                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2726
2727                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2728         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2729                 u32 trans_dp;
2730
2731                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2732
2733                 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2734                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2735                         trans_dp |= TRANS_DP_ENH_FRAMING;
2736                 else
2737                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2738                 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2739         } else {
2740                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2741                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2742
2743                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2744                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2745                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2746                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2747                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2748
2749                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2750                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2751
2752                 if (IS_CHERRYVIEW(dev_priv))
2753                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2754                 else
2755                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2756         }
2757 }
2758
2759 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2760 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2761
2762 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2763 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2764
2765 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2766 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2767
2768 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2769
2770 static void wait_panel_status(struct intel_dp *intel_dp,
2771                                        u32 mask,
2772                                        u32 value)
2773 {
2774         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2775         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2776
2777         lockdep_assert_held(&dev_priv->pps_mutex);
2778
2779         intel_pps_verify_state(intel_dp);
2780
2781         pp_stat_reg = _pp_stat_reg(intel_dp);
2782         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2783
2784         drm_dbg_kms(&dev_priv->drm,
2785                     "mask %08x value %08x status %08x control %08x\n",
2786                     mask, value,
2787                     intel_de_read(dev_priv, pp_stat_reg),
2788                     intel_de_read(dev_priv, pp_ctrl_reg));
2789
2790         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2791                                        mask, value, 5000))
2792                 drm_err(&dev_priv->drm,
2793                         "Panel status timeout: status %08x control %08x\n",
2794                         intel_de_read(dev_priv, pp_stat_reg),
2795                         intel_de_read(dev_priv, pp_ctrl_reg));
2796
2797         drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2798 }
2799
2800 static void wait_panel_on(struct intel_dp *intel_dp)
2801 {
2802         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2803
2804         drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2805         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2806 }
2807
2808 static void wait_panel_off(struct intel_dp *intel_dp)
2809 {
2810         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2811
2812         drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2813         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2814 }
2815
2816 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2817 {
2818         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2819         ktime_t panel_power_on_time;
2820         s64 panel_power_off_duration;
2821
2822         drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2823
2824         /* take the difference of currrent time and panel power off time
2825          * and then make panel wait for t11_t12 if needed. */
2826         panel_power_on_time = ktime_get_boottime();
2827         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2828
2829         /* When we disable the VDD override bit last we have to do the manual
2830          * wait. */
2831         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2832                 wait_remaining_ms_from_jiffies(jiffies,
2833                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2834
2835         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2836 }
2837
2838 static void wait_backlight_on(struct intel_dp *intel_dp)
2839 {
2840         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2841                                        intel_dp->backlight_on_delay);
2842 }
2843
2844 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2845 {
2846         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2847                                        intel_dp->backlight_off_delay);
2848 }
2849
2850 /* Read the current pp_control value, unlocking the register if it
2851  * is locked
2852  */
2853
2854 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2855 {
2856         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2857         u32 control;
2858
2859         lockdep_assert_held(&dev_priv->pps_mutex);
2860
2861         control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2862         if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2863                         (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2864                 control &= ~PANEL_UNLOCK_MASK;
2865                 control |= PANEL_UNLOCK_REGS;
2866         }
2867         return control;
2868 }
2869
2870 /*
2871  * Must be paired with edp_panel_vdd_off().
2872  * Must hold pps_mutex around the whole on/off sequence.
2873  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2874  */
2875 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2876 {
2877         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2878         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2879         u32 pp;
2880         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2881         bool need_to_disable = !intel_dp->want_panel_vdd;
2882
2883         lockdep_assert_held(&dev_priv->pps_mutex);
2884
2885         if (!intel_dp_is_edp(intel_dp))
2886                 return false;
2887
2888         cancel_delayed_work(&intel_dp->panel_vdd_work);
2889         intel_dp->want_panel_vdd = true;
2890
2891         if (edp_have_panel_vdd(intel_dp))
2892                 return need_to_disable;
2893
2894         intel_display_power_get(dev_priv,
2895                                 intel_aux_power_domain(intel_dig_port));
2896
2897         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2898                     intel_dig_port->base.base.base.id,
2899                     intel_dig_port->base.base.name);
2900
2901         if (!edp_have_panel_power(intel_dp))
2902                 wait_panel_power_cycle(intel_dp);
2903
2904         pp = ilk_get_pp_control(intel_dp);
2905         pp |= EDP_FORCE_VDD;
2906
2907         pp_stat_reg = _pp_stat_reg(intel_dp);
2908         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2909
2910         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2911         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2912         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2913                     intel_de_read(dev_priv, pp_stat_reg),
2914                     intel_de_read(dev_priv, pp_ctrl_reg));
2915         /*
2916          * If the panel wasn't on, delay before accessing aux channel
2917          */
2918         if (!edp_have_panel_power(intel_dp)) {
2919                 drm_dbg_kms(&dev_priv->drm,
2920                             "[ENCODER:%d:%s] panel power wasn't enabled\n",
2921                             intel_dig_port->base.base.base.id,
2922                             intel_dig_port->base.base.name);
2923                 msleep(intel_dp->panel_power_up_delay);
2924         }
2925
2926         return need_to_disable;
2927 }
2928
2929 /*
2930  * Must be paired with intel_edp_panel_vdd_off() or
2931  * intel_edp_panel_off().
2932  * Nested calls to these functions are not allowed since
2933  * we drop the lock. Caller must use some higher level
2934  * locking to prevent nested calls from other threads.
2935  */
2936 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2937 {
2938         intel_wakeref_t wakeref;
2939         bool vdd;
2940
2941         if (!intel_dp_is_edp(intel_dp))
2942                 return;
2943
2944         vdd = false;
2945         with_pps_lock(intel_dp, wakeref)
2946                 vdd = edp_panel_vdd_on(intel_dp);
2947         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2948                         dp_to_dig_port(intel_dp)->base.base.base.id,
2949                         dp_to_dig_port(intel_dp)->base.base.name);
2950 }
2951
2952 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2953 {
2954         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2955         struct intel_digital_port *intel_dig_port =
2956                 dp_to_dig_port(intel_dp);
2957         u32 pp;
2958         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2959
2960         lockdep_assert_held(&dev_priv->pps_mutex);
2961
2962         drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2963
2964         if (!edp_have_panel_vdd(intel_dp))
2965                 return;
2966
2967         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2968                     intel_dig_port->base.base.base.id,
2969                     intel_dig_port->base.base.name);
2970
2971         pp = ilk_get_pp_control(intel_dp);
2972         pp &= ~EDP_FORCE_VDD;
2973
2974         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2975         pp_stat_reg = _pp_stat_reg(intel_dp);
2976
2977         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2978         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2979
2980         /* Make sure sequencer is idle before allowing subsequent activity */
2981         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2982                     intel_de_read(dev_priv, pp_stat_reg),
2983                     intel_de_read(dev_priv, pp_ctrl_reg));
2984
2985         if ((pp & PANEL_POWER_ON) == 0)
2986                 intel_dp->panel_power_off_time = ktime_get_boottime();
2987
2988         intel_display_power_put_unchecked(dev_priv,
2989                                           intel_aux_power_domain(intel_dig_port));
2990 }
2991
2992 static void edp_panel_vdd_work(struct work_struct *__work)
2993 {
2994         struct intel_dp *intel_dp =
2995                 container_of(to_delayed_work(__work),
2996                              struct intel_dp, panel_vdd_work);
2997         intel_wakeref_t wakeref;
2998
2999         with_pps_lock(intel_dp, wakeref) {
3000                 if (!intel_dp->want_panel_vdd)
3001                         edp_panel_vdd_off_sync(intel_dp);
3002         }
3003 }
3004
3005 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
3006 {
3007         unsigned long delay;
3008
3009         /*
3010          * Queue the timer to fire a long time from now (relative to the power
3011          * down delay) to keep the panel power up across a sequence of
3012          * operations.
3013          */
3014         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
3015         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
3016 }
3017
3018 /*
3019  * Must be paired with edp_panel_vdd_on().
3020  * Must hold pps_mutex around the whole on/off sequence.
3021  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
3022  */
3023 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
3024 {
3025         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3026
3027         lockdep_assert_held(&dev_priv->pps_mutex);
3028
3029         if (!intel_dp_is_edp(intel_dp))
3030                 return;
3031
3032         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
3033                         dp_to_dig_port(intel_dp)->base.base.base.id,
3034                         dp_to_dig_port(intel_dp)->base.base.name);
3035
3036         intel_dp->want_panel_vdd = false;
3037
3038         if (sync)
3039                 edp_panel_vdd_off_sync(intel_dp);
3040         else
3041                 edp_panel_vdd_schedule_off(intel_dp);
3042 }
3043
3044 static void edp_panel_on(struct intel_dp *intel_dp)
3045 {
3046         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3047         u32 pp;
3048         i915_reg_t pp_ctrl_reg;
3049
3050         lockdep_assert_held(&dev_priv->pps_mutex);
3051
3052         if (!intel_dp_is_edp(intel_dp))
3053                 return;
3054
3055         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3056                     dp_to_dig_port(intel_dp)->base.base.base.id,
3057                     dp_to_dig_port(intel_dp)->base.base.name);
3058
3059         if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3060                      "[ENCODER:%d:%s] panel power already on\n",
3061                      dp_to_dig_port(intel_dp)->base.base.base.id,
3062                      dp_to_dig_port(intel_dp)->base.base.name))
3063                 return;
3064
3065         wait_panel_power_cycle(intel_dp);
3066
3067         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3068         pp = ilk_get_pp_control(intel_dp);
3069         if (IS_GEN(dev_priv, 5)) {
3070                 /* ILK workaround: disable reset around power sequence */
3071                 pp &= ~PANEL_POWER_RESET;
3072                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3073                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3074         }
3075
3076         pp |= PANEL_POWER_ON;
3077         if (!IS_GEN(dev_priv, 5))
3078                 pp |= PANEL_POWER_RESET;
3079
3080         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3081         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3082
3083         wait_panel_on(intel_dp);
3084         intel_dp->last_power_on = jiffies;
3085
3086         if (IS_GEN(dev_priv, 5)) {
3087                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3088                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3089                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3090         }
3091 }
3092
3093 void intel_edp_panel_on(struct intel_dp *intel_dp)
3094 {
3095         intel_wakeref_t wakeref;
3096
3097         if (!intel_dp_is_edp(intel_dp))
3098                 return;
3099
3100         with_pps_lock(intel_dp, wakeref)
3101                 edp_panel_on(intel_dp);
3102 }
3103
3104
3105 static void edp_panel_off(struct intel_dp *intel_dp)
3106 {
3107         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3108         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3109         u32 pp;
3110         i915_reg_t pp_ctrl_reg;
3111
3112         lockdep_assert_held(&dev_priv->pps_mutex);
3113
3114         if (!intel_dp_is_edp(intel_dp))
3115                 return;
3116
3117         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3118                     dig_port->base.base.base.id, dig_port->base.base.name);
3119
3120         drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3121                  "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3122                  dig_port->base.base.base.id, dig_port->base.base.name);
3123
3124         pp = ilk_get_pp_control(intel_dp);
3125         /* We need to switch off panel power _and_ force vdd, for otherwise some
3126          * panels get very unhappy and cease to work. */
3127         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3128                 EDP_BLC_ENABLE);
3129
3130         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3131
3132         intel_dp->want_panel_vdd = false;
3133
3134         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3135         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3136
3137         wait_panel_off(intel_dp);
3138         intel_dp->panel_power_off_time = ktime_get_boottime();
3139
3140         /* We got a reference when we enabled the VDD. */
3141         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3142 }
3143
3144 void intel_edp_panel_off(struct intel_dp *intel_dp)
3145 {
3146         intel_wakeref_t wakeref;
3147
3148         if (!intel_dp_is_edp(intel_dp))
3149                 return;
3150
3151         with_pps_lock(intel_dp, wakeref)
3152                 edp_panel_off(intel_dp);
3153 }
3154
3155 /* Enable backlight in the panel power control. */
3156 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3157 {
3158         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3159         intel_wakeref_t wakeref;
3160
3161         /*
3162          * If we enable the backlight right away following a panel power
3163          * on, we may see slight flicker as the panel syncs with the eDP
3164          * link.  So delay a bit to make sure the image is solid before
3165          * allowing it to appear.
3166          */
3167         wait_backlight_on(intel_dp);
3168
3169         with_pps_lock(intel_dp, wakeref) {
3170                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3171                 u32 pp;
3172
3173                 pp = ilk_get_pp_control(intel_dp);
3174                 pp |= EDP_BLC_ENABLE;
3175
3176                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3177                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3178         }
3179 }
3180
3181 /* Enable backlight PWM and backlight PP control. */
3182 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3183                             const struct drm_connector_state *conn_state)
3184 {
3185         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3186         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3187
3188         if (!intel_dp_is_edp(intel_dp))
3189                 return;
3190
3191         drm_dbg_kms(&i915->drm, "\n");
3192
3193         intel_panel_enable_backlight(crtc_state, conn_state);
3194         _intel_edp_backlight_on(intel_dp);
3195 }
3196
3197 /* Disable backlight in the panel power control. */
3198 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3199 {
3200         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3201         intel_wakeref_t wakeref;
3202
3203         if (!intel_dp_is_edp(intel_dp))
3204                 return;
3205
3206         with_pps_lock(intel_dp, wakeref) {
3207                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3208                 u32 pp;
3209
3210                 pp = ilk_get_pp_control(intel_dp);
3211                 pp &= ~EDP_BLC_ENABLE;
3212
3213                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3214                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3215         }
3216
3217         intel_dp->last_backlight_off = jiffies;
3218         edp_wait_backlight_off(intel_dp);
3219 }
3220
3221 /* Disable backlight PP control and backlight PWM. */
3222 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3223 {
3224         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3225         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3226
3227         if (!intel_dp_is_edp(intel_dp))
3228                 return;
3229
3230         drm_dbg_kms(&i915->drm, "\n");
3231
3232         _intel_edp_backlight_off(intel_dp);
3233         intel_panel_disable_backlight(old_conn_state);
3234 }
3235
3236 /*
3237  * Hook for controlling the panel power control backlight through the bl_power
3238  * sysfs attribute. Take care to handle multiple calls.
3239  */
3240 static void intel_edp_backlight_power(struct intel_connector *connector,
3241                                       bool enable)
3242 {
3243         struct drm_i915_private *i915 = to_i915(connector->base.dev);
3244         struct intel_dp *intel_dp = intel_attached_dp(connector);
3245         intel_wakeref_t wakeref;
3246         bool is_enabled;
3247
3248         is_enabled = false;
3249         with_pps_lock(intel_dp, wakeref)
3250                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3251         if (is_enabled == enable)
3252                 return;
3253
3254         drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3255                     enable ? "enable" : "disable");
3256
3257         if (enable)
3258                 _intel_edp_backlight_on(intel_dp);
3259         else
3260                 _intel_edp_backlight_off(intel_dp);
3261 }
3262
3263 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3264 {
3265         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3266         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3267         bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3268
3269         I915_STATE_WARN(cur_state != state,
3270                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3271                         dig_port->base.base.base.id, dig_port->base.base.name,
3272                         onoff(state), onoff(cur_state));
3273 }
3274 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3275
3276 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3277 {
3278         bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3279
3280         I915_STATE_WARN(cur_state != state,
3281                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3282                         onoff(state), onoff(cur_state));
3283 }
3284 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3285 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3286
3287 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3288                            const struct intel_crtc_state *pipe_config)
3289 {
3290         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3291         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3292
3293         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3294         assert_dp_port_disabled(intel_dp);
3295         assert_edp_pll_disabled(dev_priv);
3296
3297         drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3298                     pipe_config->port_clock);
3299
3300         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3301
3302         if (pipe_config->port_clock == 162000)
3303                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3304         else
3305                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3306
3307         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3308         intel_de_posting_read(dev_priv, DP_A);
3309         udelay(500);
3310
3311         /*
3312          * [DevILK] Work around required when enabling DP PLL
3313          * while a pipe is enabled going to FDI:
3314          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3315          * 2. Program DP PLL enable
3316          */
3317         if (IS_GEN(dev_priv, 5))
3318                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3319
3320         intel_dp->DP |= DP_PLL_ENABLE;
3321
3322         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3323         intel_de_posting_read(dev_priv, DP_A);
3324         udelay(200);
3325 }
3326
3327 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3328                             const struct intel_crtc_state *old_crtc_state)
3329 {
3330         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3331         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3332
3333         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3334         assert_dp_port_disabled(intel_dp);
3335         assert_edp_pll_enabled(dev_priv);
3336
3337         drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3338
3339         intel_dp->DP &= ~DP_PLL_ENABLE;
3340
3341         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3342         intel_de_posting_read(dev_priv, DP_A);
3343         udelay(200);
3344 }
3345
3346 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3347 {
3348         /*
3349          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3350          * be capable of signalling downstream hpd with a long pulse.
3351          * Whether or not that means D3 is safe to use is not clear,
3352          * but let's assume so until proven otherwise.
3353          *
3354          * FIXME should really check all downstream ports...
3355          */
3356         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3357                 drm_dp_is_branch(intel_dp->dpcd) &&
3358                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3359 }
3360
3361 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3362                                            const struct intel_crtc_state *crtc_state,
3363                                            bool enable)
3364 {
3365         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3366         int ret;
3367
3368         if (!crtc_state->dsc.compression_enable)
3369                 return;
3370
3371         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3372                                  enable ? DP_DECOMPRESSION_EN : 0);
3373         if (ret < 0)
3374                 drm_dbg_kms(&i915->drm,
3375                             "Failed to %s sink decompression state\n",
3376                             enable ? "enable" : "disable");
3377 }
3378
3379 /* If the sink supports it, try to set the power state appropriately */
3380 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3381 {
3382         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3383         int ret, i;
3384
3385         /* Should have a valid DPCD by this point */
3386         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3387                 return;
3388
3389         if (mode != DRM_MODE_DPMS_ON) {
3390                 if (downstream_hpd_needs_d0(intel_dp))
3391                         return;
3392
3393                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3394                                          DP_SET_POWER_D3);
3395         } else {
3396                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3397
3398                 /*
3399                  * When turning on, we need to retry for 1ms to give the sink
3400                  * time to wake up.
3401                  */
3402                 for (i = 0; i < 3; i++) {
3403                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3404                                                  DP_SET_POWER_D0);
3405                         if (ret == 1)
3406                                 break;
3407                         msleep(1);
3408                 }
3409
3410                 if (ret == 1 && lspcon->active)
3411                         lspcon_wait_pcon_mode(lspcon);
3412         }
3413
3414         if (ret != 1)
3415                 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3416                             mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3417 }
3418
3419 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3420                                  enum port port, enum pipe *pipe)
3421 {
3422         enum pipe p;
3423
3424         for_each_pipe(dev_priv, p) {
3425                 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3426
3427                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3428                         *pipe = p;
3429                         return true;
3430                 }
3431         }
3432
3433         drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3434                     port_name(port));
3435
3436         /* must initialize pipe to something for the asserts */
3437         *pipe = PIPE_A;
3438
3439         return false;
3440 }
3441
3442 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3443                            i915_reg_t dp_reg, enum port port,
3444                            enum pipe *pipe)
3445 {
3446         bool ret;
3447         u32 val;
3448
3449         val = intel_de_read(dev_priv, dp_reg);
3450
3451         ret = val & DP_PORT_EN;
3452
3453         /* asserts want to know the pipe even if the port is disabled */
3454         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3455                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3456         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3457                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3458         else if (IS_CHERRYVIEW(dev_priv))
3459                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3460         else
3461                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3462
3463         return ret;
3464 }
3465
3466 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3467                                   enum pipe *pipe)
3468 {
3469         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3470         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3471         intel_wakeref_t wakeref;
3472         bool ret;
3473
3474         wakeref = intel_display_power_get_if_enabled(dev_priv,
3475                                                      encoder->power_domain);
3476         if (!wakeref)
3477                 return false;
3478
3479         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3480                                     encoder->port, pipe);
3481
3482         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3483
3484         return ret;
3485 }
3486
3487 static void intel_dp_get_config(struct intel_encoder *encoder,
3488                                 struct intel_crtc_state *pipe_config)
3489 {
3490         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3491         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3492         u32 tmp, flags = 0;
3493         enum port port = encoder->port;
3494         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3495
3496         if (encoder->type == INTEL_OUTPUT_EDP)
3497                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3498         else
3499                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3500
3501         tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3502
3503         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3504
3505         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3506                 u32 trans_dp = intel_de_read(dev_priv,
3507                                              TRANS_DP_CTL(crtc->pipe));
3508
3509                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3510                         flags |= DRM_MODE_FLAG_PHSYNC;
3511                 else
3512                         flags |= DRM_MODE_FLAG_NHSYNC;
3513
3514                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3515                         flags |= DRM_MODE_FLAG_PVSYNC;
3516                 else
3517                         flags |= DRM_MODE_FLAG_NVSYNC;
3518         } else {
3519                 if (tmp & DP_SYNC_HS_HIGH)
3520                         flags |= DRM_MODE_FLAG_PHSYNC;
3521                 else
3522                         flags |= DRM_MODE_FLAG_NHSYNC;
3523
3524                 if (tmp & DP_SYNC_VS_HIGH)
3525                         flags |= DRM_MODE_FLAG_PVSYNC;
3526                 else
3527                         flags |= DRM_MODE_FLAG_NVSYNC;
3528         }
3529
3530         pipe_config->hw.adjusted_mode.flags |= flags;
3531
3532         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3533                 pipe_config->limited_color_range = true;
3534
3535         pipe_config->lane_count =
3536                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3537
3538         intel_dp_get_m_n(crtc, pipe_config);
3539
3540         if (port == PORT_A) {
3541                 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3542                         pipe_config->port_clock = 162000;
3543                 else
3544                         pipe_config->port_clock = 270000;
3545         }
3546
3547         pipe_config->hw.adjusted_mode.crtc_clock =
3548                 intel_dotclock_calculate(pipe_config->port_clock,
3549                                          &pipe_config->dp_m_n);
3550
3551         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3552             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3553                 /*
3554                  * This is a big fat ugly hack.
