drm/i915/ehl: Make icp_digital_port_connected() use phy instead of port
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_dp.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Keith Packard <keithp@keithp.com>
25  *
26  */
27
28 #include <linux/export.h>
29 #include <linux/i2c.h>
30 #include <linux/notifier.h>
31 #include <linux/reboot.h>
32 #include <linux/slab.h>
33 #include <linux/types.h>
34
35 #include <asm/byteorder.h>
36
37 #include <drm/drm_atomic_helper.h>
38 #include <drm/drm_crtc.h>
39 #include <drm/drm_dp_helper.h>
40 #include <drm/drm_edid.h>
41 #include <drm/drm_hdcp.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/i915_drm.h>
44
45 #include "i915_debugfs.h"
46 #include "i915_drv.h"
47 #include "i915_trace.h"
48 #include "intel_atomic.h"
49 #include "intel_audio.h"
50 #include "intel_connector.h"
51 #include "intel_ddi.h"
52 #include "intel_display_types.h"
53 #include "intel_dp.h"
54 #include "intel_dp_link_training.h"
55 #include "intel_dp_mst.h"
56 #include "intel_dpio_phy.h"
57 #include "intel_fifo_underrun.h"
58 #include "intel_hdcp.h"
59 #include "intel_hdmi.h"
60 #include "intel_hotplug.h"
61 #include "intel_lspcon.h"
62 #include "intel_lvds.h"
63 #include "intel_panel.h"
64 #include "intel_psr.h"
65 #include "intel_sideband.h"
66 #include "intel_tc.h"
67 #include "intel_vdsc.h"
68
69 #define DP_DPRX_ESI_LEN 14
70
71 /* DP DSC throughput values used for slice count calculations KPixels/s */
72 #define DP_DSC_PEAK_PIXEL_RATE                  2720000
73 #define DP_DSC_MAX_ENC_THROUGHPUT_0             340000
74 #define DP_DSC_MAX_ENC_THROUGHPUT_1             400000
75
76 /* DP DSC FEC Overhead factor = 1/(0.972261) */
77 #define DP_DSC_FEC_OVERHEAD_FACTOR              972261
78
79 /* Compliance test status bits  */
80 #define INTEL_DP_RESOLUTION_SHIFT_MASK  0
81 #define INTEL_DP_RESOLUTION_PREFERRED   (1 << INTEL_DP_RESOLUTION_SHIFT_MASK)
82 #define INTEL_DP_RESOLUTION_STANDARD    (2 << INTEL_DP_RESOLUTION_SHIFT_MASK)
83 #define INTEL_DP_RESOLUTION_FAILSAFE    (3 << INTEL_DP_RESOLUTION_SHIFT_MASK)
84
85 struct dp_link_dpll {
86         int clock;
87         struct dpll dpll;
88 };
89
90 static const struct dp_link_dpll g4x_dpll[] = {
91         { 162000,
92                 { .p1 = 2, .p2 = 10, .n = 2, .m1 = 23, .m2 = 8 } },
93         { 270000,
94                 { .p1 = 1, .p2 = 10, .n = 1, .m1 = 14, .m2 = 2 } }
95 };
96
97 static const struct dp_link_dpll pch_dpll[] = {
98         { 162000,
99                 { .p1 = 2, .p2 = 10, .n = 1, .m1 = 12, .m2 = 9 } },
100         { 270000,
101                 { .p1 = 1, .p2 = 10, .n = 2, .m1 = 14, .m2 = 8 } }
102 };
103
104 static const struct dp_link_dpll vlv_dpll[] = {
105         { 162000,
106                 { .p1 = 3, .p2 = 2, .n = 5, .m1 = 3, .m2 = 81 } },
107         { 270000,
108                 { .p1 = 2, .p2 = 2, .n = 1, .m1 = 2, .m2 = 27 } }
109 };
110
111 /*
112  * CHV supports eDP 1.4 that have  more link rates.
113  * Below only provides the fixed rate but exclude variable rate.
114  */
115 static const struct dp_link_dpll chv_dpll[] = {
116         /*
117          * CHV requires to program fractional division for m2.
118          * m2 is stored in fixed point format using formula below
119          * (m2_int << 22) | m2_fraction
120          */
121         { 162000,       /* m2_int = 32, m2_fraction = 1677722 */
122                 { .p1 = 4, .p2 = 2, .n = 1, .m1 = 2, .m2 = 0x819999a } },
123         { 270000,       /* m2_int = 27, m2_fraction = 0 */
124                 { .p1 = 4, .p2 = 1, .n = 1, .m1 = 2, .m2 = 0x6c00000 } },
125 };
126
127 /* Constants for DP DSC configurations */
128 static const u8 valid_dsc_bpp[] = {6, 8, 10, 12, 15};
129
130 /* With Single pipe configuration, HW is capable of supporting maximum
131  * of 4 slices per line.
132  */
133 static const u8 valid_dsc_slicecount[] = {1, 2, 4};
134
135 /**
136  * intel_dp_is_edp - is the given port attached to an eDP panel (either CPU or PCH)
137  * @intel_dp: DP struct
138  *
139  * If a CPU or PCH DP output is attached to an eDP panel, this function
140  * will return true, and false otherwise.
141  */
142 bool intel_dp_is_edp(struct intel_dp *intel_dp)
143 {
144         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
145
146         return intel_dig_port->base.type == INTEL_OUTPUT_EDP;
147 }
148
149 static struct intel_dp *intel_attached_dp(struct drm_connector *connector)
150 {
151         return enc_to_intel_dp(&intel_attached_encoder(connector)->base);
152 }
153
154 static void intel_dp_link_down(struct intel_encoder *encoder,
155                                const struct intel_crtc_state *old_crtc_state);
156 static bool edp_panel_vdd_on(struct intel_dp *intel_dp);
157 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync);
158 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
159                                            const struct intel_crtc_state *crtc_state);
160 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
161                                       enum pipe pipe);
162 static void intel_dp_unset_edid(struct intel_dp *intel_dp);
163
164 /* update sink rates from dpcd */
165 static void intel_dp_set_sink_rates(struct intel_dp *intel_dp)
166 {
167         static const int dp_rates[] = {
168                 162000, 270000, 540000, 810000
169         };
170         int i, max_rate;
171
172         max_rate = drm_dp_bw_code_to_link_rate(intel_dp->dpcd[DP_MAX_LINK_RATE]);
173
174         for (i = 0; i < ARRAY_SIZE(dp_rates); i++) {
175                 if (dp_rates[i] > max_rate)
176                         break;
177                 intel_dp->sink_rates[i] = dp_rates[i];
178         }
179
180         intel_dp->num_sink_rates = i;
181 }
182
183 /* Get length of rates array potentially limited by max_rate. */
184 static int intel_dp_rate_limit_len(const int *rates, int len, int max_rate)
185 {
186         int i;
187
188         /* Limit results by potentially reduced max rate */
189         for (i = 0; i < len; i++) {
190                 if (rates[len - i - 1] <= max_rate)
191                         return len - i;
192         }
193
194         return 0;
195 }
196
197 /* Get length of common rates array potentially limited by max_rate. */
198 static int intel_dp_common_len_rate_limit(const struct intel_dp *intel_dp,
199                                           int max_rate)
200 {
201         return intel_dp_rate_limit_len(intel_dp->common_rates,
202                                        intel_dp->num_common_rates, max_rate);
203 }
204
205 /* Theoretical max between source and sink */
206 static int intel_dp_max_common_rate(struct intel_dp *intel_dp)
207 {
208         return intel_dp->common_rates[intel_dp->num_common_rates - 1];
209 }
210
211 /* Theoretical max between source and sink */
212 static int intel_dp_max_common_lane_count(struct intel_dp *intel_dp)
213 {
214         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
215         int source_max = intel_dig_port->max_lanes;
216         int sink_max = drm_dp_max_lane_count(intel_dp->dpcd);
217         int fia_max = intel_tc_port_fia_max_lane_count(intel_dig_port);
218
219         return min3(source_max, sink_max, fia_max);
220 }
221
222 int intel_dp_max_lane_count(struct intel_dp *intel_dp)
223 {
224         return intel_dp->max_link_lane_count;
225 }
226
227 int
228 intel_dp_link_required(int pixel_clock, int bpp)
229 {
230         /* pixel_clock is in kHz, divide bpp by 8 for bit to Byte conversion */
231         return DIV_ROUND_UP(pixel_clock * bpp, 8);
232 }
233
234 int
235 intel_dp_max_data_rate(int max_link_clock, int max_lanes)
236 {
237         /* max_link_clock is the link symbol clock (LS_Clk) in kHz and not the
238          * link rate that is generally expressed in Gbps. Since, 8 bits of data
239          * is transmitted every LS_Clk per lane, there is no need to account for
240          * the channel encoding that is done in the PHY layer here.
241          */
242
243         return max_link_clock * max_lanes;
244 }
245
246 static int
247 intel_dp_downstream_max_dotclock(struct intel_dp *intel_dp)
248 {
249         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
250         struct intel_encoder *encoder = &intel_dig_port->base;
251         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
252         int max_dotclk = dev_priv->max_dotclk_freq;
253         int ds_max_dotclk;
254
255         int type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
256
257         if (type != DP_DS_PORT_TYPE_VGA)
258                 return max_dotclk;
259
260         ds_max_dotclk = drm_dp_downstream_max_clock(intel_dp->dpcd,
261                                                     intel_dp->downstream_ports);
262
263         if (ds_max_dotclk != 0)
264                 max_dotclk = min(max_dotclk, ds_max_dotclk);
265
266         return max_dotclk;
267 }
268
269 static int cnl_max_source_rate(struct intel_dp *intel_dp)
270 {
271         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
272         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
273         enum port port = dig_port->base.port;
274
275         u32 voltage = I915_READ(CNL_PORT_COMP_DW3) & VOLTAGE_INFO_MASK;
276
277         /* Low voltage SKUs are limited to max of 5.4G */
278         if (voltage == VOLTAGE_INFO_0_85V)
279                 return 540000;
280
281         /* For this SKU 8.1G is supported in all ports */
282         if (IS_CNL_WITH_PORT_F(dev_priv))
283                 return 810000;
284
285         /* For other SKUs, max rate on ports A and D is 5.4G */
286         if (port == PORT_A || port == PORT_D)
287                 return 540000;
288
289         return 810000;
290 }
291
292 static int icl_max_source_rate(struct intel_dp *intel_dp)
293 {
294         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
295         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
296         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
297
298         if (intel_phy_is_combo(dev_priv, phy) &&
299             !IS_ELKHARTLAKE(dev_priv) &&
300             !intel_dp_is_edp(intel_dp))
301                 return 540000;
302
303         return 810000;
304 }
305
306 static void
307 intel_dp_set_source_rates(struct intel_dp *intel_dp)
308 {
309         /* The values must be in increasing order */
310         static const int cnl_rates[] = {
311                 162000, 216000, 270000, 324000, 432000, 540000, 648000, 810000
312         };
313         static const int bxt_rates[] = {
314                 162000, 216000, 243000, 270000, 324000, 432000, 540000
315         };
316         static const int skl_rates[] = {
317                 162000, 216000, 270000, 324000, 432000, 540000
318         };
319         static const int hsw_rates[] = {
320                 162000, 270000, 540000
321         };
322         static const int g4x_rates[] = {
323                 162000, 270000
324         };
325         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
326         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
327         const struct ddi_vbt_port_info *info =
328                 &dev_priv->vbt.ddi_port_info[dig_port->base.port];
329         const int *source_rates;
330         int size, max_rate = 0, vbt_max_rate = info->dp_max_link_rate;
331
332         /* This should only be done once */
333         WARN_ON(intel_dp->source_rates || intel_dp->num_source_rates);
334
335         if (INTEL_GEN(dev_priv) >= 10) {
336                 source_rates = cnl_rates;
337                 size = ARRAY_SIZE(cnl_rates);
338                 if (IS_GEN(dev_priv, 10))
339                         max_rate = cnl_max_source_rate(intel_dp);
340                 else
341                         max_rate = icl_max_source_rate(intel_dp);
342         } else if (IS_GEN9_LP(dev_priv)) {
343                 source_rates = bxt_rates;
344                 size = ARRAY_SIZE(bxt_rates);
345         } else if (IS_GEN9_BC(dev_priv)) {
346                 source_rates = skl_rates;
347                 size = ARRAY_SIZE(skl_rates);
348         } else if ((IS_HASWELL(dev_priv) && !IS_HSW_ULX(dev_priv)) ||
349                    IS_BROADWELL(dev_priv)) {
350                 source_rates = hsw_rates;
351                 size = ARRAY_SIZE(hsw_rates);
352         } else {
353                 source_rates = g4x_rates;
354                 size = ARRAY_SIZE(g4x_rates);
355         }
356
357         if (max_rate && vbt_max_rate)
358                 max_rate = min(max_rate, vbt_max_rate);
359         else if (vbt_max_rate)
360                 max_rate = vbt_max_rate;
361
362         if (max_rate)
363                 size = intel_dp_rate_limit_len(source_rates, size, max_rate);
364
365         intel_dp->source_rates = source_rates;
366         intel_dp->num_source_rates = size;
367 }
368
369 static int intersect_rates(const int *source_rates, int source_len,
370                            const int *sink_rates, int sink_len,
371                            int *common_rates)
372 {
373         int i = 0, j = 0, k = 0;
374
375         while (i < source_len && j < sink_len) {
376                 if (source_rates[i] == sink_rates[j]) {
377                         if (WARN_ON(k >= DP_MAX_SUPPORTED_RATES))
378                                 return k;
379                         common_rates[k] = source_rates[i];
380                         ++k;
381                         ++i;
382                         ++j;
383                 } else if (source_rates[i] < sink_rates[j]) {
384                         ++i;
385                 } else {
386                         ++j;
387                 }
388         }
389         return k;
390 }
391
392 /* return index of rate in rates array, or -1 if not found */
393 static int intel_dp_rate_index(const int *rates, int len, int rate)
394 {
395         int i;
396
397         for (i = 0; i < len; i++)
398                 if (rate == rates[i])
399                         return i;
400
401         return -1;
402 }
403
404 static void intel_dp_set_common_rates(struct intel_dp *intel_dp)
405 {
406         WARN_ON(!intel_dp->num_source_rates || !intel_dp->num_sink_rates);
407
408         intel_dp->num_common_rates = intersect_rates(intel_dp->source_rates,
409                                                      intel_dp->num_source_rates,
410                                                      intel_dp->sink_rates,
411                                                      intel_dp->num_sink_rates,
412                                                      intel_dp->common_rates);
413
414         /* Paranoia, there should always be something in common. */
415         if (WARN_ON(intel_dp->num_common_rates == 0)) {
416                 intel_dp->common_rates[0] = 162000;
417                 intel_dp->num_common_rates = 1;
418         }
419 }
420
421 static bool intel_dp_link_params_valid(struct intel_dp *intel_dp, int link_rate,
422                                        u8 lane_count)
423 {
424         /*
425          * FIXME: we need to synchronize the current link parameters with
426          * hardware readout. Currently fast link training doesn't work on
427          * boot-up.
428          */
429         if (link_rate == 0 ||
430             link_rate > intel_dp->max_link_rate)
431                 return false;
432
433         if (lane_count == 0 ||
434             lane_count > intel_dp_max_lane_count(intel_dp))
435                 return false;
436
437         return true;
438 }
439
440 static bool intel_dp_can_link_train_fallback_for_edp(struct intel_dp *intel_dp,
441                                                      int link_rate,
442                                                      u8 lane_count)
443 {
444         const struct drm_display_mode *fixed_mode =
445                 intel_dp->attached_connector->panel.fixed_mode;
446         int mode_rate, max_rate;
447
448         mode_rate = intel_dp_link_required(fixed_mode->clock, 18);
449         max_rate = intel_dp_max_data_rate(link_rate, lane_count);
450         if (mode_rate > max_rate)
451                 return false;
452
453         return true;
454 }
455
456 int intel_dp_get_link_train_fallback_values(struct intel_dp *intel_dp,
457                                             int link_rate, u8 lane_count)
458 {
459         int index;
460
461         index = intel_dp_rate_index(intel_dp->common_rates,
462                                     intel_dp->num_common_rates,
463                                     link_rate);
464         if (index > 0) {
465                 if (intel_dp_is_edp(intel_dp) &&
466                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
467                                                               intel_dp->common_rates[index - 1],
468                                                               lane_count)) {
469                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
470                         return 0;
471                 }
472                 intel_dp->max_link_rate = intel_dp->common_rates[index - 1];
473                 intel_dp->max_link_lane_count = lane_count;
474         } else if (lane_count > 1) {
475                 if (intel_dp_is_edp(intel_dp) &&
476                     !intel_dp_can_link_train_fallback_for_edp(intel_dp,
477                                                               intel_dp_max_common_rate(intel_dp),
478                                                               lane_count >> 1)) {
479                         DRM_DEBUG_KMS("Retrying Link training for eDP with same parameters\n");
480                         return 0;
481                 }
482                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
483                 intel_dp->max_link_lane_count = lane_count >> 1;
484         } else {
485                 DRM_ERROR("Link Training Unsuccessful\n");
486                 return -1;
487         }
488
489         return 0;
490 }
491
492 u32 intel_dp_mode_to_fec_clock(u32 mode_clock)
493 {
494         return div_u64(mul_u32_u32(mode_clock, 1000000U),
495                        DP_DSC_FEC_OVERHEAD_FACTOR);
496 }
497
498 static int
499 small_joiner_ram_size_bits(struct drm_i915_private *i915)
500 {
501         if (INTEL_GEN(i915) >= 11)
502                 return 7680 * 8;
503         else
504                 return 6144 * 8;
505 }
506
507 static u16 intel_dp_dsc_get_output_bpp(struct drm_i915_private *i915,
508                                        u32 link_clock, u32 lane_count,
509                                        u32 mode_clock, u32 mode_hdisplay)
510 {
511         u32 bits_per_pixel, max_bpp_small_joiner_ram;
512         int i;
513
514         /*
515          * Available Link Bandwidth(Kbits/sec) = (NumberOfLanes)*
516          * (LinkSymbolClock)* 8 * (TimeSlotsPerMTP)
517          * for SST -> TimeSlotsPerMTP is 1,
518          * for MST -> TimeSlotsPerMTP has to be calculated
519          */
520         bits_per_pixel = (link_clock * lane_count * 8) /
521                          intel_dp_mode_to_fec_clock(mode_clock);
522         DRM_DEBUG_KMS("Max link bpp: %u\n", bits_per_pixel);
523
524         /* Small Joiner Check: output bpp <= joiner RAM (bits) / Horiz. width */
525         max_bpp_small_joiner_ram = small_joiner_ram_size_bits(i915) /
526                 mode_hdisplay;
527         DRM_DEBUG_KMS("Max small joiner bpp: %u\n", max_bpp_small_joiner_ram);
528
529         /*
530          * Greatest allowed DSC BPP = MIN (output BPP from available Link BW
531          * check, output bpp from small joiner RAM check)
532          */
533         bits_per_pixel = min(bits_per_pixel, max_bpp_small_joiner_ram);
534
535         /* Error out if the max bpp is less than smallest allowed valid bpp */
536         if (bits_per_pixel < valid_dsc_bpp[0]) {
537                 DRM_DEBUG_KMS("Unsupported BPP %u, min %u\n",
538                               bits_per_pixel, valid_dsc_bpp[0]);
539                 return 0;
540         }
541
542         /* Find the nearest match in the array of known BPPs from VESA */
543         for (i = 0; i < ARRAY_SIZE(valid_dsc_bpp) - 1; i++) {
544                 if (bits_per_pixel < valid_dsc_bpp[i + 1])
545                         break;
546         }
547         bits_per_pixel = valid_dsc_bpp[i];
548
549         /*
550          * Compressed BPP in U6.4 format so multiply by 16, for Gen 11,
551          * fractional part is 0
552          */
553         return bits_per_pixel << 4;
554 }
555
556 static u8 intel_dp_dsc_get_slice_count(struct intel_dp *intel_dp,
557                                        int mode_clock, int mode_hdisplay)
558 {
559         u8 min_slice_count, i;
560         int max_slice_width;
561
562         if (mode_clock <= DP_DSC_PEAK_PIXEL_RATE)
563                 min_slice_count = DIV_ROUND_UP(mode_clock,
564                                                DP_DSC_MAX_ENC_THROUGHPUT_0);
565         else
566                 min_slice_count = DIV_ROUND_UP(mode_clock,
567                                                DP_DSC_MAX_ENC_THROUGHPUT_1);
568
569         max_slice_width = drm_dp_dsc_sink_max_slice_width(intel_dp->dsc_dpcd);
570         if (max_slice_width < DP_DSC_MIN_SLICE_WIDTH_VALUE) {
571                 DRM_DEBUG_KMS("Unsupported slice width %d by DP DSC Sink device\n",
572                               max_slice_width);
573                 return 0;
574         }
575         /* Also take into account max slice width */
576         min_slice_count = min_t(u8, min_slice_count,
577                                 DIV_ROUND_UP(mode_hdisplay,
578                                              max_slice_width));
579
580         /* Find the closest match to the valid slice count values */
581         for (i = 0; i < ARRAY_SIZE(valid_dsc_slicecount); i++) {
582                 if (valid_dsc_slicecount[i] >
583                     drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
584                                                     false))
585                         break;
586                 if (min_slice_count  <= valid_dsc_slicecount[i])
587                         return valid_dsc_slicecount[i];
588         }
589
590         DRM_DEBUG_KMS("Unsupported Slice Count %d\n", min_slice_count);
591         return 0;
592 }
593
594 static bool intel_dp_hdisplay_bad(struct drm_i915_private *dev_priv,
595                                   int hdisplay)
596 {
597         /*
598          * Older platforms don't like hdisplay==4096 with DP.
599          *
600          * On ILK/SNB/IVB the pipe seems to be somewhat running (scanline
601          * and frame counter increment), but we don't get vblank interrupts,
602          * and the pipe underruns immediately. The link also doesn't seem
603          * to get trained properly.
604          *
605          * On CHV the vblank interrupts don't seem to disappear but
606          * otherwise the symptoms are similar.
607          *
608          * TODO: confirm the behaviour on HSW+
609          */
610         return hdisplay == 4096 && !HAS_DDI(dev_priv);
611 }
612
613 static enum drm_mode_status
614 intel_dp_mode_valid(struct drm_connector *connector,
615                     struct drm_display_mode *mode)
616 {
617         struct intel_dp *intel_dp = intel_attached_dp(connector);
618         struct intel_connector *intel_connector = to_intel_connector(connector);
619         struct drm_display_mode *fixed_mode = intel_connector->panel.fixed_mode;
620         struct drm_i915_private *dev_priv = to_i915(connector->dev);
621         int target_clock = mode->clock;
622         int max_rate, mode_rate, max_lanes, max_link_clock;
623         int max_dotclk;
624         u16 dsc_max_output_bpp = 0;
625         u8 dsc_slice_count = 0;
626
627         if (mode->flags & DRM_MODE_FLAG_DBLSCAN)
628                 return MODE_NO_DBLESCAN;
629
630         max_dotclk = intel_dp_downstream_max_dotclock(intel_dp);
631
632         if (intel_dp_is_edp(intel_dp) && fixed_mode) {
633                 if (mode->hdisplay > fixed_mode->hdisplay)
634                         return MODE_PANEL;
635
636                 if (mode->vdisplay > fixed_mode->vdisplay)
637                         return MODE_PANEL;
638
639                 target_clock = fixed_mode->clock;
640         }
641
642         max_link_clock = intel_dp_max_link_rate(intel_dp);
643         max_lanes = intel_dp_max_lane_count(intel_dp);
644
645         max_rate = intel_dp_max_data_rate(max_link_clock, max_lanes);
646         mode_rate = intel_dp_link_required(target_clock, 18);
647
648         if (intel_dp_hdisplay_bad(dev_priv, mode->hdisplay))
649                 return MODE_H_ILLEGAL;
650
651         /*
652          * Output bpp is stored in 6.4 format so right shift by 4 to get the
653          * integer value since we support only integer values of bpp.
654          */
655         if ((INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) &&
656             drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd)) {
657                 if (intel_dp_is_edp(intel_dp)) {
658                         dsc_max_output_bpp =
659                                 drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4;
660                         dsc_slice_count =
661                                 drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
662                                                                 true);
663                 } else if (drm_dp_sink_supports_fec(intel_dp->fec_capable)) {
664                         dsc_max_output_bpp =
665                                 intel_dp_dsc_get_output_bpp(dev_priv,
666                                                             max_link_clock,
667                                                             max_lanes,
668                                                             target_clock,
669                                                             mode->hdisplay) >> 4;
670                         dsc_slice_count =
671                                 intel_dp_dsc_get_slice_count(intel_dp,
672                                                              target_clock,
673                                                              mode->hdisplay);
674                 }
675         }
676
677         if ((mode_rate > max_rate && !(dsc_max_output_bpp && dsc_slice_count)) ||
678             target_clock > max_dotclk)
679                 return MODE_CLOCK_HIGH;
680
681         if (mode->clock < 10000)
682                 return MODE_CLOCK_LOW;
683
684         if (mode->flags & DRM_MODE_FLAG_DBLCLK)
685                 return MODE_H_ILLEGAL;
686
687         return intel_mode_valid_max_plane_size(dev_priv, mode);
688 }
689
690 u32 intel_dp_pack_aux(const u8 *src, int src_bytes)
691 {
692         int i;
693         u32 v = 0;
694
695         if (src_bytes > 4)
696                 src_bytes = 4;
697         for (i = 0; i < src_bytes; i++)
698                 v |= ((u32)src[i]) << ((3 - i) * 8);
699         return v;
700 }
701
702 static void intel_dp_unpack_aux(u32 src, u8 *dst, int dst_bytes)
703 {
704         int i;
705         if (dst_bytes > 4)
706                 dst_bytes = 4;
707         for (i = 0; i < dst_bytes; i++)
708                 dst[i] = src >> ((3-i) * 8);
709 }
710
711 static void
712 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp);
713 static void
714 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
715                                               bool force_disable_vdd);
716 static void
717 intel_dp_pps_init(struct intel_dp *intel_dp);
718
719 static intel_wakeref_t
720 pps_lock(struct intel_dp *intel_dp)
721 {
722         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
723         intel_wakeref_t wakeref;
724
725         /*
726          * See intel_power_sequencer_reset() why we need
727          * a power domain reference here.
728          */
729         wakeref = intel_display_power_get(dev_priv,
730                                           intel_aux_power_domain(dp_to_dig_port(intel_dp)));
731
732         mutex_lock(&dev_priv->pps_mutex);
733
734         return wakeref;
735 }
736
737 static intel_wakeref_t
738 pps_unlock(struct intel_dp *intel_dp, intel_wakeref_t wakeref)
739 {
740         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
741
742         mutex_unlock(&dev_priv->pps_mutex);
743         intel_display_power_put(dev_priv,
744                                 intel_aux_power_domain(dp_to_dig_port(intel_dp)),
745                                 wakeref);
746         return 0;
747 }
748
749 #define with_pps_lock(dp, wf) \
750         for ((wf) = pps_lock(dp); (wf); (wf) = pps_unlock((dp), (wf)))
751
752 static void
753 vlv_power_sequencer_kick(struct intel_dp *intel_dp)
754 {
755         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
756         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
757         enum pipe pipe = intel_dp->pps_pipe;
758         bool pll_enabled, release_cl_override = false;
759         enum dpio_phy phy = DPIO_PHY(pipe);
760         enum dpio_channel ch = vlv_pipe_to_channel(pipe);
761         u32 DP;
762
763         if (WARN(I915_READ(intel_dp->output_reg) & DP_PORT_EN,
764                  "skipping pipe %c power sequencer kick due to [ENCODER:%d:%s] being active\n",
765                  pipe_name(pipe), intel_dig_port->base.base.base.id,
766                  intel_dig_port->base.base.name))
767                 return;
768
769         DRM_DEBUG_KMS("kicking pipe %c power sequencer for [ENCODER:%d:%s]\n",
770                       pipe_name(pipe), intel_dig_port->base.base.base.id,
771                       intel_dig_port->base.base.name);
772
773         /* Preserve the BIOS-computed detected bit. This is
774          * supposed to be read-only.
775          */
776         DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
777         DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
778         DP |= DP_PORT_WIDTH(1);
779         DP |= DP_LINK_TRAIN_PAT_1;
780
781         if (IS_CHERRYVIEW(dev_priv))
782                 DP |= DP_PIPE_SEL_CHV(pipe);
783         else
784                 DP |= DP_PIPE_SEL(pipe);
785
786         pll_enabled = I915_READ(DPLL(pipe)) & DPLL_VCO_ENABLE;
787
788         /*
789          * The DPLL for the pipe must be enabled for this to work.
790          * So enable temporarily it if it's not already enabled.
791          */
792         if (!pll_enabled) {
793                 release_cl_override = IS_CHERRYVIEW(dev_priv) &&
794                         !chv_phy_powergate_ch(dev_priv, phy, ch, true);
795
796                 if (vlv_force_pll_on(dev_priv, pipe, IS_CHERRYVIEW(dev_priv) ?
797                                      &chv_dpll[0].dpll : &vlv_dpll[0].dpll)) {
798                         DRM_ERROR("Failed to force on pll for pipe %c!\n",
799                                   pipe_name(pipe));
800                         return;
801                 }
802         }
803
804         /*
805          * Similar magic as in intel_dp_enable_port().
806          * We _must_ do this port enable + disable trick
807          * to make this power sequencer lock onto the port.
808          * Otherwise even VDD force bit won't work.
809          */
810         I915_WRITE(intel_dp->output_reg, DP);
811         POSTING_READ(intel_dp->output_reg);
812
813         I915_WRITE(intel_dp->output_reg, DP | DP_PORT_EN);
814         POSTING_READ(intel_dp->output_reg);
815
816         I915_WRITE(intel_dp->output_reg, DP & ~DP_PORT_EN);
817         POSTING_READ(intel_dp->output_reg);
818
819         if (!pll_enabled) {
820                 vlv_force_pll_off(dev_priv, pipe);
821
822                 if (release_cl_override)
823                         chv_phy_powergate_ch(dev_priv, phy, ch, false);
824         }
825 }
826
827 static enum pipe vlv_find_free_pps(struct drm_i915_private *dev_priv)
828 {
829         struct intel_encoder *encoder;
830         unsigned int pipes = (1 << PIPE_A) | (1 << PIPE_B);
831
832         /*
833          * We don't have power sequencer currently.
834          * Pick one that's not used by other ports.
835          */
836         for_each_intel_dp(&dev_priv->drm, encoder) {
837                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
838
839                 if (encoder->type == INTEL_OUTPUT_EDP) {
840                         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
841                                 intel_dp->active_pipe != intel_dp->pps_pipe);
842
843                         if (intel_dp->pps_pipe != INVALID_PIPE)
844                                 pipes &= ~(1 << intel_dp->pps_pipe);
845                 } else {
846                         WARN_ON(intel_dp->pps_pipe != INVALID_PIPE);
847
848                         if (intel_dp->active_pipe != INVALID_PIPE)
849                                 pipes &= ~(1 << intel_dp->active_pipe);
850                 }
851         }
852
853         if (pipes == 0)
854                 return INVALID_PIPE;
855
856         return ffs(pipes) - 1;
857 }
858
859 static enum pipe
860 vlv_power_sequencer_pipe(struct intel_dp *intel_dp)
861 {
862         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
863         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
864         enum pipe pipe;
865
866         lockdep_assert_held(&dev_priv->pps_mutex);
867
868         /* We should never land here with regular DP ports */
869         WARN_ON(!intel_dp_is_edp(intel_dp));
870
871         WARN_ON(intel_dp->active_pipe != INVALID_PIPE &&
872                 intel_dp->active_pipe != intel_dp->pps_pipe);
873
874         if (intel_dp->pps_pipe != INVALID_PIPE)
875                 return intel_dp->pps_pipe;
876
877         pipe = vlv_find_free_pps(dev_priv);
878
879         /*
880          * Didn't find one. This should not happen since there
881          * are two power sequencers and up to two eDP ports.
882          */
883         if (WARN_ON(pipe == INVALID_PIPE))
884                 pipe = PIPE_A;
885
886         vlv_steal_power_sequencer(dev_priv, pipe);
887         intel_dp->pps_pipe = pipe;
888
889         DRM_DEBUG_KMS("picked pipe %c power sequencer for [ENCODER:%d:%s]\n",
890                       pipe_name(intel_dp->pps_pipe),
891                       intel_dig_port->base.base.base.id,
892                       intel_dig_port->base.base.name);
893
894         /* init power sequencer on this pipe and port */
895         intel_dp_init_panel_power_sequencer(intel_dp);
896         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
897
898         /*
899          * Even vdd force doesn't work until we've made
900          * the power sequencer lock in on the port.
901          */
902         vlv_power_sequencer_kick(intel_dp);
903
904         return intel_dp->pps_pipe;
905 }
906
907 static int
908 bxt_power_sequencer_idx(struct intel_dp *intel_dp)
909 {
910         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
911         int backlight_controller = dev_priv->vbt.backlight.controller;
912
913         lockdep_assert_held(&dev_priv->pps_mutex);
914
915         /* We should never land here with regular DP ports */
916         WARN_ON(!intel_dp_is_edp(intel_dp));
917
918         if (!intel_dp->pps_reset)
919                 return backlight_controller;
920
921         intel_dp->pps_reset = false;
922
923         /*
924          * Only the HW needs to be reprogrammed, the SW state is fixed and
925          * has been setup during connector init.
926          */
927         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
928
929         return backlight_controller;
930 }
931
932 typedef bool (*vlv_pipe_check)(struct drm_i915_private *dev_priv,
933                                enum pipe pipe);
934
935 static bool vlv_pipe_has_pp_on(struct drm_i915_private *dev_priv,
936                                enum pipe pipe)
937 {
938         return I915_READ(PP_STATUS(pipe)) & PP_ON;
939 }
940
941 static bool vlv_pipe_has_vdd_on(struct drm_i915_private *dev_priv,
942                                 enum pipe pipe)
943 {
944         return I915_READ(PP_CONTROL(pipe)) & EDP_FORCE_VDD;
945 }
946
947 static bool vlv_pipe_any(struct drm_i915_private *dev_priv,
948                          enum pipe pipe)
949 {
950         return true;
951 }
952
953 static enum pipe
954 vlv_initial_pps_pipe(struct drm_i915_private *dev_priv,
955                      enum port port,
956                      vlv_pipe_check pipe_check)
957 {
958         enum pipe pipe;
959
960         for (pipe = PIPE_A; pipe <= PIPE_B; pipe++) {
961                 u32 port_sel = I915_READ(PP_ON_DELAYS(pipe)) &
962                         PANEL_PORT_SELECT_MASK;
963
964                 if (port_sel != PANEL_PORT_SELECT_VLV(port))
965                         continue;
966
967                 if (!pipe_check(dev_priv, pipe))
968                         continue;
969
970                 return pipe;
971         }
972
973         return INVALID_PIPE;
974 }
975
976 static void
977 vlv_initial_power_sequencer_setup(struct intel_dp *intel_dp)
978 {
979         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
980         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
981         enum port port = intel_dig_port->base.port;
982
983         lockdep_assert_held(&dev_priv->pps_mutex);
984
985         /* try to find a pipe with this port selected */
986         /* first pick one where the panel is on */
987         intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
988                                                   vlv_pipe_has_pp_on);
989         /* didn't find one? pick one where vdd is on */
990         if (intel_dp->pps_pipe == INVALID_PIPE)
991                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
992                                                           vlv_pipe_has_vdd_on);
993         /* didn't find one? pick one with just the correct port */
994         if (intel_dp->pps_pipe == INVALID_PIPE)
995                 intel_dp->pps_pipe = vlv_initial_pps_pipe(dev_priv, port,
996                                                           vlv_pipe_any);
997
998         /* didn't find one? just let vlv_power_sequencer_pipe() pick one when needed */
999         if (intel_dp->pps_pipe == INVALID_PIPE) {
1000                 DRM_DEBUG_KMS("no initial power sequencer for [ENCODER:%d:%s]\n",
1001                               intel_dig_port->base.base.base.id,
1002                               intel_dig_port->base.base.name);
1003                 return;
1004         }
1005
1006         DRM_DEBUG_KMS("initial power sequencer for [ENCODER:%d:%s]: pipe %c\n",
1007                       intel_dig_port->base.base.base.id,
1008                       intel_dig_port->base.base.name,
1009                       pipe_name(intel_dp->pps_pipe));
1010
1011         intel_dp_init_panel_power_sequencer(intel_dp);
1012         intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
1013 }
1014
1015 void intel_power_sequencer_reset(struct drm_i915_private *dev_priv)
1016 {
1017         struct intel_encoder *encoder;
1018
1019         if (WARN_ON(!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
1020                     !IS_GEN9_LP(dev_priv)))
1021                 return;
1022
1023         /*
1024          * We can't grab pps_mutex here due to deadlock with power_domain
1025          * mutex when power_domain functions are called while holding pps_mutex.
1026          * That also means that in order to use pps_pipe the code needs to
1027          * hold both a power domain reference and pps_mutex, and the power domain
1028          * reference get/put must be done while _not_ holding pps_mutex.
1029          * pps_{lock,unlock}() do these steps in the correct order, so one
1030          * should use them always.
