7c4c9a4f423872f4da0daf2c0564ee983e35ee6b
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43
44 #include "i915_debugfs.h"
45 #include "i915_drv.h"
46 #include "i915_trace.h"
47 #include "intel_atomic.h"
48 #include "intel_audio.h"
49 #include "intel_connector.h"
50 #include "intel_ddi.h"
51 #include "intel_display_types.h"
52 #include "intel_dp.h"
53 #include "intel_dp_link_training.h"
54 #include "intel_dp_mst.h"
55 #include "intel_dpio_phy.h"
56 #include "intel_fifo_underrun.h"
57 #include "intel_hdcp.h"
58 #include "intel_hdmi.h"
59 #include "intel_hotplug.h"
60 #include "intel_lspcon.h"
61 #include "intel_lvds.h"
62 #include "intel_panel.h"
63 #include "intel_psr.h"
64 #include "intel_sideband.h"
65 #include "intel_tc.h"
66 #include "intel_vdsc.h"
67
68 #define DP_DPRX_ESI_LEN 14
69
70 /* DP DSC throughput values used for slice count calculations KPixels/s */
71 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
72 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
74
75 /* DP DSC FEC Overhead factor = 1/(0.972261) */
76 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
77
78 /* Compliance test status bits  */
79 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
80 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
81 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83
84 struct dp_link_dpll {
85         int clock;
86         struct dpll dpll;
87 };
88
89 static const struct dp_link_dpll g4x_dpll[] = {
90         { 162000,
91                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
92         { 270000,
93                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
94 };
95
96 static const struct dp_link_dpll pch_dpll[] = {
97         { 162000,
98                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
99         { 270000,
100                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
101 };
102
103 static const struct dp_link_dpll vlv_dpll[] = {
104         { 162000,
105                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
106         { 270000,
107                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
108 };
109
110 /*
111  * CHV supports eDP 1.4 that have  more link rates.
112  * Below only provides the fixed rate but exclude variable rate.
113  */
114 static const struct dp_link_dpll chv_dpll[] = {
115         /*
116          * CHV requires to program fractional division for m2.
117          * m2 is stored in fixed point format using formula below
118          * (m2_int << 22) | m2_fraction
119          */
120         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
121                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
122         { 270000,       /* m2_int = 27, m2_fraction = 0 */
123                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
124 };
125
126 /* Constants for DP DSC configurations */
127 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
128
129 /* With Single pipe configuration, HW is capable of supporting maximum
130  * of 4 slices per line.
131  */
132 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
133
134 /**
135  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
136  * @intel_dp: DP struct
137  *
138  * If a CPU or PCH DP output is attached to an eDP panel, this function
139  * will return true, and false otherwise.
140  */
141 bool intel_dp_is_edp(struct intel_dp *intel_dp)
142 {
143         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
144
145         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
146 }
147
148 static void intel_dp_link_down(struct intel_encoder *encoder,
149                                const struct intel_crtc_state *old_crtc_state);
150 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
151 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
152 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
153                                            const struct intel_crtc_state *crtc_state);
154 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
155                                       enum pipe pipe);
156 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
157
158 /* update sink rates from dpcd */
159 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
160 {
161         static const int dp_rates[] = {
162                 162000, 270000, 540000, 810000
163         };
164         int i, max_rate;
165
166         if (drm_dp_has_quirk(&intel_dp->desc, 0,
167                              DP_DPCD_QUIRK_CAN_DO_MAX_LINK_RATE_3_24_GBPS)) {
168                 /* Needed, e.g., for Apple MBP 2017, 15 inch eDP Retina panel */
169                 static const int quirk_rates[] = { 162000, 270000, 324000 };
170
171                 memcpy(intel_dp->sink_rates, quirk_rates, sizeof(quirk_rates));
172                 intel_dp->num_sink_rates = ARRAY_SIZE(quirk_rates);
173
174                 return;
175         }
176
177         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
178
179         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
180                 if (dp_rates[i] > max_rate)
181                         break;
182                 intel_dp->sink_rates[i] = dp_rates[i];
183         }
184
185         intel_dp->num_sink_rates = i;
186 }
187
188 /* Get length of rates array potentially limited by max_rate. */
189 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
190 {
191         int i;
192
193         /* Limit results by potentially reduced max rate */
194         for (i = 0; i < len; i++) {
195                 if (rates[len - i - 1] <= max_rate)
196                         return len - i;
197         }
198
199         return 0;
200 }
201
202 /* Get length of common rates array potentially limited by max_rate. */
203 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
204                                           int max_rate)
205 {
206         return intel_dp_rate_limit_len(intel_dp->common_rates,
207                                        intel_dp->num_common_rates, max_rate);
208 }
209
210 /* Theoretical max between source and sink */
211 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
212 {
213         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
214 }
215
216 /* Theoretical max between source and sink */
217 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
218 {
219         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
220         int source_max = intel_dig_port->max_lanes;
221         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
222         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
223
224         return min3(source_max, sink_max, fia_max);
225 }
226
227 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
228 {
229         return intel_dp->max_link_lane_count;
230 }
231
232 int
233 intel_dp_link_required(int pixel_clock, int bpp)
234 {
235         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
236         return DIV_ROUND_UP(pixel_clock * bpp, 8);
237 }
238
239 int
240 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
241 {
242         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
243          * link rate that is generally expressed in Gbps. Since, 8 bits of data
244          * is transmitted every LS_Clk per lane, there is no need to account for
245          * the channel encoding that is done in the PHY layer here.
246          */
247
248         return max_link_clock * max_lanes;
249 }
250
251 static int
252 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
253 {
254         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
255         struct intel_encoder *encoder = &intel_dig_port->base;
256         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
257         int max_dotclk = dev_priv->max_dotclk_freq;
258         int ds_max_dotclk;
259
260         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
261
262         if (type != DP_DS_PORT_TYPE_VGA)
263                 return max_dotclk;
264
265         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
266                                                     intel_dp->downstream_ports);
267
268         if (ds_max_dotclk != 0)
269                 max_dotclk = min(max_dotclk, ds_max_dotclk);
270
271         return max_dotclk;
272 }
273
274 static int cnl_max_source_rate(struct intel_dp *intel_dp)
275 {
276         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
277         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
278         enum port port = dig_port->base.port;
279
280         u32 voltage = intel_de_read(dev_priv, CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
281
282         /* Low voltage SKUs are limited to max of 5.4G */
283         if (voltage == VOLTAGE_INFO_0_85V)
284                 return 540000;
285
286         /* For this SKU 8.1G is supported in all ports */
287         if (IS_CNL_WITH_PORT_F(dev_priv))
288                 return 810000;
289
290         /* For other SKUs, max rate on ports A and D is 5.4G */
291         if (port == PORT_A || port == PORT_D)
292                 return 540000;
293
294         return 810000;
295 }
296
297 static int icl_max_source_rate(struct intel_dp *intel_dp)
298 {
299         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
300         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
301         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
302
303         if (intel_phy_is_combo(dev_priv, phy) &&
304             !IS_ELKHARTLAKE(dev_priv) &&
305             !intel_dp_is_edp(intel_dp))
306                 return 540000;
307
308         return 810000;
309 }
310
311 static void
312 intel_dp_set_source_rates(struct intel_dp *intel_dp)
313 {
314         /* The values must be in increasing order */
315         static const int cnl_rates[] = {
316                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
317         };
318         static const int bxt_rates[] = {
319                 162000, 216000, 243000, 270000, 324000, 432000, 540000
320         };
321         static const int skl_rates[] = {
322                 162000, 216000, 270000, 324000, 432000, 540000
323         };
324         static const int hsw_rates[] = {
325                 162000, 270000, 540000
326         };
327         static const int g4x_rates[] = {
328                 162000, 270000
329         };
330         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
331         struct intel_encoder *encoder = &dig_port->base;
332         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
333         const int *source_rates;
334         int size, max_rate = 0, vbt_max_rate;
335
336         /* This should only be done once */
337         drm_WARN_ON(&dev_priv->drm,
338                     intel_dp->source_rates || intel_dp->num_source_rates);
339
340         if (INTEL_GEN(dev_priv) >= 10) {
341                 source_rates = cnl_rates;
342                 size = ARRAY_SIZE(cnl_rates);
343                 if (IS_GEN(dev_priv, 10))
344                         max_rate = cnl_max_source_rate(intel_dp);
345                 else
346                         max_rate = icl_max_source_rate(intel_dp);
347         } else if (IS_GEN9_LP(dev_priv)) {
348                 source_rates = bxt_rates;
349                 size = ARRAY_SIZE(bxt_rates);
350         } else if (IS_GEN9_BC(dev_priv)) {
351                 source_rates = skl_rates;
352                 size = ARRAY_SIZE(skl_rates);
353         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
354                    IS_BROADWELL(dev_priv)) {
355                 source_rates = hsw_rates;
356                 size = ARRAY_SIZE(hsw_rates);
357         } else {
358                 source_rates = g4x_rates;
359                 size = ARRAY_SIZE(g4x_rates);
360         }
361
362         vbt_max_rate = intel_bios_dp_max_link_rate(encoder);
363         if (max_rate && vbt_max_rate)
364                 max_rate = min(max_rate, vbt_max_rate);
365         else if (vbt_max_rate)
366                 max_rate = vbt_max_rate;
367
368         if (max_rate)
369                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
370
371         intel_dp->source_rates = source_rates;
372         intel_dp->num_source_rates = size;
373 }
374
375 static int intersect_rates(const int *source_rates, int source_len,
376                            const int *sink_rates, int sink_len,
377                            int *common_rates)
378 {
379         int i = 0, j = 0, k = 0;
380
381         while (i < source_len && j < sink_len) {
382                 if (source_rates[i] == sink_rates[j]) {
383                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
384                                 return k;
385                         common_rates[k] = source_rates[i];
386                         ++k;
387                         ++i;
388                         ++j;
389                 } else if (source_rates[i] < sink_rates[j]) {
390                         ++i;
391                 } else {
392                         ++j;
393                 }
394         }
395         return k;
396 }
397
398 /* return index of rate in rates array, or -1 if not found */
399 static int intel_dp_rate_index(const int *rates, int len, int rate)
400 {
401         int i;
402
403         for (i = 0; i < len; i++)
404                 if (rate == rates[i])
405                         return i;
406
407         return -1;
408 }
409
410 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
411 {
412         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
413
414         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
415                                                      intel_dp->num_source_rates,
416                                                      intel_dp->sink_rates,
417                                                      intel_dp->num_sink_rates,
418                                                      intel_dp->common_rates);
419
420         /* Paranoia, there should always be something in common. */
421         if (WARN_ON(intel_dp->num_common_rates == 0)) {
422                 intel_dp->common_rates[0] = 162000;
423                 intel_dp->num_common_rates = 1;
424         }
425 }
426
427 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
428                                        u8 lane_count)
429 {
430         /*
431          * FIXME: we need to synchronize the current link parameters with
432          * hardware readout. Currently fast link training doesn't work on
433          * boot-up.
434          */
435         if (link_rate == 0 ||
436             link_rate > intel_dp->max_link_rate)
437                 return false;
438
439         if (lane_count == 0 ||
440             lane_count > intel_dp_max_lane_count(intel_dp))
441                 return false;
442
443         return true;
444 }
445
446 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
447                                                      int link_rate,
448                                                      u8 lane_count)
449 {
450         const struct drm_display_mode *fixed_mode =
451                 intel_dp->attached_connector->panel.fixed_mode;
452         int mode_rate, max_rate;
453
454         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
455         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
456         if (mode_rate > max_rate)
457                 return false;
458
459         return true;
460 }
461
462 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
463                                             int link_rate, u8 lane_count)
464 {
465         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
466         int index;
467
468         index = intel_dp_rate_index(intel_dp->common_rates,
469                                     intel_dp->num_common_rates,
470                                     link_rate);
471         if (index > 0) {
472                 if (intel_dp_is_edp(intel_dp) &&
473                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
474                                                               intel_dp->common_rates[index - 1],
475                                                               lane_count)) {
476                         drm_dbg_kms(&i915->drm,
477                                     "Retrying Link training for eDP with same parameters\n");
478                         return 0;
479                 }
480                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
481                 intel_dp->max_link_lane_count = lane_count;
482         } else if (lane_count > 1) {
483                 if (intel_dp_is_edp(intel_dp) &&
484                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
485                                                               intel_dp_max_common_rate(intel_dp),
486                                                               lane_count >> 1)) {
487                         drm_dbg_kms(&i915->drm,
488                                     "Retrying Link training for eDP with same parameters\n");
489                         return 0;
490                 }
491                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
492                 intel_dp->max_link_lane_count = lane_count >> 1;
493         } else {
494                 drm_err(&i915->drm, "Link Training Unsuccessful\n");
495                 return -1;
496         }
497
498         return 0;
499 }
500
501 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
502 {
503         return div_u64(mul_u32_u32(mode_clock, 1000000U),
504                        DP_DSC_FEC_OVERHEAD_FACTOR);
505 }
506
507 static int
508 small_joiner_ram_size_bits(struct drm_i915_private *i915)
509 {
510         if (INTEL_GEN(i915) >= 11)
511                 return 7680 * 8;
512         else
513                 return 6144 * 8;
514 }
515
516 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
517                                        u32 link_clock, u32 lane_count,
518                                        u32 mode_clock, u32 mode_hdisplay)
519 {
520         u32 bits_per_pixel, max_bpp_small_joiner_ram;
521         int i;
522
523         /*
524          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
525          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
526          * for SST -> TimeSlotsPerMTP is 1,
527          * for MST -> TimeSlotsPerMTP has to be calculated
528          */
529         bits_per_pixel = (link_clock * lane_count * 8) /
530                          intel_dp_mode_to_fec_clock(mode_clock);
531         drm_dbg_kms(&i915->drm, "Max link bpp: %u\n", bits_per_pixel);
532
533         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
534         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
535                 mode_hdisplay;
536         drm_dbg_kms(&i915->drm, "Max small joiner bpp: %u\n",
537                     max_bpp_small_joiner_ram);
538
539         /*
540          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
541          * check, output bpp from small joiner RAM check)
542          */
543         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
544
545         /* Error out if the max bpp is less than smallest allowed valid bpp */
546         if (bits_per_pixel < valid_dsc_bpp[0]) {
547                 drm_dbg_kms(&i915->drm, "Unsupported BPP %u, min %u\n",
548                             bits_per_pixel, valid_dsc_bpp[0]);
549                 return 0;
550         }
551
552         /* Find the nearest match in the array of known BPPs from VESA */
553         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
554                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
555                         break;
556         }
557         bits_per_pixel = valid_dsc_bpp[i];
558
559         /*
560          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
561          * fractional part is 0
562          */
563         return bits_per_pixel << 4;
564 }
565
566 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
567                                        int mode_clock, int mode_hdisplay)
568 {
569         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
570         u8 min_slice_count, i;
571         int max_slice_width;
572
573         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
574                 min_slice_count = DIV_ROUND_UP(mode_clock,
575                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
576         else
577                 min_slice_count = DIV_ROUND_UP(mode_clock,
578                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
579
580         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
581         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
582                 drm_dbg_kms(&i915->drm,
583                             "Unsupported slice width %d by DP DSC Sink device\n",
584                             max_slice_width);
585                 return 0;
586         }
587         /* Also take into account max slice width */
588         min_slice_count = min_t(u8, min_slice_count,
589                                 DIV_ROUND_UP(mode_hdisplay,
590                                              max_slice_width));
591
592         /* Find the closest match to the valid slice count values */
593         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
594                 if (valid_dsc_slicecount[i] >
595                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
596                                                     false))
597                         break;
598                 if (min_slice_count  <= valid_dsc_slicecount[i])
599                         return valid_dsc_slicecount[i];
600         }
601
602         drm_dbg_kms(&i915->drm, "Unsupported Slice Count %d\n",
603                     min_slice_count);
604         return 0;
605 }
606
607 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
608                                   int hdisplay)
609 {
610         /*
611          * Older platforms don't like hdisplay==4096 with DP.
612          *
613          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
614          * and frame counter increment), but we don't get vblank interrupts,
615          * and the pipe underruns immediately. The link also doesn't seem
616          * to get trained properly.
617          *
618          * On CHV the vblank interrupts don't seem to disappear but
619          * otherwise the symptoms are similar.
620          *
621          * TODO: confirm the behaviour on HSW+
622          */
623         return hdisplay == 4096 && !HAS_DDI(dev_priv);
624 }
625
626 static enum drm_mode_status
627 intel_dp_mode_valid(struct drm_connector *connector,
628                     struct drm_display_mode *mode)
629 {
630         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
631         struct intel_connector *intel_connector = to_intel_connector(connector);
632         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
633         struct drm_i915_private *dev_priv = to_i915(connector->dev);
634         int target_clock = mode->clock;
635         int max_rate, mode_rate, max_lanes, max_link_clock;
636         int max_dotclk;
637         u16 dsc_max_output_bpp = 0;
638         u8 dsc_slice_count = 0;
639
640         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
641                 return MODE_NO_DBLESCAN;
642
643         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
644
645         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
646                 if (mode->hdisplay > fixed_mode->hdisplay)
647                         return MODE_PANEL;
648
649                 if (mode->vdisplay > fixed_mode->vdisplay)
650                         return MODE_PANEL;
651
652                 target_clock = fixed_mode->clock;
653         }
654
655         max_link_clock = intel_dp_max_link_rate(intel_dp);
656         max_lanes = intel_dp_max_lane_count(intel_dp);
657
658         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
659         mode_rate = intel_dp_link_required(target_clock, 18);
660
661         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
662                 return MODE_H_ILLEGAL;
663
664         /*
665          * Output bpp is stored in 6.4 format so right shift by 4 to get the
666          * integer value since we support only integer values of bpp.
667          */
668         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
669             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
670                 if (intel_dp_is_edp(intel_dp)) {
671                         dsc_max_output_bpp =
672                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
673                         dsc_slice_count =
674                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
675                                                                 true);
676                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
677                         dsc_max_output_bpp =
678                                 intel_dp_dsc_get_output_bpp(dev_priv,
679                                                             max_link_clock,
680                                                             max_lanes,
681                                                             target_clock,
682                                                             mode->hdisplay) >> 4;
683                         dsc_slice_count =
684                                 intel_dp_dsc_get_slice_count(intel_dp,
685                                                              target_clock,
686                                                              mode->hdisplay);
687                 }
688         }
689
690         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
691             target_clock > max_dotclk)
692                 return MODE_CLOCK_HIGH;
693
694         if (mode->clock < 10000)
695                 return MODE_CLOCK_LOW;
696
697         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
698                 return MODE_H_ILLEGAL;
699
700         return intel_mode_valid_max_plane_size(dev_priv, mode);
701 }
702
703 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
704 {
705         int i;
706         u32 v = 0;
707
708         if (src_bytes > 4)
709                 src_bytes = 4;
710         for (i = 0; i < src_bytes; i++)
711                 v |= ((u32)src[i]) << ((3 - i) * 8);
712         return v;
713 }
714
715 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
716 {
717         int i;
718         if (dst_bytes > 4)
719                 dst_bytes = 4;
720         for (i = 0; i < dst_bytes; i++)
721                 dst[i] = src >> ((3-i) * 8);
722 }
723
724 static void
725 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
726 static void
727 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
728                                               bool force_disable_vdd);
729 static void
730 intel_dp_pps_init(struct intel_dp *intel_dp);
731
732 static intel_wakeref_t
733 pps_lock(struct intel_dp *intel_dp)
734 {
735         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
736         intel_wakeref_t wakeref;
737
738         /*
739          * See intel_power_sequencer_reset() why we need
740          * a power domain reference here.
741          */
742         wakeref = intel_display_power_get(dev_priv,
743                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
744
745         mutex_lock(&dev_priv->pps_mutex);
746
747         return wakeref;
748 }
749
750 static intel_wakeref_t
751 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
752 {
753         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
754
755         mutex_unlock(&dev_priv->pps_mutex);
756         intel_display_power_put(dev_priv,
757                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
758                                 wakeref);
759         return 0;
760 }
761
762 #define with_pps_lock(dp, wf) \
763         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
764
765 static void
766 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
767 {
768         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
769         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
770         enum pipe pipe = intel_dp->pps_pipe;
771         bool pll_enabled, release_cl_override = false;
772         enum dpio_phy phy = DPIO_PHY(pipe);
773         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
774         u32 DP;
775
776         if (drm_WARN(&dev_priv->drm,
777                      intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN,
778                      "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
779                      pipe_name(pipe), intel_dig_port->base.base.base.id,
780                      intel_dig_port->base.base.name))
781                 return;
782
783         drm_dbg_kms(&dev_priv->drm,
784                     "kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
785                     pipe_name(pipe), intel_dig_port->base.base.base.id,
786                     intel_dig_port->base.base.name);
787
788         /* Preserve the BIOS-computed detected bit. This is
789          * supposed to be read-only.
790          */
791         DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
792         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
793         DP |= DP_PORT_WIDTH(1);
794         DP |= DP_LINK_TRAIN_PAT_1;
795
796         if (IS_CHERRYVIEW(dev_priv))
797                 DP |= DP_PIPE_SEL_CHV(pipe);
798         else
799                 DP |= DP_PIPE_SEL(pipe);
800
801         pll_enabled = intel_de_read(dev_priv, DPLL(pipe)) & DPLL_VCO_ENABLE;
802
803         /*
804          * The DPLL for the pipe must be enabled for this to work.
805          * So enable temporarily it if it's not already enabled.
806          */
807         if (!pll_enabled) {
808                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
809                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
810
811                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
812                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
813                         drm_err(&dev_priv->drm,
814                                 "Failed to force on pll for pipe %c!\n",
815                                 pipe_name(pipe));
816                         return;
817                 }
818         }
819
820         /*
821          * Similar magic as in intel_dp_enable_port().
822          * We _must_ do this port enable + disable trick
823          * to make this power sequencer lock onto the port.
824          * Otherwise even VDD force bit won't work.
825          */
826         intel_de_write(dev_priv, intel_dp->output_reg, DP);
827         intel_de_posting_read(dev_priv, intel_dp->output_reg);
828
829         intel_de_write(dev_priv, intel_dp->output_reg, DP | DP_PORT_EN);
830         intel_de_posting_read(dev_priv, intel_dp->output_reg);
831
832         intel_de_write(dev_priv, intel_dp->output_reg, DP & ~DP_PORT_EN);
833         intel_de_posting_read(dev_priv, intel_dp->output_reg);
834
835         if (!pll_enabled) {
836                 vlv_force_pll_off(dev_priv, pipe);
837
838                 if (release_cl_override)
839                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
840         }
841 }
842
843 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
844 {
845         struct intel_encoder *encoder;
846         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
847
848         /*
849          * We don't have power sequencer currently.
850          * Pick one that's not used by other ports.
851          */
852         for_each_intel_dp(&dev_priv->drm, encoder) {
853                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
854
855                 if (encoder->type == INTEL_OUTPUT_EDP) {
856                         drm_WARN_ON(&dev_priv->drm,
857                                     intel_dp->active_pipe != INVALID_PIPE &&
858                                     intel_dp->active_pipe !=
859                                     intel_dp->pps_pipe);
860
861                         if (intel_dp->pps_pipe != INVALID_PIPE)
862                                 pipes &= ~(1 << intel_dp->pps_pipe);
863                 } else {
864                         drm_WARN_ON(&dev_priv->drm,
865                                     intel_dp->pps_pipe != INVALID_PIPE);
866
867                         if (intel_dp->active_pipe != INVALID_PIPE)
868                                 pipes &= ~(1 << intel_dp->active_pipe);
869                 }
870         }
871
872         if (pipes == 0)
873                 return INVALID_PIPE;
874
875         return ffs(pipes) - 1;
876 }
877
878 static enum pipe
879 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
880 {
881         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
882         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
883         enum pipe pipe;
884
885         lockdep_assert_held(&dev_priv->pps_mutex);
886
887         /* We should never land here with regular DP ports */
888         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
889
890         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE &&
891                     intel_dp->active_pipe != intel_dp->pps_pipe);
892
893         if (intel_dp->pps_pipe != INVALID_PIPE)
894                 return intel_dp->pps_pipe;
895
896         pipe = vlv_find_free_pps(dev_priv);
897
898         /*
899          * Didn't find one. This should not happen since there
900          * are two power sequencers and up to two eDP ports.
901          */
902         if (drm_WARN_ON(&dev_priv->drm, pipe == INVALID_PIPE))
903                 pipe = PIPE_A;
904
905         vlv_steal_power_sequencer(dev_priv, pipe);
906         intel_dp->pps_pipe = pipe;
907
908         drm_dbg_kms(&dev_priv->drm,
909                     "picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
910                     pipe_name(intel_dp->pps_pipe),
911                     intel_dig_port->base.base.base.id,
912                     intel_dig_port->base.base.name);
913
914         /* init power sequencer on this pipe and port */
915         intel_dp_init_panel_power_sequencer(intel_dp);
916         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
917
918         /*
919          * Even vdd force doesn't work until we've made
920          * the power sequencer lock in on the port.
921          */
922         vlv_power_sequencer_kick(intel_dp);
923
924         return intel_dp->pps_pipe;
925 }
926
927 static int
928 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
929 {
930         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
931         int backlight_controller = dev_priv->vbt.backlight.controller;
932
933         lockdep_assert_held(&dev_priv->pps_mutex);
934
935         /* We should never land here with regular DP ports */
936         drm_WARN_ON(&dev_priv->drm, !intel_dp_is_edp(intel_dp));
937
938         if (!intel_dp->pps_reset)
939                 return backlight_controller;
940
941         intel_dp->pps_reset = false;
942
943         /*
944          * Only the HW needs to be reprogrammed, the SW state is fixed and
945          * has been setup during connector init.
946          */
947         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
948
949         return backlight_controller;
950 }
951
952 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
953                                enum pipe pipe);
954
955 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
956                                enum pipe pipe)
957 {
958         return intel_de_read(dev_priv, PP_STATUS(pipe)) & PP_ON;
959 }
960
961 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
962                                 enum pipe pipe)
963 {
964         return intel_de_read(dev_priv, PP_CONTROL(pipe)) & EDP_FORCE_VDD;
965 }
966
967 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
968                          enum pipe pipe)
969 {
970         return true;
971 }
972
973 static enum pipe
974 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
975                      enum port port,
976                      vlv_pipe_check pipe_check)
977 {
978         enum pipe pipe;
979
980         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
981                 u32 port_sel = intel_de_read(dev_priv, PP_ON_DELAYS(pipe)) &
982                         PANEL_PORT_SELECT_MASK;
983
984                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
985                         continue;
986
987                 if (!pipe_check(dev_priv, pipe))
988                         continue;
989
990                 return pipe;
991         }
992
993         return INVALID_PIPE;
994 }
995
996 static void
997 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
998 {
999         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1000         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1001         enum port port = intel_dig_port->base.port;
1002
1003         lockdep_assert_held(&dev_priv->pps_mutex);
1004
1005         /* try to find a pipe with this port selected */
1006         /* first pick one where the panel is on */
1007         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1008                                                   vlv_pipe_has_pp_on);
1009         /* didn't find one? pick one where vdd is on */
1010         if (intel_dp->pps_pipe == INVALID_PIPE)
1011                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1012                                                           vlv_pipe_has_vdd_on);
1013         /* didn't find one? pick one with just the correct port */
1014         if (intel_dp->pps_pipe == INVALID_PIPE)
1015                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
1016                                                           vlv_pipe_any);
1017
1018         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
1019         if (intel_dp->pps_pipe == INVALID_PIPE) {
1020                 drm_dbg_kms(&dev_priv->drm,
1021                             "no initial power sequencer for [ENCODER:%d:%s]\n",
1022                             intel_dig_port->base.base.base.id,
1023                             intel_dig_port->base.base.name);
1024                 return;
1025         }
1026
1027         drm_dbg_kms(&dev_priv->drm,
1028                     "initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1029                     intel_dig_port->base.base.base.id,
1030                     intel_dig_port->base.base.name,
1031                     pipe_name(intel_dp->pps_pipe));
1032
1033         intel_dp_init_panel_power_sequencer(intel_dp);
1034         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1035 }
1036
1037 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1038 {
1039         struct intel_encoder *encoder;
1040
1041         if (drm_WARN_ON(&dev_priv->drm,
1042                         !(IS_VALLEYVIEW(dev_priv) ||
1043                           IS_CHERRYVIEW(dev_priv) ||
1044                           IS_GEN9_LP(dev_priv))))
1045                 return;
1046
1047         /*
1048          * We can't grab pps_mutex here due to deadlock with power_domain
1049          * mutex when power_domain functions are called while holding pps_mutex.
1050          * That also means that in order to use pps_pipe the code needs to
1051          * hold both a power domain reference and pps_mutex, and the power domain
1052          * reference get/put must be done while _not_ holding pps_mutex.
1053          * pps_{lock,unlock}() do these steps in the correct order, so one
1054          * should use them always.
1055          */
1056
1057         for_each_intel_dp(&dev_priv->drm, encoder) {
1058                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
1059
1060                 drm_WARN_ON(&dev_priv->drm,
1061                             intel_dp->active_pipe != INVALID_PIPE);
1062
1063                 if (encoder->type != INTEL_OUTPUT_EDP)
1064                         continue;
1065
1066                 if (IS_GEN9_LP(dev_priv))
1067                         intel_dp->pps_reset = true;
1068                 else
1069                         intel_dp->pps_pipe = INVALID_PIPE;
1070         }
1071 }
1072
1073 struct pps_registers {
1074         i915_reg_t pp_ctrl;
1075         i915_reg_t pp_stat;
1076         i915_reg_t pp_on;
1077         i915_reg_t pp_off;
1078         i915_reg_t pp_div;
1079 };
1080
1081 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1082                                     struct pps_registers *regs)
1083 {
1084         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1085         int pps_idx = 0;
1086
1087         memset(regs, 0, sizeof(*regs));
1088
1089         if (IS_GEN9_LP(dev_priv))
1090                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1091         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1092                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1093
1094         regs->pp_ctrl = PP_CONTROL(pps_idx);
1095         regs->pp_stat = PP_STATUS(pps_idx);
1096         regs->pp_on = PP_ON_DELAYS(pps_idx);
1097         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1098
1099         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1100         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1101                 regs->pp_div = INVALID_MMIO_REG;
1102         else
1103                 regs->pp_div = PP_DIVISOR(pps_idx);
1104 }
1105
1106 static i915_reg_t
1107 _pp_ctrl_reg(struct intel_dp *intel_dp)
1108 {
1109         struct pps_registers regs;
1110
1111         intel_pps_get_registers(intel_dp, &regs);
1112
1113         return regs.pp_ctrl;
1114 }
1115
1116 static i915_reg_t
1117 _pp_stat_reg(struct intel_dp *intel_dp)
1118 {
1119         struct pps_registers regs;
1120
1121         intel_pps_get_registers(intel_dp, &regs);
1122
1123         return regs.pp_stat;
1124 }
1125
1126 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1127    This function only applicable when panel PM state is not to be tracked */
1128 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1129                               void *unused)
1130 {
1131         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1132                                                  edp_notifier);
1133         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1134         intel_wakeref_t wakeref;
1135
1136         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1137                 return 0;
1138
1139         with_pps_lock(intel_dp, wakeref) {
1140                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1141                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1142                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1143                         u32 pp_div;
1144
1145                         pp_ctrl_reg = PP_CONTROL(pipe);
1146                         pp_div_reg  = PP_DIVISOR(pipe);
1147                         pp_div = intel_de_read(dev_priv, pp_div_reg);
1148                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1149
1150                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1151                         intel_de_write(dev_priv, pp_div_reg, pp_div | 0x1F);
1152                         intel_de_write(dev_priv, pp_ctrl_reg,
1153                                        PANEL_UNLOCK_REGS);
1154                         msleep(intel_dp->panel_power_cycle_delay);
1155                 }
1156         }
1157
1158         return 0;
1159 }
1160
1161 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1162 {
1163         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1164
1165         lockdep_assert_held(&dev_priv->pps_mutex);
1166
1167         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1168             intel_dp->pps_pipe == INVALID_PIPE)
1169                 return false;
1170
1171         return (intel_de_read(dev_priv, _pp_stat_reg(intel_dp)) & PP_ON) != 0;
1172 }
1173
1174 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1175 {
1176         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1177
1178         lockdep_assert_held(&dev_priv->pps_mutex);
1179
1180         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1181             intel_dp->pps_pipe == INVALID_PIPE)
1182                 return false;
1183
1184         return intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1185 }
1186
1187 static void
1188 intel_dp_check_edp(struct intel_dp *intel_dp)
1189 {
1190         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1191
1192         if (!intel_dp_is_edp(intel_dp))
1193                 return;
1194
1195         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1196                 drm_WARN(&dev_priv->drm, 1,
1197                          "eDP powered off while attempting aux channel communication.\n");
1198                 drm_dbg_kms(&dev_priv->drm, "Status 0x%08x Control 0x%08x\n",
1199                             intel_de_read(dev_priv, _pp_stat_reg(intel_dp)),
1200                             intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp)));
1201         }
1202 }
1203
1204 static u32
1205 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1206 {
1207         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1208         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1209         const unsigned int timeout_ms = 10;
1210         u32 status;
1211         bool done;
1212
1213 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1214         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1215                                   msecs_to_jiffies_timeout(timeout_ms));
1216
1217         /* just trace the final value */
1218         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1219
1220         if (!done)
1221                 drm_err(&i915->drm,
1222                         "%s: did not complete or timeout within %ums (status 0x%08x)\n",
1223                         intel_dp->aux.name, timeout_ms, status);
1224 #undef C
1225
1226         return status;
1227 }
1228
1229 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1230 {
1231         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1232
1233         if (index)
1234                 return 0;
1235
1236         /*
1237          * The clock divider is based off the hrawclk, and would like to run at
1238          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1239          */
1240         return DIV_ROUND_CLOSEST(RUNTIME_INFO(dev_priv)->rawclk_freq, 2000);
1241 }
1242
1243 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1244 {
1245         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1246         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1247         u32 freq;
1248
1249         if (index)
1250                 return 0;
1251
1252         /*
1253          * The clock divider is based off the cdclk or PCH rawclk, and would
1254          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1255          * divide by 2000 and use that
1256          */
1257         if (dig_port->aux_ch == AUX_CH_A)
1258                 freq = dev_priv->cdclk.hw.cdclk;
1259         else
1260                 freq = RUNTIME_INFO(dev_priv)->rawclk_freq;
1261         return DIV_ROUND_CLOSEST(freq, 2000);
1262 }
1263
1264 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1265 {
1266         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1267         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1268
1269         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1270                 /* Workaround for non-ULT HSW */
1271                 switch (index) {
1272                 case 0: return 63;
1273                 case 1: return 72;
1274                 default: return 0;
1275                 }
1276         }
1277
1278         return ilk_get_aux_clock_divider(intel_dp, index);
1279 }
1280
1281 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1282 {
1283         /*
1284          * SKL doesn't need us to program the AUX clock divider (Hardware will
1285          * derive the clock from CDCLK automatically). We still implement the
1286          * get_aux_clock_divider vfunc to plug-in into the existing code.