3555                  *
3556                  * Some machines in UEFI boot mode provide us a VBT that has 18
3557                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3558                  * unknown we fail to light up. Yet the same BIOS boots up with
3559                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3560                  * max, not what it tells us to use.
3561                  *
3562                  * Note: This will still be broken if the eDP panel is not lit
3563                  * up by the BIOS, and thus we can't get the mode at module
3564                  * load.
3565                  */
3566                 drm_dbg_kms(&dev_priv->drm,
3567                             "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3568                             pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3569                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3570         }
3571 }
3572
3573 static void intel_disable_dp(struct intel_atomic_state *state,
3574                              struct intel_encoder *encoder,
3575                              const struct intel_crtc_state *old_crtc_state,
3576                              const struct drm_connector_state *old_conn_state)
3577 {
3578         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3579
3580         intel_dp->link_trained = false;
3581
3582         if (old_crtc_state->has_audio)
3583                 intel_audio_codec_disable(encoder,
3584                                           old_crtc_state, old_conn_state);
3585
3586         /* Make sure the panel is off before trying to change the mode. But also
3587          * ensure that we have vdd while we switch off the panel. */
3588         intel_edp_panel_vdd_on(intel_dp);
3589         intel_edp_backlight_off(old_conn_state);
3590         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3591         intel_edp_panel_off(intel_dp);
3592 }
3593
3594 static void g4x_disable_dp(struct intel_atomic_state *state,
3595                            struct intel_encoder *encoder,
3596                            const struct intel_crtc_state *old_crtc_state,
3597                            const struct drm_connector_state *old_conn_state)
3598 {
3599         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3600 }
3601
3602 static void vlv_disable_dp(struct intel_atomic_state *state,
3603                            struct intel_encoder *encoder,
3604                            const struct intel_crtc_state *old_crtc_state,
3605                            const struct drm_connector_state *old_conn_state)
3606 {
3607         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3608 }
3609
3610 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3611                                 struct intel_encoder *encoder,
3612                                 const struct intel_crtc_state *old_crtc_state,
3613                                 const struct drm_connector_state *old_conn_state)
3614 {
3615         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3616         enum port port = encoder->port;
3617
3618         /*
3619          * Bspec does not list a specific disable sequence for g4x DP.
3620          * Follow the ilk+ sequence (disable pipe before the port) for
3621          * g4x DP as it does not suffer from underruns like the normal
3622          * g4x modeset sequence (disable pipe after the port).
3623          */
3624         intel_dp_link_down(encoder, old_crtc_state);
3625
3626         /* Only ilk+ has port A */
3627         if (port == PORT_A)
3628                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3629 }
3630
3631 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3632                                 struct intel_encoder *encoder,
3633                                 const struct intel_crtc_state *old_crtc_state,
3634                                 const struct drm_connector_state *old_conn_state)
3635 {
3636         intel_dp_link_down(encoder, old_crtc_state);
3637 }
3638
3639 static void chv_post_disable_dp(struct intel_atomic_state *state,
3640                                 struct intel_encoder *encoder,
3641                                 const struct intel_crtc_state *old_crtc_state,
3642                                 const struct drm_connector_state *old_conn_state)
3643 {
3644         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3645
3646         intel_dp_link_down(encoder, old_crtc_state);
3647
3648         vlv_dpio_get(dev_priv);
3649
3650         /* Assert data lane reset */
3651         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3652
3653         vlv_dpio_put(dev_priv);
3654 }
3655
3656 static void
3657 cpt_set_link_train(struct intel_dp *intel_dp,
3658                    u8 dp_train_pat)
3659 {
3660         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3661         u32 *DP = &intel_dp->DP;
3662
3663         *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3664
3665         switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3666         case DP_TRAINING_PATTERN_DISABLE:
3667                 *DP |= DP_LINK_TRAIN_OFF_CPT;
3668                 break;
3669         case DP_TRAINING_PATTERN_1:
3670                 *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3671                 break;
3672         case DP_TRAINING_PATTERN_2:
3673                 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3674                 break;
3675         case DP_TRAINING_PATTERN_3:
3676                 drm_dbg_kms(&dev_priv->drm,
3677                             "TPS3 not supported, using TPS2 instead\n");
3678                 *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3679                 break;
3680         }
3681
3682         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3683         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3684 }
3685
3686 static void
3687 g4x_set_link_train(struct intel_dp *intel_dp,
3688                    u8 dp_train_pat)
3689 {
3690         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3691         u32 *DP = &intel_dp->DP;
3692
3693         *DP &= ~DP_LINK_TRAIN_MASK;
3694
3695         switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3696         case DP_TRAINING_PATTERN_DISABLE:
3697                 *DP |= DP_LINK_TRAIN_OFF;
3698                 break;
3699         case DP_TRAINING_PATTERN_1:
3700                 *DP |= DP_LINK_TRAIN_PAT_1;
3701                 break;
3702         case DP_TRAINING_PATTERN_2:
3703                 *DP |= DP_LINK_TRAIN_PAT_2;
3704                 break;
3705         case DP_TRAINING_PATTERN_3:
3706                 drm_dbg_kms(&dev_priv->drm,
3707                             "TPS3 not supported, using TPS2 instead\n");
3708                 *DP |= DP_LINK_TRAIN_PAT_2;
3709                 break;
3710         }
3711
3712         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3713         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3714 }
3715
3716 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3717                                  const struct intel_crtc_state *old_crtc_state)
3718 {
3719         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3720
3721         /* enable with pattern 1 (as per spec) */
3722
3723         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3724
3725         /*
3726          * Magic for VLV/CHV. We _must_ first set up the register
3727          * without actually enabling the port, and then do another
3728          * write to enable the port. Otherwise link training will
3729          * fail when the power sequencer is freshly used for this port.
3730          */
3731         intel_dp->DP |= DP_PORT_EN;
3732         if (old_crtc_state->has_audio)
3733                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3734
3735         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3736         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3737 }
3738
3739 static void intel_enable_dp(struct intel_atomic_state *state,
3740                             struct intel_encoder *encoder,
3741                             const struct intel_crtc_state *pipe_config,
3742                             const struct drm_connector_state *conn_state)
3743 {
3744         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3745         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3746         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3747         u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3748         enum pipe pipe = crtc->pipe;
3749         intel_wakeref_t wakeref;
3750
3751         if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3752                 return;
3753
3754         with_pps_lock(intel_dp, wakeref) {
3755                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3756                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3757
3758                 intel_dp_enable_port(intel_dp, pipe_config);
3759
3760                 edp_panel_vdd_on(intel_dp);
3761                 edp_panel_on(intel_dp);
3762                 edp_panel_vdd_off(intel_dp, true);
3763         }
3764
3765         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3766                 unsigned int lane_mask = 0x0;
3767
3768                 if (IS_CHERRYVIEW(dev_priv))
3769                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3770
3771                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3772                                     lane_mask);
3773         }
3774
3775         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3776         intel_dp_start_link_train(intel_dp);
3777         intel_dp_stop_link_train(intel_dp);
3778
3779         if (pipe_config->has_audio) {
3780                 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3781                         pipe_name(pipe));
3782                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3783         }
3784 }
3785
3786 static void g4x_enable_dp(struct intel_atomic_state *state,
3787                           struct intel_encoder *encoder,
3788                           const struct intel_crtc_state *pipe_config,
3789                           const struct drm_connector_state *conn_state)
3790 {
3791         intel_enable_dp(state, encoder, pipe_config, conn_state);
3792         intel_edp_backlight_on(pipe_config, conn_state);
3793 }
3794
3795 static void vlv_enable_dp(struct intel_atomic_state *state,
3796                           struct intel_encoder *encoder,
3797                           const struct intel_crtc_state *pipe_config,
3798                           const struct drm_connector_state *conn_state)
3799 {
3800         intel_edp_backlight_on(pipe_config, conn_state);
3801 }
3802
3803 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3804                               struct intel_encoder *encoder,
3805                               const struct intel_crtc_state *pipe_config,
3806                               const struct drm_connector_state *conn_state)
3807 {
3808         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3809         enum port port = encoder->port;
3810
3811         intel_dp_prepare(encoder, pipe_config);
3812
3813         /* Only ilk+ has port A */
3814         if (port == PORT_A)
3815                 ilk_edp_pll_on(intel_dp, pipe_config);
3816 }
3817
3818 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3819 {
3820         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3821         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3822         enum pipe pipe = intel_dp->pps_pipe;
3823         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3824
3825         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3826
3827         if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3828                 return;
3829
3830         edp_panel_vdd_off_sync(intel_dp);
3831
3832         /*
3833          * VLV seems to get confused when multiple power sequencers
3834          * have the same port selected (even if only one has power/vdd
3835          * enabled). The failure manifests as vlv_wait_port_ready() failing
3836          * CHV on the other hand doesn't seem to mind having the same port
3837          * selected in multiple power sequencers, but let's clear the
3838          * port select always when logically disconnecting a power sequencer
3839          * from a port.
3840          */
3841         drm_dbg_kms(&dev_priv->drm,
3842                     "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3843                     pipe_name(pipe), intel_dig_port->base.base.base.id,
3844                     intel_dig_port->base.base.name);
3845         intel_de_write(dev_priv, pp_on_reg, 0);
3846         intel_de_posting_read(dev_priv, pp_on_reg);
3847
3848         intel_dp->pps_pipe = INVALID_PIPE;
3849 }
3850
3851 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3852                                       enum pipe pipe)
3853 {
3854         struct intel_encoder *encoder;
3855
3856         lockdep_assert_held(&dev_priv->pps_mutex);
3857
3858         for_each_intel_dp(&dev_priv->drm, encoder) {
3859                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3860
3861                 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3862                          "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3863                          pipe_name(pipe), encoder->base.base.id,
3864                          encoder->base.name);
3865
3866                 if (intel_dp->pps_pipe != pipe)
3867                         continue;
3868
3869                 drm_dbg_kms(&dev_priv->drm,
3870                             "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3871                             pipe_name(pipe), encoder->base.base.id,
3872                             encoder->base.name);
3873
3874                 /* make sure vdd is off before we steal it */
3875                 vlv_detach_power_sequencer(intel_dp);
3876         }
3877 }
3878
3879 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3880                                            const struct intel_crtc_state *crtc_state)
3881 {
3882         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3883         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3884         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3885
3886         lockdep_assert_held(&dev_priv->pps_mutex);
3887
3888         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3889
3890         if (intel_dp->pps_pipe != INVALID_PIPE &&
3891             intel_dp->pps_pipe != crtc->pipe) {
3892                 /*
3893                  * If another power sequencer was being used on this
3894                  * port previously make sure to turn off vdd there while
3895                  * we still have control of it.
3896                  */
3897                 vlv_detach_power_sequencer(intel_dp);
3898         }
3899
3900         /*
3901          * We may be stealing the power
3902          * sequencer from another port.
3903          */
3904         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3905
3906         intel_dp->active_pipe = crtc->pipe;
3907
3908         if (!intel_dp_is_edp(intel_dp))
3909                 return;
3910
3911         /* now it's all ours */
3912         intel_dp->pps_pipe = crtc->pipe;
3913
3914         drm_dbg_kms(&dev_priv->drm,
3915                     "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3916                     pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3917                     encoder->base.name);
3918
3919         /* init power sequencer on this pipe and port */
3920         intel_dp_init_panel_power_sequencer(intel_dp);
3921         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3922 }
3923
3924 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3925                               struct intel_encoder *encoder,
3926                               const struct intel_crtc_state *pipe_config,
3927                               const struct drm_connector_state *conn_state)
3928 {
3929         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3930
3931         intel_enable_dp(state, encoder, pipe_config, conn_state);
3932 }
3933
3934 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3935                                   struct intel_encoder *encoder,
3936                                   const struct intel_crtc_state *pipe_config,
3937                                   const struct drm_connector_state *conn_state)
3938 {
3939         intel_dp_prepare(encoder, pipe_config);
3940
3941         vlv_phy_pre_pll_enable(encoder, pipe_config);
3942 }
3943
3944 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3945                               struct intel_encoder *encoder,
3946                               const struct intel_crtc_state *pipe_config,
3947                               const struct drm_connector_state *conn_state)
3948 {
3949         chv_phy_pre_encoder_enable(encoder, pipe_config);
3950
3951         intel_enable_dp(state, encoder, pipe_config, conn_state);
3952
3953         /* Second common lane will stay alive on its own now */
3954         chv_phy_release_cl2_override(encoder);
3955 }
3956
3957 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3958                                   struct intel_encoder *encoder,
3959                                   const struct intel_crtc_state *pipe_config,
3960                                   const struct drm_connector_state *conn_state)
3961 {
3962         intel_dp_prepare(encoder, pipe_config);
3963
3964         chv_phy_pre_pll_enable(encoder, pipe_config);
3965 }
3966
3967 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3968                                     struct intel_encoder *encoder,
3969                                     const struct intel_crtc_state *old_crtc_state,
3970                                     const struct drm_connector_state *old_conn_state)
3971 {
3972         chv_phy_post_pll_disable(encoder, old_crtc_state);
3973 }
3974
3975 /*
3976  * Fetch AUX CH registers 0x202 - 0x207 which contain
3977  * link status information
3978  */
3979 bool
3980 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3981 {
3982         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3983                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3984 }
3985
3986 /* These are source-specific values. */
3987 u8
3988 intel_dp_voltage_max(struct intel_dp *intel_dp)
3989 {
3990         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3991         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3992         enum port port = encoder->port;
3993
3994         if (HAS_DDI(dev_priv))
3995                 return intel_ddi_dp_voltage_max(encoder);
3996         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3997                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3998         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3999                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4000         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
4001                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
4002         else
4003                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
4004 }
4005
4006 u8
4007 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
4008 {
4009         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4010         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4011         enum port port = encoder->port;
4012
4013         if (HAS_DDI(dev_priv)) {
4014                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4015         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4016                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4017                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4018                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
4019                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4020                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4021                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4022                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4023                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4024                 default:
4025                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4026                 }
4027         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4028                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4029                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4030                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4031                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4032                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4033                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4034                 default:
4035                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4036                 }
4037         } else {
4038                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4039                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4040                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4041                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4042                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4043                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4044                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4045                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4046                 default:
4047                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4048                 }
4049         }
4050 }
4051
4052 static void vlv_set_signal_levels(struct intel_dp *intel_dp)
4053 {
4054         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4055         unsigned long demph_reg_value, preemph_reg_value,
4056                 uniqtranscale_reg_value;
4057         u8 train_set = intel_dp->train_set[0];
4058
4059         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4060         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4061                 preemph_reg_value = 0x0004000;
4062                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4063                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4064                         demph_reg_value = 0x2B405555;
4065                         uniqtranscale_reg_value = 0x552AB83A;
4066                         break;
4067                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4068                         demph_reg_value = 0x2B404040;
4069                         uniqtranscale_reg_value = 0x5548B83A;
4070                         break;
4071                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4072                         demph_reg_value = 0x2B245555;
4073                         uniqtranscale_reg_value = 0x5560B83A;
4074                         break;
4075                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4076                         demph_reg_value = 0x2B405555;
4077                         uniqtranscale_reg_value = 0x5598DA3A;
4078                         break;
4079                 default:
4080                         return;
4081                 }
4082                 break;
4083         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4084                 preemph_reg_value = 0x0002000;
4085                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4086                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4087                         demph_reg_value = 0x2B404040;
4088                         uniqtranscale_reg_value = 0x5552B83A;
4089                         break;
4090                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4091                         demph_reg_value = 0x2B404848;
4092                         uniqtranscale_reg_value = 0x5580B83A;
4093                         break;
4094                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4095                         demph_reg_value = 0x2B404040;
4096                         uniqtranscale_reg_value = 0x55ADDA3A;
4097                         break;
4098                 default:
4099                         return;
4100                 }
4101                 break;
4102         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4103                 preemph_reg_value = 0x0000000;
4104                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4105                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4106                         demph_reg_value = 0x2B305555;
4107                         uniqtranscale_reg_value = 0x5570B83A;
4108                         break;
4109                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4110                         demph_reg_value = 0x2B2B4040;
4111                         uniqtranscale_reg_value = 0x55ADDA3A;
4112                         break;
4113                 default:
4114                         return;
4115                 }
4116                 break;
4117         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4118                 preemph_reg_value = 0x0006000;
4119                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4120                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4121                         demph_reg_value = 0x1B405555;
4122                         uniqtranscale_reg_value = 0x55ADDA3A;
4123                         break;
4124                 default:
4125                         return;
4126                 }
4127                 break;
4128         default:
4129                 return;
4130         }
4131
4132         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4133                                  uniqtranscale_reg_value, 0);
4134 }
4135
4136 static void chv_set_signal_levels(struct intel_dp *intel_dp)
4137 {
4138         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4139         u32 deemph_reg_value, margin_reg_value;
4140         bool uniq_trans_scale = false;
4141         u8 train_set = intel_dp->train_set[0];
4142
4143         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4144         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4145                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4146                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4147                         deemph_reg_value = 128;
4148                         margin_reg_value = 52;
4149                         break;
4150                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4151                         deemph_reg_value = 128;
4152                         margin_reg_value = 77;
4153                         break;
4154                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4155                         deemph_reg_value = 128;
4156                         margin_reg_value = 102;
4157                         break;
4158                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4159                         deemph_reg_value = 128;
4160                         margin_reg_value = 154;
4161                         uniq_trans_scale = true;
4162                         break;
4163                 default:
4164                         return;
4165                 }
4166                 break;
4167         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4168                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4169                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4170                         deemph_reg_value = 85;
4171                         margin_reg_value = 78;
4172                         break;
4173                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4174                         deemph_reg_value = 85;
4175                         margin_reg_value = 116;
4176                         break;
4177                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4178                         deemph_reg_value = 85;
4179                         margin_reg_value = 154;
4180                         break;
4181                 default:
4182                         return;
4183                 }
4184                 break;
4185         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4186                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4187                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4188                         deemph_reg_value = 64;
4189                         margin_reg_value = 104;
4190                         break;
4191                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4192                         deemph_reg_value = 64;
4193                         margin_reg_value = 154;
4194                         break;
4195                 default:
4196                         return;
4197                 }
4198                 break;
4199         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4200                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4201                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4202                         deemph_reg_value = 43;
4203                         margin_reg_value = 154;
4204                         break;
4205                 default:
4206                         return;
4207                 }
4208                 break;
4209         default:
4210                 return;
4211         }
4212
4213         chv_set_phy_signal_level(encoder, deemph_reg_value,
4214                                  margin_reg_value, uniq_trans_scale);
4215 }
4216
4217 static u32 g4x_signal_levels(u8 train_set)
4218 {
4219         u32 signal_levels = 0;
4220
4221         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4222         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4223         default:
4224                 signal_levels |= DP_VOLTAGE_0_4;
4225                 break;
4226         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4227                 signal_levels |= DP_VOLTAGE_0_6;
4228                 break;
4229         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4230                 signal_levels |= DP_VOLTAGE_0_8;
4231                 break;
4232         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4233                 signal_levels |= DP_VOLTAGE_1_2;
4234                 break;
4235         }
4236         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4237         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4238         default:
4239                 signal_levels |= DP_PRE_EMPHASIS_0;
4240                 break;
4241         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4242                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4243                 break;
4244         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4245                 signal_levels |= DP_PRE_EMPHASIS_6;
4246                 break;
4247         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4248                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4249                 break;
4250         }
4251         return signal_levels;
4252 }
4253
4254 static void
4255 g4x_set_signal_levels(struct intel_dp *intel_dp)
4256 {
4257         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4258         u8 train_set = intel_dp->train_set[0];
4259         u32 signal_levels;
4260
4261         signal_levels = g4x_signal_levels(train_set);
4262
4263         drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4264                     signal_levels);
4265
4266         intel_dp->DP &= ~(DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK);
4267         intel_dp->DP |= signal_levels;
4268
4269         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4270         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4271 }
4272
4273 /* SNB CPU eDP voltage swing and pre-emphasis control */
4274 static u32 snb_cpu_edp_signal_levels(u8 train_set)
4275 {
4276         u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4277                                         DP_TRAIN_PRE_EMPHASIS_MASK);
4278
4279         switch (signal_levels) {
4280         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4281         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4282                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4283         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4284                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4285         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4286         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4287                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4288         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4289         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4290                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4291         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4292         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4293                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4294         default:
4295                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4296                               "0x%x\n", signal_levels);
4297                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4298         }
4299 }
4300
4301 static void
4302 snb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4303 {
4304         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4305         u8 train_set = intel_dp->train_set[0];
4306         u32 signal_levels;
4307
4308         signal_levels = snb_cpu_edp_signal_levels(train_set);
4309
4310         drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4311                     signal_levels);
4312
4313         intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4314         intel_dp->DP |= signal_levels;
4315
4316         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4317         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4318 }
4319
4320 /* IVB CPU eDP voltage swing and pre-emphasis control */
4321 static u32 ivb_cpu_edp_signal_levels(u8 train_set)
4322 {
4323         u8 signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4324                                         DP_TRAIN_PRE_EMPHASIS_MASK);
4325
4326         switch (signal_levels) {
4327         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4328                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4329         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4330                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4331         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4332                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4333
4334         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4335                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4336         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4337                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4338
4339         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4340                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4341         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4342                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4343
4344         default:
4345                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4346                               "0x%x\n", signal_levels);
4347                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4348         }
4349 }
4350
4351 static void
4352 ivb_cpu_edp_set_signal_levels(struct intel_dp *intel_dp)
4353 {
4354         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4355         u8 train_set = intel_dp->train_set[0];
4356         u32 signal_levels;
4357
4358         signal_levels = ivb_cpu_edp_signal_levels(train_set);
4359
4360         drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4361                     signal_levels);
4362
4363         intel_dp->DP &= ~EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4364         intel_dp->DP |= signal_levels;
4365
4366         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4367         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4368 }
4369
4370 void intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4371 {
4372         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4373         u8 train_set = intel_dp->train_set[0];
4374
4375         drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4376                     train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4377                     train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4378         drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4379                     (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4380                     DP_TRAIN_PRE_EMPHASIS_SHIFT,
4381                     train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4382                     " (max)" : "");
4383
4384         intel_dp->set_signal_levels(intel_dp);
4385 }
4386
4387 void
4388 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4389                                        u8 dp_train_pat)
4390 {
4391         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4392         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
4393
4394         if (dp_train_pat & train_pat_mask)
4395                 drm_dbg_kms(&dev_priv->drm,
4396                             "Using DP training pattern TPS%d\n",
4397                             dp_train_pat & train_pat_mask);
4398
4399         intel_dp->set_link_train(intel_dp, dp_train_pat);
4400 }
4401
4402 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4403 {
4404         if (intel_dp->set_idle_link_train)
4405                 intel_dp->set_idle_link_train(intel_dp);
4406 }
4407
4408 static void
4409 intel_dp_link_down(struct intel_encoder *encoder,
4410                    const struct intel_crtc_state *old_crtc_state)
4411 {
4412         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4413         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4414         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4415         enum port port = encoder->port;
4416         u32 DP = intel_dp->DP;
4417
4418         if (drm_WARN_ON(&dev_priv->drm,
4419                         (intel_de_read(dev_priv, intel_dp->output_reg) &
4420                          DP_PORT_EN) == 0))
4421                 return;
4422
4423         drm_dbg_kms(&dev_priv->drm, "\n");
4424
4425         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4426             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4427                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4428                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4429         } else {
4430                 DP &= ~DP_LINK_TRAIN_MASK;
4431                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4432         }
4433         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4434         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4435
4436         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4437         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4438         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4439
4440         /*
4441          * HW workaround for IBX, we need to move the port
4442          * to transcoder A after disabling it to allow the
4443          * matching HDMI port to be enabled on transcoder A.