1031          */
1032
1033         for_each_intel_dp(&dev_priv->drm, encoder) {
1034                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
1035
1036                 WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
1037
1038                 if (encoder->type != INTEL_OUTPUT_EDP)
1039                         continue;
1040
1041                 if (IS_GEN9_LP(dev_priv))
1042                         intel_dp->pps_reset = true;
1043                 else
1044                         intel_dp->pps_pipe = INVALID_PIPE;
1045         }
1046 }
1047
1048 struct pps_registers {
1049         i915_reg_t pp_ctrl;
1050         i915_reg_t pp_stat;
1051         i915_reg_t pp_on;
1052         i915_reg_t pp_off;
1053         i915_reg_t pp_div;
1054 };
1055
1056 static void intel_pps_get_registers(struct intel_dp *intel_dp,
1057                                     struct pps_registers *regs)
1058 {
1059         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1060         int pps_idx = 0;
1061
1062         memset(regs, 0, sizeof(*regs));
1063
1064         if (IS_GEN9_LP(dev_priv))
1065                 pps_idx = bxt_power_sequencer_idx(intel_dp);
1066         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
1067                 pps_idx = vlv_power_sequencer_pipe(intel_dp);
1068
1069         regs->pp_ctrl = PP_CONTROL(pps_idx);
1070         regs->pp_stat = PP_STATUS(pps_idx);
1071         regs->pp_on = PP_ON_DELAYS(pps_idx);
1072         regs->pp_off = PP_OFF_DELAYS(pps_idx);
1073
1074         /* Cycle delay moved from PP_DIVISOR to PP_CONTROL */
1075         if (IS_GEN9_LP(dev_priv) || INTEL_PCH_TYPE(dev_priv) >= PCH_CNP)
1076                 regs->pp_div = INVALID_MMIO_REG;
1077         else
1078                 regs->pp_div = PP_DIVISOR(pps_idx);
1079 }
1080
1081 static i915_reg_t
1082 _pp_ctrl_reg(struct intel_dp *intel_dp)
1083 {
1084         struct pps_registers regs;
1085
1086         intel_pps_get_registers(intel_dp, &regs);
1087
1088         return regs.pp_ctrl;
1089 }
1090
1091 static i915_reg_t
1092 _pp_stat_reg(struct intel_dp *intel_dp)
1093 {
1094         struct pps_registers regs;
1095
1096         intel_pps_get_registers(intel_dp, &regs);
1097
1098         return regs.pp_stat;
1099 }
1100
1101 /* Reboot notifier handler to shutdown panel power to guarantee T12 timing
1102    This function only applicable when panel PM state is not to be tracked */
1103 static int edp_notify_handler(struct notifier_block *this, unsigned long code,
1104                               void *unused)
1105 {
1106         struct intel_dp *intel_dp = container_of(this, typeof(* intel_dp),
1107                                                  edp_notifier);
1108         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1109         intel_wakeref_t wakeref;
1110
1111         if (!intel_dp_is_edp(intel_dp) || code != SYS_RESTART)
1112                 return 0;
1113
1114         with_pps_lock(intel_dp, wakeref) {
1115                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1116                         enum pipe pipe = vlv_power_sequencer_pipe(intel_dp);
1117                         i915_reg_t pp_ctrl_reg, pp_div_reg;
1118                         u32 pp_div;
1119
1120                         pp_ctrl_reg = PP_CONTROL(pipe);
1121                         pp_div_reg  = PP_DIVISOR(pipe);
1122                         pp_div = I915_READ(pp_div_reg);
1123                         pp_div &= PP_REFERENCE_DIVIDER_MASK;
1124
1125                         /* 0x1F write to PP_DIV_REG sets max cycle delay */
1126                         I915_WRITE(pp_div_reg, pp_div | 0x1F);
1127                         I915_WRITE(pp_ctrl_reg, PANEL_UNLOCK_REGS);
1128                         msleep(intel_dp->panel_power_cycle_delay);
1129                 }
1130         }
1131
1132         return 0;
1133 }
1134
1135 static bool edp_have_panel_power(struct intel_dp *intel_dp)
1136 {
1137         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1138
1139         lockdep_assert_held(&dev_priv->pps_mutex);
1140
1141         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1142             intel_dp->pps_pipe == INVALID_PIPE)
1143                 return false;
1144
1145         return (I915_READ(_pp_stat_reg(intel_dp)) & PP_ON) != 0;
1146 }
1147
1148 static bool edp_have_panel_vdd(struct intel_dp *intel_dp)
1149 {
1150         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1151
1152         lockdep_assert_held(&dev_priv->pps_mutex);
1153
1154         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
1155             intel_dp->pps_pipe == INVALID_PIPE)
1156                 return false;
1157
1158         return I915_READ(_pp_ctrl_reg(intel_dp)) & EDP_FORCE_VDD;
1159 }
1160
1161 static void
1162 intel_dp_check_edp(struct intel_dp *intel_dp)
1163 {
1164         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1165
1166         if (!intel_dp_is_edp(intel_dp))
1167                 return;
1168
1169         if (!edp_have_panel_power(intel_dp) && !edp_have_panel_vdd(intel_dp)) {
1170                 WARN(1, "eDP powered off while attempting aux channel communication.\n");
1171                 DRM_DEBUG_KMS("Status 0x%08x Control 0x%08x\n",
1172                               I915_READ(_pp_stat_reg(intel_dp)),
1173                               I915_READ(_pp_ctrl_reg(intel_dp)));
1174         }
1175 }
1176
1177 static u32
1178 intel_dp_aux_wait_done(struct intel_dp *intel_dp)
1179 {
1180         struct drm_i915_private *i915 = dp_to_i915(intel_dp);
1181         i915_reg_t ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1182         const unsigned int timeout_ms = 10;
1183         u32 status;
1184         bool done;
1185
1186 #define C (((status = intel_uncore_read_notrace(&i915->uncore, ch_ctl)) & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1187         done = wait_event_timeout(i915->gmbus_wait_queue, C,
1188                                   msecs_to_jiffies_timeout(timeout_ms));
1189
1190         /* just trace the final value */
1191         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1192
1193         if (!done)
1194                 DRM_ERROR("%s did not complete or timeout within %ums (status 0x%08x)\n",
1195                           intel_dp->aux.name, timeout_ms, status);
1196 #undef C
1197
1198         return status;
1199 }
1200
1201 static u32 g4x_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1202 {
1203         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1204
1205         if (index)
1206                 return 0;
1207
1208         /*
1209          * The clock divider is based off the hrawclk, and would like to run at
1210          * 2MHz.  So, take the hrawclk value and divide by 2000 and use that
1211          */
1212         return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1213 }
1214
1215 static u32 ilk_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1216 {
1217         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1218         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1219
1220         if (index)
1221                 return 0;
1222
1223         /*
1224          * The clock divider is based off the cdclk or PCH rawclk, and would
1225          * like to run at 2MHz.  So, take the cdclk or PCH rawclk value and
1226          * divide by 2000 and use that
1227          */
1228         if (dig_port->aux_ch == AUX_CH_A)
1229                 return DIV_ROUND_CLOSEST(dev_priv->cdclk.hw.cdclk, 2000);
1230         else
1231                 return DIV_ROUND_CLOSEST(dev_priv->rawclk_freq, 2000);
1232 }
1233
1234 static u32 hsw_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1235 {
1236         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1237         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1238
1239         if (dig_port->aux_ch != AUX_CH_A && HAS_PCH_LPT_H(dev_priv)) {
1240                 /* Workaround for non-ULT HSW */
1241                 switch (index) {
1242                 case 0: return 63;
1243                 case 1: return 72;
1244                 default: return 0;
1245                 }
1246         }
1247
1248         return ilk_get_aux_clock_divider(intel_dp, index);
1249 }
1250
1251 static u32 skl_get_aux_clock_divider(struct intel_dp *intel_dp, int index)
1252 {
1253         /*
1254          * SKL doesn't need us to program the AUX clock divider (Hardware will
1255          * derive the clock from CDCLK automatically). We still implement the
1256          * get_aux_clock_divider vfunc to plug-in into the existing code.
1257          */
1258         return index ? 0 : 1;
1259 }
1260
1261 static u32 g4x_get_aux_send_ctl(struct intel_dp *intel_dp,
1262                                 int send_bytes,
1263                                 u32 aux_clock_divider)
1264 {
1265         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1266         struct drm_i915_private *dev_priv =
1267                         to_i915(intel_dig_port->base.base.dev);
1268         u32 precharge, timeout;
1269
1270         if (IS_GEN(dev_priv, 6))
1271                 precharge = 3;
1272         else
1273                 precharge = 5;
1274
1275         if (IS_BROADWELL(dev_priv))
1276                 timeout = DP_AUX_CH_CTL_TIME_OUT_600us;
1277         else
1278                 timeout = DP_AUX_CH_CTL_TIME_OUT_400us;
1279
1280         return DP_AUX_CH_CTL_SEND_BUSY |
1281                DP_AUX_CH_CTL_DONE |
1282                DP_AUX_CH_CTL_INTERRUPT |
1283                DP_AUX_CH_CTL_TIME_OUT_ERROR |
1284                timeout |
1285                DP_AUX_CH_CTL_RECEIVE_ERROR |
1286                (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1287                (precharge << DP_AUX_CH_CTL_PRECHARGE_2US_SHIFT) |
1288                (aux_clock_divider << DP_AUX_CH_CTL_BIT_CLOCK_2X_SHIFT);
1289 }
1290
1291 static u32 skl_get_aux_send_ctl(struct intel_dp *intel_dp,
1292                                 int send_bytes,
1293                                 u32 unused)
1294 {
1295         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1296         struct drm_i915_private *i915 =
1297                         to_i915(intel_dig_port->base.base.dev);
1298         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1299         u32 ret;
1300
1301         ret = DP_AUX_CH_CTL_SEND_BUSY |
1302               DP_AUX_CH_CTL_DONE |
1303               DP_AUX_CH_CTL_INTERRUPT |
1304               DP_AUX_CH_CTL_TIME_OUT_ERROR |
1305               DP_AUX_CH_CTL_TIME_OUT_MAX |
1306               DP_AUX_CH_CTL_RECEIVE_ERROR |
1307               (send_bytes << DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT) |
1308               DP_AUX_CH_CTL_FW_SYNC_PULSE_SKL(32) |
1309               DP_AUX_CH_CTL_SYNC_PULSE_SKL(32);
1310
1311         if (intel_phy_is_tc(i915, phy) &&
1312             intel_dig_port->tc_mode == TC_PORT_TBT_ALT)
1313                 ret |= DP_AUX_CH_CTL_TBT_IO;
1314
1315         return ret;
1316 }
1317
1318 static int
1319 intel_dp_aux_xfer(struct intel_dp *intel_dp,
1320                   const u8 *send, int send_bytes,
1321                   u8 *recv, int recv_size,
1322                   u32 aux_send_ctl_flags)
1323 {
1324         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
1325         struct drm_i915_private *i915 =
1326                         to_i915(intel_dig_port->base.base.dev);
1327         struct intel_uncore *uncore = &i915->uncore;
1328         enum phy phy = intel_port_to_phy(i915, intel_dig_port->base.port);
1329         bool is_tc_port = intel_phy_is_tc(i915, phy);
1330         i915_reg_t ch_ctl, ch_data[5];
1331         u32 aux_clock_divider;
1332         enum intel_display_power_domain aux_domain =
1333                 intel_aux_power_domain(intel_dig_port);
1334         intel_wakeref_t aux_wakeref;
1335         intel_wakeref_t pps_wakeref;
1336         int i, ret, recv_bytes;
1337         int try, clock = 0;
1338         u32 status;
1339         bool vdd;
1340
1341         ch_ctl = intel_dp->aux_ch_ctl_reg(intel_dp);
1342         for (i = 0; i < ARRAY_SIZE(ch_data); i++)
1343                 ch_data[i] = intel_dp->aux_ch_data_reg(intel_dp, i);
1344
1345         if (is_tc_port)
1346                 intel_tc_port_lock(intel_dig_port);
1347
1348         aux_wakeref = intel_display_power_get(i915, aux_domain);
1349         pps_wakeref = pps_lock(intel_dp);
1350
1351         /*
1352          * We will be called with VDD already enabled for dpcd/edid/oui reads.
1353          * In such cases we want to leave VDD enabled and it's up to upper layers
1354          * to turn it off. But for eg. i2c-dev access we need to turn it on/off
1355          * ourselves.
1356          */
1357         vdd = edp_panel_vdd_on(intel_dp);
1358
1359         /* dp aux is extremely sensitive to irq latency, hence request the
1360          * lowest possible wakeup latency and so prevent the cpu from going into
1361          * deep sleep states.
1362          */
1363         pm_qos_update_request(&i915->pm_qos, 0);
1364
1365         intel_dp_check_edp(intel_dp);
1366
1367         /* Try to wait for any previous AUX channel activity */
1368         for (try = 0; try < 3; try++) {
1369                 status = intel_uncore_read_notrace(uncore, ch_ctl);
1370                 if ((status & DP_AUX_CH_CTL_SEND_BUSY) == 0)
1371                         break;
1372                 msleep(1);
1373         }
1374         /* just trace the final value */
1375         trace_i915_reg_rw(false, ch_ctl, status, sizeof(status), true);
1376
1377         if (try == 3) {
1378                 const u32 status = intel_uncore_read(uncore, ch_ctl);
1379
1380                 if (status != intel_dp->aux_busy_last_status) {
1381                         WARN(1, "dp_aux_ch not started status 0x%08x\n",
1382                              status);
1383                         intel_dp->aux_busy_last_status = status;
1384                 }
1385
1386                 ret = -EBUSY;
1387                 goto out;
1388         }
1389
1390         /* Only 5 data registers! */
1391         if (WARN_ON(send_bytes > 20 || recv_size > 20)) {
1392                 ret = -E2BIG;
1393                 goto out;
1394         }
1395
1396         while ((aux_clock_divider = intel_dp->get_aux_clock_divider(intel_dp, clock++))) {
1397                 u32 send_ctl = intel_dp->get_aux_send_ctl(intel_dp,
1398                                                           send_bytes,
1399                                                           aux_clock_divider);
1400
1401                 send_ctl |= aux_send_ctl_flags;
1402
1403                 /* Must try at least 3 times according to DP spec */
1404                 for (try = 0; try < 5; try++) {
1405                         /* Load the send data into the aux channel data registers */
1406                         for (i = 0; i < send_bytes; i += 4)
1407                                 intel_uncore_write(uncore,
1408                                                    ch_data[i >> 2],
1409                                                    intel_dp_pack_aux(send + i,
1410                                                                      send_bytes - i));
1411
1412                         /* Send the command and wait for it to complete */
1413                         intel_uncore_write(uncore, ch_ctl, send_ctl);
1414
1415                         status = intel_dp_aux_wait_done(intel_dp);
1416
1417                         /* Clear done status and any errors */
1418                         intel_uncore_write(uncore,
1419                                            ch_ctl,
1420                                            status |
1421                                            DP_AUX_CH_CTL_DONE |
1422                                            DP_AUX_CH_CTL_TIME_OUT_ERROR |
1423                                            DP_AUX_CH_CTL_RECEIVE_ERROR);
1424
1425                         /* DP CTS 1.2 Core Rev 1.1, 4.2.1.1 & 4.2.1.2
1426                          *   400us delay required for errors and timeouts
1427                          *   Timeout errors from the HW already meet this
1428                          *   requirement so skip to next iteration
1429                          */
1430                         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR)
1431                                 continue;
1432
1433                         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1434                                 usleep_range(400, 500);
1435                                 continue;
1436                         }
1437                         if (status & DP_AUX_CH_CTL_DONE)
1438                                 goto done;
1439                 }
1440         }
1441
1442         if ((status & DP_AUX_CH_CTL_DONE) == 0) {
1443                 DRM_ERROR("dp_aux_ch not done status 0x%08x\n", status);
1444                 ret = -EBUSY;
1445                 goto out;
1446         }
1447
1448 done:
1449         /* Check for timeout or receive error.
1450          * Timeouts occur when the sink is not connected
1451          */
1452         if (status & DP_AUX_CH_CTL_RECEIVE_ERROR) {
1453                 DRM_ERROR("dp_aux_ch receive error status 0x%08x\n", status);
1454                 ret = -EIO;
1455                 goto out;
1456         }
1457
1458         /* Timeouts occur when the device isn't connected, so they're
1459          * "normal" -- don't fill the kernel log with these */
1460         if (status & DP_AUX_CH_CTL_TIME_OUT_ERROR) {
1461                 DRM_DEBUG_KMS("dp_aux_ch timeout status 0x%08x\n", status);
1462                 ret = -ETIMEDOUT;
1463                 goto out;
1464         }
1465
1466         /* Unload any bytes sent back from the other side */
1467         recv_bytes = ((status & DP_AUX_CH_CTL_MESSAGE_SIZE_MASK) >>
1468                       DP_AUX_CH_CTL_MESSAGE_SIZE_SHIFT);
1469
1470         /*
1471          * By BSpec: "Message sizes of 0 or >20 are not allowed."
1472          * We have no idea of what happened so we return -EBUSY so
1473          * drm layer takes care for the necessary retries.
1474          */
1475         if (recv_bytes == 0 || recv_bytes > 20) {
1476                 DRM_DEBUG_KMS("Forbidden recv_bytes = %d on aux transaction\n",
1477                               recv_bytes);
1478                 ret = -EBUSY;
1479                 goto out;
1480         }
1481
1482         if (recv_bytes > recv_size)
1483                 recv_bytes = recv_size;
1484
1485         for (i = 0; i < recv_bytes; i += 4)
1486                 intel_dp_unpack_aux(intel_uncore_read(uncore, ch_data[i >> 2]),
1487                                     recv + i, recv_bytes - i);
1488
1489         ret = recv_bytes;
1490 out:
1491         pm_qos_update_request(&i915->pm_qos, PM_QOS_DEFAULT_VALUE);
1492
1493         if (vdd)
1494                 edp_panel_vdd_off(intel_dp, false);
1495
1496         pps_unlock(intel_dp, pps_wakeref);
1497         intel_display_power_put_async(i915, aux_domain, aux_wakeref);
1498
1499         if (is_tc_port)
1500                 intel_tc_port_unlock(intel_dig_port);
1501
1502         return ret;
1503 }
1504
1505 #define BARE_ADDRESS_SIZE       3
1506 #define HEADER_SIZE             (BARE_ADDRESS_SIZE + 1)
1507
1508 static void
1509 intel_dp_aux_header(u8 txbuf[HEADER_SIZE],
1510                     const struct drm_dp_aux_msg *msg)
1511 {
1512         txbuf[0] = (msg->request << 4) | ((msg->address >> 16) & 0xf);
1513         txbuf[1] = (msg->address >> 8) & 0xff;
1514         txbuf[2] = msg->address & 0xff;
1515         txbuf[3] = msg->size - 1;
1516 }
1517
1518 static ssize_t
1519 intel_dp_aux_transfer(struct drm_dp_aux *aux, struct drm_dp_aux_msg *msg)
1520 {
1521         struct intel_dp *intel_dp = container_of(aux, struct intel_dp, aux);
1522         u8 txbuf[20], rxbuf[20];
1523         size_t txsize, rxsize;
1524         int ret;
1525
1526         intel_dp_aux_header(txbuf, msg);
1527
1528         switch (msg->request & ~DP_AUX_I2C_MOT) {
1529         case DP_AUX_NATIVE_WRITE:
1530         case DP_AUX_I2C_WRITE:
1531         case DP_AUX_I2C_WRITE_STATUS_UPDATE:
1532                 txsize = msg->size ? HEADER_SIZE + msg->size : BARE_ADDRESS_SIZE;
1533                 rxsize = 2; /* 0 or 1 data bytes */
1534
1535                 if (WARN_ON(txsize > 20))
1536                         return -E2BIG;
1537
1538                 WARN_ON(!msg->buffer != !msg->size);
1539
1540                 if (msg->buffer)
1541                         memcpy(txbuf + HEADER_SIZE, msg->buffer, msg->size);
1542
1543                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1544                                         rxbuf, rxsize, 0);
1545                 if (ret > 0) {
1546                         msg->reply = rxbuf[0] >> 4;
1547
1548                         if (ret > 1) {
1549                                 /* Number of bytes written in a short write. */
1550                                 ret = clamp_t(int, rxbuf[1], 0, msg->size);
1551                         } else {
1552                                 /* Return payload size. */
1553                                 ret = msg->size;
1554                         }
1555                 }
1556                 break;
1557
1558         case DP_AUX_NATIVE_READ:
1559         case DP_AUX_I2C_READ:
1560                 txsize = msg->size ? HEADER_SIZE : BARE_ADDRESS_SIZE;
1561                 rxsize = msg->size + 1;
1562
1563                 if (WARN_ON(rxsize > 20))
1564                         return -E2BIG;
1565
1566                 ret = intel_dp_aux_xfer(intel_dp, txbuf, txsize,
1567                                         rxbuf, rxsize, 0);
1568                 if (ret > 0) {
1569                         msg->reply = rxbuf[0] >> 4;
1570                         /*
1571                          * Assume happy day, and copy the data. The caller is
1572                          * expected to check msg->reply before touching it.
1573                          *
1574                          * Return payload size.
1575                          */
1576                         ret--;
1577                         memcpy(msg->buffer, rxbuf + 1, ret);
1578                 }
1579                 break;
1580
1581         default:
1582                 ret = -EINVAL;
1583                 break;
1584         }
1585
1586         return ret;
1587 }
1588
1589
1590 static i915_reg_t g4x_aux_ctl_reg(struct intel_dp *intel_dp)
1591 {
1592         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1593         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1594         enum aux_ch aux_ch = dig_port->aux_ch;
1595
1596         switch (aux_ch) {
1597         case AUX_CH_B:
1598         case AUX_CH_C:
1599         case AUX_CH_D:
1600                 return DP_AUX_CH_CTL(aux_ch);
1601         default:
1602                 MISSING_CASE(aux_ch);
1603                 return DP_AUX_CH_CTL(AUX_CH_B);
1604         }
1605 }
1606
1607 static i915_reg_t g4x_aux_data_reg(struct intel_dp *intel_dp, int index)
1608 {
1609         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1610         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1611         enum aux_ch aux_ch = dig_port->aux_ch;
1612
1613         switch (aux_ch) {
1614         case AUX_CH_B:
1615         case AUX_CH_C:
1616         case AUX_CH_D:
1617                 return DP_AUX_CH_DATA(aux_ch, index);
1618         default:
1619                 MISSING_CASE(aux_ch);
1620                 return DP_AUX_CH_DATA(AUX_CH_B, index);
1621         }
1622 }
1623
1624 static i915_reg_t ilk_aux_ctl_reg(struct intel_dp *intel_dp)
1625 {
1626         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1627         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1628         enum aux_ch aux_ch = dig_port->aux_ch;
1629
1630         switch (aux_ch) {
1631         case AUX_CH_A:
1632                 return DP_AUX_CH_CTL(aux_ch);
1633         case AUX_CH_B:
1634         case AUX_CH_C:
1635         case AUX_CH_D:
1636                 return PCH_DP_AUX_CH_CTL(aux_ch);
1637         default:
1638                 MISSING_CASE(aux_ch);
1639                 return DP_AUX_CH_CTL(AUX_CH_A);
1640         }
1641 }
1642
1643 static i915_reg_t ilk_aux_data_reg(struct intel_dp *intel_dp, int index)
1644 {
1645         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1646         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1647         enum aux_ch aux_ch = dig_port->aux_ch;
1648
1649         switch (aux_ch) {
1650         case AUX_CH_A:
1651                 return DP_AUX_CH_DATA(aux_ch, index);
1652         case AUX_CH_B:
1653         case AUX_CH_C:
1654         case AUX_CH_D:
1655                 return PCH_DP_AUX_CH_DATA(aux_ch, index);
1656         default:
1657                 MISSING_CASE(aux_ch);
1658                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1659         }
1660 }
1661
1662 static i915_reg_t skl_aux_ctl_reg(struct intel_dp *intel_dp)
1663 {
1664         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1665         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1666         enum aux_ch aux_ch = dig_port->aux_ch;
1667
1668         switch (aux_ch) {
1669         case AUX_CH_A:
1670         case AUX_CH_B:
1671         case AUX_CH_C:
1672         case AUX_CH_D:
1673         case AUX_CH_E:
1674         case AUX_CH_F:
1675         case AUX_CH_G:
1676                 return DP_AUX_CH_CTL(aux_ch);
1677         default:
1678                 MISSING_CASE(aux_ch);
1679                 return DP_AUX_CH_CTL(AUX_CH_A);
1680         }
1681 }
1682
1683 static i915_reg_t skl_aux_data_reg(struct intel_dp *intel_dp, int index)
1684 {
1685         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1686         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1687         enum aux_ch aux_ch = dig_port->aux_ch;
1688
1689         switch (aux_ch) {
1690         case AUX_CH_A:
1691         case AUX_CH_B:
1692         case AUX_CH_C:
1693         case AUX_CH_D:
1694         case AUX_CH_E:
1695         case AUX_CH_F:
1696         case AUX_CH_G:
1697                 return DP_AUX_CH_DATA(aux_ch, index);
1698         default:
1699                 MISSING_CASE(aux_ch);
1700                 return DP_AUX_CH_DATA(AUX_CH_A, index);
1701         }
1702 }
1703
1704 static void
1705 intel_dp_aux_fini(struct intel_dp *intel_dp)
1706 {
1707         kfree(intel_dp->aux.name);
1708 }
1709
1710 static void
1711 intel_dp_aux_init(struct intel_dp *intel_dp)
1712 {
1713         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1714         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
1715         struct intel_encoder *encoder = &dig_port->base;
1716
1717         if (INTEL_GEN(dev_priv) >= 9) {
1718                 intel_dp->aux_ch_ctl_reg = skl_aux_ctl_reg;
1719                 intel_dp->aux_ch_data_reg = skl_aux_data_reg;
1720         } else if (HAS_PCH_SPLIT(dev_priv)) {
1721                 intel_dp->aux_ch_ctl_reg = ilk_aux_ctl_reg;
1722                 intel_dp->aux_ch_data_reg = ilk_aux_data_reg;
1723         } else {
1724                 intel_dp->aux_ch_ctl_reg = g4x_aux_ctl_reg;
1725                 intel_dp->aux_ch_data_reg = g4x_aux_data_reg;
1726         }
1727
1728         if (INTEL_GEN(dev_priv) >= 9)
1729                 intel_dp->get_aux_clock_divider = skl_get_aux_clock_divider;
1730         else if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
1731                 intel_dp->get_aux_clock_divider = hsw_get_aux_clock_divider;
1732         else if (HAS_PCH_SPLIT(dev_priv))
1733                 intel_dp->get_aux_clock_divider = ilk_get_aux_clock_divider;
1734         else
1735                 intel_dp->get_aux_clock_divider = g4x_get_aux_clock_divider;
1736
1737         if (INTEL_GEN(dev_priv) >= 9)
1738                 intel_dp->get_aux_send_ctl = skl_get_aux_send_ctl;
1739         else
1740                 intel_dp->get_aux_send_ctl = g4x_get_aux_send_ctl;
1741
1742         drm_dp_aux_init(&intel_dp->aux);
1743
1744         /* Failure to allocate our preferred name is not critical */
1745         intel_dp->aux.name = kasprintf(GFP_KERNEL, "DPDDC-%c",
1746                                        port_name(encoder->port));
1747         intel_dp->aux.transfer = intel_dp_aux_transfer;
1748 }
1749
1750 bool intel_dp_source_supports_hbr2(struct intel_dp *intel_dp)
1751 {
1752         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1753
1754         return max_rate >= 540000;
1755 }
1756
1757 bool intel_dp_source_supports_hbr3(struct intel_dp *intel_dp)
1758 {
1759         int max_rate = intel_dp->source_rates[intel_dp->num_source_rates - 1];
1760
1761         return max_rate >= 810000;
1762 }
1763
1764 static void
1765 intel_dp_set_clock(struct intel_encoder *encoder,
1766                    struct intel_crtc_state *pipe_config)
1767 {
1768         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
1769         const struct dp_link_dpll *divisor = NULL;
1770         int i, count = 0;
1771
1772         if (IS_G4X(dev_priv)) {
1773                 divisor = g4x_dpll;
1774                 count = ARRAY_SIZE(g4x_dpll);
1775         } else if (HAS_PCH_SPLIT(dev_priv)) {
1776                 divisor = pch_dpll;
1777                 count = ARRAY_SIZE(pch_dpll);
1778         } else if (IS_CHERRYVIEW(dev_priv)) {
1779                 divisor = chv_dpll;
1780                 count = ARRAY_SIZE(chv_dpll);
1781         } else if (IS_VALLEYVIEW(dev_priv)) {
1782                 divisor = vlv_dpll;
1783                 count = ARRAY_SIZE(vlv_dpll);
1784         }
1785
1786         if (divisor && count) {
1787                 for (i = 0; i < count; i++) {
1788                         if (pipe_config->port_clock == divisor[i].clock) {
1789                                 pipe_config->dpll = divisor[i].dpll;
1790                                 pipe_config->clock_set = true;
1791                                 break;
1792                         }
1793                 }
1794         }
1795 }
1796
1797 static void snprintf_int_array(char *str, size_t len,
1798                                const int *array, int nelem)
1799 {
1800         int i;
1801
1802         str[0] = '\0';
1803
1804         for (i = 0; i < nelem; i++) {
1805                 int r = snprintf(str, len, "%s%d", i ? ", " : "", array[i]);
1806                 if (r >= len)
1807                         return;
1808                 str += r;
1809                 len -= r;
1810         }
1811 }
1812
1813 static void intel_dp_print_rates(struct intel_dp *intel_dp)
1814 {
1815         char str[128]; /* FIXME: too big for stack? */
1816
1817         if ((drm_debug & DRM_UT_KMS) == 0)
1818                 return;
1819
1820         snprintf_int_array(str, sizeof(str),
1821                            intel_dp->source_rates, intel_dp->num_source_rates);
1822         DRM_DEBUG_KMS("source rates: %s\n", str);
1823
1824         snprintf_int_array(str, sizeof(str),
1825                            intel_dp->sink_rates, intel_dp->num_sink_rates);
1826         DRM_DEBUG_KMS("sink rates: %s\n", str);
1827
1828         snprintf_int_array(str, sizeof(str),
1829                            intel_dp->common_rates, intel_dp->num_common_rates);
1830         DRM_DEBUG_KMS("common rates: %s\n", str);
1831 }
1832
1833 int
1834 intel_dp_max_link_rate(struct intel_dp *intel_dp)
1835 {
1836         int len;
1837
1838         len = intel_dp_common_len_rate_limit(intel_dp, intel_dp->max_link_rate);
1839         if (WARN_ON(len <= 0))
1840                 return 162000;
1841
1842         return intel_dp->common_rates[len - 1];
1843 }
1844
1845 int intel_dp_rate_select(struct intel_dp *intel_dp, int rate)
1846 {
1847         int i = intel_dp_rate_index(intel_dp->sink_rates,
1848                                     intel_dp->num_sink_rates, rate);
1849
1850         if (WARN_ON(i < 0))
1851                 i = 0;
1852
1853         return i;
1854 }
1855
1856 void intel_dp_compute_rate(struct intel_dp *intel_dp, int port_clock,
1857                            u8 *link_bw, u8 *rate_select)
1858 {
1859         /* eDP 1.4 rate select method. */
1860         if (intel_dp->use_rate_select) {
1861                 *link_bw = 0;
1862                 *rate_select =
1863                         intel_dp_rate_select(intel_dp, port_clock);
1864         } else {
1865                 *link_bw = drm_dp_link_rate_to_bw_code(port_clock);
1866                 *rate_select = 0;
1867         }
1868 }
1869
1870 static bool intel_dp_source_supports_fec(struct intel_dp *intel_dp,
1871                                          const struct intel_crtc_state *pipe_config)
1872 {
1873         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1874
1875         /* On TGL, FEC is supported on all Pipes */
1876         if (INTEL_GEN(dev_priv) >= 12)
1877                 return true;
1878
1879         if (IS_GEN(dev_priv, 11) && pipe_config->cpu_transcoder != TRANSCODER_A)
1880                 return true;
1881
1882         return false;
1883 }
1884
1885 static bool intel_dp_supports_fec(struct intel_dp *intel_dp,
1886                                   const struct intel_crtc_state *pipe_config)
1887 {
1888         return intel_dp_source_supports_fec(intel_dp, pipe_config) &&
1889                 drm_dp_sink_supports_fec(intel_dp->fec_capable);
1890 }
1891
1892 static bool intel_dp_source_supports_dsc(struct intel_dp *intel_dp,
1893                                          const struct intel_crtc_state *pipe_config)
1894 {
1895         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1896
1897         if (!INTEL_INFO(dev_priv)->display.has_dsc)
1898                 return false;
1899
1900         /* On TGL, DSC is supported on all Pipes */
1901         if (INTEL_GEN(dev_priv) >= 12)
1902                 return true;
1903
1904         if (INTEL_GEN(dev_priv) >= 10 &&
1905             pipe_config->cpu_transcoder != TRANSCODER_A)
1906                 return true;
1907
1908         return false;
1909 }
1910
1911 static bool intel_dp_supports_dsc(struct intel_dp *intel_dp,
1912                                   const struct intel_crtc_state *pipe_config)
1913 {
1914         if (!intel_dp_is_edp(intel_dp) && !pipe_config->fec_enable)
1915                 return false;
1916
1917         return intel_dp_source_supports_dsc(intel_dp, pipe_config) &&
1918                 drm_dp_sink_supports_dsc(intel_dp->dsc_dpcd);
1919 }
1920
1921 static int intel_dp_compute_bpp(struct intel_dp *intel_dp,
1922                                 struct intel_crtc_state *pipe_config)
1923 {
1924         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
1925         struct intel_connector *intel_connector = intel_dp->attached_connector;
1926         int bpp, bpc;
1927
1928         bpp = pipe_config->pipe_bpp;
1929         bpc = drm_dp_downstream_max_bpc(intel_dp->dpcd, intel_dp->downstream_ports);
1930
1931         if (bpc > 0)
1932                 bpp = min(bpp, 3*bpc);
1933
1934         if (intel_dp_is_edp(intel_dp)) {
1935                 /* Get bpp from vbt only for panels that dont have bpp in edid */
1936                 if (intel_connector->base.display_info.bpc == 0 &&
1937                     dev_priv->vbt.edp.bpp && dev_priv->vbt.edp.bpp < bpp) {
1938                         DRM_DEBUG_KMS("clamping bpp for eDP panel to BIOS-provided %i\n",
1939                                       dev_priv->vbt.edp.bpp);
1940                         bpp = dev_priv->vbt.edp.bpp;
1941                 }
1942         }
1943
1944         return bpp;
1945 }
1946
1947 /* Adjust link config limits based on compliance test requests. */
1948 void
1949 intel_dp_adjust_compliance_config(struct intel_dp *intel_dp,
1950                                   struct intel_crtc_state *pipe_config,
1951                                   struct link_config_limits *limits)
1952 {
1953         /* For DP Compliance we override the computed bpp for the pipe */
1954         if (intel_dp->compliance.test_data.bpc != 0) {
1955                 int bpp = 3 * intel_dp->compliance.test_data.bpc;
1956
1957                 limits->min_bpp = limits->max_bpp = bpp;
1958                 pipe_config->dither_force_disable = bpp == 6 * 3;
1959
1960                 DRM_DEBUG_KMS("Setting pipe_bpp to %d\n", bpp);
1961         }
1962
1963         /* Use values requested by Compliance Test Request */
1964         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
1965                 int index;
1966
1967                 /* Validate the compliance test data since max values
1968                  * might have changed due to link train fallback.
1969                  */
1970                 if (intel_dp_link_params_valid(intel_dp, intel_dp->compliance.test_link_rate,
1971                                                intel_dp->compliance.test_lane_count)) {
1972                         index = intel_dp_rate_index(intel_dp->common_rates,
1973                                                     intel_dp->num_common_rates,
1974                                                     intel_dp->compliance.test_link_rate);
1975                         if (index >= 0)
1976                                 limits->min_clock = limits->max_clock = index;
1977                         limits->min_lane_count = limits->max_lane_count =
1978                                 intel_dp->compliance.test_lane_count;
1979                 }
1980         }
1981 }
1982
1983 static int intel_dp_output_bpp(const struct intel_crtc_state *crtc_state, int bpp)
1984 {
1985         /*
1986          * bpp value was assumed to RGB format. And YCbCr 4:2:0 output
1987          * format of the number of bytes per pixel will be half the number
1988          * of bytes of RGB pixel.