1287          */
1288         return index ? 0 : 1;
1289 }
1290
1291 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 aux_clock_divider)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *dev_priv =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         u32 precharge, timeout;
1299
1300         if (IS_GEN(dev_priv, 6))
1301                 precharge = 3;
1302         else
1303                 precharge = 5;
1304
1305         if (IS_BROADWELL(dev_priv))
1306                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1307         else
1308                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1309
1310         return DP_AUX_CH_CTL_SEND_BUSY |
1311                DP_AUX_CH_CTL_DONE |
1312                DP_AUX_CH_CTL_INTERRUPT |
1313                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1314                timeout |
1315                DP_AUX_CH_CTL_RECEIVE_ERROR |
1316                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1317                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1318                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1319 }
1320
1321 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1322                                 int send_bytes,
1323                                 u32 unused)
1324 {
1325         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1326         struct drm_i915_private *i915 =
1327                         to_i915(intel_dig_port->base.base.dev);
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         u32 ret;
1330
1331         ret = DP_AUX_CH_CTL_SEND_BUSY |
1332               DP_AUX_CH_CTL_DONE |
1333               DP_AUX_CH_CTL_INTERRUPT |
1334               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1335               DP_AUX_CH_CTL_TIME_OUT_MAX |
1336               DP_AUX_CH_CTL_RECEIVE_ERROR |
1337               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1338               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1339               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1340
1341         if (intel_phy_is_tc(i915, phy) &&
1342             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1343                 ret |= DP_AUX_CH_CTL_TBT_IO;
1344
1345         return ret;
1346 }
1347
1348 static int
1349 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1350                   const u8 *send, int send_bytes,
1351                   u8 *recv, int recv_size,
1352                   u32 aux_send_ctl_flags)
1353 {
1354         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1355         struct drm_i915_private *i915 =
1356                         to_i915(intel_dig_port->base.base.dev);
1357         struct intel_uncore *uncore = &i915->uncore;
1358         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1359         bool is_tc_port = intel_phy_is_tc(i915, phy);
1360         i915_reg_t ch_ctl, ch_data[5];
1361         u32 aux_clock_divider;
1362         enum intel_display_power_domain aux_domain =
1363                 intel_aux_power_domain(intel_dig_port);
1364         intel_wakeref_t aux_wakeref;
1365         intel_wakeref_t pps_wakeref;
1366         int i, ret, recv_bytes;
1367         int try, clock = 0;
1368         u32 status;
1369         bool vdd;
1370
1371         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1372         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1373                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1374
1375         if (is_tc_port)
1376                 intel_tc_port_lock(intel_dig_port);
1377
1378         aux_wakeref = intel_display_power_get(i915, aux_domain);
1379         pps_wakeref = pps_lock(intel_dp);
1380
1381         /*
1382          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1383          * In such cases we want to leave VDD enabled and it's up to upper layers
1384          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1385          * ourselves.
1386          */
1387         vdd = edp_panel_vdd_on(intel_dp);
1388
1389         /* dp aux is extremely sensitive to irq latency, hence request the
1390          * lowest possible wakeup latency and so prevent the cpu from going into
1391          * deep sleep states.
1392          */
1393         cpu_latency_qos_update_request(&i915->pm_qos, 0);
1394
1395         intel_dp_check_edp(intel_dp);
1396
1397         /* Try to wait for any previous AUX channel activity */
1398         for (try = 0; try < 3; try++) {
1399                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1400                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1401                         break;
1402                 msleep(1);
1403         }
1404         /* just trace the final value */
1405         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1406
1407         if (try == 3) {
1408                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1409
1410                 if (status != intel_dp->aux_busy_last_status) {
1411                         drm_WARN(&i915->drm, 1,
1412                                  "%s: not started (status 0x%08x)\n",
1413                                  intel_dp->aux.name, status);
1414                         intel_dp->aux_busy_last_status = status;
1415                 }
1416
1417                 ret = -EBUSY;
1418                 goto out;
1419         }
1420
1421         /* Only 5 data registers! */
1422         if (drm_WARN_ON(&i915->drm, send_bytes > 20 || recv_size > 20)) {
1423                 ret = -E2BIG;
1424                 goto out;
1425         }
1426
1427         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1428                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1429                                                           send_bytes,
1430                                                           aux_clock_divider);
1431
1432                 send_ctl |= aux_send_ctl_flags;
1433
1434                 /* Must try at least 3 times according to DP spec */
1435                 for (try = 0; try < 5; try++) {
1436                         /* Load the send data into the aux channel data registers */
1437                         for (i = 0; i < send_bytes; i += 4)
1438                                 intel_uncore_write(uncore,
1439                                                    ch_data[i >> 2],
1440                                                    intel_dp_pack_aux(send + i,
1441                                                                      send_bytes - i));
1442
1443                         /* Send the command and wait for it to complete */
1444                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1445
1446                         status = intel_dp_aux_wait_done(intel_dp);
1447
1448                         /* Clear done status and any errors */
1449                         intel_uncore_write(uncore,
1450                                            ch_ctl,
1451                                            status |
1452                                            DP_AUX_CH_CTL_DONE |
1453                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1454                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1455
1456                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1457                          *   400us delay required for errors and timeouts
1458                          *   Timeout errors from the HW already meet this
1459                          *   requirement so skip to next iteration
1460                          */
1461                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1462                                 continue;
1463
1464                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1465                                 usleep_range(400, 500);
1466                                 continue;
1467                         }
1468                         if (status & DP_AUX_CH_CTL_DONE)
1469                                 goto done;
1470                 }
1471         }
1472
1473         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1474                 drm_err(&i915->drm, "%s: not done (status 0x%08x)\n",
1475                         intel_dp->aux.name, status);
1476                 ret = -EBUSY;
1477                 goto out;
1478         }
1479
1480 done:
1481         /* Check for timeout or receive error.
1482          * Timeouts occur when the sink is not connected
1483          */
1484         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1485                 drm_err(&i915->drm, "%s: receive error (status 0x%08x)\n",
1486                         intel_dp->aux.name, status);
1487                 ret = -EIO;
1488                 goto out;
1489         }
1490
1491         /* Timeouts occur when the device isn't connected, so they're
1492          * "normal" -- don't fill the kernel log with these */
1493         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1494                 drm_dbg_kms(&i915->drm, "%s: timeout (status 0x%08x)\n",
1495                             intel_dp->aux.name, status);
1496                 ret = -ETIMEDOUT;
1497                 goto out;
1498         }
1499
1500         /* Unload any bytes sent back from the other side */
1501         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1502                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1503
1504         /*
1505          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1506          * We have no idea of what happened so we return -EBUSY so
1507          * drm layer takes care for the necessary retries.
1508          */
1509         if (recv_bytes == 0 || recv_bytes > 20) {
1510                 drm_dbg_kms(&i915->drm,
1511                             "%s: Forbidden recv_bytes = %d on aux transaction\n",
1512                             intel_dp->aux.name, recv_bytes);
1513                 ret = -EBUSY;
1514                 goto out;
1515         }
1516
1517         if (recv_bytes > recv_size)
1518                 recv_bytes = recv_size;
1519
1520         for (i = 0; i < recv_bytes; i += 4)
1521                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1522                                     recv + i, recv_bytes - i);
1523
1524         ret = recv_bytes;
1525 out:
1526         cpu_latency_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1527
1528         if (vdd)
1529                 edp_panel_vdd_off(intel_dp, false);
1530
1531         pps_unlock(intel_dp, pps_wakeref);
1532         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1533
1534         if (is_tc_port)
1535                 intel_tc_port_unlock(intel_dig_port);
1536
1537         return ret;
1538 }
1539
1540 #define BARE_ADDRESS_SIZE       3
1541 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1542
1543 static void
1544 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1545                     const struct drm_dp_aux_msg *msg)
1546 {
1547         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1548         txbuf[1] = (msg->address >> 8) & 0xff;
1549         txbuf[2] = msg->address & 0xff;
1550         txbuf[3] = msg->size - 1;
1551 }
1552
1553 static ssize_t
1554 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1555 {
1556         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1557         u8 txbuf[20], rxbuf[20];
1558         size_t txsize, rxsize;
1559         int ret;
1560
1561         intel_dp_aux_header(txbuf, msg);
1562
1563         switch (msg->request & ~DP_AUX_I2C_MOT) {
1564         case DP_AUX_NATIVE_WRITE:
1565         case DP_AUX_I2C_WRITE:
1566         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1567                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1568                 rxsize = 2; /* 0 or 1 data bytes */
1569
1570                 if (WARN_ON(txsize > 20))
1571                         return -E2BIG;
1572
1573                 WARN_ON(!msg->buffer != !msg->size);
1574
1575                 if (msg->buffer)
1576                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1577
1578                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1579                                         rxbuf, rxsize, 0);
1580                 if (ret > 0) {
1581                         msg->reply = rxbuf[0] >> 4;
1582
1583                         if (ret > 1) {
1584                                 /* Number of bytes written in a short write. */
1585                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1586                         } else {
1587                                 /* Return payload size. */
1588                                 ret = msg->size;
1589                         }
1590                 }
1591                 break;
1592
1593         case DP_AUX_NATIVE_READ:
1594         case DP_AUX_I2C_READ:
1595                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1596                 rxsize = msg->size + 1;
1597
1598                 if (WARN_ON(rxsize > 20))
1599                         return -E2BIG;
1600
1601                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1602                                         rxbuf, rxsize, 0);
1603                 if (ret > 0) {
1604                         msg->reply = rxbuf[0] >> 4;
1605                         /*
1606                          * Assume happy day, and copy the data. The caller is
1607                          * expected to check msg->reply before touching it.
1608                          *
1609                          * Return payload size.
1610                          */
1611                         ret--;
1612                         memcpy(msg->buffer, rxbuf + 1, ret);
1613                 }
1614                 break;
1615
1616         default:
1617                 ret = -EINVAL;
1618                 break;
1619         }
1620
1621         return ret;
1622 }
1623
1624
1625 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1626 {
1627         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1628         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1629         enum aux_ch aux_ch = dig_port->aux_ch;
1630
1631         switch (aux_ch) {
1632         case AUX_CH_B:
1633         case AUX_CH_C:
1634         case AUX_CH_D:
1635                 return DP_AUX_CH_CTL(aux_ch);
1636         default:
1637                 MISSING_CASE(aux_ch);
1638                 return DP_AUX_CH_CTL(AUX_CH_B);
1639         }
1640 }
1641
1642 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1643 {
1644         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1645         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1646         enum aux_ch aux_ch = dig_port->aux_ch;
1647
1648         switch (aux_ch) {
1649         case AUX_CH_B:
1650         case AUX_CH_C:
1651         case AUX_CH_D:
1652                 return DP_AUX_CH_DATA(aux_ch, index);
1653         default:
1654                 MISSING_CASE(aux_ch);
1655                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1656         }
1657 }
1658
1659 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1660 {
1661         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1662         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1663         enum aux_ch aux_ch = dig_port->aux_ch;
1664
1665         switch (aux_ch) {
1666         case AUX_CH_A:
1667                 return DP_AUX_CH_CTL(aux_ch);
1668         case AUX_CH_B:
1669         case AUX_CH_C:
1670         case AUX_CH_D:
1671                 return PCH_DP_AUX_CH_CTL(aux_ch);
1672         default:
1673                 MISSING_CASE(aux_ch);
1674                 return DP_AUX_CH_CTL(AUX_CH_A);
1675         }
1676 }
1677
1678 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1679 {
1680         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1681         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1682         enum aux_ch aux_ch = dig_port->aux_ch;
1683
1684         switch (aux_ch) {
1685         case AUX_CH_A:
1686                 return DP_AUX_CH_DATA(aux_ch, index);
1687         case AUX_CH_B:
1688         case AUX_CH_C:
1689         case AUX_CH_D:
1690                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1691         default:
1692                 MISSING_CASE(aux_ch);
1693                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1694         }
1695 }
1696
1697 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1698 {
1699         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1700         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1701         enum aux_ch aux_ch = dig_port->aux_ch;
1702
1703         switch (aux_ch) {
1704         case AUX_CH_A:
1705         case AUX_CH_B:
1706         case AUX_CH_C:
1707         case AUX_CH_D:
1708         case AUX_CH_E:
1709         case AUX_CH_F:
1710         case AUX_CH_G:
1711                 return DP_AUX_CH_CTL(aux_ch);
1712         default:
1713                 MISSING_CASE(aux_ch);
1714                 return DP_AUX_CH_CTL(AUX_CH_A);
1715         }
1716 }
1717
1718 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1719 {
1720         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1721         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1722         enum aux_ch aux_ch = dig_port->aux_ch;
1723
1724         switch (aux_ch) {
1725         case AUX_CH_A:
1726         case AUX_CH_B:
1727         case AUX_CH_C:
1728         case AUX_CH_D:
1729         case AUX_CH_E:
1730         case AUX_CH_F:
1731         case AUX_CH_G:
1732                 return DP_AUX_CH_DATA(aux_ch, index);
1733         default:
1734                 MISSING_CASE(aux_ch);
1735                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1736         }
1737 }
1738
1739 static void
1740 intel_dp_aux_fini(struct intel_dp *intel_dp)
1741 {
1742         kfree(intel_dp->aux.name);
1743 }
1744
1745 static void
1746 intel_dp_aux_init(struct intel_dp *intel_dp)
1747 {
1748         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1749         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1750         struct intel_encoder *encoder = &dig_port->base;
1751
1752         if (INTEL_GEN(dev_priv) >= 9) {
1753                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1754                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1755         } else if (HAS_PCH_SPLIT(dev_priv)) {
1756                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1757                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1758         } else {
1759                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1760                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1761         }
1762
1763         if (INTEL_GEN(dev_priv) >= 9)
1764                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1765         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1766                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1767         else if (HAS_PCH_SPLIT(dev_priv))
1768                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1769         else
1770                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1771
1772         if (INTEL_GEN(dev_priv) >= 9)
1773                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1774         else
1775                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1776
1777         drm_dp_aux_init(&intel_dp->aux);
1778
1779         /* Failure to allocate our preferred name is not critical */
1780         intel_dp->aux.name = kasprintf(GFP_KERNEL, "AUX %c/port %c",
1781                                        aux_ch_name(dig_port->aux_ch),
1782                                        port_name(encoder->port));
1783         intel_dp->aux.transfer = intel_dp_aux_transfer;
1784 }
1785
1786 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1787 {
1788         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1789
1790         return max_rate >= 540000;
1791 }
1792
1793 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1794 {
1795         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1796
1797         return max_rate >= 810000;
1798 }
1799
1800 static void
1801 intel_dp_set_clock(struct intel_encoder *encoder,
1802                    struct intel_crtc_state *pipe_config)
1803 {
1804         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1805         const struct dp_link_dpll *divisor = NULL;
1806         int i, count = 0;
1807
1808         if (IS_G4X(dev_priv)) {
1809                 divisor = g4x_dpll;
1810                 count = ARRAY_SIZE(g4x_dpll);
1811         } else if (HAS_PCH_SPLIT(dev_priv)) {
1812                 divisor = pch_dpll;
1813                 count = ARRAY_SIZE(pch_dpll);
1814         } else if (IS_CHERRYVIEW(dev_priv)) {
1815                 divisor = chv_dpll;
1816                 count = ARRAY_SIZE(chv_dpll);
1817         } else if (IS_VALLEYVIEW(dev_priv)) {
1818                 divisor = vlv_dpll;
1819                 count = ARRAY_SIZE(vlv_dpll);
1820         }
1821
1822         if (divisor && count) {
1823                 for (i = 0; i < count; i++) {
1824                         if (pipe_config->port_clock == divisor[i].clock) {
1825                                 pipe_config->dpll = divisor[i].dpll;
1826                                 pipe_config->clock_set = true;
1827                                 break;
1828                         }
1829                 }
1830         }
1831 }
1832
1833 static void snprintf_int_array(char *str, size_t len,
1834                                const int *array, int nelem)
1835 {
1836         int i;
1837
1838         str[0] = '\0';
1839
1840         for (i = 0; i < nelem; i++) {
1841                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1842                 if (r >= len)
1843                         return;
1844                 str += r;
1845                 len -= r;
1846         }
1847 }
1848
1849 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1850 {
1851         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1852         char str[128]; /* FIXME: too big for stack? */
1853
1854         if (!drm_debug_enabled(DRM_UT_KMS))
1855                 return;
1856
1857         snprintf_int_array(str, sizeof(str),
1858                            intel_dp->source_rates, intel_dp->num_source_rates);
1859         drm_dbg_kms(&i915->drm, "source rates: %s\n", str);
1860
1861         snprintf_int_array(str, sizeof(str),
1862                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1863         drm_dbg_kms(&i915->drm, "sink rates: %s\n", str);
1864
1865         snprintf_int_array(str, sizeof(str),
1866                            intel_dp->common_rates, intel_dp->num_common_rates);
1867         drm_dbg_kms(&i915->drm, "common rates: %s\n", str);
1868 }
1869
1870 int
1871 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1872 {
1873         int len;
1874
1875         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1876         if (WARN_ON(len <= 0))
1877                 return 162000;
1878
1879         return intel_dp->common_rates[len - 1];
1880 }
1881
1882 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1883 {
1884         int i = intel_dp_rate_index(intel_dp->sink_rates,
1885                                     intel_dp->num_sink_rates, rate);
1886
1887         if (WARN_ON(i < 0))
1888                 i = 0;
1889
1890         return i;
1891 }
1892
1893 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1894                            u8 *link_bw, u8 *rate_select)
1895 {
1896         /* eDP 1.4 rate select method. */
1897         if (intel_dp->use_rate_select) {
1898                 *link_bw = 0;
1899                 *rate_select =
1900                         intel_dp_rate_select(intel_dp, port_clock);
1901         } else {
1902                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1903                 *rate_select = 0;
1904         }
1905 }
1906
1907 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1908                                          const struct intel_crtc_state *pipe_config)
1909 {
1910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1911
1912         /* On TGL, FEC is supported on all Pipes */
1913         if (INTEL_GEN(dev_priv) >= 12)
1914                 return true;
1915
1916         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1917                 return true;
1918
1919         return false;
1920 }
1921
1922 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1923                                   const struct intel_crtc_state *pipe_config)
1924 {
1925         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1926                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1927 }
1928
1929 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1930                                   const struct intel_crtc_state *crtc_state)
1931 {
1932         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
1933
1934         if (!intel_dp_is_edp(intel_dp) && !crtc_state->fec_enable)
1935                 return false;
1936
1937         return intel_dsc_source_support(encoder, crtc_state) &&
1938                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1939 }
1940
1941 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1942                                 struct intel_crtc_state *pipe_config)
1943 {
1944         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1945         struct intel_connector *intel_connector = intel_dp->attached_connector;
1946         int bpp, bpc;
1947
1948         bpp = pipe_config->pipe_bpp;
1949         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1950
1951         if (bpc > 0)
1952                 bpp = min(bpp, 3*bpc);
1953
1954         if (intel_dp_is_edp(intel_dp)) {
1955                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1956                 if (intel_connector->base.display_info.bpc == 0 &&
1957                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1958                         drm_dbg_kms(&dev_priv->drm,
1959                                     "clamping bpp for eDP panel to BIOS-provided %i\n",
1960                                     dev_priv->vbt.edp.bpp);
1961                         bpp = dev_priv->vbt.edp.bpp;
1962                 }
1963         }
1964
1965         return bpp;
1966 }
1967
1968 /* Adjust link config limits based on compliance test requests. */
1969 void
1970 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1971                                   struct intel_crtc_state *pipe_config,
1972                                   struct link_config_limits *limits)
1973 {
1974         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1975
1976         /* For DP Compliance we override the computed bpp for the pipe */
1977         if (intel_dp->compliance.test_data.bpc != 0) {
1978                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1979
1980                 limits->min_bpp = limits->max_bpp = bpp;
1981                 pipe_config->dither_force_disable = bpp == 6 * 3;
1982
1983                 drm_dbg_kms(&i915->drm, "Setting pipe_bpp to %d\n", bpp);
1984         }
1985
1986         /* Use values requested by Compliance Test Request */
1987         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1988                 int index;
1989
1990                 /* Validate the compliance test data since max values
1991                  * might have changed due to link train fallback.
1992                  */
1993                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1994                                                intel_dp->compliance.test_lane_count)) {
1995                         index = intel_dp_rate_index(intel_dp->common_rates,
1996                                                     intel_dp->num_common_rates,
1997                                                     intel_dp->compliance.test_link_rate);
1998                         if (index >= 0)
1999                                 limits->min_clock = limits->max_clock = index;
2000                         limits->min_lane_count = limits->max_lane_count =
2001                                 intel_dp->compliance.test_lane_count;
2002                 }
2003         }
2004 }
2005
2006 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
2007 {
2008         /*
2009          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
2010          * format of the number of bytes per pixel will be half the number
2011          * of bytes of RGB pixel.
2012          */
2013         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2014                 bpp /= 2;
2015
2016         return bpp;
2017 }
2018
2019 /* Optimize link config in order: max bpp, min clock, min lanes */
2020 static int
2021 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
2022                                   struct intel_crtc_state *pipe_config,
2023                                   const struct link_config_limits *limits)
2024 {
2025         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2026         int bpp, clock, lane_count;
2027         int mode_rate, link_clock, link_avail;
2028
2029         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2030                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2031
2032                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2033                                                    output_bpp);
2034
2035                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2036                         for (lane_count = limits->min_lane_count;
2037                              lane_count <= limits->max_lane_count;
2038                              lane_count <<= 1) {
2039                                 link_clock = intel_dp->common_rates[clock];
2040                                 link_avail = intel_dp_max_data_rate(link_clock,
2041                                                                     lane_count);
2042
2043                                 if (mode_rate <= link_avail) {
2044                                         pipe_config->lane_count = lane_count;
2045                                         pipe_config->pipe_bpp = bpp;
2046                                         pipe_config->port_clock = link_clock;
2047
2048                                         return 0;
2049                                 }
2050                         }
2051                 }
2052         }
2053
2054         return -EINVAL;
2055 }
2056
2057 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2058 {
2059         int i, num_bpc;
2060         u8 dsc_bpc[3] = {0};
2061
2062         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2063                                                        dsc_bpc);
2064         for (i = 0; i < num_bpc; i++) {
2065                 if (dsc_max_bpc >= dsc_bpc[i])
2066                         return dsc_bpc[i] * 3;
2067         }
2068
2069         return 0;
2070 }
2071
2072 #define DSC_SUPPORTED_VERSION_MIN               1
2073
2074 static int intel_dp_dsc_compute_params(struct intel_encoder *encoder,
2075                                        struct intel_crtc_state *crtc_state)
2076 {
2077         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2078         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2079         struct drm_dsc_config *vdsc_cfg = &crtc_state->dsc.config;
2080         u8 line_buf_depth;
2081         int ret;
2082
2083         ret = intel_dsc_compute_params(encoder, crtc_state);
2084         if (ret)
2085                 return ret;
2086
2087         /*
2088          * Slice Height of 8 works for all currently available panels. So start
2089          * with that if pic_height is an integral multiple of 8. Eventually add
2090          * logic to try multiple slice heights.
2091          */
2092         if (vdsc_cfg->pic_height % 8 == 0)
2093                 vdsc_cfg->slice_height = 8;
2094         else if (vdsc_cfg->pic_height % 4 == 0)
2095                 vdsc_cfg->slice_height = 4;
2096         else
2097                 vdsc_cfg->slice_height = 2;
2098
2099         vdsc_cfg->dsc_version_major =
2100                 (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2101                  DP_DSC_MAJOR_MASK) >> DP_DSC_MAJOR_SHIFT;
2102         vdsc_cfg->dsc_version_minor =
2103                 min(DSC_SUPPORTED_VERSION_MIN,
2104                     (intel_dp->dsc_dpcd[DP_DSC_REV - DP_DSC_SUPPORT] &
2105                      DP_DSC_MINOR_MASK) >> DP_DSC_MINOR_SHIFT);
2106
2107         vdsc_cfg->convert_rgb = intel_dp->dsc_dpcd[DP_DSC_DEC_COLOR_FORMAT_CAP - DP_DSC_SUPPORT] &
2108                 DP_DSC_RGB;
2109
2110         line_buf_depth = drm_dp_dsc_sink_line_buf_depth(intel_dp->dsc_dpcd);
2111         if (!line_buf_depth) {
2112                 drm_dbg_kms(&i915->drm,
2113                             "DSC Sink Line Buffer Depth invalid\n");
2114                 return -EINVAL;
2115         }
2116
2117         if (vdsc_cfg->dsc_version_minor == 2)
2118                 vdsc_cfg->line_buf_depth = (line_buf_depth == DSC_1_2_MAX_LINEBUF_DEPTH_BITS) ?
2119                         DSC_1_2_MAX_LINEBUF_DEPTH_VAL : line_buf_depth;
2120         else
2121                 vdsc_cfg->line_buf_depth = (line_buf_depth > DSC_1_1_MAX_LINEBUF_DEPTH_BITS) ?
2122                         DSC_1_1_MAX_LINEBUF_DEPTH_BITS : line_buf_depth;
2123
2124         vdsc_cfg->block_pred_enable =
2125                 intel_dp->dsc_dpcd[DP_DSC_BLK_PREDICTION_SUPPORT - DP_DSC_SUPPORT] &
2126                 DP_DSC_BLK_PREDICTION_IS_SUPPORTED;
2127
2128         return drm_dsc_compute_rc_parameters(vdsc_cfg);
2129 }
2130
2131 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2132                                        struct intel_crtc_state *pipe_config,
2133                                        struct drm_connector_state *conn_state,
2134                                        struct link_config_limits *limits)
2135 {
2136         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2137         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2138         const struct drm_display_mode *adjusted_mode =
2139                 &pipe_config->hw.adjusted_mode;
2140         u8 dsc_max_bpc;
2141         int pipe_bpp;
2142         int ret;
2143
2144         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2145                 intel_dp_supports_fec(intel_dp, pipe_config);
2146
2147         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2148                 return -EINVAL;
2149
2150         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2151         if (INTEL_GEN(dev_priv) >= 12)
2152                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2153         else
2154                 dsc_max_bpc = min_t(u8, 10,
2155                                     conn_state->max_requested_bpc);
2156
2157         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2158
2159         /* Min Input BPC for ICL+ is 8 */
2160         if (pipe_bpp < 8 * 3) {
2161                 drm_dbg_kms(&dev_priv->drm,
2162                             "No DSC support for less than 8bpc\n");
2163                 return -EINVAL;
2164         }
2165
2166         /*
2167          * For now enable DSC for max bpp, max link rate, max lane count.
2168          * Optimize this later for the minimum possible link rate/lane count
2169          * with DSC enabled for the requested mode.
2170          */
2171         pipe_config->pipe_bpp = pipe_bpp;
2172         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2173         pipe_config->lane_count = limits->max_lane_count;
2174
2175         if (intel_dp_is_edp(intel_dp)) {
2176                 pipe_config->dsc.compressed_bpp =
2177                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2178                               pipe_config->pipe_bpp);
2179                 pipe_config->dsc.slice_count =
2180                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2181                                                         true);
2182         } else {
2183                 u16 dsc_max_output_bpp;
2184                 u8 dsc_dp_slice_count;
2185
2186                 dsc_max_output_bpp =
2187                         intel_dp_dsc_get_output_bpp(dev_priv,
2188                                                     pipe_config->port_clock,
2189                                                     pipe_config->lane_count,
2190                                                     adjusted_mode->crtc_clock,
2191                                                     adjusted_mode->crtc_hdisplay);
2192                 dsc_dp_slice_count =
2193                         intel_dp_dsc_get_slice_count(intel_dp,
2194                                                      adjusted_mode->crtc_clock,
2195                                                      adjusted_mode->crtc_hdisplay);
2196                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2197                         drm_dbg_kms(&dev_priv->drm,
2198                                     "Compressed BPP/Slice Count not supported\n");
2199                         return -EINVAL;
2200                 }
2201                 pipe_config->dsc.compressed_bpp = min_t(u16,
2202                                                                dsc_max_output_bpp >> 4,
2203                                                                pipe_config->pipe_bpp);
2204                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2205         }
2206         /*
2207          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2208          * is greater than the maximum Cdclock and if slice count is even
2209          * then we need to use 2 VDSC instances.
2210          */
2211         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2212                 if (pipe_config->dsc.slice_count > 1) {
2213                         pipe_config->dsc.dsc_split = true;
2214                 } else {
2215                         drm_dbg_kms(&dev_priv->drm,
2216                                     "Cannot split stream to use 2 VDSC instances\n");
2217                         return -EINVAL;
2218                 }
2219         }
2220
2221         ret = intel_dp_dsc_compute_params(&dig_port->base, pipe_config);
2222         if (ret < 0) {
2223                 drm_dbg_kms(&dev_priv->drm,
2224                             "Cannot compute valid DSC parameters for Input Bpp = %d "
2225                             "Compressed BPP = %d\n",
2226                             pipe_config->pipe_bpp,
2227                             pipe_config->dsc.compressed_bpp);
2228                 return ret;
2229         }
2230
2231         pipe_config->dsc.compression_enable = true;
2232         drm_dbg_kms(&dev_priv->drm, "DP DSC computed with Input Bpp = %d "
2233                     "Compressed Bpp = %d Slice Count = %d\n",
2234                     pipe_config->pipe_bpp,
2235                     pipe_config->dsc.compressed_bpp,
2236                     pipe_config->dsc.slice_count);
2237
2238         return 0;
2239 }
2240
2241 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2242 {
2243         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2244                 return 6 * 3;
2245         else
2246                 return 8 * 3;
2247 }
2248
2249 static int
2250 intel_dp_compute_link_config(struct intel_encoder *encoder,
2251                              struct intel_crtc_state *pipe_config,
2252                              struct drm_connector_state *conn_state)
2253 {
2254         struct drm_i915_private *i915 = to_i915(encoder->base.dev);
2255         const struct drm_display_mode *adjusted_mode =
2256                 &pipe_config->hw.adjusted_mode;
2257         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2258         struct link_config_limits limits;
2259         int common_len;
2260         int ret;
2261
2262         common_len = intel_dp_common_len_rate_limit(intel_dp,
2263                                                     intel_dp->max_link_rate);
2264
2265         /* No common link rates between source and sink */
2266         drm_WARN_ON(encoder->base.dev, common_len <= 0);
2267
2268         limits.min_clock = 0;
2269         limits.max_clock = common_len - 1;
2270
2271         limits.min_lane_count = 1;
2272         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2273
2274         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2275         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2276
2277         if (intel_dp_is_edp(intel_dp)) {
2278                 /*
2279                  * Use the maximum clock and number of lanes the eDP panel
2280                  * advertizes being capable of. The panels are generally
2281                  * designed to support only a single clock and lane
2282                  * configuration, and typically these values correspond to the
2283                  * native resolution of the panel.