4444          */
4445         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4446                 /*
4447                  * We get CPU/PCH FIFO underruns on the other pipe when
4448                  * doing the workaround. Sweep them under the rug.
4449                  */
4450                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4451                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4452
4453                 /* always enable with pattern 1 (as per spec) */
4454                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4455                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4456                         DP_LINK_TRAIN_PAT_1;
4457                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4458                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4459
4460                 DP &= ~DP_PORT_EN;
4461                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4462                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4463
4464                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4465                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4466                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4467         }
4468
4469         msleep(intel_dp->panel_power_down_delay);
4470
4471         intel_dp->DP = DP;
4472
4473         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4474                 intel_wakeref_t wakeref;
4475
4476                 with_pps_lock(intel_dp, wakeref)
4477                         intel_dp->active_pipe = INVALID_PIPE;
4478         }
4479 }
4480
4481 static void
4482 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4483 {
4484         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4485         u8 dpcd_ext[6];
4486
4487         /*
4488          * Prior to DP1.3 the bit represented by
4489          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4490          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4491          * the true capability of the panel. The only way to check is to
4492          * then compare 0000h and 2200h.
4493          */
4494         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4495               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4496                 return;
4497
4498         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4499                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4500                 drm_err(&i915->drm,
4501                         "DPCD failed read at extended capabilities\n");
4502                 return;
4503         }
4504
4505         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4506                 drm_dbg_kms(&i915->drm,
4507                             "DPCD extended DPCD rev less than base DPCD rev\n");
4508                 return;
4509         }
4510
4511         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4512                 return;
4513
4514         drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4515                     (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4516
4517         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4518 }
4519
4520 bool
4521 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4522 {
4523         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4524
4525         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4526                              sizeof(intel_dp->dpcd)) < 0)
4527                 return false; /* aux transfer failed */
4528
4529         intel_dp_extended_receiver_capabilities(intel_dp);
4530
4531         drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4532                     intel_dp->dpcd);
4533
4534         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4535 }
4536
4537 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4538 {
4539         u8 dprx = 0;
4540
4541         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4542                               &dprx) != 1)
4543                 return false;
4544         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4545 }
4546
4547 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4548 {
4549         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4550
4551         /*
4552          * Clear the cached register set to avoid using stale values
4553          * for the sinks that do not support DSC.
4554          */
4555         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4556
4557         /* Clear fec_capable to avoid using stale values */
4558         intel_dp->fec_capable = 0;
4559
4560         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4561         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4562             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4563                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4564                                      intel_dp->dsc_dpcd,
4565                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4566                         drm_err(&i915->drm,
4567                                 "Failed to read DPCD register 0x%x\n",
4568                                 DP_DSC_SUPPORT);
4569
4570                 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4571                             (int)sizeof(intel_dp->dsc_dpcd),
4572                             intel_dp->dsc_dpcd);
4573
4574                 /* FEC is supported only on DP 1.4 */
4575                 if (!intel_dp_is_edp(intel_dp) &&
4576                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4577                                       &intel_dp->fec_capable) < 0)
4578                         drm_err(&i915->drm,
4579                                 "Failed to read FEC DPCD register\n");
4580
4581                 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4582                             intel_dp->fec_capable);
4583         }
4584 }
4585
4586 static bool
4587 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4588 {
4589         struct drm_i915_private *dev_priv =
4590                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4591
4592         /* this function is meant to be called only once */
4593         drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4594
4595         if (!intel_dp_read_dpcd(intel_dp))
4596                 return false;
4597
4598         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4599                          drm_dp_is_branch(intel_dp->dpcd));
4600
4601         /*
4602          * Read the eDP display control registers.
4603          *
4604          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4605          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4606          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4607          * method). The display control registers should read zero if they're
4608          * not supported anyway.
4609          */
4610         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4611                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4612                              sizeof(intel_dp->edp_dpcd))
4613                 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4614                             (int)sizeof(intel_dp->edp_dpcd),
4615                             intel_dp->edp_dpcd);
4616
4617         /*
4618          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4619          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4620          */
4621         intel_psr_init_dpcd(intel_dp);
4622
4623         /* Read the eDP 1.4+ supported link rates. */
4624         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4625                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4626                 int i;
4627
4628                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4629                                 sink_rates, sizeof(sink_rates));
4630
4631                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4632                         int val = le16_to_cpu(sink_rates[i]);
4633
4634                         if (val == 0)
4635                                 break;
4636
4637                         /* Value read multiplied by 200kHz gives the per-lane
4638                          * link rate in kHz. The source rates are, however,
4639                          * stored in terms of LS_Clk kHz. The full conversion
4640                          * back to symbols is
4641                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4642                          */
4643                         intel_dp->sink_rates[i] = (val * 200) / 10;
4644                 }
4645                 intel_dp->num_sink_rates = i;
4646         }
4647
4648         /*
4649          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4650          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4651          */
4652         if (intel_dp->num_sink_rates)
4653                 intel_dp->use_rate_select = true;
4654         else
4655                 intel_dp_set_sink_rates(intel_dp);
4656
4657         intel_dp_set_common_rates(intel_dp);
4658
4659         /* Read the eDP DSC DPCD registers */
4660         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4661                 intel_dp_get_dsc_sink_cap(intel_dp);
4662
4663         return true;
4664 }
4665
4666
4667 static bool
4668 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4669 {
4670         if (!intel_dp_read_dpcd(intel_dp))
4671                 return false;
4672
4673         /*
4674          * Don't clobber cached eDP rates. Also skip re-reading
4675          * the OUI/ID since we know it won't change.
4676          */
4677         if (!intel_dp_is_edp(intel_dp)) {
4678                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4679                                  drm_dp_is_branch(intel_dp->dpcd));
4680
4681                 intel_dp_set_sink_rates(intel_dp);
4682                 intel_dp_set_common_rates(intel_dp);
4683         }
4684
4685         /*
4686          * Some eDP panels do not set a valid value for sink count, that is why
4687          * it don't care about read it here and in intel_edp_init_dpcd().
4688          */
4689         if (!intel_dp_is_edp(intel_dp) &&
4690             !drm_dp_has_quirk(&intel_dp->desc, 0,
4691                               DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4692                 u8 count;
4693                 ssize_t r;
4694
4695                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4696                 if (r < 1)
4697                         return false;
4698
4699                 /*
4700                  * Sink count can change between short pulse hpd hence
4701                  * a member variable in intel_dp will track any changes
4702                  * between short pulse interrupts.
4703                  */
4704                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4705
4706                 /*
4707                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4708                  * a dongle is present but no display. Unless we require to know
4709                  * if a dongle is present or not, we don't need to update
4710                  * downstream port information. So, an early return here saves
4711                  * time from performing other operations which are not required.
4712                  */
4713                 if (!intel_dp->sink_count)
4714                         return false;
4715         }
4716
4717         if (!drm_dp_is_branch(intel_dp->dpcd))
4718                 return true; /* native DP sink */
4719
4720         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4721                 return true; /* no per-port downstream info */
4722
4723         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4724                              intel_dp->downstream_ports,
4725                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4726                 return false; /* downstream port status fetch failed */
4727
4728         return true;
4729 }
4730
4731 static bool
4732 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4733 {
4734         u8 mstm_cap;
4735
4736         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4737                 return false;
4738
4739         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4740                 return false;
4741
4742         return mstm_cap & DP_MST_CAP;
4743 }
4744
4745 static bool
4746 intel_dp_can_mst(struct intel_dp *intel_dp)
4747 {
4748         return i915_modparams.enable_dp_mst &&
4749                 intel_dp->can_mst &&
4750                 intel_dp_sink_can_mst(intel_dp);
4751 }
4752
4753 static void
4754 intel_dp_configure_mst(struct intel_dp *intel_dp)
4755 {
4756         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4757         struct intel_encoder *encoder =
4758                 &dp_to_dig_port(intel_dp)->base;
4759         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4760
4761         drm_dbg_kms(&i915->drm,
4762                     "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4763                     encoder->base.base.id, encoder->base.name,
4764                     yesno(intel_dp->can_mst), yesno(sink_can_mst),
4765                     yesno(i915_modparams.enable_dp_mst));
4766
4767         if (!intel_dp->can_mst)
4768                 return;
4769
4770         intel_dp->is_mst = sink_can_mst &&
4771                 i915_modparams.enable_dp_mst;
4772
4773         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4774                                         intel_dp->is_mst);
4775 }
4776
4777 static bool
4778 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4779 {
4780         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4781                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4782                 DP_DPRX_ESI_LEN;
4783 }
4784
4785 bool
4786 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4787                        const struct drm_connector_state *conn_state)
4788 {
4789         /*
4790          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4791          * of Color Encoding Format and Content Color Gamut], in order to
4792          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4793          */
4794         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4795                 return true;
4796
4797         switch (conn_state->colorspace) {
4798         case DRM_MODE_COLORIMETRY_SYCC_601:
4799         case DRM_MODE_COLORIMETRY_OPYCC_601:
4800         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4801         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4802         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4803                 return true;
4804         default:
4805                 break;
4806         }
4807
4808         return false;
4809 }
4810
4811 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4812                                      struct dp_sdp *sdp, size_t size)
4813 {
4814         size_t length = sizeof(struct dp_sdp);
4815
4816         if (size < length)
4817                 return -ENOSPC;
4818
4819         memset(sdp, 0, size);
4820
4821         /*
4822          * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4823          * VSC SDP Header Bytes
4824          */
4825         sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4826         sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4827         sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4828         sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4829
4830         /*
4831          * Only revision 0x5 supports Pixel Encoding/Colorimetry Format as
4832          * per DP 1.4a spec.
4833          */
4834         if (vsc->revision != 0x5)
4835                 goto out;
4836
4837         /* VSC SDP Payload for DB16 through DB18 */
4838         /* Pixel Encoding and Colorimetry Formats  */
4839         sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4840         sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4841
4842         switch (vsc->bpc) {
4843         case 6:
4844                 /* 6bpc: 0x0 */
4845                 break;
4846         case 8:
4847                 sdp->db[17] = 0x1; /* DB17[3:0] */
4848                 break;
4849         case 10:
4850                 sdp->db[17] = 0x2;
4851                 break;
4852         case 12:
4853                 sdp->db[17] = 0x3;
4854                 break;
4855         case 16:
4856                 sdp->db[17] = 0x4;
4857                 break;
4858         default:
4859                 MISSING_CASE(vsc->bpc);
4860                 break;
4861         }
4862         /* Dynamic Range and Component Bit Depth */
4863         if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4864                 sdp->db[17] |= 0x80;  /* DB17[7] */
4865
4866         /* Content Type */
4867         sdp->db[18] = vsc->content_type & 0x7;
4868
4869 out:
4870         return length;
4871 }
4872
4873 static ssize_t
4874 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4875                                          struct dp_sdp *sdp,
4876                                          size_t size)
4877 {
4878         size_t length = sizeof(struct dp_sdp);
4879         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4880         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4881         ssize_t len;
4882
4883         if (size < length)
4884                 return -ENOSPC;
4885
4886         memset(sdp, 0, size);
4887
4888         len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4889         if (len < 0) {
4890                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4891                 return -ENOSPC;
4892         }
4893
4894         if (len != infoframe_size) {
4895                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4896                 return -ENOSPC;
4897         }
4898
4899         /*
4900          * Set up the infoframe sdp packet for HDR static metadata.
4901          * Prepare VSC Header for SU as per DP 1.4a spec,
4902          * Table 2-100 and Table 2-101
4903          */
4904
4905         /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4906         sdp->sdp_header.HB0 = 0;
4907         /*
4908          * Packet Type 80h + Non-audio INFOFRAME Type value
4909          * HDMI_INFOFRAME_TYPE_DRM: 0x87
4910          * - 80h + Non-audio INFOFRAME Type value
4911          * - InfoFrame Type: 0x07
4912          *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4913          */
4914         sdp->sdp_header.HB1 = drm_infoframe->type;
4915         /*
4916          * Least Significant Eight Bits of (Data Byte Count – 1)
4917          * infoframe_size - 1
4918          */
4919         sdp->sdp_header.HB2 = 0x1D;
4920         /* INFOFRAME SDP Version Number */
4921         sdp->sdp_header.HB3 = (0x13 << 2);
4922         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4923         sdp->db[0] = drm_infoframe->version;
4924         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4925         sdp->db[1] = drm_infoframe->length;
4926         /*
4927          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4928          * HDMI_INFOFRAME_HEADER_SIZE
4929          */
4930         BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4931         memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4932                HDMI_DRM_INFOFRAME_SIZE);
4933
4934         /*
4935          * Size of DP infoframe sdp packet for HDR static metadata consists of
4936          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4937          * - Two Data Blocks: 2 bytes
4938          *    CTA Header Byte2 (INFOFRAME Version Number)
4939          *    CTA Header Byte3 (Length of INFOFRAME)
4940          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4941          *
4942          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4943          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4944          * will pad rest of the size.