1989          */
1990         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
1991                 bpp /= 2;
1992
1993         return bpp;
1994 }
1995
1996 /* Optimize link config in order: max bpp, min clock, min lanes */
1997 static int
1998 intel_dp_compute_link_config_wide(struct intel_dp *intel_dp,
1999                                   struct intel_crtc_state *pipe_config,
2000                                   const struct link_config_limits *limits)
2001 {
2002         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2003         int bpp, clock, lane_count;
2004         int mode_rate, link_clock, link_avail;
2005
2006         for (bpp = limits->max_bpp; bpp >= limits->min_bpp; bpp -= 2 * 3) {
2007                 int output_bpp = intel_dp_output_bpp(pipe_config, bpp);
2008
2009                 mode_rate = intel_dp_link_required(adjusted_mode->crtc_clock,
2010                                                    output_bpp);
2011
2012                 for (clock = limits->min_clock; clock <= limits->max_clock; clock++) {
2013                         for (lane_count = limits->min_lane_count;
2014                              lane_count <= limits->max_lane_count;
2015                              lane_count <<= 1) {
2016                                 link_clock = intel_dp->common_rates[clock];
2017                                 link_avail = intel_dp_max_data_rate(link_clock,
2018                                                                     lane_count);
2019
2020                                 if (mode_rate <= link_avail) {
2021                                         pipe_config->lane_count = lane_count;
2022                                         pipe_config->pipe_bpp = bpp;
2023                                         pipe_config->port_clock = link_clock;
2024
2025                                         return 0;
2026                                 }
2027                         }
2028                 }
2029         }
2030
2031         return -EINVAL;
2032 }
2033
2034 static int intel_dp_dsc_compute_bpp(struct intel_dp *intel_dp, u8 dsc_max_bpc)
2035 {
2036         int i, num_bpc;
2037         u8 dsc_bpc[3] = {0};
2038
2039         num_bpc = drm_dp_dsc_sink_supported_input_bpcs(intel_dp->dsc_dpcd,
2040                                                        dsc_bpc);
2041         for (i = 0; i < num_bpc; i++) {
2042                 if (dsc_max_bpc >= dsc_bpc[i])
2043                         return dsc_bpc[i] * 3;
2044         }
2045
2046         return 0;
2047 }
2048
2049 static int intel_dp_dsc_compute_config(struct intel_dp *intel_dp,
2050                                        struct intel_crtc_state *pipe_config,
2051                                        struct drm_connector_state *conn_state,
2052                                        struct link_config_limits *limits)
2053 {
2054         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2055         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
2056         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2057         u8 dsc_max_bpc;
2058         int pipe_bpp;
2059         int ret;
2060
2061         pipe_config->fec_enable = !intel_dp_is_edp(intel_dp) &&
2062                 intel_dp_supports_fec(intel_dp, pipe_config);
2063
2064         if (!intel_dp_supports_dsc(intel_dp, pipe_config))
2065                 return -EINVAL;
2066
2067         /* Max DSC Input BPC for ICL is 10 and for TGL+ is 12 */
2068         if (INTEL_GEN(dev_priv) >= 12)
2069                 dsc_max_bpc = min_t(u8, 12, conn_state->max_requested_bpc);
2070         else
2071                 dsc_max_bpc = min_t(u8, 10,
2072                                     conn_state->max_requested_bpc);
2073
2074         pipe_bpp = intel_dp_dsc_compute_bpp(intel_dp, dsc_max_bpc);
2075
2076         /* Min Input BPC for ICL+ is 8 */
2077         if (pipe_bpp < 8 * 3) {
2078                 DRM_DEBUG_KMS("No DSC support for less than 8bpc\n");
2079                 return -EINVAL;
2080         }
2081
2082         /*
2083          * For now enable DSC for max bpp, max link rate, max lane count.
2084          * Optimize this later for the minimum possible link rate/lane count
2085          * with DSC enabled for the requested mode.
2086          */
2087         pipe_config->pipe_bpp = pipe_bpp;
2088         pipe_config->port_clock = intel_dp->common_rates[limits->max_clock];
2089         pipe_config->lane_count = limits->max_lane_count;
2090
2091         if (intel_dp_is_edp(intel_dp)) {
2092                 pipe_config->dsc.compressed_bpp =
2093                         min_t(u16, drm_edp_dsc_sink_output_bpp(intel_dp->dsc_dpcd) >> 4,
2094                               pipe_config->pipe_bpp);
2095                 pipe_config->dsc.slice_count =
2096                         drm_dp_dsc_sink_max_slice_count(intel_dp->dsc_dpcd,
2097                                                         true);
2098         } else {
2099                 u16 dsc_max_output_bpp;
2100                 u8 dsc_dp_slice_count;
2101
2102                 dsc_max_output_bpp =
2103                         intel_dp_dsc_get_output_bpp(dev_priv,
2104                                                     pipe_config->port_clock,
2105                                                     pipe_config->lane_count,
2106                                                     adjusted_mode->crtc_clock,
2107                                                     adjusted_mode->crtc_hdisplay);
2108                 dsc_dp_slice_count =
2109                         intel_dp_dsc_get_slice_count(intel_dp,
2110                                                      adjusted_mode->crtc_clock,
2111                                                      adjusted_mode->crtc_hdisplay);
2112                 if (!dsc_max_output_bpp || !dsc_dp_slice_count) {
2113                         DRM_DEBUG_KMS("Compressed BPP/Slice Count not supported\n");
2114                         return -EINVAL;
2115                 }
2116                 pipe_config->dsc.compressed_bpp = min_t(u16,
2117                                                                dsc_max_output_bpp >> 4,
2118                                                                pipe_config->pipe_bpp);
2119                 pipe_config->dsc.slice_count = dsc_dp_slice_count;
2120         }
2121         /*
2122          * VDSC engine operates at 1 Pixel per clock, so if peak pixel rate
2123          * is greater than the maximum Cdclock and if slice count is even
2124          * then we need to use 2 VDSC instances.
2125          */
2126         if (adjusted_mode->crtc_clock > dev_priv->max_cdclk_freq) {
2127                 if (pipe_config->dsc.slice_count > 1) {
2128                         pipe_config->dsc.dsc_split = true;
2129                 } else {
2130                         DRM_DEBUG_KMS("Cannot split stream to use 2 VDSC instances\n");
2131                         return -EINVAL;
2132                 }
2133         }
2134
2135         ret = intel_dsc_compute_params(&dig_port->base, pipe_config);
2136         if (ret < 0) {
2137                 DRM_DEBUG_KMS("Cannot compute valid DSC parameters for Input Bpp = %d "
2138                               "Compressed BPP = %d\n",
2139                               pipe_config->pipe_bpp,
2140                               pipe_config->dsc.compressed_bpp);
2141                 return ret;
2142         }
2143
2144         pipe_config->dsc.compression_enable = true;
2145         DRM_DEBUG_KMS("DP DSC computed with Input Bpp = %d "
2146                       "Compressed Bpp = %d Slice Count = %d\n",
2147                       pipe_config->pipe_bpp,
2148                       pipe_config->dsc.compressed_bpp,
2149                       pipe_config->dsc.slice_count);
2150
2151         return 0;
2152 }
2153
2154 int intel_dp_min_bpp(const struct intel_crtc_state *crtc_state)
2155 {
2156         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_RGB)
2157                 return 6 * 3;
2158         else
2159                 return 8 * 3;
2160 }
2161
2162 static int
2163 intel_dp_compute_link_config(struct intel_encoder *encoder,
2164                              struct intel_crtc_state *pipe_config,
2165                              struct drm_connector_state *conn_state)
2166 {
2167         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2168         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2169         struct link_config_limits limits;
2170         int common_len;
2171         int ret;
2172
2173         common_len = intel_dp_common_len_rate_limit(intel_dp,
2174                                                     intel_dp->max_link_rate);
2175
2176         /* No common link rates between source and sink */
2177         WARN_ON(common_len <= 0);
2178
2179         limits.min_clock = 0;
2180         limits.max_clock = common_len - 1;
2181
2182         limits.min_lane_count = 1;
2183         limits.max_lane_count = intel_dp_max_lane_count(intel_dp);
2184
2185         limits.min_bpp = intel_dp_min_bpp(pipe_config);
2186         limits.max_bpp = intel_dp_compute_bpp(intel_dp, pipe_config);
2187
2188         if (intel_dp_is_edp(intel_dp)) {
2189                 /*
2190                  * Use the maximum clock and number of lanes the eDP panel
2191                  * advertizes being capable of. The panels are generally
2192                  * designed to support only a single clock and lane
2193                  * configuration, and typically these values correspond to the
2194                  * native resolution of the panel.
2195                  */
2196                 limits.min_lane_count = limits.max_lane_count;
2197                 limits.min_clock = limits.max_clock;
2198         }
2199
2200         intel_dp_adjust_compliance_config(intel_dp, pipe_config, &limits);
2201
2202         DRM_DEBUG_KMS("DP link computation with max lane count %i "
2203                       "max rate %d max bpp %d pixel clock %iKHz\n",
2204                       limits.max_lane_count,
2205                       intel_dp->common_rates[limits.max_clock],
2206                       limits.max_bpp, adjusted_mode->crtc_clock);
2207
2208         /*
2209          * Optimize for slow and wide. This is the place to add alternative
2210          * optimization policy.
2211          */
2212         ret = intel_dp_compute_link_config_wide(intel_dp, pipe_config, &limits);
2213
2214         /* enable compression if the mode doesn't fit available BW */
2215         DRM_DEBUG_KMS("Force DSC en = %d\n", intel_dp->force_dsc_en);
2216         if (ret || intel_dp->force_dsc_en) {
2217                 ret = intel_dp_dsc_compute_config(intel_dp, pipe_config,
2218                                                   conn_state, &limits);
2219                 if (ret < 0)
2220                         return ret;
2221         }
2222
2223         if (pipe_config->dsc.compression_enable) {
2224                 DRM_DEBUG_KMS("DP lane count %d clock %d Input bpp %d Compressed bpp %d\n",
2225                               pipe_config->lane_count, pipe_config->port_clock,
2226                               pipe_config->pipe_bpp,
2227                               pipe_config->dsc.compressed_bpp);
2228
2229                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2230                               intel_dp_link_required(adjusted_mode->crtc_clock,
2231                                                      pipe_config->dsc.compressed_bpp),
2232                               intel_dp_max_data_rate(pipe_config->port_clock,
2233                                                      pipe_config->lane_count));
2234         } else {
2235                 DRM_DEBUG_KMS("DP lane count %d clock %d bpp %d\n",
2236                               pipe_config->lane_count, pipe_config->port_clock,
2237                               pipe_config->pipe_bpp);
2238
2239                 DRM_DEBUG_KMS("DP link rate required %i available %i\n",
2240                               intel_dp_link_required(adjusted_mode->crtc_clock,
2241                                                      pipe_config->pipe_bpp),
2242                               intel_dp_max_data_rate(pipe_config->port_clock,
2243                                                      pipe_config->lane_count));
2244         }
2245         return 0;
2246 }
2247
2248 static int
2249 intel_dp_ycbcr420_config(struct intel_dp *intel_dp,
2250                          struct drm_connector *connector,
2251                          struct intel_crtc_state *crtc_state)
2252 {
2253         const struct drm_display_info *info = &connector->display_info;
2254         const struct drm_display_mode *adjusted_mode =
2255                 &crtc_state->hw.adjusted_mode;
2256         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
2257         int ret;
2258
2259         if (!drm_mode_is_420_only(info, adjusted_mode) ||
2260             !intel_dp_get_colorimetry_status(intel_dp) ||
2261             !connector->ycbcr_420_allowed)
2262                 return 0;
2263
2264         crtc_state->output_format = INTEL_OUTPUT_FORMAT_YCBCR420;
2265
2266         /* YCBCR 420 output conversion needs a scaler */
2267         ret = skl_update_scaler_crtc(crtc_state);
2268         if (ret) {
2269                 DRM_DEBUG_KMS("Scaler allocation for output failed\n");
2270                 return ret;
2271         }
2272
2273         intel_pch_panel_fitting(crtc, crtc_state, DRM_MODE_SCALE_FULLSCREEN);
2274
2275         return 0;
2276 }
2277
2278 bool intel_dp_limited_color_range(const struct intel_crtc_state *crtc_state,
2279                                   const struct drm_connector_state *conn_state)
2280 {
2281         const struct intel_digital_connector_state *intel_conn_state =
2282                 to_intel_digital_connector_state(conn_state);
2283         const struct drm_display_mode *adjusted_mode =
2284                 &crtc_state->hw.adjusted_mode;
2285
2286         /*
2287          * Our YCbCr output is always limited range.
2288          * crtc_state->limited_color_range only applies to RGB,
2289          * and it must never be set for YCbCr or we risk setting
2290          * some conflicting bits in PIPECONF which will mess up
2291          * the colors on the monitor.
2292          */
2293         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
2294                 return false;
2295
2296         if (intel_conn_state->broadcast_rgb == INTEL_BROADCAST_RGB_AUTO) {
2297                 /*
2298                  * See:
2299                  * CEA-861-E - 5.1 Default Encoding Parameters
2300                  * VESA DisplayPort Ver.1.2a - 5.1.1.1 Video Colorimetry
2301                  */
2302                 return crtc_state->pipe_bpp != 18 &&
2303                         drm_default_rgb_quant_range(adjusted_mode) ==
2304                         HDMI_QUANTIZATION_RANGE_LIMITED;
2305         } else {
2306                 return intel_conn_state->broadcast_rgb ==
2307                         INTEL_BROADCAST_RGB_LIMITED;
2308         }
2309 }
2310
2311 static bool intel_dp_port_has_audio(struct drm_i915_private *dev_priv,
2312                                     enum port port)
2313 {
2314         if (IS_G4X(dev_priv))
2315                 return false;
2316         if (INTEL_GEN(dev_priv) < 12 && port == PORT_A)
2317                 return false;
2318
2319         return true;
2320 }
2321
2322 int
2323 intel_dp_compute_config(struct intel_encoder *encoder,
2324                         struct intel_crtc_state *pipe_config,
2325                         struct drm_connector_state *conn_state)
2326 {
2327         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2328         struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2329         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2330         struct intel_lspcon *lspcon = enc_to_intel_lspcon(&encoder->base);
2331         enum port port = encoder->port;
2332         struct intel_crtc *intel_crtc = to_intel_crtc(pipe_config->uapi.crtc);
2333         struct intel_connector *intel_connector = intel_dp->attached_connector;
2334         struct intel_digital_connector_state *intel_conn_state =
2335                 to_intel_digital_connector_state(conn_state);
2336         bool constant_n = drm_dp_has_quirk(&intel_dp->desc,
2337                                            DP_DPCD_QUIRK_CONSTANT_N);
2338         int ret = 0, output_bpp;
2339
2340         if (HAS_PCH_SPLIT(dev_priv) && !HAS_DDI(dev_priv) && port != PORT_A)
2341                 pipe_config->has_pch_encoder = true;
2342
2343         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
2344
2345         if (lspcon->active)
2346                 lspcon_ycbcr420_config(&intel_connector->base, pipe_config);
2347         else
2348                 ret = intel_dp_ycbcr420_config(intel_dp, &intel_connector->base,
2349                                                pipe_config);
2350
2351         if (ret)
2352                 return ret;
2353
2354         pipe_config->has_drrs = false;
2355         if (!intel_dp_port_has_audio(dev_priv, port))
2356                 pipe_config->has_audio = false;
2357         else if (intel_conn_state->force_audio == HDMI_AUDIO_AUTO)
2358                 pipe_config->has_audio = intel_dp->has_audio;
2359         else
2360                 pipe_config->has_audio = intel_conn_state->force_audio == HDMI_AUDIO_ON;
2361
2362         if (intel_dp_is_edp(intel_dp) && intel_connector->panel.fixed_mode) {
2363                 intel_fixed_panel_mode(intel_connector->panel.fixed_mode,
2364                                        adjusted_mode);
2365
2366                 if (INTEL_GEN(dev_priv) >= 9) {
2367                         ret = skl_update_scaler_crtc(pipe_config);
2368                         if (ret)
2369                                 return ret;
2370                 }
2371
2372                 if (HAS_GMCH(dev_priv))
2373                         intel_gmch_panel_fitting(intel_crtc, pipe_config,
2374                                                  conn_state->scaling_mode);
2375                 else
2376                         intel_pch_panel_fitting(intel_crtc, pipe_config,
2377                                                 conn_state->scaling_mode);
2378         }
2379
2380         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLSCAN)
2381                 return -EINVAL;
2382
2383         if (HAS_GMCH(dev_priv) &&
2384             adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
2385                 return -EINVAL;
2386
2387         if (adjusted_mode->flags & DRM_MODE_FLAG_DBLCLK)
2388                 return -EINVAL;
2389
2390         if (intel_dp_hdisplay_bad(dev_priv, adjusted_mode->crtc_hdisplay))
2391                 return -EINVAL;
2392
2393         ret = intel_dp_compute_link_config(encoder, pipe_config, conn_state);
2394         if (ret < 0)
2395                 return ret;
2396
2397         pipe_config->limited_color_range =
2398                 intel_dp_limited_color_range(pipe_config, conn_state);
2399
2400         if (pipe_config->dsc.compression_enable)
2401                 output_bpp = pipe_config->dsc.compressed_bpp;
2402         else
2403                 output_bpp = intel_dp_output_bpp(pipe_config, pipe_config->pipe_bpp);
2404
2405         intel_link_compute_m_n(output_bpp,
2406                                pipe_config->lane_count,
2407                                adjusted_mode->crtc_clock,
2408                                pipe_config->port_clock,
2409                                &pipe_config->dp_m_n,
2410                                constant_n, pipe_config->fec_enable);
2411
2412         if (intel_connector->panel.downclock_mode != NULL &&
2413                 dev_priv->drrs.type == SEAMLESS_DRRS_SUPPORT) {
2414                         pipe_config->has_drrs = true;
2415                         intel_link_compute_m_n(output_bpp,
2416                                                pipe_config->lane_count,
2417                                                intel_connector->panel.downclock_mode->clock,
2418                                                pipe_config->port_clock,
2419                                                &pipe_config->dp_m2_n2,
2420                                                constant_n, pipe_config->fec_enable);
2421         }
2422
2423         if (!HAS_DDI(dev_priv))
2424                 intel_dp_set_clock(encoder, pipe_config);
2425
2426         intel_psr_compute_config(intel_dp, pipe_config);
2427
2428         intel_hdcp_transcoder_config(intel_connector,
2429                                      pipe_config->cpu_transcoder);
2430
2431         return 0;
2432 }
2433
2434 void intel_dp_set_link_params(struct intel_dp *intel_dp,
2435                               int link_rate, u8 lane_count,
2436                               bool link_mst)
2437 {
2438         intel_dp->link_trained = false;
2439         intel_dp->link_rate = link_rate;
2440         intel_dp->lane_count = lane_count;
2441         intel_dp->link_mst = link_mst;
2442 }
2443
2444 static void intel_dp_prepare(struct intel_encoder *encoder,
2445                              const struct intel_crtc_state *pipe_config)
2446 {
2447         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
2448         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
2449         enum port port = encoder->port;
2450         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
2451         const struct drm_display_mode *adjusted_mode = &pipe_config->hw.adjusted_mode;
2452
2453         intel_dp_set_link_params(intel_dp, pipe_config->port_clock,
2454                                  pipe_config->lane_count,
2455                                  intel_crtc_has_type(pipe_config,
2456                                                      INTEL_OUTPUT_DP_MST));
2457
2458         intel_dp->regs.dp_tp_ctl = DP_TP_CTL(port);
2459         intel_dp->regs.dp_tp_status = DP_TP_STATUS(port);
2460
2461         /*
2462          * There are four kinds of DP registers:
2463          *
2464          *      IBX PCH
2465          *      SNB CPU
2466          *      IVB CPU
2467          *      CPT PCH
2468          *
2469          * IBX PCH and CPU are the same for almost everything,
2470          * except that the CPU DP PLL is configured in this
2471          * register
2472          *
2473          * CPT PCH is quite different, having many bits moved
2474          * to the TRANS_DP_CTL register instead. That
2475          * configuration happens (oddly) in ironlake_pch_enable
2476          */
2477
2478         /* Preserve the BIOS-computed detected bit. This is
2479          * supposed to be read-only.
2480          */
2481         intel_dp->DP = I915_READ(intel_dp->output_reg) & DP_DETECTED;
2482
2483         /* Handle DP bits in common between all three register formats */
2484         intel_dp->DP |= DP_VOLTAGE_0_4 | DP_PRE_EMPHASIS_0;
2485         intel_dp->DP |= DP_PORT_WIDTH(pipe_config->lane_count);
2486
2487         /* Split out the IBX/CPU vs CPT settings */
2488
2489         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
2490                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2491                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2492                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2493                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2494                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2495
2496                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2497                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2498
2499                 intel_dp->DP |= DP_PIPE_SEL_IVB(crtc->pipe);
2500         } else if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
2501                 u32 trans_dp;
2502
2503                 intel_dp->DP |= DP_LINK_TRAIN_OFF_CPT;
2504
2505                 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
2506                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2507                         trans_dp |= TRANS_DP_ENH_FRAMING;
2508                 else
2509                         trans_dp &= ~TRANS_DP_ENH_FRAMING;
2510                 I915_WRITE(TRANS_DP_CTL(crtc->pipe), trans_dp);
2511         } else {
2512                 if (IS_G4X(dev_priv) && pipe_config->limited_color_range)
2513                         intel_dp->DP |= DP_COLOR_RANGE_16_235;
2514
2515                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
2516                         intel_dp->DP |= DP_SYNC_HS_HIGH;
2517                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
2518                         intel_dp->DP |= DP_SYNC_VS_HIGH;
2519                 intel_dp->DP |= DP_LINK_TRAIN_OFF;
2520
2521                 if (drm_dp_enhanced_frame_cap(intel_dp->dpcd))
2522                         intel_dp->DP |= DP_ENHANCED_FRAMING;
2523
2524                 if (IS_CHERRYVIEW(dev_priv))
2525                         intel_dp->DP |= DP_PIPE_SEL_CHV(crtc->pipe);
2526                 else
2527                         intel_dp->DP |= DP_PIPE_SEL(crtc->pipe);
2528         }
2529 }
2530
2531 #define IDLE_ON_MASK            (PP_ON | PP_SEQUENCE_MASK | 0                     | PP_SEQUENCE_STATE_MASK)
2532 #define IDLE_ON_VALUE           (PP_ON | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_ON_IDLE)
2533
2534 #define IDLE_OFF_MASK           (PP_ON | PP_SEQUENCE_MASK | 0                     | 0)
2535 #define IDLE_OFF_VALUE          (0     | PP_SEQUENCE_NONE | 0                     | 0)
2536
2537 #define IDLE_CYCLE_MASK         (PP_ON | PP_SEQUENCE_MASK | PP_CYCLE_DELAY_ACTIVE | PP_SEQUENCE_STATE_MASK)
2538 #define IDLE_CYCLE_VALUE        (0     | PP_SEQUENCE_NONE | 0                     | PP_SEQUENCE_STATE_OFF_IDLE)
2539
2540 static void intel_pps_verify_state(struct intel_dp *intel_dp);
2541
2542 static void wait_panel_status(struct intel_dp *intel_dp,
2543                                        u32 mask,
2544                                        u32 value)
2545 {
2546         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2547         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2548
2549         lockdep_assert_held(&dev_priv->pps_mutex);
2550
2551         intel_pps_verify_state(intel_dp);
2552
2553         pp_stat_reg = _pp_stat_reg(intel_dp);
2554         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2555
2556         DRM_DEBUG_KMS("mask %08x value %08x status %08x control %08x\n",
2557                         mask, value,
2558                         I915_READ(pp_stat_reg),
2559                         I915_READ(pp_ctrl_reg));
2560
2561         if (intel_de_wait_for_register(dev_priv, pp_stat_reg,
2562                                        mask, value, 5000))
2563                 DRM_ERROR("Panel status timeout: status %08x control %08x\n",
2564                                 I915_READ(pp_stat_reg),
2565                                 I915_READ(pp_ctrl_reg));
2566
2567         DRM_DEBUG_KMS("Wait complete\n");
2568 }
2569
2570 static void wait_panel_on(struct intel_dp *intel_dp)
2571 {
2572         DRM_DEBUG_KMS("Wait for panel power on\n");
2573         wait_panel_status(intel_dp, IDLE_ON_MASK, IDLE_ON_VALUE);
2574 }
2575
2576 static void wait_panel_off(struct intel_dp *intel_dp)
2577 {
2578         DRM_DEBUG_KMS("Wait for panel power off time\n");
2579         wait_panel_status(intel_dp, IDLE_OFF_MASK, IDLE_OFF_VALUE);
2580 }
2581
2582 static void wait_panel_power_cycle(struct intel_dp *intel_dp)
2583 {
2584         ktime_t panel_power_on_time;
2585         s64 panel_power_off_duration;
2586
2587         DRM_DEBUG_KMS("Wait for panel power cycle\n");
2588
2589         /* take the difference of currrent time and panel power off time
2590          * and then make panel wait for t11_t12 if needed. */
2591         panel_power_on_time = ktime_get_boottime();
2592         panel_power_off_duration = ktime_ms_delta(panel_power_on_time, intel_dp->panel_power_off_time);
2593
2594         /* When we disable the VDD override bit last we have to do the manual
2595          * wait. */
2596         if (panel_power_off_duration < (s64)intel_dp->panel_power_cycle_delay)
2597                 wait_remaining_ms_from_jiffies(jiffies,
2598                                        intel_dp->panel_power_cycle_delay - panel_power_off_duration);
2599
2600         wait_panel_status(intel_dp, IDLE_CYCLE_MASK, IDLE_CYCLE_VALUE);
2601 }
2602
2603 static void wait_backlight_on(struct intel_dp *intel_dp)
2604 {
2605         wait_remaining_ms_from_jiffies(intel_dp->last_power_on,
2606                                        intel_dp->backlight_on_delay);
2607 }
2608
2609 static void edp_wait_backlight_off(struct intel_dp *intel_dp)
2610 {
2611         wait_remaining_ms_from_jiffies(intel_dp->last_backlight_off,
2612                                        intel_dp->backlight_off_delay);
2613 }
2614
2615 /* Read the current pp_control value, unlocking the register if it
2616  * is locked
2617  */
2618
2619 static  u32 ironlake_get_pp_control(struct intel_dp *intel_dp)
2620 {
2621         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2622         u32 control;
2623
2624         lockdep_assert_held(&dev_priv->pps_mutex);
2625
2626         control = I915_READ(_pp_ctrl_reg(intel_dp));
2627         if (WARN_ON(!HAS_DDI(dev_priv) &&
2628                     (control & PANEL_UNLOCK_MASK) != PANEL_UNLOCK_REGS)) {
2629                 control &= ~PANEL_UNLOCK_MASK;
2630                 control |= PANEL_UNLOCK_REGS;
2631         }
2632         return control;
2633 }
2634
2635 /*
2636  * Must be paired with edp_panel_vdd_off().
2637  * Must hold pps_mutex around the whole on/off sequence.
2638  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2639  */
2640 static bool edp_panel_vdd_on(struct intel_dp *intel_dp)
2641 {
2642         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2643         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
2644         u32 pp;
2645         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2646         bool need_to_disable = !intel_dp->want_panel_vdd;
2647
2648         lockdep_assert_held(&dev_priv->pps_mutex);
2649
2650         if (!intel_dp_is_edp(intel_dp))
2651                 return false;
2652
2653         cancel_delayed_work(&intel_dp->panel_vdd_work);
2654         intel_dp->want_panel_vdd = true;
2655
2656         if (edp_have_panel_vdd(intel_dp))
2657                 return need_to_disable;
2658
2659         intel_display_power_get(dev_priv,
2660                                 intel_aux_power_domain(intel_dig_port));
2661
2662         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD on\n",
2663                       intel_dig_port->base.base.base.id,
2664                       intel_dig_port->base.base.name);
2665
2666         if (!edp_have_panel_power(intel_dp))
2667                 wait_panel_power_cycle(intel_dp);
2668
2669         pp = ironlake_get_pp_control(intel_dp);
2670         pp |= EDP_FORCE_VDD;
2671
2672         pp_stat_reg = _pp_stat_reg(intel_dp);
2673         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2674
2675         I915_WRITE(pp_ctrl_reg, pp);
2676         POSTING_READ(pp_ctrl_reg);
2677         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2678                         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2679         /*
2680          * If the panel wasn't on, delay before accessing aux channel
2681          */
2682         if (!edp_have_panel_power(intel_dp)) {
2683                 DRM_DEBUG_KMS("[ENCODER:%d:%s] panel power wasn't enabled\n",
2684                               intel_dig_port->base.base.base.id,
2685                               intel_dig_port->base.base.name);
2686                 msleep(intel_dp->panel_power_up_delay);
2687         }
2688
2689         return need_to_disable;
2690 }
2691
2692 /*
2693  * Must be paired with intel_edp_panel_vdd_off() or
2694  * intel_edp_panel_off().
2695  * Nested calls to these functions are not allowed since
2696  * we drop the lock. Caller must use some higher level
2697  * locking to prevent nested calls from other threads.
2698  */
2699 void intel_edp_panel_vdd_on(struct intel_dp *intel_dp)
2700 {
2701         intel_wakeref_t wakeref;
2702         bool vdd;
2703
2704         if (!intel_dp_is_edp(intel_dp))
2705                 return;
2706
2707         vdd = false;
2708         with_pps_lock(intel_dp, wakeref)
2709                 vdd = edp_panel_vdd_on(intel_dp);
2710         I915_STATE_WARN(!vdd, "[ENCODER:%d:%s] VDD already requested on\n",
2711                         dp_to_dig_port(intel_dp)->base.base.base.id,
2712                         dp_to_dig_port(intel_dp)->base.base.name);
2713 }
2714
2715 static void edp_panel_vdd_off_sync(struct intel_dp *intel_dp)
2716 {
2717         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2718         struct intel_digital_port *intel_dig_port =
2719                 dp_to_dig_port(intel_dp);
2720         u32 pp;
2721         i915_reg_t pp_stat_reg, pp_ctrl_reg;
2722
2723         lockdep_assert_held(&dev_priv->pps_mutex);
2724
2725         WARN_ON(intel_dp->want_panel_vdd);
2726
2727         if (!edp_have_panel_vdd(intel_dp))
2728                 return;
2729
2730         DRM_DEBUG_KMS("Turning [ENCODER:%d:%s] VDD off\n",
2731                       intel_dig_port->base.base.base.id,
2732                       intel_dig_port->base.base.name);
2733
2734         pp = ironlake_get_pp_control(intel_dp);
2735         pp &= ~EDP_FORCE_VDD;
2736
2737         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2738         pp_stat_reg = _pp_stat_reg(intel_dp);
2739
2740         I915_WRITE(pp_ctrl_reg, pp);
2741         POSTING_READ(pp_ctrl_reg);
2742
2743         /* Make sure sequencer is idle before allowing subsequent activity */
2744         DRM_DEBUG_KMS("PP_STATUS: 0x%08x PP_CONTROL: 0x%08x\n",
2745         I915_READ(pp_stat_reg), I915_READ(pp_ctrl_reg));
2746
2747         if ((pp & PANEL_POWER_ON) == 0)
2748                 intel_dp->panel_power_off_time = ktime_get_boottime();
2749
2750         intel_display_power_put_unchecked(dev_priv,
2751                                           intel_aux_power_domain(intel_dig_port));
2752 }
2753
2754 static void edp_panel_vdd_work(struct work_struct *__work)
2755 {
2756         struct intel_dp *intel_dp =
2757                 container_of(to_delayed_work(__work),
2758                              struct intel_dp, panel_vdd_work);
2759         intel_wakeref_t wakeref;
2760
2761         with_pps_lock(intel_dp, wakeref) {
2762                 if (!intel_dp->want_panel_vdd)
2763                         edp_panel_vdd_off_sync(intel_dp);
2764         }
2765 }
2766
2767 static void edp_panel_vdd_schedule_off(struct intel_dp *intel_dp)
2768 {
2769         unsigned long delay;
2770
2771         /*
2772          * Queue the timer to fire a long time from now (relative to the power
2773          * down delay) to keep the panel power up across a sequence of
2774          * operations.
2775          */
2776         delay = msecs_to_jiffies(intel_dp->panel_power_cycle_delay * 5);
2777         schedule_delayed_work(&intel_dp->panel_vdd_work, delay);
2778 }
2779
2780 /*
2781  * Must be paired with edp_panel_vdd_on().
2782  * Must hold pps_mutex around the whole on/off sequence.
2783  * Can be nested with intel_edp_panel_vdd_{on,off}() calls.
2784  */
2785 static void edp_panel_vdd_off(struct intel_dp *intel_dp, bool sync)
2786 {
2787         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2788
2789         lockdep_assert_held(&dev_priv->pps_mutex);
2790
2791         if (!intel_dp_is_edp(intel_dp))
2792                 return;
2793
2794         I915_STATE_WARN(!intel_dp->want_panel_vdd, "[ENCODER:%d:%s] VDD not forced on",
2795                         dp_to_dig_port(intel_dp)->base.base.base.id,
2796                         dp_to_dig_port(intel_dp)->base.base.name);
2797
2798         intel_dp->want_panel_vdd = false;
2799
2800         if (sync)
2801                 edp_panel_vdd_off_sync(intel_dp);
2802         else
2803                 edp_panel_vdd_schedule_off(intel_dp);
2804 }
2805
2806 static void edp_panel_on(struct intel_dp *intel_dp)
2807 {
2808         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2809         u32 pp;
2810         i915_reg_t pp_ctrl_reg;
2811
2812         lockdep_assert_held(&dev_priv->pps_mutex);
2813
2814         if (!intel_dp_is_edp(intel_dp))
2815                 return;
2816
2817         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power on\n",
2818                       dp_to_dig_port(intel_dp)->base.base.base.id,
2819                       dp_to_dig_port(intel_dp)->base.base.name);
2820
2821         if (WARN(edp_have_panel_power(intel_dp),
2822                  "[ENCODER:%d:%s] panel power already on\n",
2823                  dp_to_dig_port(intel_dp)->base.base.base.id,
2824                  dp_to_dig_port(intel_dp)->base.base.name))
2825                 return;
2826
2827         wait_panel_power_cycle(intel_dp);
2828
2829         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2830         pp = ironlake_get_pp_control(intel_dp);
2831         if (IS_GEN(dev_priv, 5)) {
2832                 /* ILK workaround: disable reset around power sequence */
2833                 pp &= ~PANEL_POWER_RESET;
2834                 I915_WRITE(pp_ctrl_reg, pp);
2835                 POSTING_READ(pp_ctrl_reg);
2836         }
2837
2838         pp |= PANEL_POWER_ON;
2839         if (!IS_GEN(dev_priv, 5))
2840                 pp |= PANEL_POWER_RESET;
2841
2842         I915_WRITE(pp_ctrl_reg, pp);
2843         POSTING_READ(pp_ctrl_reg);
2844
2845         wait_panel_on(intel_dp);
2846         intel_dp->last_power_on = jiffies;
2847
2848         if (IS_GEN(dev_priv, 5)) {
2849                 pp |= PANEL_POWER_RESET; /* restore panel reset bit */
2850                 I915_WRITE(pp_ctrl_reg, pp);
2851                 POSTING_READ(pp_ctrl_reg);
2852         }
2853 }
2854
2855 void intel_edp_panel_on(struct intel_dp *intel_dp)
2856 {
2857         intel_wakeref_t wakeref;
2858
2859         if (!intel_dp_is_edp(intel_dp))
2860                 return;
2861
2862         with_pps_lock(intel_dp, wakeref)
2863                 edp_panel_on(intel_dp);
2864 }
2865
2866
2867 static void edp_panel_off(struct intel_dp *intel_dp)
2868 {
2869         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2870         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
2871         u32 pp;
2872         i915_reg_t pp_ctrl_reg;
2873
2874         lockdep_assert_held(&dev_priv->pps_mutex);
2875
2876         if (!intel_dp_is_edp(intel_dp))
2877                 return;
2878
2879         DRM_DEBUG_KMS("Turn [ENCODER:%d:%s] panel power off\n",
2880                       dig_port->base.base.base.id, dig_port->base.base.name);
2881
2882         WARN(!intel_dp->want_panel_vdd, "Need [ENCODER:%d:%s] VDD to turn off panel\n",
2883              dig_port->base.base.base.id, dig_port->base.base.name);
2884
2885         pp = ironlake_get_pp_control(intel_dp);
2886         /* We need to switch off panel power _and_ force vdd, for otherwise some
2887          * panels get very unhappy and cease to work. */
2888         pp &= ~(PANEL_POWER_ON | PANEL_POWER_RESET | EDP_FORCE_VDD |
2889                 EDP_BLC_ENABLE);
2890
2891         pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2892
2893         intel_dp->want_panel_vdd = false;
2894
2895         I915_WRITE(pp_ctrl_reg, pp);
2896         POSTING_READ(pp_ctrl_reg);
2897
2898         wait_panel_off(intel_dp);
2899         intel_dp->panel_power_off_time = ktime_get_boottime();
2900
2901         /* We got a reference when we enabled the VDD. */
2902         intel_display_power_put_unchecked(dev_priv, intel_aux_power_domain(dig_port));
2903 }
2904
2905 void intel_edp_panel_off(struct intel_dp *intel_dp)
2906 {
2907         intel_wakeref_t wakeref;
2908
2909         if (!intel_dp_is_edp(intel_dp))
2910                 return;
2911
2912         with_pps_lock(intel_dp, wakeref)
2913                 edp_panel_off(intel_dp);
2914 }
2915
2916 /* Enable backlight in the panel power control. */
2917 static void _intel_edp_backlight_on(struct intel_dp *intel_dp)
2918 {
2919         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2920         intel_wakeref_t wakeref;
2921
2922         /*
2923          * If we enable the backlight right away following a panel power
2924          * on, we may see slight flicker as the panel syncs with the eDP
2925          * link.  So delay a bit to make sure the image is solid before
2926          * allowing it to appear.