2284                  */
2285                 limits.min_lane_count = limits.max_lane_count;
2286                 limits.min_clock = limits.max_clock;
2287         }
2288
2289         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2290
2291         drm_dbg_kms(&i915->drm, "DP link computation with max lane count %i "
2292                     "max rate %d max bpp %d pixel clock %iKHz\n",
2293                     limits.max_lane_count,
2294                     intel_dp->common_rates[limits.max_clock],
2295                     limits.max_bpp, adjusted_mode->crtc_clock);
2296
2297         /*
2298          * Optimize for slow and wide. This is the place to add alternative
2299          * optimization policy.
2300          */
2301         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2302
2303         /* enable compression if the mode doesn't fit available BW */
2304         drm_dbg_kms(&i915->drm, "Force DSC en = %d\n", intel_dp->force_dsc_en);
2305         if (ret || intel_dp->force_dsc_en) {
2306                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2307                                                   conn_state, &limits);
2308                 if (ret < 0)
2309                         return ret;
2310         }
2311
2312         if (pipe_config->dsc.compression_enable) {
2313                 drm_dbg_kms(&i915->drm,
2314                             "DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2315                             pipe_config->lane_count, pipe_config->port_clock,
2316                             pipe_config->pipe_bpp,
2317                             pipe_config->dsc.compressed_bpp);
2318
2319                 drm_dbg_kms(&i915->drm,
2320                             "DP link rate required %i available %i\n",
2321                             intel_dp_link_required(adjusted_mode->crtc_clock,
2322                                                    pipe_config->dsc.compressed_bpp),
2323                             intel_dp_max_data_rate(pipe_config->port_clock,
2324                                                    pipe_config->lane_count));
2325         } else {
2326                 drm_dbg_kms(&i915->drm, "DP lane count %d clock %d bpp %d\n",
2327                             pipe_config->lane_count, pipe_config->port_clock,
2328                             pipe_config->pipe_bpp);
2329
2330                 drm_dbg_kms(&i915->drm,
2331                             "DP link rate required %i available %i\n",
2332                             intel_dp_link_required(adjusted_mode->crtc_clock,
2333                                                    pipe_config->pipe_bpp),
2334                             intel_dp_max_data_rate(pipe_config->port_clock,
2335                                                    pipe_config->lane_count));
2336         }
2337         return 0;
2338 }
2339
2340 static int
2341 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2342                          struct intel_crtc_state *crtc_state,
2343                          const struct drm_connector_state *conn_state)
2344 {
2345         struct drm_connector *connector = conn_state->connector;
2346         const struct drm_display_info *info = &connector->display_info;
2347         const struct drm_display_mode *adjusted_mode =
2348                 &crtc_state->hw.adjusted_mode;
2349
2350         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2351             !intel_dp_get_colorimetry_status(intel_dp) ||
2352             !connector->ycbcr_420_allowed)
2353                 return 0;
2354
2355         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2356
2357         intel_pch_panel_fitting(crtc_state, conn_state);
2358
2359         return 0;
2360 }
2361
2362 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2363                                   const struct drm_connector_state *conn_state)
2364 {
2365         const struct intel_digital_connector_state *intel_conn_state =
2366                 to_intel_digital_connector_state(conn_state);
2367         const struct drm_display_mode *adjusted_mode =
2368                 &crtc_state->hw.adjusted_mode;
2369
2370         /*
2371          * Our YCbCr output is always limited range.
2372          * crtc_state->limited_color_range only applies to RGB,
2373          * and it must never be set for YCbCr or we risk setting
2374          * some conflicting bits in PIPECONF which will mess up
2375          * the colors on the monitor.
2376          */
2377         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2378                 return false;
2379
2380         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2381                 /*
2382                  * See:
2383                  * CEA-861-E - 5.1 Default Encoding Parameters
2384                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2385                  */
2386                 return crtc_state->pipe_bpp != 18 &&
2387                         drm_default_rgb_quant_range(adjusted_mode) ==
2388                         HDMI_QUANTIZATION_RANGE_LIMITED;
2389         } else {
2390                 return intel_conn_state->broadcast_rgb ==
2391                         INTEL_BROADCAST_RGB_LIMITED;
2392         }
2393 }
2394
2395 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2396                                     enum port port)
2397 {
2398         if (IS_G4X(dev_priv))
2399                 return false;
2400         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2401                 return false;
2402
2403         return true;
2404 }
2405
2406 static void intel_dp_compute_vsc_colorimetry(const struct intel_crtc_state *crtc_state,
2407                                              const struct drm_connector_state *conn_state,
2408                                              struct drm_dp_vsc_sdp *vsc)
2409 {
2410         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2411         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
2412
2413         /*
2414          * Prepare VSC Header for SU as per DP 1.4 spec, Table 2-118
2415          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
2416          * Colorimetry Format indication.
2417          */
2418         vsc->revision = 0x5;
2419         vsc->length = 0x13;
2420
2421         /* DP 1.4a spec, Table 2-120 */
2422         switch (crtc_state->output_format) {
2423         case INTEL_OUTPUT_FORMAT_YCBCR444:
2424                 vsc->pixelformat = DP_PIXELFORMAT_YUV444;
2425                 break;
2426         case INTEL_OUTPUT_FORMAT_YCBCR420:
2427                 vsc->pixelformat = DP_PIXELFORMAT_YUV420;
2428                 break;
2429         case INTEL_OUTPUT_FORMAT_RGB:
2430         default:
2431                 vsc->pixelformat = DP_PIXELFORMAT_RGB;
2432         }
2433
2434         switch (conn_state->colorspace) {
2435         case DRM_MODE_COLORIMETRY_BT709_YCC:
2436                 vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2437                 break;
2438         case DRM_MODE_COLORIMETRY_XVYCC_601:
2439                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_601;
2440                 break;
2441         case DRM_MODE_COLORIMETRY_XVYCC_709:
2442                 vsc->colorimetry = DP_COLORIMETRY_XVYCC_709;
2443                 break;
2444         case DRM_MODE_COLORIMETRY_SYCC_601:
2445                 vsc->colorimetry = DP_COLORIMETRY_SYCC_601;
2446                 break;
2447         case DRM_MODE_COLORIMETRY_OPYCC_601:
2448                 vsc->colorimetry = DP_COLORIMETRY_OPYCC_601;
2449                 break;
2450         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
2451                 vsc->colorimetry = DP_COLORIMETRY_BT2020_CYCC;
2452                 break;
2453         case DRM_MODE_COLORIMETRY_BT2020_RGB:
2454                 vsc->colorimetry = DP_COLORIMETRY_BT2020_RGB;
2455                 break;
2456         case DRM_MODE_COLORIMETRY_BT2020_YCC:
2457                 vsc->colorimetry = DP_COLORIMETRY_BT2020_YCC;
2458                 break;
2459         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
2460         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
2461                 vsc->colorimetry = DP_COLORIMETRY_DCI_P3_RGB;
2462                 break;
2463         default:
2464                 /*
2465                  * RGB->YCBCR color conversion uses the BT.709
2466                  * color space.
2467                  */
2468                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
2469                         vsc->colorimetry = DP_COLORIMETRY_BT709_YCC;
2470                 else
2471                         vsc->colorimetry = DP_COLORIMETRY_DEFAULT;
2472                 break;
2473         }
2474
2475         vsc->bpc = crtc_state->pipe_bpp / 3;
2476
2477         /* only RGB pixelformat supports 6 bpc */
2478         drm_WARN_ON(&dev_priv->drm,
2479                     vsc->bpc == 6 && vsc->pixelformat != DP_PIXELFORMAT_RGB);
2480
2481         /* all YCbCr are always limited range */
2482         vsc->dynamic_range = DP_DYNAMIC_RANGE_CTA;
2483         vsc->content_type = DP_CONTENT_TYPE_NOT_DEFINED;
2484 }
2485
2486 static void intel_dp_compute_vsc_sdp(struct intel_dp *intel_dp,
2487                                      struct intel_crtc_state *crtc_state,
2488                                      const struct drm_connector_state *conn_state)
2489 {
2490         struct drm_dp_vsc_sdp *vsc = &crtc_state->infoframes.vsc;
2491
2492         /* When PSR is enabled, VSC SDP is handled by PSR routine */
2493         if (intel_psr_enabled(intel_dp))
2494                 return;
2495
2496         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
2497                 return;
2498
2499         crtc_state->infoframes.enable |= intel_hdmi_infoframe_enable(DP_SDP_VSC);
2500         vsc->sdp_type = DP_SDP_VSC;
2501         intel_dp_compute_vsc_colorimetry(crtc_state, conn_state,
2502                                          &crtc_state->infoframes.vsc);
2503 }
2504
2505 static void
2506 intel_dp_compute_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
2507                                             struct intel_crtc_state *crtc_state,
2508                                             const struct drm_connector_state *conn_state)
2509 {
2510         int ret;
2511         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2512         struct hdmi_drm_infoframe *drm_infoframe = &crtc_state->infoframes.drm.drm;
2513
2514         if (!conn_state->hdr_output_metadata)
2515                 return;
2516
2517         ret = drm_hdmi_infoframe_set_hdr_metadata(drm_infoframe, conn_state);
2518
2519         if (ret) {
2520                 drm_dbg_kms(&dev_priv->drm, "couldn't set HDR metadata in infoframe\n");
2521                 return;
2522         }
2523
2524         crtc_state->infoframes.enable |=
2525                 intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GAMUT_METADATA);
2526 }
2527
2528 int
2529 intel_dp_compute_config(struct intel_encoder *encoder,
2530                         struct intel_crtc_state *pipe_config,
2531                         struct drm_connector_state *conn_state)
2532 {
2533         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2534         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2535         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2536         struct intel_lspcon *lspcon = enc_to_intel_lspcon(encoder);
2537         enum port port = encoder->port;
2538         struct intel_connector *intel_connector = intel_dp->attached_connector;
2539         struct intel_digital_connector_state *intel_conn_state =
2540                 to_intel_digital_connector_state(conn_state);
2541         bool constant_n = drm_dp_has_quirk(&intel_dp->desc, 0,
2542                                            DP_DPCD_QUIRK_CONSTANT_N);
2543         int ret = 0, output_bpp;
2544
2545         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2546                 pipe_config->has_pch_encoder = true;
2547
2548         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2549
2550         if (lspcon->active)
2551                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2552         else
2553                 ret = intel_dp_ycbcr420_config(intel_dp, pipe_config,
2554                                                conn_state);
2555         if (ret)
2556                 return ret;
2557
2558         pipe_config->has_drrs = false;
2559         if (!intel_dp_port_has_audio(dev_priv, port))
2560                 pipe_config->has_audio = false;
2561         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2562                 pipe_config->has_audio = intel_dp->has_audio;
2563         else
2564                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2565
2566         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2567                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2568                                        adjusted_mode);
2569
2570                 if (HAS_GMCH(dev_priv))
2571                         intel_gmch_panel_fitting(pipe_config, conn_state);
2572                 else
2573                         intel_pch_panel_fitting(pipe_config, conn_state);
2574         }
2575
2576         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2577                 return -EINVAL;
2578
2579         if (HAS_GMCH(dev_priv) &&
2580             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2581                 return -EINVAL;
2582
2583         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2584                 return -EINVAL;
2585
2586         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2587                 return -EINVAL;
2588
2589         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2590         if (ret < 0)
2591                 return ret;
2592
2593         pipe_config->limited_color_range =
2594                 intel_dp_limited_color_range(pipe_config, conn_state);
2595
2596         if (pipe_config->dsc.compression_enable)
2597                 output_bpp = pipe_config->dsc.compressed_bpp;
2598         else
2599                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2600
2601         intel_link_compute_m_n(output_bpp,
2602                                pipe_config->lane_count,
2603                                adjusted_mode->crtc_clock,
2604                                pipe_config->port_clock,
2605                                &pipe_config->dp_m_n,
2606                                constant_n, pipe_config->fec_enable);
2607
2608         if (intel_connector->panel.downclock_mode != NULL &&
2609                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2610                         pipe_config->has_drrs = true;
2611                         intel_link_compute_m_n(output_bpp,
2612                                                pipe_config->lane_count,
2613                                                intel_connector->panel.downclock_mode->clock,
2614                                                pipe_config->port_clock,
2615                                                &pipe_config->dp_m2_n2,
2616                                                constant_n, pipe_config->fec_enable);
2617         }
2618
2619         if (!HAS_DDI(dev_priv))
2620                 intel_dp_set_clock(encoder, pipe_config);
2621
2622         intel_psr_compute_config(intel_dp, pipe_config);
2623         intel_dp_compute_vsc_sdp(intel_dp, pipe_config, conn_state);
2624         intel_dp_compute_hdr_metadata_infoframe_sdp(intel_dp, pipe_config, conn_state);
2625
2626         return 0;
2627 }
2628
2629 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2630                               int link_rate, u8 lane_count,
2631                               bool link_mst)
2632 {
2633         intel_dp->link_trained = false;
2634         intel_dp->link_rate = link_rate;
2635         intel_dp->lane_count = lane_count;
2636         intel_dp->link_mst = link_mst;
2637 }
2638
2639 static void intel_dp_prepare(struct intel_encoder *encoder,
2640                              const struct intel_crtc_state *pipe_config)
2641 {
2642         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2643         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
2644         enum port port = encoder->port;
2645         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2646         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2647
2648         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2649                                  pipe_config->lane_count,
2650                                  intel_crtc_has_type(pipe_config,
2651                                                      INTEL_OUTPUT_DP_MST));
2652
2653         /*
2654          * There are four kinds of DP registers:
2655          *
2656          *      IBX PCH
2657          *      SNB CPU
2658          *      IVB CPU
2659          *      CPT PCH
2660          *
2661          * IBX PCH and CPU are the same for almost everything,
2662          * except that the CPU DP PLL is configured in this
2663          * register
2664          *
2665          * CPT PCH is quite different, having many bits moved
2666          * to the TRANS_DP_CTL register instead. That
2667          * configuration happens (oddly) in ilk_pch_enable
2668          */
2669
2670         /* Preserve the BIOS-computed detected bit. This is
2671          * supposed to be read-only.
2672          */
2673         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg) & DP_DETECTED;
2674
2675         /* Handle DP bits in common between all three register formats */
2676         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2677         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2678
2679         /* Split out the IBX/CPU vs CPT settings */
2680
2681         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2682                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2683                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2684                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2685                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2686                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2687
2688                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2689                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2690
2691                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2692         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2693                 u32 trans_dp;
2694
2695                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2696
2697                 trans_dp = intel_de_read(dev_priv, TRANS_DP_CTL(crtc->pipe));
2698                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2699                         trans_dp |= TRANS_DP_ENH_FRAMING;
2700                 else
2701                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2702                 intel_de_write(dev_priv, TRANS_DP_CTL(crtc->pipe), trans_dp);
2703         } else {
2704                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2705                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2706
2707                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2708                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2709                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2710                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2711                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2712
2713                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2714                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2715
2716                 if (IS_CHERRYVIEW(dev_priv))
2717                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2718                 else
2719                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2720         }
2721 }
2722
2723 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2724 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2725
2726 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2727 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2728
2729 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2730 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2731
2732 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2733
2734 static void wait_panel_status(struct intel_dp *intel_dp,
2735                                        u32 mask,
2736                                        u32 value)
2737 {
2738         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2739         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2740
2741         lockdep_assert_held(&dev_priv->pps_mutex);
2742
2743         intel_pps_verify_state(intel_dp);
2744
2745         pp_stat_reg = _pp_stat_reg(intel_dp);
2746         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2747
2748         drm_dbg_kms(&dev_priv->drm,
2749                     "mask %08x value %08x status %08x control %08x\n",
2750                     mask, value,
2751                     intel_de_read(dev_priv, pp_stat_reg),
2752                     intel_de_read(dev_priv, pp_ctrl_reg));
2753
2754         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2755                                        mask, value, 5000))
2756                 drm_err(&dev_priv->drm,
2757                         "Panel status timeout: status %08x control %08x\n",
2758                         intel_de_read(dev_priv, pp_stat_reg),
2759                         intel_de_read(dev_priv, pp_ctrl_reg));
2760
2761         drm_dbg_kms(&dev_priv->drm, "Wait complete\n");
2762 }
2763
2764 static void wait_panel_on(struct intel_dp *intel_dp)
2765 {
2766         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2767
2768         drm_dbg_kms(&i915->drm, "Wait for panel power on\n");
2769         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2770 }
2771
2772 static void wait_panel_off(struct intel_dp *intel_dp)
2773 {
2774         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2775
2776         drm_dbg_kms(&i915->drm, "Wait for panel power off time\n");
2777         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2778 }
2779
2780 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2781 {
2782         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
2783         ktime_t panel_power_on_time;
2784         s64 panel_power_off_duration;
2785
2786         drm_dbg_kms(&i915->drm, "Wait for panel power cycle\n");
2787
2788         /* take the difference of currrent time and panel power off time
2789          * and then make panel wait for t11_t12 if needed. */
2790         panel_power_on_time = ktime_get_boottime();
2791         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2792
2793         /* When we disable the VDD override bit last we have to do the manual
2794          * wait. */
2795         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2796                 wait_remaining_ms_from_jiffies(jiffies,
2797                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2798
2799         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2800 }
2801
2802 static void wait_backlight_on(struct intel_dp *intel_dp)
2803 {
2804         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2805                                        intel_dp->backlight_on_delay);
2806 }
2807
2808 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2809 {
2810         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2811                                        intel_dp->backlight_off_delay);
2812 }
2813
2814 /* Read the current pp_control value, unlocking the register if it
2815  * is locked
2816  */
2817
2818 static  u32 ilk_get_pp_control(struct intel_dp *intel_dp)
2819 {
2820         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2821         u32 control;
2822
2823         lockdep_assert_held(&dev_priv->pps_mutex);
2824
2825         control = intel_de_read(dev_priv, _pp_ctrl_reg(intel_dp));
2826         if (drm_WARN_ON(&dev_priv->drm, !HAS_DDI(dev_priv) &&
2827                         (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2828                 control &= ~PANEL_UNLOCK_MASK;
2829                 control |= PANEL_UNLOCK_REGS;
2830         }
2831         return control;
2832 }
2833
2834 /*
2835  * Must be paired with edp_panel_vdd_off().
2836  * Must hold pps_mutex around the whole on/off sequence.
2837  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2838  */
2839 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2840 {
2841         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2842         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2843         u32 pp;
2844         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2845         bool need_to_disable = !intel_dp->want_panel_vdd;
2846
2847         lockdep_assert_held(&dev_priv->pps_mutex);
2848
2849         if (!intel_dp_is_edp(intel_dp))
2850                 return false;
2851
2852         cancel_delayed_work(&intel_dp->panel_vdd_work);
2853         intel_dp->want_panel_vdd = true;
2854
2855         if (edp_have_panel_vdd(intel_dp))
2856                 return need_to_disable;
2857
2858         intel_display_power_get(dev_priv,
2859                                 intel_aux_power_domain(intel_dig_port));
2860
2861         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD on\n",
2862                     intel_dig_port->base.base.base.id,
2863                     intel_dig_port->base.base.name);
2864
2865         if (!edp_have_panel_power(intel_dp))
2866                 wait_panel_power_cycle(intel_dp);
2867
2868         pp = ilk_get_pp_control(intel_dp);
2869         pp |= EDP_FORCE_VDD;
2870
2871         pp_stat_reg = _pp_stat_reg(intel_dp);
2872         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2873
2874         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2875         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2876         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2877                     intel_de_read(dev_priv, pp_stat_reg),
2878                     intel_de_read(dev_priv, pp_ctrl_reg));
2879         /*
2880          * If the panel wasn't on, delay before accessing aux channel
2881          */
2882         if (!edp_have_panel_power(intel_dp)) {
2883                 drm_dbg_kms(&dev_priv->drm,
2884                             "[ENCODER:%d:%s] panel power wasn't enabled\n",
2885                             intel_dig_port->base.base.base.id,
2886                             intel_dig_port->base.base.name);
2887                 msleep(intel_dp->panel_power_up_delay);
2888         }
2889
2890         return need_to_disable;
2891 }
2892
2893 /*
2894  * Must be paired with intel_edp_panel_vdd_off() or
2895  * intel_edp_panel_off().
2896  * Nested calls to these functions are not allowed since
2897  * we drop the lock. Caller must use some higher level
2898  * locking to prevent nested calls from other threads.
2899  */
2900 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2901 {
2902         intel_wakeref_t wakeref;
2903         bool vdd;
2904
2905         if (!intel_dp_is_edp(intel_dp))
2906                 return;
2907
2908         vdd = false;
2909         with_pps_lock(intel_dp, wakeref)
2910                 vdd = edp_panel_vdd_on(intel_dp);
2911         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2912                         dp_to_dig_port(intel_dp)->base.base.base.id,
2913                         dp_to_dig_port(intel_dp)->base.base.name);
2914 }
2915
2916 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2917 {
2918         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2919         struct intel_digital_port *intel_dig_port =
2920                 dp_to_dig_port(intel_dp);
2921         u32 pp;
2922         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2923
2924         lockdep_assert_held(&dev_priv->pps_mutex);
2925
2926         drm_WARN_ON(&dev_priv->drm, intel_dp->want_panel_vdd);
2927
2928         if (!edp_have_panel_vdd(intel_dp))
2929                 return;
2930
2931         drm_dbg_kms(&dev_priv->drm, "Turning [ENCODER:%d:%s] VDD off\n",
2932                     intel_dig_port->base.base.base.id,
2933                     intel_dig_port->base.base.name);
2934
2935         pp = ilk_get_pp_control(intel_dp);
2936         pp &= ~EDP_FORCE_VDD;
2937
2938         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2939         pp_stat_reg = _pp_stat_reg(intel_dp);
2940
2941         intel_de_write(dev_priv, pp_ctrl_reg, pp);
2942         intel_de_posting_read(dev_priv, pp_ctrl_reg);
2943
2944         /* Make sure sequencer is idle before allowing subsequent activity */
2945         drm_dbg_kms(&dev_priv->drm, "PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2946                     intel_de_read(dev_priv, pp_stat_reg),
2947                     intel_de_read(dev_priv, pp_ctrl_reg));
2948
2949         if ((pp & PANEL_POWER_ON) == 0)
2950                 intel_dp->panel_power_off_time = ktime_get_boottime();
2951
2952         intel_display_power_put_unchecked(dev_priv,
2953                                           intel_aux_power_domain(intel_dig_port));
2954 }
2955
2956 static void edp_panel_vdd_work(struct work_struct *__work)
2957 {
2958         struct intel_dp *intel_dp =
2959                 container_of(to_delayed_work(__work),
2960                              struct intel_dp, panel_vdd_work);
2961         intel_wakeref_t wakeref;
2962
2963         with_pps_lock(intel_dp, wakeref) {
2964                 if (!intel_dp->want_panel_vdd)
2965                         edp_panel_vdd_off_sync(intel_dp);
2966         }
2967 }
2968
2969 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2970 {
2971         unsigned long delay;
2972
2973         /*
2974          * Queue the timer to fire a long time from now (relative to the power
2975          * down delay) to keep the panel power up across a sequence of
2976          * operations.
2977          */
2978         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2979         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2980 }
2981
2982 /*
2983  * Must be paired with edp_panel_vdd_on().
2984  * Must hold pps_mutex around the whole on/off sequence.
2985  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2986  */
2987 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2988 {
2989         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2990
2991         lockdep_assert_held(&dev_priv->pps_mutex);
2992
2993         if (!intel_dp_is_edp(intel_dp))
2994                 return;
2995
2996         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2997                         dp_to_dig_port(intel_dp)->base.base.base.id,
2998                         dp_to_dig_port(intel_dp)->base.base.name);
2999
3000         intel_dp->want_panel_vdd = false;
3001
3002         if (sync)
3003                 edp_panel_vdd_off_sync(intel_dp);
3004         else
3005                 edp_panel_vdd_schedule_off(intel_dp);
3006 }
3007
3008 static void edp_panel_on(struct intel_dp *intel_dp)
3009 {
3010         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3011         u32 pp;
3012         i915_reg_t pp_ctrl_reg;
3013
3014         lockdep_assert_held(&dev_priv->pps_mutex);
3015
3016         if (!intel_dp_is_edp(intel_dp))
3017                 return;
3018
3019         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power on\n",
3020                     dp_to_dig_port(intel_dp)->base.base.base.id,
3021                     dp_to_dig_port(intel_dp)->base.base.name);
3022
3023         if (drm_WARN(&dev_priv->drm, edp_have_panel_power(intel_dp),
3024                      "[ENCODER:%d:%s] panel power already on\n",
3025                      dp_to_dig_port(intel_dp)->base.base.base.id,
3026                      dp_to_dig_port(intel_dp)->base.base.name))
3027                 return;
3028
3029         wait_panel_power_cycle(intel_dp);
3030
3031         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3032         pp = ilk_get_pp_control(intel_dp);
3033         if (IS_GEN(dev_priv, 5)) {
3034                 /* ILK workaround: disable reset around power sequence */
3035                 pp &= ~PANEL_POWER_RESET;
3036                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3037                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3038         }
3039
3040         pp |= PANEL_POWER_ON;
3041         if (!IS_GEN(dev_priv, 5))
3042                 pp |= PANEL_POWER_RESET;
3043
3044         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3045         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3046
3047         wait_panel_on(intel_dp);
3048         intel_dp->last_power_on = jiffies;
3049
3050         if (IS_GEN(dev_priv, 5)) {
3051                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
3052                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3053                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3054         }
3055 }
3056
3057 void intel_edp_panel_on(struct intel_dp *intel_dp)
3058 {
3059         intel_wakeref_t wakeref;
3060
3061         if (!intel_dp_is_edp(intel_dp))
3062                 return;
3063
3064         with_pps_lock(intel_dp, wakeref)
3065                 edp_panel_on(intel_dp);
3066 }
3067
3068
3069 static void edp_panel_off(struct intel_dp *intel_dp)
3070 {
3071         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3072         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3073         u32 pp;
3074         i915_reg_t pp_ctrl_reg;
3075
3076         lockdep_assert_held(&dev_priv->pps_mutex);
3077
3078         if (!intel_dp_is_edp(intel_dp))
3079                 return;
3080
3081         drm_dbg_kms(&dev_priv->drm, "Turn [ENCODER:%d:%s] panel power off\n",
3082                     dig_port->base.base.base.id, dig_port->base.base.name);
3083
3084         drm_WARN(&dev_priv->drm, !intel_dp->want_panel_vdd,
3085                  "Need [ENCODER:%d:%s] VDD to turn off panel\n",
3086                  dig_port->base.base.base.id, dig_port->base.base.name);
3087
3088         pp = ilk_get_pp_control(intel_dp);
3089         /* We need to switch off panel power _and_ force vdd, for otherwise some
3090          * panels get very unhappy and cease to work. */
3091         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
3092                 EDP_BLC_ENABLE);
3093
3094         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3095
3096         intel_dp->want_panel_vdd = false;
3097
3098         intel_de_write(dev_priv, pp_ctrl_reg, pp);
3099         intel_de_posting_read(dev_priv, pp_ctrl_reg);
3100
3101         wait_panel_off(intel_dp);
3102         intel_dp->panel_power_off_time = ktime_get_boottime();
3103
3104         /* We got a reference when we enabled the VDD. */
3105         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
3106 }
3107
3108 void intel_edp_panel_off(struct intel_dp *intel_dp)
3109 {
3110         intel_wakeref_t wakeref;
3111
3112         if (!intel_dp_is_edp(intel_dp))
3113                 return;
3114
3115         with_pps_lock(intel_dp, wakeref)
3116                 edp_panel_off(intel_dp);
3117 }
3118
3119 /* Enable backlight in the panel power control. */
3120 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
3121 {
3122         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3123         intel_wakeref_t wakeref;
3124
3125         /*
3126          * If we enable the backlight right away following a panel power
3127          * on, we may see slight flicker as the panel syncs with the eDP
3128          * link.  So delay a bit to make sure the image is solid before
3129          * allowing it to appear.
3130          */
3131         wait_backlight_on(intel_dp);
3132
3133         with_pps_lock(intel_dp, wakeref) {
3134                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3135                 u32 pp;
3136
3137                 pp = ilk_get_pp_control(intel_dp);
3138                 pp |= EDP_BLC_ENABLE;
3139
3140                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3141                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3142         }
3143 }
3144
3145 /* Enable backlight PWM and backlight PP control. */
3146 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
3147                             const struct drm_connector_state *conn_state)
3148 {
3149         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(conn_state->best_encoder));
3150         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3151
3152         if (!intel_dp_is_edp(intel_dp))
3153                 return;
3154
3155         drm_dbg_kms(&i915->drm, "\n");
3156
3157         intel_panel_enable_backlight(crtc_state, conn_state);
3158         _intel_edp_backlight_on(intel_dp);
3159 }
3160
3161 /* Disable backlight in the panel power control. */
3162 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
3163 {
3164         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3165         intel_wakeref_t wakeref;
3166
3167         if (!intel_dp_is_edp(intel_dp))
3168                 return;
3169
3170         with_pps_lock(intel_dp, wakeref) {
3171                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
3172                 u32 pp;
3173
3174                 pp = ilk_get_pp_control(intel_dp);
3175                 pp &= ~EDP_BLC_ENABLE;
3176
3177                 intel_de_write(dev_priv, pp_ctrl_reg, pp);
3178                 intel_de_posting_read(dev_priv, pp_ctrl_reg);
3179         }
3180
3181         intel_dp->last_backlight_off = jiffies;
3182         edp_wait_backlight_off(intel_dp);
3183 }
3184
3185 /* Disable backlight PP control and backlight PWM. */
3186 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
3187 {
3188         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(old_conn_state->best_encoder));
3189         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3190
3191         if (!intel_dp_is_edp(intel_dp))
3192                 return;
3193
3194         drm_dbg_kms(&i915->drm, "\n");
3195
3196         _intel_edp_backlight_off(intel_dp);
3197         intel_panel_disable_backlight(old_conn_state);
3198 }
3199
3200 /*
3201  * Hook for controlling the panel power control backlight through the bl_power
3202  * sysfs attribute. Take care to handle multiple calls.
3203  */
3204 static void intel_edp_backlight_power(struct intel_connector *connector,
3205                                       bool enable)
3206 {
3207         struct drm_i915_private *i915 = to_i915(connector->base.dev);
3208         struct intel_dp *intel_dp = intel_attached_dp(connector);
3209         intel_wakeref_t wakeref;
3210         bool is_enabled;
3211
3212         is_enabled = false;
3213         with_pps_lock(intel_dp, wakeref)
3214                 is_enabled = ilk_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3215         if (is_enabled == enable)
3216                 return;
3217
3218         drm_dbg_kms(&i915->drm, "panel power control backlight %s\n",
3219                     enable ? "enable" : "disable");
3220
3221         if (enable)
3222                 _intel_edp_backlight_on(intel_dp);
3223         else
3224                 _intel_edp_backlight_off(intel_dp);
3225 }
3226
3227 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3228 {
3229         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3230         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3231         bool cur_state = intel_de_read(dev_priv, intel_dp->output_reg) & DP_PORT_EN;
3232
3233         I915_STATE_WARN(cur_state != state,
3234                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3235                         dig_port->base.base.base.id, dig_port->base.base.name,
3236                         onoff(state), onoff(cur_state));
3237 }
3238 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3239
3240 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3241 {
3242         bool cur_state = intel_de_read(dev_priv, DP_A) & DP_PLL_ENABLE;
3243
3244         I915_STATE_WARN(cur_state != state,
3245                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3246                         onoff(state), onoff(cur_state));
3247 }
3248 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3249 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3250
3251 static void ilk_edp_pll_on(struct intel_dp *intel_dp,
3252                            const struct intel_crtc_state *pipe_config)
3253 {
3254         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3255         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3256
3257         assert_pipe_disabled(dev_priv, pipe_config->cpu_transcoder);
3258         assert_dp_port_disabled(intel_dp);
3259         assert_edp_pll_disabled(dev_priv);
3260
3261         drm_dbg_kms(&dev_priv->drm, "enabling eDP PLL for clock %d\n",
3262                     pipe_config->port_clock);
3263
3264         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3265
3266         if (pipe_config->port_clock == 162000)
3267                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3268         else
3269                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3270
3271         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3272         intel_de_posting_read(dev_priv, DP_A);
3273         udelay(500);
3274
3275         /*
3276          * [DevILK] Work around required when enabling DP PLL
3277          * while a pipe is enabled going to FDI:
3278          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3279          * 2. Program DP PLL enable
3280          */
3281         if (IS_GEN(dev_priv, 5))
3282                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3283
3284         intel_dp->DP |= DP_PLL_ENABLE;
3285
3286         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3287         intel_de_posting_read(dev_priv, DP_A);
3288         udelay(200);
3289 }
3290
3291 static void ilk_edp_pll_off(struct intel_dp *intel_dp,
3292                             const struct intel_crtc_state *old_crtc_state)
3293 {
3294         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3295         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3296
3297         assert_pipe_disabled(dev_priv, old_crtc_state->cpu_transcoder);
3298         assert_dp_port_disabled(intel_dp);
3299         assert_edp_pll_enabled(dev_priv);
3300
3301         drm_dbg_kms(&dev_priv->drm, "disabling eDP PLL\n");
3302
3303         intel_dp->DP &= ~DP_PLL_ENABLE;
3304
3305         intel_de_write(dev_priv, DP_A, intel_dp->DP);
3306         intel_de_posting_read(dev_priv, DP_A);
3307         udelay(200);
3308 }
3309
3310 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3311 {
3312         /*
3313          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3314          * be capable of signalling downstream hpd with a long pulse.