4945          */
4946         return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4947 }
4948
4949 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4950                                const struct intel_crtc_state *crtc_state,
4951                                unsigned int type)
4952 {
4953         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4954         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4955         struct dp_sdp sdp = {};
4956         ssize_t len;
4957
4958         if ((crtc_state->infoframes.enable &
4959              intel_hdmi_infoframe_enable(type)) == 0)
4960                 return;
4961
4962         switch (type) {
4963         case DP_SDP_VSC:
4964                 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4965                                             sizeof(sdp));
4966                 break;
4967         case HDMI_PACKET_TYPE_GAMUT_METADATA:
4968                 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4969                                                                &sdp, sizeof(sdp));
4970                 break;
4971         default:
4972                 MISSING_CASE(type);
4973                 return;
4974         }
4975
4976         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4977                 return;
4978
4979         intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4980 }
4981
4982 void intel_write_dp_vsc_sdp(struct intel_encoder *encoder,
4983                             const struct intel_crtc_state *crtc_state,
4984                             struct drm_dp_vsc_sdp *vsc)
4985 {
4986         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4987         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4988         struct dp_sdp sdp = {};
4989         ssize_t len;
4990
4991         len = intel_dp_vsc_sdp_pack(vsc, &sdp, sizeof(sdp));
4992
4993         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4994                 return;
4995
4996         intel_dig_port->write_infoframe(encoder, crtc_state, DP_SDP_VSC,
4997                                         &sdp, len);
4998 }
4999
5000 void intel_dp_set_infoframes(struct intel_encoder *encoder,
5001                              bool enable,
5002                              const struct intel_crtc_state *crtc_state,
5003                              const struct drm_connector_state *conn_state)
5004 {
5005         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5006         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5007         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
5008         u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
5009                          VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
5010                          VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
5011         u32 val = intel_de_read(dev_priv, reg);
5012
5013         /* TODO: Add DSC case (DIP_ENABLE_PPS) */
5014         /* When PSR is enabled, this routine doesn't disable VSC DIP */
5015         if (intel_psr_enabled(intel_dp))
5016                 val &= ~dip_enable;
5017         else
5018                 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
5019
5020         if (!enable) {
5021                 intel_de_write(dev_priv, reg, val);
5022                 intel_de_posting_read(dev_priv, reg);
5023                 return;
5024         }
5025
5026         intel_de_write(dev_priv, reg, val);
5027         intel_de_posting_read(dev_priv, reg);
5028
5029         /* When PSR is enabled, VSC SDP is handled by PSR routine */
5030         if (!intel_psr_enabled(intel_dp))
5031                 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5032
5033         intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5034 }
5035
5036 static int intel_dp_vsc_sdp_unpack(struct drm_dp_vsc_sdp *vsc,
5037                                    const void *buffer, size_t size)
5038 {
5039         const struct dp_sdp *sdp = buffer;
5040
5041         if (size < sizeof(struct dp_sdp))
5042                 return -EINVAL;
5043
5044         memset(vsc, 0, size);
5045
5046         if (sdp->sdp_header.HB0 != 0)
5047                 return -EINVAL;
5048
5049         if (sdp->sdp_header.HB1 != DP_SDP_VSC)
5050                 return -EINVAL;
5051
5052         vsc->sdp_type = sdp->sdp_header.HB1;
5053         vsc->revision = sdp->sdp_header.HB2;
5054         vsc->length = sdp->sdp_header.HB3;
5055
5056         if ((sdp->sdp_header.HB2 == 0x2 && sdp->sdp_header.HB3 == 0x8) ||
5057             (sdp->sdp_header.HB2 == 0x4 && sdp->sdp_header.HB3 == 0xe)) {
5058                 /*
5059                  * - HB2 = 0x2, HB3 = 0x8
5060                  *   VSC SDP supporting 3D stereo + PSR
5061                  * - HB2 = 0x4, HB3 = 0xe
5062                  *   VSC SDP supporting 3D stereo + PSR2 with Y-coordinate of
5063                  *   first scan line of the SU region (applies to eDP v1.4b
5064                  *   and higher).
5065                  */
5066                 return 0;
5067         } else if (sdp->sdp_header.HB2 == 0x5 && sdp->sdp_header.HB3 == 0x13) {
5068                 /*
5069                  * - HB2 = 0x5, HB3 = 0x13
5070                  *   VSC SDP supporting 3D stereo + PSR2 + Pixel Encoding/Colorimetry
5071                  *   Format.
5072                  */
5073                 vsc->pixelformat = (sdp->db[16] >> 4) & 0xf;
5074                 vsc->colorimetry = sdp->db[16] & 0xf;
5075                 vsc->dynamic_range = (sdp->db[17] >> 7) & 0x1;
5076
5077                 switch (sdp->db[17] & 0x7) {
5078                 case 0x0:
5079                         vsc->bpc = 6;
5080                         break;
5081                 case 0x1:
5082                         vsc->bpc = 8;
5083                         break;
5084                 case 0x2:
5085                         vsc->bpc = 10;
5086                         break;
5087                 case 0x3:
5088                         vsc->bpc = 12;
5089                         break;
5090                 case 0x4:
5091                         vsc->bpc = 16;
5092                         break;
5093                 default:
5094                         MISSING_CASE(sdp->db[17] & 0x7);
5095                         return -EINVAL;
5096                 }
5097
5098                 vsc->content_type = sdp->db[18] & 0x7;
5099         } else {
5100                 return -EINVAL;
5101         }
5102
5103         return 0;
5104 }
5105
5106 static int
5107 intel_dp_hdr_metadata_infoframe_sdp_unpack(struct hdmi_drm_infoframe *drm_infoframe,
5108                                            const void *buffer, size_t size)
5109 {
5110         int ret;
5111
5112         const struct dp_sdp *sdp = buffer;
5113
5114         if (size < sizeof(struct dp_sdp))
5115                 return -EINVAL;
5116
5117         if (sdp->sdp_header.HB0 != 0)
5118                 return -EINVAL;
5119
5120         if (sdp->sdp_header.HB1 != HDMI_INFOFRAME_TYPE_DRM)
5121                 return -EINVAL;
5122
5123         /*
5124          * Least Significant Eight Bits of (Data Byte Count – 1)
5125          * 1Dh (i.e., Data Byte Count = 30 bytes).
5126          */
5127         if (sdp->sdp_header.HB2 != 0x1D)
5128                 return -EINVAL;
5129
5130         /* Most Significant Two Bits of (Data Byte Count – 1), Clear to 00b. */
5131         if ((sdp->sdp_header.HB3 & 0x3) != 0)
5132                 return -EINVAL;
5133
5134         /* INFOFRAME SDP Version Number */
5135         if (((sdp->sdp_header.HB3 >> 2) & 0x3f) != 0x13)
5136                 return -EINVAL;
5137
5138         /* CTA Header Byte 2 (INFOFRAME Version Number) */
5139         if (sdp->db[0] != 1)
5140                 return -EINVAL;
5141
5142         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5143         if (sdp->db[1] != HDMI_DRM_INFOFRAME_SIZE)
5144                 return -EINVAL;
5145
5146         ret = hdmi_drm_infoframe_unpack_only(drm_infoframe, &sdp->db[2],
5147                                              HDMI_DRM_INFOFRAME_SIZE);
5148
5149         return ret;
5150 }
5151
5152 static void intel_read_dp_vsc_sdp(struct intel_encoder *encoder,
5153                                   struct intel_crtc_state *crtc_state,
5154                                   struct drm_dp_vsc_sdp *vsc)
5155 {
5156         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5157         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5158         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5159         unsigned int type = DP_SDP_VSC;
5160         struct dp_sdp sdp = {};
5161         int ret;
5162
5163         /* When PSR is enabled, VSC SDP is handled by PSR routine */
5164         if (intel_psr_enabled(intel_dp))
5165                 return;
5166
5167         if ((crtc_state->infoframes.enable &
5168              intel_hdmi_infoframe_enable(type)) == 0)
5169                 return;
5170
5171         intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp, sizeof(sdp));
5172
5173         ret = intel_dp_vsc_sdp_unpack(vsc, &sdp, sizeof(sdp));
5174
5175         if (ret)
5176                 drm_dbg_kms(&dev_priv->drm, "Failed to unpack DP VSC SDP\n");
5177 }
5178
5179 static void intel_read_dp_hdr_metadata_infoframe_sdp(struct intel_encoder *encoder,
5180                                                      struct intel_crtc_state *crtc_state,
5181                                                      struct hdmi_drm_infoframe *drm_infoframe)
5182 {
5183         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5184         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5185         unsigned int type = HDMI_PACKET_TYPE_GAMUT_METADATA;
5186         struct dp_sdp sdp = {};
5187         int ret;
5188
5189         if ((crtc_state->infoframes.enable &
5190             intel_hdmi_infoframe_enable(type)) == 0)
5191                 return;
5192
5193         intel_dig_port->read_infoframe(encoder, crtc_state, type, &sdp,
5194                                        sizeof(sdp));
5195
5196         ret = intel_dp_hdr_metadata_infoframe_sdp_unpack(drm_infoframe, &sdp,
5197                                                          sizeof(sdp));
5198
5199         if (ret)
5200                 drm_dbg_kms(&dev_priv->drm,
5201                             "Failed to unpack DP HDR Metadata Infoframe SDP\n");
5202 }
5203
5204 void intel_read_dp_sdp(struct intel_encoder *encoder,
5205                        struct intel_crtc_state *crtc_state,
5206                        unsigned int type)
5207 {
5208         switch (type) {
5209         case DP_SDP_VSC:
5210                 intel_read_dp_vsc_sdp(encoder, crtc_state,
5211                                       &crtc_state->infoframes.vsc);
5212                 break;
5213         case HDMI_PACKET_TYPE_GAMUT_METADATA:
5214                 intel_read_dp_hdr_metadata_infoframe_sdp(encoder, crtc_state,
5215                                                          &crtc_state->infoframes.drm.drm);
5216                 break;
5217         default:
5218                 MISSING_CASE(type);
5219                 break;
5220         }
5221 }
5222
5223 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5224 {
5225         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5226         int status = 0;
5227         int test_link_rate;
5228         u8 test_lane_count, test_link_bw;
5229         /* (DP CTS 1.2)
5230          * 4.3.1.11
5231          */
5232         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5233         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5234                                    &test_lane_count);
5235
5236         if (status <= 0) {
5237                 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5238                 return DP_TEST_NAK;
5239         }
5240         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5241
5242         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5243                                    &test_link_bw);
5244         if (status <= 0) {
5245                 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5246                 return DP_TEST_NAK;
5247         }
5248         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5249
5250         /* Validate the requested link rate and lane count */
5251         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5252                                         test_lane_count))
5253                 return DP_TEST_NAK;
5254
5255         intel_dp->compliance.test_lane_count = test_lane_count;
5256         intel_dp->compliance.test_link_rate = test_link_rate;
5257
5258         return DP_TEST_ACK;
5259 }
5260
5261 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5262 {
5263         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5264         u8 test_pattern;
5265         u8 test_misc;
5266         __be16 h_width, v_height;
5267         int status = 0;
5268
5269         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5270         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5271                                    &test_pattern);
5272         if (status <= 0) {
5273                 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5274                 return DP_TEST_NAK;
5275         }
5276         if (test_pattern != DP_COLOR_RAMP)
5277                 return DP_TEST_NAK;
5278
5279         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5280                                   &h_width, 2);
5281         if (status <= 0) {
5282                 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5283                 return DP_TEST_NAK;
5284         }
5285
5286         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5287                                   &v_height, 2);
5288         if (status <= 0) {
5289                 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5290                 return DP_TEST_NAK;
5291         }
5292
5293         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5294                                    &test_misc);
5295         if (status <= 0) {
5296                 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5297                 return DP_TEST_NAK;
5298         }
5299         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5300                 return DP_TEST_NAK;
5301         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5302                 return DP_TEST_NAK;
5303         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5304         case DP_TEST_BIT_DEPTH_6:
5305                 intel_dp->compliance.test_data.bpc = 6;
5306                 break;
5307         case DP_TEST_BIT_DEPTH_8:
5308                 intel_dp->compliance.test_data.bpc = 8;
5309                 break;
5310         default:
5311                 return DP_TEST_NAK;
5312         }
5313
5314         intel_dp->compliance.test_data.video_pattern = test_pattern;
5315         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5316         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5317         /* Set test active flag here so userspace doesn't interrupt things */
5318         intel_dp->compliance.test_active = true;
5319
5320         return DP_TEST_ACK;
5321 }
5322
5323 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5324 {
5325         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5326         u8 test_result = DP_TEST_ACK;
5327         struct intel_connector *intel_connector = intel_dp->attached_connector;
5328         struct drm_connector *connector = &intel_connector->base;
5329
5330         if (intel_connector->detect_edid == NULL ||
5331             connector->edid_corrupt ||
5332             intel_dp->aux.i2c_defer_count > 6) {
5333                 /* Check EDID read for NACKs, DEFERs and corruption
5334                  * (DP CTS 1.2 Core r1.1)
5335                  *    4.2.2.4 : Failed EDID read, I2C_NAK
5336                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
5337                  *    4.2.2.6 : EDID corruption detected
5338                  * Use failsafe mode for all cases
5339                  */
5340                 if (intel_dp->aux.i2c_nack_count > 0 ||
5341                         intel_dp->aux.i2c_defer_count > 0)
5342                         drm_dbg_kms(&i915->drm,
5343                                     "EDID read had %d NACKs, %d DEFERs\n",
5344                                     intel_dp->aux.i2c_nack_count,
5345                                     intel_dp->aux.i2c_defer_count);
5346                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5347         } else {
5348                 struct edid *block = intel_connector->detect_edid;
5349
5350                 /* We have to write the checksum
5351                  * of the last block read
5352                  */
5353                 block += intel_connector->detect_edid->extensions;
5354
5355                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5356                                        block->checksum) <= 0)
5357                         drm_dbg_kms(&i915->drm,
5358                                     "Failed to write EDID checksum\n");
5359
5360                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5361                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5362         }
5363
5364         /* Set test active flag here so userspace doesn't interrupt things */
5365         intel_dp->compliance.test_active = true;
5366
5367         return test_result;
5368 }
5369
5370 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5371 {
5372         struct drm_dp_phy_test_params *data =
5373                 &intel_dp->compliance.test_data.phytest;
5374
5375         if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5376                 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5377                 return DP_TEST_NAK;
5378         }
5379
5380         /*
5381          * link_mst is set to false to avoid executing mst related code
5382          * during compliance testing.
5383          */
5384         intel_dp->link_mst = false;
5385
5386         return DP_TEST_ACK;
5387 }
5388
5389 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5390 {
5391         struct drm_i915_private *dev_priv =
5392                         to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5393         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5394         struct drm_dp_phy_test_params *data =
5395                         &intel_dp->compliance.test_data.phytest;
5396         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5397         enum pipe pipe = crtc->pipe;
5398         u32 pattern_val;
5399
5400         switch (data->phy_pattern) {
5401         case DP_PHY_TEST_PATTERN_NONE:
5402                 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5403                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5404                 break;
5405         case DP_PHY_TEST_PATTERN_D10_2:
5406                 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5407                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5408                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5409                 break;
5410         case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5411                 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5412                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5413                                DDI_DP_COMP_CTL_ENABLE |
5414                                DDI_DP_COMP_CTL_SCRAMBLED_0);
5415                 break;
5416         case DP_PHY_TEST_PATTERN_PRBS7:
5417                 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5418                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5419                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5420                 break;
5421         case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5422                 /*
5423                  * FIXME: Ideally pattern should come from DPCD 0x250. As
5424                  * current firmware of DPR-100 could not set it, so hardcoding
5425                  * now for complaince test.
5426                  */
5427                 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5428                 pattern_val = 0x3e0f83e0;
5429                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5430                 pattern_val = 0x0f83e0f8;
5431                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5432                 pattern_val = 0x0000f83e;
5433                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5434                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5435                                DDI_DP_COMP_CTL_ENABLE |
5436                                DDI_DP_COMP_CTL_CUSTOM80);
5437                 break;
5438         case DP_PHY_TEST_PATTERN_CP2520:
5439                 /*
5440                  * FIXME: Ideally pattern should come from DPCD 0x24A. As
5441                  * current firmware of DPR-100 could not set it, so hardcoding
5442                  * now for complaince test.
5443                  */
5444                 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5445                 pattern_val = 0xFB;
5446                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5447                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5448                                pattern_val);
5449                 break;
5450         default:
5451                 WARN(1, "Invalid Phy Test Pattern\n");
5452         }
5453 }
5454
5455 static void
5456 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5457 {
5458         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5459         struct drm_device *dev = intel_dig_port->base.base.dev;
5460         struct drm_i915_private *dev_priv = to_i915(dev);
5461         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5462         enum pipe pipe = crtc->pipe;
5463         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5464
5465         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5466                                                  TRANS_DDI_FUNC_CTL(pipe));
5467         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5468         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5469
5470         trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5471                                       TGL_TRANS_DDI_PORT_MASK);
5472         trans_conf_value &= ~PIPECONF_ENABLE;
5473         dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5474
5475         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5476         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5477                        trans_ddi_func_ctl_value);
5478         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5479 }
5480
5481 static void
5482 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5483 {
5484         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5485         struct drm_device *dev = intel_dig_port->base.base.dev;
5486         struct drm_i915_private *dev_priv = to_i915(dev);
5487         enum port port = intel_dig_port->base.port;
5488         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5489         enum pipe pipe = crtc->pipe;
5490         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5491
5492         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5493                                                  TRANS_DDI_FUNC_CTL(pipe));
5494         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5495         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5496
5497         trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5498                                     TGL_TRANS_DDI_SELECT_PORT(port);
5499         trans_conf_value |= PIPECONF_ENABLE;
5500         dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5501
5502         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5503         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5504         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5505                        trans_ddi_func_ctl_value);
5506 }
5507
5508 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5509 {
5510         struct drm_dp_phy_test_params *data =
5511                 &intel_dp->compliance.test_data.phytest;
5512         u8 link_status[DP_LINK_STATUS_SIZE];
5513
5514         if (!intel_dp_get_link_status(intel_dp, link_status)) {
5515                 DRM_DEBUG_KMS("failed to get link status\n");
5516                 return;
5517         }
5518
5519         /* retrieve vswing & pre-emphasis setting */
5520         intel_dp_get_adjust_train(intel_dp, link_status);
5521
5522         intel_dp_autotest_phy_ddi_disable(intel_dp);
5523
5524         intel_dp_set_signal_levels(intel_dp);
5525
5526         intel_dp_phy_pattern_update(intel_dp);
5527
5528         intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5529
5530         drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5531                                     link_status[DP_DPCD_REV]);
5532 }
5533
5534 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5535 {
5536         u8 test_result;
5537
5538         test_result = intel_dp_prepare_phytest(intel_dp);
5539         if (test_result != DP_TEST_ACK)
5540                 DRM_ERROR("Phy test preparation failed\n");
5541
5542         intel_dp_process_phy_request(intel_dp);
5543
5544         return test_result;
5545 }
5546
5547 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5548 {
5549         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5550         u8 response = DP_TEST_NAK;
5551         u8 request = 0;
5552         int status;
5553
5554         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5555         if (status <= 0) {
5556                 drm_dbg_kms(&i915->drm,
5557                             "Could not read test request from sink\n");
5558                 goto update_status;
5559         }
5560
5561         switch (request) {
5562         case DP_TEST_LINK_TRAINING:
5563                 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5564                 response = intel_dp_autotest_link_training(intel_dp);
5565                 break;
5566         case DP_TEST_LINK_VIDEO_PATTERN:
5567                 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5568                 response = intel_dp_autotest_video_pattern(intel_dp);
5569                 break;
5570         case DP_TEST_LINK_EDID_READ:
5571                 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5572                 response = intel_dp_autotest_edid(intel_dp);
5573                 break;
5574         case DP_TEST_LINK_PHY_TEST_PATTERN:
5575                 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5576                 response = intel_dp_autotest_phy_pattern(intel_dp);
5577                 break;
5578         default:
5579                 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5580                             request);
5581                 break;
5582         }
5583
5584         if (response & DP_TEST_ACK)
5585                 intel_dp->compliance.test_type = request;
5586
5587 update_status:
5588         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5589         if (status <= 0)
5590                 drm_dbg_kms(&i915->drm,
5591                             "Could not write test response to sink\n");
5592 }
5593
5594 static int
5595 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5596 {
5597         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5598         bool need_retrain = false;
5599
5600         if (!intel_dp->is_mst)
5601                 return -EINVAL;
5602
5603         WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5604
5605         for (;;) {
5606                 u8 esi[DP_DPRX_ESI_LEN] = {};
5607                 bool bret, handled;
5608                 int retry;
5609
5610                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5611                 if (!bret) {
5612                         drm_dbg_kms(&i915->drm,
5613                                     "failed to get ESI - device may have failed\n");
5614                         return -EINVAL;
5615                 }
5616
5617                 /* check link status - esi[10] = 0x200c */
5618                 if (intel_dp->active_mst_links > 0 && !need_retrain &&
5619                     !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5620                         drm_dbg_kms(&i915->drm,
5621                                     "channel EQ not ok, retraining\n");
5622                         need_retrain = true;
5623                 }
5624
5625                 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5626
5627                 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5628                 if (!handled)
5629                         break;
5630
5631                 for (retry = 0; retry < 3; retry++) {
5632                         int wret;
5633
5634                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5635                                                  DP_SINK_COUNT_ESI+1,
5636                                                  &esi[1], 3);
5637                         if (wret == 3)
5638                                 break;
5639                 }
5640         }
5641
5642         return need_retrain;
5643 }
5644
5645 static bool
5646 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5647 {
5648         u8 link_status[DP_LINK_STATUS_SIZE];
5649
5650         if (!intel_dp->link_trained)
5651                 return false;
5652
5653         /*
5654          * While PSR source HW is enabled, it will control main-link sending
5655          * frames, enabling and disabling it so trying to do a retrain will fail
5656          * as the link would or not be on or it could mix training patterns
5657          * and frame data at the same time causing retrain to fail.
