Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_display.c
1 /*
2  * Copyright © 2006-2007 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Authors:
24  *      Eric Anholt <eric@anholt.net>
25  */
26
27 #include <linux/i2c.h>
28 #include <linux/input.h>
29 #include <linux/intel-iommu.h>
30 #include <linux/kernel.h>
31 #include <linux/module.h>
32 #include <linux/dma-resv.h>
33 #include <linux/slab.h>
34
35 #include <drm/drm_atomic.h>
36 #include <drm/drm_atomic_helper.h>
37 #include <drm/drm_atomic_uapi.h>
38 #include <drm/drm_dp_helper.h>
39 #include <drm/drm_edid.h>
40 #include <drm/drm_fourcc.h>
41 #include <drm/drm_plane_helper.h>
42 #include <drm/drm_probe_helper.h>
43 #include <drm/drm_rect.h>
44 #include <drm/i915_drm.h>
45
46 #include "display/intel_crt.h"
47 #include "display/intel_ddi.h"
48 #include "display/intel_dp.h"
49 #include "display/intel_dsi.h"
50 #include "display/intel_dvo.h"
51 #include "display/intel_gmbus.h"
52 #include "display/intel_hdmi.h"
53 #include "display/intel_lvds.h"
54 #include "display/intel_sdvo.h"
55 #include "display/intel_tv.h"
56 #include "display/intel_vdsc.h"
57
58 #include "gt/intel_rps.h"
59
60 #include "i915_drv.h"
61 #include "i915_trace.h"
62 #include "intel_acpi.h"
63 #include "intel_atomic.h"
64 #include "intel_atomic_plane.h"
65 #include "intel_bw.h"
66 #include "intel_cdclk.h"
67 #include "intel_color.h"
68 #include "intel_display_types.h"
69 #include "intel_dp_link_training.h"
70 #include "intel_fbc.h"
71 #include "intel_fbdev.h"
72 #include "intel_fifo_underrun.h"
73 #include "intel_frontbuffer.h"
74 #include "intel_hdcp.h"
75 #include "intel_hotplug.h"
76 #include "intel_overlay.h"
77 #include "intel_pipe_crc.h"
78 #include "intel_pm.h"
79 #include "intel_psr.h"
80 #include "intel_quirks.h"
81 #include "intel_sideband.h"
82 #include "intel_sprite.h"
83 #include "intel_tc.h"
84 #include "intel_vga.h"
85
86 /* Primary plane formats for gen <= 3 */
87 static const u32 i8xx_primary_formats[] = {
88         DRM_FORMAT_C8,
89         DRM_FORMAT_RGB565,
90         DRM_FORMAT_XRGB1555,
91         DRM_FORMAT_XRGB8888,
92 };
93
94 /* Primary plane formats for ivb (no fp16 due to hw issue) */
95 static const u32 ivb_primary_formats[] = {
96         DRM_FORMAT_C8,
97         DRM_FORMAT_RGB565,
98         DRM_FORMAT_XRGB8888,
99         DRM_FORMAT_XBGR8888,
100         DRM_FORMAT_XRGB2101010,
101         DRM_FORMAT_XBGR2101010,
102 };
103
104 /* Primary plane formats for gen >= 4, except ivb */
105 static const u32 i965_primary_formats[] = {
106         DRM_FORMAT_C8,
107         DRM_FORMAT_RGB565,
108         DRM_FORMAT_XRGB8888,
109         DRM_FORMAT_XBGR8888,
110         DRM_FORMAT_XRGB2101010,
111         DRM_FORMAT_XBGR2101010,
112         DRM_FORMAT_XBGR16161616F,
113 };
114
115 static const u64 i9xx_format_modifiers[] = {
116         I915_FORMAT_MOD_X_TILED,
117         DRM_FORMAT_MOD_LINEAR,
118         DRM_FORMAT_MOD_INVALID
119 };
120
121 /* Cursor formats */
122 static const u32 intel_cursor_formats[] = {
123         DRM_FORMAT_ARGB8888,
124 };
125
126 static const u64 cursor_format_modifiers[] = {
127         DRM_FORMAT_MOD_LINEAR,
128         DRM_FORMAT_MOD_INVALID
129 };
130
131 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
132                                 struct intel_crtc_state *pipe_config);
133 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
134                                    struct intel_crtc_state *pipe_config);
135
136 static int intel_framebuffer_init(struct intel_framebuffer *ifb,