3315          * Whether or not that means D3 is safe to use is not clear,
3316          * but let's assume so until proven otherwise.
3317          *
3318          * FIXME should really check all downstream ports...
3319          */
3320         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3321                 drm_dp_is_branch(intel_dp->dpcd) &&
3322                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3323 }
3324
3325 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3326                                            const struct intel_crtc_state *crtc_state,
3327                                            bool enable)
3328 {
3329         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3330         int ret;
3331
3332         if (!crtc_state->dsc.compression_enable)
3333                 return;
3334
3335         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3336                                  enable ? DP_DECOMPRESSION_EN : 0);
3337         if (ret < 0)
3338                 drm_dbg_kms(&i915->drm,
3339                             "Failed to %s sink decompression state\n",
3340                             enable ? "enable" : "disable");
3341 }
3342
3343 /* If the sink supports it, try to set the power state appropriately */
3344 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3345 {
3346         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
3347         int ret, i;
3348
3349         /* Should have a valid DPCD by this point */
3350         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3351                 return;
3352
3353         if (mode != DRM_MODE_DPMS_ON) {
3354                 if (downstream_hpd_needs_d0(intel_dp))
3355                         return;
3356
3357                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3358                                          DP_SET_POWER_D3);
3359         } else {
3360                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3361
3362                 /*
3363                  * When turning on, we need to retry for 1ms to give the sink
3364                  * time to wake up.
3365                  */
3366                 for (i = 0; i < 3; i++) {
3367                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3368                                                  DP_SET_POWER_D0);
3369                         if (ret == 1)
3370                                 break;
3371                         msleep(1);
3372                 }
3373
3374                 if (ret == 1 && lspcon->active)
3375                         lspcon_wait_pcon_mode(lspcon);
3376         }
3377
3378         if (ret != 1)
3379                 drm_dbg_kms(&i915->drm, "failed to %s sink power state\n",
3380                             mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3381 }
3382
3383 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3384                                  enum port port, enum pipe *pipe)
3385 {
3386         enum pipe p;
3387
3388         for_each_pipe(dev_priv, p) {
3389                 u32 val = intel_de_read(dev_priv, TRANS_DP_CTL(p));
3390
3391                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3392                         *pipe = p;
3393                         return true;
3394                 }
3395         }
3396
3397         drm_dbg_kms(&dev_priv->drm, "No pipe for DP port %c found\n",
3398                     port_name(port));
3399
3400         /* must initialize pipe to something for the asserts */
3401         *pipe = PIPE_A;
3402
3403         return false;
3404 }
3405
3406 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3407                            i915_reg_t dp_reg, enum port port,
3408                            enum pipe *pipe)
3409 {
3410         bool ret;
3411         u32 val;
3412
3413         val = intel_de_read(dev_priv, dp_reg);
3414
3415         ret = val & DP_PORT_EN;
3416
3417         /* asserts want to know the pipe even if the port is disabled */
3418         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3419                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3420         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3421                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3422         else if (IS_CHERRYVIEW(dev_priv))
3423                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3424         else
3425                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3426
3427         return ret;
3428 }
3429
3430 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3431                                   enum pipe *pipe)
3432 {
3433         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3434         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3435         intel_wakeref_t wakeref;
3436         bool ret;
3437
3438         wakeref = intel_display_power_get_if_enabled(dev_priv,
3439                                                      encoder->power_domain);
3440         if (!wakeref)
3441                 return false;
3442
3443         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3444                                     encoder->port, pipe);
3445
3446         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3447
3448         return ret;
3449 }
3450
3451 static void intel_dp_get_config(struct intel_encoder *encoder,
3452                                 struct intel_crtc_state *pipe_config)
3453 {
3454         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3455         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3456         u32 tmp, flags = 0;
3457         enum port port = encoder->port;
3458         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3459
3460         if (encoder->type == INTEL_OUTPUT_EDP)
3461                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3462         else
3463                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3464
3465         tmp = intel_de_read(dev_priv, intel_dp->output_reg);
3466
3467         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3468
3469         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3470                 u32 trans_dp = intel_de_read(dev_priv,
3471                                              TRANS_DP_CTL(crtc->pipe));
3472
3473                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3474                         flags |= DRM_MODE_FLAG_PHSYNC;
3475                 else
3476                         flags |= DRM_MODE_FLAG_NHSYNC;
3477
3478                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3479                         flags |= DRM_MODE_FLAG_PVSYNC;
3480                 else
3481                         flags |= DRM_MODE_FLAG_NVSYNC;
3482         } else {
3483                 if (tmp & DP_SYNC_HS_HIGH)
3484                         flags |= DRM_MODE_FLAG_PHSYNC;
3485                 else
3486                         flags |= DRM_MODE_FLAG_NHSYNC;
3487
3488                 if (tmp & DP_SYNC_VS_HIGH)
3489                         flags |= DRM_MODE_FLAG_PVSYNC;
3490                 else
3491                         flags |= DRM_MODE_FLAG_NVSYNC;
3492         }
3493
3494         pipe_config->hw.adjusted_mode.flags |= flags;
3495
3496         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3497                 pipe_config->limited_color_range = true;
3498
3499         pipe_config->lane_count =
3500                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3501
3502         intel_dp_get_m_n(crtc, pipe_config);
3503
3504         if (port == PORT_A) {
3505                 if ((intel_de_read(dev_priv, DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3506                         pipe_config->port_clock = 162000;
3507                 else
3508                         pipe_config->port_clock = 270000;
3509         }
3510
3511         pipe_config->hw.adjusted_mode.crtc_clock =
3512                 intel_dotclock_calculate(pipe_config->port_clock,
3513                                          &pipe_config->dp_m_n);
3514
3515         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3516             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3517                 /*
3518                  * This is a big fat ugly hack.
3519                  *
3520                  * Some machines in UEFI boot mode provide us a VBT that has 18
3521                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3522                  * unknown we fail to light up. Yet the same BIOS boots up with
3523                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3524                  * max, not what it tells us to use.
3525                  *
3526                  * Note: This will still be broken if the eDP panel is not lit
3527                  * up by the BIOS, and thus we can't get the mode at module
3528                  * load.
3529                  */
3530                 drm_dbg_kms(&dev_priv->drm,
3531                             "pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3532                             pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3533                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3534         }
3535 }
3536
3537 static void intel_disable_dp(struct intel_atomic_state *state,
3538                              struct intel_encoder *encoder,
3539                              const struct intel_crtc_state *old_crtc_state,
3540                              const struct drm_connector_state *old_conn_state)
3541 {
3542         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3543
3544         intel_dp->link_trained = false;
3545
3546         if (old_crtc_state->has_audio)
3547                 intel_audio_codec_disable(encoder,
3548                                           old_crtc_state, old_conn_state);
3549
3550         /* Make sure the panel is off before trying to change the mode. But also
3551          * ensure that we have vdd while we switch off the panel. */
3552         intel_edp_panel_vdd_on(intel_dp);
3553         intel_edp_backlight_off(old_conn_state);
3554         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3555         intel_edp_panel_off(intel_dp);
3556 }
3557
3558 static void g4x_disable_dp(struct intel_atomic_state *state,
3559                            struct intel_encoder *encoder,
3560                            const struct intel_crtc_state *old_crtc_state,
3561                            const struct drm_connector_state *old_conn_state)
3562 {
3563         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3564 }
3565
3566 static void vlv_disable_dp(struct intel_atomic_state *state,
3567                            struct intel_encoder *encoder,
3568                            const struct intel_crtc_state *old_crtc_state,
3569                            const struct drm_connector_state *old_conn_state)
3570 {
3571         intel_disable_dp(state, encoder, old_crtc_state, old_conn_state);
3572 }
3573
3574 static void g4x_post_disable_dp(struct intel_atomic_state *state,
3575                                 struct intel_encoder *encoder,
3576                                 const struct intel_crtc_state *old_crtc_state,
3577                                 const struct drm_connector_state *old_conn_state)
3578 {
3579         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3580         enum port port = encoder->port;
3581
3582         /*
3583          * Bspec does not list a specific disable sequence for g4x DP.
3584          * Follow the ilk+ sequence (disable pipe before the port) for
3585          * g4x DP as it does not suffer from underruns like the normal
3586          * g4x modeset sequence (disable pipe after the port).
3587          */
3588         intel_dp_link_down(encoder, old_crtc_state);
3589
3590         /* Only ilk+ has port A */
3591         if (port == PORT_A)
3592                 ilk_edp_pll_off(intel_dp, old_crtc_state);
3593 }
3594
3595 static void vlv_post_disable_dp(struct intel_atomic_state *state,
3596                                 struct intel_encoder *encoder,
3597                                 const struct intel_crtc_state *old_crtc_state,
3598                                 const struct drm_connector_state *old_conn_state)
3599 {
3600         intel_dp_link_down(encoder, old_crtc_state);
3601 }
3602
3603 static void chv_post_disable_dp(struct intel_atomic_state *state,
3604                                 struct intel_encoder *encoder,
3605                                 const struct intel_crtc_state *old_crtc_state,
3606                                 const struct drm_connector_state *old_conn_state)
3607 {
3608         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3609
3610         intel_dp_link_down(encoder, old_crtc_state);
3611
3612         vlv_dpio_get(dev_priv);
3613
3614         /* Assert data lane reset */
3615         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3616
3617         vlv_dpio_put(dev_priv);
3618 }
3619
3620 static void
3621 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3622                          u32 *DP,
3623                          u8 dp_train_pat)
3624 {
3625         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3626         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3627         enum port port = intel_dig_port->base.port;
3628         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3629
3630         if (dp_train_pat & train_pat_mask)
3631                 drm_dbg_kms(&dev_priv->drm,
3632                             "Using DP training pattern TPS%d\n",
3633                             dp_train_pat & train_pat_mask);
3634
3635         if (HAS_DDI(dev_priv)) {
3636                 u32 temp = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
3637
3638                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3639                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3640                 else
3641                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3642
3643                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3644                 switch (dp_train_pat & train_pat_mask) {
3645                 case DP_TRAINING_PATTERN_DISABLE:
3646                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3647
3648                         break;
3649                 case DP_TRAINING_PATTERN_1:
3650                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3651                         break;
3652                 case DP_TRAINING_PATTERN_2:
3653                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3654                         break;
3655                 case DP_TRAINING_PATTERN_3:
3656                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3657                         break;
3658                 case DP_TRAINING_PATTERN_4:
3659                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3660                         break;
3661                 }
3662                 intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, temp);
3663
3664         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3665                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3666                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3667
3668                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3669                 case DP_TRAINING_PATTERN_DISABLE:
3670                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3671                         break;
3672                 case DP_TRAINING_PATTERN_1:
3673                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3674                         break;
3675                 case DP_TRAINING_PATTERN_2:
3676                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3677                         break;
3678                 case DP_TRAINING_PATTERN_3:
3679                         drm_dbg_kms(&dev_priv->drm,
3680                                     "TPS3 not supported, using TPS2 instead\n");
3681                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3682                         break;
3683                 }
3684
3685         } else {
3686                 *DP &= ~DP_LINK_TRAIN_MASK;
3687
3688                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3689                 case DP_TRAINING_PATTERN_DISABLE:
3690                         *DP |= DP_LINK_TRAIN_OFF;
3691                         break;
3692                 case DP_TRAINING_PATTERN_1:
3693                         *DP |= DP_LINK_TRAIN_PAT_1;
3694                         break;
3695                 case DP_TRAINING_PATTERN_2:
3696                         *DP |= DP_LINK_TRAIN_PAT_2;
3697                         break;
3698                 case DP_TRAINING_PATTERN_3:
3699                         drm_dbg_kms(&dev_priv->drm,
3700                                     "TPS3 not supported, using TPS2 instead\n");
3701                         *DP |= DP_LINK_TRAIN_PAT_2;
3702                         break;
3703                 }
3704         }
3705 }
3706
3707 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3708                                  const struct intel_crtc_state *old_crtc_state)
3709 {
3710         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3711
3712         /* enable with pattern 1 (as per spec) */
3713
3714         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3715
3716         /*
3717          * Magic for VLV/CHV. We _must_ first set up the register
3718          * without actually enabling the port, and then do another
3719          * write to enable the port. Otherwise link training will
3720          * fail when the power sequencer is freshly used for this port.
3721          */
3722         intel_dp->DP |= DP_PORT_EN;
3723         if (old_crtc_state->has_audio)
3724                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3725
3726         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
3727         intel_de_posting_read(dev_priv, intel_dp->output_reg);
3728 }
3729
3730 static void intel_enable_dp(struct intel_atomic_state *state,
3731                             struct intel_encoder *encoder,
3732                             const struct intel_crtc_state *pipe_config,
3733                             const struct drm_connector_state *conn_state)
3734 {
3735         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3736         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3737         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3738         u32 dp_reg = intel_de_read(dev_priv, intel_dp->output_reg);
3739         enum pipe pipe = crtc->pipe;
3740         intel_wakeref_t wakeref;
3741
3742         if (drm_WARN_ON(&dev_priv->drm, dp_reg & DP_PORT_EN))
3743                 return;
3744
3745         with_pps_lock(intel_dp, wakeref) {
3746                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3747                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3748
3749                 intel_dp_enable_port(intel_dp, pipe_config);
3750
3751                 edp_panel_vdd_on(intel_dp);
3752                 edp_panel_on(intel_dp);
3753                 edp_panel_vdd_off(intel_dp, true);
3754         }
3755
3756         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3757                 unsigned int lane_mask = 0x0;
3758
3759                 if (IS_CHERRYVIEW(dev_priv))
3760                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3761
3762                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3763                                     lane_mask);
3764         }
3765
3766         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3767         intel_dp_start_link_train(intel_dp);
3768         intel_dp_stop_link_train(intel_dp);
3769
3770         if (pipe_config->has_audio) {
3771                 drm_dbg(&dev_priv->drm, "Enabling DP audio on pipe %c\n",
3772                         pipe_name(pipe));
3773                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3774         }
3775 }
3776
3777 static void g4x_enable_dp(struct intel_atomic_state *state,
3778                           struct intel_encoder *encoder,
3779                           const struct intel_crtc_state *pipe_config,
3780                           const struct drm_connector_state *conn_state)
3781 {
3782         intel_enable_dp(state, encoder, pipe_config, conn_state);
3783         intel_edp_backlight_on(pipe_config, conn_state);
3784 }
3785
3786 static void vlv_enable_dp(struct intel_atomic_state *state,
3787                           struct intel_encoder *encoder,
3788                           const struct intel_crtc_state *pipe_config,
3789                           const struct drm_connector_state *conn_state)
3790 {
3791         intel_edp_backlight_on(pipe_config, conn_state);
3792 }
3793
3794 static void g4x_pre_enable_dp(struct intel_atomic_state *state,
3795                               struct intel_encoder *encoder,
3796                               const struct intel_crtc_state *pipe_config,
3797                               const struct drm_connector_state *conn_state)
3798 {
3799         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3800         enum port port = encoder->port;
3801
3802         intel_dp_prepare(encoder, pipe_config);
3803
3804         /* Only ilk+ has port A */
3805         if (port == PORT_A)
3806                 ilk_edp_pll_on(intel_dp, pipe_config);
3807 }
3808
3809 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3810 {
3811         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3812         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3813         enum pipe pipe = intel_dp->pps_pipe;
3814         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3815
3816         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3817
3818         if (drm_WARN_ON(&dev_priv->drm, pipe != PIPE_A && pipe != PIPE_B))
3819                 return;
3820
3821         edp_panel_vdd_off_sync(intel_dp);
3822
3823         /*
3824          * VLV seems to get confused when multiple power sequencers
3825          * have the same port selected (even if only one has power/vdd
3826          * enabled). The failure manifests as vlv_wait_port_ready() failing
3827          * CHV on the other hand doesn't seem to mind having the same port
3828          * selected in multiple power sequencers, but let's clear the
3829          * port select always when logically disconnecting a power sequencer
3830          * from a port.
3831          */
3832         drm_dbg_kms(&dev_priv->drm,
3833                     "detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3834                     pipe_name(pipe), intel_dig_port->base.base.base.id,
3835                     intel_dig_port->base.base.name);
3836         intel_de_write(dev_priv, pp_on_reg, 0);
3837         intel_de_posting_read(dev_priv, pp_on_reg);
3838
3839         intel_dp->pps_pipe = INVALID_PIPE;
3840 }
3841
3842 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3843                                       enum pipe pipe)
3844 {
3845         struct intel_encoder *encoder;
3846
3847         lockdep_assert_held(&dev_priv->pps_mutex);
3848
3849         for_each_intel_dp(&dev_priv->drm, encoder) {
3850                 struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3851
3852                 drm_WARN(&dev_priv->drm, intel_dp->active_pipe == pipe,
3853                          "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3854                          pipe_name(pipe), encoder->base.base.id,
3855                          encoder->base.name);
3856
3857                 if (intel_dp->pps_pipe != pipe)
3858                         continue;
3859
3860                 drm_dbg_kms(&dev_priv->drm,
3861                             "stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3862                             pipe_name(pipe), encoder->base.base.id,
3863                             encoder->base.name);
3864
3865                 /* make sure vdd is off before we steal it */
3866                 vlv_detach_power_sequencer(intel_dp);
3867         }
3868 }
3869
3870 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3871                                            const struct intel_crtc_state *crtc_state)
3872 {
3873         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3874         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
3875         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3876
3877         lockdep_assert_held(&dev_priv->pps_mutex);
3878
3879         drm_WARN_ON(&dev_priv->drm, intel_dp->active_pipe != INVALID_PIPE);
3880
3881         if (intel_dp->pps_pipe != INVALID_PIPE &&
3882             intel_dp->pps_pipe != crtc->pipe) {
3883                 /*
3884                  * If another power sequencer was being used on this
3885                  * port previously make sure to turn off vdd there while
3886                  * we still have control of it.
3887                  */
3888                 vlv_detach_power_sequencer(intel_dp);
3889         }
3890
3891         /*
3892          * We may be stealing the power
3893          * sequencer from another port.
3894          */
3895         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3896
3897         intel_dp->active_pipe = crtc->pipe;
3898
3899         if (!intel_dp_is_edp(intel_dp))
3900                 return;
3901
3902         /* now it's all ours */
3903         intel_dp->pps_pipe = crtc->pipe;
3904
3905         drm_dbg_kms(&dev_priv->drm,
3906                     "initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3907                     pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3908                     encoder->base.name);
3909
3910         /* init power sequencer on this pipe and port */
3911         intel_dp_init_panel_power_sequencer(intel_dp);
3912         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3913 }
3914
3915 static void vlv_pre_enable_dp(struct intel_atomic_state *state,
3916                               struct intel_encoder *encoder,
3917                               const struct intel_crtc_state *pipe_config,
3918                               const struct drm_connector_state *conn_state)
3919 {
3920         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3921
3922         intel_enable_dp(state, encoder, pipe_config, conn_state);
3923 }
3924
3925 static void vlv_dp_pre_pll_enable(struct intel_atomic_state *state,
3926                                   struct intel_encoder *encoder,
3927                                   const struct intel_crtc_state *pipe_config,
3928                                   const struct drm_connector_state *conn_state)
3929 {
3930         intel_dp_prepare(encoder, pipe_config);
3931
3932         vlv_phy_pre_pll_enable(encoder, pipe_config);
3933 }
3934
3935 static void chv_pre_enable_dp(struct intel_atomic_state *state,
3936                               struct intel_encoder *encoder,
3937                               const struct intel_crtc_state *pipe_config,
3938                               const struct drm_connector_state *conn_state)
3939 {
3940         chv_phy_pre_encoder_enable(encoder, pipe_config);
3941
3942         intel_enable_dp(state, encoder, pipe_config, conn_state);
3943
3944         /* Second common lane will stay alive on its own now */
3945         chv_phy_release_cl2_override(encoder);
3946 }
3947
3948 static void chv_dp_pre_pll_enable(struct intel_atomic_state *state,
3949                                   struct intel_encoder *encoder,
3950                                   const struct intel_crtc_state *pipe_config,
3951                                   const struct drm_connector_state *conn_state)
3952 {
3953         intel_dp_prepare(encoder, pipe_config);
3954
3955         chv_phy_pre_pll_enable(encoder, pipe_config);
3956 }
3957
3958 static void chv_dp_post_pll_disable(struct intel_atomic_state *state,
3959                                     struct intel_encoder *encoder,
3960                                     const struct intel_crtc_state *old_crtc_state,
3961                                     const struct drm_connector_state *old_conn_state)
3962 {
3963         chv_phy_post_pll_disable(encoder, old_crtc_state);
3964 }
3965
3966 /*
3967  * Fetch AUX CH registers 0x202 - 0x207 which contain
3968  * link status information
3969  */
3970 bool
3971 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3972 {
3973         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3974                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3975 }
3976
3977 /* These are source-specific values. */
3978 u8
3979 intel_dp_voltage_max(struct intel_dp *intel_dp)
3980 {
3981         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3982         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3983         enum port port = encoder->port;
3984
3985         if (HAS_DDI(dev_priv))
3986                 return intel_ddi_dp_voltage_max(encoder);
3987         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3988                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3989         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3990                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3991         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3992                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3993         else
3994                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3995 }
3996
3997 u8
3998 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3999 {
4000         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4001         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4002         enum port port = encoder->port;
4003
4004         if (HAS_DDI(dev_priv)) {
4005                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
4006         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4007                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4008                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4009                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
4010                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4011                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4012                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4013                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4014                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4015                 default:
4016                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4017                 }
4018         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4019                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4020                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4021                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4022                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4023                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4024                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4025                 default:
4026                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4027                 }
4028         } else {
4029                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
4030                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4031                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4032                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4033                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
4034                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4035                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
4036                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4037                 default:
4038                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
4039                 }
4040         }
4041 }
4042
4043 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
4044 {
4045         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4046         unsigned long demph_reg_value, preemph_reg_value,
4047                 uniqtranscale_reg_value;
4048         u8 train_set = intel_dp->train_set[0];
4049
4050         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4051         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4052                 preemph_reg_value = 0x0004000;
4053                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4054                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4055                         demph_reg_value = 0x2B405555;
4056                         uniqtranscale_reg_value = 0x552AB83A;
4057                         break;
4058                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4059                         demph_reg_value = 0x2B404040;
4060                         uniqtranscale_reg_value = 0x5548B83A;
4061                         break;
4062                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4063                         demph_reg_value = 0x2B245555;
4064                         uniqtranscale_reg_value = 0x5560B83A;
4065                         break;
4066                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4067                         demph_reg_value = 0x2B405555;
4068                         uniqtranscale_reg_value = 0x5598DA3A;
4069                         break;
4070                 default:
4071                         return 0;
4072                 }
4073                 break;
4074         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4075                 preemph_reg_value = 0x0002000;
4076                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4077                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4078                         demph_reg_value = 0x2B404040;
4079                         uniqtranscale_reg_value = 0x5552B83A;
4080                         break;
4081                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4082                         demph_reg_value = 0x2B404848;
4083                         uniqtranscale_reg_value = 0x5580B83A;
4084                         break;
4085                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4086                         demph_reg_value = 0x2B404040;
4087                         uniqtranscale_reg_value = 0x55ADDA3A;
4088                         break;
4089                 default:
4090                         return 0;
4091                 }
4092                 break;
4093         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4094                 preemph_reg_value = 0x0000000;
4095                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4096                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4097                         demph_reg_value = 0x2B305555;
4098                         uniqtranscale_reg_value = 0x5570B83A;
4099                         break;
4100                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4101                         demph_reg_value = 0x2B2B4040;
4102                         uniqtranscale_reg_value = 0x55ADDA3A;
4103                         break;
4104                 default:
4105                         return 0;
4106                 }
4107                 break;
4108         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4109                 preemph_reg_value = 0x0006000;
4110                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4111                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4112                         demph_reg_value = 0x1B405555;
4113                         uniqtranscale_reg_value = 0x55ADDA3A;
4114                         break;
4115                 default:
4116                         return 0;
4117                 }
4118                 break;
4119         default:
4120                 return 0;
4121         }
4122
4123         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
4124                                  uniqtranscale_reg_value, 0);
4125
4126         return 0;
4127 }
4128
4129 static u32 chv_signal_levels(struct intel_dp *intel_dp)
4130 {
4131         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
4132         u32 deemph_reg_value, margin_reg_value;
4133         bool uniq_trans_scale = false;
4134         u8 train_set = intel_dp->train_set[0];
4135
4136         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4137         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4138                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4139                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4140                         deemph_reg_value = 128;
4141                         margin_reg_value = 52;
4142                         break;
4143                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4144                         deemph_reg_value = 128;
4145                         margin_reg_value = 77;
4146                         break;
4147                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4148                         deemph_reg_value = 128;
4149                         margin_reg_value = 102;
4150                         break;
4151                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4152                         deemph_reg_value = 128;
4153                         margin_reg_value = 154;
4154                         uniq_trans_scale = true;
4155                         break;
4156                 default:
4157                         return 0;
4158                 }
4159                 break;
4160         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4161                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4162                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4163                         deemph_reg_value = 85;
4164                         margin_reg_value = 78;
4165                         break;
4166                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4167                         deemph_reg_value = 85;
4168                         margin_reg_value = 116;
4169                         break;
4170                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4171                         deemph_reg_value = 85;
4172                         margin_reg_value = 154;
4173                         break;
4174                 default:
4175                         return 0;
4176                 }
4177                 break;
4178         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4179                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4180                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4181                         deemph_reg_value = 64;
4182                         margin_reg_value = 104;
4183                         break;
4184                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4185                         deemph_reg_value = 64;
4186                         margin_reg_value = 154;
4187                         break;
4188                 default:
4189                         return 0;
4190                 }
4191                 break;
4192         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4193                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4194                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4195                         deemph_reg_value = 43;
4196                         margin_reg_value = 154;
4197                         break;
4198                 default:
4199                         return 0;
4200                 }
4201                 break;
4202         default:
4203                 return 0;
4204         }
4205
4206         chv_set_phy_signal_level(encoder, deemph_reg_value,
4207                                  margin_reg_value, uniq_trans_scale);
4208
4209         return 0;
4210 }
4211
4212 static u32
4213 g4x_signal_levels(u8 train_set)
4214 {
4215         u32 signal_levels = 0;
4216
4217         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
4218         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
4219         default:
4220                 signal_levels |= DP_VOLTAGE_0_4;
4221                 break;
4222         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
4223                 signal_levels |= DP_VOLTAGE_0_6;
4224                 break;
4225         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
4226                 signal_levels |= DP_VOLTAGE_0_8;
4227                 break;
4228         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
4229                 signal_levels |= DP_VOLTAGE_1_2;
4230                 break;
4231         }
4232         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4233         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4234         default:
4235                 signal_levels |= DP_PRE_EMPHASIS_0;
4236                 break;
4237         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4238                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4239                 break;
4240         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4241                 signal_levels |= DP_PRE_EMPHASIS_6;
4242                 break;
4243         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4244                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4245                 break;
4246         }
4247         return signal_levels;
4248 }
4249
4250 /* SNB CPU eDP voltage swing and pre-emphasis control */
4251 static u32
4252 snb_cpu_edp_signal_levels(u8 train_set)
4253 {
4254         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4255                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4256         switch (signal_levels) {
4257         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4258         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4259                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4260         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4261                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4262         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4263         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4264                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4265         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4266         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4267                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4268         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4269         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4270                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4271         default:
4272                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4273                               "0x%x\n", signal_levels);
4274                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4275         }
4276 }
4277
4278 /* IVB CPU eDP voltage swing and pre-emphasis control */
4279 static u32
4280 ivb_cpu_edp_signal_levels(u8 train_set)
4281 {
4282         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4283                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4284         switch (signal_levels) {
4285         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4286                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4287         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4288                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4289         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4290                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4291
4292         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4293                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4294         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4295                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4296
4297         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4298                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4299         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4300                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4301
4302         default:
4303                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4304                               "0x%x\n", signal_levels);
4305                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4306         }
4307 }
4308
4309 void
4310 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4311 {
4312         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4313         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4314         enum port port = intel_dig_port->base.port;
4315         u32 signal_levels, mask = 0;
4316         u8 train_set = intel_dp->train_set[0];
4317
4318         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4319                 signal_levels = bxt_signal_levels(intel_dp);
4320         } else if (HAS_DDI(dev_priv)) {
4321                 signal_levels = ddi_signal_levels(intel_dp);
4322                 mask = DDI_BUF_EMP_MASK;
4323         } else if (IS_CHERRYVIEW(dev_priv)) {
4324                 signal_levels = chv_signal_levels(intel_dp);
4325         } else if (IS_VALLEYVIEW(dev_priv)) {
4326                 signal_levels = vlv_signal_levels(intel_dp);
4327         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4328                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4329                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4330         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4331                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4332                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4333         } else {
4334                 signal_levels = g4x_signal_levels(train_set);
4335                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4336         }
4337
4338         if (mask)
4339                 drm_dbg_kms(&dev_priv->drm, "Using signal levels %08x\n",
4340                             signal_levels);
4341
4342         drm_dbg_kms(&dev_priv->drm, "Using vswing level %d%s\n",
4343                     train_set & DP_TRAIN_VOLTAGE_SWING_MASK,
4344                     train_set & DP_TRAIN_MAX_SWING_REACHED ? " (max)" : "");
4345         drm_dbg_kms(&dev_priv->drm, "Using pre-emphasis level %d%s\n",
4346                     (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4347                     DP_TRAIN_PRE_EMPHASIS_SHIFT,
4348                     train_set & DP_TRAIN_MAX_PRE_EMPHASIS_REACHED ?
4349                     " (max)" : "");
4350
4351         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4352
4353         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4354         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4355 }
4356
4357 void
4358 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4359                                        u8 dp_train_pat)
4360 {
4361         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4362         struct drm_i915_private *dev_priv =
4363                 to_i915(intel_dig_port->base.base.dev);
4364
4365         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4366
4367         intel_de_write(dev_priv, intel_dp->output_reg, intel_dp->DP);
4368         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4369 }
4370
4371 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4372 {
4373         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4374         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4375         enum port port = intel_dig_port->base.port;
4376         u32 val;
4377
4378         if (!HAS_DDI(dev_priv))
4379                 return;
4380
4381         val = intel_de_read(dev_priv, intel_dp->regs.dp_tp_ctl);
4382         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4383         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4384         intel_de_write(dev_priv, intel_dp->regs.dp_tp_ctl, val);
4385
4386         /*
4387          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4388          * reason we need to set idle transmission mode is to work around a HW
4389          * issue where we enable the pipe while not in idle link-training mode.
4390          * In this case there is requirement to wait for a minimum number of
4391          * idle patterns to be sent.
4392          */
4393         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4394                 return;
4395
4396         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4397                                   DP_TP_STATUS_IDLE_DONE, 1))
4398                 drm_err(&dev_priv->drm,
4399                         "Timed out waiting for DP idle patterns\n");
4400 }
4401
4402 static void
4403 intel_dp_link_down(struct intel_encoder *encoder,
4404                    const struct intel_crtc_state *old_crtc_state)
4405 {
4406         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4407         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4408         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4409         enum port port = encoder->port;
4410         u32 DP = intel_dp->DP;
4411
4412         if (drm_WARN_ON(&dev_priv->drm,
4413                         (intel_de_read(dev_priv, intel_dp->output_reg) &
4414                          DP_PORT_EN) == 0))
4415                 return;
4416
4417         drm_dbg_kms(&dev_priv->drm, "\n");
4418
4419         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4420             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4421                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4422                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4423         } else {
4424                 DP &= ~DP_LINK_TRAIN_MASK;
4425                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4426         }
4427         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4428         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4429
4430         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4431         intel_de_write(dev_priv, intel_dp->output_reg, DP);
4432         intel_de_posting_read(dev_priv, intel_dp->output_reg);
4433
4434         /*
4435          * HW workaround for IBX, we need to move the port
4436          * to transcoder A after disabling it to allow the
4437          * matching HDMI port to be enabled on transcoder A.