5658          * Also when exiting PSR, HW will retrain the link anyways fixing
5659          * any link status error.
5660          */
5661         if (intel_psr_enabled(intel_dp))
5662                 return false;
5663
5664         if (!intel_dp_get_link_status(intel_dp, link_status))
5665                 return false;
5666
5667         /*
5668          * Validate the cached values of intel_dp->link_rate and
5669          * intel_dp->lane_count before attempting to retrain.
5670          */
5671         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5672                                         intel_dp->lane_count))
5673                 return false;
5674
5675         /* Retrain if Channel EQ or CR not ok */
5676         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5677 }
5678
5679 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5680                                    const struct drm_connector_state *conn_state)
5681 {
5682         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5683         struct intel_encoder *encoder;
5684         enum pipe pipe;
5685
5686         if (!conn_state->best_encoder)
5687                 return false;
5688
5689         /* SST */
5690         encoder = &dp_to_dig_port(intel_dp)->base;
5691         if (conn_state->best_encoder == &encoder->base)
5692                 return true;
5693
5694         /* MST */
5695         for_each_pipe(i915, pipe) {
5696                 encoder = &intel_dp->mst_encoders[pipe]->base;
5697                 if (conn_state->best_encoder == &encoder->base)
5698                         return true;
5699         }
5700
5701         return false;
5702 }
5703
5704 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5705                                       struct drm_modeset_acquire_ctx *ctx,
5706                                       u32 *crtc_mask)
5707 {
5708         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5709         struct drm_connector_list_iter conn_iter;
5710         struct intel_connector *connector;
5711         int ret = 0;
5712
5713         *crtc_mask = 0;
5714
5715         if (!intel_dp_needs_link_retrain(intel_dp))
5716                 return 0;
5717
5718         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5719         for_each_intel_connector_iter(connector, &conn_iter) {
5720                 struct drm_connector_state *conn_state =
5721                         connector->base.state;
5722                 struct intel_crtc_state *crtc_state;
5723                 struct intel_crtc *crtc;
5724
5725                 if (!intel_dp_has_connector(intel_dp, conn_state))
5726                         continue;
5727
5728                 crtc = to_intel_crtc(conn_state->crtc);
5729                 if (!crtc)
5730                         continue;
5731
5732                 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5733                 if (ret)
5734                         break;
5735
5736                 crtc_state = to_intel_crtc_state(crtc->base.state);
5737
5738                 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5739
5740                 if (!crtc_state->hw.active)
5741                         continue;
5742
5743                 if (conn_state->commit &&
5744                     !try_wait_for_completion(&conn_state->commit->hw_done))
5745                         continue;
5746
5747                 *crtc_mask |= drm_crtc_mask(&crtc->base);
5748         }
5749         drm_connector_list_iter_end(&conn_iter);
5750
5751         if (!intel_dp_needs_link_retrain(intel_dp))
5752                 *crtc_mask = 0;
5753
5754         return ret;
5755 }
5756
5757 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5758 {
5759         struct intel_connector *connector = intel_dp->attached_connector;
5760
5761         return connector->base.status == connector_status_connected ||
5762                 intel_dp->is_mst;
5763 }
5764
5765 int intel_dp_retrain_link(struct intel_encoder *encoder,
5766                           struct drm_modeset_acquire_ctx *ctx)
5767 {
5768         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5769         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5770         struct intel_crtc *crtc;
5771         u32 crtc_mask;
5772         int ret;
5773
5774         if (!intel_dp_is_connected(intel_dp))
5775                 return 0;
5776
5777         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5778                                ctx);
5779         if (ret)
5780                 return ret;
5781
5782         ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5783         if (ret)
5784                 return ret;
5785
5786         if (crtc_mask == 0)
5787                 return 0;
5788
5789         drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5790                     encoder->base.base.id, encoder->base.name);
5791
5792         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5793                 const struct intel_crtc_state *crtc_state =
5794                         to_intel_crtc_state(crtc->base.state);
5795
5796                 /* Suppress underruns caused by re-training */
5797                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5798                 if (crtc_state->has_pch_encoder)
5799                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5800                                                               intel_crtc_pch_transcoder(crtc), false);
5801         }
5802
5803         intel_dp_start_link_train(intel_dp);
5804         intel_dp_stop_link_train(intel_dp);
5805
5806         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5807                 const struct intel_crtc_state *crtc_state =
5808                         to_intel_crtc_state(crtc->base.state);
5809
5810                 /* Keep underrun reporting disabled until things are stable */
5811                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5812
5813                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5814                 if (crtc_state->has_pch_encoder)
5815                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5816                                                               intel_crtc_pch_transcoder(crtc), true);
5817         }
5818
5819         return 0;
5820 }
5821
5822 /*
5823  * If display is now connected check links status,
5824  * there has been known issues of link loss triggering
5825  * long pulse.
5826  *
5827  * Some sinks (eg. ASUS PB287Q) seem to perform some
5828  * weird HPD ping pong during modesets. So we can apparently
5829  * end up with HPD going low during a modeset, and then
5830  * going back up soon after. And once that happens we must
5831  * retrain the link to get a picture. That's in case no
5832  * userspace component reacted to intermittent HPD dip.
5833  */
5834 static enum intel_hotplug_state
5835 intel_dp_hotplug(struct intel_encoder *encoder,
5836                  struct intel_connector *connector)
5837 {
5838         struct drm_modeset_acquire_ctx ctx;
5839         enum intel_hotplug_state state;
5840         int ret;
5841
5842         state = intel_encoder_hotplug(encoder, connector);
5843
5844         drm_modeset_acquire_init(&ctx, 0);
5845
5846         for (;;) {
5847                 ret = intel_dp_retrain_link(encoder, &ctx);
5848
5849                 if (ret == -EDEADLK) {
5850                         drm_modeset_backoff(&ctx);
5851                         continue;
5852                 }
5853
5854                 break;
5855         }
5856
5857         drm_modeset_drop_locks(&ctx);
5858         drm_modeset_acquire_fini(&ctx);
5859         drm_WARN(encoder->base.dev, ret,
5860                  "Acquiring modeset locks failed with %i\n", ret);
5861
5862         /*
5863          * Keeping it consistent with intel_ddi_hotplug() and
5864          * intel_hdmi_hotplug().
5865          */
5866         if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5867                 state = INTEL_HOTPLUG_RETRY;
5868
5869         return state;
5870 }
5871
5872 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5873 {
5874         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5875         u8 val;
5876
5877         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5878                 return;
5879
5880         if (drm_dp_dpcd_readb(&intel_dp->aux,
5881                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5882                 return;
5883
5884         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5885
5886         if (val & DP_AUTOMATED_TEST_REQUEST)
5887                 intel_dp_handle_test_request(intel_dp);
5888
5889         if (val & DP_CP_IRQ)
5890                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5891
5892         if (val & DP_SINK_SPECIFIC_IRQ)
5893                 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5894 }
5895
5896 /*
5897  * According to DP spec
5898  * 5.1.2:
5899  *  1. Read DPCD
5900  *  2. Configure link according to Receiver Capabilities
5901  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5902  *  4. Check link status on receipt of hot-plug interrupt
5903  *
5904  * intel_dp_short_pulse -  handles short pulse interrupts
5905  * when full detection is not required.
5906  * Returns %true if short pulse is handled and full detection
5907  * is NOT required and %false otherwise.
5908  */
5909 static bool
5910 intel_dp_short_pulse(struct intel_dp *intel_dp)
5911 {
5912         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5913         u8 old_sink_count = intel_dp->sink_count;
5914         bool ret;
5915
5916         /*
5917          * Clearing compliance test variables to allow capturing
5918          * of values for next automated test request.
5919          */
5920         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5921
5922         /*
5923          * Now read the DPCD to see if it's actually running
5924          * If the current value of sink count doesn't match with
5925          * the value that was stored earlier or dpcd read failed
5926          * we need to do full detection
5927          */
5928         ret = intel_dp_get_dpcd(intel_dp);
5929
5930         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5931                 /* No need to proceed if we are going to do full detect */
5932                 return false;
5933         }
5934
5935         intel_dp_check_service_irq(intel_dp);
5936
5937         /* Handle CEC interrupts, if any */
5938         drm_dp_cec_irq(&intel_dp->aux);
5939
5940         /* defer to the hotplug work for link retraining if needed */
5941         if (intel_dp_needs_link_retrain(intel_dp))
5942                 return false;
5943
5944         intel_psr_short_pulse(intel_dp);
5945
5946         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5947                 drm_dbg_kms(&dev_priv->drm,
5948                             "Link Training Compliance Test requested\n");
5949                 /* Send a Hotplug Uevent to userspace to start modeset */
5950                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5951         }
5952
5953         return true;
5954 }
5955
5956 /* XXX this is probably wrong for multiple downstream ports */
5957 static enum drm_connector_status
5958 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5959 {
5960         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5961         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5962         u8 *dpcd = intel_dp->dpcd;
5963         u8 type;
5964
5965         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5966                 return connector_status_connected;
5967
5968         if (lspcon->active)
5969                 lspcon_resume(lspcon);
5970
5971         if (!intel_dp_get_dpcd(intel_dp))
5972                 return connector_status_disconnected;
5973
5974         /* if there's no downstream port, we're done */
5975         if (!drm_dp_is_branch(dpcd))
5976                 return connector_status_connected;
5977
5978         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5979         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5980             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5981
5982                 return intel_dp->sink_count ?
5983                 connector_status_connected : connector_status_disconnected;
5984         }
5985
5986         if (intel_dp_can_mst(intel_dp))
5987                 return connector_status_connected;
5988
5989         /* If no HPD, poke DDC gently */
5990         if (drm_probe_ddc(&intel_dp->aux.ddc))
5991                 return connector_status_connected;
5992
5993         /* Well we tried, say unknown for unreliable port types */
5994         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5995                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5996                 if (type == DP_DS_PORT_TYPE_VGA ||
5997                     type == DP_DS_PORT_TYPE_NON_EDID)
5998                         return connector_status_unknown;
5999         } else {
6000                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6001                         DP_DWN_STRM_PORT_TYPE_MASK;
6002                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6003                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
6004                         return connector_status_unknown;
6005         }
6006
6007         /* Anything else is out of spec, warn and ignore */
6008         drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6009         return connector_status_disconnected;
6010 }
6011
6012 static enum drm_connector_status
6013 edp_detect(struct intel_dp *intel_dp)
6014 {
6015         return connector_status_connected;
6016 }
6017
6018 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6019 {
6020         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6021         u32 bit = dev_priv->hotplug.pch_hpd[encoder->hpd_pin];
6022
6023         return intel_de_read(dev_priv, SDEISR) & bit;
6024 }
6025
6026 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6027 {
6028         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6029         u32 bit;
6030
6031         switch (encoder->hpd_pin) {
6032         case HPD_PORT_B:
6033                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6034                 break;
6035         case HPD_PORT_C:
6036                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6037                 break;
6038         case HPD_PORT_D:
6039                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6040                 break;
6041         default:
6042                 MISSING_CASE(encoder->hpd_pin);
6043                 return false;
6044         }
6045
6046         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6047 }
6048
6049 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6050 {
6051         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6052         u32 bit;
6053
6054         switch (encoder->hpd_pin) {
6055         case HPD_PORT_B:
6056                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6057                 break;
6058         case HPD_PORT_C:
6059                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6060                 break;
6061         case HPD_PORT_D:
6062                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6063                 break;
6064         default:
6065                 MISSING_CASE(encoder->hpd_pin);
6066                 return false;
6067         }
6068
6069         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6070 }
6071
6072 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6073 {
6074         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6075         u32 bit = dev_priv->hotplug.hpd[encoder->hpd_pin];
6076
6077         return intel_de_read(dev_priv, DEISR) & bit;
6078 }
6079
6080 /*
6081  * intel_digital_port_connected - is the specified port connected?
6082  * @encoder: intel_encoder
6083  *
6084  * In cases where there's a connector physically connected but it can't be used
6085  * by our hardware we also return false, since the rest of the driver should
6086  * pretty much treat the port as disconnected. This is relevant for type-C
6087  * (starting on ICL) where there's ownership involved.
6088  *
6089  * Return %true if port is connected, %false otherwise.
6090  */
6091 bool intel_digital_port_connected(struct intel_encoder *encoder)
6092 {
6093         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6094         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6095         bool is_connected = false;
6096         intel_wakeref_t wakeref;
6097
6098         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6099                 is_connected = dig_port->connected(encoder);
6100
6101         return is_connected;
6102 }
6103
6104 static struct edid *
6105 intel_dp_get_edid(struct intel_dp *intel_dp)
6106 {
6107         struct intel_connector *intel_connector = intel_dp->attached_connector;
6108
6109         /* use cached edid if we have one */
6110         if (intel_connector->edid) {
6111                 /* invalid edid */
6112                 if (IS_ERR(intel_connector->edid))
6113                         return NULL;
6114
6115                 return drm_edid_duplicate(intel_connector->edid);
6116         } else
6117                 return drm_get_edid(&intel_connector->base,
6118                                     &intel_dp->aux.ddc);
6119 }
6120
6121 static void
6122 intel_dp_set_edid(struct intel_dp *intel_dp)
6123 {
6124         struct intel_connector *intel_connector = intel_dp->attached_connector;
6125         struct edid *edid;
6126
6127         intel_dp_unset_edid(intel_dp);
6128         edid = intel_dp_get_edid(intel_dp);
6129         intel_connector->detect_edid = edid;
6130
6131         intel_dp->has_audio = drm_detect_monitor_audio(edid);
6132         drm_dp_cec_set_edid(&intel_dp->aux, edid);
6133         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6134 }
6135
6136 static void
6137 intel_dp_unset_edid(struct intel_dp *intel_dp)
6138 {
6139         struct intel_connector *intel_connector = intel_dp->attached_connector;
6140
6141         drm_dp_cec_unset_edid(&intel_dp->aux);
6142         kfree(intel_connector->detect_edid);
6143         intel_connector->detect_edid = NULL;
6144
6145         intel_dp->has_audio = false;
6146         intel_dp->edid_quirks = 0;
6147 }
6148
6149 static int
6150 intel_dp_detect(struct drm_connector *connector,
6151                 struct drm_modeset_acquire_ctx *ctx,
6152                 bool force)
6153 {
6154         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6155         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6156         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6157         struct intel_encoder *encoder = &dig_port->base;
6158         enum drm_connector_status status;
6159
6160         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6161                     connector->base.id, connector->name);
6162         drm_WARN_ON(&dev_priv->drm,
6163                     !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6164
6165         /* Can't disconnect eDP */
6166         if (intel_dp_is_edp(intel_dp))
6167                 status = edp_detect(intel_dp);
6168         else if (intel_digital_port_connected(encoder))
6169                 status = intel_dp_detect_dpcd(intel_dp);
6170         else
6171                 status = connector_status_disconnected;
6172
6173         if (status == connector_status_disconnected) {
6174                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6175                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6176
6177                 if (intel_dp->is_mst) {
6178                         drm_dbg_kms(&dev_priv->drm,
6179                                     "MST device may have disappeared %d vs %d\n",
6180                                     intel_dp->is_mst,
6181                                     intel_dp->mst_mgr.mst_state);
6182                         intel_dp->is_mst = false;
6183                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6184                                                         intel_dp->is_mst);
6185                 }
6186
6187                 goto out;
6188         }
6189
6190         if (intel_dp->reset_link_params) {
6191                 /* Initial max link lane count */
6192                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6193
6194                 /* Initial max link rate */
6195                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6196
6197                 intel_dp->reset_link_params = false;
6198         }
6199
6200         intel_dp_print_rates(intel_dp);
6201
6202         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6203         if (INTEL_GEN(dev_priv) >= 11)
6204                 intel_dp_get_dsc_sink_cap(intel_dp);
6205
6206         intel_dp_configure_mst(intel_dp);
6207
6208         if (intel_dp->is_mst) {
6209                 /*
6210                  * If we are in MST mode then this connector
6211                  * won't appear connected or have anything
6212                  * with EDID on it
6213                  */
6214                 status = connector_status_disconnected;
6215                 goto out;
6216         }
6217
6218         /*
6219          * Some external monitors do not signal loss of link synchronization
6220          * with an IRQ_HPD, so force a link status check.
6221          */
6222         if (!intel_dp_is_edp(intel_dp)) {
6223                 int ret;
6224
6225                 ret = intel_dp_retrain_link(encoder, ctx);
6226                 if (ret)
6227                         return ret;
6228         }
6229
6230         /*
6231          * Clearing NACK and defer counts to get their exact values
6232          * while reading EDID which are required by Compliance tests
6233          * 4.2.2.4 and 4.2.2.5
6234          */
6235         intel_dp->aux.i2c_nack_count = 0;
6236         intel_dp->aux.i2c_defer_count = 0;
6237
6238         intel_dp_set_edid(intel_dp);
6239         if (intel_dp_is_edp(intel_dp) ||
6240             to_intel_connector(connector)->detect_edid)
6241                 status = connector_status_connected;
6242
6243         intel_dp_check_service_irq(intel_dp);
6244
6245 out:
6246         if (status != connector_status_connected && !intel_dp->is_mst)
6247                 intel_dp_unset_edid(intel_dp);
6248
6249         /*
6250          * Make sure the refs for power wells enabled during detect are
6251          * dropped to avoid a new detect cycle triggered by HPD polling.
6252          */
6253         intel_display_power_flush_work(dev_priv);
6254
6255         return status;
6256 }
6257
6258 static void
6259 intel_dp_force(struct drm_connector *connector)
6260 {
6261         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6262         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6263         struct intel_encoder *intel_encoder = &dig_port->base;
6264         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6265         enum intel_display_power_domain aux_domain =
6266                 intel_aux_power_domain(dig_port);
6267         intel_wakeref_t wakeref;
6268
6269         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6270                     connector->base.id, connector->name);
6271         intel_dp_unset_edid(intel_dp);
6272
6273         if (connector->status != connector_status_connected)
6274                 return;
6275
6276         wakeref = intel_display_power_get(dev_priv, aux_domain);
6277
6278         intel_dp_set_edid(intel_dp);
6279
6280         intel_display_power_put(dev_priv, aux_domain, wakeref);
6281 }
6282
6283 static int intel_dp_get_modes(struct drm_connector *connector)
6284 {
6285         struct intel_connector *intel_connector = to_intel_connector(connector);
6286         struct edid *edid;
6287
6288         edid = intel_connector->detect_edid;
6289         if (edid) {
6290                 int ret = intel_connector_update_modes(connector, edid);
6291                 if (ret)
6292                         return ret;
6293         }
6294
6295         /* if eDP has no EDID, fall back to fixed mode */
6296         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6297             intel_connector->panel.fixed_mode) {
6298                 struct drm_display_mode *mode;
6299
6300                 mode = drm_mode_duplicate(connector->dev,
6301                                           intel_connector->panel.fixed_mode);
6302                 if (mode) {
6303                         drm_mode_probed_add(connector, mode);
6304                         return 1;
6305                 }
6306         }
6307
6308         return 0;
6309 }
6310
6311 static int
6312 intel_dp_connector_register(struct drm_connector *connector)
6313 {
6314         struct drm_i915_private *i915 = to_i915(connector->dev);
6315         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6316         int ret;
6317
6318         ret = intel_connector_register(connector);
6319         if (ret)
6320                 return ret;
6321
6322         drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6323                     intel_dp->aux.name, connector->kdev->kobj.name);
6324
6325         intel_dp->aux.dev = connector->kdev;
6326         ret = drm_dp_aux_register(&intel_dp->aux);
6327         if (!ret)
6328                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6329         return ret;
6330 }
6331
6332 static void
6333 intel_dp_connector_unregister(struct drm_connector *connector)
6334 {
6335         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6336
6337         drm_dp_cec_unregister_connector(&intel_dp->aux);
6338         drm_dp_aux_unregister(&intel_dp->aux);
6339         intel_connector_unregister(connector);
6340 }
6341
6342 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6343 {
6344         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6345         struct intel_dp *intel_dp = &intel_dig_port->dp;
6346
6347         intel_dp_mst_encoder_cleanup(intel_dig_port);
6348         if (intel_dp_is_edp(intel_dp)) {
6349                 intel_wakeref_t wakeref;
6350
6351                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6352                 /*
6353                  * vdd might still be enabled do to the delayed vdd off.