2927          */
2928         wait_backlight_on(intel_dp);
2929
2930         with_pps_lock(intel_dp, wakeref) {
2931                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2932                 u32 pp;
2933
2934                 pp = ironlake_get_pp_control(intel_dp);
2935                 pp |= EDP_BLC_ENABLE;
2936
2937                 I915_WRITE(pp_ctrl_reg, pp);
2938                 POSTING_READ(pp_ctrl_reg);
2939         }
2940 }
2941
2942 /* Enable backlight PWM and backlight PP control. */
2943 void intel_edp_backlight_on(const struct intel_crtc_state *crtc_state,
2944                             const struct drm_connector_state *conn_state)
2945 {
2946         struct intel_dp *intel_dp = enc_to_intel_dp(conn_state->best_encoder);
2947
2948         if (!intel_dp_is_edp(intel_dp))
2949                 return;
2950
2951         DRM_DEBUG_KMS("\n");
2952
2953         intel_panel_enable_backlight(crtc_state, conn_state);
2954         _intel_edp_backlight_on(intel_dp);
2955 }
2956
2957 /* Disable backlight in the panel power control. */
2958 static void _intel_edp_backlight_off(struct intel_dp *intel_dp)
2959 {
2960         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
2961         intel_wakeref_t wakeref;
2962
2963         if (!intel_dp_is_edp(intel_dp))
2964                 return;
2965
2966         with_pps_lock(intel_dp, wakeref) {
2967                 i915_reg_t pp_ctrl_reg = _pp_ctrl_reg(intel_dp);
2968                 u32 pp;
2969
2970                 pp = ironlake_get_pp_control(intel_dp);
2971                 pp &= ~EDP_BLC_ENABLE;
2972
2973                 I915_WRITE(pp_ctrl_reg, pp);
2974                 POSTING_READ(pp_ctrl_reg);
2975         }
2976
2977         intel_dp->last_backlight_off = jiffies;
2978         edp_wait_backlight_off(intel_dp);
2979 }
2980
2981 /* Disable backlight PP control and backlight PWM. */
2982 void intel_edp_backlight_off(const struct drm_connector_state *old_conn_state)
2983 {
2984         struct intel_dp *intel_dp = enc_to_intel_dp(old_conn_state->best_encoder);
2985
2986         if (!intel_dp_is_edp(intel_dp))
2987                 return;
2988
2989         DRM_DEBUG_KMS("\n");
2990
2991         _intel_edp_backlight_off(intel_dp);
2992         intel_panel_disable_backlight(old_conn_state);
2993 }
2994
2995 /*
2996  * Hook for controlling the panel power control backlight through the bl_power
2997  * sysfs attribute. Take care to handle multiple calls.
2998  */
2999 static void intel_edp_backlight_power(struct intel_connector *connector,
3000                                       bool enable)
3001 {
3002         struct intel_dp *intel_dp = intel_attached_dp(&connector->base);
3003         intel_wakeref_t wakeref;
3004         bool is_enabled;
3005
3006         is_enabled = false;
3007         with_pps_lock(intel_dp, wakeref)
3008                 is_enabled = ironlake_get_pp_control(intel_dp) & EDP_BLC_ENABLE;
3009         if (is_enabled == enable)
3010                 return;
3011
3012         DRM_DEBUG_KMS("panel power control backlight %s\n",
3013                       enable ? "enable" : "disable");
3014
3015         if (enable)
3016                 _intel_edp_backlight_on(intel_dp);
3017         else
3018                 _intel_edp_backlight_off(intel_dp);
3019 }
3020
3021 static void assert_dp_port(struct intel_dp *intel_dp, bool state)
3022 {
3023         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
3024         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
3025         bool cur_state = I915_READ(intel_dp->output_reg) & DP_PORT_EN;
3026
3027         I915_STATE_WARN(cur_state != state,
3028                         "[ENCODER:%d:%s] state assertion failure (expected %s, current %s)\n",
3029                         dig_port->base.base.base.id, dig_port->base.base.name,
3030                         onoff(state), onoff(cur_state));
3031 }
3032 #define assert_dp_port_disabled(d) assert_dp_port((d), false)
3033
3034 static void assert_edp_pll(struct drm_i915_private *dev_priv, bool state)
3035 {
3036         bool cur_state = I915_READ(DP_A) & DP_PLL_ENABLE;
3037
3038         I915_STATE_WARN(cur_state != state,
3039                         "eDP PLL state assertion failure (expected %s, current %s)\n",
3040                         onoff(state), onoff(cur_state));
3041 }
3042 #define assert_edp_pll_enabled(d) assert_edp_pll((d), true)
3043 #define assert_edp_pll_disabled(d) assert_edp_pll((d), false)
3044
3045 static void ironlake_edp_pll_on(struct intel_dp *intel_dp,
3046                                 const struct intel_crtc_state *pipe_config)
3047 {
3048         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3049         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3050
3051         assert_pipe_disabled(dev_priv, crtc->pipe);
3052         assert_dp_port_disabled(intel_dp);
3053         assert_edp_pll_disabled(dev_priv);
3054
3055         DRM_DEBUG_KMS("enabling eDP PLL for clock %d\n",
3056                       pipe_config->port_clock);
3057
3058         intel_dp->DP &= ~DP_PLL_FREQ_MASK;
3059
3060         if (pipe_config->port_clock == 162000)
3061                 intel_dp->DP |= DP_PLL_FREQ_162MHZ;
3062         else
3063                 intel_dp->DP |= DP_PLL_FREQ_270MHZ;
3064
3065         I915_WRITE(DP_A, intel_dp->DP);
3066         POSTING_READ(DP_A);
3067         udelay(500);
3068
3069         /*
3070          * [DevILK] Work around required when enabling DP PLL
3071          * while a pipe is enabled going to FDI:
3072          * 1. Wait for the start of vertical blank on the enabled pipe going to FDI
3073          * 2. Program DP PLL enable
3074          */
3075         if (IS_GEN(dev_priv, 5))
3076                 intel_wait_for_vblank_if_active(dev_priv, !crtc->pipe);
3077
3078         intel_dp->DP |= DP_PLL_ENABLE;
3079
3080         I915_WRITE(DP_A, intel_dp->DP);
3081         POSTING_READ(DP_A);
3082         udelay(200);
3083 }
3084
3085 static void ironlake_edp_pll_off(struct intel_dp *intel_dp,
3086                                  const struct intel_crtc_state *old_crtc_state)
3087 {
3088         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
3089         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3090
3091         assert_pipe_disabled(dev_priv, crtc->pipe);
3092         assert_dp_port_disabled(intel_dp);
3093         assert_edp_pll_enabled(dev_priv);
3094
3095         DRM_DEBUG_KMS("disabling eDP PLL\n");
3096
3097         intel_dp->DP &= ~DP_PLL_ENABLE;
3098
3099         I915_WRITE(DP_A, intel_dp->DP);
3100         POSTING_READ(DP_A);
3101         udelay(200);
3102 }
3103
3104 static bool downstream_hpd_needs_d0(struct intel_dp *intel_dp)
3105 {
3106         /*
3107          * DPCD 1.2+ should support BRANCH_DEVICE_CTRL, and thus
3108          * be capable of signalling downstream hpd with a long pulse.
3109          * Whether or not that means D3 is safe to use is not clear,
3110          * but let's assume so until proven otherwise.
3111          *
3112          * FIXME should really check all downstream ports...
3113          */
3114         return intel_dp->dpcd[DP_DPCD_REV] == 0x11 &&
3115                 intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] & DP_DWN_STRM_PORT_PRESENT &&
3116                 intel_dp->downstream_ports[0] & DP_DS_PORT_HPD;
3117 }
3118
3119 void intel_dp_sink_set_decompression_state(struct intel_dp *intel_dp,
3120                                            const struct intel_crtc_state *crtc_state,
3121                                            bool enable)
3122 {
3123         int ret;
3124
3125         if (!crtc_state->dsc.compression_enable)
3126                 return;
3127
3128         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_DSC_ENABLE,
3129                                  enable ? DP_DECOMPRESSION_EN : 0);
3130         if (ret < 0)
3131                 DRM_DEBUG_KMS("Failed to %s sink decompression state\n",
3132                               enable ? "enable" : "disable");
3133 }
3134
3135 /* If the sink supports it, try to set the power state appropriately */
3136 void intel_dp_sink_dpms(struct intel_dp *intel_dp, int mode)
3137 {
3138         int ret, i;
3139
3140         /* Should have a valid DPCD by this point */
3141         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
3142                 return;
3143
3144         if (mode != DRM_MODE_DPMS_ON) {
3145                 if (downstream_hpd_needs_d0(intel_dp))
3146                         return;
3147
3148                 ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3149                                          DP_SET_POWER_D3);
3150         } else {
3151                 struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
3152
3153                 /*
3154                  * When turning on, we need to retry for 1ms to give the sink
3155                  * time to wake up.
3156                  */
3157                 for (i = 0; i < 3; i++) {
3158                         ret = drm_dp_dpcd_writeb(&intel_dp->aux, DP_SET_POWER,
3159                                                  DP_SET_POWER_D0);
3160                         if (ret == 1)
3161                                 break;
3162                         msleep(1);
3163                 }
3164
3165                 if (ret == 1 && lspcon->active)
3166                         lspcon_wait_pcon_mode(lspcon);
3167         }
3168
3169         if (ret != 1)
3170                 DRM_DEBUG_KMS("failed to %s sink power state\n",
3171                               mode == DRM_MODE_DPMS_ON ? "enable" : "disable");
3172 }
3173
3174 static bool cpt_dp_port_selected(struct drm_i915_private *dev_priv,
3175                                  enum port port, enum pipe *pipe)
3176 {
3177         enum pipe p;
3178
3179         for_each_pipe(dev_priv, p) {
3180                 u32 val = I915_READ(TRANS_DP_CTL(p));
3181
3182                 if ((val & TRANS_DP_PORT_SEL_MASK) == TRANS_DP_PORT_SEL(port)) {
3183                         *pipe = p;
3184                         return true;
3185                 }
3186         }
3187
3188         DRM_DEBUG_KMS("No pipe for DP port %c found\n", port_name(port));
3189
3190         /* must initialize pipe to something for the asserts */
3191         *pipe = PIPE_A;
3192
3193         return false;
3194 }
3195
3196 bool intel_dp_port_enabled(struct drm_i915_private *dev_priv,
3197                            i915_reg_t dp_reg, enum port port,
3198                            enum pipe *pipe)
3199 {
3200         bool ret;
3201         u32 val;
3202
3203         val = I915_READ(dp_reg);
3204
3205         ret = val & DP_PORT_EN;
3206
3207         /* asserts want to know the pipe even if the port is disabled */
3208         if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3209                 *pipe = (val & DP_PIPE_SEL_MASK_IVB) >> DP_PIPE_SEL_SHIFT_IVB;
3210         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3211                 ret &= cpt_dp_port_selected(dev_priv, port, pipe);
3212         else if (IS_CHERRYVIEW(dev_priv))
3213                 *pipe = (val & DP_PIPE_SEL_MASK_CHV) >> DP_PIPE_SEL_SHIFT_CHV;
3214         else
3215                 *pipe = (val & DP_PIPE_SEL_MASK) >> DP_PIPE_SEL_SHIFT;
3216
3217         return ret;
3218 }
3219
3220 static bool intel_dp_get_hw_state(struct intel_encoder *encoder,
3221                                   enum pipe *pipe)
3222 {
3223         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3224         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3225         intel_wakeref_t wakeref;
3226         bool ret;
3227
3228         wakeref = intel_display_power_get_if_enabled(dev_priv,
3229                                                      encoder->power_domain);
3230         if (!wakeref)
3231                 return false;
3232
3233         ret = intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
3234                                     encoder->port, pipe);
3235
3236         intel_display_power_put(dev_priv, encoder->power_domain, wakeref);
3237
3238         return ret;
3239 }
3240
3241 static void intel_dp_get_config(struct intel_encoder *encoder,
3242                                 struct intel_crtc_state *pipe_config)
3243 {
3244         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3245         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3246         u32 tmp, flags = 0;
3247         enum port port = encoder->port;
3248         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3249
3250         if (encoder->type == INTEL_OUTPUT_EDP)
3251                 pipe_config->output_types |= BIT(INTEL_OUTPUT_EDP);
3252         else
3253                 pipe_config->output_types |= BIT(INTEL_OUTPUT_DP);
3254
3255         tmp = I915_READ(intel_dp->output_reg);
3256
3257         pipe_config->has_audio = tmp & DP_AUDIO_OUTPUT_ENABLE && port != PORT_A;
3258
3259         if (HAS_PCH_CPT(dev_priv) && port != PORT_A) {
3260                 u32 trans_dp = I915_READ(TRANS_DP_CTL(crtc->pipe));
3261
3262                 if (trans_dp & TRANS_DP_HSYNC_ACTIVE_HIGH)
3263                         flags |= DRM_MODE_FLAG_PHSYNC;
3264                 else
3265                         flags |= DRM_MODE_FLAG_NHSYNC;
3266
3267                 if (trans_dp & TRANS_DP_VSYNC_ACTIVE_HIGH)
3268                         flags |= DRM_MODE_FLAG_PVSYNC;
3269                 else
3270                         flags |= DRM_MODE_FLAG_NVSYNC;
3271         } else {
3272                 if (tmp & DP_SYNC_HS_HIGH)
3273                         flags |= DRM_MODE_FLAG_PHSYNC;
3274                 else
3275                         flags |= DRM_MODE_FLAG_NHSYNC;
3276
3277                 if (tmp & DP_SYNC_VS_HIGH)
3278                         flags |= DRM_MODE_FLAG_PVSYNC;
3279                 else
3280                         flags |= DRM_MODE_FLAG_NVSYNC;
3281         }
3282
3283         pipe_config->hw.adjusted_mode.flags |= flags;
3284
3285         if (IS_G4X(dev_priv) && tmp & DP_COLOR_RANGE_16_235)
3286                 pipe_config->limited_color_range = true;
3287
3288         pipe_config->lane_count =
3289                 ((tmp & DP_PORT_WIDTH_MASK) >> DP_PORT_WIDTH_SHIFT) + 1;
3290
3291         intel_dp_get_m_n(crtc, pipe_config);
3292
3293         if (port == PORT_A) {
3294                 if ((I915_READ(DP_A) & DP_PLL_FREQ_MASK) == DP_PLL_FREQ_162MHZ)
3295                         pipe_config->port_clock = 162000;
3296                 else
3297                         pipe_config->port_clock = 270000;
3298         }
3299
3300         pipe_config->hw.adjusted_mode.crtc_clock =
3301                 intel_dotclock_calculate(pipe_config->port_clock,
3302                                          &pipe_config->dp_m_n);
3303
3304         if (intel_dp_is_edp(intel_dp) && dev_priv->vbt.edp.bpp &&
3305             pipe_config->pipe_bpp > dev_priv->vbt.edp.bpp) {
3306                 /*
3307                  * This is a big fat ugly hack.
3308                  *
3309                  * Some machines in UEFI boot mode provide us a VBT that has 18
3310                  * bpp and 1.62 GHz link bandwidth for eDP, which for reasons
3311                  * unknown we fail to light up. Yet the same BIOS boots up with
3312                  * 24 bpp and 2.7 GHz link. Use the same bpp as the BIOS uses as
3313                  * max, not what it tells us to use.
3314                  *
3315                  * Note: This will still be broken if the eDP panel is not lit
3316                  * up by the BIOS, and thus we can't get the mode at module
3317                  * load.
3318                  */
3319                 DRM_DEBUG_KMS("pipe has %d bpp for eDP panel, overriding BIOS-provided max %d bpp\n",
3320                               pipe_config->pipe_bpp, dev_priv->vbt.edp.bpp);
3321                 dev_priv->vbt.edp.bpp = pipe_config->pipe_bpp;
3322         }
3323 }
3324
3325 static void intel_disable_dp(struct intel_encoder *encoder,
3326                              const struct intel_crtc_state *old_crtc_state,
3327                              const struct drm_connector_state *old_conn_state)
3328 {
3329         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3330
3331         intel_dp->link_trained = false;
3332
3333         if (old_crtc_state->has_audio)
3334                 intel_audio_codec_disable(encoder,
3335                                           old_crtc_state, old_conn_state);
3336
3337         /* Make sure the panel is off before trying to change the mode. But also
3338          * ensure that we have vdd while we switch off the panel. */
3339         intel_edp_panel_vdd_on(intel_dp);
3340         intel_edp_backlight_off(old_conn_state);
3341         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_OFF);
3342         intel_edp_panel_off(intel_dp);
3343 }
3344
3345 static void g4x_disable_dp(struct intel_encoder *encoder,
3346                            const struct intel_crtc_state *old_crtc_state,
3347                            const struct drm_connector_state *old_conn_state)
3348 {
3349         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3350 }
3351
3352 static void vlv_disable_dp(struct intel_encoder *encoder,
3353                            const struct intel_crtc_state *old_crtc_state,
3354                            const struct drm_connector_state *old_conn_state)
3355 {
3356         intel_disable_dp(encoder, old_crtc_state, old_conn_state);
3357 }
3358
3359 static void g4x_post_disable_dp(struct intel_encoder *encoder,
3360                                 const struct intel_crtc_state *old_crtc_state,
3361                                 const struct drm_connector_state *old_conn_state)
3362 {
3363         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3364         enum port port = encoder->port;
3365
3366         /*
3367          * Bspec does not list a specific disable sequence for g4x DP.
3368          * Follow the ilk+ sequence (disable pipe before the port) for
3369          * g4x DP as it does not suffer from underruns like the normal
3370          * g4x modeset sequence (disable pipe after the port).
3371          */
3372         intel_dp_link_down(encoder, old_crtc_state);
3373
3374         /* Only ilk+ has port A */
3375         if (port == PORT_A)
3376                 ironlake_edp_pll_off(intel_dp, old_crtc_state);
3377 }
3378
3379 static void vlv_post_disable_dp(struct intel_encoder *encoder,
3380                                 const struct intel_crtc_state *old_crtc_state,
3381                                 const struct drm_connector_state *old_conn_state)
3382 {
3383         intel_dp_link_down(encoder, old_crtc_state);
3384 }
3385
3386 static void chv_post_disable_dp(struct intel_encoder *encoder,
3387                                 const struct intel_crtc_state *old_crtc_state,
3388                                 const struct drm_connector_state *old_conn_state)
3389 {
3390         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3391
3392         intel_dp_link_down(encoder, old_crtc_state);
3393
3394         vlv_dpio_get(dev_priv);
3395
3396         /* Assert data lane reset */
3397         chv_data_lane_soft_reset(encoder, old_crtc_state, true);
3398
3399         vlv_dpio_put(dev_priv);
3400 }
3401
3402 static void
3403 _intel_dp_set_link_train(struct intel_dp *intel_dp,
3404                          u32 *DP,
3405                          u8 dp_train_pat)
3406 {
3407         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3408         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3409         enum port port = intel_dig_port->base.port;
3410         u8 train_pat_mask = drm_dp_training_pattern_mask(intel_dp->dpcd);
3411
3412         if (dp_train_pat & train_pat_mask)
3413                 DRM_DEBUG_KMS("Using DP training pattern TPS%d\n",
3414                               dp_train_pat & train_pat_mask);
3415
3416         if (HAS_DDI(dev_priv)) {
3417                 u32 temp = I915_READ(intel_dp->regs.dp_tp_ctl);
3418
3419                 if (dp_train_pat & DP_LINK_SCRAMBLING_DISABLE)
3420                         temp |= DP_TP_CTL_SCRAMBLE_DISABLE;
3421                 else
3422                         temp &= ~DP_TP_CTL_SCRAMBLE_DISABLE;
3423
3424                 temp &= ~DP_TP_CTL_LINK_TRAIN_MASK;
3425                 switch (dp_train_pat & train_pat_mask) {
3426                 case DP_TRAINING_PATTERN_DISABLE:
3427                         temp |= DP_TP_CTL_LINK_TRAIN_NORMAL;
3428
3429                         break;
3430                 case DP_TRAINING_PATTERN_1:
3431                         temp |= DP_TP_CTL_LINK_TRAIN_PAT1;
3432                         break;
3433                 case DP_TRAINING_PATTERN_2:
3434                         temp |= DP_TP_CTL_LINK_TRAIN_PAT2;
3435                         break;
3436                 case DP_TRAINING_PATTERN_3:
3437                         temp |= DP_TP_CTL_LINK_TRAIN_PAT3;
3438                         break;
3439                 case DP_TRAINING_PATTERN_4:
3440                         temp |= DP_TP_CTL_LINK_TRAIN_PAT4;
3441                         break;
3442                 }
3443                 I915_WRITE(intel_dp->regs.dp_tp_ctl, temp);
3444
3445         } else if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
3446                    (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
3447                 *DP &= ~DP_LINK_TRAIN_MASK_CPT;
3448
3449                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3450                 case DP_TRAINING_PATTERN_DISABLE:
3451                         *DP |= DP_LINK_TRAIN_OFF_CPT;
3452                         break;
3453                 case DP_TRAINING_PATTERN_1:
3454                         *DP |= DP_LINK_TRAIN_PAT_1_CPT;
3455                         break;
3456                 case DP_TRAINING_PATTERN_2:
3457                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3458                         break;
3459                 case DP_TRAINING_PATTERN_3:
3460                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3461                         *DP |= DP_LINK_TRAIN_PAT_2_CPT;
3462                         break;
3463                 }
3464
3465         } else {
3466                 *DP &= ~DP_LINK_TRAIN_MASK;
3467
3468                 switch (dp_train_pat & DP_TRAINING_PATTERN_MASK) {
3469                 case DP_TRAINING_PATTERN_DISABLE:
3470                         *DP |= DP_LINK_TRAIN_OFF;
3471                         break;
3472                 case DP_TRAINING_PATTERN_1:
3473                         *DP |= DP_LINK_TRAIN_PAT_1;
3474                         break;
3475                 case DP_TRAINING_PATTERN_2:
3476                         *DP |= DP_LINK_TRAIN_PAT_2;
3477                         break;
3478                 case DP_TRAINING_PATTERN_3:
3479                         DRM_DEBUG_KMS("TPS3 not supported, using TPS2 instead\n");
3480                         *DP |= DP_LINK_TRAIN_PAT_2;
3481                         break;
3482                 }
3483         }
3484 }
3485
3486 static void intel_dp_enable_port(struct intel_dp *intel_dp,
3487                                  const struct intel_crtc_state *old_crtc_state)
3488 {
3489         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3490
3491         /* enable with pattern 1 (as per spec) */
3492
3493         intel_dp_program_link_training_pattern(intel_dp, DP_TRAINING_PATTERN_1);
3494
3495         /*
3496          * Magic for VLV/CHV. We _must_ first set up the register
3497          * without actually enabling the port, and then do another
3498          * write to enable the port. Otherwise link training will
3499          * fail when the power sequencer is freshly used for this port.
3500          */
3501         intel_dp->DP |= DP_PORT_EN;
3502         if (old_crtc_state->has_audio)
3503                 intel_dp->DP |= DP_AUDIO_OUTPUT_ENABLE;
3504
3505         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
3506         POSTING_READ(intel_dp->output_reg);
3507 }
3508
3509 static void intel_enable_dp(struct intel_encoder *encoder,
3510                             const struct intel_crtc_state *pipe_config,
3511                             const struct drm_connector_state *conn_state)
3512 {
3513         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3514         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3515         struct intel_crtc *crtc = to_intel_crtc(pipe_config->uapi.crtc);
3516         u32 dp_reg = I915_READ(intel_dp->output_reg);
3517         enum pipe pipe = crtc->pipe;
3518         intel_wakeref_t wakeref;
3519
3520         if (WARN_ON(dp_reg & DP_PORT_EN))
3521                 return;
3522
3523         with_pps_lock(intel_dp, wakeref) {
3524                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3525                         vlv_init_panel_power_sequencer(encoder, pipe_config);
3526
3527                 intel_dp_enable_port(intel_dp, pipe_config);
3528
3529                 edp_panel_vdd_on(intel_dp);
3530                 edp_panel_on(intel_dp);
3531                 edp_panel_vdd_off(intel_dp, true);
3532         }
3533
3534         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3535                 unsigned int lane_mask = 0x0;
3536
3537                 if (IS_CHERRYVIEW(dev_priv))
3538                         lane_mask = intel_dp_unused_lane_mask(pipe_config->lane_count);
3539
3540                 vlv_wait_port_ready(dev_priv, dp_to_dig_port(intel_dp),
3541                                     lane_mask);
3542         }
3543
3544         intel_dp_sink_dpms(intel_dp, DRM_MODE_DPMS_ON);
3545         intel_dp_start_link_train(intel_dp);
3546         intel_dp_stop_link_train(intel_dp);
3547
3548         if (pipe_config->has_audio) {
3549                 DRM_DEBUG_DRIVER("Enabling DP audio on pipe %c\n",
3550                                  pipe_name(pipe));
3551                 intel_audio_codec_enable(encoder, pipe_config, conn_state);
3552         }
3553 }
3554
3555 static void g4x_enable_dp(struct intel_encoder *encoder,
3556                           const struct intel_crtc_state *pipe_config,
3557                           const struct drm_connector_state *conn_state)
3558 {
3559         intel_enable_dp(encoder, pipe_config, conn_state);
3560         intel_edp_backlight_on(pipe_config, conn_state);
3561 }
3562
3563 static void vlv_enable_dp(struct intel_encoder *encoder,
3564                           const struct intel_crtc_state *pipe_config,
3565                           const struct drm_connector_state *conn_state)
3566 {
3567         intel_edp_backlight_on(pipe_config, conn_state);
3568 }
3569
3570 static void g4x_pre_enable_dp(struct intel_encoder *encoder,
3571                               const struct intel_crtc_state *pipe_config,
3572                               const struct drm_connector_state *conn_state)
3573 {
3574         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3575         enum port port = encoder->port;
3576
3577         intel_dp_prepare(encoder, pipe_config);
3578
3579         /* Only ilk+ has port A */
3580         if (port == PORT_A)
3581                 ironlake_edp_pll_on(intel_dp, pipe_config);
3582 }
3583
3584 static void vlv_detach_power_sequencer(struct intel_dp *intel_dp)
3585 {
3586         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
3587         struct drm_i915_private *dev_priv = to_i915(intel_dig_port->base.base.dev);
3588         enum pipe pipe = intel_dp->pps_pipe;
3589         i915_reg_t pp_on_reg = PP_ON_DELAYS(pipe);
3590
3591         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3592
3593         if (WARN_ON(pipe != PIPE_A && pipe != PIPE_B))
3594                 return;
3595
3596         edp_panel_vdd_off_sync(intel_dp);
3597
3598         /*
3599          * VLV seems to get confused when multiple power sequencers
3600          * have the same port selected (even if only one has power/vdd
3601          * enabled). The failure manifests as vlv_wait_port_ready() failing
3602          * CHV on the other hand doesn't seem to mind having the same port
3603          * selected in multiple power sequencers, but let's clear the
3604          * port select always when logically disconnecting a power sequencer
3605          * from a port.
3606          */
3607         DRM_DEBUG_KMS("detaching pipe %c power sequencer from [ENCODER:%d:%s]\n",
3608                       pipe_name(pipe), intel_dig_port->base.base.base.id,
3609                       intel_dig_port->base.base.name);
3610         I915_WRITE(pp_on_reg, 0);
3611         POSTING_READ(pp_on_reg);
3612
3613         intel_dp->pps_pipe = INVALID_PIPE;
3614 }
3615
3616 static void vlv_steal_power_sequencer(struct drm_i915_private *dev_priv,
3617                                       enum pipe pipe)
3618 {
3619         struct intel_encoder *encoder;
3620
3621         lockdep_assert_held(&dev_priv->pps_mutex);
3622
3623         for_each_intel_dp(&dev_priv->drm, encoder) {
3624                 struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3625
3626                 WARN(intel_dp->active_pipe == pipe,
3627                      "stealing pipe %c power sequencer from active [ENCODER:%d:%s]\n",
3628                      pipe_name(pipe), encoder->base.base.id,
3629                      encoder->base.name);
3630
3631                 if (intel_dp->pps_pipe != pipe)
3632                         continue;
3633
3634                 DRM_DEBUG_KMS("stealing pipe %c power sequencer from [ENCODER:%d:%s]\n",
3635                               pipe_name(pipe), encoder->base.base.id,
3636                               encoder->base.name);
3637
3638                 /* make sure vdd is off before we steal it */
3639                 vlv_detach_power_sequencer(intel_dp);
3640         }
3641 }
3642
3643 static void vlv_init_panel_power_sequencer(struct intel_encoder *encoder,
3644                                            const struct intel_crtc_state *crtc_state)
3645 {
3646         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
3647         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
3648         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
3649
3650         lockdep_assert_held(&dev_priv->pps_mutex);
3651
3652         WARN_ON(intel_dp->active_pipe != INVALID_PIPE);
3653
3654         if (intel_dp->pps_pipe != INVALID_PIPE &&
3655             intel_dp->pps_pipe != crtc->pipe) {
3656                 /*
3657                  * If another power sequencer was being used on this
3658                  * port previously make sure to turn off vdd there while
3659                  * we still have control of it.
3660                  */
3661                 vlv_detach_power_sequencer(intel_dp);
3662         }
3663
3664         /*
3665          * We may be stealing the power
3666          * sequencer from another port.
3667          */
3668         vlv_steal_power_sequencer(dev_priv, crtc->pipe);
3669
3670         intel_dp->active_pipe = crtc->pipe;
3671
3672         if (!intel_dp_is_edp(intel_dp))
3673                 return;
3674
3675         /* now it's all ours */
3676         intel_dp->pps_pipe = crtc->pipe;
3677
3678         DRM_DEBUG_KMS("initializing pipe %c power sequencer for [ENCODER:%d:%s]\n",
3679                       pipe_name(intel_dp->pps_pipe), encoder->base.base.id,
3680                       encoder->base.name);
3681
3682         /* init power sequencer on this pipe and port */
3683         intel_dp_init_panel_power_sequencer(intel_dp);
3684         intel_dp_init_panel_power_sequencer_registers(intel_dp, true);
3685 }
3686
3687 static void vlv_pre_enable_dp(struct intel_encoder *encoder,
3688                               const struct intel_crtc_state *pipe_config,
3689                               const struct drm_connector_state *conn_state)
3690 {
3691         vlv_phy_pre_encoder_enable(encoder, pipe_config);
3692
3693         intel_enable_dp(encoder, pipe_config, conn_state);
3694 }
3695
3696 static void vlv_dp_pre_pll_enable(struct intel_encoder *encoder,
3697                                   const struct intel_crtc_state *pipe_config,
3698                                   const struct drm_connector_state *conn_state)
3699 {
3700         intel_dp_prepare(encoder, pipe_config);
3701
3702         vlv_phy_pre_pll_enable(encoder, pipe_config);
3703 }
3704
3705 static void chv_pre_enable_dp(struct intel_encoder *encoder,
3706                               const struct intel_crtc_state *pipe_config,
3707                               const struct drm_connector_state *conn_state)
3708 {
3709         chv_phy_pre_encoder_enable(encoder, pipe_config);
3710
3711         intel_enable_dp(encoder, pipe_config, conn_state);
3712
3713         /* Second common lane will stay alive on its own now */
3714         chv_phy_release_cl2_override(encoder);
3715 }
3716
3717 static void chv_dp_pre_pll_enable(struct intel_encoder *encoder,
3718                                   const struct intel_crtc_state *pipe_config,
3719                                   const struct drm_connector_state *conn_state)
3720 {
3721         intel_dp_prepare(encoder, pipe_config);
3722
3723         chv_phy_pre_pll_enable(encoder, pipe_config);
3724 }
3725
3726 static void chv_dp_post_pll_disable(struct intel_encoder *encoder,
3727                                     const struct intel_crtc_state *old_crtc_state,
3728                                     const struct drm_connector_state *old_conn_state)
3729 {
3730         chv_phy_post_pll_disable(encoder, old_crtc_state);
3731 }
3732
3733 /*
3734  * Fetch AUX CH registers 0x202 - 0x207 which contain
3735  * link status information
3736  */
3737 bool
3738 intel_dp_get_link_status(struct intel_dp *intel_dp, u8 link_status[DP_LINK_STATUS_SIZE])
3739 {
3740         return drm_dp_dpcd_read(&intel_dp->aux, DP_LANE0_1_STATUS, link_status,
3741                                 DP_LINK_STATUS_SIZE) == DP_LINK_STATUS_SIZE;
3742 }
3743
3744 /* These are source-specific values. */
3745 u8
3746 intel_dp_voltage_max(struct intel_dp *intel_dp)
3747 {
3748         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3749         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3750         enum port port = encoder->port;
3751
3752         if (HAS_DDI(dev_priv))
3753                 return intel_ddi_dp_voltage_max(encoder);
3754         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
3755                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3756         else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A)
3757                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3758         else if (HAS_PCH_CPT(dev_priv) && port != PORT_A)
3759                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_3;
3760         else
3761                 return DP_TRAIN_VOLTAGE_SWING_LEVEL_2;
3762 }
3763
3764 u8
3765 intel_dp_pre_emphasis_max(struct intel_dp *intel_dp, u8 voltage_swing)
3766 {
3767         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
3768         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3769         enum port port = encoder->port;
3770
3771         if (HAS_DDI(dev_priv)) {
3772                 return intel_ddi_dp_pre_emphasis_max(encoder, voltage_swing);
3773         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
3774                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3775                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3776                         return DP_TRAIN_PRE_EMPH_LEVEL_3;
3777                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3778                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3779                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3780                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3781                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3782                 default:
3783                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3784                 }
3785         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
3786                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3787                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3788                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3789                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3790                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3791                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3792                 default:
3793                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3794                 }
3795         } else {
3796                 switch (voltage_swing & DP_TRAIN_VOLTAGE_SWING_MASK) {
3797                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3798                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3799                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3800                         return DP_TRAIN_PRE_EMPH_LEVEL_2;
3801                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3802                         return DP_TRAIN_PRE_EMPH_LEVEL_1;
3803                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3804                 default:
3805                         return DP_TRAIN_PRE_EMPH_LEVEL_0;
3806                 }
3807         }
3808 }
3809
3810 static u32 vlv_signal_levels(struct intel_dp *intel_dp)
3811 {
3812         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3813         unsigned long demph_reg_value, preemph_reg_value,
3814                 uniqtranscale_reg_value;
3815         u8 train_set = intel_dp->train_set[0];
3816
3817         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3818         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3819                 preemph_reg_value = 0x0004000;
3820                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3821                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3822                         demph_reg_value = 0x2B405555;
3823                         uniqtranscale_reg_value = 0x552AB83A;
3824                         break;
3825                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3826                         demph_reg_value = 0x2B404040;
3827                         uniqtranscale_reg_value = 0x5548B83A;
3828                         break;
3829                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3830                         demph_reg_value = 0x2B245555;
3831                         uniqtranscale_reg_value = 0x5560B83A;
3832                         break;
3833                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3834                         demph_reg_value = 0x2B405555;
3835                         uniqtranscale_reg_value = 0x5598DA3A;
3836                         break;
3837                 default:
3838                         return 0;
3839                 }
3840                 break;
3841         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3842                 preemph_reg_value = 0x0002000;
3843                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3844                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3845                         demph_reg_value = 0x2B404040;
3846                         uniqtranscale_reg_value = 0x5552B83A;
3847                         break;
3848                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3849                         demph_reg_value = 0x2B404848;
3850                         uniqtranscale_reg_value = 0x5580B83A;
3851                         break;
3852                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3853                         demph_reg_value = 0x2B404040;
3854                         uniqtranscale_reg_value = 0x55ADDA3A;
3855                         break;
3856                 default:
3857                         return 0;
3858                 }
3859                 break;
3860         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3861                 preemph_reg_value = 0x0000000;
3862                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3863                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3864                         demph_reg_value = 0x2B305555;
3865                         uniqtranscale_reg_value = 0x5570B83A;
3866                         break;
3867                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3868                         demph_reg_value = 0x2B2B4040;
3869                         uniqtranscale_reg_value = 0x55ADDA3A;
3870                         break;
3871                 default:
3872                         return 0;
3873                 }
3874                 break;
3875         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3876                 preemph_reg_value = 0x0006000;
3877                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3878                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3879                         demph_reg_value = 0x1B405555;
3880                         uniqtranscale_reg_value = 0x55ADDA3A;
3881                         break;
3882                 default:
3883                         return 0;
3884                 }
3885                 break;
3886         default:
3887                 return 0;
3888         }
3889
3890         vlv_set_phy_signal_level(encoder, demph_reg_value, preemph_reg_value,
3891                                  uniqtranscale_reg_value, 0);
3892
3893         return 0;
3894 }
3895
3896 static u32 chv_signal_levels(struct intel_dp *intel_dp)
3897 {
3898         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
3899         u32 deemph_reg_value, margin_reg_value;
3900         bool uniq_trans_scale = false;
3901         u8 train_set = intel_dp->train_set[0];
3902
3903         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
3904         case DP_TRAIN_PRE_EMPH_LEVEL_0:
3905                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3906                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3907                         deemph_reg_value = 128;
3908                         margin_reg_value = 52;
3909                         break;
3910                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3911                         deemph_reg_value = 128;
3912                         margin_reg_value = 77;
3913                         break;
3914                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3915                         deemph_reg_value = 128;
3916                         margin_reg_value = 102;
3917                         break;
3918                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3919                         deemph_reg_value = 128;
3920                         margin_reg_value = 154;
3921                         uniq_trans_scale = true;
3922                         break;
3923                 default:
3924                         return 0;
3925                 }
3926                 break;
3927         case DP_TRAIN_PRE_EMPH_LEVEL_1:
3928                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3929                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3930                         deemph_reg_value = 85;
3931                         margin_reg_value = 78;
3932                         break;
3933                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3934                         deemph_reg_value = 85;
3935                         margin_reg_value = 116;
3936                         break;
3937                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3938                         deemph_reg_value = 85;
3939                         margin_reg_value = 154;
3940                         break;
3941                 default:
3942                         return 0;
3943                 }
3944                 break;
3945         case DP_TRAIN_PRE_EMPH_LEVEL_2:
3946                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3947                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3948                         deemph_reg_value = 64;
3949                         margin_reg_value = 104;
3950                         break;
3951                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3952                         deemph_reg_value = 64;
3953                         margin_reg_value = 154;
3954                         break;
3955                 default:
3956                         return 0;
3957                 }
3958                 break;
3959         case DP_TRAIN_PRE_EMPH_LEVEL_3:
3960                 switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3961                 case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3962                         deemph_reg_value = 43;
3963                         margin_reg_value = 154;
3964                         break;
3965                 default:
3966                         return 0;
3967                 }
3968                 break;
3969         default:
3970                 return 0;
3971         }
3972
3973         chv_set_phy_signal_level(encoder, deemph_reg_value,
3974                                  margin_reg_value, uniq_trans_scale);
3975
3976         return 0;
3977 }
3978
3979 static u32
3980 g4x_signal_levels(u8 train_set)
3981 {
3982         u32 signal_levels = 0;
3983
3984         switch (train_set & DP_TRAIN_VOLTAGE_SWING_MASK) {
3985         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0:
3986         default:
3987                 signal_levels |= DP_VOLTAGE_0_4;
3988                 break;
3989         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1:
3990                 signal_levels |= DP_VOLTAGE_0_6;
3991                 break;
3992         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2:
3993                 signal_levels |= DP_VOLTAGE_0_8;
3994                 break;
3995         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3:
3996                 signal_levels |= DP_VOLTAGE_1_2;
3997                 break;
3998         }
3999         switch (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) {
4000         case DP_TRAIN_PRE_EMPH_LEVEL_0:
4001         default:
4002                 signal_levels |= DP_PRE_EMPHASIS_0;
4003                 break;
4004         case DP_TRAIN_PRE_EMPH_LEVEL_1:
4005                 signal_levels |= DP_PRE_EMPHASIS_3_5;
4006                 break;
4007         case DP_TRAIN_PRE_EMPH_LEVEL_2:
4008                 signal_levels |= DP_PRE_EMPHASIS_6;
4009                 break;
4010         case DP_TRAIN_PRE_EMPH_LEVEL_3:
4011                 signal_levels |= DP_PRE_EMPHASIS_9_5;
4012                 break;
4013         }
4014         return signal_levels;
4015 }
4016
4017 /* SNB CPU eDP voltage swing and pre-emphasis control */
4018 static u32
4019 snb_cpu_edp_signal_levels(u8 train_set)
4020 {
4021         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4022                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4023         switch (signal_levels) {
4024         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4025         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4026                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4027         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4028                 return EDP_LINK_TRAIN_400MV_3_5DB_SNB_B;
4029         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4030         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4031                 return EDP_LINK_TRAIN_400_600MV_6DB_SNB_B;
4032         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4033         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4034                 return EDP_LINK_TRAIN_600_800MV_3_5DB_SNB_B;
4035         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4036         case DP_TRAIN_VOLTAGE_SWING_LEVEL_3 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4037                 return EDP_LINK_TRAIN_800_1200MV_0DB_SNB_B;
4038         default:
4039                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4040                               "0x%x\n", signal_levels);
4041                 return EDP_LINK_TRAIN_400_600MV_0DB_SNB_B;
4042         }
4043 }
4044
4045 /* IVB CPU eDP voltage swing and pre-emphasis control */
4046 static u32
4047 ivb_cpu_edp_signal_levels(u8 train_set)
4048 {
4049         int signal_levels = train_set & (DP_TRAIN_VOLTAGE_SWING_MASK |
4050                                          DP_TRAIN_PRE_EMPHASIS_MASK);
4051         switch (signal_levels) {
4052         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4053                 return EDP_LINK_TRAIN_400MV_0DB_IVB;
4054         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4055                 return EDP_LINK_TRAIN_400MV_3_5DB_IVB;
4056         case DP_TRAIN_VOLTAGE_SWING_LEVEL_0 | DP_TRAIN_PRE_EMPH_LEVEL_2:
4057                 return EDP_LINK_TRAIN_400MV_6DB_IVB;
4058
4059         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4060                 return EDP_LINK_TRAIN_600MV_0DB_IVB;
4061         case DP_TRAIN_VOLTAGE_SWING_LEVEL_1 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4062                 return EDP_LINK_TRAIN_600MV_3_5DB_IVB;
4063
4064         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_0:
4065                 return EDP_LINK_TRAIN_800MV_0DB_IVB;
4066         case DP_TRAIN_VOLTAGE_SWING_LEVEL_2 | DP_TRAIN_PRE_EMPH_LEVEL_1:
4067                 return EDP_LINK_TRAIN_800MV_3_5DB_IVB;
4068
4069         default:
4070                 DRM_DEBUG_KMS("Unsupported voltage swing/pre-emphasis level:"
4071                               "0x%x\n", signal_levels);
4072                 return EDP_LINK_TRAIN_500MV_0DB_IVB;
4073         }
4074 }
4075
4076 void
4077 intel_dp_set_signal_levels(struct intel_dp *intel_dp)
4078 {
4079         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4080         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4081         enum port port = intel_dig_port->base.port;
4082         u32 signal_levels, mask = 0;
4083         u8 train_set = intel_dp->train_set[0];
4084
4085         if (IS_GEN9_LP(dev_priv) || INTEL_GEN(dev_priv) >= 10) {
4086                 signal_levels = bxt_signal_levels(intel_dp);
4087         } else if (HAS_DDI(dev_priv)) {
4088                 signal_levels = ddi_signal_levels(intel_dp);
4089                 mask = DDI_BUF_EMP_MASK;
4090         } else if (IS_CHERRYVIEW(dev_priv)) {
4091                 signal_levels = chv_signal_levels(intel_dp);
4092         } else if (IS_VALLEYVIEW(dev_priv)) {
4093                 signal_levels = vlv_signal_levels(intel_dp);
4094         } else if (IS_IVYBRIDGE(dev_priv) && port == PORT_A) {
4095                 signal_levels = ivb_cpu_edp_signal_levels(train_set);
4096                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_IVB;
4097         } else if (IS_GEN(dev_priv, 6) && port == PORT_A) {
4098                 signal_levels = snb_cpu_edp_signal_levels(train_set);
4099                 mask = EDP_LINK_TRAIN_VOL_EMP_MASK_SNB;
4100         } else {
4101                 signal_levels = g4x_signal_levels(train_set);
4102                 mask = DP_VOLTAGE_MASK | DP_PRE_EMPHASIS_MASK;
4103         }
4104
4105         if (mask)
4106                 DRM_DEBUG_KMS("Using signal levels %08x\n", signal_levels);
4107
4108         DRM_DEBUG_KMS("Using vswing level %d\n",
4109                 train_set & DP_TRAIN_VOLTAGE_SWING_MASK);
4110         DRM_DEBUG_KMS("Using pre-emphasis level %d\n",
4111                 (train_set & DP_TRAIN_PRE_EMPHASIS_MASK) >>
4112                         DP_TRAIN_PRE_EMPHASIS_SHIFT);
4113
4114         intel_dp->DP = (intel_dp->DP & ~mask) | signal_levels;
4115
4116         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4117         POSTING_READ(intel_dp->output_reg);
4118 }
4119
4120 void
4121 intel_dp_program_link_training_pattern(struct intel_dp *intel_dp,
4122                                        u8 dp_train_pat)
4123 {
4124         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4125         struct drm_i915_private *dev_priv =
4126                 to_i915(intel_dig_port->base.base.dev);
4127
4128         _intel_dp_set_link_train(intel_dp, &intel_dp->DP, dp_train_pat);
4129
4130         I915_WRITE(intel_dp->output_reg, intel_dp->DP);
4131         POSTING_READ(intel_dp->output_reg);
4132 }
4133
4134 void intel_dp_set_idle_link_train(struct intel_dp *intel_dp)
4135 {
4136         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
4137         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4138         enum port port = intel_dig_port->base.port;
4139         u32 val;
4140
4141         if (!HAS_DDI(dev_priv))
4142                 return;
4143
4144         val = I915_READ(intel_dp->regs.dp_tp_ctl);
4145         val &= ~DP_TP_CTL_LINK_TRAIN_MASK;
4146         val |= DP_TP_CTL_LINK_TRAIN_IDLE;
4147         I915_WRITE(intel_dp->regs.dp_tp_ctl, val);
4148
4149         /*
4150          * Until TGL on PORT_A we can have only eDP in SST mode. There the only
4151          * reason we need to set idle transmission mode is to work around a HW
4152          * issue where we enable the pipe while not in idle link-training mode.