4438          */
4439         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4440                 /*
4441                  * We get CPU/PCH FIFO underruns on the other pipe when
4442                  * doing the workaround. Sweep them under the rug.
4443                  */
4444                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4445                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4446
4447                 /* always enable with pattern 1 (as per spec) */
4448                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4449                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4450                         DP_LINK_TRAIN_PAT_1;
4451                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4452                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4453
4454                 DP &= ~DP_PORT_EN;
4455                 intel_de_write(dev_priv, intel_dp->output_reg, DP);
4456                 intel_de_posting_read(dev_priv, intel_dp->output_reg);
4457
4458                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4459                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4460                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4461         }
4462
4463         msleep(intel_dp->panel_power_down_delay);
4464
4465         intel_dp->DP = DP;
4466
4467         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4468                 intel_wakeref_t wakeref;
4469
4470                 with_pps_lock(intel_dp, wakeref)
4471                         intel_dp->active_pipe = INVALID_PIPE;
4472         }
4473 }
4474
4475 static void
4476 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4477 {
4478         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4479         u8 dpcd_ext[6];
4480
4481         /*
4482          * Prior to DP1.3 the bit represented by
4483          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4484          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4485          * the true capability of the panel. The only way to check is to
4486          * then compare 0000h and 2200h.
4487          */
4488         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4489               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4490                 return;
4491
4492         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4493                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4494                 drm_err(&i915->drm,
4495                         "DPCD failed read at extended capabilities\n");
4496                 return;
4497         }
4498
4499         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4500                 drm_dbg_kms(&i915->drm,
4501                             "DPCD extended DPCD rev less than base DPCD rev\n");
4502                 return;
4503         }
4504
4505         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4506                 return;
4507
4508         drm_dbg_kms(&i915->drm, "Base DPCD: %*ph\n",
4509                     (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4510
4511         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4512 }
4513
4514 bool
4515 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4516 {
4517         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4518
4519         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4520                              sizeof(intel_dp->dpcd)) < 0)
4521                 return false; /* aux transfer failed */
4522
4523         intel_dp_extended_receiver_capabilities(intel_dp);
4524
4525         drm_dbg_kms(&i915->drm, "DPCD: %*ph\n", (int)sizeof(intel_dp->dpcd),
4526                     intel_dp->dpcd);
4527
4528         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4529 }
4530
4531 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4532 {
4533         u8 dprx = 0;
4534
4535         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4536                               &dprx) != 1)
4537                 return false;
4538         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4539 }
4540
4541 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4542 {
4543         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4544
4545         /*
4546          * Clear the cached register set to avoid using stale values
4547          * for the sinks that do not support DSC.
4548          */
4549         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4550
4551         /* Clear fec_capable to avoid using stale values */
4552         intel_dp->fec_capable = 0;
4553
4554         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4555         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4556             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4557                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4558                                      intel_dp->dsc_dpcd,
4559                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4560                         drm_err(&i915->drm,
4561                                 "Failed to read DPCD register 0x%x\n",
4562                                 DP_DSC_SUPPORT);
4563
4564                 drm_dbg_kms(&i915->drm, "DSC DPCD: %*ph\n",
4565                             (int)sizeof(intel_dp->dsc_dpcd),
4566                             intel_dp->dsc_dpcd);
4567
4568                 /* FEC is supported only on DP 1.4 */
4569                 if (!intel_dp_is_edp(intel_dp) &&
4570                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4571                                       &intel_dp->fec_capable) < 0)
4572                         drm_err(&i915->drm,
4573                                 "Failed to read FEC DPCD register\n");
4574
4575                 drm_dbg_kms(&i915->drm, "FEC CAPABILITY: %x\n",
4576                             intel_dp->fec_capable);
4577         }
4578 }
4579
4580 static bool
4581 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4582 {
4583         struct drm_i915_private *dev_priv =
4584                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4585
4586         /* this function is meant to be called only once */
4587         drm_WARN_ON(&dev_priv->drm, intel_dp->dpcd[DP_DPCD_REV] != 0);
4588
4589         if (!intel_dp_read_dpcd(intel_dp))
4590                 return false;
4591
4592         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4593                          drm_dp_is_branch(intel_dp->dpcd));
4594
4595         /*
4596          * Read the eDP display control registers.
4597          *
4598          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4599          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4600          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4601          * method). The display control registers should read zero if they're
4602          * not supported anyway.
4603          */
4604         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4605                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4606                              sizeof(intel_dp->edp_dpcd))
4607                 drm_dbg_kms(&dev_priv->drm, "eDP DPCD: %*ph\n",
4608                             (int)sizeof(intel_dp->edp_dpcd),
4609                             intel_dp->edp_dpcd);
4610
4611         /*
4612          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4613          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4614          */
4615         intel_psr_init_dpcd(intel_dp);
4616
4617         /* Read the eDP 1.4+ supported link rates. */
4618         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4619                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4620                 int i;
4621
4622                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4623                                 sink_rates, sizeof(sink_rates));
4624
4625                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4626                         int val = le16_to_cpu(sink_rates[i]);
4627
4628                         if (val == 0)
4629                                 break;
4630
4631                         /* Value read multiplied by 200kHz gives the per-lane
4632                          * link rate in kHz. The source rates are, however,
4633                          * stored in terms of LS_Clk kHz. The full conversion
4634                          * back to symbols is
4635                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4636                          */
4637                         intel_dp->sink_rates[i] = (val * 200) / 10;
4638                 }
4639                 intel_dp->num_sink_rates = i;
4640         }
4641
4642         /*
4643          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4644          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4645          */
4646         if (intel_dp->num_sink_rates)
4647                 intel_dp->use_rate_select = true;
4648         else
4649                 intel_dp_set_sink_rates(intel_dp);
4650
4651         intel_dp_set_common_rates(intel_dp);
4652
4653         /* Read the eDP DSC DPCD registers */
4654         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4655                 intel_dp_get_dsc_sink_cap(intel_dp);
4656
4657         return true;
4658 }
4659
4660
4661 static bool
4662 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4663 {
4664         if (!intel_dp_read_dpcd(intel_dp))
4665                 return false;
4666
4667         /*
4668          * Don't clobber cached eDP rates. Also skip re-reading
4669          * the OUI/ID since we know it won't change.
4670          */
4671         if (!intel_dp_is_edp(intel_dp)) {
4672                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4673                                  drm_dp_is_branch(intel_dp->dpcd));
4674
4675                 intel_dp_set_sink_rates(intel_dp);
4676                 intel_dp_set_common_rates(intel_dp);
4677         }
4678
4679         /*
4680          * Some eDP panels do not set a valid value for sink count, that is why
4681          * it don't care about read it here and in intel_edp_init_dpcd().
4682          */
4683         if (!intel_dp_is_edp(intel_dp) &&
4684             !drm_dp_has_quirk(&intel_dp->desc, 0,
4685                               DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4686                 u8 count;
4687                 ssize_t r;
4688
4689                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4690                 if (r < 1)
4691                         return false;
4692
4693                 /*
4694                  * Sink count can change between short pulse hpd hence
4695                  * a member variable in intel_dp will track any changes
4696                  * between short pulse interrupts.
4697                  */
4698                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4699
4700                 /*
4701                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4702                  * a dongle is present but no display. Unless we require to know
4703                  * if a dongle is present or not, we don't need to update
4704                  * downstream port information. So, an early return here saves
4705                  * time from performing other operations which are not required.
4706                  */
4707                 if (!intel_dp->sink_count)
4708                         return false;
4709         }
4710
4711         if (!drm_dp_is_branch(intel_dp->dpcd))
4712                 return true; /* native DP sink */
4713
4714         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4715                 return true; /* no per-port downstream info */
4716
4717         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4718                              intel_dp->downstream_ports,
4719                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4720                 return false; /* downstream port status fetch failed */
4721
4722         return true;
4723 }
4724
4725 static bool
4726 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4727 {
4728         u8 mstm_cap;
4729
4730         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4731                 return false;
4732
4733         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4734                 return false;
4735
4736         return mstm_cap & DP_MST_CAP;
4737 }
4738
4739 static bool
4740 intel_dp_can_mst(struct intel_dp *intel_dp)
4741 {
4742         return i915_modparams.enable_dp_mst &&
4743                 intel_dp->can_mst &&
4744                 intel_dp_sink_can_mst(intel_dp);
4745 }
4746
4747 static void
4748 intel_dp_configure_mst(struct intel_dp *intel_dp)
4749 {
4750         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
4751         struct intel_encoder *encoder =
4752                 &dp_to_dig_port(intel_dp)->base;
4753         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4754
4755         drm_dbg_kms(&i915->drm,
4756                     "[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4757                     encoder->base.base.id, encoder->base.name,
4758                     yesno(intel_dp->can_mst), yesno(sink_can_mst),
4759                     yesno(i915_modparams.enable_dp_mst));
4760
4761         if (!intel_dp->can_mst)
4762                 return;
4763
4764         intel_dp->is_mst = sink_can_mst &&
4765                 i915_modparams.enable_dp_mst;
4766
4767         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4768                                         intel_dp->is_mst);
4769 }
4770
4771 static bool
4772 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4773 {
4774         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4775                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4776                 DP_DPRX_ESI_LEN;
4777 }
4778
4779 bool
4780 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4781                        const struct drm_connector_state *conn_state)
4782 {
4783         /*
4784          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4785          * of Color Encoding Format and Content Color Gamut], in order to
4786          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4787          */
4788         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4789                 return true;
4790
4791         switch (conn_state->colorspace) {
4792         case DRM_MODE_COLORIMETRY_SYCC_601:
4793         case DRM_MODE_COLORIMETRY_OPYCC_601:
4794         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4795         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4796         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4797                 return true;
4798         default:
4799                 break;
4800         }
4801
4802         return false;
4803 }
4804
4805 static ssize_t intel_dp_vsc_sdp_pack(const struct drm_dp_vsc_sdp *vsc,
4806                                      struct dp_sdp *sdp, size_t size)
4807 {
4808         size_t length = sizeof(struct dp_sdp);
4809
4810         if (size < length)
4811                 return -ENOSPC;
4812
4813         memset(sdp, 0, size);
4814
4815         /*
4816          * Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119
4817          * VSC SDP Header Bytes
4818          */
4819         sdp->sdp_header.HB0 = 0; /* Secondary-Data Packet ID = 0 */
4820         sdp->sdp_header.HB1 = vsc->sdp_type; /* Secondary-data Packet Type */
4821         sdp->sdp_header.HB2 = vsc->revision; /* Revision Number */
4822         sdp->sdp_header.HB3 = vsc->length; /* Number of Valid Data Bytes */
4823
4824         /* VSC SDP Payload for DB16 through DB18 */
4825         /* Pixel Encoding and Colorimetry Formats  */
4826         sdp->db[16] = (vsc->pixelformat & 0xf) << 4; /* DB16[7:4] */
4827         sdp->db[16] |= vsc->colorimetry & 0xf; /* DB16[3:0] */
4828
4829         switch (vsc->bpc) {
4830         case 6:
4831                 /* 6bpc: 0x0 */
4832                 break;
4833         case 8:
4834                 sdp->db[17] = 0x1; /* DB17[3:0] */
4835                 break;
4836         case 10:
4837                 sdp->db[17] = 0x2;
4838                 break;
4839         case 12:
4840                 sdp->db[17] = 0x3;
4841                 break;
4842         case 16:
4843                 sdp->db[17] = 0x4;
4844                 break;
4845         default:
4846                 MISSING_CASE(vsc->bpc);
4847                 break;
4848         }
4849         /* Dynamic Range and Component Bit Depth */
4850         if (vsc->dynamic_range == DP_DYNAMIC_RANGE_CTA)
4851                 sdp->db[17] |= 0x80;  /* DB17[7] */
4852
4853         /* Content Type */
4854         sdp->db[18] = vsc->content_type & 0x7;
4855
4856         return length;
4857 }
4858
4859 static ssize_t
4860 intel_dp_hdr_metadata_infoframe_sdp_pack(const struct hdmi_drm_infoframe *drm_infoframe,
4861                                          struct dp_sdp *sdp,
4862                                          size_t size)
4863 {
4864         size_t length = sizeof(struct dp_sdp);
4865         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4866         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4867         ssize_t len;
4868
4869         if (size < length)
4870                 return -ENOSPC;
4871
4872         memset(sdp, 0, size);
4873
4874         len = hdmi_drm_infoframe_pack_only(drm_infoframe, buf, sizeof(buf));
4875         if (len < 0) {
4876                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4877                 return -ENOSPC;
4878         }
4879
4880         if (len != infoframe_size) {
4881                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4882                 return -ENOSPC;
4883         }
4884
4885         /*
4886          * Set up the infoframe sdp packet for HDR static metadata.
4887          * Prepare VSC Header for SU as per DP 1.4a spec,
4888          * Table 2-100 and Table 2-101
4889          */
4890
4891         /* Secondary-Data Packet ID, 00h for non-Audio INFOFRAME */
4892         sdp->sdp_header.HB0 = 0;
4893         /*
4894          * Packet Type 80h + Non-audio INFOFRAME Type value
4895          * HDMI_INFOFRAME_TYPE_DRM: 0x87
4896          * - 80h + Non-audio INFOFRAME Type value
4897          * - InfoFrame Type: 0x07
4898          *    [CTA-861-G Table-42 Dynamic Range and Mastering InfoFrame]
4899          */
4900         sdp->sdp_header.HB1 = drm_infoframe->type;
4901         /*
4902          * Least Significant Eight Bits of (Data Byte Count – 1)
4903          * infoframe_size - 1
4904          */
4905         sdp->sdp_header.HB2 = 0x1D;
4906         /* INFOFRAME SDP Version Number */
4907         sdp->sdp_header.HB3 = (0x13 << 2);
4908         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4909         sdp->db[0] = drm_infoframe->version;
4910         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4911         sdp->db[1] = drm_infoframe->length;
4912         /*
4913          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4914          * HDMI_INFOFRAME_HEADER_SIZE
4915          */
4916         BUILD_BUG_ON(sizeof(sdp->db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4917         memcpy(&sdp->db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4918                HDMI_DRM_INFOFRAME_SIZE);
4919
4920         /*
4921          * Size of DP infoframe sdp packet for HDR static metadata consists of
4922          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4923          * - Two Data Blocks: 2 bytes
4924          *    CTA Header Byte2 (INFOFRAME Version Number)
4925          *    CTA Header Byte3 (Length of INFOFRAME)
4926          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4927          *
4928          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4929          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4930          * will pad rest of the size.
4931          */
4932         return sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE;
4933 }
4934
4935 static void intel_write_dp_sdp(struct intel_encoder *encoder,
4936                                const struct intel_crtc_state *crtc_state,
4937                                unsigned int type)
4938 {
4939         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
4940         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4941         struct dp_sdp sdp = {};
4942         ssize_t len;
4943
4944         if ((crtc_state->infoframes.enable &
4945              intel_hdmi_infoframe_enable(type)) == 0)
4946                 return;
4947
4948         switch (type) {
4949         case DP_SDP_VSC:
4950                 len = intel_dp_vsc_sdp_pack(&crtc_state->infoframes.vsc, &sdp,
4951                                             sizeof(sdp));
4952                 break;
4953         case HDMI_PACKET_TYPE_GAMUT_METADATA:
4954                 len = intel_dp_hdr_metadata_infoframe_sdp_pack(&crtc_state->infoframes.drm.drm,
4955                                                                &sdp, sizeof(sdp));
4956                 break;
4957         default:
4958                 MISSING_CASE(type);
4959                 return;
4960         }
4961
4962         if (drm_WARN_ON(&dev_priv->drm, len < 0))
4963                 return;
4964
4965         intel_dig_port->write_infoframe(encoder, crtc_state, type, &sdp, len);
4966 }
4967
4968 void intel_dp_set_infoframes(struct intel_encoder *encoder,
4969                              bool enable,
4970                              const struct intel_crtc_state *crtc_state,
4971                              const struct drm_connector_state *conn_state)
4972 {
4973         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4974         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
4975         i915_reg_t reg = HSW_TVIDEO_DIP_CTL(crtc_state->cpu_transcoder);
4976         u32 dip_enable = VIDEO_DIP_ENABLE_AVI_HSW | VIDEO_DIP_ENABLE_GCP_HSW |
4977                          VIDEO_DIP_ENABLE_VS_HSW | VIDEO_DIP_ENABLE_GMP_HSW |
4978                          VIDEO_DIP_ENABLE_SPD_HSW | VIDEO_DIP_ENABLE_DRM_GLK;
4979         u32 val = intel_de_read(dev_priv, reg);
4980
4981         /* TODO: Add DSC case (DIP_ENABLE_PPS) */
4982         /* When PSR is enabled, this routine doesn't disable VSC DIP */
4983         if (intel_psr_enabled(intel_dp))
4984                 val &= ~dip_enable;
4985         else
4986                 val &= ~(dip_enable | VIDEO_DIP_ENABLE_VSC_HSW);
4987
4988         if (!enable) {
4989                 intel_de_write(dev_priv, reg, val);
4990                 intel_de_posting_read(dev_priv, reg);
4991                 return;
4992         }
4993
4994         intel_de_write(dev_priv, reg, val);
4995         intel_de_posting_read(dev_priv, reg);
4996
4997         /* When PSR is enabled, VSC SDP is handled by PSR routine */
4998         if (!intel_psr_enabled(intel_dp))
4999                 intel_write_dp_sdp(encoder, crtc_state, DP_SDP_VSC);
5000
5001         intel_write_dp_sdp(encoder, crtc_state, HDMI_PACKET_TYPE_GAMUT_METADATA);
5002 }
5003
5004 static void
5005 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
5006                        const struct intel_crtc_state *crtc_state,
5007                        const struct drm_connector_state *conn_state)
5008 {
5009         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5010         struct dp_sdp vsc_sdp = {};
5011
5012         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
5013         vsc_sdp.sdp_header.HB0 = 0;
5014         vsc_sdp.sdp_header.HB1 = 0x7;
5015
5016         /*
5017          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
5018          * Colorimetry Format indication.
5019          */
5020         vsc_sdp.sdp_header.HB2 = 0x5;
5021
5022         /*
5023          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
5024          * Colorimetry Format indication (HB2 = 05h).
5025          */
5026         vsc_sdp.sdp_header.HB3 = 0x13;
5027
5028         /* DP 1.4a spec, Table 2-120 */
5029         switch (crtc_state->output_format) {
5030         case INTEL_OUTPUT_FORMAT_YCBCR444:
5031                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
5032                 break;
5033         case INTEL_OUTPUT_FORMAT_YCBCR420:
5034                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
5035                 break;
5036         case INTEL_OUTPUT_FORMAT_RGB:
5037         default:
5038                 /* RGB: DB16[7:4] = 0h */
5039                 break;
5040         }
5041
5042         switch (conn_state->colorspace) {
5043         case DRM_MODE_COLORIMETRY_BT709_YCC:
5044                 vsc_sdp.db[16] |= 0x1;
5045                 break;
5046         case DRM_MODE_COLORIMETRY_XVYCC_601:
5047                 vsc_sdp.db[16] |= 0x2;
5048                 break;
5049         case DRM_MODE_COLORIMETRY_XVYCC_709:
5050                 vsc_sdp.db[16] |= 0x3;
5051                 break;
5052         case DRM_MODE_COLORIMETRY_SYCC_601:
5053                 vsc_sdp.db[16] |= 0x4;
5054                 break;
5055         case DRM_MODE_COLORIMETRY_OPYCC_601:
5056                 vsc_sdp.db[16] |= 0x5;
5057                 break;
5058         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
5059         case DRM_MODE_COLORIMETRY_BT2020_RGB:
5060                 vsc_sdp.db[16] |= 0x6;
5061                 break;
5062         case DRM_MODE_COLORIMETRY_BT2020_YCC:
5063                 vsc_sdp.db[16] |= 0x7;
5064                 break;
5065         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
5066         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
5067                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
5068                 break;
5069         default:
5070                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
5071
5072                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
5073                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5074                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
5075                 break;
5076         }
5077
5078         /*
5079          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
5080          * the following Component Bit Depth values are defined:
5081          * 001b = 8bpc.
5082          * 010b = 10bpc.
5083          * 011b = 12bpc.
5084          * 100b = 16bpc.
5085          */
5086         switch (crtc_state->pipe_bpp) {
5087         case 24: /* 8bpc */
5088                 vsc_sdp.db[17] = 0x1;
5089                 break;
5090         case 30: /* 10bpc */
5091                 vsc_sdp.db[17] = 0x2;
5092                 break;
5093         case 36: /* 12bpc */
5094                 vsc_sdp.db[17] = 0x3;
5095                 break;
5096         case 48: /* 16bpc */
5097                 vsc_sdp.db[17] = 0x4;
5098                 break;
5099         default:
5100                 MISSING_CASE(crtc_state->pipe_bpp);
5101                 break;
5102         }
5103
5104         /*
5105          * Dynamic Range (Bit 7)
5106          * 0 = VESA range, 1 = CTA range.
5107          * all YCbCr are always limited range
5108          */
5109         vsc_sdp.db[17] |= 0x80;
5110
5111         /*
5112          * Content Type (Bits 2:0)
5113          * 000b = Not defined.
5114          * 001b = Graphics.
5115          * 010b = Photo.
5116          * 011b = Video.
5117          * 100b = Game
5118          * All other values are RESERVED.
5119          * Note: See CTA-861-G for the definition and expected
5120          * processing by a stream sink for the above contect types.
5121          */
5122         vsc_sdp.db[18] = 0;
5123
5124         intel_dig_port->write_infoframe(&intel_dig_port->base,
5125                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
5126 }
5127
5128 static void
5129 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
5130                                           const struct intel_crtc_state *crtc_state,
5131                                           const struct drm_connector_state *conn_state)
5132 {
5133         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5134         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5135         struct dp_sdp infoframe_sdp = {};
5136         struct hdmi_drm_infoframe drm_infoframe = {};
5137         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
5138         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
5139         ssize_t len;
5140         int ret;
5141
5142         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
5143         if (ret) {
5144                 drm_dbg_kms(&i915->drm,
5145                             "couldn't set HDR metadata in infoframe\n");
5146                 return;
5147         }
5148
5149         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
5150         if (len < 0) {
5151                 drm_dbg_kms(&i915->drm,
5152                             "buffer size is smaller than hdr metadata infoframe\n");
5153                 return;
5154         }
5155
5156         if (len != infoframe_size) {
5157                 drm_dbg_kms(&i915->drm, "wrong static hdr metadata size\n");
5158                 return;
5159         }
5160
5161         /*
5162          * Set up the infoframe sdp packet for HDR static metadata.
5163          * Prepare VSC Header for SU as per DP 1.4a spec,
5164          * Table 2-100 and Table 2-101
5165          */
5166
5167         /* Packet ID, 00h for non-Audio INFOFRAME */
5168         infoframe_sdp.sdp_header.HB0 = 0;
5169         /*
5170          * Packet Type 80h + Non-audio INFOFRAME Type value
5171          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
5172          */
5173         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
5174         /*
5175          * Least Significant Eight Bits of (Data Byte Count – 1)
5176          * infoframe_size - 1,
5177          */
5178         infoframe_sdp.sdp_header.HB2 = 0x1D;
5179         /* INFOFRAME SDP Version Number */
5180         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
5181         /* CTA Header Byte 2 (INFOFRAME Version Number) */
5182         infoframe_sdp.db[0] = drm_infoframe.version;
5183         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
5184         infoframe_sdp.db[1] = drm_infoframe.length;
5185         /*
5186          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
5187          * HDMI_INFOFRAME_HEADER_SIZE
5188          */
5189         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
5190         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
5191                HDMI_DRM_INFOFRAME_SIZE);
5192
5193         /*
5194          * Size of DP infoframe sdp packet for HDR static metadata is consist of
5195          * - DP SDP Header(struct dp_sdp_header): 4 bytes
5196          * - Two Data Blocks: 2 bytes
5197          *    CTA Header Byte2 (INFOFRAME Version Number)
5198          *    CTA Header Byte3 (Length of INFOFRAME)
5199          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
5200          *
5201          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
5202          * infoframe size. But GEN11+ has larger than that size, write_infoframe
5203          * will pad rest of the size.
5204          */
5205         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
5206                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
5207                                         &infoframe_sdp,
5208                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
5209 }
5210
5211 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
5212                          const struct intel_crtc_state *crtc_state,
5213                          const struct drm_connector_state *conn_state)
5214 {
5215         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
5216                 return;
5217
5218         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
5219 }
5220
5221 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
5222                                   const struct intel_crtc_state *crtc_state,
5223                                   const struct drm_connector_state *conn_state)
5224 {
5225         if (!conn_state->hdr_output_metadata)
5226                 return;
5227
5228         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
5229                                                   crtc_state,
5230                                                   conn_state);
5231 }
5232
5233 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
5234 {
5235         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5236         int status = 0;
5237         int test_link_rate;
5238         u8 test_lane_count, test_link_bw;
5239         /* (DP CTS 1.2)
5240          * 4.3.1.11
5241          */
5242         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
5243         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
5244                                    &test_lane_count);
5245
5246         if (status <= 0) {
5247                 drm_dbg_kms(&i915->drm, "Lane count read failed\n");
5248                 return DP_TEST_NAK;
5249         }
5250         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
5251
5252         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
5253                                    &test_link_bw);
5254         if (status <= 0) {
5255                 drm_dbg_kms(&i915->drm, "Link Rate read failed\n");
5256                 return DP_TEST_NAK;
5257         }
5258         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
5259
5260         /* Validate the requested link rate and lane count */
5261         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
5262                                         test_lane_count))
5263                 return DP_TEST_NAK;
5264
5265         intel_dp->compliance.test_lane_count = test_lane_count;
5266         intel_dp->compliance.test_link_rate = test_link_rate;
5267
5268         return DP_TEST_ACK;
5269 }
5270
5271 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
5272 {
5273         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5274         u8 test_pattern;
5275         u8 test_misc;
5276         __be16 h_width, v_height;
5277         int status = 0;
5278
5279         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
5280         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
5281                                    &test_pattern);
5282         if (status <= 0) {
5283                 drm_dbg_kms(&i915->drm, "Test pattern read failed\n");
5284                 return DP_TEST_NAK;
5285         }
5286         if (test_pattern != DP_COLOR_RAMP)
5287                 return DP_TEST_NAK;
5288
5289         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
5290                                   &h_width, 2);
5291         if (status <= 0) {
5292                 drm_dbg_kms(&i915->drm, "H Width read failed\n");
5293                 return DP_TEST_NAK;
5294         }
5295
5296         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
5297                                   &v_height, 2);
5298         if (status <= 0) {
5299                 drm_dbg_kms(&i915->drm, "V Height read failed\n");
5300                 return DP_TEST_NAK;
5301         }
5302
5303         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
5304                                    &test_misc);
5305         if (status <= 0) {
5306                 drm_dbg_kms(&i915->drm, "TEST MISC read failed\n");
5307                 return DP_TEST_NAK;
5308         }
5309         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
5310                 return DP_TEST_NAK;
5311         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
5312                 return DP_TEST_NAK;
5313         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
5314         case DP_TEST_BIT_DEPTH_6:
5315                 intel_dp->compliance.test_data.bpc = 6;
5316                 break;
5317         case DP_TEST_BIT_DEPTH_8:
5318                 intel_dp->compliance.test_data.bpc = 8;
5319                 break;
5320         default:
5321                 return DP_TEST_NAK;
5322         }
5323
5324         intel_dp->compliance.test_data.video_pattern = test_pattern;
5325         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
5326         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
5327         /* Set test active flag here so userspace doesn't interrupt things */
5328         intel_dp->compliance.test_active = true;
5329
5330         return DP_TEST_ACK;
5331 }
5332
5333 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
5334 {
5335         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5336         u8 test_result = DP_TEST_ACK;
5337         struct intel_connector *intel_connector = intel_dp->attached_connector;
5338         struct drm_connector *connector = &intel_connector->base;
5339
5340         if (intel_connector->detect_edid == NULL ||
5341             connector->edid_corrupt ||
5342             intel_dp->aux.i2c_defer_count > 6) {
5343                 /* Check EDID read for NACKs, DEFERs and corruption
5344                  * (DP CTS 1.2 Core r1.1)
5345                  *    4.2.2.4 : Failed EDID read, I2C_NAK
5346                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
5347                  *    4.2.2.6 : EDID corruption detected
5348                  * Use failsafe mode for all cases
5349                  */
5350                 if (intel_dp->aux.i2c_nack_count > 0 ||
5351                         intel_dp->aux.i2c_defer_count > 0)
5352                         drm_dbg_kms(&i915->drm,
5353                                     "EDID read had %d NACKs, %d DEFERs\n",
5354                                     intel_dp->aux.i2c_nack_count,
5355                                     intel_dp->aux.i2c_defer_count);
5356                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
5357         } else {
5358                 struct edid *block = intel_connector->detect_edid;
5359
5360                 /* We have to write the checksum
5361                  * of the last block read
5362                  */
5363                 block += intel_connector->detect_edid->extensions;
5364
5365                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
5366                                        block->checksum) <= 0)
5367                         drm_dbg_kms(&i915->drm,
5368                                     "Failed to write EDID checksum\n");
5369
5370                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
5371                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
5372         }
5373
5374         /* Set test active flag here so userspace doesn't interrupt things */
5375         intel_dp->compliance.test_active = true;
5376
5377         return test_result;
5378 }
5379
5380 static u8 intel_dp_prepare_phytest(struct intel_dp *intel_dp)
5381 {
5382         struct drm_dp_phy_test_params *data =
5383                 &intel_dp->compliance.test_data.phytest;
5384
5385         if (drm_dp_get_phy_test_pattern(&intel_dp->aux, data)) {
5386                 DRM_DEBUG_KMS("DP Phy Test pattern AUX read failure\n");
5387                 return DP_TEST_NAK;
5388         }
5389
5390         /*
5391          * link_mst is set to false to avoid executing mst related code
5392          * during compliance testing.
5393          */
5394         intel_dp->link_mst = false;
5395
5396         return DP_TEST_ACK;
5397 }
5398
5399 static void intel_dp_phy_pattern_update(struct intel_dp *intel_dp)
5400 {
5401         struct drm_i915_private *dev_priv =
5402                         to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
5403         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5404         struct drm_dp_phy_test_params *data =
5405                         &intel_dp->compliance.test_data.phytest;
5406         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5407         enum pipe pipe = crtc->pipe;
5408         u32 pattern_val;
5409
5410         switch (data->phy_pattern) {
5411         case DP_PHY_TEST_PATTERN_NONE:
5412                 DRM_DEBUG_KMS("Disable Phy Test Pattern\n");
5413                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe), 0x0);
5414                 break;
5415         case DP_PHY_TEST_PATTERN_D10_2:
5416                 DRM_DEBUG_KMS("Set D10.2 Phy Test Pattern\n");
5417                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5418                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_D10_2);
5419                 break;
5420         case DP_PHY_TEST_PATTERN_ERROR_COUNT:
5421                 DRM_DEBUG_KMS("Set Error Count Phy Test Pattern\n");
5422                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5423                                DDI_DP_COMP_CTL_ENABLE |
5424                                DDI_DP_COMP_CTL_SCRAMBLED_0);
5425                 break;
5426         case DP_PHY_TEST_PATTERN_PRBS7:
5427                 DRM_DEBUG_KMS("Set PRBS7 Phy Test Pattern\n");
5428                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5429                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_PRBS7);
5430                 break;
5431         case DP_PHY_TEST_PATTERN_80BIT_CUSTOM:
5432                 /*
5433                  * FIXME: Ideally pattern should come from DPCD 0x250. As
5434                  * current firmware of DPR-100 could not set it, so hardcoding
5435                  * now for complaince test.
5436                  */
5437                 DRM_DEBUG_KMS("Set 80Bit Custom Phy Test Pattern 0x3e0f83e0 0x0f83e0f8 0x0000f83e\n");
5438                 pattern_val = 0x3e0f83e0;
5439                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 0), pattern_val);
5440                 pattern_val = 0x0f83e0f8;
5441                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 1), pattern_val);
5442                 pattern_val = 0x0000f83e;
5443                 intel_de_write(dev_priv, DDI_DP_COMP_PAT(pipe, 2), pattern_val);
5444                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5445                                DDI_DP_COMP_CTL_ENABLE |
5446                                DDI_DP_COMP_CTL_CUSTOM80);
5447                 break;
5448         case DP_PHY_TEST_PATTERN_CP2520:
5449                 /*
5450                  * FIXME: Ideally pattern should come from DPCD 0x24A. As
5451                  * current firmware of DPR-100 could not set it, so hardcoding
5452                  * now for complaince test.