6354                  * Make sure vdd is actually turned off here.
6355                  */
6356                 with_pps_lock(intel_dp, wakeref)
6357                         edp_panel_vdd_off_sync(intel_dp);
6358
6359                 if (intel_dp->edp_notifier.notifier_call) {
6360                         unregister_reboot_notifier(&intel_dp->edp_notifier);
6361                         intel_dp->edp_notifier.notifier_call = NULL;
6362                 }
6363         }
6364
6365         intel_dp_aux_fini(intel_dp);
6366 }
6367
6368 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6369 {
6370         intel_dp_encoder_flush_work(encoder);
6371
6372         drm_encoder_cleanup(encoder);
6373         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6374 }
6375
6376 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6377 {
6378         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6379         intel_wakeref_t wakeref;
6380
6381         if (!intel_dp_is_edp(intel_dp))
6382                 return;
6383
6384         /*
6385          * vdd might still be enabled do to the delayed vdd off.
6386          * Make sure vdd is actually turned off here.
6387          */
6388         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6389         with_pps_lock(intel_dp, wakeref)
6390                 edp_panel_vdd_off_sync(intel_dp);
6391 }
6392
6393 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6394 {
6395         long ret;
6396
6397 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6398         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6399                                                msecs_to_jiffies(timeout));
6400
6401         if (!ret)
6402                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6403 }
6404
6405 static
6406 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6407                                 u8 *an)
6408 {
6409         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6410         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6411         static const struct drm_dp_aux_msg msg = {
6412                 .request = DP_AUX_NATIVE_WRITE,
6413                 .address = DP_AUX_HDCP_AKSV,
6414                 .size = DRM_HDCP_KSV_LEN,
6415         };
6416         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6417         ssize_t dpcd_ret;
6418         int ret;
6419
6420         /* Output An first, that's easy */
6421         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6422                                      an, DRM_HDCP_AN_LEN);
6423         if (dpcd_ret != DRM_HDCP_AN_LEN) {
6424                 drm_dbg_kms(&i915->drm,
6425                             "Failed to write An over DP/AUX (%zd)\n",
6426                             dpcd_ret);
6427                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6428         }
6429
6430         /*
6431          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6432          * order to get it on the wire, we need to create the AUX header as if
6433          * we were writing the data, and then tickle the hardware to output the
6434          * data once the header is sent out.
6435          */
6436         intel_dp_aux_header(txbuf, &msg);
6437
6438         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6439                                 rxbuf, sizeof(rxbuf),
6440                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6441         if (ret < 0) {
6442                 drm_dbg_kms(&i915->drm,
6443                             "Write Aksv over DP/AUX failed (%d)\n", ret);
6444                 return ret;
6445         } else if (ret == 0) {
6446                 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6447                 return -EIO;
6448         }
6449
6450         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6451         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6452                 drm_dbg_kms(&i915->drm,
6453                             "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6454                             reply);
6455                 return -EIO;
6456         }
6457         return 0;
6458 }
6459
6460 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6461                                    u8 *bksv)
6462 {
6463         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6464         ssize_t ret;
6465
6466         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6467                                DRM_HDCP_KSV_LEN);
6468         if (ret != DRM_HDCP_KSV_LEN) {
6469                 drm_dbg_kms(&i915->drm,
6470                             "Read Bksv from DP/AUX failed (%zd)\n", ret);
6471                 return ret >= 0 ? -EIO : ret;
6472         }
6473         return 0;
6474 }
6475
6476 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6477                                       u8 *bstatus)
6478 {
6479         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6480         ssize_t ret;
6481
6482         /*
6483          * For some reason the HDMI and DP HDCP specs call this register
6484          * definition by different names. In the HDMI spec, it's called BSTATUS,
6485          * but in DP it's called BINFO.
6486          */
6487         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6488                                bstatus, DRM_HDCP_BSTATUS_LEN);
6489         if (ret != DRM_HDCP_BSTATUS_LEN) {
6490                 drm_dbg_kms(&i915->drm,
6491                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6492                 return ret >= 0 ? -EIO : ret;
6493         }
6494         return 0;
6495 }
6496
6497 static
6498 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6499                              u8 *bcaps)
6500 {
6501         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6502         ssize_t ret;
6503
6504         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6505                                bcaps, 1);
6506         if (ret != 1) {
6507                 drm_dbg_kms(&i915->drm,
6508                             "Read bcaps from DP/AUX failed (%zd)\n", ret);
6509                 return ret >= 0 ? -EIO : ret;
6510         }
6511
6512         return 0;
6513 }
6514
6515 static
6516 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6517                                    bool *repeater_present)
6518 {
6519         ssize_t ret;
6520         u8 bcaps;
6521
6522         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6523         if (ret)
6524                 return ret;
6525
6526         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6527         return 0;
6528 }
6529
6530 static
6531 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6532                                 u8 *ri_prime)
6533 {
6534         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6535         ssize_t ret;
6536
6537         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6538                                ri_prime, DRM_HDCP_RI_LEN);
6539         if (ret != DRM_HDCP_RI_LEN) {
6540                 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6541                             ret);
6542                 return ret >= 0 ? -EIO : ret;
6543         }
6544         return 0;
6545 }
6546
6547 static
6548 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6549                                  bool *ksv_ready)
6550 {
6551         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6552         ssize_t ret;
6553         u8 bstatus;
6554
6555         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6556                                &bstatus, 1);
6557         if (ret != 1) {
6558                 drm_dbg_kms(&i915->drm,
6559                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6560                 return ret >= 0 ? -EIO : ret;
6561         }
6562         *ksv_ready = bstatus & DP_BSTATUS_READY;
6563         return 0;
6564 }
6565
6566 static
6567 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6568                                 int num_downstream, u8 *ksv_fifo)
6569 {
6570         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6571         ssize_t ret;
6572         int i;
6573
6574         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6575         for (i = 0; i < num_downstream; i += 3) {
6576                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6577                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6578                                        DP_AUX_HDCP_KSV_FIFO,
6579                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6580                                        len);
6581                 if (ret != len) {
6582                         drm_dbg_kms(&i915->drm,
6583                                     "Read ksv[%d] from DP/AUX failed (%zd)\n",
6584                                     i, ret);
6585                         return ret >= 0 ? -EIO : ret;
6586                 }
6587         }
6588         return 0;
6589 }
6590
6591 static
6592 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6593                                     int i, u32 *part)
6594 {
6595         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6596         ssize_t ret;
6597
6598         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6599                 return -EINVAL;
6600
6601         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6602                                DP_AUX_HDCP_V_PRIME(i), part,
6603                                DRM_HDCP_V_PRIME_PART_LEN);
6604         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6605                 drm_dbg_kms(&i915->drm,
6606                             "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6607                 return ret >= 0 ? -EIO : ret;
6608         }
6609         return 0;
6610 }
6611
6612 static
6613 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6614                                     bool enable)
6615 {
6616         /* Not used for single stream DisplayPort setups */
6617         return 0;
6618 }
6619
6620 static
6621 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6622 {
6623         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6624         ssize_t ret;
6625         u8 bstatus;
6626
6627         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6628                                &bstatus, 1);
6629         if (ret != 1) {
6630                 drm_dbg_kms(&i915->drm,
6631                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6632                 return false;
6633         }
6634
6635         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6636 }
6637
6638 static
6639 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6640                           bool *hdcp_capable)
6641 {
6642         ssize_t ret;
6643         u8 bcaps;
6644
6645         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6646         if (ret)
6647                 return ret;
6648
6649         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6650         return 0;
6651 }
6652
6653 struct hdcp2_dp_errata_stream_type {
6654         u8      msg_id;
6655         u8      stream_type;
6656 } __packed;
6657
6658 struct hdcp2_dp_msg_data {
6659         u8 msg_id;
6660         u32 offset;
6661         bool msg_detectable;
6662         u32 timeout;
6663         u32 timeout2; /* Added for non_paired situation */
6664 };
6665
6666 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6667         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6668         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6669           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6670         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6671           false, 0, 0 },
6672         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6673           false, 0, 0 },
6674         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6675           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6676           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6677         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6678           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6679           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6680         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6681         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6682           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6683         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6684           0, 0 },
6685         { HDCP_2_2_REP_SEND_RECVID_LIST,
6686           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6687           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6688         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6689           0, 0 },
6690         { HDCP_2_2_REP_STREAM_MANAGE,
6691           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6692           0, 0 },
6693         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6694           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6695 /* local define to shovel this through the write_2_2 interface */
6696 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6697         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6698           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6699           0, 0 },
6700 };
6701
6702 static int
6703 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6704                               u8 *rx_status)
6705 {
6706         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6707         ssize_t ret;
6708
6709         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6710                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6711                                HDCP_2_2_DP_RXSTATUS_LEN);
6712         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6713                 drm_dbg_kms(&i915->drm,
6714                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6715                 return ret >= 0 ? -EIO : ret;
6716         }
6717
6718         return 0;
6719 }
6720
6721 static
6722 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6723                                   u8 msg_id, bool *msg_ready)
6724 {
6725         u8 rx_status;
6726         int ret;
6727
6728         *msg_ready = false;
6729         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6730         if (ret < 0)
6731                 return ret;
6732
6733         switch (msg_id) {
6734         case HDCP_2_2_AKE_SEND_HPRIME:
6735                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6736                         *msg_ready = true;
6737                 break;
6738         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6739                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6740                         *msg_ready = true;
6741                 break;
6742         case HDCP_2_2_REP_SEND_RECVID_LIST:
6743                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6744                         *msg_ready = true;
6745                 break;
6746         default:
6747                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6748                 return -EINVAL;
6749         }
6750
6751         return 0;
6752 }
6753
6754 static ssize_t
6755 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6756                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6757 {
6758         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6759         struct intel_dp *dp = &intel_dig_port->dp;
6760         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6761         u8 msg_id = hdcp2_msg_data->msg_id;
6762         int ret, timeout;
6763         bool msg_ready = false;
6764
6765         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6766                 timeout = hdcp2_msg_data->timeout2;
6767         else
6768                 timeout = hdcp2_msg_data->timeout;
6769
6770         /*
6771          * There is no way to detect the CERT, LPRIME and STREAM_READY
6772          * availability. So Wait for timeout and read the msg.
6773          */
6774         if (!hdcp2_msg_data->msg_detectable) {
6775                 mdelay(timeout);
6776                 ret = 0;
6777         } else {
6778                 /*
6779                  * As we want to check the msg availability at timeout, Ignoring
6780                  * the timeout at wait for CP_IRQ.
6781                  */
6782                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6783                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6784                                                     msg_id, &msg_ready);
6785                 if (!msg_ready)
6786                         ret = -ETIMEDOUT;
6787         }
6788
6789         if (ret)
6790                 drm_dbg_kms(&i915->drm,
6791                             "msg_id %d, ret %d, timeout(mSec): %d\n",
6792                             hdcp2_msg_data->msg_id, ret, timeout);
6793
6794         return ret;
6795 }
6796
6797 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6798 {
6799         int i;
6800
6801         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6802                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6803                         return &hdcp2_dp_msg_data[i];
6804
6805         return NULL;
6806 }
6807
6808 static
6809 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6810                              void *buf, size_t size)
6811 {
6812         struct intel_dp *dp = &intel_dig_port->dp;
6813         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6814         unsigned int offset;
6815         u8 *byte = buf;
6816         ssize_t ret, bytes_to_write, len;
6817         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6818
6819         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6820         if (!hdcp2_msg_data)
6821                 return -EINVAL;
6822
6823         offset = hdcp2_msg_data->offset;
6824
6825         /* No msg_id in DP HDCP2.2 msgs */
6826         bytes_to_write = size - 1;
6827         byte++;
6828
6829         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6830
6831         while (bytes_to_write) {
6832                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6833                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6834
6835                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6836                                         offset, (void *)byte, len);
6837                 if (ret < 0)
6838                         return ret;
6839
6840                 bytes_to_write -= ret;
6841                 byte += ret;
6842                 offset += ret;
6843         }
6844
6845         return size;
6846 }
6847
6848 static
6849 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6850 {
6851         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6852         u32 dev_cnt;
6853         ssize_t ret;
6854
6855         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6856                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6857                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6858         if (ret != HDCP_2_2_RXINFO_LEN)
6859                 return ret >= 0 ? -EIO : ret;
6860
6861         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6862                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6863
6864         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6865                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6866
6867         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6868                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6869                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6870
6871         return ret;
6872 }
6873
6874 static
6875 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6876                             u8 msg_id, void *buf, size_t size)
6877 {
6878         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6879         unsigned int offset;
6880         u8 *byte = buf;
6881         ssize_t ret, bytes_to_recv, len;
6882         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6883
6884         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6885         if (!hdcp2_msg_data)
6886                 return -EINVAL;
6887         offset = hdcp2_msg_data->offset;
6888
6889         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6890         if (ret < 0)
6891                 return ret;
6892
6893         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6894                 ret = get_receiver_id_list_size(intel_dig_port);
6895                 if (ret < 0)
6896                         return ret;
6897
6898                 size = ret;
6899         }
6900         bytes_to_recv = size - 1;
6901
6902         /* DP adaptation msgs has no msg_id */
6903         byte++;
6904
6905         while (bytes_to_recv) {
6906                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6907                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6908
6909                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6910                                        (void *)byte, len);
6911                 if (ret < 0) {
6912                         drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
6913                                     msg_id, ret);
6914                         return ret;
6915                 }
6916
6917                 bytes_to_recv -= ret;
6918                 byte += ret;
6919                 offset += ret;
6920         }
6921         byte = buf;
6922         *byte = msg_id;
6923
6924         return size;
6925 }
6926
6927 static
6928 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6929                                       bool is_repeater, u8 content_type)
6930 {
6931         int ret;
6932         struct hdcp2_dp_errata_stream_type stream_type_msg;
6933
6934         if (is_repeater)
6935                 return 0;
6936
6937         /*
6938          * Errata for DP: As Stream type is used for encryption, Receiver
6939          * should be communicated with stream type for the decryption of the
6940          * content.
6941          * Repeater will be communicated with stream type as a part of it's
6942          * auth later in time.
6943          */
6944         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6945         stream_type_msg.stream_type = content_type;
6946
6947         ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6948                                         sizeof(stream_type_msg));
6949
6950         return ret < 0 ? ret : 0;
6951
6952 }
6953
6954 static
6955 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6956 {
6957         u8 rx_status;
6958         int ret;
6959
6960         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6961         if (ret)
6962                 return ret;
6963
6964         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6965                 ret = HDCP_REAUTH_REQUEST;
6966         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6967                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6968         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6969                 ret = HDCP_TOPOLOGY_CHANGE;
6970
6971         return ret;
6972 }
6973
6974 static
6975 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6976                            bool *capable)
6977 {
6978         u8 rx_caps[3];
6979         int ret;
6980
6981         *capable = false;
6982         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6983                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6984                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6985         if (ret != HDCP_2_2_RXCAPS_LEN)
6986                 return ret >= 0 ? -EIO : ret;
6987
6988         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6989             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6990                 *capable = true;
6991
6992         return 0;
6993 }
6994
6995 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6996         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6997         .read_bksv = intel_dp_hdcp_read_bksv,
6998         .read_bstatus = intel_dp_hdcp_read_bstatus,
6999         .repeater_present = intel_dp_hdcp_repeater_present,
7000         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
7001         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
7002         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
7003         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
7004         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
7005         .check_link = intel_dp_hdcp_check_link,
7006         .hdcp_capable = intel_dp_hdcp_capable,
7007         .write_2_2_msg = intel_dp_hdcp2_write_msg,
7008         .read_2_2_msg = intel_dp_hdcp2_read_msg,
7009         .config_stream_type = intel_dp_hdcp2_config_stream_type,
7010         .check_2_2_link = intel_dp_hdcp2_check_link,
7011         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
7012         .protocol = HDCP_PROTOCOL_DP,
7013 };
7014
7015 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7016 {
7017         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7018         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7019
7020         lockdep_assert_held(&dev_priv->pps_mutex);
7021
7022         if (!edp_have_panel_vdd(intel_dp))
7023                 return;
7024
7025         /*
7026          * The VDD bit needs a power domain reference, so if the bit is
7027          * already enabled when we boot or resume, grab this reference and
7028          * schedule a vdd off, so we don't hold on to the reference
7029          * indefinitely.
7030          */
7031         drm_dbg_kms(&dev_priv->drm,
7032                     "VDD left on by BIOS, adjusting state tracking\n");
7033         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7034
7035         edp_panel_vdd_schedule_off(intel_dp);
7036 }
7037
7038 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7039 {
7040         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7041         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7042         enum pipe pipe;
7043
7044         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7045                                   encoder->port, &pipe))
7046                 return pipe;
7047
7048         return INVALID_PIPE;
7049 }
7050
7051 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7052 {
7053         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7054         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7055         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7056         intel_wakeref_t wakeref;
7057
7058         if (!HAS_DDI(dev_priv))
7059                 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7060
7061         if (lspcon->active)
7062                 lspcon_resume(lspcon);
7063
7064         intel_dp->reset_link_params = true;
7065
7066         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7067             !intel_dp_is_edp(intel_dp))
7068                 return;
7069
7070         with_pps_lock(intel_dp, wakeref) {
7071                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7072                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7073
7074                 if (intel_dp_is_edp(intel_dp)) {
7075                         /*
7076                          * Reinit the power sequencer, in case BIOS did
7077                          * something nasty with it.
7078                          */
7079                         intel_dp_pps_init(intel_dp);
7080                         intel_edp_panel_vdd_sanitize(intel_dp);
7081                 }
7082         }
7083 }
7084
7085 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7086                                     int tile_group_id)
7087 {
7088         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7089         struct drm_connector_list_iter conn_iter;
7090         struct drm_connector *connector;
7091         int ret = 0;
7092
7093         drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7094         drm_for_each_connector_iter(connector, &conn_iter) {
7095                 struct drm_connector_state *conn_state;
7096                 struct intel_crtc_state *crtc_state;
7097                 struct intel_crtc *crtc;
7098
7099                 if (!connector->has_tile ||
7100                     connector->tile_group->id != tile_group_id)
7101                         continue;
7102
7103                 conn_state = drm_atomic_get_connector_state(&state->base,
7104                                                             connector);
7105                 if (IS_ERR(conn_state)) {
7106                         ret = PTR_ERR(conn_state);
7107                         break;
7108                 }
7109
7110                 crtc = to_intel_crtc(conn_state->crtc);
7111
7112                 if (!crtc)
7113                         continue;
7114
7115                 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7116                 crtc_state->uapi.mode_changed = true;
7117
7118                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7119                 if (ret)
7120                         break;
7121         }
7122         drm_connector_list_iter_end(&conn_iter);
7123
7124         return ret;
7125 }
7126
7127 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7128 {
7129         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7130         struct intel_crtc *crtc;
7131
7132         if (transcoders == 0)
7133                 return 0;
7134
7135         for_each_intel_crtc(&dev_priv->drm, crtc) {
7136                 struct intel_crtc_state *crtc_state;
7137                 int ret;
7138
7139                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7140                 if (IS_ERR(crtc_state))
7141                         return PTR_ERR(crtc_state);
7142
7143                 if (!crtc_state->hw.enable)
7144                         continue;
7145
7146                 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7147                         continue;
7148
7149                 crtc_state->uapi.mode_changed = true;
7150
7151                 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7152                 if (ret)
7153                         return ret;
7154
7155                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7156                 if (ret)
7157                         return ret;
7158
7159                 transcoders &= ~BIT(crtc_state->cpu_transcoder);
7160         }
7161
7162         drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7163
7164         return 0;
7165 }
7166
7167 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7168                                       struct drm_connector *connector)
7169 {
7170         const struct drm_connector_state *old_conn_state =
7171                 drm_atomic_get_old_connector_state(&state->base, connector);
7172         const struct intel_crtc_state *old_crtc_state;
7173         struct intel_crtc *crtc;
7174         u8 transcoders;
7175
7176         crtc = to_intel_crtc(old_conn_state->crtc);
7177         if (!crtc)
7178                 return 0;
7179
7180         old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7181
7182         if (!old_crtc_state->hw.active)
7183                 return 0;
7184
7185         transcoders = old_crtc_state->sync_mode_slaves_mask;
7186         if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7187                 transcoders |= BIT(old_crtc_state->master_transcoder);
7188
7189         return intel_modeset_affected_transcoders(state,
7190                                                   transcoders);
7191 }
7192
7193 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7194                                            struct drm_atomic_state *_state)
7195 {
7196         struct drm_i915_private *dev_priv = to_i915(conn->dev);
7197         struct intel_atomic_state *state = to_intel_atomic_state(_state);
7198         int ret;
7199
7200         ret = intel_digital_connector_atomic_check(conn, &state->base);
7201         if (ret)
7202                 return ret;
7203
7204         /*
7205          * We don't enable port sync on BDW due to missing w/as and
7206          * due to not having adjusted the modeset sequence appropriately.