4153          * In this case there is requirement to wait for a minimum number of
4154          * idle patterns to be sent.
4155          */
4156         if (port == PORT_A && INTEL_GEN(dev_priv) < 12)
4157                 return;
4158
4159         if (intel_de_wait_for_set(dev_priv, intel_dp->regs.dp_tp_status,
4160                                   DP_TP_STATUS_IDLE_DONE, 1))
4161                 DRM_ERROR("Timed out waiting for DP idle patterns\n");
4162 }
4163
4164 static void
4165 intel_dp_link_down(struct intel_encoder *encoder,
4166                    const struct intel_crtc_state *old_crtc_state)
4167 {
4168         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
4169         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
4170         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->uapi.crtc);
4171         enum port port = encoder->port;
4172         u32 DP = intel_dp->DP;
4173
4174         if (WARN_ON((I915_READ(intel_dp->output_reg) & DP_PORT_EN) == 0))
4175                 return;
4176
4177         DRM_DEBUG_KMS("\n");
4178
4179         if ((IS_IVYBRIDGE(dev_priv) && port == PORT_A) ||
4180             (HAS_PCH_CPT(dev_priv) && port != PORT_A)) {
4181                 DP &= ~DP_LINK_TRAIN_MASK_CPT;
4182                 DP |= DP_LINK_TRAIN_PAT_IDLE_CPT;
4183         } else {
4184                 DP &= ~DP_LINK_TRAIN_MASK;
4185                 DP |= DP_LINK_TRAIN_PAT_IDLE;
4186         }
4187         I915_WRITE(intel_dp->output_reg, DP);
4188         POSTING_READ(intel_dp->output_reg);
4189
4190         DP &= ~(DP_PORT_EN | DP_AUDIO_OUTPUT_ENABLE);
4191         I915_WRITE(intel_dp->output_reg, DP);
4192         POSTING_READ(intel_dp->output_reg);
4193
4194         /*
4195          * HW workaround for IBX, we need to move the port
4196          * to transcoder A after disabling it to allow the
4197          * matching HDMI port to be enabled on transcoder A.
4198          */
4199         if (HAS_PCH_IBX(dev_priv) && crtc->pipe == PIPE_B && port != PORT_A) {
4200                 /*
4201                  * We get CPU/PCH FIFO underruns on the other pipe when
4202                  * doing the workaround. Sweep them under the rug.
4203                  */
4204                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4205                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, false);
4206
4207                 /* always enable with pattern 1 (as per spec) */
4208                 DP &= ~(DP_PIPE_SEL_MASK | DP_LINK_TRAIN_MASK);
4209                 DP |= DP_PORT_EN | DP_PIPE_SEL(PIPE_A) |
4210                         DP_LINK_TRAIN_PAT_1;
4211                 I915_WRITE(intel_dp->output_reg, DP);
4212                 POSTING_READ(intel_dp->output_reg);
4213
4214                 DP &= ~DP_PORT_EN;
4215                 I915_WRITE(intel_dp->output_reg, DP);
4216                 POSTING_READ(intel_dp->output_reg);
4217
4218                 intel_wait_for_vblank_if_active(dev_priv, PIPE_A);
4219                 intel_set_cpu_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4220                 intel_set_pch_fifo_underrun_reporting(dev_priv, PIPE_A, true);
4221         }
4222
4223         msleep(intel_dp->panel_power_down_delay);
4224
4225         intel_dp->DP = DP;
4226
4227         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
4228                 intel_wakeref_t wakeref;
4229
4230                 with_pps_lock(intel_dp, wakeref)
4231                         intel_dp->active_pipe = INVALID_PIPE;
4232         }
4233 }
4234
4235 static void
4236 intel_dp_extended_receiver_capabilities(struct intel_dp *intel_dp)
4237 {
4238         u8 dpcd_ext[6];
4239
4240         /*
4241          * Prior to DP1.3 the bit represented by
4242          * DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT was reserved.
4243          * if it is set DP_DPCD_REV at 0000h could be at a value less than
4244          * the true capability of the panel. The only way to check is to
4245          * then compare 0000h and 2200h.
4246          */
4247         if (!(intel_dp->dpcd[DP_TRAINING_AUX_RD_INTERVAL] &
4248               DP_EXTENDED_RECEIVER_CAP_FIELD_PRESENT))
4249                 return;
4250
4251         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DP13_DPCD_REV,
4252                              &dpcd_ext, sizeof(dpcd_ext)) != sizeof(dpcd_ext)) {
4253                 DRM_ERROR("DPCD failed read at extended capabilities\n");
4254                 return;
4255         }
4256
4257         if (intel_dp->dpcd[DP_DPCD_REV] > dpcd_ext[DP_DPCD_REV]) {
4258                 DRM_DEBUG_KMS("DPCD extended DPCD rev less than base DPCD rev\n");
4259                 return;
4260         }
4261
4262         if (!memcmp(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext)))
4263                 return;
4264
4265         DRM_DEBUG_KMS("Base DPCD: %*ph\n",
4266                       (int)sizeof(intel_dp->dpcd), intel_dp->dpcd);
4267
4268         memcpy(intel_dp->dpcd, dpcd_ext, sizeof(dpcd_ext));
4269 }
4270
4271 bool
4272 intel_dp_read_dpcd(struct intel_dp *intel_dp)
4273 {
4274         if (drm_dp_dpcd_read(&intel_dp->aux, 0x000, intel_dp->dpcd,
4275                              sizeof(intel_dp->dpcd)) < 0)
4276                 return false; /* aux transfer failed */
4277
4278         intel_dp_extended_receiver_capabilities(intel_dp);
4279
4280         DRM_DEBUG_KMS("DPCD: %*ph\n", (int) sizeof(intel_dp->dpcd), intel_dp->dpcd);
4281
4282         return intel_dp->dpcd[DP_DPCD_REV] != 0;
4283 }
4284
4285 bool intel_dp_get_colorimetry_status(struct intel_dp *intel_dp)
4286 {
4287         u8 dprx = 0;
4288
4289         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_DPRX_FEATURE_ENUMERATION_LIST,
4290                               &dprx) != 1)
4291                 return false;
4292         return dprx & DP_VSC_SDP_EXT_FOR_COLORIMETRY_SUPPORTED;
4293 }
4294
4295 static void intel_dp_get_dsc_sink_cap(struct intel_dp *intel_dp)
4296 {
4297         /*
4298          * Clear the cached register set to avoid using stale values
4299          * for the sinks that do not support DSC.
4300          */
4301         memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
4302
4303         /* Clear fec_capable to avoid using stale values */
4304         intel_dp->fec_capable = 0;
4305
4306         /* Cache the DSC DPCD if eDP or DP rev >= 1.4 */
4307         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x14 ||
4308             intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4309                 if (drm_dp_dpcd_read(&intel_dp->aux, DP_DSC_SUPPORT,
4310                                      intel_dp->dsc_dpcd,
4311                                      sizeof(intel_dp->dsc_dpcd)) < 0)
4312                         DRM_ERROR("Failed to read DPCD register 0x%x\n",
4313                                   DP_DSC_SUPPORT);
4314
4315                 DRM_DEBUG_KMS("DSC DPCD: %*ph\n",
4316                               (int)sizeof(intel_dp->dsc_dpcd),
4317                               intel_dp->dsc_dpcd);
4318
4319                 /* FEC is supported only on DP 1.4 */
4320                 if (!intel_dp_is_edp(intel_dp) &&
4321                     drm_dp_dpcd_readb(&intel_dp->aux, DP_FEC_CAPABILITY,
4322                                       &intel_dp->fec_capable) < 0)
4323                         DRM_ERROR("Failed to read FEC DPCD register\n");
4324
4325                 DRM_DEBUG_KMS("FEC CAPABILITY: %x\n", intel_dp->fec_capable);
4326         }
4327 }
4328
4329 static bool
4330 intel_edp_init_dpcd(struct intel_dp *intel_dp)
4331 {
4332         struct drm_i915_private *dev_priv =
4333                 to_i915(dp_to_dig_port(intel_dp)->base.base.dev);
4334
4335         /* this function is meant to be called only once */
4336         WARN_ON(intel_dp->dpcd[DP_DPCD_REV] != 0);
4337
4338         if (!intel_dp_read_dpcd(intel_dp))
4339                 return false;
4340
4341         drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4342                          drm_dp_is_branch(intel_dp->dpcd));
4343
4344         /*
4345          * Read the eDP display control registers.
4346          *
4347          * Do this independent of DP_DPCD_DISPLAY_CONTROL_CAPABLE bit in
4348          * DP_EDP_CONFIGURATION_CAP, because some buggy displays do not have it
4349          * set, but require eDP 1.4+ detection (e.g. for supported link rates
4350          * method). The display control registers should read zero if they're
4351          * not supported anyway.
4352          */
4353         if (drm_dp_dpcd_read(&intel_dp->aux, DP_EDP_DPCD_REV,
4354                              intel_dp->edp_dpcd, sizeof(intel_dp->edp_dpcd)) ==
4355                              sizeof(intel_dp->edp_dpcd))
4356                 DRM_DEBUG_KMS("eDP DPCD: %*ph\n", (int) sizeof(intel_dp->edp_dpcd),
4357                               intel_dp->edp_dpcd);
4358
4359         /*
4360          * This has to be called after intel_dp->edp_dpcd is filled, PSR checks
4361          * for SET_POWER_CAPABLE bit in intel_dp->edp_dpcd[1]
4362          */
4363         intel_psr_init_dpcd(intel_dp);
4364
4365         /* Read the eDP 1.4+ supported link rates. */
4366         if (intel_dp->edp_dpcd[0] >= DP_EDP_14) {
4367                 __le16 sink_rates[DP_MAX_SUPPORTED_RATES];
4368                 int i;
4369
4370                 drm_dp_dpcd_read(&intel_dp->aux, DP_SUPPORTED_LINK_RATES,
4371                                 sink_rates, sizeof(sink_rates));
4372
4373                 for (i = 0; i < ARRAY_SIZE(sink_rates); i++) {
4374                         int val = le16_to_cpu(sink_rates[i]);
4375
4376                         if (val == 0)
4377                                 break;
4378
4379                         /* Value read multiplied by 200kHz gives the per-lane
4380                          * link rate in kHz. The source rates are, however,
4381                          * stored in terms of LS_Clk kHz. The full conversion
4382                          * back to symbols is
4383                          * (val * 200kHz)*(8/10 ch. encoding)*(1/8 bit to Byte)
4384                          */
4385                         intel_dp->sink_rates[i] = (val * 200) / 10;
4386                 }
4387                 intel_dp->num_sink_rates = i;
4388         }
4389
4390         /*
4391          * Use DP_LINK_RATE_SET if DP_SUPPORTED_LINK_RATES are available,
4392          * default to DP_MAX_LINK_RATE and DP_LINK_BW_SET otherwise.
4393          */
4394         if (intel_dp->num_sink_rates)
4395                 intel_dp->use_rate_select = true;
4396         else
4397                 intel_dp_set_sink_rates(intel_dp);
4398
4399         intel_dp_set_common_rates(intel_dp);
4400
4401         /* Read the eDP DSC DPCD registers */
4402         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4403                 intel_dp_get_dsc_sink_cap(intel_dp);
4404
4405         return true;
4406 }
4407
4408
4409 static bool
4410 intel_dp_get_dpcd(struct intel_dp *intel_dp)
4411 {
4412         if (!intel_dp_read_dpcd(intel_dp))
4413                 return false;
4414
4415         /*
4416          * Don't clobber cached eDP rates. Also skip re-reading
4417          * the OUI/ID since we know it won't change.
4418          */
4419         if (!intel_dp_is_edp(intel_dp)) {
4420                 drm_dp_read_desc(&intel_dp->aux, &intel_dp->desc,
4421                                  drm_dp_is_branch(intel_dp->dpcd));
4422
4423                 intel_dp_set_sink_rates(intel_dp);
4424                 intel_dp_set_common_rates(intel_dp);
4425         }
4426
4427         /*
4428          * Some eDP panels do not set a valid value for sink count, that is why
4429          * it don't care about read it here and in intel_edp_init_dpcd().
4430          */
4431         if (!intel_dp_is_edp(intel_dp) &&
4432             !drm_dp_has_quirk(&intel_dp->desc, DP_DPCD_QUIRK_NO_SINK_COUNT)) {
4433                 u8 count;
4434                 ssize_t r;
4435
4436                 r = drm_dp_dpcd_readb(&intel_dp->aux, DP_SINK_COUNT, &count);
4437                 if (r < 1)
4438                         return false;
4439
4440                 /*
4441                  * Sink count can change between short pulse hpd hence
4442                  * a member variable in intel_dp will track any changes
4443                  * between short pulse interrupts.
4444                  */
4445                 intel_dp->sink_count = DP_GET_SINK_COUNT(count);
4446
4447                 /*
4448                  * SINK_COUNT == 0 and DOWNSTREAM_PORT_PRESENT == 1 implies that
4449                  * a dongle is present but no display. Unless we require to know
4450                  * if a dongle is present or not, we don't need to update
4451                  * downstream port information. So, an early return here saves
4452                  * time from performing other operations which are not required.
4453                  */
4454                 if (!intel_dp->sink_count)
4455                         return false;
4456         }
4457
4458         if (!drm_dp_is_branch(intel_dp->dpcd))
4459                 return true; /* native DP sink */
4460
4461         if (intel_dp->dpcd[DP_DPCD_REV] == 0x10)
4462                 return true; /* no per-port downstream info */
4463
4464         if (drm_dp_dpcd_read(&intel_dp->aux, DP_DOWNSTREAM_PORT_0,
4465                              intel_dp->downstream_ports,
4466                              DP_MAX_DOWNSTREAM_PORTS) < 0)
4467                 return false; /* downstream port status fetch failed */
4468
4469         return true;
4470 }
4471
4472 static bool
4473 intel_dp_sink_can_mst(struct intel_dp *intel_dp)
4474 {
4475         u8 mstm_cap;
4476
4477         if (intel_dp->dpcd[DP_DPCD_REV] < 0x12)
4478                 return false;
4479
4480         if (drm_dp_dpcd_readb(&intel_dp->aux, DP_MSTM_CAP, &mstm_cap) != 1)
4481                 return false;
4482
4483         return mstm_cap & DP_MST_CAP;
4484 }
4485
4486 static bool
4487 intel_dp_can_mst(struct intel_dp *intel_dp)
4488 {
4489         return i915_modparams.enable_dp_mst &&
4490                 intel_dp->can_mst &&
4491                 intel_dp_sink_can_mst(intel_dp);
4492 }
4493
4494 static void
4495 intel_dp_configure_mst(struct intel_dp *intel_dp)
4496 {
4497         struct intel_encoder *encoder =
4498                 &dp_to_dig_port(intel_dp)->base;
4499         bool sink_can_mst = intel_dp_sink_can_mst(intel_dp);
4500
4501         DRM_DEBUG_KMS("[ENCODER:%d:%s] MST support: port: %s, sink: %s, modparam: %s\n",
4502                       encoder->base.base.id, encoder->base.name,
4503                       yesno(intel_dp->can_mst), yesno(sink_can_mst),
4504                       yesno(i915_modparams.enable_dp_mst));
4505
4506         if (!intel_dp->can_mst)
4507                 return;
4508
4509         intel_dp->is_mst = sink_can_mst &&
4510                 i915_modparams.enable_dp_mst;
4511
4512         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
4513                                         intel_dp->is_mst);
4514 }
4515
4516 static bool
4517 intel_dp_get_sink_irq_esi(struct intel_dp *intel_dp, u8 *sink_irq_vector)
4518 {
4519         return drm_dp_dpcd_read(&intel_dp->aux, DP_SINK_COUNT_ESI,
4520                                 sink_irq_vector, DP_DPRX_ESI_LEN) ==
4521                 DP_DPRX_ESI_LEN;
4522 }
4523
4524 bool
4525 intel_dp_needs_vsc_sdp(const struct intel_crtc_state *crtc_state,
4526                        const struct drm_connector_state *conn_state)
4527 {
4528         /*
4529          * As per DP 1.4a spec section 2.2.4.3 [MSA Field for Indication
4530          * of Color Encoding Format and Content Color Gamut], in order to
4531          * sending YCBCR 420 or HDR BT.2020 signals we should use DP VSC SDP.
4532          */
4533         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4534                 return true;
4535
4536         switch (conn_state->colorspace) {
4537         case DRM_MODE_COLORIMETRY_SYCC_601:
4538         case DRM_MODE_COLORIMETRY_OPYCC_601:
4539         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4540         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4541         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4542                 return true;
4543         default:
4544                 break;
4545         }
4546
4547         return false;
4548 }
4549
4550 static void
4551 intel_dp_setup_vsc_sdp(struct intel_dp *intel_dp,
4552                        const struct intel_crtc_state *crtc_state,
4553                        const struct drm_connector_state *conn_state)
4554 {
4555         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4556         struct dp_sdp vsc_sdp = {};
4557
4558         /* Prepare VSC Header for SU as per DP 1.4a spec, Table 2-119 */
4559         vsc_sdp.sdp_header.HB0 = 0;
4560         vsc_sdp.sdp_header.HB1 = 0x7;
4561
4562         /*
4563          * VSC SDP supporting 3D stereo, PSR2, and Pixel Encoding/
4564          * Colorimetry Format indication.
4565          */
4566         vsc_sdp.sdp_header.HB2 = 0x5;
4567
4568         /*
4569          * VSC SDP supporting 3D stereo, + PSR2, + Pixel Encoding/
4570          * Colorimetry Format indication (HB2 = 05h).
4571          */
4572         vsc_sdp.sdp_header.HB3 = 0x13;
4573
4574         /* DP 1.4a spec, Table 2-120 */
4575         switch (crtc_state->output_format) {
4576         case INTEL_OUTPUT_FORMAT_YCBCR444:
4577                 vsc_sdp.db[16] = 0x1 << 4; /* YCbCr 444 : DB16[7:4] = 1h */
4578                 break;
4579         case INTEL_OUTPUT_FORMAT_YCBCR420:
4580                 vsc_sdp.db[16] = 0x3 << 4; /* YCbCr 420 : DB16[7:4] = 3h */
4581                 break;
4582         case INTEL_OUTPUT_FORMAT_RGB:
4583         default:
4584                 /* RGB: DB16[7:4] = 0h */
4585                 break;
4586         }
4587
4588         switch (conn_state->colorspace) {
4589         case DRM_MODE_COLORIMETRY_BT709_YCC:
4590                 vsc_sdp.db[16] |= 0x1;
4591                 break;
4592         case DRM_MODE_COLORIMETRY_XVYCC_601:
4593                 vsc_sdp.db[16] |= 0x2;
4594                 break;
4595         case DRM_MODE_COLORIMETRY_XVYCC_709:
4596                 vsc_sdp.db[16] |= 0x3;
4597                 break;
4598         case DRM_MODE_COLORIMETRY_SYCC_601:
4599                 vsc_sdp.db[16] |= 0x4;
4600                 break;
4601         case DRM_MODE_COLORIMETRY_OPYCC_601:
4602                 vsc_sdp.db[16] |= 0x5;
4603                 break;
4604         case DRM_MODE_COLORIMETRY_BT2020_CYCC:
4605         case DRM_MODE_COLORIMETRY_BT2020_RGB:
4606                 vsc_sdp.db[16] |= 0x6;
4607                 break;
4608         case DRM_MODE_COLORIMETRY_BT2020_YCC:
4609                 vsc_sdp.db[16] |= 0x7;
4610                 break;
4611         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_D65:
4612         case DRM_MODE_COLORIMETRY_DCI_P3_RGB_THEATER:
4613                 vsc_sdp.db[16] |= 0x4; /* DCI-P3 (SMPTE RP 431-2) */
4614                 break;
4615         default:
4616                 /* sRGB (IEC 61966-2-1) / ITU-R BT.601: DB16[0:3] = 0h */
4617
4618                 /* RGB->YCBCR color conversion uses the BT.709 color space. */
4619                 if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
4620                         vsc_sdp.db[16] |= 0x1; /* 0x1, ITU-R BT.709 */
4621                 break;
4622         }
4623
4624         /*
4625          * For pixel encoding formats YCbCr444, YCbCr422, YCbCr420, and Y Only,
4626          * the following Component Bit Depth values are defined:
4627          * 001b = 8bpc.
4628          * 010b = 10bpc.
4629          * 011b = 12bpc.
4630          * 100b = 16bpc.
4631          */
4632         switch (crtc_state->pipe_bpp) {
4633         case 24: /* 8bpc */
4634                 vsc_sdp.db[17] = 0x1;
4635                 break;
4636         case 30: /* 10bpc */
4637                 vsc_sdp.db[17] = 0x2;
4638                 break;
4639         case 36: /* 12bpc */
4640                 vsc_sdp.db[17] = 0x3;
4641                 break;
4642         case 48: /* 16bpc */
4643                 vsc_sdp.db[17] = 0x4;
4644                 break;
4645         default:
4646                 MISSING_CASE(crtc_state->pipe_bpp);
4647                 break;
4648         }
4649
4650         /*
4651          * Dynamic Range (Bit 7)
4652          * 0 = VESA range, 1 = CTA range.
4653          * all YCbCr are always limited range
4654          */
4655         vsc_sdp.db[17] |= 0x80;
4656
4657         /*
4658          * Content Type (Bits 2:0)
4659          * 000b = Not defined.
4660          * 001b = Graphics.
4661          * 010b = Photo.
4662          * 011b = Video.
4663          * 100b = Game
4664          * All other values are RESERVED.
4665          * Note: See CTA-861-G for the definition and expected
4666          * processing by a stream sink for the above contect types.
4667          */
4668         vsc_sdp.db[18] = 0;
4669
4670         intel_dig_port->write_infoframe(&intel_dig_port->base,
4671                         crtc_state, DP_SDP_VSC, &vsc_sdp, sizeof(vsc_sdp));
4672 }
4673
4674 static void
4675 intel_dp_setup_hdr_metadata_infoframe_sdp(struct intel_dp *intel_dp,
4676                                           const struct intel_crtc_state *crtc_state,
4677                                           const struct drm_connector_state *conn_state)
4678 {
4679         struct intel_digital_port *intel_dig_port = dp_to_dig_port(intel_dp);
4680         struct dp_sdp infoframe_sdp = {};
4681         struct hdmi_drm_infoframe drm_infoframe = {};
4682         const int infoframe_size = HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE;
4683         unsigned char buf[HDMI_INFOFRAME_HEADER_SIZE + HDMI_DRM_INFOFRAME_SIZE];
4684         ssize_t len;
4685         int ret;
4686
4687         ret = drm_hdmi_infoframe_set_hdr_metadata(&drm_infoframe, conn_state);
4688         if (ret) {
4689                 DRM_DEBUG_KMS("couldn't set HDR metadata in infoframe\n");
4690                 return;
4691         }
4692
4693         len = hdmi_drm_infoframe_pack_only(&drm_infoframe, buf, sizeof(buf));
4694         if (len < 0) {
4695                 DRM_DEBUG_KMS("buffer size is smaller than hdr metadata infoframe\n");
4696                 return;
4697         }
4698
4699         if (len != infoframe_size) {
4700                 DRM_DEBUG_KMS("wrong static hdr metadata size\n");
4701                 return;
4702         }
4703
4704         /*
4705          * Set up the infoframe sdp packet for HDR static metadata.
4706          * Prepare VSC Header for SU as per DP 1.4a spec,
4707          * Table 2-100 and Table 2-101
4708          */
4709
4710         /* Packet ID, 00h for non-Audio INFOFRAME */
4711         infoframe_sdp.sdp_header.HB0 = 0;
4712         /*
4713          * Packet Type 80h + Non-audio INFOFRAME Type value
4714          * HDMI_INFOFRAME_TYPE_DRM: 0x87,
4715          */
4716         infoframe_sdp.sdp_header.HB1 = drm_infoframe.type;
4717         /*
4718          * Least Significant Eight Bits of (Data Byte Count – 1)
4719          * infoframe_size - 1,
4720          */
4721         infoframe_sdp.sdp_header.HB2 = 0x1D;
4722         /* INFOFRAME SDP Version Number */
4723         infoframe_sdp.sdp_header.HB3 = (0x13 << 2);
4724         /* CTA Header Byte 2 (INFOFRAME Version Number) */
4725         infoframe_sdp.db[0] = drm_infoframe.version;
4726         /* CTA Header Byte 3 (Length of INFOFRAME): HDMI_DRM_INFOFRAME_SIZE */
4727         infoframe_sdp.db[1] = drm_infoframe.length;
4728         /*
4729          * Copy HDMI_DRM_INFOFRAME_SIZE size from a buffer after
4730          * HDMI_INFOFRAME_HEADER_SIZE
4731          */
4732         BUILD_BUG_ON(sizeof(infoframe_sdp.db) < HDMI_DRM_INFOFRAME_SIZE + 2);
4733         memcpy(&infoframe_sdp.db[2], &buf[HDMI_INFOFRAME_HEADER_SIZE],
4734                HDMI_DRM_INFOFRAME_SIZE);
4735
4736         /*
4737          * Size of DP infoframe sdp packet for HDR static metadata is consist of
4738          * - DP SDP Header(struct dp_sdp_header): 4 bytes
4739          * - Two Data Blocks: 2 bytes
4740          *    CTA Header Byte2 (INFOFRAME Version Number)
4741          *    CTA Header Byte3 (Length of INFOFRAME)
4742          * - HDMI_DRM_INFOFRAME_SIZE: 26 bytes
4743          *
4744          * Prior to GEN11's GMP register size is identical to DP HDR static metadata
4745          * infoframe size. But GEN11+ has larger than that size, write_infoframe
4746          * will pad rest of the size.