5453                  */
5454                 DRM_DEBUG_KMS("Set HBR2 compliance Phy Test Pattern\n");
5455                 pattern_val = 0xFB;
5456                 intel_de_write(dev_priv, DDI_DP_COMP_CTL(pipe),
5457                                DDI_DP_COMP_CTL_ENABLE | DDI_DP_COMP_CTL_HBR2 |
5458                                pattern_val);
5459                 break;
5460         default:
5461                 WARN(1, "Invalid Phy Test Pattern\n");
5462         }
5463 }
5464
5465 static void
5466 intel_dp_autotest_phy_ddi_disable(struct intel_dp *intel_dp)
5467 {
5468         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5469         struct drm_device *dev = intel_dig_port->base.base.dev;
5470         struct drm_i915_private *dev_priv = to_i915(dev);
5471         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5472         enum pipe pipe = crtc->pipe;
5473         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5474
5475         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5476                                                  TRANS_DDI_FUNC_CTL(pipe));
5477         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5478         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5479
5480         trans_ddi_func_ctl_value &= ~(TRANS_DDI_FUNC_ENABLE |
5481                                       TGL_TRANS_DDI_PORT_MASK);
5482         trans_conf_value &= ~PIPECONF_ENABLE;
5483         dp_tp_ctl_value &= ~DP_TP_CTL_ENABLE;
5484
5485         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5486         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5487                        trans_ddi_func_ctl_value);
5488         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5489 }
5490
5491 static void
5492 intel_dp_autotest_phy_ddi_enable(struct intel_dp *intel_dp, uint8_t lane_cnt)
5493 {
5494         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
5495         struct drm_device *dev = intel_dig_port->base.base.dev;
5496         struct drm_i915_private *dev_priv = to_i915(dev);
5497         enum port port = intel_dig_port->base.port;
5498         struct intel_crtc *crtc = to_intel_crtc(intel_dig_port->base.base.crtc);
5499         enum pipe pipe = crtc->pipe;
5500         u32 trans_ddi_func_ctl_value, trans_conf_value, dp_tp_ctl_value;
5501
5502         trans_ddi_func_ctl_value = intel_de_read(dev_priv,
5503                                                  TRANS_DDI_FUNC_CTL(pipe));
5504         trans_conf_value = intel_de_read(dev_priv, PIPECONF(pipe));
5505         dp_tp_ctl_value = intel_de_read(dev_priv, TGL_DP_TP_CTL(pipe));
5506
5507         trans_ddi_func_ctl_value |= TRANS_DDI_FUNC_ENABLE |
5508                                     TGL_TRANS_DDI_SELECT_PORT(port);
5509         trans_conf_value |= PIPECONF_ENABLE;
5510         dp_tp_ctl_value |= DP_TP_CTL_ENABLE;
5511
5512         intel_de_write(dev_priv, PIPECONF(pipe), trans_conf_value);
5513         intel_de_write(dev_priv, TGL_DP_TP_CTL(pipe), dp_tp_ctl_value);
5514         intel_de_write(dev_priv, TRANS_DDI_FUNC_CTL(pipe),
5515                        trans_ddi_func_ctl_value);
5516 }
5517
5518 void intel_dp_process_phy_request(struct intel_dp *intel_dp)
5519 {
5520         struct drm_dp_phy_test_params *data =
5521                 &intel_dp->compliance.test_data.phytest;
5522         u8 link_status[DP_LINK_STATUS_SIZE];
5523
5524         if (!intel_dp_get_link_status(intel_dp, link_status)) {
5525                 DRM_DEBUG_KMS("failed to get link status\n");
5526                 return;
5527         }
5528
5529         /* retrieve vswing & pre-emphasis setting */
5530         intel_dp_get_adjust_train(intel_dp, link_status);
5531
5532         intel_dp_autotest_phy_ddi_disable(intel_dp);
5533
5534         intel_dp_set_signal_levels(intel_dp);
5535
5536         intel_dp_phy_pattern_update(intel_dp);
5537
5538         intel_dp_autotest_phy_ddi_enable(intel_dp, data->num_lanes);
5539
5540         drm_dp_set_phy_test_pattern(&intel_dp->aux, data,
5541                                     link_status[DP_DPCD_REV]);
5542 }
5543
5544 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
5545 {
5546         u8 test_result;
5547
5548         test_result = intel_dp_prepare_phytest(intel_dp);
5549         if (test_result != DP_TEST_ACK)
5550                 DRM_ERROR("Phy test preparation failed\n");
5551
5552         intel_dp_process_phy_request(intel_dp);
5553
5554         return test_result;
5555 }
5556
5557 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
5558 {
5559         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5560         u8 response = DP_TEST_NAK;
5561         u8 request = 0;
5562         int status;
5563
5564         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
5565         if (status <= 0) {
5566                 drm_dbg_kms(&i915->drm,
5567                             "Could not read test request from sink\n");
5568                 goto update_status;
5569         }
5570
5571         switch (request) {
5572         case DP_TEST_LINK_TRAINING:
5573                 drm_dbg_kms(&i915->drm, "LINK_TRAINING test requested\n");
5574                 response = intel_dp_autotest_link_training(intel_dp);
5575                 break;
5576         case DP_TEST_LINK_VIDEO_PATTERN:
5577                 drm_dbg_kms(&i915->drm, "TEST_PATTERN test requested\n");
5578                 response = intel_dp_autotest_video_pattern(intel_dp);
5579                 break;
5580         case DP_TEST_LINK_EDID_READ:
5581                 drm_dbg_kms(&i915->drm, "EDID test requested\n");
5582                 response = intel_dp_autotest_edid(intel_dp);
5583                 break;
5584         case DP_TEST_LINK_PHY_TEST_PATTERN:
5585                 drm_dbg_kms(&i915->drm, "PHY_PATTERN test requested\n");
5586                 response = intel_dp_autotest_phy_pattern(intel_dp);
5587                 break;
5588         default:
5589                 drm_dbg_kms(&i915->drm, "Invalid test request '%02x'\n",
5590                             request);
5591                 break;
5592         }
5593
5594         if (response & DP_TEST_ACK)
5595                 intel_dp->compliance.test_type = request;
5596
5597 update_status:
5598         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
5599         if (status <= 0)
5600                 drm_dbg_kms(&i915->drm,
5601                             "Could not write test response to sink\n");
5602 }
5603
5604 static int
5605 intel_dp_check_mst_status(struct intel_dp *intel_dp)
5606 {
5607         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5608         bool need_retrain = false;
5609
5610         if (!intel_dp->is_mst)
5611                 return -EINVAL;
5612
5613         WARN_ON_ONCE(intel_dp->active_mst_links < 0);
5614
5615         for (;;) {
5616                 u8 esi[DP_DPRX_ESI_LEN] = {};
5617                 bool bret, handled;
5618                 int retry;
5619
5620                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5621                 if (!bret) {
5622                         drm_dbg_kms(&i915->drm,
5623                                     "failed to get ESI - device may have failed\n");
5624                         return -EINVAL;
5625                 }
5626
5627                 /* check link status - esi[10] = 0x200c */
5628                 if (intel_dp->active_mst_links > 0 && !need_retrain &&
5629                     !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
5630                         drm_dbg_kms(&i915->drm,
5631                                     "channel EQ not ok, retraining\n");
5632                         need_retrain = true;
5633                 }
5634
5635                 drm_dbg_kms(&i915->drm, "got esi %3ph\n", esi);
5636
5637                 drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
5638                 if (!handled)
5639                         break;
5640
5641                 for (retry = 0; retry < 3; retry++) {
5642                         int wret;
5643
5644                         wret = drm_dp_dpcd_write(&intel_dp->aux,
5645                                                  DP_SINK_COUNT_ESI+1,
5646                                                  &esi[1], 3);
5647                         if (wret == 3)
5648                                 break;
5649                 }
5650         }
5651
5652         return need_retrain;
5653 }
5654
5655 static bool
5656 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5657 {
5658         u8 link_status[DP_LINK_STATUS_SIZE];
5659
5660         if (!intel_dp->link_trained)
5661                 return false;
5662
5663         /*
5664          * While PSR source HW is enabled, it will control main-link sending
5665          * frames, enabling and disabling it so trying to do a retrain will fail
5666          * as the link would or not be on or it could mix training patterns
5667          * and frame data at the same time causing retrain to fail.
5668          * Also when exiting PSR, HW will retrain the link anyways fixing
5669          * any link status error.
5670          */
5671         if (intel_psr_enabled(intel_dp))
5672                 return false;
5673
5674         if (!intel_dp_get_link_status(intel_dp, link_status))
5675                 return false;
5676
5677         /*
5678          * Validate the cached values of intel_dp->link_rate and
5679          * intel_dp->lane_count before attempting to retrain.
5680          */
5681         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5682                                         intel_dp->lane_count))
5683                 return false;
5684
5685         /* Retrain if Channel EQ or CR not ok */
5686         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5687 }
5688
5689 static bool intel_dp_has_connector(struct intel_dp *intel_dp,
5690                                    const struct drm_connector_state *conn_state)
5691 {
5692         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5693         struct intel_encoder *encoder;
5694         enum pipe pipe;
5695
5696         if (!conn_state->best_encoder)
5697                 return false;
5698
5699         /* SST */
5700         encoder = &dp_to_dig_port(intel_dp)->base;
5701         if (conn_state->best_encoder == &encoder->base)
5702                 return true;
5703
5704         /* MST */
5705         for_each_pipe(i915, pipe) {
5706                 encoder = &intel_dp->mst_encoders[pipe]->base;
5707                 if (conn_state->best_encoder == &encoder->base)
5708                         return true;
5709         }
5710
5711         return false;
5712 }
5713
5714 static int intel_dp_prep_link_retrain(struct intel_dp *intel_dp,
5715                                       struct drm_modeset_acquire_ctx *ctx,
5716                                       u32 *crtc_mask)
5717 {
5718         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5719         struct drm_connector_list_iter conn_iter;
5720         struct intel_connector *connector;
5721         int ret = 0;
5722
5723         *crtc_mask = 0;
5724
5725         if (!intel_dp_needs_link_retrain(intel_dp))
5726                 return 0;
5727
5728         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
5729         for_each_intel_connector_iter(connector, &conn_iter) {
5730                 struct drm_connector_state *conn_state =
5731                         connector->base.state;
5732                 struct intel_crtc_state *crtc_state;
5733                 struct intel_crtc *crtc;
5734
5735                 if (!intel_dp_has_connector(intel_dp, conn_state))
5736                         continue;
5737
5738                 crtc = to_intel_crtc(conn_state->crtc);
5739                 if (!crtc)
5740                         continue;
5741
5742                 ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5743                 if (ret)
5744                         break;
5745
5746                 crtc_state = to_intel_crtc_state(crtc->base.state);
5747
5748                 drm_WARN_ON(&i915->drm, !intel_crtc_has_dp_encoder(crtc_state));
5749
5750                 if (!crtc_state->hw.active)
5751                         continue;
5752
5753                 if (conn_state->commit &&
5754                     !try_wait_for_completion(&conn_state->commit->hw_done))
5755                         continue;
5756
5757                 *crtc_mask |= drm_crtc_mask(&crtc->base);
5758         }
5759         drm_connector_list_iter_end(&conn_iter);
5760
5761         if (!intel_dp_needs_link_retrain(intel_dp))
5762                 *crtc_mask = 0;
5763
5764         return ret;
5765 }
5766
5767 static bool intel_dp_is_connected(struct intel_dp *intel_dp)
5768 {
5769         struct intel_connector *connector = intel_dp->attached_connector;
5770
5771         return connector->base.status == connector_status_connected ||
5772                 intel_dp->is_mst;
5773 }
5774
5775 int intel_dp_retrain_link(struct intel_encoder *encoder,
5776                           struct drm_modeset_acquire_ctx *ctx)
5777 {
5778         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5779         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
5780         struct intel_crtc *crtc;
5781         u32 crtc_mask;
5782         int ret;
5783
5784         if (!intel_dp_is_connected(intel_dp))
5785                 return 0;
5786
5787         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5788                                ctx);
5789         if (ret)
5790                 return ret;
5791
5792         ret = intel_dp_prep_link_retrain(intel_dp, ctx, &crtc_mask);
5793         if (ret)
5794                 return ret;
5795
5796         if (crtc_mask == 0)
5797                 return 0;
5798
5799         drm_dbg_kms(&dev_priv->drm, "[ENCODER:%d:%s] retraining link\n",
5800                     encoder->base.base.id, encoder->base.name);
5801
5802         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5803                 const struct intel_crtc_state *crtc_state =
5804                         to_intel_crtc_state(crtc->base.state);
5805
5806                 /* Suppress underruns caused by re-training */
5807                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5808                 if (crtc_state->has_pch_encoder)
5809                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5810                                                               intel_crtc_pch_transcoder(crtc), false);
5811         }
5812
5813         intel_dp_start_link_train(intel_dp);
5814         intel_dp_stop_link_train(intel_dp);
5815
5816         for_each_intel_crtc_mask(&dev_priv->drm, crtc, crtc_mask) {
5817                 const struct intel_crtc_state *crtc_state =
5818                         to_intel_crtc_state(crtc->base.state);
5819
5820                 /* Keep underrun reporting disabled until things are stable */
5821                 intel_wait_for_vblank(dev_priv, crtc->pipe);
5822
5823                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5824                 if (crtc_state->has_pch_encoder)
5825                         intel_set_pch_fifo_underrun_reporting(dev_priv,
5826                                                               intel_crtc_pch_transcoder(crtc), true);
5827         }
5828
5829         return 0;
5830 }
5831
5832 /*
5833  * If display is now connected check links status,
5834  * there has been known issues of link loss triggering
5835  * long pulse.
5836  *
5837  * Some sinks (eg. ASUS PB287Q) seem to perform some
5838  * weird HPD ping pong during modesets. So we can apparently
5839  * end up with HPD going low during a modeset, and then
5840  * going back up soon after. And once that happens we must
5841  * retrain the link to get a picture. That's in case no
5842  * userspace component reacted to intermittent HPD dip.
5843  */
5844 static enum intel_hotplug_state
5845 intel_dp_hotplug(struct intel_encoder *encoder,
5846                  struct intel_connector *connector)
5847 {
5848         struct drm_modeset_acquire_ctx ctx;
5849         enum intel_hotplug_state state;
5850         int ret;
5851
5852         state = intel_encoder_hotplug(encoder, connector);
5853
5854         drm_modeset_acquire_init(&ctx, 0);
5855
5856         for (;;) {
5857                 ret = intel_dp_retrain_link(encoder, &ctx);
5858
5859                 if (ret == -EDEADLK) {
5860                         drm_modeset_backoff(&ctx);
5861                         continue;
5862                 }
5863
5864                 break;
5865         }
5866
5867         drm_modeset_drop_locks(&ctx);
5868         drm_modeset_acquire_fini(&ctx);
5869         drm_WARN(encoder->base.dev, ret,
5870                  "Acquiring modeset locks failed with %i\n", ret);
5871
5872         /*
5873          * Keeping it consistent with intel_ddi_hotplug() and
5874          * intel_hdmi_hotplug().
5875          */
5876         if (state == INTEL_HOTPLUG_UNCHANGED && !connector->hotplug_retries)
5877                 state = INTEL_HOTPLUG_RETRY;
5878
5879         return state;
5880 }
5881
5882 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5883 {
5884         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5885         u8 val;
5886
5887         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5888                 return;
5889
5890         if (drm_dp_dpcd_readb(&intel_dp->aux,
5891                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5892                 return;
5893
5894         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5895
5896         if (val & DP_AUTOMATED_TEST_REQUEST)
5897                 intel_dp_handle_test_request(intel_dp);
5898
5899         if (val & DP_CP_IRQ)
5900                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5901
5902         if (val & DP_SINK_SPECIFIC_IRQ)
5903                 drm_dbg_kms(&i915->drm, "Sink specific irq unhandled\n");
5904 }
5905
5906 /*
5907  * According to DP spec
5908  * 5.1.2:
5909  *  1. Read DPCD
5910  *  2. Configure link according to Receiver Capabilities
5911  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5912  *  4. Check link status on receipt of hot-plug interrupt
5913  *
5914  * intel_dp_short_pulse -  handles short pulse interrupts
5915  * when full detection is not required.
5916  * Returns %true if short pulse is handled and full detection
5917  * is NOT required and %false otherwise.
5918  */
5919 static bool
5920 intel_dp_short_pulse(struct intel_dp *intel_dp)
5921 {
5922         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5923         u8 old_sink_count = intel_dp->sink_count;
5924         bool ret;
5925
5926         /*
5927          * Clearing compliance test variables to allow capturing
5928          * of values for next automated test request.
5929          */
5930         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5931
5932         /*
5933          * Now read the DPCD to see if it's actually running
5934          * If the current value of sink count doesn't match with
5935          * the value that was stored earlier or dpcd read failed
5936          * we need to do full detection
5937          */
5938         ret = intel_dp_get_dpcd(intel_dp);
5939
5940         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5941                 /* No need to proceed if we are going to do full detect */
5942                 return false;
5943         }
5944
5945         intel_dp_check_service_irq(intel_dp);
5946
5947         /* Handle CEC interrupts, if any */
5948         drm_dp_cec_irq(&intel_dp->aux);
5949
5950         /* defer to the hotplug work for link retraining if needed */
5951         if (intel_dp_needs_link_retrain(intel_dp))
5952                 return false;
5953
5954         intel_psr_short_pulse(intel_dp);
5955
5956         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5957                 drm_dbg_kms(&dev_priv->drm,
5958                             "Link Training Compliance Test requested\n");
5959                 /* Send a Hotplug Uevent to userspace to start modeset */
5960                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5961         }
5962
5963         return true;
5964 }
5965
5966 /* XXX this is probably wrong for multiple downstream ports */
5967 static enum drm_connector_status
5968 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5969 {
5970         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
5971         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5972         u8 *dpcd = intel_dp->dpcd;
5973         u8 type;
5974
5975         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5976                 return connector_status_connected;
5977
5978         if (lspcon->active)
5979                 lspcon_resume(lspcon);
5980
5981         if (!intel_dp_get_dpcd(intel_dp))
5982                 return connector_status_disconnected;
5983
5984         /* if there's no downstream port, we're done */
5985         if (!drm_dp_is_branch(dpcd))
5986                 return connector_status_connected;
5987
5988         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5989         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5990             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5991
5992                 return intel_dp->sink_count ?
5993                 connector_status_connected : connector_status_disconnected;
5994         }
5995
5996         if (intel_dp_can_mst(intel_dp))
5997                 return connector_status_connected;
5998
5999         /* If no HPD, poke DDC gently */
6000         if (drm_probe_ddc(&intel_dp->aux.ddc))
6001                 return connector_status_connected;
6002
6003         /* Well we tried, say unknown for unreliable port types */
6004         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
6005                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
6006                 if (type == DP_DS_PORT_TYPE_VGA ||
6007                     type == DP_DS_PORT_TYPE_NON_EDID)
6008                         return connector_status_unknown;
6009         } else {
6010                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
6011                         DP_DWN_STRM_PORT_TYPE_MASK;
6012                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
6013                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
6014                         return connector_status_unknown;
6015         }
6016
6017         /* Anything else is out of spec, warn and ignore */
6018         drm_dbg_kms(&i915->drm, "Broken DP branch device, ignoring\n");
6019         return connector_status_disconnected;
6020 }
6021
6022 static enum drm_connector_status
6023 edp_detect(struct intel_dp *intel_dp)
6024 {
6025         return connector_status_connected;
6026 }
6027
6028 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
6029 {
6030         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6031         u32 bit;
6032
6033         switch (encoder->hpd_pin) {
6034         case HPD_PORT_B:
6035                 bit = SDE_PORTB_HOTPLUG;
6036                 break;
6037         case HPD_PORT_C:
6038                 bit = SDE_PORTC_HOTPLUG;
6039                 break;
6040         case HPD_PORT_D:
6041                 bit = SDE_PORTD_HOTPLUG;
6042                 break;
6043         default:
6044                 MISSING_CASE(encoder->hpd_pin);
6045                 return false;
6046         }
6047
6048         return intel_de_read(dev_priv, SDEISR) & bit;
6049 }
6050
6051 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
6052 {
6053         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6054         u32 bit;
6055
6056         switch (encoder->hpd_pin) {
6057         case HPD_PORT_B:
6058                 bit = SDE_PORTB_HOTPLUG_CPT;
6059                 break;
6060         case HPD_PORT_C:
6061                 bit = SDE_PORTC_HOTPLUG_CPT;
6062                 break;
6063         case HPD_PORT_D:
6064                 bit = SDE_PORTD_HOTPLUG_CPT;
6065                 break;
6066         default:
6067                 MISSING_CASE(encoder->hpd_pin);
6068                 return false;
6069         }
6070
6071         return intel_de_read(dev_priv, SDEISR) & bit;
6072 }
6073
6074 static bool spt_digital_port_connected(struct intel_encoder *encoder)
6075 {
6076         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6077         u32 bit;
6078
6079         switch (encoder->hpd_pin) {
6080         case HPD_PORT_A:
6081                 bit = SDE_PORTA_HOTPLUG_SPT;
6082                 break;
6083         case HPD_PORT_E:
6084                 bit = SDE_PORTE_HOTPLUG_SPT;
6085                 break;
6086         default:
6087                 return cpt_digital_port_connected(encoder);
6088         }
6089
6090         return intel_de_read(dev_priv, SDEISR) & bit;
6091 }
6092
6093 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
6094 {
6095         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6096         u32 bit;
6097
6098         switch (encoder->hpd_pin) {
6099         case HPD_PORT_B:
6100                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
6101                 break;
6102         case HPD_PORT_C:
6103                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
6104                 break;
6105         case HPD_PORT_D:
6106                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
6107                 break;
6108         default:
6109                 MISSING_CASE(encoder->hpd_pin);
6110                 return false;
6111         }
6112
6113         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6114 }
6115
6116 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
6117 {
6118         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6119         u32 bit;
6120
6121         switch (encoder->hpd_pin) {
6122         case HPD_PORT_B:
6123                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
6124                 break;
6125         case HPD_PORT_C:
6126                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
6127                 break;
6128         case HPD_PORT_D:
6129                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
6130                 break;
6131         default:
6132                 MISSING_CASE(encoder->hpd_pin);
6133                 return false;
6134         }
6135
6136         return intel_de_read(dev_priv, PORT_HOTPLUG_STAT) & bit;
6137 }
6138
6139 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
6140 {
6141         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6142
6143         if (encoder->hpd_pin == HPD_PORT_A)
6144                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
6145         else
6146                 return ibx_digital_port_connected(encoder);
6147 }
6148
6149 static bool snb_digital_port_connected(struct intel_encoder *encoder)
6150 {
6151         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6152
6153         if (encoder->hpd_pin == HPD_PORT_A)
6154                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG;
6155         else
6156                 return cpt_digital_port_connected(encoder);
6157 }
6158
6159 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
6160 {
6161         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6162
6163         if (encoder->hpd_pin == HPD_PORT_A)
6164                 return intel_de_read(dev_priv, DEISR) & DE_DP_A_HOTPLUG_IVB;
6165         else
6166                 return cpt_digital_port_connected(encoder);
6167 }
6168
6169 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
6170 {
6171         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6172
6173         if (encoder->hpd_pin == HPD_PORT_A)
6174                 return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
6175         else
6176                 return cpt_digital_port_connected(encoder);
6177 }
6178
6179 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
6180 {
6181         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6182         u32 bit;
6183
6184         switch (encoder->hpd_pin) {
6185         case HPD_PORT_A:
6186                 bit = BXT_DE_PORT_HP_DDIA;
6187                 break;
6188         case HPD_PORT_B:
6189                 bit = BXT_DE_PORT_HP_DDIB;
6190                 break;
6191         case HPD_PORT_C:
6192                 bit = BXT_DE_PORT_HP_DDIC;
6193                 break;
6194         default:
6195                 MISSING_CASE(encoder->hpd_pin);
6196                 return false;
6197         }
6198
6199         return intel_de_read(dev_priv, GEN8_DE_PORT_ISR) & bit;
6200 }
6201
6202 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
6203                                       enum phy phy)
6204 {
6205         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
6206                 return intel_de_read(dev_priv, SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
6207
6208         return intel_de_read(dev_priv, SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
6209 }
6210
6211 static bool icp_digital_port_connected(struct intel_encoder *encoder)
6212 {
6213         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6214         struct intel_digital_port *dig_port = enc_to_dig_port(encoder);
6215         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
6216
6217         if (intel_phy_is_combo(dev_priv, phy))
6218                 return intel_combo_phy_connected(dev_priv, phy);
6219         else if (intel_phy_is_tc(dev_priv, phy))
6220                 return intel_tc_port_connected(dig_port);
6221         else
6222                 MISSING_CASE(encoder->hpd_pin);
6223
6224         return false;
6225 }
6226
6227 /*
6228  * intel_digital_port_connected - is the specified port connected?
6229  * @encoder: intel_encoder
6230  *
6231  * In cases where there's a connector physically connected but it can't be used
6232  * by our hardware we also return false, since the rest of the driver should
6233  * pretty much treat the port as disconnected. This is relevant for type-C
6234  * (starting on ICL) where there's ownership involved.
6235  *
6236  * Return %true if port is connected, %false otherwise.
6237  */
6238 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
6239 {
6240         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6241
6242         if (HAS_GMCH(dev_priv)) {
6243                 if (IS_GM45(dev_priv))
6244                         return gm45_digital_port_connected(encoder);
6245                 else
6246                         return g4x_digital_port_connected(encoder);
6247         }
6248
6249         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
6250                 return icp_digital_port_connected(encoder);
6251         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
6252                 return spt_digital_port_connected(encoder);
6253         else if (IS_GEN9_LP(dev_priv))
6254                 return bxt_digital_port_connected(encoder);
6255         else if (IS_GEN(dev_priv, 8))
6256                 return bdw_digital_port_connected(encoder);
6257         else if (IS_GEN(dev_priv, 7))
6258                 return ivb_digital_port_connected(encoder);
6259         else if (IS_GEN(dev_priv, 6))
6260                 return snb_digital_port_connected(encoder);
6261         else if (IS_GEN(dev_priv, 5))
6262                 return ilk_digital_port_connected(encoder);
6263
6264         MISSING_CASE(INTEL_GEN(dev_priv));
6265         return false;
6266 }
6267
6268 bool intel_digital_port_connected(struct intel_encoder *encoder)
6269 {
6270         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
6271         bool is_connected = false;
6272         intel_wakeref_t wakeref;
6273
6274         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
6275                 is_connected = __intel_digital_port_connected(encoder);
6276
6277         return is_connected;
6278 }
6279
6280 static struct edid *
6281 intel_dp_get_edid(struct intel_dp *intel_dp)
6282 {
6283         struct intel_connector *intel_connector = intel_dp->attached_connector;
6284
6285         /* use cached edid if we have one */
6286         if (intel_connector->edid) {
6287                 /* invalid edid */
6288                 if (IS_ERR(intel_connector->edid))
6289                         return NULL;
6290
6291                 return drm_edid_duplicate(intel_connector->edid);
6292         } else
6293                 return drm_get_edid(&intel_connector->base,
6294                                     &intel_dp->aux.ddc);
6295 }
6296
6297 static void
6298 intel_dp_set_edid(struct intel_dp *intel_dp)
6299 {
6300         struct intel_connector *intel_connector = intel_dp->attached_connector;
6301         struct edid *edid;
6302
6303         intel_dp_unset_edid(intel_dp);
6304         edid = intel_dp_get_edid(intel_dp);
6305         intel_connector->detect_edid = edid;
6306
6307         intel_dp->has_audio = drm_detect_monitor_audio(edid);
6308         drm_dp_cec_set_edid(&intel_dp->aux, edid);
6309         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
6310 }
6311
6312 static void
6313 intel_dp_unset_edid(struct intel_dp *intel_dp)
6314 {
6315         struct intel_connector *intel_connector = intel_dp->attached_connector;
6316
6317         drm_dp_cec_unset_edid(&intel_dp->aux);
6318         kfree(intel_connector->detect_edid);
6319         intel_connector->detect_edid = NULL;
6320
6321         intel_dp->has_audio = false;
6322         intel_dp->edid_quirks = 0;
6323 }
6324
6325 static int
6326 intel_dp_detect(struct drm_connector *connector,
6327                 struct drm_modeset_acquire_ctx *ctx,
6328                 bool force)
6329 {
6330         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6331         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6332         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6333         struct intel_encoder *encoder = &dig_port->base;
6334         enum drm_connector_status status;
6335
6336         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6337                     connector->base.id, connector->name);
6338         drm_WARN_ON(&dev_priv->drm,
6339                     !drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
6340
6341         /* Can't disconnect eDP */
6342         if (intel_dp_is_edp(intel_dp))
6343                 status = edp_detect(intel_dp);
6344         else if (intel_digital_port_connected(encoder))
6345                 status = intel_dp_detect_dpcd(intel_dp);
6346         else
6347                 status = connector_status_disconnected;
6348
6349         if (status == connector_status_disconnected) {
6350                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
6351                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
6352
6353                 if (intel_dp->is_mst) {
6354                         drm_dbg_kms(&dev_priv->drm,
6355                                     "MST device may have disappeared %d vs %d\n",
6356                                     intel_dp->is_mst,
6357                                     intel_dp->mst_mgr.mst_state);
6358                         intel_dp->is_mst = false;
6359                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6360                                                         intel_dp->is_mst);
6361                 }
6362
6363                 goto out;
6364         }
6365
6366         if (intel_dp->reset_link_params) {
6367                 /* Initial max link lane count */
6368                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
6369
6370                 /* Initial max link rate */
6371                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
6372
6373                 intel_dp->reset_link_params = false;
6374         }
6375
6376         intel_dp_print_rates(intel_dp);
6377
6378         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
6379         if (INTEL_GEN(dev_priv) >= 11)
6380                 intel_dp_get_dsc_sink_cap(intel_dp);
6381
6382         intel_dp_configure_mst(intel_dp);
6383
6384         if (intel_dp->is_mst) {
6385                 /*
6386                  * If we are in MST mode then this connector
6387                  * won't appear connected or have anything
6388                  * with EDID on it
6389                  */
6390                 status = connector_status_disconnected;
6391                 goto out;
6392         }
6393
6394         /*
6395          * Some external monitors do not signal loss of link synchronization
6396          * with an IRQ_HPD, so force a link status check.
6397          */
6398         if (!intel_dp_is_edp(intel_dp)) {
6399                 int ret;
6400
6401                 ret = intel_dp_retrain_link(encoder, ctx);
6402                 if (ret)
6403                         return ret;
6404         }
6405
6406         /*
6407          * Clearing NACK and defer counts to get their exact values
6408          * while reading EDID which are required by Compliance tests
6409          * 4.2.2.4 and 4.2.2.5
6410          */
6411         intel_dp->aux.i2c_nack_count = 0;
6412         intel_dp->aux.i2c_defer_count = 0;
6413
6414         intel_dp_set_edid(intel_dp);
6415         if (intel_dp_is_edp(intel_dp) ||
6416             to_intel_connector(connector)->detect_edid)
6417                 status = connector_status_connected;
6418
6419         intel_dp_check_service_irq(intel_dp);
6420
6421 out:
6422         if (status != connector_status_connected && !intel_dp->is_mst)
6423                 intel_dp_unset_edid(intel_dp);
6424
6425         /*
6426          * Make sure the refs for power wells enabled during detect are
6427          * dropped to avoid a new detect cycle triggered by HPD polling.