7207          */
7208         if (INTEL_GEN(dev_priv) < 9)
7209                 return 0;
7210
7211         if (!intel_connector_needs_modeset(state, conn))
7212                 return 0;
7213
7214         if (conn->has_tile) {
7215                 ret = intel_modeset_tile_group(state, conn->tile_group->id);
7216                 if (ret)
7217                         return ret;
7218         }
7219
7220         return intel_modeset_synced_crtcs(state, conn);
7221 }
7222
7223 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7224         .force = intel_dp_force,
7225         .fill_modes = drm_helper_probe_single_connector_modes,
7226         .atomic_get_property = intel_digital_connector_atomic_get_property,
7227         .atomic_set_property = intel_digital_connector_atomic_set_property,
7228         .late_register = intel_dp_connector_register,
7229         .early_unregister = intel_dp_connector_unregister,
7230         .destroy = intel_connector_destroy,
7231         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7232         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
7233 };
7234
7235 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7236         .detect_ctx = intel_dp_detect,
7237         .get_modes = intel_dp_get_modes,
7238         .mode_valid = intel_dp_mode_valid,
7239         .atomic_check = intel_dp_connector_atomic_check,
7240 };
7241
7242 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7243         .reset = intel_dp_encoder_reset,
7244         .destroy = intel_dp_encoder_destroy,
7245 };
7246
7247 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7248 {
7249         intel_wakeref_t wakeref;
7250         bool have_power = false;
7251
7252         with_pps_lock(intel_dp, wakeref) {
7253                 have_power = edp_have_panel_power(intel_dp) &&
7254                                                   edp_have_panel_vdd(intel_dp);
7255         }
7256
7257         return have_power;
7258 }
7259
7260 enum irqreturn
7261 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7262 {
7263         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7264         struct intel_dp *intel_dp = &intel_dig_port->dp;
7265
7266         if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7267             (long_hpd || !intel_edp_have_power(intel_dp))) {
7268                 /*
7269                  * vdd off can generate a long/short pulse on eDP which
7270                  * would require vdd on to handle it, and thus we
7271                  * would end up in an endless cycle of
7272                  * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7273                  */
7274                 drm_dbg_kms(&i915->drm,
7275                             "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7276                             long_hpd ? "long" : "short",
7277                             intel_dig_port->base.base.base.id,
7278                             intel_dig_port->base.base.name);
7279                 return IRQ_HANDLED;
7280         }
7281
7282         drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7283                     intel_dig_port->base.base.base.id,
7284                     intel_dig_port->base.base.name,
7285                     long_hpd ? "long" : "short");
7286
7287         if (long_hpd) {
7288                 intel_dp->reset_link_params = true;
7289                 return IRQ_NONE;
7290         }
7291
7292         if (intel_dp->is_mst) {
7293                 switch (intel_dp_check_mst_status(intel_dp)) {
7294                 case -EINVAL:
7295                         /*
7296                          * If we were in MST mode, and device is not
7297                          * there, get out of MST mode
7298                          */
7299                         drm_dbg_kms(&i915->drm,
7300                                     "MST device may have disappeared %d vs %d\n",
7301                                     intel_dp->is_mst,
7302                                     intel_dp->mst_mgr.mst_state);
7303                         intel_dp->is_mst = false;
7304                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7305                                                         intel_dp->is_mst);
7306
7307                         return IRQ_NONE;
7308                 case 1:
7309                         return IRQ_NONE;
7310                 default:
7311                         break;
7312                 }
7313         }
7314
7315         if (!intel_dp->is_mst) {
7316                 bool handled;
7317
7318                 handled = intel_dp_short_pulse(intel_dp);
7319
7320                 if (!handled)
7321                         return IRQ_NONE;
7322         }
7323
7324         return IRQ_HANDLED;
7325 }
7326
7327 /* check the VBT to see whether the eDP is on another port */
7328 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7329 {
7330         /*
7331          * eDP not supported on g4x. so bail out early just
7332          * for a bit extra safety in case the VBT is bonkers.
7333          */
7334         if (INTEL_GEN(dev_priv) < 5)
7335                 return false;
7336
7337         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7338                 return true;
7339
7340         return intel_bios_is_port_edp(dev_priv, port);
7341 }
7342
7343 static void
7344 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7345 {
7346         struct drm_i915_private *dev_priv = to_i915(connector->dev);
7347         enum port port = dp_to_dig_port(intel_dp)->base.port;
7348
7349         if (!IS_G4X(dev_priv) && port != PORT_A)
7350                 intel_attach_force_audio_property(connector);
7351
7352         intel_attach_broadcast_rgb_property(connector);
7353         if (HAS_GMCH(dev_priv))
7354                 drm_connector_attach_max_bpc_property(connector, 6, 10);
7355         else if (INTEL_GEN(dev_priv) >= 5)
7356                 drm_connector_attach_max_bpc_property(connector, 6, 12);
7357
7358         intel_attach_colorspace_property(connector);
7359
7360         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7361                 drm_object_attach_property(&connector->base,
7362                                            connector->dev->mode_config.hdr_output_metadata_property,
7363                                            0);
7364
7365         if (intel_dp_is_edp(intel_dp)) {
7366                 u32 allowed_scalers;
7367
7368                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7369                 if (!HAS_GMCH(dev_priv))
7370                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7371
7372                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7373
7374                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7375
7376         }
7377 }
7378
7379 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7380 {
7381         intel_dp->panel_power_off_time = ktime_get_boottime();
7382         intel_dp->last_power_on = jiffies;
7383         intel_dp->last_backlight_off = jiffies;
7384 }
7385
7386 static void
7387 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7388 {
7389         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7390         u32 pp_on, pp_off, pp_ctl;
7391         struct pps_registers regs;
7392
7393         intel_pps_get_registers(intel_dp, &regs);
7394
7395         pp_ctl = ilk_get_pp_control(intel_dp);
7396
7397         /* Ensure PPS is unlocked */
7398         if (!HAS_DDI(dev_priv))
7399                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7400
7401         pp_on = intel_de_read(dev_priv, regs.pp_on);
7402         pp_off = intel_de_read(dev_priv, regs.pp_off);
7403
7404         /* Pull timing values out of registers */
7405         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7406         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7407         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7408         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7409
7410         if (i915_mmio_reg_valid(regs.pp_div)) {
7411                 u32 pp_div;
7412
7413                 pp_div = intel_de_read(dev_priv, regs.pp_div);
7414
7415                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7416         } else {
7417                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7418         }
7419 }
7420
7421 static void
7422 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7423 {
7424         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7425                       state_name,
7426                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7427 }
7428
7429 static void
7430 intel_pps_verify_state(struct intel_dp *intel_dp)
7431 {
7432         struct edp_power_seq hw;
7433         struct edp_power_seq *sw = &intel_dp->pps_delays;
7434
7435         intel_pps_readout_hw_state(intel_dp, &hw);
7436
7437         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7438             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7439                 DRM_ERROR("PPS state mismatch\n");
7440                 intel_pps_dump_state("sw", sw);
7441                 intel_pps_dump_state("hw", &hw);
7442         }
7443 }
7444
7445 static void
7446 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7447 {
7448         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7449         struct edp_power_seq cur, vbt, spec,
7450                 *final = &intel_dp->pps_delays;
7451
7452         lockdep_assert_held(&dev_priv->pps_mutex);
7453
7454         /* already initialized? */
7455         if (final->t11_t12 != 0)
7456                 return;
7457
7458         intel_pps_readout_hw_state(intel_dp, &cur);
7459
7460         intel_pps_dump_state("cur", &cur);
7461
7462         vbt = dev_priv->vbt.edp.pps;
7463         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7464          * of 500ms appears to be too short. Ocassionally the panel
7465          * just fails to power back on. Increasing the delay to 800ms
7466          * seems sufficient to avoid this problem.
7467          */
7468         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7469                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7470                 drm_dbg_kms(&dev_priv->drm,
7471                             "Increasing T12 panel delay as per the quirk to %d\n",
7472                             vbt.t11_t12);
7473         }
7474         /* T11_T12 delay is special and actually in units of 100ms, but zero
7475          * based in the hw (so we need to add 100 ms). But the sw vbt
7476          * table multiplies it with 1000 to make it in units of 100usec,
7477          * too. */
7478         vbt.t11_t12 += 100 * 10;
7479
7480         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7481          * our hw here, which are all in 100usec. */
7482         spec.t1_t3 = 210 * 10;
7483         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7484         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7485         spec.t10 = 500 * 10;
7486         /* This one is special and actually in units of 100ms, but zero
7487          * based in the hw (so we need to add 100 ms). But the sw vbt
7488          * table multiplies it with 1000 to make it in units of 100usec,
7489          * too. */
7490         spec.t11_t12 = (510 + 100) * 10;
7491
7492         intel_pps_dump_state("vbt", &vbt);
7493
7494         /* Use the max of the register settings and vbt. If both are
7495          * unset, fall back to the spec limits. */
7496 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
7497                                        spec.field : \
7498                                        max(cur.field, vbt.field))
7499         assign_final(t1_t3);
7500         assign_final(t8);
7501         assign_final(t9);
7502         assign_final(t10);
7503         assign_final(t11_t12);
7504 #undef assign_final
7505
7506 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
7507         intel_dp->panel_power_up_delay = get_delay(t1_t3);
7508         intel_dp->backlight_on_delay = get_delay(t8);
7509         intel_dp->backlight_off_delay = get_delay(t9);
7510         intel_dp->panel_power_down_delay = get_delay(t10);
7511         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7512 #undef get_delay
7513
7514         drm_dbg_kms(&dev_priv->drm,
7515                     "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7516                     intel_dp->panel_power_up_delay,
7517                     intel_dp->panel_power_down_delay,
7518                     intel_dp->panel_power_cycle_delay);
7519
7520         drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7521                     intel_dp->backlight_on_delay,
7522                     intel_dp->backlight_off_delay);
7523
7524         /*
7525          * We override the HW backlight delays to 1 because we do manual waits
7526          * on them. For T8, even BSpec recommends doing it. For T9, if we
7527          * don't do this, we'll end up waiting for the backlight off delay
7528          * twice: once when we do the manual sleep, and once when we disable
7529          * the panel and wait for the PP_STATUS bit to become zero.
7530          */
7531         final->t8 = 1;
7532         final->t9 = 1;
7533
7534         /*
7535          * HW has only a 100msec granularity for t11_t12 so round it up
7536          * accordingly.
7537          */
7538         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7539 }
7540
7541 static void
7542 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7543                                               bool force_disable_vdd)
7544 {
7545         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7546         u32 pp_on, pp_off, port_sel = 0;
7547         int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7548         struct pps_registers regs;
7549         enum port port = dp_to_dig_port(intel_dp)->base.port;
7550         const struct edp_power_seq *seq = &intel_dp->pps_delays;
7551
7552         lockdep_assert_held(&dev_priv->pps_mutex);
7553
7554         intel_pps_get_registers(intel_dp, &regs);
7555
7556         /*
7557          * On some VLV machines the BIOS can leave the VDD
7558          * enabled even on power sequencers which aren't
7559          * hooked up to any port. This would mess up the
7560          * power domain tracking the first time we pick
7561          * one of these power sequencers for use since
7562          * edp_panel_vdd_on() would notice that the VDD was
7563          * already on and therefore wouldn't grab the power
7564          * domain reference. Disable VDD first to avoid this.
7565          * This also avoids spuriously turning the VDD on as
7566          * soon as the new power sequencer gets initialized.
7567          */
7568         if (force_disable_vdd) {
7569                 u32 pp = ilk_get_pp_control(intel_dp);
7570
7571                 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7572                          "Panel power already on\n");
7573
7574                 if (pp & EDP_FORCE_VDD)
7575                         drm_dbg_kms(&dev_priv->drm,
7576                                     "VDD already on, disabling first\n");
7577
7578                 pp &= ~EDP_FORCE_VDD;
7579
7580                 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7581         }
7582
7583         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7584                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7585         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7586                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7587
7588         /* Haswell doesn't have any port selection bits for the panel
7589          * power sequencer any more. */
7590         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7591                 port_sel = PANEL_PORT_SELECT_VLV(port);
7592         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7593                 switch (port) {
7594                 case PORT_A:
7595                         port_sel = PANEL_PORT_SELECT_DPA;
7596                         break;
7597                 case PORT_C:
7598                         port_sel = PANEL_PORT_SELECT_DPC;
7599                         break;
7600                 case PORT_D:
7601                         port_sel = PANEL_PORT_SELECT_DPD;
7602                         break;
7603                 default:
7604                         MISSING_CASE(port);
7605                         break;
7606                 }
7607         }
7608
7609         pp_on |= port_sel;
7610
7611         intel_de_write(dev_priv, regs.pp_on, pp_on);
7612         intel_de_write(dev_priv, regs.pp_off, pp_off);
7613
7614         /*
7615          * Compute the divisor for the pp clock, simply match the Bspec formula.
7616          */
7617         if (i915_mmio_reg_valid(regs.pp_div)) {
7618                 intel_de_write(dev_priv, regs.pp_div,
7619                                REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7620         } else {
7621                 u32 pp_ctl;
7622
7623                 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7624                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7625                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7626                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7627         }
7628
7629         drm_dbg_kms(&dev_priv->drm,
7630                     "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7631                     intel_de_read(dev_priv, regs.pp_on),
7632                     intel_de_read(dev_priv, regs.pp_off),
7633                     i915_mmio_reg_valid(regs.pp_div) ?
7634                     intel_de_read(dev_priv, regs.pp_div) :
7635                     (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7636 }
7637
7638 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7639 {
7640         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7641
7642         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7643                 vlv_initial_power_sequencer_setup(intel_dp);
7644         } else {
7645                 intel_dp_init_panel_power_sequencer(intel_dp);
7646                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7647         }
7648 }
7649
7650 /**
7651  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7652  * @dev_priv: i915 device
7653  * @crtc_state: a pointer to the active intel_crtc_state
7654  * @refresh_rate: RR to be programmed
7655  *
7656  * This function gets called when refresh rate (RR) has to be changed from
7657  * one frequency to another. Switches can be between high and low RR
7658  * supported by the panel or to any other RR based on media playback (in
7659  * this case, RR value needs to be passed from user space).
7660  *
7661  * The caller of this function needs to take a lock on dev_priv->drrs.
7662  */
7663 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7664                                     const struct intel_crtc_state *crtc_state,
7665                                     int refresh_rate)
7666 {
7667         struct intel_dp *intel_dp = dev_priv->drrs.dp;
7668         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7669         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7670
7671         if (refresh_rate <= 0) {
7672                 drm_dbg_kms(&dev_priv->drm,
7673                             "Refresh rate should be positive non-zero.\n");
7674                 return;
7675         }
7676
7677         if (intel_dp == NULL) {
7678                 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7679                 return;
7680         }
7681
7682         if (!intel_crtc) {
7683                 drm_dbg_kms(&dev_priv->drm,
7684                             "DRRS: intel_crtc not initialized\n");
7685                 return;
7686         }
7687
7688         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7689                 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7690                 return;
7691         }
7692
7693         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7694                         refresh_rate)
7695                 index = DRRS_LOW_RR;
7696
7697         if (index == dev_priv->drrs.refresh_rate_type) {
7698                 drm_dbg_kms(&dev_priv->drm,
7699                             "DRRS requested for previously set RR...ignoring\n");
7700                 return;
7701         }
7702
7703         if (!crtc_state->hw.active) {
7704                 drm_dbg_kms(&dev_priv->drm,
7705                             "eDP encoder disabled. CRTC not Active\n");
7706                 return;
7707         }
7708
7709         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7710                 switch (index) {
7711                 case DRRS_HIGH_RR:
7712                         intel_dp_set_m_n(crtc_state, M1_N1);
7713                         break;
7714                 case DRRS_LOW_RR:
7715                         intel_dp_set_m_n(crtc_state, M2_N2);
7716                         break;
7717                 case DRRS_MAX_RR:
7718                 default:
7719                         drm_err(&dev_priv->drm,
7720                                 "Unsupported refreshrate type\n");
7721                 }
7722         } else if (INTEL_GEN(dev_priv) > 6) {
7723                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7724                 u32 val;
7725
7726                 val = intel_de_read(dev_priv, reg);
7727                 if (index > DRRS_HIGH_RR) {
7728                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7729                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7730                         else
7731                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7732                 } else {
7733                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7734                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7735                         else
7736                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7737                 }
7738                 intel_de_write(dev_priv, reg, val);
7739         }
7740
7741         dev_priv->drrs.refresh_rate_type = index;
7742
7743         drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7744                     refresh_rate);
7745 }
7746
7747 /**
7748  * intel_edp_drrs_enable - init drrs struct if supported
7749  * @intel_dp: DP struct
7750  * @crtc_state: A pointer to the active crtc state.
7751  *
7752  * Initializes frontbuffer_bits and drrs.dp
7753  */
7754 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7755                            const struct intel_crtc_state *crtc_state)
7756 {
7757         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7758
7759         if (!crtc_state->has_drrs) {
7760                 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7761                 return;
7762         }
7763
7764         if (dev_priv->psr.enabled) {
7765                 drm_dbg_kms(&dev_priv->drm,
7766                             "PSR enabled. Not enabling DRRS.\n");
7767                 return;
7768         }
7769
7770         mutex_lock(&dev_priv->drrs.mutex);
7771         if (dev_priv->drrs.dp) {
7772                 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7773                 goto unlock;
7774         }
7775
7776         dev_priv->drrs.busy_frontbuffer_bits = 0;
7777
7778         dev_priv->drrs.dp = intel_dp;
7779
7780 unlock:
7781         mutex_unlock(&dev_priv->drrs.mutex);
7782 }
7783
7784 /**
7785  * intel_edp_drrs_disable - Disable DRRS
7786  * @intel_dp: DP struct
7787  * @old_crtc_state: Pointer to old crtc_state.
7788  *
7789  */
7790 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7791                             const struct intel_crtc_state *old_crtc_state)
7792 {
7793         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7794
7795         if (!old_crtc_state->has_drrs)
7796                 return;
7797
7798         mutex_lock(&dev_priv->drrs.mutex);
7799         if (!dev_priv->drrs.dp) {
7800                 mutex_unlock(&dev_priv->drrs.mutex);
7801                 return;
7802         }
7803
7804         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7805                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7806                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7807
7808         dev_priv->drrs.dp = NULL;
7809         mutex_unlock(&dev_priv->drrs.mutex);
7810
7811         cancel_delayed_work_sync(&dev_priv->drrs.work);
7812 }
7813
7814 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7815 {
7816         struct drm_i915_private *dev_priv =
7817                 container_of(work, typeof(*dev_priv), drrs.work.work);
7818         struct intel_dp *intel_dp;
7819
7820         mutex_lock(&dev_priv->drrs.mutex);
7821
7822         intel_dp = dev_priv->drrs.dp;
7823
7824         if (!intel_dp)
7825                 goto unlock;
7826
7827         /*
7828          * The delayed work can race with an invalidate hence we need to
7829          * recheck.