137                                   struct drm_i915_gem_object *obj,
138                                   struct drm_mode_fb_cmd2 *mode_cmd);
139 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state);
140 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state);
141 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
142                                          const struct intel_link_m_n *m_n,
143                                          const struct intel_link_m_n *m2_n2);
144 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state);
145 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state);
146 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state);
147 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state);
148 static void vlv_prepare_pll(struct intel_crtc *crtc,
149                             const struct intel_crtc_state *pipe_config);
150 static void chv_prepare_pll(struct intel_crtc *crtc,
151                             const struct intel_crtc_state *pipe_config);
152 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
153                                     struct intel_crtc_state *crtc_state);
154 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state);
155 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state);
156 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state);
157 static void intel_modeset_setup_hw_state(struct drm_device *dev,
158                                          struct drm_modeset_acquire_ctx *ctx);
159 static void intel_pre_disable_primary_noatomic(struct drm_crtc *crtc);
160
161 struct intel_limit {
162         struct {
163                 int min, max;
164         } dot, vco, n, m, m1, m2, p, p1;
165
166         struct {
167                 int dot_limit;
168                 int p2_slow, p2_fast;
169         } p2;
170 };
171
172 /* returns HPLL frequency in kHz */
173 int vlv_get_hpll_vco(struct drm_i915_private *dev_priv)
174 {
175         int hpll_freq, vco_freq[] = { 800, 1600, 2000, 2400 };
176
177         /* Obtain SKU information */
178         hpll_freq = vlv_cck_read(dev_priv, CCK_FUSE_REG) &
179                 CCK_FUSE_HPLL_FREQ_MASK;
180
181         return vco_freq[hpll_freq] * 1000;
182 }
183
184 int vlv_get_cck_clock(struct drm_i915_private *dev_priv,
185                       const char *name, u32 reg, int ref_freq)
186 {
187         u32 val;
188         int divider;
189
190         val = vlv_cck_read(dev_priv, reg);
191         divider = val & CCK_FREQUENCY_VALUES;
192
193         WARN((val & CCK_FREQUENCY_STATUS) !=
194              (divider << CCK_FREQUENCY_STATUS_SHIFT),
195              "%s change in progress\n", name);
196
197         return DIV_ROUND_CLOSEST(ref_freq << 1, divider + 1);
198 }
199
200 int vlv_get_cck_clock_hpll(struct drm_i915_private *dev_priv,
201                            const char *name, u32 reg)
202 {
203         int hpll;
204
205         vlv_cck_get(dev_priv);
206
207         if (dev_priv->hpll_freq == 0)
208                 dev_priv->hpll_freq = vlv_get_hpll_vco(dev_priv);
209
210         hpll = vlv_get_cck_clock(dev_priv, name, reg, dev_priv->hpll_freq);
211
212         vlv_cck_put(dev_priv);
213
214         return hpll;
215 }
216
217 static void intel_update_czclk(struct drm_i915_private *dev_priv)
218 {
219         if (!(IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)))
220                 return;
221
222         dev_priv->czclk_freq = vlv_get_cck_clock_hpll(dev_priv, "czclk",