6428          */
6429         intel_display_power_flush_work(dev_priv);
6430
6431         return status;
6432 }
6433
6434 static void
6435 intel_dp_force(struct drm_connector *connector)
6436 {
6437         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6438         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6439         struct intel_encoder *intel_encoder = &dig_port->base;
6440         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
6441         enum intel_display_power_domain aux_domain =
6442                 intel_aux_power_domain(dig_port);
6443         intel_wakeref_t wakeref;
6444
6445         drm_dbg_kms(&dev_priv->drm, "[CONNECTOR:%d:%s]\n",
6446                     connector->base.id, connector->name);
6447         intel_dp_unset_edid(intel_dp);
6448
6449         if (connector->status != connector_status_connected)
6450                 return;
6451
6452         wakeref = intel_display_power_get(dev_priv, aux_domain);
6453
6454         intel_dp_set_edid(intel_dp);
6455
6456         intel_display_power_put(dev_priv, aux_domain, wakeref);
6457 }
6458
6459 static int intel_dp_get_modes(struct drm_connector *connector)
6460 {
6461         struct intel_connector *intel_connector = to_intel_connector(connector);
6462         struct edid *edid;
6463
6464         edid = intel_connector->detect_edid;
6465         if (edid) {
6466                 int ret = intel_connector_update_modes(connector, edid);
6467                 if (ret)
6468                         return ret;
6469         }
6470
6471         /* if eDP has no EDID, fall back to fixed mode */
6472         if (intel_dp_is_edp(intel_attached_dp(to_intel_connector(connector))) &&
6473             intel_connector->panel.fixed_mode) {
6474                 struct drm_display_mode *mode;
6475
6476                 mode = drm_mode_duplicate(connector->dev,
6477                                           intel_connector->panel.fixed_mode);
6478                 if (mode) {
6479                         drm_mode_probed_add(connector, mode);
6480                         return 1;
6481                 }
6482         }
6483
6484         return 0;
6485 }
6486
6487 static int
6488 intel_dp_connector_register(struct drm_connector *connector)
6489 {
6490         struct drm_i915_private *i915 = to_i915(connector->dev);
6491         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6492         int ret;
6493
6494         ret = intel_connector_register(connector);
6495         if (ret)
6496                 return ret;
6497
6498         drm_dbg_kms(&i915->drm, "registering %s bus for %s\n",
6499                     intel_dp->aux.name, connector->kdev->kobj.name);
6500
6501         intel_dp->aux.dev = connector->kdev;
6502         ret = drm_dp_aux_register(&intel_dp->aux);
6503         if (!ret)
6504                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
6505         return ret;
6506 }
6507
6508 static void
6509 intel_dp_connector_unregister(struct drm_connector *connector)
6510 {
6511         struct intel_dp *intel_dp = intel_attached_dp(to_intel_connector(connector));
6512
6513         drm_dp_cec_unregister_connector(&intel_dp->aux);
6514         drm_dp_aux_unregister(&intel_dp->aux);
6515         intel_connector_unregister(connector);
6516 }
6517
6518 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
6519 {
6520         struct intel_digital_port *intel_dig_port = enc_to_dig_port(to_intel_encoder(encoder));
6521         struct intel_dp *intel_dp = &intel_dig_port->dp;
6522
6523         intel_dp_mst_encoder_cleanup(intel_dig_port);
6524         if (intel_dp_is_edp(intel_dp)) {
6525                 intel_wakeref_t wakeref;
6526
6527                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6528                 /*
6529                  * vdd might still be enabled do to the delayed vdd off.
6530                  * Make sure vdd is actually turned off here.
6531                  */
6532                 with_pps_lock(intel_dp, wakeref)
6533                         edp_panel_vdd_off_sync(intel_dp);
6534
6535                 if (intel_dp->edp_notifier.notifier_call) {
6536                         unregister_reboot_notifier(&intel_dp->edp_notifier);
6537                         intel_dp->edp_notifier.notifier_call = NULL;
6538                 }
6539         }
6540
6541         intel_dp_aux_fini(intel_dp);
6542 }
6543
6544 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
6545 {
6546         intel_dp_encoder_flush_work(encoder);
6547
6548         drm_encoder_cleanup(encoder);
6549         kfree(enc_to_dig_port(to_intel_encoder(encoder)));
6550 }
6551
6552 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
6553 {
6554         struct intel_dp *intel_dp = enc_to_intel_dp(intel_encoder);
6555         intel_wakeref_t wakeref;
6556
6557         if (!intel_dp_is_edp(intel_dp))
6558                 return;
6559
6560         /*
6561          * vdd might still be enabled do to the delayed vdd off.
6562          * Make sure vdd is actually turned off here.
6563          */
6564         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
6565         with_pps_lock(intel_dp, wakeref)
6566                 edp_panel_vdd_off_sync(intel_dp);
6567 }
6568
6569 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
6570 {
6571         long ret;
6572
6573 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
6574         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
6575                                                msecs_to_jiffies(timeout));
6576
6577         if (!ret)
6578                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
6579 }
6580
6581 static
6582 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
6583                                 u8 *an)
6584 {
6585         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6586         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(&intel_dig_port->base.base));
6587         static const struct drm_dp_aux_msg msg = {
6588                 .request = DP_AUX_NATIVE_WRITE,
6589                 .address = DP_AUX_HDCP_AKSV,
6590                 .size = DRM_HDCP_KSV_LEN,
6591         };
6592         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
6593         ssize_t dpcd_ret;
6594         int ret;
6595
6596         /* Output An first, that's easy */
6597         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
6598                                      an, DRM_HDCP_AN_LEN);
6599         if (dpcd_ret != DRM_HDCP_AN_LEN) {
6600                 drm_dbg_kms(&i915->drm,
6601                             "Failed to write An over DP/AUX (%zd)\n",
6602                             dpcd_ret);
6603                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
6604         }
6605
6606         /*
6607          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
6608          * order to get it on the wire, we need to create the AUX header as if
6609          * we were writing the data, and then tickle the hardware to output the
6610          * data once the header is sent out.
6611          */
6612         intel_dp_aux_header(txbuf, &msg);
6613
6614         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
6615                                 rxbuf, sizeof(rxbuf),
6616                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
6617         if (ret < 0) {
6618                 drm_dbg_kms(&i915->drm,
6619                             "Write Aksv over DP/AUX failed (%d)\n", ret);
6620                 return ret;
6621         } else if (ret == 0) {
6622                 drm_dbg_kms(&i915->drm, "Aksv write over DP/AUX was empty\n");
6623                 return -EIO;
6624         }
6625
6626         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
6627         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
6628                 drm_dbg_kms(&i915->drm,
6629                             "Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
6630                             reply);
6631                 return -EIO;
6632         }
6633         return 0;
6634 }
6635
6636 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
6637                                    u8 *bksv)
6638 {
6639         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6640         ssize_t ret;
6641
6642         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
6643                                DRM_HDCP_KSV_LEN);
6644         if (ret != DRM_HDCP_KSV_LEN) {
6645                 drm_dbg_kms(&i915->drm,
6646                             "Read Bksv from DP/AUX failed (%zd)\n", ret);
6647                 return ret >= 0 ? -EIO : ret;
6648         }
6649         return 0;
6650 }
6651
6652 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
6653                                       u8 *bstatus)
6654 {
6655         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6656         ssize_t ret;
6657
6658         /*
6659          * For some reason the HDMI and DP HDCP specs call this register
6660          * definition by different names. In the HDMI spec, it's called BSTATUS,
6661          * but in DP it's called BINFO.
6662          */
6663         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
6664                                bstatus, DRM_HDCP_BSTATUS_LEN);
6665         if (ret != DRM_HDCP_BSTATUS_LEN) {
6666                 drm_dbg_kms(&i915->drm,
6667                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6668                 return ret >= 0 ? -EIO : ret;
6669         }
6670         return 0;
6671 }
6672
6673 static
6674 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
6675                              u8 *bcaps)
6676 {
6677         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6678         ssize_t ret;
6679
6680         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
6681                                bcaps, 1);
6682         if (ret != 1) {
6683                 drm_dbg_kms(&i915->drm,
6684                             "Read bcaps from DP/AUX failed (%zd)\n", ret);
6685                 return ret >= 0 ? -EIO : ret;
6686         }
6687
6688         return 0;
6689 }
6690
6691 static
6692 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
6693                                    bool *repeater_present)
6694 {
6695         ssize_t ret;
6696         u8 bcaps;
6697
6698         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6699         if (ret)
6700                 return ret;
6701
6702         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
6703         return 0;
6704 }
6705
6706 static
6707 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
6708                                 u8 *ri_prime)
6709 {
6710         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6711         ssize_t ret;
6712
6713         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
6714                                ri_prime, DRM_HDCP_RI_LEN);
6715         if (ret != DRM_HDCP_RI_LEN) {
6716                 drm_dbg_kms(&i915->drm, "Read Ri' from DP/AUX failed (%zd)\n",
6717                             ret);
6718                 return ret >= 0 ? -EIO : ret;
6719         }
6720         return 0;
6721 }
6722
6723 static
6724 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
6725                                  bool *ksv_ready)
6726 {
6727         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6728         ssize_t ret;
6729         u8 bstatus;
6730
6731         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6732                                &bstatus, 1);
6733         if (ret != 1) {
6734                 drm_dbg_kms(&i915->drm,
6735                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6736                 return ret >= 0 ? -EIO : ret;
6737         }
6738         *ksv_ready = bstatus & DP_BSTATUS_READY;
6739         return 0;
6740 }
6741
6742 static
6743 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6744                                 int num_downstream, u8 *ksv_fifo)
6745 {
6746         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6747         ssize_t ret;
6748         int i;
6749
6750         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6751         for (i = 0; i < num_downstream; i += 3) {
6752                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6753                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6754                                        DP_AUX_HDCP_KSV_FIFO,
6755                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6756                                        len);
6757                 if (ret != len) {
6758                         drm_dbg_kms(&i915->drm,
6759                                     "Read ksv[%d] from DP/AUX failed (%zd)\n",
6760                                     i, ret);
6761                         return ret >= 0 ? -EIO : ret;
6762                 }
6763         }
6764         return 0;
6765 }
6766
6767 static
6768 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6769                                     int i, u32 *part)
6770 {
6771         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6772         ssize_t ret;
6773
6774         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6775                 return -EINVAL;
6776
6777         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6778                                DP_AUX_HDCP_V_PRIME(i), part,
6779                                DRM_HDCP_V_PRIME_PART_LEN);
6780         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6781                 drm_dbg_kms(&i915->drm,
6782                             "Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6783                 return ret >= 0 ? -EIO : ret;
6784         }
6785         return 0;
6786 }
6787
6788 static
6789 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6790                                     bool enable)
6791 {
6792         /* Not used for single stream DisplayPort setups */
6793         return 0;
6794 }
6795
6796 static
6797 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6798 {
6799         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6800         ssize_t ret;
6801         u8 bstatus;
6802
6803         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6804                                &bstatus, 1);
6805         if (ret != 1) {
6806                 drm_dbg_kms(&i915->drm,
6807                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6808                 return false;
6809         }
6810
6811         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6812 }
6813
6814 static
6815 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6816                           bool *hdcp_capable)
6817 {
6818         ssize_t ret;
6819         u8 bcaps;
6820
6821         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6822         if (ret)
6823                 return ret;
6824
6825         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6826         return 0;
6827 }
6828
6829 struct hdcp2_dp_errata_stream_type {
6830         u8      msg_id;
6831         u8      stream_type;
6832 } __packed;
6833
6834 struct hdcp2_dp_msg_data {
6835         u8 msg_id;
6836         u32 offset;
6837         bool msg_detectable;
6838         u32 timeout;
6839         u32 timeout2; /* Added for non_paired situation */
6840 };
6841
6842 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6843         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6844         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6845           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6846         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6847           false, 0, 0 },
6848         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6849           false, 0, 0 },
6850         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6851           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6852           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6853         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6854           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6855           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6856         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6857         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6858           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6859         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6860           0, 0 },
6861         { HDCP_2_2_REP_SEND_RECVID_LIST,
6862           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6863           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6864         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6865           0, 0 },
6866         { HDCP_2_2_REP_STREAM_MANAGE,
6867           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6868           0, 0 },
6869         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6870           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6871 /* local define to shovel this through the write_2_2 interface */
6872 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6873         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6874           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6875           0, 0 },
6876 };
6877
6878 static int
6879 intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6880                               u8 *rx_status)
6881 {
6882         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6883         ssize_t ret;
6884
6885         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6886                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6887                                HDCP_2_2_DP_RXSTATUS_LEN);
6888         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6889                 drm_dbg_kms(&i915->drm,
6890                             "Read bstatus from DP/AUX failed (%zd)\n", ret);
6891                 return ret >= 0 ? -EIO : ret;
6892         }
6893
6894         return 0;
6895 }
6896
6897 static
6898 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6899                                   u8 msg_id, bool *msg_ready)
6900 {
6901         u8 rx_status;
6902         int ret;
6903
6904         *msg_ready = false;
6905         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6906         if (ret < 0)
6907                 return ret;
6908
6909         switch (msg_id) {
6910         case HDCP_2_2_AKE_SEND_HPRIME:
6911                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6912                         *msg_ready = true;
6913                 break;
6914         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6915                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6916                         *msg_ready = true;
6917                 break;
6918         case HDCP_2_2_REP_SEND_RECVID_LIST:
6919                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6920                         *msg_ready = true;
6921                 break;
6922         default:
6923                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6924                 return -EINVAL;
6925         }
6926
6927         return 0;
6928 }
6929
6930 static ssize_t
6931 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6932                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6933 {
6934         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
6935         struct intel_dp *dp = &intel_dig_port->dp;
6936         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6937         u8 msg_id = hdcp2_msg_data->msg_id;
6938         int ret, timeout;
6939         bool msg_ready = false;
6940
6941         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6942                 timeout = hdcp2_msg_data->timeout2;
6943         else
6944                 timeout = hdcp2_msg_data->timeout;
6945
6946         /*
6947          * There is no way to detect the CERT, LPRIME and STREAM_READY
6948          * availability. So Wait for timeout and read the msg.
6949          */
6950         if (!hdcp2_msg_data->msg_detectable) {
6951                 mdelay(timeout);
6952                 ret = 0;
6953         } else {
6954                 /*
6955                  * As we want to check the msg availability at timeout, Ignoring
6956                  * the timeout at wait for CP_IRQ.
6957                  */
6958                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6959                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6960                                                     msg_id, &msg_ready);
6961                 if (!msg_ready)
6962                         ret = -ETIMEDOUT;
6963         }
6964
6965         if (ret)
6966                 drm_dbg_kms(&i915->drm,
6967                             "msg_id %d, ret %d, timeout(mSec): %d\n",
6968                             hdcp2_msg_data->msg_id, ret, timeout);
6969
6970         return ret;
6971 }
6972
6973 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6974 {
6975         int i;
6976
6977         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6978                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6979                         return &hdcp2_dp_msg_data[i];
6980
6981         return NULL;
6982 }
6983
6984 static
6985 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6986                              void *buf, size_t size)
6987 {
6988         struct intel_dp *dp = &intel_dig_port->dp;
6989         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6990         unsigned int offset;
6991         u8 *byte = buf;
6992         ssize_t ret, bytes_to_write, len;
6993         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6994
6995         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6996         if (!hdcp2_msg_data)
6997                 return -EINVAL;
6998
6999         offset = hdcp2_msg_data->offset;
7000
7001         /* No msg_id in DP HDCP2.2 msgs */
7002         bytes_to_write = size - 1;
7003         byte++;
7004
7005         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
7006
7007         while (bytes_to_write) {
7008                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
7009                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
7010
7011                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
7012                                         offset, (void *)byte, len);
7013                 if (ret < 0)
7014                         return ret;
7015
7016                 bytes_to_write -= ret;
7017                 byte += ret;
7018                 offset += ret;
7019         }
7020
7021         return size;
7022 }
7023
7024 static
7025 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
7026 {
7027         u8 rx_info[HDCP_2_2_RXINFO_LEN];
7028         u32 dev_cnt;
7029         ssize_t ret;
7030
7031         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
7032                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
7033                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
7034         if (ret != HDCP_2_2_RXINFO_LEN)
7035                 return ret >= 0 ? -EIO : ret;
7036
7037         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
7038                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
7039
7040         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
7041                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
7042
7043         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
7044                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
7045                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
7046
7047         return ret;
7048 }
7049
7050 static
7051 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
7052                             u8 msg_id, void *buf, size_t size)
7053 {
7054         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7055         unsigned int offset;
7056         u8 *byte = buf;
7057         ssize_t ret, bytes_to_recv, len;
7058         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
7059
7060         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
7061         if (!hdcp2_msg_data)
7062                 return -EINVAL;
7063         offset = hdcp2_msg_data->offset;
7064
7065         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
7066         if (ret < 0)
7067                 return ret;
7068
7069         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
7070                 ret = get_receiver_id_list_size(intel_dig_port);
7071                 if (ret < 0)
7072                         return ret;
7073
7074                 size = ret;
7075         }
7076         bytes_to_recv = size - 1;
7077
7078         /* DP adaptation msgs has no msg_id */
7079         byte++;
7080
7081         while (bytes_to_recv) {
7082                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
7083                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
7084
7085                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
7086                                        (void *)byte, len);
7087                 if (ret < 0) {
7088                         drm_dbg_kms(&i915->drm, "msg_id %d, ret %zd\n",
7089                                     msg_id, ret);
7090                         return ret;
7091                 }
7092
7093                 bytes_to_recv -= ret;
7094                 byte += ret;
7095                 offset += ret;
7096         }
7097         byte = buf;
7098         *byte = msg_id;
7099
7100         return size;
7101 }
7102
7103 static
7104 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
7105                                       bool is_repeater, u8 content_type)
7106 {
7107         int ret;
7108         struct hdcp2_dp_errata_stream_type stream_type_msg;
7109
7110         if (is_repeater)
7111                 return 0;
7112
7113         /*
7114          * Errata for DP: As Stream type is used for encryption, Receiver
7115          * should be communicated with stream type for the decryption of the
7116          * content.
7117          * Repeater will be communicated with stream type as a part of it's
7118          * auth later in time.
7119          */
7120         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
7121         stream_type_msg.stream_type = content_type;
7122
7123         ret =  intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
7124                                         sizeof(stream_type_msg));
7125
7126         return ret < 0 ? ret : 0;
7127
7128 }
7129
7130 static
7131 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
7132 {
7133         u8 rx_status;
7134         int ret;
7135
7136         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
7137         if (ret)
7138                 return ret;
7139
7140         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
7141                 ret = HDCP_REAUTH_REQUEST;
7142         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
7143                 ret = HDCP_LINK_INTEGRITY_FAILURE;
7144         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
7145                 ret = HDCP_TOPOLOGY_CHANGE;
7146
7147         return ret;
7148 }
7149
7150 static
7151 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
7152                            bool *capable)
7153 {
7154         u8 rx_caps[3];
7155         int ret;
7156
7157         *capable = false;
7158         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
7159                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
7160                                rx_caps, HDCP_2_2_RXCAPS_LEN);
7161         if (ret != HDCP_2_2_RXCAPS_LEN)
7162                 return ret >= 0 ? -EIO : ret;
7163
7164         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
7165             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
7166                 *capable = true;
7167
7168         return 0;
7169 }
7170
7171 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
7172         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
7173         .read_bksv = intel_dp_hdcp_read_bksv,
7174         .read_bstatus = intel_dp_hdcp_read_bstatus,
7175         .repeater_present = intel_dp_hdcp_repeater_present,
7176         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
7177         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
7178         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
7179         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
7180         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
7181         .check_link = intel_dp_hdcp_check_link,
7182         .hdcp_capable = intel_dp_hdcp_capable,
7183         .write_2_2_msg = intel_dp_hdcp2_write_msg,
7184         .read_2_2_msg = intel_dp_hdcp2_read_msg,
7185         .config_stream_type = intel_dp_hdcp2_config_stream_type,
7186         .check_2_2_link = intel_dp_hdcp2_check_link,
7187         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
7188         .protocol = HDCP_PROTOCOL_DP,
7189 };
7190
7191 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
7192 {
7193         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7194         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
7195
7196         lockdep_assert_held(&dev_priv->pps_mutex);
7197
7198         if (!edp_have_panel_vdd(intel_dp))
7199                 return;
7200
7201         /*
7202          * The VDD bit needs a power domain reference, so if the bit is
7203          * already enabled when we boot or resume, grab this reference and
7204          * schedule a vdd off, so we don't hold on to the reference
7205          * indefinitely.
7206          */
7207         drm_dbg_kms(&dev_priv->drm,
7208                     "VDD left on by BIOS, adjusting state tracking\n");
7209         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
7210
7211         edp_panel_vdd_schedule_off(intel_dp);
7212 }
7213
7214 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
7215 {
7216         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7217         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
7218         enum pipe pipe;
7219
7220         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
7221                                   encoder->port, &pipe))
7222                 return pipe;
7223
7224         return INVALID_PIPE;
7225 }
7226
7227 void intel_dp_encoder_reset(struct drm_encoder *encoder)
7228 {
7229         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
7230         struct intel_dp *intel_dp = enc_to_intel_dp(to_intel_encoder(encoder));
7231         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
7232         intel_wakeref_t wakeref;
7233
7234         if (!HAS_DDI(dev_priv))
7235                 intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
7236
7237         if (lspcon->active)
7238                 lspcon_resume(lspcon);
7239
7240         intel_dp->reset_link_params = true;
7241
7242         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
7243             !intel_dp_is_edp(intel_dp))
7244                 return;
7245
7246         with_pps_lock(intel_dp, wakeref) {
7247                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7248                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7249
7250                 if (intel_dp_is_edp(intel_dp)) {
7251                         /*
7252                          * Reinit the power sequencer, in case BIOS did
7253                          * something nasty with it.
7254                          */
7255                         intel_dp_pps_init(intel_dp);
7256                         intel_edp_panel_vdd_sanitize(intel_dp);
7257                 }
7258         }
7259 }
7260
7261 static int intel_modeset_tile_group(struct intel_atomic_state *state,
7262                                     int tile_group_id)
7263 {
7264         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7265         struct drm_connector_list_iter conn_iter;
7266         struct drm_connector *connector;
7267         int ret = 0;
7268
7269         drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
7270         drm_for_each_connector_iter(connector, &conn_iter) {
7271                 struct drm_connector_state *conn_state;
7272                 struct intel_crtc_state *crtc_state;
7273                 struct intel_crtc *crtc;
7274
7275                 if (!connector->has_tile ||
7276                     connector->tile_group->id != tile_group_id)
7277                         continue;
7278
7279                 conn_state = drm_atomic_get_connector_state(&state->base,
7280                                                             connector);
7281                 if (IS_ERR(conn_state)) {
7282                         ret = PTR_ERR(conn_state);
7283                         break;
7284                 }
7285
7286                 crtc = to_intel_crtc(conn_state->crtc);
7287
7288                 if (!crtc)
7289                         continue;
7290
7291                 crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
7292                 crtc_state->uapi.mode_changed = true;
7293
7294                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7295                 if (ret)
7296                         break;
7297         }
7298         drm_connector_list_iter_end(&conn_iter);
7299
7300         return ret;
7301 }
7302
7303 static int intel_modeset_affected_transcoders(struct intel_atomic_state *state, u8 transcoders)
7304 {
7305         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
7306         struct intel_crtc *crtc;
7307
7308         if (transcoders == 0)
7309                 return 0;
7310
7311         for_each_intel_crtc(&dev_priv->drm, crtc) {
7312                 struct intel_crtc_state *crtc_state;
7313                 int ret;
7314
7315                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
7316                 if (IS_ERR(crtc_state))
7317                         return PTR_ERR(crtc_state);
7318
7319                 if (!crtc_state->hw.enable)
7320                         continue;
7321
7322                 if (!(transcoders & BIT(crtc_state->cpu_transcoder)))
7323                         continue;
7324
7325                 crtc_state->uapi.mode_changed = true;
7326
7327                 ret = drm_atomic_add_affected_connectors(&state->base, &crtc->base);
7328                 if (ret)
7329                         return ret;
7330
7331                 ret = drm_atomic_add_affected_planes(&state->base, &crtc->base);
7332                 if (ret)
7333                         return ret;
7334
7335                 transcoders &= ~BIT(crtc_state->cpu_transcoder);
7336         }
7337
7338         drm_WARN_ON(&dev_priv->drm, transcoders != 0);
7339
7340         return 0;
7341 }
7342
7343 static int intel_modeset_synced_crtcs(struct intel_atomic_state *state,
7344                                       struct drm_connector *connector)
7345 {
7346         const struct drm_connector_state *old_conn_state =
7347                 drm_atomic_get_old_connector_state(&state->base, connector);
7348         const struct intel_crtc_state *old_crtc_state;
7349         struct intel_crtc *crtc;
7350         u8 transcoders;
7351
7352         crtc = to_intel_crtc(old_conn_state->crtc);
7353         if (!crtc)
7354                 return 0;
7355
7356         old_crtc_state = intel_atomic_get_old_crtc_state(state, crtc);
7357
7358         if (!old_crtc_state->hw.active)
7359                 return 0;
7360
7361         transcoders = old_crtc_state->sync_mode_slaves_mask;
7362         if (old_crtc_state->master_transcoder != INVALID_TRANSCODER)
7363                 transcoders |= BIT(old_crtc_state->master_transcoder);
7364
7365         return intel_modeset_affected_transcoders(state,
7366                                                   transcoders);
7367 }
7368
7369 static int intel_dp_connector_atomic_check(struct drm_connector *conn,
7370                                            struct drm_atomic_state *_state)
7371 {
7372         struct drm_i915_private *dev_priv = to_i915(conn->dev);
7373         struct intel_atomic_state *state = to_intel_atomic_state(_state);
7374         int ret;
7375
7376         ret = intel_digital_connector_atomic_check(conn, &state->base);
7377         if (ret)
7378                 return ret;
7379
7380         /*
7381          * We don't enable port sync on BDW due to missing w/as and
7382          * due to not having adjusted the modeset sequence appropriately.
7383          */
7384         if (INTEL_GEN(dev_priv) < 9)
7385                 return 0;
7386
7387         if (!intel_connector_needs_modeset(state, conn))
7388                 return 0;
7389
7390         if (conn->has_tile) {
7391                 ret = intel_modeset_tile_group(state, conn->tile_group->id);
7392                 if (ret)
7393                         return ret;
7394         }
7395
7396         return intel_modeset_synced_crtcs(state, conn);
7397 }
7398
7399 static const struct drm_connector_funcs intel_dp_connector_funcs = {
7400         .force = intel_dp_force,
7401         .fill_modes = drm_helper_probe_single_connector_modes,
7402         .atomic_get_property = intel_digital_connector_atomic_get_property,
7403         .atomic_set_property = intel_digital_connector_atomic_set_property,
7404         .late_register = intel_dp_connector_register,
7405         .early_unregister = intel_dp_connector_unregister,
7406         .destroy = intel_connector_destroy,
7407         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
7408         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
7409 };
7410
7411 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
7412         .detect_ctx = intel_dp_detect,
7413         .get_modes = intel_dp_get_modes,
7414         .mode_valid = intel_dp_mode_valid,
7415         .atomic_check = intel_dp_connector_atomic_check,
7416 };
7417
7418 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
7419         .reset = intel_dp_encoder_reset,
7420         .destroy = intel_dp_encoder_destroy,
7421 };
7422
7423 static bool intel_edp_have_power(struct intel_dp *intel_dp)
7424 {
7425         intel_wakeref_t wakeref;
7426         bool have_power = false;
7427
7428         with_pps_lock(intel_dp, wakeref) {
7429                 have_power = edp_have_panel_power(intel_dp) &&
7430                                                   edp_have_panel_vdd(intel_dp);
7431         }
7432
7433         return have_power;
7434 }
7435
7436 enum irqreturn
7437 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
7438 {
7439         struct drm_i915_private *i915 = to_i915(intel_dig_port->base.base.dev);
7440         struct intel_dp *intel_dp = &intel_dig_port->dp;
7441
7442         if (intel_dig_port->base.type == INTEL_OUTPUT_EDP &&
7443             (long_hpd || !intel_edp_have_power(intel_dp))) {
7444                 /*
7445                  * vdd off can generate a long/short pulse on eDP which
7446                  * would require vdd on to handle it, and thus we
7447                  * would end up in an endless cycle of
7448                  * "vdd off -> long/short hpd -> vdd on -> detect -> vdd off -> ..."
7449                  */
7450                 drm_dbg_kms(&i915->drm,
7451                             "ignoring %s hpd on eDP [ENCODER:%d:%s]\n",
7452                             long_hpd ? "long" : "short",
7453                             intel_dig_port->base.base.base.id,
7454                             intel_dig_port->base.base.name);
7455                 return IRQ_HANDLED;
7456         }
7457
7458         drm_dbg_kms(&i915->drm, "got hpd irq on [ENCODER:%d:%s] - %s\n",
7459                     intel_dig_port->base.base.base.id,
7460                     intel_dig_port->base.base.name,
7461                     long_hpd ? "long" : "short");
7462
7463         if (long_hpd) {
7464                 intel_dp->reset_link_params = true;
7465                 return IRQ_NONE;
7466         }
7467
7468         if (intel_dp->is_mst) {
7469                 switch (intel_dp_check_mst_status(intel_dp)) {
7470                 case -EINVAL:
7471                         /*
7472                          * If we were in MST mode, and device is not
7473                          * there, get out of MST mode
7474                          */
7475                         drm_dbg_kms(&i915->drm,
7476                                     "MST device may have disappeared %d vs %d\n",
7477                                     intel_dp->is_mst,
7478                                     intel_dp->mst_mgr.mst_state);
7479                         intel_dp->is_mst = false;
7480                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7481                                                         intel_dp->is_mst);
7482
7483                         return IRQ_NONE;
7484                 case 1:
7485                         return IRQ_NONE;
7486                 default:
7487                         break;
7488                 }
7489         }
7490
7491         if (!intel_dp->is_mst) {
7492                 bool handled;
7493
7494                 handled = intel_dp_short_pulse(intel_dp);
7495
7496                 if (!handled)
7497                         return IRQ_NONE;
7498         }
7499
7500         return IRQ_HANDLED;
7501 }
7502
7503 /* check the VBT to see whether the eDP is on another port */
7504 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
7505 {
7506         /*
7507          * eDP not supported on g4x. so bail out early just
7508          * for a bit extra safety in case the VBT is bonkers.
7509          */
7510         if (INTEL_GEN(dev_priv) < 5)
7511                 return false;
7512
7513         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
7514                 return true;
7515
7516         return intel_bios_is_port_edp(dev_priv, port);
7517 }
7518
7519 static void
7520 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
7521 {
7522         struct drm_i915_private *dev_priv = to_i915(connector->dev);
7523         enum port port = dp_to_dig_port(intel_dp)->base.port;
7524
7525         if (!IS_G4X(dev_priv) && port != PORT_A)
7526                 intel_attach_force_audio_property(connector);
7527
7528         intel_attach_broadcast_rgb_property(connector);
7529         if (HAS_GMCH(dev_priv))
7530                 drm_connector_attach_max_bpc_property(connector, 6, 10);
7531         else if (INTEL_GEN(dev_priv) >= 5)
7532                 drm_connector_attach_max_bpc_property(connector, 6, 12);
7533
7534         intel_attach_colorspace_property(connector);
7535
7536         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
7537                 drm_object_attach_property(&connector->base,
7538                                            connector->dev->mode_config.hdr_output_metadata_property,
7539                                            0);
7540
7541         if (intel_dp_is_edp(intel_dp)) {
7542                 u32 allowed_scalers;
7543
7544                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
7545                 if (!HAS_GMCH(dev_priv))
7546                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
7547
7548                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
7549
7550                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
7551
7552         }
7553 }
7554
7555 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
7556 {
7557         intel_dp->panel_power_off_time = ktime_get_boottime();
7558         intel_dp->last_power_on = jiffies;
7559         intel_dp->last_backlight_off = jiffies;
7560 }
7561
7562 static void
7563 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
7564 {
7565         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7566         u32 pp_on, pp_off, pp_ctl;
7567         struct pps_registers regs;
7568
7569         intel_pps_get_registers(intel_dp, &regs);
7570
7571         pp_ctl = ilk_get_pp_control(intel_dp);
7572
7573         /* Ensure PPS is unlocked */
7574         if (!HAS_DDI(dev_priv))
7575                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7576
7577         pp_on = intel_de_read(dev_priv, regs.pp_on);
7578         pp_off = intel_de_read(dev_priv, regs.pp_off);
7579
7580         /* Pull timing values out of registers */
7581         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
7582         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
7583         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
7584         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
7585
7586         if (i915_mmio_reg_valid(regs.pp_div)) {
7587                 u32 pp_div;
7588
7589                 pp_div = intel_de_read(dev_priv, regs.pp_div);
7590
7591                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
7592         } else {
7593                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
7594         }
7595 }
7596
7597 static void
7598 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
7599 {
7600         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
7601                       state_name,
7602                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
7603 }
7604
7605 static void
7606 intel_pps_verify_state(struct intel_dp *intel_dp)
7607 {
7608         struct edp_power_seq hw;
7609         struct edp_power_seq *sw = &intel_dp->pps_delays;
7610
7611         intel_pps_readout_hw_state(intel_dp, &hw);
7612
7613         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
7614             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
7615                 DRM_ERROR("PPS state mismatch\n");
7616                 intel_pps_dump_state("sw", sw);
7617                 intel_pps_dump_state("hw", &hw);
7618         }
7619 }
7620
7621 static void
7622 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
7623 {
7624         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7625         struct edp_power_seq cur, vbt, spec,
7626                 *final = &intel_dp->pps_delays;
7627
7628         lockdep_assert_held(&dev_priv->pps_mutex);
7629
7630         /* already initialized? */
7631         if (final->t11_t12 != 0)
7632                 return;
7633
7634         intel_pps_readout_hw_state(intel_dp, &cur);
7635
7636         intel_pps_dump_state("cur", &cur);
7637
7638         vbt = dev_priv->vbt.edp.pps;
7639         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
7640          * of 500ms appears to be too short. Ocassionally the panel
7641          * just fails to power back on. Increasing the delay to 800ms
7642          * seems sufficient to avoid this problem.