4747          */
4748         intel_dig_port->write_infoframe(&intel_dig_port->base, crtc_state,
4749                                         HDMI_PACKET_TYPE_GAMUT_METADATA,
4750                                         &infoframe_sdp,
4751                                         sizeof(struct dp_sdp_header) + 2 + HDMI_DRM_INFOFRAME_SIZE);
4752 }
4753
4754 void intel_dp_vsc_enable(struct intel_dp *intel_dp,
4755                          const struct intel_crtc_state *crtc_state,
4756                          const struct drm_connector_state *conn_state)
4757 {
4758         if (!intel_dp_needs_vsc_sdp(crtc_state, conn_state))
4759                 return;
4760
4761         intel_dp_setup_vsc_sdp(intel_dp, crtc_state, conn_state);
4762 }
4763
4764 void intel_dp_hdr_metadata_enable(struct intel_dp *intel_dp,
4765                                   const struct intel_crtc_state *crtc_state,
4766                                   const struct drm_connector_state *conn_state)
4767 {
4768         if (!conn_state->hdr_output_metadata)
4769                 return;
4770
4771         intel_dp_setup_hdr_metadata_infoframe_sdp(intel_dp,
4772                                                   crtc_state,
4773                                                   conn_state);
4774 }
4775
4776 static u8 intel_dp_autotest_link_training(struct intel_dp *intel_dp)
4777 {
4778         int status = 0;
4779         int test_link_rate;
4780         u8 test_lane_count, test_link_bw;
4781         /* (DP CTS 1.2)
4782          * 4.3.1.11
4783          */
4784         /* Read the TEST_LANE_COUNT and TEST_LINK_RTAE fields (DP CTS 3.1.4) */
4785         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LANE_COUNT,
4786                                    &test_lane_count);
4787
4788         if (status <= 0) {
4789                 DRM_DEBUG_KMS("Lane count read failed\n");
4790                 return DP_TEST_NAK;
4791         }
4792         test_lane_count &= DP_MAX_LANE_COUNT_MASK;
4793
4794         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_LINK_RATE,
4795                                    &test_link_bw);
4796         if (status <= 0) {
4797                 DRM_DEBUG_KMS("Link Rate read failed\n");
4798                 return DP_TEST_NAK;
4799         }
4800         test_link_rate = drm_dp_bw_code_to_link_rate(test_link_bw);
4801
4802         /* Validate the requested link rate and lane count */
4803         if (!intel_dp_link_params_valid(intel_dp, test_link_rate,
4804                                         test_lane_count))
4805                 return DP_TEST_NAK;
4806
4807         intel_dp->compliance.test_lane_count = test_lane_count;
4808         intel_dp->compliance.test_link_rate = test_link_rate;
4809
4810         return DP_TEST_ACK;
4811 }
4812
4813 static u8 intel_dp_autotest_video_pattern(struct intel_dp *intel_dp)
4814 {
4815         u8 test_pattern;
4816         u8 test_misc;
4817         __be16 h_width, v_height;
4818         int status = 0;
4819
4820         /* Read the TEST_PATTERN (DP CTS 3.1.5) */
4821         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_PATTERN,
4822                                    &test_pattern);
4823         if (status <= 0) {
4824                 DRM_DEBUG_KMS("Test pattern read failed\n");
4825                 return DP_TEST_NAK;
4826         }
4827         if (test_pattern != DP_COLOR_RAMP)
4828                 return DP_TEST_NAK;
4829
4830         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_H_WIDTH_HI,
4831                                   &h_width, 2);
4832         if (status <= 0) {
4833                 DRM_DEBUG_KMS("H Width read failed\n");
4834                 return DP_TEST_NAK;
4835         }
4836
4837         status = drm_dp_dpcd_read(&intel_dp->aux, DP_TEST_V_HEIGHT_HI,
4838                                   &v_height, 2);
4839         if (status <= 0) {
4840                 DRM_DEBUG_KMS("V Height read failed\n");
4841                 return DP_TEST_NAK;
4842         }
4843
4844         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_MISC0,
4845                                    &test_misc);
4846         if (status <= 0) {
4847                 DRM_DEBUG_KMS("TEST MISC read failed\n");
4848                 return DP_TEST_NAK;
4849         }
4850         if ((test_misc & DP_TEST_COLOR_FORMAT_MASK) != DP_COLOR_FORMAT_RGB)
4851                 return DP_TEST_NAK;
4852         if (test_misc & DP_TEST_DYNAMIC_RANGE_CEA)
4853                 return DP_TEST_NAK;
4854         switch (test_misc & DP_TEST_BIT_DEPTH_MASK) {
4855         case DP_TEST_BIT_DEPTH_6:
4856                 intel_dp->compliance.test_data.bpc = 6;
4857                 break;
4858         case DP_TEST_BIT_DEPTH_8:
4859                 intel_dp->compliance.test_data.bpc = 8;
4860                 break;
4861         default:
4862                 return DP_TEST_NAK;
4863         }
4864
4865         intel_dp->compliance.test_data.video_pattern = test_pattern;
4866         intel_dp->compliance.test_data.hdisplay = be16_to_cpu(h_width);
4867         intel_dp->compliance.test_data.vdisplay = be16_to_cpu(v_height);
4868         /* Set test active flag here so userspace doesn't interrupt things */
4869         intel_dp->compliance.test_active = 1;
4870
4871         return DP_TEST_ACK;
4872 }
4873
4874 static u8 intel_dp_autotest_edid(struct intel_dp *intel_dp)
4875 {
4876         u8 test_result = DP_TEST_ACK;
4877         struct intel_connector *intel_connector = intel_dp->attached_connector;
4878         struct drm_connector *connector = &intel_connector->base;
4879
4880         if (intel_connector->detect_edid == NULL ||
4881             connector->edid_corrupt ||
4882             intel_dp->aux.i2c_defer_count > 6) {
4883                 /* Check EDID read for NACKs, DEFERs and corruption
4884                  * (DP CTS 1.2 Core r1.1)
4885                  *    4.2.2.4 : Failed EDID read, I2C_NAK
4886                  *    4.2.2.5 : Failed EDID read, I2C_DEFER
4887                  *    4.2.2.6 : EDID corruption detected
4888                  * Use failsafe mode for all cases
4889                  */
4890                 if (intel_dp->aux.i2c_nack_count > 0 ||
4891                         intel_dp->aux.i2c_defer_count > 0)
4892                         DRM_DEBUG_KMS("EDID read had %d NACKs, %d DEFERs\n",
4893                                       intel_dp->aux.i2c_nack_count,
4894                                       intel_dp->aux.i2c_defer_count);
4895                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_FAILSAFE;
4896         } else {
4897                 struct edid *block = intel_connector->detect_edid;
4898
4899                 /* We have to write the checksum
4900                  * of the last block read
4901                  */
4902                 block += intel_connector->detect_edid->extensions;
4903
4904                 if (drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_EDID_CHECKSUM,
4905                                        block->checksum) <= 0)
4906                         DRM_DEBUG_KMS("Failed to write EDID checksum\n");
4907
4908                 test_result = DP_TEST_ACK | DP_TEST_EDID_CHECKSUM_WRITE;
4909                 intel_dp->compliance.test_data.edid = INTEL_DP_RESOLUTION_PREFERRED;
4910         }
4911
4912         /* Set test active flag here so userspace doesn't interrupt things */
4913         intel_dp->compliance.test_active = 1;
4914
4915         return test_result;
4916 }
4917
4918 static u8 intel_dp_autotest_phy_pattern(struct intel_dp *intel_dp)
4919 {
4920         u8 test_result = DP_TEST_NAK;
4921         return test_result;
4922 }
4923
4924 static void intel_dp_handle_test_request(struct intel_dp *intel_dp)
4925 {
4926         u8 response = DP_TEST_NAK;
4927         u8 request = 0;
4928         int status;
4929
4930         status = drm_dp_dpcd_readb(&intel_dp->aux, DP_TEST_REQUEST, &request);
4931         if (status <= 0) {
4932                 DRM_DEBUG_KMS("Could not read test request from sink\n");
4933                 goto update_status;
4934         }
4935
4936         switch (request) {
4937         case DP_TEST_LINK_TRAINING:
4938                 DRM_DEBUG_KMS("LINK_TRAINING test requested\n");
4939                 response = intel_dp_autotest_link_training(intel_dp);
4940                 break;
4941         case DP_TEST_LINK_VIDEO_PATTERN:
4942                 DRM_DEBUG_KMS("TEST_PATTERN test requested\n");
4943                 response = intel_dp_autotest_video_pattern(intel_dp);
4944                 break;
4945         case DP_TEST_LINK_EDID_READ:
4946                 DRM_DEBUG_KMS("EDID test requested\n");
4947                 response = intel_dp_autotest_edid(intel_dp);
4948                 break;
4949         case DP_TEST_LINK_PHY_TEST_PATTERN:
4950                 DRM_DEBUG_KMS("PHY_PATTERN test requested\n");
4951                 response = intel_dp_autotest_phy_pattern(intel_dp);
4952                 break;
4953         default:
4954                 DRM_DEBUG_KMS("Invalid test request '%02x'\n", request);
4955                 break;
4956         }
4957
4958         if (response & DP_TEST_ACK)
4959                 intel_dp->compliance.test_type = request;
4960
4961 update_status:
4962         status = drm_dp_dpcd_writeb(&intel_dp->aux, DP_TEST_RESPONSE, response);
4963         if (status <= 0)
4964                 DRM_DEBUG_KMS("Could not write test response to sink\n");
4965 }
4966
4967 static int
4968 intel_dp_check_mst_status(struct intel_dp *intel_dp)
4969 {
4970         bool bret;
4971
4972         if (intel_dp->is_mst) {
4973                 u8 esi[DP_DPRX_ESI_LEN] = { 0 };
4974                 int ret = 0;
4975                 int retry;
4976                 bool handled;
4977
4978                 WARN_ON_ONCE(intel_dp->active_mst_links < 0);
4979                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
4980 go_again:
4981                 if (bret == true) {
4982
4983                         /* check link status - esi[10] = 0x200c */
4984                         if (intel_dp->active_mst_links > 0 &&
4985                             !drm_dp_channel_eq_ok(&esi[10], intel_dp->lane_count)) {
4986                                 DRM_DEBUG_KMS("channel EQ not ok, retraining\n");
4987                                 intel_dp_start_link_train(intel_dp);
4988                                 intel_dp_stop_link_train(intel_dp);
4989                         }
4990
4991                         DRM_DEBUG_KMS("got esi %3ph\n", esi);
4992                         ret = drm_dp_mst_hpd_irq(&intel_dp->mst_mgr, esi, &handled);
4993
4994                         if (handled) {
4995                                 for (retry = 0; retry < 3; retry++) {
4996                                         int wret;
4997                                         wret = drm_dp_dpcd_write(&intel_dp->aux,
4998                                                                  DP_SINK_COUNT_ESI+1,
4999                                                                  &esi[1], 3);
5000                                         if (wret == 3) {
5001                                                 break;
5002                                         }
5003                                 }
5004
5005                                 bret = intel_dp_get_sink_irq_esi(intel_dp, esi);
5006                                 if (bret == true) {
5007                                         DRM_DEBUG_KMS("got esi2 %3ph\n", esi);
5008                                         goto go_again;
5009                                 }
5010                         } else
5011                                 ret = 0;
5012
5013                         return ret;
5014                 } else {
5015                         DRM_DEBUG_KMS("failed to get ESI - device may have failed\n");
5016                         intel_dp->is_mst = false;
5017                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5018                                                         intel_dp->is_mst);
5019                 }
5020         }
5021         return -EINVAL;
5022 }
5023
5024 static bool
5025 intel_dp_needs_link_retrain(struct intel_dp *intel_dp)
5026 {
5027         u8 link_status[DP_LINK_STATUS_SIZE];
5028
5029         if (!intel_dp->link_trained)
5030                 return false;
5031
5032         /*
5033          * While PSR source HW is enabled, it will control main-link sending
5034          * frames, enabling and disabling it so trying to do a retrain will fail
5035          * as the link would or not be on or it could mix training patterns
5036          * and frame data at the same time causing retrain to fail.
5037          * Also when exiting PSR, HW will retrain the link anyways fixing
5038          * any link status error.
5039          */
5040         if (intel_psr_enabled(intel_dp))
5041                 return false;
5042
5043         if (!intel_dp_get_link_status(intel_dp, link_status))
5044                 return false;
5045
5046         /*
5047          * Validate the cached values of intel_dp->link_rate and
5048          * intel_dp->lane_count before attempting to retrain.
5049          */
5050         if (!intel_dp_link_params_valid(intel_dp, intel_dp->link_rate,
5051                                         intel_dp->lane_count))
5052                 return false;
5053
5054         /* Retrain if Channel EQ or CR not ok */
5055         return !drm_dp_channel_eq_ok(link_status, intel_dp->lane_count);
5056 }
5057
5058 int intel_dp_retrain_link(struct intel_encoder *encoder,
5059                           struct drm_modeset_acquire_ctx *ctx)
5060 {
5061         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5062         struct intel_dp *intel_dp = enc_to_intel_dp(&encoder->base);
5063         struct intel_connector *connector = intel_dp->attached_connector;
5064         struct drm_connector_state *conn_state;
5065         struct intel_crtc_state *crtc_state;
5066         struct intel_crtc *crtc;
5067         int ret;
5068
5069         /* FIXME handle the MST connectors as well */
5070
5071         if (!connector || connector->base.status != connector_status_connected)
5072                 return 0;
5073
5074         ret = drm_modeset_lock(&dev_priv->drm.mode_config.connection_mutex,
5075                                ctx);
5076         if (ret)
5077                 return ret;
5078
5079         conn_state = connector->base.state;
5080
5081         crtc = to_intel_crtc(conn_state->crtc);
5082         if (!crtc)
5083                 return 0;
5084
5085         ret = drm_modeset_lock(&crtc->base.mutex, ctx);
5086         if (ret)
5087                 return ret;
5088
5089         crtc_state = to_intel_crtc_state(crtc->base.state);
5090
5091         WARN_ON(!intel_crtc_has_dp_encoder(crtc_state));
5092
5093         if (!crtc_state->hw.active)
5094                 return 0;
5095
5096         if (conn_state->commit &&
5097             !try_wait_for_completion(&conn_state->commit->hw_done))
5098                 return 0;
5099
5100         if (!intel_dp_needs_link_retrain(intel_dp))
5101                 return 0;
5102
5103         /* Suppress underruns caused by re-training */
5104         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
5105         if (crtc_state->has_pch_encoder)
5106                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5107                                                       intel_crtc_pch_transcoder(crtc), false);
5108
5109         intel_dp_start_link_train(intel_dp);
5110         intel_dp_stop_link_train(intel_dp);
5111
5112         /* Keep underrun reporting disabled until things are stable */
5113         intel_wait_for_vblank(dev_priv, crtc->pipe);
5114
5115         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
5116         if (crtc_state->has_pch_encoder)
5117                 intel_set_pch_fifo_underrun_reporting(dev_priv,
5118                                                       intel_crtc_pch_transcoder(crtc), true);
5119
5120         return 0;
5121 }
5122
5123 /*
5124  * If display is now connected check links status,
5125  * there has been known issues of link loss triggering
5126  * long pulse.
5127  *
5128  * Some sinks (eg. ASUS PB287Q) seem to perform some
5129  * weird HPD ping pong during modesets. So we can apparently
5130  * end up with HPD going low during a modeset, and then
5131  * going back up soon after. And once that happens we must
5132  * retrain the link to get a picture. That's in case no
5133  * userspace component reacted to intermittent HPD dip.
5134  */
5135 static enum intel_hotplug_state
5136 intel_dp_hotplug(struct intel_encoder *encoder,
5137                  struct intel_connector *connector,
5138                  bool irq_received)
5139 {
5140         struct drm_modeset_acquire_ctx ctx;
5141         enum intel_hotplug_state state;
5142         int ret;
5143
5144         state = intel_encoder_hotplug(encoder, connector, irq_received);
5145
5146         drm_modeset_acquire_init(&ctx, 0);
5147
5148         for (;;) {
5149                 ret = intel_dp_retrain_link(encoder, &ctx);
5150
5151                 if (ret == -EDEADLK) {
5152                         drm_modeset_backoff(&ctx);
5153                         continue;
5154                 }
5155
5156                 break;
5157         }
5158
5159         drm_modeset_drop_locks(&ctx);
5160         drm_modeset_acquire_fini(&ctx);
5161         WARN(ret, "Acquiring modeset locks failed with %i\n", ret);
5162
5163         /*
5164          * Keeping it consistent with intel_ddi_hotplug() and
5165          * intel_hdmi_hotplug().
5166          */
5167         if (state == INTEL_HOTPLUG_UNCHANGED && irq_received)
5168                 state = INTEL_HOTPLUG_RETRY;
5169
5170         return state;
5171 }
5172
5173 static void intel_dp_check_service_irq(struct intel_dp *intel_dp)
5174 {
5175         u8 val;
5176
5177         if (intel_dp->dpcd[DP_DPCD_REV] < 0x11)
5178                 return;
5179
5180         if (drm_dp_dpcd_readb(&intel_dp->aux,
5181                               DP_DEVICE_SERVICE_IRQ_VECTOR, &val) != 1 || !val)
5182                 return;
5183
5184         drm_dp_dpcd_writeb(&intel_dp->aux, DP_DEVICE_SERVICE_IRQ_VECTOR, val);
5185
5186         if (val & DP_AUTOMATED_TEST_REQUEST)
5187                 intel_dp_handle_test_request(intel_dp);
5188
5189         if (val & DP_CP_IRQ)
5190                 intel_hdcp_handle_cp_irq(intel_dp->attached_connector);
5191
5192         if (val & DP_SINK_SPECIFIC_IRQ)
5193                 DRM_DEBUG_DRIVER("Sink specific irq unhandled\n");
5194 }
5195
5196 /*
5197  * According to DP spec
5198  * 5.1.2:
5199  *  1. Read DPCD
5200  *  2. Configure link according to Receiver Capabilities
5201  *  3. Use Link Training from 2.5.3.3 and 3.5.1.3
5202  *  4. Check link status on receipt of hot-plug interrupt
5203  *
5204  * intel_dp_short_pulse -  handles short pulse interrupts
5205  * when full detection is not required.
5206  * Returns %true if short pulse is handled and full detection
5207  * is NOT required and %false otherwise.
5208  */
5209 static bool
5210 intel_dp_short_pulse(struct intel_dp *intel_dp)
5211 {
5212         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
5213         u8 old_sink_count = intel_dp->sink_count;
5214         bool ret;
5215
5216         /*
5217          * Clearing compliance test variables to allow capturing
5218          * of values for next automated test request.
5219          */
5220         memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5221
5222         /*
5223          * Now read the DPCD to see if it's actually running
5224          * If the current value of sink count doesn't match with
5225          * the value that was stored earlier or dpcd read failed
5226          * we need to do full detection
5227          */
5228         ret = intel_dp_get_dpcd(intel_dp);
5229
5230         if ((old_sink_count != intel_dp->sink_count) || !ret) {
5231                 /* No need to proceed if we are going to do full detect */
5232                 return false;
5233         }
5234
5235         intel_dp_check_service_irq(intel_dp);
5236
5237         /* Handle CEC interrupts, if any */
5238         drm_dp_cec_irq(&intel_dp->aux);
5239
5240         /* defer to the hotplug work for link retraining if needed */
5241         if (intel_dp_needs_link_retrain(intel_dp))
5242                 return false;
5243
5244         intel_psr_short_pulse(intel_dp);
5245
5246         if (intel_dp->compliance.test_type == DP_TEST_LINK_TRAINING) {
5247                 DRM_DEBUG_KMS("Link Training Compliance Test requested\n");
5248                 /* Send a Hotplug Uevent to userspace to start modeset */
5249                 drm_kms_helper_hotplug_event(&dev_priv->drm);
5250         }
5251
5252         return true;
5253 }
5254
5255 /* XXX this is probably wrong for multiple downstream ports */
5256 static enum drm_connector_status
5257 intel_dp_detect_dpcd(struct intel_dp *intel_dp)
5258 {
5259         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
5260         u8 *dpcd = intel_dp->dpcd;
5261         u8 type;
5262
5263         if (WARN_ON(intel_dp_is_edp(intel_dp)))
5264                 return connector_status_connected;
5265
5266         if (lspcon->active)
5267                 lspcon_resume(lspcon);
5268
5269         if (!intel_dp_get_dpcd(intel_dp))
5270                 return connector_status_disconnected;
5271
5272         /* if there's no downstream port, we're done */
5273         if (!drm_dp_is_branch(dpcd))
5274                 return connector_status_connected;
5275
5276         /* If we're HPD-aware, SINK_COUNT changes dynamically */
5277         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11 &&
5278             intel_dp->downstream_ports[0] & DP_DS_PORT_HPD) {
5279
5280                 return intel_dp->sink_count ?
5281                 connector_status_connected : connector_status_disconnected;
5282         }
5283
5284         if (intel_dp_can_mst(intel_dp))
5285                 return connector_status_connected;
5286
5287         /* If no HPD, poke DDC gently */
5288         if (drm_probe_ddc(&intel_dp->aux.ddc))
5289                 return connector_status_connected;
5290
5291         /* Well we tried, say unknown for unreliable port types */
5292         if (intel_dp->dpcd[DP_DPCD_REV] >= 0x11) {
5293                 type = intel_dp->downstream_ports[0] & DP_DS_PORT_TYPE_MASK;
5294                 if (type == DP_DS_PORT_TYPE_VGA ||
5295                     type == DP_DS_PORT_TYPE_NON_EDID)
5296                         return connector_status_unknown;
5297         } else {
5298                 type = intel_dp->dpcd[DP_DOWNSTREAMPORT_PRESENT] &
5299                         DP_DWN_STRM_PORT_TYPE_MASK;
5300                 if (type == DP_DWN_STRM_PORT_TYPE_ANALOG ||
5301                     type == DP_DWN_STRM_PORT_TYPE_OTHER)
5302                         return connector_status_unknown;
5303         }
5304
5305         /* Anything else is out of spec, warn and ignore */
5306         DRM_DEBUG_KMS("Broken DP branch device, ignoring\n");
5307         return connector_status_disconnected;
5308 }
5309
5310 static enum drm_connector_status
5311 edp_detect(struct intel_dp *intel_dp)
5312 {
5313         return connector_status_connected;
5314 }
5315
5316 static bool ibx_digital_port_connected(struct intel_encoder *encoder)
5317 {
5318         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5319         u32 bit;
5320
5321         switch (encoder->hpd_pin) {
5322         case HPD_PORT_B:
5323                 bit = SDE_PORTB_HOTPLUG;
5324                 break;
5325         case HPD_PORT_C:
5326                 bit = SDE_PORTC_HOTPLUG;
5327                 break;
5328         case HPD_PORT_D:
5329                 bit = SDE_PORTD_HOTPLUG;
5330                 break;
5331         default:
5332                 MISSING_CASE(encoder->hpd_pin);
5333                 return false;
5334         }
5335
5336         return I915_READ(SDEISR) & bit;
5337 }
5338
5339 static bool cpt_digital_port_connected(struct intel_encoder *encoder)
5340 {
5341         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5342         u32 bit;
5343
5344         switch (encoder->hpd_pin) {
5345         case HPD_PORT_B:
5346                 bit = SDE_PORTB_HOTPLUG_CPT;
5347                 break;
5348         case HPD_PORT_C:
5349                 bit = SDE_PORTC_HOTPLUG_CPT;
5350                 break;
5351         case HPD_PORT_D:
5352                 bit = SDE_PORTD_HOTPLUG_CPT;
5353                 break;
5354         default:
5355                 MISSING_CASE(encoder->hpd_pin);
5356                 return false;
5357         }
5358
5359         return I915_READ(SDEISR) & bit;
5360 }
5361
5362 static bool spt_digital_port_connected(struct intel_encoder *encoder)
5363 {
5364         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5365         u32 bit;
5366
5367         switch (encoder->hpd_pin) {
5368         case HPD_PORT_A:
5369                 bit = SDE_PORTA_HOTPLUG_SPT;
5370                 break;
5371         case HPD_PORT_E:
5372                 bit = SDE_PORTE_HOTPLUG_SPT;
5373                 break;
5374         default:
5375                 return cpt_digital_port_connected(encoder);
5376         }
5377
5378         return I915_READ(SDEISR) & bit;
5379 }
5380
5381 static bool g4x_digital_port_connected(struct intel_encoder *encoder)
5382 {
5383         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5384         u32 bit;
5385
5386         switch (encoder->hpd_pin) {
5387         case HPD_PORT_B:
5388                 bit = PORTB_HOTPLUG_LIVE_STATUS_G4X;
5389                 break;
5390         case HPD_PORT_C:
5391                 bit = PORTC_HOTPLUG_LIVE_STATUS_G4X;
5392                 break;
5393         case HPD_PORT_D:
5394                 bit = PORTD_HOTPLUG_LIVE_STATUS_G4X;
5395                 break;
5396         default:
5397                 MISSING_CASE(encoder->hpd_pin);
5398                 return false;
5399         }
5400
5401         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5402 }
5403
5404 static bool gm45_digital_port_connected(struct intel_encoder *encoder)
5405 {
5406         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5407         u32 bit;
5408
5409         switch (encoder->hpd_pin) {
5410         case HPD_PORT_B:
5411                 bit = PORTB_HOTPLUG_LIVE_STATUS_GM45;
5412                 break;
5413         case HPD_PORT_C:
5414                 bit = PORTC_HOTPLUG_LIVE_STATUS_GM45;
5415                 break;
5416         case HPD_PORT_D:
5417                 bit = PORTD_HOTPLUG_LIVE_STATUS_GM45;
5418                 break;
5419         default:
5420                 MISSING_CASE(encoder->hpd_pin);
5421                 return false;
5422         }
5423
5424         return I915_READ(PORT_HOTPLUG_STAT) & bit;
5425 }
5426
5427 static bool ilk_digital_port_connected(struct intel_encoder *encoder)
5428 {
5429         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5430
5431         if (encoder->hpd_pin == HPD_PORT_A)
5432                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5433         else
5434                 return ibx_digital_port_connected(encoder);
5435 }
5436
5437 static bool snb_digital_port_connected(struct intel_encoder *encoder)
5438 {
5439         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5440
5441         if (encoder->hpd_pin == HPD_PORT_A)
5442                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG;
5443         else
5444                 return cpt_digital_port_connected(encoder);
5445 }
5446
5447 static bool ivb_digital_port_connected(struct intel_encoder *encoder)
5448 {
5449         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5450
5451         if (encoder->hpd_pin == HPD_PORT_A)
5452                 return I915_READ(DEISR) & DE_DP_A_HOTPLUG_IVB;
5453         else
5454                 return cpt_digital_port_connected(encoder);
5455 }
5456
5457 static bool bdw_digital_port_connected(struct intel_encoder *encoder)
5458 {
5459         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5460
5461         if (encoder->hpd_pin == HPD_PORT_A)
5462                 return I915_READ(GEN8_DE_PORT_ISR) & GEN8_PORT_DP_A_HOTPLUG;
5463         else
5464                 return cpt_digital_port_connected(encoder);
5465 }
5466
5467 static bool bxt_digital_port_connected(struct intel_encoder *encoder)
5468 {
5469         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5470         u32 bit;
5471
5472         switch (encoder->hpd_pin) {
5473         case HPD_PORT_A:
5474                 bit = BXT_DE_PORT_HP_DDIA;
5475                 break;
5476         case HPD_PORT_B:
5477                 bit = BXT_DE_PORT_HP_DDIB;
5478                 break;
5479         case HPD_PORT_C:
5480                 bit = BXT_DE_PORT_HP_DDIC;
5481                 break;
5482         default:
5483                 MISSING_CASE(encoder->hpd_pin);
5484                 return false;
5485         }
5486
5487         return I915_READ(GEN8_DE_PORT_ISR) & bit;
5488 }
5489
5490 static bool intel_combo_phy_connected(struct drm_i915_private *dev_priv,
5491                                       enum phy phy)
5492 {
5493         if (HAS_PCH_MCC(dev_priv) && phy == PHY_C)
5494                 return I915_READ(SDEISR) & SDE_TC_HOTPLUG_ICP(PORT_TC1);
5495
5496         return I915_READ(SDEISR) & SDE_DDI_HOTPLUG_ICP(phy);
5497 }
5498
5499 static bool icp_digital_port_connected(struct intel_encoder *encoder)
5500 {
5501         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5502         struct intel_digital_port *dig_port = enc_to_dig_port(&encoder->base);
5503         enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
5504
5505         if (intel_phy_is_combo(dev_priv, phy))
5506                 return intel_combo_phy_connected(dev_priv, phy);
5507         else if (intel_phy_is_tc(dev_priv, phy))
5508                 return intel_tc_port_connected(dig_port);
5509         else
5510                 MISSING_CASE(encoder->hpd_pin);
5511
5512         return false;
5513 }
5514
5515 /*
5516  * intel_digital_port_connected - is the specified port connected?
5517  * @encoder: intel_encoder
5518  *
5519  * In cases where there's a connector physically connected but it can't be used
5520  * by our hardware we also return false, since the rest of the driver should
5521  * pretty much treat the port as disconnected. This is relevant for type-C
5522  * (starting on ICL) where there's ownership involved.
5523  *
5524  * Return %true if port is connected, %false otherwise.
5525  */
5526 static bool __intel_digital_port_connected(struct intel_encoder *encoder)
5527 {
5528         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5529
5530         if (HAS_GMCH(dev_priv)) {
5531                 if (IS_GM45(dev_priv))
5532                         return gm45_digital_port_connected(encoder);
5533                 else
5534                         return g4x_digital_port_connected(encoder);
5535         }
5536
5537         if (INTEL_PCH_TYPE(dev_priv) >= PCH_ICP)
5538                 return icp_digital_port_connected(encoder);
5539         else if (INTEL_PCH_TYPE(dev_priv) >= PCH_SPT)
5540                 return spt_digital_port_connected(encoder);
5541         else if (IS_GEN9_LP(dev_priv))
5542                 return bxt_digital_port_connected(encoder);
5543         else if (IS_GEN(dev_priv, 8))
5544                 return bdw_digital_port_connected(encoder);
5545         else if (IS_GEN(dev_priv, 7))
5546                 return ivb_digital_port_connected(encoder);
5547         else if (IS_GEN(dev_priv, 6))
5548                 return snb_digital_port_connected(encoder);
5549         else if (IS_GEN(dev_priv, 5))
5550                 return ilk_digital_port_connected(encoder);
5551
5552         MISSING_CASE(INTEL_GEN(dev_priv));
5553         return false;
5554 }
5555
5556 bool intel_digital_port_connected(struct intel_encoder *encoder)
5557 {
5558         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
5559         bool is_connected = false;
5560         intel_wakeref_t wakeref;
5561
5562         with_intel_display_power(dev_priv, POWER_DOMAIN_DISPLAY_CORE, wakeref)
5563                 is_connected = __intel_digital_port_connected(encoder);
5564
5565         return is_connected;
5566 }
5567
5568 static struct edid *
5569 intel_dp_get_edid(struct intel_dp *intel_dp)
5570 {
5571         struct intel_connector *intel_connector = intel_dp->attached_connector;
5572
5573         /* use cached edid if we have one */
5574         if (intel_connector->edid) {
5575                 /* invalid edid */
5576                 if (IS_ERR(intel_connector->edid))
5577                         return NULL;
5578
5579                 return drm_edid_duplicate(intel_connector->edid);
5580         } else
5581                 return drm_get_edid(&intel_connector->base,
5582                                     &intel_dp->aux.ddc);
5583 }
5584
5585 static void
5586 intel_dp_set_edid(struct intel_dp *intel_dp)
5587 {
5588         struct intel_connector *intel_connector = intel_dp->attached_connector;
5589         struct edid *edid;
5590
5591         intel_dp_unset_edid(intel_dp);
5592         edid = intel_dp_get_edid(intel_dp);
5593         intel_connector->detect_edid = edid;
5594
5595         intel_dp->has_audio = drm_detect_monitor_audio(edid);
5596         drm_dp_cec_set_edid(&intel_dp->aux, edid);
5597 }
5598
5599 static void
5600 intel_dp_unset_edid(struct intel_dp *intel_dp)
5601 {
5602         struct intel_connector *intel_connector = intel_dp->attached_connector;
5603
5604         drm_dp_cec_unset_edid(&intel_dp->aux);
5605         kfree(intel_connector->detect_edid);
5606         intel_connector->detect_edid = NULL;
5607
5608         intel_dp->has_audio = false;
5609 }
5610
5611 static int
5612 intel_dp_detect(struct drm_connector *connector,
5613                 struct drm_modeset_acquire_ctx *ctx,
5614                 bool force)
5615 {
5616         struct drm_i915_private *dev_priv = to_i915(connector->dev);
5617         struct intel_dp *intel_dp = intel_attached_dp(connector);
5618         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5619         struct intel_encoder *encoder = &dig_port->base;
5620         enum drm_connector_status status;
5621
5622         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5623                       connector->base.id, connector->name);
5624         WARN_ON(!drm_modeset_is_locked(&dev_priv->drm.mode_config.connection_mutex));
5625
5626         /* Can't disconnect eDP */
5627         if (intel_dp_is_edp(intel_dp))
5628                 status = edp_detect(intel_dp);
5629         else if (intel_digital_port_connected(encoder))
5630                 status = intel_dp_detect_dpcd(intel_dp);
5631         else
5632                 status = connector_status_disconnected;
5633
5634         if (status == connector_status_disconnected) {
5635                 memset(&intel_dp->compliance, 0, sizeof(intel_dp->compliance));
5636                 memset(intel_dp->dsc_dpcd, 0, sizeof(intel_dp->dsc_dpcd));
5637
5638                 if (intel_dp->is_mst) {
5639                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
5640                                       intel_dp->is_mst,
5641                                       intel_dp->mst_mgr.mst_state);
5642                         intel_dp->is_mst = false;
5643                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
5644                                                         intel_dp->is_mst);
5645                 }
5646
5647                 goto out;
5648         }
5649
5650         if (intel_dp->reset_link_params) {
5651                 /* Initial max link lane count */
5652                 intel_dp->max_link_lane_count = intel_dp_max_common_lane_count(intel_dp);
5653
5654                 /* Initial max link rate */
5655                 intel_dp->max_link_rate = intel_dp_max_common_rate(intel_dp);
5656
5657                 intel_dp->reset_link_params = false;
5658         }
5659
5660         intel_dp_print_rates(intel_dp);
5661
5662         /* Read DP Sink DSC Cap DPCD regs for DP v1.4 */
5663         if (INTEL_GEN(dev_priv) >= 11)
5664                 intel_dp_get_dsc_sink_cap(intel_dp);
5665
5666         intel_dp_configure_mst(intel_dp);
5667
5668         if (intel_dp->is_mst) {
5669                 /*
5670                  * If we are in MST mode then this connector
5671                  * won't appear connected or have anything
5672                  * with EDID on it
5673                  */
5674                 status = connector_status_disconnected;
5675                 goto out;
5676         }
5677
5678         /*
5679          * Some external monitors do not signal loss of link synchronization
5680          * with an IRQ_HPD, so force a link status check.
5681          */
5682         if (!intel_dp_is_edp(intel_dp)) {
5683                 int ret;
5684
5685                 ret = intel_dp_retrain_link(encoder, ctx);
5686                 if (ret)
5687                         return ret;
5688         }
5689
5690         /*
5691          * Clearing NACK and defer counts to get their exact values
5692          * while reading EDID which are required by Compliance tests
5693          * 4.2.2.4 and 4.2.2.5
5694          */
5695         intel_dp->aux.i2c_nack_count = 0;
5696         intel_dp->aux.i2c_defer_count = 0;
5697
5698         intel_dp_set_edid(intel_dp);
5699         if (intel_dp_is_edp(intel_dp) ||
5700             to_intel_connector(connector)->detect_edid)
5701                 status = connector_status_connected;
5702
5703         intel_dp_check_service_irq(intel_dp);
5704
5705 out:
5706         if (status != connector_status_connected && !intel_dp->is_mst)
5707                 intel_dp_unset_edid(intel_dp);
5708
5709         /*
5710          * Make sure the refs for power wells enabled during detect are
5711          * dropped to avoid a new detect cycle triggered by HPD polling.
5712          */
5713         intel_display_power_flush_work(dev_priv);
5714
5715         return status;
5716 }
5717
5718 static void
5719 intel_dp_force(struct drm_connector *connector)
5720 {
5721         struct intel_dp *intel_dp = intel_attached_dp(connector);
5722         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
5723         struct intel_encoder *intel_encoder = &dig_port->base;
5724         struct drm_i915_private *dev_priv = to_i915(intel_encoder->base.dev);
5725         enum intel_display_power_domain aux_domain =
5726                 intel_aux_power_domain(dig_port);
5727         intel_wakeref_t wakeref;
5728
5729         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
5730                       connector->base.id, connector->name);
5731         intel_dp_unset_edid(intel_dp);
5732
5733         if (connector->status != connector_status_connected)
5734                 return;
5735
5736         wakeref = intel_display_power_get(dev_priv, aux_domain);
5737
5738         intel_dp_set_edid(intel_dp);
5739
5740         intel_display_power_put(dev_priv, aux_domain, wakeref);
5741 }
5742
5743 static int intel_dp_get_modes(struct drm_connector *connector)
5744 {
5745         struct intel_connector *intel_connector = to_intel_connector(connector);
5746         struct edid *edid;
5747
5748         edid = intel_connector->detect_edid;
5749         if (edid) {
5750                 int ret = intel_connector_update_modes(connector, edid);
5751                 if (ret)
5752                         return ret;
5753         }
5754
5755         /* if eDP has no EDID, fall back to fixed mode */
5756         if (intel_dp_is_edp(intel_attached_dp(connector)) &&
5757             intel_connector->panel.fixed_mode) {
5758                 struct drm_display_mode *mode;
5759
5760                 mode = drm_mode_duplicate(connector->dev,
5761                                           intel_connector->panel.fixed_mode);
5762                 if (mode) {
5763                         drm_mode_probed_add(connector, mode);
5764                         return 1;
5765                 }
5766         }
5767
5768         return 0;
5769 }
5770
5771 static int
5772 intel_dp_connector_register(struct drm_connector *connector)
5773 {
5774         struct intel_dp *intel_dp = intel_attached_dp(connector);
5775         int ret;
5776
5777         ret = intel_connector_register(connector);
5778         if (ret)
5779                 return ret;
5780
5781         i915_debugfs_connector_add(connector);
5782
5783         DRM_DEBUG_KMS("registering %s bus for %s\n",
5784                       intel_dp->aux.name, connector->kdev->kobj.name);
5785
5786         intel_dp->aux.dev = connector->kdev;
5787         ret = drm_dp_aux_register(&intel_dp->aux);
5788         if (!ret)
5789                 drm_dp_cec_register_connector(&intel_dp->aux, connector);
5790         return ret;
5791 }
5792
5793 static void
5794 intel_dp_connector_unregister(struct drm_connector *connector)
5795 {
5796         struct intel_dp *intel_dp = intel_attached_dp(connector);
5797
5798         drm_dp_cec_unregister_connector(&intel_dp->aux);
5799         drm_dp_aux_unregister(&intel_dp->aux);
5800         intel_connector_unregister(connector);
5801 }
5802
5803 void intel_dp_encoder_flush_work(struct drm_encoder *encoder)
5804 {
5805         struct intel_digital_port *intel_dig_port = enc_to_dig_port(encoder);
5806         struct intel_dp *intel_dp = &intel_dig_port->dp;
5807
5808         intel_dp_mst_encoder_cleanup(intel_dig_port);
5809         if (intel_dp_is_edp(intel_dp)) {
5810                 intel_wakeref_t wakeref;
5811
5812                 cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5813                 /*
5814                  * vdd might still be enabled do to the delayed vdd off.
5815                  * Make sure vdd is actually turned off here.
5816                  */
5817                 with_pps_lock(intel_dp, wakeref)
5818                         edp_panel_vdd_off_sync(intel_dp);
5819
5820                 if (intel_dp->edp_notifier.notifier_call) {
5821                         unregister_reboot_notifier(&intel_dp->edp_notifier);
5822                         intel_dp->edp_notifier.notifier_call = NULL;
5823                 }
5824         }
5825
5826         intel_dp_aux_fini(intel_dp);
5827 }
5828
5829 static void intel_dp_encoder_destroy(struct drm_encoder *encoder)
5830 {
5831         intel_dp_encoder_flush_work(encoder);
5832
5833         drm_encoder_cleanup(encoder);
5834         kfree(enc_to_dig_port(encoder));
5835 }
5836
5837 void intel_dp_encoder_suspend(struct intel_encoder *intel_encoder)
5838 {
5839         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
5840         intel_wakeref_t wakeref;
5841
5842         if (!intel_dp_is_edp(intel_dp))
5843                 return;
5844
5845         /*
5846          * vdd might still be enabled do to the delayed vdd off.
5847          * Make sure vdd is actually turned off here.