7830          */
7831
7832         if (dev_priv->drrs.busy_frontbuffer_bits)
7833                 goto unlock;
7834
7835         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7836                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7837
7838                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7839                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7840         }
7841
7842 unlock:
7843         mutex_unlock(&dev_priv->drrs.mutex);
7844 }
7845
7846 /**
7847  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7848  * @dev_priv: i915 device
7849  * @frontbuffer_bits: frontbuffer plane tracking bits
7850  *
7851  * This function gets called everytime rendering on the given planes start.
7852  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7853  *
7854  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7855  */
7856 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7857                                unsigned int frontbuffer_bits)
7858 {
7859         struct drm_crtc *crtc;
7860         enum pipe pipe;
7861
7862         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7863                 return;
7864
7865         cancel_delayed_work(&dev_priv->drrs.work);
7866
7867         mutex_lock(&dev_priv->drrs.mutex);
7868         if (!dev_priv->drrs.dp) {
7869                 mutex_unlock(&dev_priv->drrs.mutex);
7870                 return;
7871         }
7872
7873         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7874         pipe = to_intel_crtc(crtc)->pipe;
7875
7876         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7877         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7878
7879         /* invalidate means busy screen hence upclock */
7880         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7881                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7882                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7883
7884         mutex_unlock(&dev_priv->drrs.mutex);
7885 }
7886
7887 /**
7888  * intel_edp_drrs_flush - Restart Idleness DRRS
7889  * @dev_priv: i915 device
7890  * @frontbuffer_bits: frontbuffer plane tracking bits
7891  *
7892  * This function gets called every time rendering on the given planes has
7893  * completed or flip on a crtc is completed. So DRRS should be upclocked
7894  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7895  * if no other planes are dirty.
7896  *
7897  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7898  */
7899 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7900                           unsigned int frontbuffer_bits)
7901 {
7902         struct drm_crtc *crtc;
7903         enum pipe pipe;
7904
7905         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7906                 return;
7907
7908         cancel_delayed_work(&dev_priv->drrs.work);
7909
7910         mutex_lock(&dev_priv->drrs.mutex);
7911         if (!dev_priv->drrs.dp) {
7912                 mutex_unlock(&dev_priv->drrs.mutex);
7913                 return;
7914         }
7915
7916         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7917         pipe = to_intel_crtc(crtc)->pipe;
7918
7919         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7920         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7921
7922         /* flush means busy screen hence upclock */
7923         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7924                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7925                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7926
7927         /*
7928          * flush also means no more activity hence schedule downclock, if all
7929          * other fbs are quiescent too
7930          */
7931         if (!dev_priv->drrs.busy_frontbuffer_bits)
7932                 schedule_delayed_work(&dev_priv->drrs.work,
7933                                 msecs_to_jiffies(1000));
7934         mutex_unlock(&dev_priv->drrs.mutex);
7935 }
7936
7937 /**
7938  * DOC: Display Refresh Rate Switching (DRRS)
7939  *
7940  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7941  * which enables swtching between low and high refresh rates,
7942  * dynamically, based on the usage scenario. This feature is applicable
7943  * for internal panels.
7944  *
7945  * Indication that the panel supports DRRS is given by the panel EDID, which
7946  * would list multiple refresh rates for one resolution.
7947  *
7948  * DRRS is of 2 types - static and seamless.
7949  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7950  * (may appear as a blink on screen) and is used in dock-undock scenario.
7951  * Seamless DRRS involves changing RR without any visual effect to the user
7952  * and can be used during normal system usage. This is done by programming
7953  * certain registers.
7954  *
7955  * Support for static/seamless DRRS may be indicated in the VBT based on
7956  * inputs from the panel spec.
7957  *
7958  * DRRS saves power by switching to low RR based on usage scenarios.
7959  *
7960  * The implementation is based on frontbuffer tracking implementation.  When
7961  * there is a disturbance on the screen triggered by user activity or a periodic
7962  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7963  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7964  * made.
7965  *
7966  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7967  * and intel_edp_drrs_flush() are called.
7968  *
7969  * DRRS can be further extended to support other internal panels and also
7970  * the scenario of video playback wherein RR is set based on the rate
7971  * requested by userspace.
7972  */
7973
7974 /**
7975  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7976  * @connector: eDP connector
7977  * @fixed_mode: preferred mode of panel
7978  *
7979  * This function is  called only once at driver load to initialize basic
7980  * DRRS stuff.
7981  *
7982  * Returns:
7983  * Downclock mode if panel supports it, else return NULL.
7984  * DRRS support is determined by the presence of downclock mode (apart
7985  * from VBT setting).
7986  */
7987 static struct drm_display_mode *
7988 intel_dp_drrs_init(struct intel_connector *connector,
7989                    struct drm_display_mode *fixed_mode)
7990 {
7991         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7992         struct drm_display_mode *downclock_mode = NULL;
7993
7994         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7995         mutex_init(&dev_priv->drrs.mutex);
7996
7997         if (INTEL_GEN(dev_priv) <= 6) {
7998                 drm_dbg_kms(&dev_priv->drm,
7999                             "DRRS supported for Gen7 and above\n");
8000                 return NULL;
8001         }
8002
8003         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
8004                 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
8005                 return NULL;
8006         }
8007
8008         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
8009         if (!downclock_mode) {
8010                 drm_dbg_kms(&dev_priv->drm,
8011                             "Downclock mode is not found. DRRS not supported\n");
8012                 return NULL;
8013         }
8014
8015         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
8016
8017         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
8018         drm_dbg_kms(&dev_priv->drm,
8019                     "seamless DRRS supported for eDP panel.\n");
8020         return downclock_mode;
8021 }
8022
8023 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8024                                      struct intel_connector *intel_connector)
8025 {
8026         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8027         struct drm_device *dev = &dev_priv->drm;
8028         struct drm_connector *connector = &intel_connector->base;
8029         struct drm_display_mode *fixed_mode = NULL;
8030         struct drm_display_mode *downclock_mode = NULL;
8031         bool has_dpcd;
8032         enum pipe pipe = INVALID_PIPE;
8033         intel_wakeref_t wakeref;
8034         struct edid *edid;
8035
8036         if (!intel_dp_is_edp(intel_dp))
8037                 return true;
8038
8039         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8040
8041         /*
8042          * On IBX/CPT we may get here with LVDS already registered. Since the
8043          * driver uses the only internal power sequencer available for both
8044          * eDP and LVDS bail out early in this case to prevent interfering
8045          * with an already powered-on LVDS power sequencer.
8046          */
8047         if (intel_get_lvds_encoder(dev_priv)) {
8048                 drm_WARN_ON(dev,
8049                             !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8050                 drm_info(&dev_priv->drm,
8051                          "LVDS was detected, not registering eDP\n");
8052
8053                 return false;
8054         }
8055
8056         with_pps_lock(intel_dp, wakeref) {
8057                 intel_dp_init_panel_power_timestamps(intel_dp);
8058                 intel_dp_pps_init(intel_dp);
8059                 intel_edp_panel_vdd_sanitize(intel_dp);
8060         }
8061
8062         /* Cache DPCD and EDID for edp. */
8063         has_dpcd = intel_edp_init_dpcd(intel_dp);
8064
8065         if (!has_dpcd) {
8066                 /* if this fails, presume the device is a ghost */
8067                 drm_info(&dev_priv->drm,
8068                          "failed to retrieve link info, disabling eDP\n");
8069                 goto out_vdd_off;
8070         }
8071
8072         mutex_lock(&dev->mode_config.mutex);
8073         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8074         if (edid) {
8075                 if (drm_add_edid_modes(connector, edid)) {
8076                         drm_connector_update_edid_property(connector, edid);
8077                         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8078                 } else {
8079                         kfree(edid);
8080                         edid = ERR_PTR(-EINVAL);
8081                 }
8082         } else {
8083                 edid = ERR_PTR(-ENOENT);
8084         }
8085         intel_connector->edid = edid;
8086
8087         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8088         if (fixed_mode)
8089                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8090
8091         /* fallback to VBT if available for eDP */
8092         if (!fixed_mode)
8093                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8094         mutex_unlock(&dev->mode_config.mutex);
8095
8096         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8097                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8098                 register_reboot_notifier(&intel_dp->edp_notifier);
8099
8100                 /*
8101                  * Figure out the current pipe for the initial backlight setup.
8102                  * If the current pipe isn't valid, try the PPS pipe, and if that
8103                  * fails just assume pipe A.
8104                  */
8105                 pipe = vlv_active_pipe(intel_dp);
8106
8107                 if (pipe != PIPE_A && pipe != PIPE_B)
8108                         pipe = intel_dp->pps_pipe;
8109
8110                 if (pipe != PIPE_A && pipe != PIPE_B)
8111                         pipe = PIPE_A;
8112
8113                 drm_dbg_kms(&dev_priv->drm,
8114                             "using pipe %c for initial backlight setup\n",
8115                             pipe_name(pipe));
8116         }
8117
8118         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8119         intel_connector->panel.backlight.power = intel_edp_backlight_power;
8120         intel_panel_setup_backlight(connector, pipe);
8121
8122         if (fixed_mode) {
8123                 drm_connector_set_panel_orientation_with_quirk(connector,
8124                                 dev_priv->vbt.orientation,
8125                                 fixed_mode->hdisplay, fixed_mode->vdisplay);
8126         }
8127
8128         return true;
8129
8130 out_vdd_off:
8131         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8132         /*
8133          * vdd might still be enabled do to the delayed vdd off.
8134          * Make sure vdd is actually turned off here.
8135          */
8136         with_pps_lock(intel_dp, wakeref)
8137                 edp_panel_vdd_off_sync(intel_dp);
8138
8139         return false;
8140 }
8141
8142 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8143 {
8144         struct intel_connector *intel_connector;
8145         struct drm_connector *connector;
8146
8147         intel_connector = container_of(work, typeof(*intel_connector),
8148                                        modeset_retry_work);
8149         connector = &intel_connector->base;
8150         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8151                       connector->name);
8152
8153         /* Grab the locks before changing connector property*/
8154         mutex_lock(&connector->dev->mode_config.mutex);
8155         /* Set connector link status to BAD and send a Uevent to notify
8156          * userspace to do a modeset.
8157          */
8158         drm_connector_set_link_status_property(connector,
8159                                                DRM_MODE_LINK_STATUS_BAD);
8160         mutex_unlock(&connector->dev->mode_config.mutex);
8161         /* Send Hotplug uevent so userspace can reprobe */
8162         drm_kms_helper_hotplug_event(connector->dev);
8163 }
8164
8165 bool
8166 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8167                         struct intel_connector *intel_connector)
8168 {
8169         struct drm_connector *connector = &intel_connector->base;
8170         struct intel_dp *intel_dp = &intel_dig_port->dp;
8171         struct intel_encoder *intel_encoder = &intel_dig_port->base;
8172         struct drm_device *dev = intel_encoder->base.dev;
8173         struct drm_i915_private *dev_priv = to_i915(dev);
8174         enum port port = intel_encoder->port;
8175         enum phy phy = intel_port_to_phy(dev_priv, port);
8176         int type;
8177
8178         /* Initialize the work for modeset in case of link train failure */
8179         INIT_WORK(&intel_connector->modeset_retry_work,
8180                   intel_dp_modeset_retry_work_fn);
8181
8182         if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8183                      "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8184                      intel_dig_port->max_lanes, intel_encoder->base.base.id,
8185                      intel_encoder->base.name))
8186                 return false;
8187
8188         intel_dp_set_source_rates(intel_dp);
8189
8190         intel_dp->reset_link_params = true;
8191         intel_dp->pps_pipe = INVALID_PIPE;
8192         intel_dp->active_pipe = INVALID_PIPE;
8193
8194         /* Preserve the current hw state. */
8195         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8196         intel_dp->attached_connector = intel_connector;
8197
8198         if (intel_dp_is_port_edp(dev_priv, port)) {
8199                 /*
8200                  * Currently we don't support eDP on TypeC ports, although in
8201                  * theory it could work on TypeC legacy ports.
8202                  */
8203                 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8204                 type = DRM_MODE_CONNECTOR_eDP;
8205         } else {
8206                 type = DRM_MODE_CONNECTOR_DisplayPort;
8207         }
8208
8209         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8210                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8211
8212         /*
8213          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8214          * for DP the encoder type can be set by the caller to
8215          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8216          */
8217         if (type == DRM_MODE_CONNECTOR_eDP)
8218                 intel_encoder->type = INTEL_OUTPUT_EDP;
8219
8220         /* eDP only on port B and/or C on vlv/chv */
8221         if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8222                               IS_CHERRYVIEW(dev_priv)) &&
8223                         intel_dp_is_edp(intel_dp) &&
8224                         port != PORT_B && port != PORT_C))
8225                 return false;
8226
8227         drm_dbg_kms(&dev_priv->drm,
8228                     "Adding %s connector on [ENCODER:%d:%s]\n",
8229                     type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8230                     intel_encoder->base.base.id, intel_encoder->base.name);
8231
8232         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8233         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8234
8235         if (!HAS_GMCH(dev_priv))
8236                 connector->interlace_allowed = true;
8237         connector->doublescan_allowed = 0;
8238
8239         if (INTEL_GEN(dev_priv) >= 11)
8240                 connector->ycbcr_420_allowed = true;
8241
8242         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8243         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8244
8245         intel_dp_aux_init(intel_dp);
8246
8247         intel_connector_attach_encoder(intel_connector, intel_encoder);
8248
8249         if (HAS_DDI(dev_priv))
8250                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8251         else
8252                 intel_connector->get_hw_state = intel_connector_get_hw_state;
8253
8254         /* init MST on ports that can support it */
8255         intel_dp_mst_encoder_init(intel_dig_port,
8256                                   intel_connector->base.base.id);
8257
8258         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8259                 intel_dp_aux_fini(intel_dp);
8260                 intel_dp_mst_encoder_cleanup(intel_dig_port);
8261                 goto fail;
8262         }
8263
8264         intel_dp_add_properties(intel_dp, connector);
8265
8266         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8267                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8268                 if (ret)
8269                         drm_dbg_kms(&dev_priv->drm,
8270                                     "HDCP init failed, skipping.\n");
8271         }
8272
8273         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8274          * 0xd.  Failure to do so will result in spurious interrupts being
8275          * generated on the port when a cable is not attached.
8276          */
8277         if (IS_G45(dev_priv)) {
8278                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8279                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8280                                (temp & ~0xf) | 0xd);
8281         }
8282
8283         return true;
8284
8285 fail:
8286         drm_connector_cleanup(connector);
8287
8288         return false;
8289 }
8290
8291 bool intel_dp_init(struct drm_i915_private *dev_priv,
8292                    i915_reg_t output_reg,
8293                    enum port port)
8294 {
8295         struct intel_digital_port *intel_dig_port;
8296         struct intel_encoder *intel_encoder;
8297         struct drm_encoder *encoder;
8298         struct intel_connector *intel_connector;
8299
8300         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8301         if (!intel_dig_port)
8302                 return false;
8303
8304         intel_connector = intel_connector_alloc();
8305         if (!intel_connector)
8306                 goto err_connector_alloc;
8307
8308         intel_encoder = &intel_dig_port->base;
8309         encoder = &intel_encoder->base;
8310
8311         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8312                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8313                              "DP %c", port_name(port)))
8314                 goto err_encoder_init;
8315
8316         intel_encoder->hotplug = intel_dp_hotplug;
8317         intel_encoder->compute_config = intel_dp_compute_config;
8318         intel_encoder->get_hw_state = intel_dp_get_hw_state;
8319         intel_encoder->get_config = intel_dp_get_config;
8320         intel_encoder->update_pipe = intel_panel_update_backlight;
8321         intel_encoder->suspend = intel_dp_encoder_suspend;
8322         if (IS_CHERRYVIEW(dev_priv)) {
8323                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8324                 intel_encoder->pre_enable = chv_pre_enable_dp;
8325                 intel_encoder->enable = vlv_enable_dp;
8326                 intel_encoder->disable = vlv_disable_dp;
8327                 intel_encoder->post_disable = chv_post_disable_dp;
8328                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8329         } else if (IS_VALLEYVIEW(dev_priv)) {
8330                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8331                 intel_encoder->pre_enable = vlv_pre_enable_dp;
8332                 intel_encoder->enable = vlv_enable_dp;
8333                 intel_encoder->disable = vlv_disable_dp;
8334                 intel_encoder->post_disable = vlv_post_disable_dp;
8335         } else {
8336                 intel_encoder->pre_enable = g4x_pre_enable_dp;
8337                 intel_encoder->enable = g4x_enable_dp;
8338                 intel_encoder->disable = g4x_disable_dp;
8339                 intel_encoder->post_disable = g4x_post_disable_dp;
8340         }
8341
8342         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
8343             (HAS_PCH_CPT(dev_priv) && port != PORT_A))
8344                 intel_dig_port->dp.set_link_train = cpt_set_link_train;
8345         else
8346                 intel_dig_port->dp.set_link_train = g4x_set_link_train;
8347
8348         if (IS_CHERRYVIEW(dev_priv))
8349                 intel_dig_port->dp.set_signal_levels = chv_set_signal_levels;
8350         else if (IS_VALLEYVIEW(dev_priv))
8351                 intel_dig_port->dp.set_signal_levels = vlv_set_signal_levels;
8352         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
8353                 intel_dig_port->dp.set_signal_levels = ivb_cpu_edp_set_signal_levels;
8354         else if (IS_GEN(dev_priv, 6) && port == PORT_A)
8355                 intel_dig_port->dp.set_signal_levels = snb_cpu_edp_set_signal_levels;
8356         else
8357                 intel_dig_port->dp.set_signal_levels = g4x_set_signal_levels;
8358
8359         intel_dig_port->dp.output_reg = output_reg;
8360         intel_dig_port->max_lanes = 4;
8361         intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8362         intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8363
8364         intel_encoder->type = INTEL_OUTPUT_DP;
8365         intel_encoder->power_domain = intel_port_to_power_domain(port);
8366         if (IS_CHERRYVIEW(dev_priv)) {
8367                 if (port == PORT_D)
8368                         intel_encoder->pipe_mask = BIT(PIPE_C);
8369                 else
8370                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8371         } else {
8372                 intel_encoder->pipe_mask = ~0;
8373         }
8374         intel_encoder->cloneable = 0;
8375         intel_encoder->port = port;
8376
8377         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8378
8379         if (HAS_GMCH(dev_priv)) {
8380                 if (IS_GM45(dev_priv))
8381                         intel_dig_port->connected = gm45_digital_port_connected;
8382                 else
8383                         intel_dig_port->connected = g4x_digital_port_connected;
8384         } else {
8385                 if (port == PORT_A)
8386                         intel_dig_port->connected = ilk_digital_port_connected;
8387                 else
8388                         intel_dig_port->connected = ibx_digital_port_connected;
8389         }
8390
8391         if (port != PORT_A)
8392                 intel_infoframe_init(intel_dig_port);
8393
8394         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8395         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8396                 goto err_init_connector;
8397
8398         return true;
8399
8400 err_init_connector:
8401         drm_encoder_cleanup(encoder);
8402 err_encoder_init:
8403         kfree(intel_connector);
8404 err_connector_alloc:
8405         kfree(intel_dig_port);
8406         return false;
8407 }
8408
8409 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8410 {
8411         struct intel_encoder *encoder;
8412
8413         for_each_intel_encoder(&dev_priv->drm, encoder) {
8414                 struct intel_dp *intel_dp;
8415
8416                 if (encoder->type != INTEL_OUTPUT_DDI)
8417                         continue;
8418
8419                 intel_dp = enc_to_intel_dp(encoder);
8420
8421                 if (!intel_dp->can_mst)
8422                         continue;
8423
8424                 if (intel_dp->is_mst)
8425                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8426         }
8427 }
8428
8429 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8430 {
8431         struct intel_encoder *encoder;
8432
8433         for_each_intel_encoder(&dev_priv->drm, encoder) {
8434                 struct intel_dp *intel_dp;
8435                 int ret;
8436
8437                 if (encoder->type != INTEL_OUTPUT_DDI)
8438                         continue;
8439
8440                 intel_dp = enc_to_intel_dp(encoder);
8441
8442                 if (!intel_dp->can_mst)
8443                         continue;
8444
8445                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8446                                                      true);
8447                 if (ret) {
8448                         intel_dp->is_mst = false;
8449                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8450                                                         false);
8451                 }
8452         }
8453 }