7643          */
7644         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
7645                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
7646                 drm_dbg_kms(&dev_priv->drm,
7647                             "Increasing T12 panel delay as per the quirk to %d\n",
7648                             vbt.t11_t12);
7649         }
7650         /* T11_T12 delay is special and actually in units of 100ms, but zero
7651          * based in the hw (so we need to add 100 ms). But the sw vbt
7652          * table multiplies it with 1000 to make it in units of 100usec,
7653          * too. */
7654         vbt.t11_t12 += 100 * 10;
7655
7656         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
7657          * our hw here, which are all in 100usec. */
7658         spec.t1_t3 = 210 * 10;
7659         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
7660         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
7661         spec.t10 = 500 * 10;
7662         /* This one is special and actually in units of 100ms, but zero
7663          * based in the hw (so we need to add 100 ms). But the sw vbt
7664          * table multiplies it with 1000 to make it in units of 100usec,
7665          * too. */
7666         spec.t11_t12 = (510 + 100) * 10;
7667
7668         intel_pps_dump_state("vbt", &vbt);
7669
7670         /* Use the max of the register settings and vbt. If both are
7671          * unset, fall back to the spec limits. */
7672 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
7673                                        spec.field : \
7674                                        max(cur.field, vbt.field))
7675         assign_final(t1_t3);
7676         assign_final(t8);
7677         assign_final(t9);
7678         assign_final(t10);
7679         assign_final(t11_t12);
7680 #undef assign_final
7681
7682 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
7683         intel_dp->panel_power_up_delay = get_delay(t1_t3);
7684         intel_dp->backlight_on_delay = get_delay(t8);
7685         intel_dp->backlight_off_delay = get_delay(t9);
7686         intel_dp->panel_power_down_delay = get_delay(t10);
7687         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
7688 #undef get_delay
7689
7690         drm_dbg_kms(&dev_priv->drm,
7691                     "panel power up delay %d, power down delay %d, power cycle delay %d\n",
7692                     intel_dp->panel_power_up_delay,
7693                     intel_dp->panel_power_down_delay,
7694                     intel_dp->panel_power_cycle_delay);
7695
7696         drm_dbg_kms(&dev_priv->drm, "backlight on delay %d, off delay %d\n",
7697                     intel_dp->backlight_on_delay,
7698                     intel_dp->backlight_off_delay);
7699
7700         /*
7701          * We override the HW backlight delays to 1 because we do manual waits
7702          * on them. For T8, even BSpec recommends doing it. For T9, if we
7703          * don't do this, we'll end up waiting for the backlight off delay
7704          * twice: once when we do the manual sleep, and once when we disable
7705          * the panel and wait for the PP_STATUS bit to become zero.
7706          */
7707         final->t8 = 1;
7708         final->t9 = 1;
7709
7710         /*
7711          * HW has only a 100msec granularity for t11_t12 so round it up
7712          * accordingly.
7713          */
7714         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
7715 }
7716
7717 static void
7718 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
7719                                               bool force_disable_vdd)
7720 {
7721         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7722         u32 pp_on, pp_off, port_sel = 0;
7723         int div = RUNTIME_INFO(dev_priv)->rawclk_freq / 1000;
7724         struct pps_registers regs;
7725         enum port port = dp_to_dig_port(intel_dp)->base.port;
7726         const struct edp_power_seq *seq = &intel_dp->pps_delays;
7727
7728         lockdep_assert_held(&dev_priv->pps_mutex);
7729
7730         intel_pps_get_registers(intel_dp, &regs);
7731
7732         /*
7733          * On some VLV machines the BIOS can leave the VDD
7734          * enabled even on power sequencers which aren't
7735          * hooked up to any port. This would mess up the
7736          * power domain tracking the first time we pick
7737          * one of these power sequencers for use since
7738          * edp_panel_vdd_on() would notice that the VDD was
7739          * already on and therefore wouldn't grab the power
7740          * domain reference. Disable VDD first to avoid this.
7741          * This also avoids spuriously turning the VDD on as
7742          * soon as the new power sequencer gets initialized.
7743          */
7744         if (force_disable_vdd) {
7745                 u32 pp = ilk_get_pp_control(intel_dp);
7746
7747                 drm_WARN(&dev_priv->drm, pp & PANEL_POWER_ON,
7748                          "Panel power already on\n");
7749
7750                 if (pp & EDP_FORCE_VDD)
7751                         drm_dbg_kms(&dev_priv->drm,
7752                                     "VDD already on, disabling first\n");
7753
7754                 pp &= ~EDP_FORCE_VDD;
7755
7756                 intel_de_write(dev_priv, regs.pp_ctrl, pp);
7757         }
7758
7759         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
7760                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
7761         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
7762                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
7763
7764         /* Haswell doesn't have any port selection bits for the panel
7765          * power sequencer any more. */
7766         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7767                 port_sel = PANEL_PORT_SELECT_VLV(port);
7768         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7769                 switch (port) {
7770                 case PORT_A:
7771                         port_sel = PANEL_PORT_SELECT_DPA;
7772                         break;
7773                 case PORT_C:
7774                         port_sel = PANEL_PORT_SELECT_DPC;
7775                         break;
7776                 case PORT_D:
7777                         port_sel = PANEL_PORT_SELECT_DPD;
7778                         break;
7779                 default:
7780                         MISSING_CASE(port);
7781                         break;
7782                 }
7783         }
7784
7785         pp_on |= port_sel;
7786
7787         intel_de_write(dev_priv, regs.pp_on, pp_on);
7788         intel_de_write(dev_priv, regs.pp_off, pp_off);
7789
7790         /*
7791          * Compute the divisor for the pp clock, simply match the Bspec formula.
7792          */
7793         if (i915_mmio_reg_valid(regs.pp_div)) {
7794                 intel_de_write(dev_priv, regs.pp_div,
7795                                REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) | REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
7796         } else {
7797                 u32 pp_ctl;
7798
7799                 pp_ctl = intel_de_read(dev_priv, regs.pp_ctrl);
7800                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
7801                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
7802                 intel_de_write(dev_priv, regs.pp_ctrl, pp_ctl);
7803         }
7804
7805         drm_dbg_kms(&dev_priv->drm,
7806                     "panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
7807                     intel_de_read(dev_priv, regs.pp_on),
7808                     intel_de_read(dev_priv, regs.pp_off),
7809                     i915_mmio_reg_valid(regs.pp_div) ?
7810                     intel_de_read(dev_priv, regs.pp_div) :
7811                     (intel_de_read(dev_priv, regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
7812 }
7813
7814 static void intel_dp_pps_init(struct intel_dp *intel_dp)
7815 {
7816         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7817
7818         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7819                 vlv_initial_power_sequencer_setup(intel_dp);
7820         } else {
7821                 intel_dp_init_panel_power_sequencer(intel_dp);
7822                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
7823         }
7824 }
7825
7826 /**
7827  * intel_dp_set_drrs_state - program registers for RR switch to take effect
7828  * @dev_priv: i915 device
7829  * @crtc_state: a pointer to the active intel_crtc_state
7830  * @refresh_rate: RR to be programmed
7831  *
7832  * This function gets called when refresh rate (RR) has to be changed from
7833  * one frequency to another. Switches can be between high and low RR
7834  * supported by the panel or to any other RR based on media playback (in
7835  * this case, RR value needs to be passed from user space).
7836  *
7837  * The caller of this function needs to take a lock on dev_priv->drrs.
7838  */
7839 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
7840                                     const struct intel_crtc_state *crtc_state,
7841                                     int refresh_rate)
7842 {
7843         struct intel_dp *intel_dp = dev_priv->drrs.dp;
7844         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
7845         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
7846
7847         if (refresh_rate <= 0) {
7848                 drm_dbg_kms(&dev_priv->drm,
7849                             "Refresh rate should be positive non-zero.\n");
7850                 return;
7851         }
7852
7853         if (intel_dp == NULL) {
7854                 drm_dbg_kms(&dev_priv->drm, "DRRS not supported.\n");
7855                 return;
7856         }
7857
7858         if (!intel_crtc) {
7859                 drm_dbg_kms(&dev_priv->drm,
7860                             "DRRS: intel_crtc not initialized\n");
7861                 return;
7862         }
7863
7864         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
7865                 drm_dbg_kms(&dev_priv->drm, "Only Seamless DRRS supported.\n");
7866                 return;
7867         }
7868
7869         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
7870                         refresh_rate)
7871                 index = DRRS_LOW_RR;
7872
7873         if (index == dev_priv->drrs.refresh_rate_type) {
7874                 drm_dbg_kms(&dev_priv->drm,
7875                             "DRRS requested for previously set RR...ignoring\n");
7876                 return;
7877         }
7878
7879         if (!crtc_state->hw.active) {
7880                 drm_dbg_kms(&dev_priv->drm,
7881                             "eDP encoder disabled. CRTC not Active\n");
7882                 return;
7883         }
7884
7885         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
7886                 switch (index) {
7887                 case DRRS_HIGH_RR:
7888                         intel_dp_set_m_n(crtc_state, M1_N1);
7889                         break;
7890                 case DRRS_LOW_RR:
7891                         intel_dp_set_m_n(crtc_state, M2_N2);
7892                         break;
7893                 case DRRS_MAX_RR:
7894                 default:
7895                         drm_err(&dev_priv->drm,
7896                                 "Unsupported refreshrate type\n");
7897                 }
7898         } else if (INTEL_GEN(dev_priv) > 6) {
7899                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
7900                 u32 val;
7901
7902                 val = intel_de_read(dev_priv, reg);
7903                 if (index > DRRS_HIGH_RR) {
7904                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7905                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7906                         else
7907                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
7908                 } else {
7909                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7910                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
7911                         else
7912                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
7913                 }
7914                 intel_de_write(dev_priv, reg, val);
7915         }
7916
7917         dev_priv->drrs.refresh_rate_type = index;
7918
7919         drm_dbg_kms(&dev_priv->drm, "eDP Refresh Rate set to : %dHz\n",
7920                     refresh_rate);
7921 }
7922
7923 /**
7924  * intel_edp_drrs_enable - init drrs struct if supported
7925  * @intel_dp: DP struct
7926  * @crtc_state: A pointer to the active crtc state.
7927  *
7928  * Initializes frontbuffer_bits and drrs.dp
7929  */
7930 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7931                            const struct intel_crtc_state *crtc_state)
7932 {
7933         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7934
7935         if (!crtc_state->has_drrs) {
7936                 drm_dbg_kms(&dev_priv->drm, "Panel doesn't support DRRS\n");
7937                 return;
7938         }
7939
7940         if (dev_priv->psr.enabled) {
7941                 drm_dbg_kms(&dev_priv->drm,
7942                             "PSR enabled. Not enabling DRRS.\n");
7943                 return;
7944         }
7945
7946         mutex_lock(&dev_priv->drrs.mutex);
7947         if (dev_priv->drrs.dp) {
7948                 drm_dbg_kms(&dev_priv->drm, "DRRS already enabled\n");
7949                 goto unlock;
7950         }
7951
7952         dev_priv->drrs.busy_frontbuffer_bits = 0;
7953
7954         dev_priv->drrs.dp = intel_dp;
7955
7956 unlock:
7957         mutex_unlock(&dev_priv->drrs.mutex);
7958 }
7959
7960 /**
7961  * intel_edp_drrs_disable - Disable DRRS
7962  * @intel_dp: DP struct
7963  * @old_crtc_state: Pointer to old crtc_state.
7964  *
7965  */
7966 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7967                             const struct intel_crtc_state *old_crtc_state)
7968 {
7969         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7970
7971         if (!old_crtc_state->has_drrs)
7972                 return;
7973
7974         mutex_lock(&dev_priv->drrs.mutex);
7975         if (!dev_priv->drrs.dp) {
7976                 mutex_unlock(&dev_priv->drrs.mutex);
7977                 return;
7978         }
7979
7980         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7981                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7982                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7983
7984         dev_priv->drrs.dp = NULL;
7985         mutex_unlock(&dev_priv->drrs.mutex);
7986
7987         cancel_delayed_work_sync(&dev_priv->drrs.work);
7988 }
7989
7990 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7991 {
7992         struct drm_i915_private *dev_priv =
7993                 container_of(work, typeof(*dev_priv), drrs.work.work);
7994         struct intel_dp *intel_dp;
7995
7996         mutex_lock(&dev_priv->drrs.mutex);
7997
7998         intel_dp = dev_priv->drrs.dp;
7999
8000         if (!intel_dp)
8001                 goto unlock;
8002
8003         /*
8004          * The delayed work can race with an invalidate hence we need to
8005          * recheck.
8006          */
8007
8008         if (dev_priv->drrs.busy_frontbuffer_bits)
8009                 goto unlock;
8010
8011         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
8012                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
8013
8014                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
8015                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
8016         }
8017
8018 unlock:
8019         mutex_unlock(&dev_priv->drrs.mutex);
8020 }
8021
8022 /**
8023  * intel_edp_drrs_invalidate - Disable Idleness DRRS
8024  * @dev_priv: i915 device
8025  * @frontbuffer_bits: frontbuffer plane tracking bits
8026  *
8027  * This function gets called everytime rendering on the given planes start.
8028  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
8029  *
8030  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
8031  */
8032 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
8033                                unsigned int frontbuffer_bits)
8034 {
8035         struct drm_crtc *crtc;
8036         enum pipe pipe;
8037
8038         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
8039                 return;
8040
8041         cancel_delayed_work(&dev_priv->drrs.work);
8042
8043         mutex_lock(&dev_priv->drrs.mutex);
8044         if (!dev_priv->drrs.dp) {
8045                 mutex_unlock(&dev_priv->drrs.mutex);
8046                 return;
8047         }
8048
8049         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
8050         pipe = to_intel_crtc(crtc)->pipe;
8051
8052         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
8053         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
8054
8055         /* invalidate means busy screen hence upclock */
8056         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
8057                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
8058                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
8059
8060         mutex_unlock(&dev_priv->drrs.mutex);
8061 }
8062
8063 /**
8064  * intel_edp_drrs_flush - Restart Idleness DRRS
8065  * @dev_priv: i915 device
8066  * @frontbuffer_bits: frontbuffer plane tracking bits
8067  *
8068  * This function gets called every time rendering on the given planes has
8069  * completed or flip on a crtc is completed. So DRRS should be upclocked
8070  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
8071  * if no other planes are dirty.
8072  *
8073  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
8074  */
8075 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
8076                           unsigned int frontbuffer_bits)
8077 {
8078         struct drm_crtc *crtc;
8079         enum pipe pipe;
8080
8081         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
8082                 return;
8083
8084         cancel_delayed_work(&dev_priv->drrs.work);
8085
8086         mutex_lock(&dev_priv->drrs.mutex);
8087         if (!dev_priv->drrs.dp) {
8088                 mutex_unlock(&dev_priv->drrs.mutex);
8089                 return;
8090         }
8091
8092         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
8093         pipe = to_intel_crtc(crtc)->pipe;
8094
8095         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
8096         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
8097
8098         /* flush means busy screen hence upclock */
8099         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
8100                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
8101                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
8102
8103         /*
8104          * flush also means no more activity hence schedule downclock, if all
8105          * other fbs are quiescent too
8106          */
8107         if (!dev_priv->drrs.busy_frontbuffer_bits)
8108                 schedule_delayed_work(&dev_priv->drrs.work,
8109                                 msecs_to_jiffies(1000));
8110         mutex_unlock(&dev_priv->drrs.mutex);
8111 }
8112
8113 /**
8114  * DOC: Display Refresh Rate Switching (DRRS)
8115  *
8116  * Display Refresh Rate Switching (DRRS) is a power conservation feature
8117  * which enables swtching between low and high refresh rates,
8118  * dynamically, based on the usage scenario. This feature is applicable
8119  * for internal panels.
8120  *
8121  * Indication that the panel supports DRRS is given by the panel EDID, which
8122  * would list multiple refresh rates for one resolution.
8123  *
8124  * DRRS is of 2 types - static and seamless.
8125  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
8126  * (may appear as a blink on screen) and is used in dock-undock scenario.
8127  * Seamless DRRS involves changing RR without any visual effect to the user
8128  * and can be used during normal system usage. This is done by programming
8129  * certain registers.
8130  *
8131  * Support for static/seamless DRRS may be indicated in the VBT based on
8132  * inputs from the panel spec.
8133  *
8134  * DRRS saves power by switching to low RR based on usage scenarios.
8135  *
8136  * The implementation is based on frontbuffer tracking implementation.  When
8137  * there is a disturbance on the screen triggered by user activity or a periodic
8138  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
8139  * no movement on screen, after a timeout of 1 second, a switch to low RR is
8140  * made.
8141  *
8142  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
8143  * and intel_edp_drrs_flush() are called.
8144  *
8145  * DRRS can be further extended to support other internal panels and also
8146  * the scenario of video playback wherein RR is set based on the rate
8147  * requested by userspace.
8148  */
8149
8150 /**
8151  * intel_dp_drrs_init - Init basic DRRS work and mutex.
8152  * @connector: eDP connector
8153  * @fixed_mode: preferred mode of panel
8154  *
8155  * This function is  called only once at driver load to initialize basic
8156  * DRRS stuff.
8157  *
8158  * Returns:
8159  * Downclock mode if panel supports it, else return NULL.
8160  * DRRS support is determined by the presence of downclock mode (apart
8161  * from VBT setting).
8162  */
8163 static struct drm_display_mode *
8164 intel_dp_drrs_init(struct intel_connector *connector,
8165                    struct drm_display_mode *fixed_mode)
8166 {
8167         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
8168         struct drm_display_mode *downclock_mode = NULL;
8169
8170         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
8171         mutex_init(&dev_priv->drrs.mutex);
8172
8173         if (INTEL_GEN(dev_priv) <= 6) {
8174                 drm_dbg_kms(&dev_priv->drm,
8175                             "DRRS supported for Gen7 and above\n");
8176                 return NULL;
8177         }
8178
8179         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
8180                 drm_dbg_kms(&dev_priv->drm, "VBT doesn't support DRRS\n");
8181                 return NULL;
8182         }
8183
8184         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
8185         if (!downclock_mode) {
8186                 drm_dbg_kms(&dev_priv->drm,
8187                             "Downclock mode is not found. DRRS not supported\n");
8188                 return NULL;
8189         }
8190
8191         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
8192
8193         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
8194         drm_dbg_kms(&dev_priv->drm,
8195                     "seamless DRRS supported for eDP panel.\n");
8196         return downclock_mode;
8197 }
8198
8199 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
8200                                      struct intel_connector *intel_connector)
8201 {
8202         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
8203         struct drm_device *dev = &dev_priv->drm;
8204         struct drm_connector *connector = &intel_connector->base;
8205         struct drm_display_mode *fixed_mode = NULL;
8206         struct drm_display_mode *downclock_mode = NULL;
8207         bool has_dpcd;
8208         enum pipe pipe = INVALID_PIPE;
8209         intel_wakeref_t wakeref;
8210         struct edid *edid;
8211
8212         if (!intel_dp_is_edp(intel_dp))
8213                 return true;
8214
8215         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
8216
8217         /*
8218          * On IBX/CPT we may get here with LVDS already registered. Since the
8219          * driver uses the only internal power sequencer available for both
8220          * eDP and LVDS bail out early in this case to prevent interfering
8221          * with an already powered-on LVDS power sequencer.
8222          */
8223         if (intel_get_lvds_encoder(dev_priv)) {
8224                 drm_WARN_ON(dev,
8225                             !(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
8226                 drm_info(&dev_priv->drm,
8227                          "LVDS was detected, not registering eDP\n");
8228
8229                 return false;
8230         }
8231
8232         with_pps_lock(intel_dp, wakeref) {
8233                 intel_dp_init_panel_power_timestamps(intel_dp);
8234                 intel_dp_pps_init(intel_dp);
8235                 intel_edp_panel_vdd_sanitize(intel_dp);
8236         }
8237
8238         /* Cache DPCD and EDID for edp. */
8239         has_dpcd = intel_edp_init_dpcd(intel_dp);
8240
8241         if (!has_dpcd) {
8242                 /* if this fails, presume the device is a ghost */
8243                 drm_info(&dev_priv->drm,
8244                          "failed to retrieve link info, disabling eDP\n");
8245                 goto out_vdd_off;
8246         }
8247
8248         mutex_lock(&dev->mode_config.mutex);
8249         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
8250         if (edid) {
8251                 if (drm_add_edid_modes(connector, edid)) {
8252                         drm_connector_update_edid_property(connector, edid);
8253                         intel_dp->edid_quirks = drm_dp_get_edid_quirks(edid);
8254                 } else {
8255                         kfree(edid);
8256                         edid = ERR_PTR(-EINVAL);
8257                 }
8258         } else {
8259                 edid = ERR_PTR(-ENOENT);
8260         }
8261         intel_connector->edid = edid;
8262
8263         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
8264         if (fixed_mode)
8265                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
8266
8267         /* fallback to VBT if available for eDP */
8268         if (!fixed_mode)
8269                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
8270         mutex_unlock(&dev->mode_config.mutex);
8271
8272         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
8273                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
8274                 register_reboot_notifier(&intel_dp->edp_notifier);
8275
8276                 /*
8277                  * Figure out the current pipe for the initial backlight setup.
8278                  * If the current pipe isn't valid, try the PPS pipe, and if that
8279                  * fails just assume pipe A.
8280                  */
8281                 pipe = vlv_active_pipe(intel_dp);
8282
8283                 if (pipe != PIPE_A && pipe != PIPE_B)
8284                         pipe = intel_dp->pps_pipe;
8285
8286                 if (pipe != PIPE_A && pipe != PIPE_B)
8287                         pipe = PIPE_A;
8288
8289                 drm_dbg_kms(&dev_priv->drm,
8290                             "using pipe %c for initial backlight setup\n",
8291                             pipe_name(pipe));
8292         }
8293
8294         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
8295         intel_connector->panel.backlight.power = intel_edp_backlight_power;
8296         intel_panel_setup_backlight(connector, pipe);
8297
8298         if (fixed_mode) {
8299                 drm_connector_set_panel_orientation_with_quirk(connector,
8300                                 dev_priv->vbt.orientation,
8301                                 fixed_mode->hdisplay, fixed_mode->vdisplay);
8302         }
8303
8304         return true;
8305
8306 out_vdd_off:
8307         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
8308         /*
8309          * vdd might still be enabled do to the delayed vdd off.
8310          * Make sure vdd is actually turned off here.
8311          */
8312         with_pps_lock(intel_dp, wakeref)
8313                 edp_panel_vdd_off_sync(intel_dp);
8314
8315         return false;
8316 }
8317
8318 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
8319 {
8320         struct intel_connector *intel_connector;
8321         struct drm_connector *connector;
8322
8323         intel_connector = container_of(work, typeof(*intel_connector),
8324                                        modeset_retry_work);
8325         connector = &intel_connector->base;
8326         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
8327                       connector->name);
8328
8329         /* Grab the locks before changing connector property*/
8330         mutex_lock(&connector->dev->mode_config.mutex);
8331         /* Set connector link status to BAD and send a Uevent to notify
8332          * userspace to do a modeset.
8333          */
8334         drm_connector_set_link_status_property(connector,
8335                                                DRM_MODE_LINK_STATUS_BAD);
8336         mutex_unlock(&connector->dev->mode_config.mutex);
8337         /* Send Hotplug uevent so userspace can reprobe */
8338         drm_kms_helper_hotplug_event(connector->dev);
8339 }
8340
8341 bool
8342 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
8343                         struct intel_connector *intel_connector)
8344 {
8345         struct drm_connector *connector = &intel_connector->base;
8346         struct intel_dp *intel_dp = &intel_dig_port->dp;
8347         struct intel_encoder *intel_encoder = &intel_dig_port->base;
8348         struct drm_device *dev = intel_encoder->base.dev;
8349         struct drm_i915_private *dev_priv = to_i915(dev);
8350         enum port port = intel_encoder->port;
8351         enum phy phy = intel_port_to_phy(dev_priv, port);
8352         int type;
8353
8354         /* Initialize the work for modeset in case of link train failure */
8355         INIT_WORK(&intel_connector->modeset_retry_work,
8356                   intel_dp_modeset_retry_work_fn);
8357
8358         if (drm_WARN(dev, intel_dig_port->max_lanes < 1,
8359                      "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
8360                      intel_dig_port->max_lanes, intel_encoder->base.base.id,
8361                      intel_encoder->base.name))
8362                 return false;
8363
8364         intel_dp_set_source_rates(intel_dp);
8365
8366         intel_dp->reset_link_params = true;
8367         intel_dp->pps_pipe = INVALID_PIPE;
8368         intel_dp->active_pipe = INVALID_PIPE;
8369
8370         /* Preserve the current hw state. */
8371         intel_dp->DP = intel_de_read(dev_priv, intel_dp->output_reg);
8372         intel_dp->attached_connector = intel_connector;
8373
8374         if (intel_dp_is_port_edp(dev_priv, port)) {
8375                 /*
8376                  * Currently we don't support eDP on TypeC ports, although in
8377                  * theory it could work on TypeC legacy ports.
8378                  */
8379                 drm_WARN_ON(dev, intel_phy_is_tc(dev_priv, phy));
8380                 type = DRM_MODE_CONNECTOR_eDP;
8381         } else {
8382                 type = DRM_MODE_CONNECTOR_DisplayPort;
8383         }
8384
8385         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
8386                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
8387
8388         /*
8389          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
8390          * for DP the encoder type can be set by the caller to
8391          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
8392          */
8393         if (type == DRM_MODE_CONNECTOR_eDP)
8394                 intel_encoder->type = INTEL_OUTPUT_EDP;
8395
8396         /* eDP only on port B and/or C on vlv/chv */
8397         if (drm_WARN_ON(dev, (IS_VALLEYVIEW(dev_priv) ||
8398                               IS_CHERRYVIEW(dev_priv)) &&
8399                         intel_dp_is_edp(intel_dp) &&
8400                         port != PORT_B && port != PORT_C))
8401                 return false;
8402
8403         drm_dbg_kms(&dev_priv->drm,
8404                     "Adding %s connector on [ENCODER:%d:%s]\n",
8405                     type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
8406                     intel_encoder->base.base.id, intel_encoder->base.name);
8407
8408         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
8409         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
8410
8411         if (!HAS_GMCH(dev_priv))
8412                 connector->interlace_allowed = true;
8413         connector->doublescan_allowed = 0;
8414
8415         if (INTEL_GEN(dev_priv) >= 11)
8416                 connector->ycbcr_420_allowed = true;
8417
8418         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
8419         intel_connector->polled = DRM_CONNECTOR_POLL_HPD;
8420
8421         intel_dp_aux_init(intel_dp);
8422
8423         intel_connector_attach_encoder(intel_connector, intel_encoder);
8424
8425         if (HAS_DDI(dev_priv))
8426                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
8427         else
8428                 intel_connector->get_hw_state = intel_connector_get_hw_state;
8429
8430         /* init MST on ports that can support it */
8431         intel_dp_mst_encoder_init(intel_dig_port,
8432                                   intel_connector->base.base.id);
8433
8434         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
8435                 intel_dp_aux_fini(intel_dp);
8436                 intel_dp_mst_encoder_cleanup(intel_dig_port);
8437                 goto fail;
8438         }
8439
8440         intel_dp_add_properties(intel_dp, connector);
8441
8442         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
8443                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
8444                 if (ret)
8445                         drm_dbg_kms(&dev_priv->drm,
8446                                     "HDCP init failed, skipping.\n");
8447         }
8448
8449         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
8450          * 0xd.  Failure to do so will result in spurious interrupts being
8451          * generated on the port when a cable is not attached.
8452          */
8453         if (IS_G45(dev_priv)) {
8454                 u32 temp = intel_de_read(dev_priv, PEG_BAND_GAP_DATA);
8455                 intel_de_write(dev_priv, PEG_BAND_GAP_DATA,
8456                                (temp & ~0xf) | 0xd);
8457         }
8458
8459         return true;
8460
8461 fail:
8462         drm_connector_cleanup(connector);
8463
8464         return false;
8465 }
8466
8467 bool intel_dp_init(struct drm_i915_private *dev_priv,
8468                    i915_reg_t output_reg,
8469                    enum port port)
8470 {
8471         struct intel_digital_port *intel_dig_port;
8472         struct intel_encoder *intel_encoder;
8473         struct drm_encoder *encoder;
8474         struct intel_connector *intel_connector;
8475
8476         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
8477         if (!intel_dig_port)
8478                 return false;
8479
8480         intel_connector = intel_connector_alloc();
8481         if (!intel_connector)
8482                 goto err_connector_alloc;
8483
8484         intel_encoder = &intel_dig_port->base;
8485         encoder = &intel_encoder->base;
8486
8487         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
8488                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
8489                              "DP %c", port_name(port)))
8490                 goto err_encoder_init;
8491
8492         intel_encoder->hotplug = intel_dp_hotplug;
8493         intel_encoder->compute_config = intel_dp_compute_config;
8494         intel_encoder->get_hw_state = intel_dp_get_hw_state;
8495         intel_encoder->get_config = intel_dp_get_config;
8496         intel_encoder->update_pipe = intel_panel_update_backlight;
8497         intel_encoder->suspend = intel_dp_encoder_suspend;
8498         if (IS_CHERRYVIEW(dev_priv)) {
8499                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
8500                 intel_encoder->pre_enable = chv_pre_enable_dp;
8501                 intel_encoder->enable = vlv_enable_dp;
8502                 intel_encoder->disable = vlv_disable_dp;
8503                 intel_encoder->post_disable = chv_post_disable_dp;
8504                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
8505         } else if (IS_VALLEYVIEW(dev_priv)) {
8506                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
8507                 intel_encoder->pre_enable = vlv_pre_enable_dp;
8508                 intel_encoder->enable = vlv_enable_dp;
8509                 intel_encoder->disable = vlv_disable_dp;
8510                 intel_encoder->post_disable = vlv_post_disable_dp;
8511         } else {
8512                 intel_encoder->pre_enable = g4x_pre_enable_dp;
8513                 intel_encoder->enable = g4x_enable_dp;
8514                 intel_encoder->disable = g4x_disable_dp;
8515                 intel_encoder->post_disable = g4x_post_disable_dp;
8516         }
8517
8518         intel_dig_port->dp.output_reg = output_reg;
8519         intel_dig_port->max_lanes = 4;
8520         intel_dig_port->dp.regs.dp_tp_ctl = DP_TP_CTL(port);
8521         intel_dig_port->dp.regs.dp_tp_status = DP_TP_STATUS(port);
8522
8523         intel_encoder->type = INTEL_OUTPUT_DP;
8524         intel_encoder->power_domain = intel_port_to_power_domain(port);
8525         if (IS_CHERRYVIEW(dev_priv)) {
8526                 if (port == PORT_D)
8527                         intel_encoder->pipe_mask = BIT(PIPE_C);
8528                 else
8529                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
8530         } else {
8531                 intel_encoder->pipe_mask = ~0;
8532         }
8533         intel_encoder->cloneable = 0;
8534         intel_encoder->port = port;
8535
8536         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
8537
8538         if (port != PORT_A)
8539                 intel_infoframe_init(intel_dig_port);
8540
8541         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
8542         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
8543                 goto err_init_connector;
8544
8545         return true;
8546
8547 err_init_connector:
8548         drm_encoder_cleanup(encoder);
8549 err_encoder_init:
8550         kfree(intel_connector);
8551 err_connector_alloc:
8552         kfree(intel_dig_port);
8553         return false;
8554 }
8555
8556 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
8557 {
8558         struct intel_encoder *encoder;
8559
8560         for_each_intel_encoder(&dev_priv->drm, encoder) {
8561                 struct intel_dp *intel_dp;
8562
8563                 if (encoder->type != INTEL_OUTPUT_DDI)
8564                         continue;
8565
8566                 intel_dp = enc_to_intel_dp(encoder);
8567
8568                 if (!intel_dp->can_mst)
8569                         continue;
8570
8571                 if (intel_dp->is_mst)
8572                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
8573         }
8574 }
8575
8576 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
8577 {
8578         struct intel_encoder *encoder;
8579
8580         for_each_intel_encoder(&dev_priv->drm, encoder) {
8581                 struct intel_dp *intel_dp;
8582                 int ret;
8583
8584                 if (encoder->type != INTEL_OUTPUT_DDI)
8585                         continue;
8586
8587                 intel_dp = enc_to_intel_dp(encoder);
8588
8589                 if (!intel_dp->can_mst)
8590                         continue;
8591
8592                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
8593                                                      true);
8594                 if (ret) {
8595                         intel_dp->is_mst = false;
8596                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
8597                                                         false);
8598                 }
8599         }
8600 }