5848          */
5849         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
5850         with_pps_lock(intel_dp, wakeref)
5851                 edp_panel_vdd_off_sync(intel_dp);
5852 }
5853
5854 static void intel_dp_hdcp_wait_for_cp_irq(struct intel_hdcp *hdcp, int timeout)
5855 {
5856         long ret;
5857
5858 #define C (hdcp->cp_irq_count_cached != atomic_read(&hdcp->cp_irq_count))
5859         ret = wait_event_interruptible_timeout(hdcp->cp_irq_queue, C,
5860                                                msecs_to_jiffies(timeout));
5861
5862         if (!ret)
5863                 DRM_DEBUG_KMS("Timedout at waiting for CP_IRQ\n");
5864 }
5865
5866 static
5867 int intel_dp_hdcp_write_an_aksv(struct intel_digital_port *intel_dig_port,
5868                                 u8 *an)
5869 {
5870         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_dig_port->base.base);
5871         static const struct drm_dp_aux_msg msg = {
5872                 .request = DP_AUX_NATIVE_WRITE,
5873                 .address = DP_AUX_HDCP_AKSV,
5874                 .size = DRM_HDCP_KSV_LEN,
5875         };
5876         u8 txbuf[HEADER_SIZE + DRM_HDCP_KSV_LEN] = {}, rxbuf[2], reply = 0;
5877         ssize_t dpcd_ret;
5878         int ret;
5879
5880         /* Output An first, that's easy */
5881         dpcd_ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux, DP_AUX_HDCP_AN,
5882                                      an, DRM_HDCP_AN_LEN);
5883         if (dpcd_ret != DRM_HDCP_AN_LEN) {
5884                 DRM_DEBUG_KMS("Failed to write An over DP/AUX (%zd)\n",
5885                               dpcd_ret);
5886                 return dpcd_ret >= 0 ? -EIO : dpcd_ret;
5887         }
5888
5889         /*
5890          * Since Aksv is Oh-So-Secret, we can't access it in software. So in
5891          * order to get it on the wire, we need to create the AUX header as if
5892          * we were writing the data, and then tickle the hardware to output the
5893          * data once the header is sent out.
5894          */
5895         intel_dp_aux_header(txbuf, &msg);
5896
5897         ret = intel_dp_aux_xfer(intel_dp, txbuf, HEADER_SIZE + msg.size,
5898                                 rxbuf, sizeof(rxbuf),
5899                                 DP_AUX_CH_CTL_AUX_AKSV_SELECT);
5900         if (ret < 0) {
5901                 DRM_DEBUG_KMS("Write Aksv over DP/AUX failed (%d)\n", ret);
5902                 return ret;
5903         } else if (ret == 0) {
5904                 DRM_DEBUG_KMS("Aksv write over DP/AUX was empty\n");
5905                 return -EIO;
5906         }
5907
5908         reply = (rxbuf[0] >> 4) & DP_AUX_NATIVE_REPLY_MASK;
5909         if (reply != DP_AUX_NATIVE_REPLY_ACK) {
5910                 DRM_DEBUG_KMS("Aksv write: no DP_AUX_NATIVE_REPLY_ACK %x\n",
5911                               reply);
5912                 return -EIO;
5913         }
5914         return 0;
5915 }
5916
5917 static int intel_dp_hdcp_read_bksv(struct intel_digital_port *intel_dig_port,
5918                                    u8 *bksv)
5919 {
5920         ssize_t ret;
5921         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BKSV, bksv,
5922                                DRM_HDCP_KSV_LEN);
5923         if (ret != DRM_HDCP_KSV_LEN) {
5924                 DRM_DEBUG_KMS("Read Bksv from DP/AUX failed (%zd)\n", ret);
5925                 return ret >= 0 ? -EIO : ret;
5926         }
5927         return 0;
5928 }
5929
5930 static int intel_dp_hdcp_read_bstatus(struct intel_digital_port *intel_dig_port,
5931                                       u8 *bstatus)
5932 {
5933         ssize_t ret;
5934         /*
5935          * For some reason the HDMI and DP HDCP specs call this register
5936          * definition by different names. In the HDMI spec, it's called BSTATUS,
5937          * but in DP it's called BINFO.
5938          */
5939         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BINFO,
5940                                bstatus, DRM_HDCP_BSTATUS_LEN);
5941         if (ret != DRM_HDCP_BSTATUS_LEN) {
5942                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
5943                 return ret >= 0 ? -EIO : ret;
5944         }
5945         return 0;
5946 }
5947
5948 static
5949 int intel_dp_hdcp_read_bcaps(struct intel_digital_port *intel_dig_port,
5950                              u8 *bcaps)
5951 {
5952         ssize_t ret;
5953
5954         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BCAPS,
5955                                bcaps, 1);
5956         if (ret != 1) {
5957                 DRM_DEBUG_KMS("Read bcaps from DP/AUX failed (%zd)\n", ret);
5958                 return ret >= 0 ? -EIO : ret;
5959         }
5960
5961         return 0;
5962 }
5963
5964 static
5965 int intel_dp_hdcp_repeater_present(struct intel_digital_port *intel_dig_port,
5966                                    bool *repeater_present)
5967 {
5968         ssize_t ret;
5969         u8 bcaps;
5970
5971         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
5972         if (ret)
5973                 return ret;
5974
5975         *repeater_present = bcaps & DP_BCAPS_REPEATER_PRESENT;
5976         return 0;
5977 }
5978
5979 static
5980 int intel_dp_hdcp_read_ri_prime(struct intel_digital_port *intel_dig_port,
5981                                 u8 *ri_prime)
5982 {
5983         ssize_t ret;
5984         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_RI_PRIME,
5985                                ri_prime, DRM_HDCP_RI_LEN);
5986         if (ret != DRM_HDCP_RI_LEN) {
5987                 DRM_DEBUG_KMS("Read Ri' from DP/AUX failed (%zd)\n", ret);
5988                 return ret >= 0 ? -EIO : ret;
5989         }
5990         return 0;
5991 }
5992
5993 static
5994 int intel_dp_hdcp_read_ksv_ready(struct intel_digital_port *intel_dig_port,
5995                                  bool *ksv_ready)
5996 {
5997         ssize_t ret;
5998         u8 bstatus;
5999         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6000                                &bstatus, 1);
6001         if (ret != 1) {
6002                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6003                 return ret >= 0 ? -EIO : ret;
6004         }
6005         *ksv_ready = bstatus & DP_BSTATUS_READY;
6006         return 0;
6007 }
6008
6009 static
6010 int intel_dp_hdcp_read_ksv_fifo(struct intel_digital_port *intel_dig_port,
6011                                 int num_downstream, u8 *ksv_fifo)
6012 {
6013         ssize_t ret;
6014         int i;
6015
6016         /* KSV list is read via 15 byte window (3 entries @ 5 bytes each) */
6017         for (i = 0; i < num_downstream; i += 3) {
6018                 size_t len = min(num_downstream - i, 3) * DRM_HDCP_KSV_LEN;
6019                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6020                                        DP_AUX_HDCP_KSV_FIFO,
6021                                        ksv_fifo + i * DRM_HDCP_KSV_LEN,
6022                                        len);
6023                 if (ret != len) {
6024                         DRM_DEBUG_KMS("Read ksv[%d] from DP/AUX failed (%zd)\n",
6025                                       i, ret);
6026                         return ret >= 0 ? -EIO : ret;
6027                 }
6028         }
6029         return 0;
6030 }
6031
6032 static
6033 int intel_dp_hdcp_read_v_prime_part(struct intel_digital_port *intel_dig_port,
6034                                     int i, u32 *part)
6035 {
6036         ssize_t ret;
6037
6038         if (i >= DRM_HDCP_V_PRIME_NUM_PARTS)
6039                 return -EINVAL;
6040
6041         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6042                                DP_AUX_HDCP_V_PRIME(i), part,
6043                                DRM_HDCP_V_PRIME_PART_LEN);
6044         if (ret != DRM_HDCP_V_PRIME_PART_LEN) {
6045                 DRM_DEBUG_KMS("Read v'[%d] from DP/AUX failed (%zd)\n", i, ret);
6046                 return ret >= 0 ? -EIO : ret;
6047         }
6048         return 0;
6049 }
6050
6051 static
6052 int intel_dp_hdcp_toggle_signalling(struct intel_digital_port *intel_dig_port,
6053                                     bool enable)
6054 {
6055         /* Not used for single stream DisplayPort setups */
6056         return 0;
6057 }
6058
6059 static
6060 bool intel_dp_hdcp_check_link(struct intel_digital_port *intel_dig_port)
6061 {
6062         ssize_t ret;
6063         u8 bstatus;
6064
6065         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, DP_AUX_HDCP_BSTATUS,
6066                                &bstatus, 1);
6067         if (ret != 1) {
6068                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6069                 return false;
6070         }
6071
6072         return !(bstatus & (DP_BSTATUS_LINK_FAILURE | DP_BSTATUS_REAUTH_REQ));
6073 }
6074
6075 static
6076 int intel_dp_hdcp_capable(struct intel_digital_port *intel_dig_port,
6077                           bool *hdcp_capable)
6078 {
6079         ssize_t ret;
6080         u8 bcaps;
6081
6082         ret = intel_dp_hdcp_read_bcaps(intel_dig_port, &bcaps);
6083         if (ret)
6084                 return ret;
6085
6086         *hdcp_capable = bcaps & DP_BCAPS_HDCP_CAPABLE;
6087         return 0;
6088 }
6089
6090 struct hdcp2_dp_errata_stream_type {
6091         u8      msg_id;
6092         u8      stream_type;
6093 } __packed;
6094
6095 struct hdcp2_dp_msg_data {
6096         u8 msg_id;
6097         u32 offset;
6098         bool msg_detectable;
6099         u32 timeout;
6100         u32 timeout2; /* Added for non_paired situation */
6101 };
6102
6103 static const struct hdcp2_dp_msg_data hdcp2_dp_msg_data[] = {
6104         { HDCP_2_2_AKE_INIT, DP_HDCP_2_2_AKE_INIT_OFFSET, false, 0, 0 },
6105         { HDCP_2_2_AKE_SEND_CERT, DP_HDCP_2_2_AKE_SEND_CERT_OFFSET,
6106           false, HDCP_2_2_CERT_TIMEOUT_MS, 0 },
6107         { HDCP_2_2_AKE_NO_STORED_KM, DP_HDCP_2_2_AKE_NO_STORED_KM_OFFSET,
6108           false, 0, 0 },
6109         { HDCP_2_2_AKE_STORED_KM, DP_HDCP_2_2_AKE_STORED_KM_OFFSET,
6110           false, 0, 0 },
6111         { HDCP_2_2_AKE_SEND_HPRIME, DP_HDCP_2_2_AKE_SEND_HPRIME_OFFSET,
6112           true, HDCP_2_2_HPRIME_PAIRED_TIMEOUT_MS,
6113           HDCP_2_2_HPRIME_NO_PAIRED_TIMEOUT_MS },
6114         { HDCP_2_2_AKE_SEND_PAIRING_INFO,
6115           DP_HDCP_2_2_AKE_SEND_PAIRING_INFO_OFFSET, true,
6116           HDCP_2_2_PAIRING_TIMEOUT_MS, 0 },
6117         { HDCP_2_2_LC_INIT, DP_HDCP_2_2_LC_INIT_OFFSET, false, 0, 0 },
6118         { HDCP_2_2_LC_SEND_LPRIME, DP_HDCP_2_2_LC_SEND_LPRIME_OFFSET,
6119           false, HDCP_2_2_DP_LPRIME_TIMEOUT_MS, 0 },
6120         { HDCP_2_2_SKE_SEND_EKS, DP_HDCP_2_2_SKE_SEND_EKS_OFFSET, false,
6121           0, 0 },
6122         { HDCP_2_2_REP_SEND_RECVID_LIST,
6123           DP_HDCP_2_2_REP_SEND_RECVID_LIST_OFFSET, true,
6124           HDCP_2_2_RECVID_LIST_TIMEOUT_MS, 0 },
6125         { HDCP_2_2_REP_SEND_ACK, DP_HDCP_2_2_REP_SEND_ACK_OFFSET, false,
6126           0, 0 },
6127         { HDCP_2_2_REP_STREAM_MANAGE,
6128           DP_HDCP_2_2_REP_STREAM_MANAGE_OFFSET, false,
6129           0, 0 },
6130         { HDCP_2_2_REP_STREAM_READY, DP_HDCP_2_2_REP_STREAM_READY_OFFSET,
6131           false, HDCP_2_2_STREAM_READY_TIMEOUT_MS, 0 },
6132 /* local define to shovel this through the write_2_2 interface */
6133 #define HDCP_2_2_ERRATA_DP_STREAM_TYPE  50
6134         { HDCP_2_2_ERRATA_DP_STREAM_TYPE,
6135           DP_HDCP_2_2_REG_STREAM_TYPE_OFFSET, false,
6136           0, 0 },
6137 };
6138
6139 static inline
6140 int intel_dp_hdcp2_read_rx_status(struct intel_digital_port *intel_dig_port,
6141                                   u8 *rx_status)
6142 {
6143         ssize_t ret;
6144
6145         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6146                                DP_HDCP_2_2_REG_RXSTATUS_OFFSET, rx_status,
6147                                HDCP_2_2_DP_RXSTATUS_LEN);
6148         if (ret != HDCP_2_2_DP_RXSTATUS_LEN) {
6149                 DRM_DEBUG_KMS("Read bstatus from DP/AUX failed (%zd)\n", ret);
6150                 return ret >= 0 ? -EIO : ret;
6151         }
6152
6153         return 0;
6154 }
6155
6156 static
6157 int hdcp2_detect_msg_availability(struct intel_digital_port *intel_dig_port,
6158                                   u8 msg_id, bool *msg_ready)
6159 {
6160         u8 rx_status;
6161         int ret;
6162
6163         *msg_ready = false;
6164         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6165         if (ret < 0)
6166                 return ret;
6167
6168         switch (msg_id) {
6169         case HDCP_2_2_AKE_SEND_HPRIME:
6170                 if (HDCP_2_2_DP_RXSTATUS_H_PRIME(rx_status))
6171                         *msg_ready = true;
6172                 break;
6173         case HDCP_2_2_AKE_SEND_PAIRING_INFO:
6174                 if (HDCP_2_2_DP_RXSTATUS_PAIRING(rx_status))
6175                         *msg_ready = true;
6176                 break;
6177         case HDCP_2_2_REP_SEND_RECVID_LIST:
6178                 if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6179                         *msg_ready = true;
6180                 break;
6181         default:
6182                 DRM_ERROR("Unidentified msg_id: %d\n", msg_id);
6183                 return -EINVAL;
6184         }
6185
6186         return 0;
6187 }
6188
6189 static ssize_t
6190 intel_dp_hdcp2_wait_for_msg(struct intel_digital_port *intel_dig_port,
6191                             const struct hdcp2_dp_msg_data *hdcp2_msg_data)
6192 {
6193         struct intel_dp *dp = &intel_dig_port->dp;
6194         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6195         u8 msg_id = hdcp2_msg_data->msg_id;
6196         int ret, timeout;
6197         bool msg_ready = false;
6198
6199         if (msg_id == HDCP_2_2_AKE_SEND_HPRIME && !hdcp->is_paired)
6200                 timeout = hdcp2_msg_data->timeout2;
6201         else
6202                 timeout = hdcp2_msg_data->timeout;
6203
6204         /*
6205          * There is no way to detect the CERT, LPRIME and STREAM_READY
6206          * availability. So Wait for timeout and read the msg.
6207          */
6208         if (!hdcp2_msg_data->msg_detectable) {
6209                 mdelay(timeout);
6210                 ret = 0;
6211         } else {
6212                 /*
6213                  * As we want to check the msg availability at timeout, Ignoring
6214                  * the timeout at wait for CP_IRQ.
6215                  */
6216                 intel_dp_hdcp_wait_for_cp_irq(hdcp, timeout);
6217                 ret = hdcp2_detect_msg_availability(intel_dig_port,
6218                                                     msg_id, &msg_ready);
6219                 if (!msg_ready)
6220                         ret = -ETIMEDOUT;
6221         }
6222
6223         if (ret)
6224                 DRM_DEBUG_KMS("msg_id %d, ret %d, timeout(mSec): %d\n",
6225                               hdcp2_msg_data->msg_id, ret, timeout);
6226
6227         return ret;
6228 }
6229
6230 static const struct hdcp2_dp_msg_data *get_hdcp2_dp_msg_data(u8 msg_id)
6231 {
6232         int i;
6233
6234         for (i = 0; i < ARRAY_SIZE(hdcp2_dp_msg_data); i++)
6235                 if (hdcp2_dp_msg_data[i].msg_id == msg_id)
6236                         return &hdcp2_dp_msg_data[i];
6237
6238         return NULL;
6239 }
6240
6241 static
6242 int intel_dp_hdcp2_write_msg(struct intel_digital_port *intel_dig_port,
6243                              void *buf, size_t size)
6244 {
6245         struct intel_dp *dp = &intel_dig_port->dp;
6246         struct intel_hdcp *hdcp = &dp->attached_connector->hdcp;
6247         unsigned int offset;
6248         u8 *byte = buf;
6249         ssize_t ret, bytes_to_write, len;
6250         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6251
6252         hdcp2_msg_data = get_hdcp2_dp_msg_data(*byte);
6253         if (!hdcp2_msg_data)
6254                 return -EINVAL;
6255
6256         offset = hdcp2_msg_data->offset;
6257
6258         /* No msg_id in DP HDCP2.2 msgs */
6259         bytes_to_write = size - 1;
6260         byte++;
6261
6262         hdcp->cp_irq_count_cached = atomic_read(&hdcp->cp_irq_count);
6263
6264         while (bytes_to_write) {
6265                 len = bytes_to_write > DP_AUX_MAX_PAYLOAD_BYTES ?
6266                                 DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_write;
6267
6268                 ret = drm_dp_dpcd_write(&intel_dig_port->dp.aux,
6269                                         offset, (void *)byte, len);
6270                 if (ret < 0)
6271                         return ret;
6272
6273                 bytes_to_write -= ret;
6274                 byte += ret;
6275                 offset += ret;
6276         }
6277
6278         return size;
6279 }
6280
6281 static
6282 ssize_t get_receiver_id_list_size(struct intel_digital_port *intel_dig_port)
6283 {
6284         u8 rx_info[HDCP_2_2_RXINFO_LEN];
6285         u32 dev_cnt;
6286         ssize_t ret;
6287
6288         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6289                                DP_HDCP_2_2_REG_RXINFO_OFFSET,
6290                                (void *)rx_info, HDCP_2_2_RXINFO_LEN);
6291         if (ret != HDCP_2_2_RXINFO_LEN)
6292                 return ret >= 0 ? -EIO : ret;
6293
6294         dev_cnt = (HDCP_2_2_DEV_COUNT_HI(rx_info[0]) << 4 |
6295                    HDCP_2_2_DEV_COUNT_LO(rx_info[1]));
6296
6297         if (dev_cnt > HDCP_2_2_MAX_DEVICE_COUNT)
6298                 dev_cnt = HDCP_2_2_MAX_DEVICE_COUNT;
6299
6300         ret = sizeof(struct hdcp2_rep_send_receiverid_list) -
6301                 HDCP_2_2_RECEIVER_IDS_MAX_LEN +
6302                 (dev_cnt * HDCP_2_2_RECEIVER_ID_LEN);
6303
6304         return ret;
6305 }
6306
6307 static
6308 int intel_dp_hdcp2_read_msg(struct intel_digital_port *intel_dig_port,
6309                             u8 msg_id, void *buf, size_t size)
6310 {
6311         unsigned int offset;
6312         u8 *byte = buf;
6313         ssize_t ret, bytes_to_recv, len;
6314         const struct hdcp2_dp_msg_data *hdcp2_msg_data;
6315
6316         hdcp2_msg_data = get_hdcp2_dp_msg_data(msg_id);
6317         if (!hdcp2_msg_data)
6318                 return -EINVAL;
6319         offset = hdcp2_msg_data->offset;
6320
6321         ret = intel_dp_hdcp2_wait_for_msg(intel_dig_port, hdcp2_msg_data);
6322         if (ret < 0)
6323                 return ret;
6324
6325         if (msg_id == HDCP_2_2_REP_SEND_RECVID_LIST) {
6326                 ret = get_receiver_id_list_size(intel_dig_port);
6327                 if (ret < 0)
6328                         return ret;
6329
6330                 size = ret;
6331         }
6332         bytes_to_recv = size - 1;
6333
6334         /* DP adaptation msgs has no msg_id */
6335         byte++;
6336
6337         while (bytes_to_recv) {
6338                 len = bytes_to_recv > DP_AUX_MAX_PAYLOAD_BYTES ?
6339                       DP_AUX_MAX_PAYLOAD_BYTES : bytes_to_recv;
6340
6341                 ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux, offset,
6342                                        (void *)byte, len);
6343                 if (ret < 0) {
6344                         DRM_DEBUG_KMS("msg_id %d, ret %zd\n", msg_id, ret);
6345                         return ret;
6346                 }
6347
6348                 bytes_to_recv -= ret;
6349                 byte += ret;
6350                 offset += ret;
6351         }
6352         byte = buf;
6353         *byte = msg_id;
6354
6355         return size;
6356 }
6357
6358 static
6359 int intel_dp_hdcp2_config_stream_type(struct intel_digital_port *intel_dig_port,
6360                                       bool is_repeater, u8 content_type)
6361 {
6362         struct hdcp2_dp_errata_stream_type stream_type_msg;
6363
6364         if (is_repeater)
6365                 return 0;
6366
6367         /*
6368          * Errata for DP: As Stream type is used for encryption, Receiver
6369          * should be communicated with stream type for the decryption of the
6370          * content.
6371          * Repeater will be communicated with stream type as a part of it's
6372          * auth later in time.
6373          */
6374         stream_type_msg.msg_id = HDCP_2_2_ERRATA_DP_STREAM_TYPE;
6375         stream_type_msg.stream_type = content_type;
6376
6377         return intel_dp_hdcp2_write_msg(intel_dig_port, &stream_type_msg,
6378                                         sizeof(stream_type_msg));
6379 }
6380
6381 static
6382 int intel_dp_hdcp2_check_link(struct intel_digital_port *intel_dig_port)
6383 {
6384         u8 rx_status;
6385         int ret;
6386
6387         ret = intel_dp_hdcp2_read_rx_status(intel_dig_port, &rx_status);
6388         if (ret)
6389                 return ret;
6390
6391         if (HDCP_2_2_DP_RXSTATUS_REAUTH_REQ(rx_status))
6392                 ret = HDCP_REAUTH_REQUEST;
6393         else if (HDCP_2_2_DP_RXSTATUS_LINK_FAILED(rx_status))
6394                 ret = HDCP_LINK_INTEGRITY_FAILURE;
6395         else if (HDCP_2_2_DP_RXSTATUS_READY(rx_status))
6396                 ret = HDCP_TOPOLOGY_CHANGE;
6397
6398         return ret;
6399 }
6400
6401 static
6402 int intel_dp_hdcp2_capable(struct intel_digital_port *intel_dig_port,
6403                            bool *capable)
6404 {
6405         u8 rx_caps[3];
6406         int ret;
6407
6408         *capable = false;
6409         ret = drm_dp_dpcd_read(&intel_dig_port->dp.aux,
6410                                DP_HDCP_2_2_REG_RX_CAPS_OFFSET,
6411                                rx_caps, HDCP_2_2_RXCAPS_LEN);
6412         if (ret != HDCP_2_2_RXCAPS_LEN)
6413                 return ret >= 0 ? -EIO : ret;
6414
6415         if (rx_caps[0] == HDCP_2_2_RX_CAPS_VERSION_VAL &&
6416             HDCP_2_2_DP_HDCP_CAPABLE(rx_caps[2]))
6417                 *capable = true;
6418
6419         return 0;
6420 }
6421
6422 static const struct intel_hdcp_shim intel_dp_hdcp_shim = {
6423         .write_an_aksv = intel_dp_hdcp_write_an_aksv,
6424         .read_bksv = intel_dp_hdcp_read_bksv,
6425         .read_bstatus = intel_dp_hdcp_read_bstatus,
6426         .repeater_present = intel_dp_hdcp_repeater_present,
6427         .read_ri_prime = intel_dp_hdcp_read_ri_prime,
6428         .read_ksv_ready = intel_dp_hdcp_read_ksv_ready,
6429         .read_ksv_fifo = intel_dp_hdcp_read_ksv_fifo,
6430         .read_v_prime_part = intel_dp_hdcp_read_v_prime_part,
6431         .toggle_signalling = intel_dp_hdcp_toggle_signalling,
6432         .check_link = intel_dp_hdcp_check_link,
6433         .hdcp_capable = intel_dp_hdcp_capable,
6434         .write_2_2_msg = intel_dp_hdcp2_write_msg,
6435         .read_2_2_msg = intel_dp_hdcp2_read_msg,
6436         .config_stream_type = intel_dp_hdcp2_config_stream_type,
6437         .check_2_2_link = intel_dp_hdcp2_check_link,
6438         .hdcp_2_2_capable = intel_dp_hdcp2_capable,
6439         .protocol = HDCP_PROTOCOL_DP,
6440 };
6441
6442 static void intel_edp_panel_vdd_sanitize(struct intel_dp *intel_dp)
6443 {
6444         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6445         struct intel_digital_port *dig_port = dp_to_dig_port(intel_dp);
6446
6447         lockdep_assert_held(&dev_priv->pps_mutex);
6448
6449         if (!edp_have_panel_vdd(intel_dp))
6450                 return;
6451
6452         /*
6453          * The VDD bit needs a power domain reference, so if the bit is
6454          * already enabled when we boot or resume, grab this reference and
6455          * schedule a vdd off, so we don't hold on to the reference
6456          * indefinitely.
6457          */
6458         DRM_DEBUG_KMS("VDD left on by BIOS, adjusting state tracking\n");
6459         intel_display_power_get(dev_priv, intel_aux_power_domain(dig_port));
6460
6461         edp_panel_vdd_schedule_off(intel_dp);
6462 }
6463
6464 static enum pipe vlv_active_pipe(struct intel_dp *intel_dp)
6465 {
6466         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6467         struct intel_encoder *encoder = &dp_to_dig_port(intel_dp)->base;
6468         enum pipe pipe;
6469
6470         if (intel_dp_port_enabled(dev_priv, intel_dp->output_reg,
6471                                   encoder->port, &pipe))
6472                 return pipe;
6473
6474         return INVALID_PIPE;
6475 }
6476
6477 void intel_dp_encoder_reset(struct drm_encoder *encoder)
6478 {
6479         struct drm_i915_private *dev_priv = to_i915(encoder->dev);
6480         struct intel_dp *intel_dp = enc_to_intel_dp(encoder);
6481         struct intel_lspcon *lspcon = dp_to_lspcon(intel_dp);
6482         intel_wakeref_t wakeref;
6483
6484         if (!HAS_DDI(dev_priv))
6485                 intel_dp->DP = I915_READ(intel_dp->output_reg);
6486
6487         if (lspcon->active)
6488                 lspcon_resume(lspcon);
6489
6490         intel_dp->reset_link_params = true;
6491
6492         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
6493             !intel_dp_is_edp(intel_dp))
6494                 return;
6495
6496         with_pps_lock(intel_dp, wakeref) {
6497                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6498                         intel_dp->active_pipe = vlv_active_pipe(intel_dp);
6499
6500                 if (intel_dp_is_edp(intel_dp)) {
6501                         /*
6502                          * Reinit the power sequencer, in case BIOS did
6503                          * something nasty with it.
6504                          */
6505                         intel_dp_pps_init(intel_dp);
6506                         intel_edp_panel_vdd_sanitize(intel_dp);
6507                 }
6508         }
6509 }
6510
6511 static const struct drm_connector_funcs intel_dp_connector_funcs = {
6512         .force = intel_dp_force,
6513         .fill_modes = drm_helper_probe_single_connector_modes,
6514         .atomic_get_property = intel_digital_connector_atomic_get_property,
6515         .atomic_set_property = intel_digital_connector_atomic_set_property,
6516         .late_register = intel_dp_connector_register,
6517         .early_unregister = intel_dp_connector_unregister,
6518         .destroy = intel_connector_destroy,
6519         .atomic_destroy_state = drm_atomic_helper_connector_destroy_state,
6520         .atomic_duplicate_state = intel_digital_connector_duplicate_state,
6521 };
6522
6523 static const struct drm_connector_helper_funcs intel_dp_connector_helper_funcs = {
6524         .detect_ctx = intel_dp_detect,
6525         .get_modes = intel_dp_get_modes,
6526         .mode_valid = intel_dp_mode_valid,
6527         .atomic_check = intel_digital_connector_atomic_check,
6528 };
6529
6530 static const struct drm_encoder_funcs intel_dp_enc_funcs = {
6531         .reset = intel_dp_encoder_reset,
6532         .destroy = intel_dp_encoder_destroy,
6533 };
6534
6535 enum irqreturn
6536 intel_dp_hpd_pulse(struct intel_digital_port *intel_dig_port, bool long_hpd)
6537 {
6538         struct intel_dp *intel_dp = &intel_dig_port->dp;
6539
6540         if (long_hpd && intel_dig_port->base.type == INTEL_OUTPUT_EDP) {
6541                 /*
6542                  * vdd off can generate a long pulse on eDP which
6543                  * would require vdd on to handle it, and thus we
6544                  * would end up in an endless cycle of
6545                  * "vdd off -> long hpd -> vdd on -> detect -> vdd off -> ..."
6546                  */
6547                 DRM_DEBUG_KMS("ignoring long hpd on eDP [ENCODER:%d:%s]\n",
6548                               intel_dig_port->base.base.base.id,
6549                               intel_dig_port->base.base.name);
6550                 return IRQ_HANDLED;
6551         }
6552
6553         DRM_DEBUG_KMS("got hpd irq on [ENCODER:%d:%s] - %s\n",
6554                       intel_dig_port->base.base.base.id,
6555                       intel_dig_port->base.base.name,
6556                       long_hpd ? "long" : "short");
6557
6558         if (long_hpd) {
6559                 intel_dp->reset_link_params = true;
6560                 return IRQ_NONE;
6561         }
6562
6563         if (intel_dp->is_mst) {
6564                 if (intel_dp_check_mst_status(intel_dp) == -EINVAL) {
6565                         /*
6566                          * If we were in MST mode, and device is not
6567                          * there, get out of MST mode
6568                          */
6569                         DRM_DEBUG_KMS("MST device may have disappeared %d vs %d\n",
6570                                       intel_dp->is_mst, intel_dp->mst_mgr.mst_state);
6571                         intel_dp->is_mst = false;
6572                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
6573                                                         intel_dp->is_mst);
6574
6575                         return IRQ_NONE;
6576                 }
6577         }
6578
6579         if (!intel_dp->is_mst) {
6580                 bool handled;
6581
6582                 handled = intel_dp_short_pulse(intel_dp);
6583
6584                 if (!handled)
6585                         return IRQ_NONE;
6586         }
6587
6588         return IRQ_HANDLED;
6589 }
6590
6591 /* check the VBT to see whether the eDP is on another port */
6592 bool intel_dp_is_port_edp(struct drm_i915_private *dev_priv, enum port port)
6593 {
6594         /*
6595          * eDP not supported on g4x. so bail out early just
6596          * for a bit extra safety in case the VBT is bonkers.
6597          */
6598         if (INTEL_GEN(dev_priv) < 5)
6599                 return false;
6600
6601         if (INTEL_GEN(dev_priv) < 9 && port == PORT_A)
6602                 return true;
6603
6604         return intel_bios_is_port_edp(dev_priv, port);
6605 }
6606
6607 static void
6608 intel_dp_add_properties(struct intel_dp *intel_dp, struct drm_connector *connector)
6609 {
6610         struct drm_i915_private *dev_priv = to_i915(connector->dev);
6611         enum port port = dp_to_dig_port(intel_dp)->base.port;
6612
6613         if (!IS_G4X(dev_priv) && port != PORT_A)
6614                 intel_attach_force_audio_property(connector);
6615
6616         intel_attach_broadcast_rgb_property(connector);
6617         if (HAS_GMCH(dev_priv))
6618                 drm_connector_attach_max_bpc_property(connector, 6, 10);
6619         else if (INTEL_GEN(dev_priv) >= 5)
6620                 drm_connector_attach_max_bpc_property(connector, 6, 12);
6621
6622         intel_attach_colorspace_property(connector);
6623
6624         if (IS_GEMINILAKE(dev_priv) || INTEL_GEN(dev_priv) >= 11)
6625                 drm_object_attach_property(&connector->base,
6626                                            connector->dev->mode_config.hdr_output_metadata_property,
6627                                            0);
6628
6629         if (intel_dp_is_edp(intel_dp)) {
6630                 u32 allowed_scalers;
6631
6632                 allowed_scalers = BIT(DRM_MODE_SCALE_ASPECT) | BIT(DRM_MODE_SCALE_FULLSCREEN);
6633                 if (!HAS_GMCH(dev_priv))
6634                         allowed_scalers |= BIT(DRM_MODE_SCALE_CENTER);
6635
6636                 drm_connector_attach_scaling_mode_property(connector, allowed_scalers);
6637
6638                 connector->state->scaling_mode = DRM_MODE_SCALE_ASPECT;
6639
6640         }
6641 }
6642
6643 static void intel_dp_init_panel_power_timestamps(struct intel_dp *intel_dp)
6644 {
6645         intel_dp->panel_power_off_time = ktime_get_boottime();
6646         intel_dp->last_power_on = jiffies;
6647         intel_dp->last_backlight_off = jiffies;
6648 }
6649
6650 static void
6651 intel_pps_readout_hw_state(struct intel_dp *intel_dp, struct edp_power_seq *seq)
6652 {
6653         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6654         u32 pp_on, pp_off, pp_ctl;
6655         struct pps_registers regs;
6656
6657         intel_pps_get_registers(intel_dp, &regs);
6658
6659         pp_ctl = ironlake_get_pp_control(intel_dp);
6660
6661         /* Ensure PPS is unlocked */
6662         if (!HAS_DDI(dev_priv))
6663                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6664
6665         pp_on = I915_READ(regs.pp_on);
6666         pp_off = I915_READ(regs.pp_off);
6667
6668         /* Pull timing values out of registers */
6669         seq->t1_t3 = REG_FIELD_GET(PANEL_POWER_UP_DELAY_MASK, pp_on);
6670         seq->t8 = REG_FIELD_GET(PANEL_LIGHT_ON_DELAY_MASK, pp_on);
6671         seq->t9 = REG_FIELD_GET(PANEL_LIGHT_OFF_DELAY_MASK, pp_off);
6672         seq->t10 = REG_FIELD_GET(PANEL_POWER_DOWN_DELAY_MASK, pp_off);
6673
6674         if (i915_mmio_reg_valid(regs.pp_div)) {
6675                 u32 pp_div;
6676
6677                 pp_div = I915_READ(regs.pp_div);
6678
6679                 seq->t11_t12 = REG_FIELD_GET(PANEL_POWER_CYCLE_DELAY_MASK, pp_div) * 1000;
6680         } else {
6681                 seq->t11_t12 = REG_FIELD_GET(BXT_POWER_CYCLE_DELAY_MASK, pp_ctl) * 1000;
6682         }
6683 }
6684
6685 static void
6686 intel_pps_dump_state(const char *state_name, const struct edp_power_seq *seq)
6687 {
6688         DRM_DEBUG_KMS("%s t1_t3 %d t8 %d t9 %d t10 %d t11_t12 %d\n",
6689                       state_name,
6690                       seq->t1_t3, seq->t8, seq->t9, seq->t10, seq->t11_t12);
6691 }
6692
6693 static void
6694 intel_pps_verify_state(struct intel_dp *intel_dp)
6695 {
6696         struct edp_power_seq hw;
6697         struct edp_power_seq *sw = &intel_dp->pps_delays;
6698
6699         intel_pps_readout_hw_state(intel_dp, &hw);
6700
6701         if (hw.t1_t3 != sw->t1_t3 || hw.t8 != sw->t8 || hw.t9 != sw->t9 ||
6702             hw.t10 != sw->t10 || hw.t11_t12 != sw->t11_t12) {
6703                 DRM_ERROR("PPS state mismatch\n");
6704                 intel_pps_dump_state("sw", sw);
6705                 intel_pps_dump_state("hw", &hw);
6706         }
6707 }
6708
6709 static void
6710 intel_dp_init_panel_power_sequencer(struct intel_dp *intel_dp)
6711 {
6712         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6713         struct edp_power_seq cur, vbt, spec,
6714                 *final = &intel_dp->pps_delays;
6715
6716         lockdep_assert_held(&dev_priv->pps_mutex);
6717
6718         /* already initialized? */
6719         if (final->t11_t12 != 0)
6720                 return;
6721
6722         intel_pps_readout_hw_state(intel_dp, &cur);
6723
6724         intel_pps_dump_state("cur", &cur);
6725
6726         vbt = dev_priv->vbt.edp.pps;
6727         /* On Toshiba Satellite P50-C-18C system the VBT T12 delay
6728          * of 500ms appears to be too short. Ocassionally the panel
6729          * just fails to power back on. Increasing the delay to 800ms
6730          * seems sufficient to avoid this problem.
6731          */
6732         if (dev_priv->quirks & QUIRK_INCREASE_T12_DELAY) {
6733                 vbt.t11_t12 = max_t(u16, vbt.t11_t12, 1300 * 10);
6734                 DRM_DEBUG_KMS("Increasing T12 panel delay as per the quirk to %d\n",
6735                               vbt.t11_t12);
6736         }
6737         /* T11_T12 delay is special and actually in units of 100ms, but zero
6738          * based in the hw (so we need to add 100 ms). But the sw vbt
6739          * table multiplies it with 1000 to make it in units of 100usec,
6740          * too. */
6741         vbt.t11_t12 += 100 * 10;
6742
6743         /* Upper limits from eDP 1.3 spec. Note that we use the clunky units of
6744          * our hw here, which are all in 100usec. */
6745         spec.t1_t3 = 210 * 10;
6746         spec.t8 = 50 * 10; /* no limit for t8, use t7 instead */
6747         spec.t9 = 50 * 10; /* no limit for t9, make it symmetric with t8 */
6748         spec.t10 = 500 * 10;
6749         /* This one is special and actually in units of 100ms, but zero
6750          * based in the hw (so we need to add 100 ms). But the sw vbt
6751          * table multiplies it with 1000 to make it in units of 100usec,
6752          * too. */
6753         spec.t11_t12 = (510 + 100) * 10;
6754
6755         intel_pps_dump_state("vbt", &vbt);
6756
6757         /* Use the max of the register settings and vbt. If both are
6758          * unset, fall back to the spec limits. */
6759 #define assign_final(field)     final->field = (max(cur.field, vbt.field) == 0 ? \
6760                                        spec.field : \
6761                                        max(cur.field, vbt.field))
6762         assign_final(t1_t3);
6763         assign_final(t8);
6764         assign_final(t9);
6765         assign_final(t10);
6766         assign_final(t11_t12);
6767 #undef assign_final
6768
6769 #define get_delay(field)        (DIV_ROUND_UP(final->field, 10))
6770         intel_dp->panel_power_up_delay = get_delay(t1_t3);
6771         intel_dp->backlight_on_delay = get_delay(t8);
6772         intel_dp->backlight_off_delay = get_delay(t9);
6773         intel_dp->panel_power_down_delay = get_delay(t10);
6774         intel_dp->panel_power_cycle_delay = get_delay(t11_t12);
6775 #undef get_delay
6776
6777         DRM_DEBUG_KMS("panel power up delay %d, power down delay %d, power cycle delay %d\n",
6778                       intel_dp->panel_power_up_delay, intel_dp->panel_power_down_delay,
6779                       intel_dp->panel_power_cycle_delay);
6780
6781         DRM_DEBUG_KMS("backlight on delay %d, off delay %d\n",
6782                       intel_dp->backlight_on_delay, intel_dp->backlight_off_delay);
6783
6784         /*
6785          * We override the HW backlight delays to 1 because we do manual waits
6786          * on them. For T8, even BSpec recommends doing it. For T9, if we
6787          * don't do this, we'll end up waiting for the backlight off delay
6788          * twice: once when we do the manual sleep, and once when we disable
6789          * the panel and wait for the PP_STATUS bit to become zero.
6790          */
6791         final->t8 = 1;
6792         final->t9 = 1;
6793
6794         /*
6795          * HW has only a 100msec granularity for t11_t12 so round it up
6796          * accordingly.
6797          */
6798         final->t11_t12 = roundup(final->t11_t12, 100 * 10);
6799 }
6800
6801 static void
6802 intel_dp_init_panel_power_sequencer_registers(struct intel_dp *intel_dp,
6803                                               bool force_disable_vdd)
6804 {
6805         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6806         u32 pp_on, pp_off, port_sel = 0;
6807         int div = dev_priv->rawclk_freq / 1000;
6808         struct pps_registers regs;
6809         enum port port = dp_to_dig_port(intel_dp)->base.port;
6810         const struct edp_power_seq *seq = &intel_dp->pps_delays;
6811
6812         lockdep_assert_held(&dev_priv->pps_mutex);
6813
6814         intel_pps_get_registers(intel_dp, &regs);
6815
6816         /*
6817          * On some VLV machines the BIOS can leave the VDD
6818          * enabled even on power sequencers which aren't
6819          * hooked up to any port. This would mess up the
6820          * power domain tracking the first time we pick
6821          * one of these power sequencers for use since
6822          * edp_panel_vdd_on() would notice that the VDD was
6823          * already on and therefore wouldn't grab the power
6824          * domain reference. Disable VDD first to avoid this.
6825          * This also avoids spuriously turning the VDD on as
6826          * soon as the new power sequencer gets initialized.
6827          */
6828         if (force_disable_vdd) {
6829                 u32 pp = ironlake_get_pp_control(intel_dp);
6830
6831                 WARN(pp & PANEL_POWER_ON, "Panel power already on\n");
6832
6833                 if (pp & EDP_FORCE_VDD)
6834                         DRM_DEBUG_KMS("VDD already on, disabling first\n");
6835
6836                 pp &= ~EDP_FORCE_VDD;
6837
6838                 I915_WRITE(regs.pp_ctrl, pp);
6839         }
6840
6841         pp_on = REG_FIELD_PREP(PANEL_POWER_UP_DELAY_MASK, seq->t1_t3) |
6842                 REG_FIELD_PREP(PANEL_LIGHT_ON_DELAY_MASK, seq->t8);
6843         pp_off = REG_FIELD_PREP(PANEL_LIGHT_OFF_DELAY_MASK, seq->t9) |
6844                 REG_FIELD_PREP(PANEL_POWER_DOWN_DELAY_MASK, seq->t10);
6845
6846         /* Haswell doesn't have any port selection bits for the panel
6847          * power sequencer any more. */
6848         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6849                 port_sel = PANEL_PORT_SELECT_VLV(port);
6850         } else if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
6851                 switch (port) {
6852                 case PORT_A:
6853                         port_sel = PANEL_PORT_SELECT_DPA;
6854                         break;
6855                 case PORT_C:
6856                         port_sel = PANEL_PORT_SELECT_DPC;
6857                         break;
6858                 case PORT_D:
6859                         port_sel = PANEL_PORT_SELECT_DPD;
6860                         break;
6861                 default:
6862                         MISSING_CASE(port);
6863                         break;
6864                 }
6865         }
6866
6867         pp_on |= port_sel;
6868
6869         I915_WRITE(regs.pp_on, pp_on);
6870         I915_WRITE(regs.pp_off, pp_off);
6871
6872         /*
6873          * Compute the divisor for the pp clock, simply match the Bspec formula.
6874          */
6875         if (i915_mmio_reg_valid(regs.pp_div)) {
6876                 I915_WRITE(regs.pp_div,
6877                            REG_FIELD_PREP(PP_REFERENCE_DIVIDER_MASK, (100 * div) / 2 - 1) |
6878                            REG_FIELD_PREP(PANEL_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000)));
6879         } else {
6880                 u32 pp_ctl;
6881
6882                 pp_ctl = I915_READ(regs.pp_ctrl);
6883                 pp_ctl &= ~BXT_POWER_CYCLE_DELAY_MASK;
6884                 pp_ctl |= REG_FIELD_PREP(BXT_POWER_CYCLE_DELAY_MASK, DIV_ROUND_UP(seq->t11_t12, 1000));
6885                 I915_WRITE(regs.pp_ctrl, pp_ctl);
6886         }
6887
6888         DRM_DEBUG_KMS("panel power sequencer register settings: PP_ON %#x, PP_OFF %#x, PP_DIV %#x\n",
6889                       I915_READ(regs.pp_on),
6890                       I915_READ(regs.pp_off),
6891                       i915_mmio_reg_valid(regs.pp_div) ?
6892                       I915_READ(regs.pp_div) :
6893                       (I915_READ(regs.pp_ctrl) & BXT_POWER_CYCLE_DELAY_MASK));
6894 }
6895
6896 static void intel_dp_pps_init(struct intel_dp *intel_dp)
6897 {
6898         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
6899
6900         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
6901                 vlv_initial_power_sequencer_setup(intel_dp);
6902         } else {
6903                 intel_dp_init_panel_power_sequencer(intel_dp);
6904                 intel_dp_init_panel_power_sequencer_registers(intel_dp, false);
6905         }
6906 }
6907
6908 /**
6909  * intel_dp_set_drrs_state - program registers for RR switch to take effect
6910  * @dev_priv: i915 device
6911  * @crtc_state: a pointer to the active intel_crtc_state
6912  * @refresh_rate: RR to be programmed
6913  *
6914  * This function gets called when refresh rate (RR) has to be changed from
6915  * one frequency to another. Switches can be between high and low RR
6916  * supported by the panel or to any other RR based on media playback (in
6917  * this case, RR value needs to be passed from user space).
6918  *
6919  * The caller of this function needs to take a lock on dev_priv->drrs.
6920  */
6921 static void intel_dp_set_drrs_state(struct drm_i915_private *dev_priv,
6922                                     const struct intel_crtc_state *crtc_state,
6923                                     int refresh_rate)
6924 {
6925         struct intel_dp *intel_dp = dev_priv->drrs.dp;
6926         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->uapi.crtc);
6927         enum drrs_refresh_rate_type index = DRRS_HIGH_RR;
6928
6929         if (refresh_rate <= 0) {
6930                 DRM_DEBUG_KMS("Refresh rate should be positive non-zero.\n");
6931                 return;
6932         }
6933
6934         if (intel_dp == NULL) {
6935                 DRM_DEBUG_KMS("DRRS not supported.\n");
6936                 return;
6937         }
6938
6939         if (!intel_crtc) {
6940                 DRM_DEBUG_KMS("DRRS: intel_crtc not initialized\n");
6941                 return;
6942         }
6943
6944         if (dev_priv->drrs.type < SEAMLESS_DRRS_SUPPORT) {
6945                 DRM_DEBUG_KMS("Only Seamless DRRS supported.\n");
6946                 return;
6947         }
6948
6949         if (intel_dp->attached_connector->panel.downclock_mode->vrefresh ==
6950                         refresh_rate)
6951                 index = DRRS_LOW_RR;
6952
6953         if (index == dev_priv->drrs.refresh_rate_type) {
6954                 DRM_DEBUG_KMS(
6955                         "DRRS requested for previously set RR...ignoring\n");
6956                 return;
6957         }
6958
6959         if (!crtc_state->hw.active) {
6960                 DRM_DEBUG_KMS("eDP encoder disabled. CRTC not Active\n");
6961                 return;
6962         }
6963
6964         if (INTEL_GEN(dev_priv) >= 8 && !IS_CHERRYVIEW(dev_priv)) {
6965                 switch (index) {
6966                 case DRRS_HIGH_RR:
6967                         intel_dp_set_m_n(crtc_state, M1_N1);
6968                         break;
6969                 case DRRS_LOW_RR:
6970                         intel_dp_set_m_n(crtc_state, M2_N2);
6971                         break;
6972                 case DRRS_MAX_RR:
6973                 default:
6974                         DRM_ERROR("Unsupported refreshrate type\n");
6975                 }
6976         } else if (INTEL_GEN(dev_priv) > 6) {
6977                 i915_reg_t reg = PIPECONF(crtc_state->cpu_transcoder);
6978                 u32 val;
6979
6980                 val = I915_READ(reg);
6981                 if (index > DRRS_HIGH_RR) {
6982                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6983                                 val |= PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6984                         else
6985                                 val |= PIPECONF_EDP_RR_MODE_SWITCH;
6986                 } else {
6987                         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
6988                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH_VLV;
6989                         else
6990                                 val &= ~PIPECONF_EDP_RR_MODE_SWITCH;
6991                 }
6992                 I915_WRITE(reg, val);
6993         }
6994
6995         dev_priv->drrs.refresh_rate_type = index;
6996
6997         DRM_DEBUG_KMS("eDP Refresh Rate set to : %dHz\n", refresh_rate);
6998 }
6999
7000 /**
7001  * intel_edp_drrs_enable - init drrs struct if supported
7002  * @intel_dp: DP struct
7003  * @crtc_state: A pointer to the active crtc state.
7004  *
7005  * Initializes frontbuffer_bits and drrs.dp
7006  */
7007 void intel_edp_drrs_enable(struct intel_dp *intel_dp,
7008                            const struct intel_crtc_state *crtc_state)
7009 {
7010         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7011
7012         if (!crtc_state->has_drrs) {
7013                 DRM_DEBUG_KMS("Panel doesn't support DRRS\n");
7014                 return;
7015         }
7016
7017         if (dev_priv->psr.enabled) {
7018                 DRM_DEBUG_KMS("PSR enabled. Not enabling DRRS.\n");
7019                 return;
7020         }
7021
7022         mutex_lock(&dev_priv->drrs.mutex);
7023         if (dev_priv->drrs.dp) {
7024                 DRM_DEBUG_KMS("DRRS already enabled\n");
7025                 goto unlock;
7026         }
7027
7028         dev_priv->drrs.busy_frontbuffer_bits = 0;
7029
7030         dev_priv->drrs.dp = intel_dp;
7031
7032 unlock:
7033         mutex_unlock(&dev_priv->drrs.mutex);
7034 }
7035
7036 /**
7037  * intel_edp_drrs_disable - Disable DRRS
7038  * @intel_dp: DP struct
7039  * @old_crtc_state: Pointer to old crtc_state.
7040  *
7041  */
7042 void intel_edp_drrs_disable(struct intel_dp *intel_dp,
7043                             const struct intel_crtc_state *old_crtc_state)
7044 {
7045         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7046
7047         if (!old_crtc_state->has_drrs)
7048                 return;
7049
7050         mutex_lock(&dev_priv->drrs.mutex);
7051         if (!dev_priv->drrs.dp) {
7052                 mutex_unlock(&dev_priv->drrs.mutex);
7053                 return;
7054         }
7055
7056         if (dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7057                 intel_dp_set_drrs_state(dev_priv, old_crtc_state,
7058                         intel_dp->attached_connector->panel.fixed_mode->vrefresh);
7059
7060         dev_priv->drrs.dp = NULL;
7061         mutex_unlock(&dev_priv->drrs.mutex);
7062
7063         cancel_delayed_work_sync(&dev_priv->drrs.work);
7064 }
7065
7066 static void intel_edp_drrs_downclock_work(struct work_struct *work)
7067 {
7068         struct drm_i915_private *dev_priv =
7069                 container_of(work, typeof(*dev_priv), drrs.work.work);
7070         struct intel_dp *intel_dp;
7071
7072         mutex_lock(&dev_priv->drrs.mutex);
7073
7074         intel_dp = dev_priv->drrs.dp;
7075
7076         if (!intel_dp)
7077                 goto unlock;
7078
7079         /*
7080          * The delayed work can race with an invalidate hence we need to
7081          * recheck.
7082          */
7083
7084         if (dev_priv->drrs.busy_frontbuffer_bits)
7085                 goto unlock;
7086
7087         if (dev_priv->drrs.refresh_rate_type != DRRS_LOW_RR) {
7088                 struct drm_crtc *crtc = dp_to_dig_port(intel_dp)->base.base.crtc;
7089
7090                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7091                         intel_dp->attached_connector->panel.downclock_mode->vrefresh);
7092         }
7093
7094 unlock:
7095         mutex_unlock(&dev_priv->drrs.mutex);
7096 }
7097
7098 /**
7099  * intel_edp_drrs_invalidate - Disable Idleness DRRS
7100  * @dev_priv: i915 device
7101  * @frontbuffer_bits: frontbuffer plane tracking bits
7102  *
7103  * This function gets called everytime rendering on the given planes start.
7104  * Hence DRRS needs to be Upclocked, i.e. (LOW_RR -> HIGH_RR).
7105  *
7106  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7107  */
7108 void intel_edp_drrs_invalidate(struct drm_i915_private *dev_priv,
7109                                unsigned int frontbuffer_bits)
7110 {
7111         struct drm_crtc *crtc;
7112         enum pipe pipe;
7113
7114         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7115                 return;
7116
7117         cancel_delayed_work(&dev_priv->drrs.work);
7118
7119         mutex_lock(&dev_priv->drrs.mutex);
7120         if (!dev_priv->drrs.dp) {
7121                 mutex_unlock(&dev_priv->drrs.mutex);
7122                 return;
7123         }
7124
7125         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7126         pipe = to_intel_crtc(crtc)->pipe;
7127
7128         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7129         dev_priv->drrs.busy_frontbuffer_bits |= frontbuffer_bits;
7130
7131         /* invalidate means busy screen hence upclock */
7132         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7133                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7134                         dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7135
7136         mutex_unlock(&dev_priv->drrs.mutex);
7137 }
7138
7139 /**
7140  * intel_edp_drrs_flush - Restart Idleness DRRS
7141  * @dev_priv: i915 device
7142  * @frontbuffer_bits: frontbuffer plane tracking bits
7143  *
7144  * This function gets called every time rendering on the given planes has
7145  * completed or flip on a crtc is completed. So DRRS should be upclocked
7146  * (LOW_RR -> HIGH_RR). And also Idleness detection should be started again,
7147  * if no other planes are dirty.
7148  *
7149  * Dirty frontbuffers relevant to DRRS are tracked in busy_frontbuffer_bits.
7150  */
7151 void intel_edp_drrs_flush(struct drm_i915_private *dev_priv,
7152                           unsigned int frontbuffer_bits)
7153 {
7154         struct drm_crtc *crtc;
7155         enum pipe pipe;
7156
7157         if (dev_priv->drrs.type == DRRS_NOT_SUPPORTED)
7158                 return;
7159
7160         cancel_delayed_work(&dev_priv->drrs.work);
7161
7162         mutex_lock(&dev_priv->drrs.mutex);
7163         if (!dev_priv->drrs.dp) {
7164                 mutex_unlock(&dev_priv->drrs.mutex);
7165                 return;
7166         }
7167
7168         crtc = dp_to_dig_port(dev_priv->drrs.dp)->base.base.crtc;
7169         pipe = to_intel_crtc(crtc)->pipe;
7170
7171         frontbuffer_bits &= INTEL_FRONTBUFFER_ALL_MASK(pipe);
7172         dev_priv->drrs.busy_frontbuffer_bits &= ~frontbuffer_bits;
7173
7174         /* flush means busy screen hence upclock */
7175         if (frontbuffer_bits && dev_priv->drrs.refresh_rate_type == DRRS_LOW_RR)
7176                 intel_dp_set_drrs_state(dev_priv, to_intel_crtc(crtc)->config,
7177                                 dev_priv->drrs.dp->attached_connector->panel.fixed_mode->vrefresh);
7178
7179         /*
7180          * flush also means no more activity hence schedule downclock, if all
7181          * other fbs are quiescent too
7182          */
7183         if (!dev_priv->drrs.busy_frontbuffer_bits)
7184                 schedule_delayed_work(&dev_priv->drrs.work,
7185                                 msecs_to_jiffies(1000));
7186         mutex_unlock(&dev_priv->drrs.mutex);
7187 }
7188
7189 /**
7190  * DOC: Display Refresh Rate Switching (DRRS)
7191  *
7192  * Display Refresh Rate Switching (DRRS) is a power conservation feature
7193  * which enables swtching between low and high refresh rates,
7194  * dynamically, based on the usage scenario. This feature is applicable
7195  * for internal panels.
7196  *
7197  * Indication that the panel supports DRRS is given by the panel EDID, which
7198  * would list multiple refresh rates for one resolution.
7199  *
7200  * DRRS is of 2 types - static and seamless.
7201  * Static DRRS involves changing refresh rate (RR) by doing a full modeset
7202  * (may appear as a blink on screen) and is used in dock-undock scenario.
7203  * Seamless DRRS involves changing RR without any visual effect to the user
7204  * and can be used during normal system usage. This is done by programming
7205  * certain registers.
7206  *
7207  * Support for static/seamless DRRS may be indicated in the VBT based on
7208  * inputs from the panel spec.
7209  *
7210  * DRRS saves power by switching to low RR based on usage scenarios.
7211  *
7212  * The implementation is based on frontbuffer tracking implementation.  When
7213  * there is a disturbance on the screen triggered by user activity or a periodic
7214  * system activity, DRRS is disabled (RR is changed to high RR).  When there is
7215  * no movement on screen, after a timeout of 1 second, a switch to low RR is
7216  * made.
7217  *
7218  * For integration with frontbuffer tracking code, intel_edp_drrs_invalidate()
7219  * and intel_edp_drrs_flush() are called.
7220  *
7221  * DRRS can be further extended to support other internal panels and also
7222  * the scenario of video playback wherein RR is set based on the rate
7223  * requested by userspace.
7224  */
7225
7226 /**
7227  * intel_dp_drrs_init - Init basic DRRS work and mutex.
7228  * @connector: eDP connector
7229  * @fixed_mode: preferred mode of panel
7230  *
7231  * This function is  called only once at driver load to initialize basic
7232  * DRRS stuff.
7233  *
7234  * Returns:
7235  * Downclock mode if panel supports it, else return NULL.
7236  * DRRS support is determined by the presence of downclock mode (apart
7237  * from VBT setting).
7238  */
7239 static struct drm_display_mode *
7240 intel_dp_drrs_init(struct intel_connector *connector,
7241                    struct drm_display_mode *fixed_mode)
7242 {
7243         struct drm_i915_private *dev_priv = to_i915(connector->base.dev);
7244         struct drm_display_mode *downclock_mode = NULL;
7245
7246         INIT_DELAYED_WORK(&dev_priv->drrs.work, intel_edp_drrs_downclock_work);
7247         mutex_init(&dev_priv->drrs.mutex);
7248
7249         if (INTEL_GEN(dev_priv) <= 6) {
7250                 DRM_DEBUG_KMS("DRRS supported for Gen7 and above\n");
7251                 return NULL;
7252         }
7253
7254         if (dev_priv->vbt.drrs_type != SEAMLESS_DRRS_SUPPORT) {
7255                 DRM_DEBUG_KMS("VBT doesn't support DRRS\n");
7256                 return NULL;
7257         }
7258
7259         downclock_mode = intel_panel_edid_downclock_mode(connector, fixed_mode);
7260         if (!downclock_mode) {
7261                 DRM_DEBUG_KMS("Downclock mode is not found. DRRS not supported\n");
7262                 return NULL;
7263         }
7264
7265         dev_priv->drrs.type = dev_priv->vbt.drrs_type;
7266
7267         dev_priv->drrs.refresh_rate_type = DRRS_HIGH_RR;
7268         DRM_DEBUG_KMS("seamless DRRS supported for eDP panel.\n");
7269         return downclock_mode;
7270 }
7271
7272 static bool intel_edp_init_connector(struct intel_dp *intel_dp,
7273                                      struct intel_connector *intel_connector)
7274 {
7275         struct drm_i915_private *dev_priv = dp_to_i915(intel_dp);
7276         struct drm_device *dev = &dev_priv->drm;
7277         struct drm_connector *connector = &intel_connector->base;
7278         struct drm_display_mode *fixed_mode = NULL;
7279         struct drm_display_mode *downclock_mode = NULL;
7280         bool has_dpcd;
7281         enum pipe pipe = INVALID_PIPE;
7282         intel_wakeref_t wakeref;
7283         struct edid *edid;
7284
7285         if (!intel_dp_is_edp(intel_dp))
7286                 return true;
7287
7288         INIT_DELAYED_WORK(&intel_dp->panel_vdd_work, edp_panel_vdd_work);
7289
7290         /*
7291          * On IBX/CPT we may get here with LVDS already registered. Since the
7292          * driver uses the only internal power sequencer available for both
7293          * eDP and LVDS bail out early in this case to prevent interfering
7294          * with an already powered-on LVDS power sequencer.
7295          */
7296         if (intel_get_lvds_encoder(dev_priv)) {
7297                 WARN_ON(!(HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)));
7298                 DRM_INFO("LVDS was detected, not registering eDP\n");
7299
7300                 return false;
7301         }
7302
7303         with_pps_lock(intel_dp, wakeref) {
7304                 intel_dp_init_panel_power_timestamps(intel_dp);
7305                 intel_dp_pps_init(intel_dp);
7306                 intel_edp_panel_vdd_sanitize(intel_dp);
7307         }
7308
7309         /* Cache DPCD and EDID for edp. */
7310         has_dpcd = intel_edp_init_dpcd(intel_dp);
7311
7312         if (!has_dpcd) {
7313                 /* if this fails, presume the device is a ghost */
7314                 DRM_INFO("failed to retrieve link info, disabling eDP\n");
7315                 goto out_vdd_off;
7316         }
7317
7318         mutex_lock(&dev->mode_config.mutex);
7319         edid = drm_get_edid(connector, &intel_dp->aux.ddc);
7320         if (edid) {
7321                 if (drm_add_edid_modes(connector, edid)) {
7322                         drm_connector_update_edid_property(connector,
7323                                                                 edid);
7324                 } else {
7325                         kfree(edid);
7326                         edid = ERR_PTR(-EINVAL);
7327                 }
7328         } else {
7329                 edid = ERR_PTR(-ENOENT);
7330         }
7331         intel_connector->edid = edid;
7332
7333         fixed_mode = intel_panel_edid_fixed_mode(intel_connector);
7334         if (fixed_mode)
7335                 downclock_mode = intel_dp_drrs_init(intel_connector, fixed_mode);
7336
7337         /* fallback to VBT if available for eDP */
7338         if (!fixed_mode)
7339                 fixed_mode = intel_panel_vbt_fixed_mode(intel_connector);
7340         mutex_unlock(&dev->mode_config.mutex);
7341
7342         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
7343                 intel_dp->edp_notifier.notifier_call = edp_notify_handler;
7344                 register_reboot_notifier(&intel_dp->edp_notifier);
7345
7346                 /*
7347                  * Figure out the current pipe for the initial backlight setup.
7348                  * If the current pipe isn't valid, try the PPS pipe, and if that
7349                  * fails just assume pipe A.
7350                  */
7351                 pipe = vlv_active_pipe(intel_dp);
7352
7353                 if (pipe != PIPE_A && pipe != PIPE_B)
7354                         pipe = intel_dp->pps_pipe;
7355
7356                 if (pipe != PIPE_A && pipe != PIPE_B)
7357                         pipe = PIPE_A;
7358
7359                 DRM_DEBUG_KMS("using pipe %c for initial backlight setup\n",
7360                               pipe_name(pipe));
7361         }
7362
7363         intel_panel_init(&intel_connector->panel, fixed_mode, downclock_mode);
7364         intel_connector->panel.backlight.power = intel_edp_backlight_power;
7365         intel_panel_setup_backlight(connector, pipe);
7366
7367         if (fixed_mode)
7368                 drm_connector_init_panel_orientation_property(
7369                         connector, fixed_mode->hdisplay, fixed_mode->vdisplay);
7370
7371         return true;
7372
7373 out_vdd_off:
7374         cancel_delayed_work_sync(&intel_dp->panel_vdd_work);
7375         /*
7376          * vdd might still be enabled do to the delayed vdd off.
7377          * Make sure vdd is actually turned off here.
7378          */
7379         with_pps_lock(intel_dp, wakeref)
7380                 edp_panel_vdd_off_sync(intel_dp);
7381
7382         return false;
7383 }
7384
7385 static void intel_dp_modeset_retry_work_fn(struct work_struct *work)
7386 {
7387         struct intel_connector *intel_connector;
7388         struct drm_connector *connector;
7389
7390         intel_connector = container_of(work, typeof(*intel_connector),
7391                                        modeset_retry_work);
7392         connector = &intel_connector->base;
7393         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n", connector->base.id,
7394                       connector->name);
7395
7396         /* Grab the locks before changing connector property*/
7397         mutex_lock(&connector->dev->mode_config.mutex);
7398         /* Set connector link status to BAD and send a Uevent to notify
7399          * userspace to do a modeset.
7400          */
7401         drm_connector_set_link_status_property(connector,
7402                                                DRM_MODE_LINK_STATUS_BAD);
7403         mutex_unlock(&connector->dev->mode_config.mutex);
7404         /* Send Hotplug uevent so userspace can reprobe */
7405         drm_kms_helper_hotplug_event(connector->dev);
7406 }
7407
7408 bool
7409 intel_dp_init_connector(struct intel_digital_port *intel_dig_port,
7410                         struct intel_connector *intel_connector)
7411 {
7412         struct drm_connector *connector = &intel_connector->base;
7413         struct intel_dp *intel_dp = &intel_dig_port->dp;
7414         struct intel_encoder *intel_encoder = &intel_dig_port->base;
7415         struct drm_device *dev = intel_encoder->base.dev;
7416         struct drm_i915_private *dev_priv = to_i915(dev);
7417         enum port port = intel_encoder->port;
7418         enum phy phy = intel_port_to_phy(dev_priv, port);
7419         int type;
7420
7421         /* Initialize the work for modeset in case of link train failure */
7422         INIT_WORK(&intel_connector->modeset_retry_work,
7423                   intel_dp_modeset_retry_work_fn);
7424
7425         if (WARN(intel_dig_port->max_lanes < 1,
7426                  "Not enough lanes (%d) for DP on [ENCODER:%d:%s]\n",
7427                  intel_dig_port->max_lanes, intel_encoder->base.base.id,
7428                  intel_encoder->base.name))
7429                 return false;
7430
7431         intel_dp_set_source_rates(intel_dp);
7432
7433         intel_dp->reset_link_params = true;
7434         intel_dp->pps_pipe = INVALID_PIPE;
7435         intel_dp->active_pipe = INVALID_PIPE;
7436
7437         /* Preserve the current hw state. */
7438         intel_dp->DP = I915_READ(intel_dp->output_reg);
7439         intel_dp->attached_connector = intel_connector;
7440
7441         if (intel_dp_is_port_edp(dev_priv, port)) {
7442                 /*
7443                  * Currently we don't support eDP on TypeC ports, although in
7444                  * theory it could work on TypeC legacy ports.
7445                  */
7446                 WARN_ON(intel_phy_is_tc(dev_priv, phy));
7447                 type = DRM_MODE_CONNECTOR_eDP;
7448         } else {
7449                 type = DRM_MODE_CONNECTOR_DisplayPort;
7450         }
7451
7452         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
7453                 intel_dp->active_pipe = vlv_active_pipe(intel_dp);
7454
7455         /*
7456          * For eDP we always set the encoder type to INTEL_OUTPUT_EDP, but
7457          * for DP the encoder type can be set by the caller to
7458          * INTEL_OUTPUT_UNKNOWN for DDI, so don't rewrite it.
7459          */
7460         if (type == DRM_MODE_CONNECTOR_eDP)
7461                 intel_encoder->type = INTEL_OUTPUT_EDP;
7462
7463         /* eDP only on port B and/or C on vlv/chv */
7464         if (WARN_ON((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
7465                     intel_dp_is_edp(intel_dp) &&
7466                     port != PORT_B && port != PORT_C))
7467                 return false;
7468
7469         DRM_DEBUG_KMS("Adding %s connector on [ENCODER:%d:%s]\n",
7470                       type == DRM_MODE_CONNECTOR_eDP ? "eDP" : "DP",
7471                       intel_encoder->base.base.id, intel_encoder->base.name);
7472
7473         drm_connector_init(dev, connector, &intel_dp_connector_funcs, type);
7474         drm_connector_helper_add(connector, &intel_dp_connector_helper_funcs);
7475
7476         if (!HAS_GMCH(dev_priv))
7477                 connector->interlace_allowed = true;
7478         connector->doublescan_allowed = 0;
7479
7480         if (INTEL_GEN(dev_priv) >= 11)
7481                 connector->ycbcr_420_allowed = true;
7482
7483         intel_encoder->hpd_pin = intel_hpd_pin_default(dev_priv, port);
7484
7485         intel_dp_aux_init(intel_dp);
7486
7487         intel_connector_attach_encoder(intel_connector, intel_encoder);
7488
7489         if (HAS_DDI(dev_priv))
7490                 intel_connector->get_hw_state = intel_ddi_connector_get_hw_state;
7491         else
7492                 intel_connector->get_hw_state = intel_connector_get_hw_state;
7493
7494         /* init MST on ports that can support it */
7495         intel_dp_mst_encoder_init(intel_dig_port,
7496                                   intel_connector->base.base.id);
7497
7498         if (!intel_edp_init_connector(intel_dp, intel_connector)) {
7499                 intel_dp_aux_fini(intel_dp);
7500                 intel_dp_mst_encoder_cleanup(intel_dig_port);
7501                 goto fail;
7502         }
7503
7504         intel_dp_add_properties(intel_dp, connector);
7505
7506         if (is_hdcp_supported(dev_priv, port) && !intel_dp_is_edp(intel_dp)) {
7507                 int ret = intel_hdcp_init(intel_connector, &intel_dp_hdcp_shim);
7508                 if (ret)
7509                         DRM_DEBUG_KMS("HDCP init failed, skipping.\n");
7510         }
7511
7512         /* For G4X desktop chip, PEG_BAND_GAP_DATA 3:0 must first be written
7513          * 0xd.  Failure to do so will result in spurious interrupts being
7514          * generated on the port when a cable is not attached.
7515          */
7516         if (IS_G45(dev_priv)) {
7517                 u32 temp = I915_READ(PEG_BAND_GAP_DATA);
7518                 I915_WRITE(PEG_BAND_GAP_DATA, (temp & ~0xf) | 0xd);
7519         }
7520
7521         return true;
7522
7523 fail:
7524         drm_connector_cleanup(connector);
7525
7526         return false;
7527 }
7528
7529 bool intel_dp_init(struct drm_i915_private *dev_priv,
7530                    i915_reg_t output_reg,
7531                    enum port port)
7532 {
7533         struct intel_digital_port *intel_dig_port;
7534         struct intel_encoder *intel_encoder;
7535         struct drm_encoder *encoder;
7536         struct intel_connector *intel_connector;
7537
7538         intel_dig_port = kzalloc(sizeof(*intel_dig_port), GFP_KERNEL);
7539         if (!intel_dig_port)
7540                 return false;
7541
7542         intel_connector = intel_connector_alloc();
7543         if (!intel_connector)
7544                 goto err_connector_alloc;
7545
7546         intel_encoder = &intel_dig_port->base;
7547         encoder = &intel_encoder->base;
7548
7549         if (drm_encoder_init(&dev_priv->drm, &intel_encoder->base,
7550                              &intel_dp_enc_funcs, DRM_MODE_ENCODER_TMDS,
7551                              "DP %c", port_name(port)))
7552                 goto err_encoder_init;
7553
7554         intel_encoder->hotplug = intel_dp_hotplug;
7555         intel_encoder->compute_config = intel_dp_compute_config;
7556         intel_encoder->get_hw_state = intel_dp_get_hw_state;
7557         intel_encoder->get_config = intel_dp_get_config;
7558         intel_encoder->update_pipe = intel_panel_update_backlight;
7559         intel_encoder->suspend = intel_dp_encoder_suspend;
7560         if (IS_CHERRYVIEW(dev_priv)) {
7561                 intel_encoder->pre_pll_enable = chv_dp_pre_pll_enable;
7562                 intel_encoder->pre_enable = chv_pre_enable_dp;
7563                 intel_encoder->enable = vlv_enable_dp;
7564                 intel_encoder->disable = vlv_disable_dp;
7565                 intel_encoder->post_disable = chv_post_disable_dp;
7566                 intel_encoder->post_pll_disable = chv_dp_post_pll_disable;
7567         } else if (IS_VALLEYVIEW(dev_priv)) {
7568                 intel_encoder->pre_pll_enable = vlv_dp_pre_pll_enable;
7569                 intel_encoder->pre_enable = vlv_pre_enable_dp;
7570                 intel_encoder->enable = vlv_enable_dp;
7571                 intel_encoder->disable = vlv_disable_dp;
7572                 intel_encoder->post_disable = vlv_post_disable_dp;
7573         } else {
7574                 intel_encoder->pre_enable = g4x_pre_enable_dp;
7575                 intel_encoder->enable = g4x_enable_dp;
7576                 intel_encoder->disable = g4x_disable_dp;
7577                 intel_encoder->post_disable = g4x_post_disable_dp;
7578         }
7579
7580         intel_dig_port->dp.output_reg = output_reg;
7581         intel_dig_port->max_lanes = 4;
7582
7583         intel_encoder->type = INTEL_OUTPUT_DP;
7584         intel_encoder->power_domain = intel_port_to_power_domain(port);
7585         if (IS_CHERRYVIEW(dev_priv)) {
7586                 if (port == PORT_D)
7587                         intel_encoder->pipe_mask = BIT(PIPE_C);
7588                 else
7589                         intel_encoder->pipe_mask = BIT(PIPE_A) | BIT(PIPE_B);
7590         } else {
7591                 intel_encoder->pipe_mask = ~0;
7592         }
7593         intel_encoder->cloneable = 0;
7594         intel_encoder->port = port;
7595
7596         intel_dig_port->hpd_pulse = intel_dp_hpd_pulse;
7597
7598         if (port != PORT_A)
7599                 intel_infoframe_init(intel_dig_port);
7600
7601         intel_dig_port->aux_ch = intel_bios_port_aux_ch(dev_priv, port);
7602         if (!intel_dp_init_connector(intel_dig_port, intel_connector))
7603                 goto err_init_connector;
7604
7605         return true;
7606
7607 err_init_connector:
7608         drm_encoder_cleanup(encoder);
7609 err_encoder_init:
7610         kfree(intel_connector);
7611 err_connector_alloc:
7612         kfree(intel_dig_port);
7613         return false;
7614 }
7615
7616 void intel_dp_mst_suspend(struct drm_i915_private *dev_priv)
7617 {
7618         struct intel_encoder *encoder;
7619
7620         for_each_intel_encoder(&dev_priv->drm, encoder) {
7621                 struct intel_dp *intel_dp;
7622
7623                 if (encoder->type != INTEL_OUTPUT_DDI)
7624                         continue;
7625
7626                 intel_dp = enc_to_intel_dp(&encoder->base);
7627
7628                 if (!intel_dp->can_mst)
7629                         continue;
7630
7631                 if (intel_dp->is_mst)
7632                         drm_dp_mst_topology_mgr_suspend(&intel_dp->mst_mgr);
7633         }
7634 }
7635
7636 void intel_dp_mst_resume(struct drm_i915_private *dev_priv)
7637 {
7638         struct intel_encoder *encoder;
7639
7640         for_each_intel_encoder(&dev_priv->drm, encoder) {
7641                 struct intel_dp *intel_dp;
7642                 int ret;
7643
7644                 if (encoder->type != INTEL_OUTPUT_DDI)
7645                         continue;
7646
7647                 intel_dp = enc_to_intel_dp(&encoder->base);
7648
7649                 if (!intel_dp->can_mst)
7650                         continue;
7651
7652                 ret = drm_dp_mst_topology_mgr_resume(&intel_dp->mst_mgr,
7653                                                      true);
7654                 if (ret) {
7655                         intel_dp->is_mst = false;
7656                         drm_dp_mst_topology_mgr_set_mst(&intel_dp->mst_mgr,
7657                                                         false);
7658                 }
7659         }
7660 }