223                                                       CCK_CZ_CLOCK_CONTROL);
224
225         DRM_DEBUG_DRIVER("CZ clock rate: %d kHz\n", dev_priv->czclk_freq);
226 }
227
228 static inline u32 /* units of 100MHz */
229 intel_fdi_link_freq(struct drm_i915_private *dev_priv,
230                     const struct intel_crtc_state *pipe_config)
231 {
232         if (HAS_DDI(dev_priv))
233                 return pipe_config->port_clock; /* SPLL */
234         else
235                 return dev_priv->fdi_pll_freq;
236 }
237
238 static const struct intel_limit intel_limits_i8xx_dac = {
239         .dot = { .min = 25000, .max = 350000 },
240         .vco = { .min = 908000, .max = 1512000 },
241         .n = { .min = 2, .max = 16 },
242         .m = { .min = 96, .max = 140 },
243         .m1 = { .min = 18, .max = 26 },
244         .m2 = { .min = 6, .max = 16 },
245         .p = { .min = 4, .max = 128 },
246         .p1 = { .min = 2, .max = 33 },
247         .p2 = { .dot_limit = 165000,
248                 .p2_slow = 4, .p2_fast = 2 },
249 };
250
251 static const struct intel_limit intel_limits_i8xx_dvo = {
252         .dot = { .min = 25000, .max = 350000 },
253         .vco = { .min = 908000, .max = 1512000 },
254         .n = { .min = 2, .max = 16 },
255         .m = { .min = 96, .max = 140 },
256         .m1 = { .min = 18, .max = 26 },
257         .m2 = { .min = 6, .max = 16 },
258         .p = { .min = 4, .max = 128 },
259         .p1 = { .min = 2, .max = 33 },
260         .p2 = { .dot_limit = 165000,
261                 .p2_slow = 4, .p2_fast = 4 },
262 };
263
264 static const struct intel_limit intel_limits_i8xx_lvds = {
265         .dot = { .min = 25000, .max = 350000 },
266         .vco = { .min = 908000, .max = 1512000 },
267         .n = { .min = 2, .max = 16 },
268         .m = { .min = 96, .max = 140 },
269         .m1 = { .min = 18, .max = 26 },
270         .m2 = { .min = 6, .max = 16 },
271         .p = { .min = 4, .max = 128 },
272         .p1 = { .min = 1, .max = 6 },
273         .p2 = { .dot_limit = 165000,
274                 .p2_slow = 14, .p2_fast = 7 },
275 };
276
277 static const struct intel_limit intel_limits_i9xx_sdvo = {
278         .dot = { .min = 20000, .max = 400000 },
279         .vco = { .min = 1400000, .max = 2800000 },
280         .n = { .min = 1, .max = 6 },
281         .m = { .min = 70, .max = 120 },
282         .m1 = { .min = 8, .max = 18 },
283         .m2 = { .min = 3, .max = 7 },
284         .p = { .min = 5, .max = 80 },
285         .p1 = { .min = 1, .max = 8 },
286         .p2 = { .dot_limit = 200000,
287                 .p2_slow = 10, .p2_fast = 5 },
288 };
289
290 static const struct intel_limit intel_limits_i9xx_lvds = {
291         .dot = { .min = 20000, .max = 400000 },
292         .vco = { .min = 1400000, .max = 2800000 },
293         .n = { .min = 1, .max = 6 },
294         .m = { .min = 70, .max = 120 },
295         .m1 = { .min = 8, .max = 18 },
296         .m2 = { .min = 3, .max = 7 },
297         .p = { .min = 7, .max = 98 },
298         .p1 = { .min = 1, .max = 8 },
299         .p2 = { .dot_limit = 112000,
300                 .p2_slow = 14, .p2_fast = 7 },
301 };
302
303
304 static const struct intel_limit intel_limits_g4x_sdvo = {
305         .dot = { .min = 25000, .max = 270000 },
306         .vco = { .min = 1750000, .max = 3500000},
307         .n = { .min = 1, .max = 4 },
308         .m = { .min = 104, .max = 138 },
309         .m1 = { .min = 17, .max = 23 },
310         .m2 = { .min = 5, .max = 11 },
311         .p = { .min = 10, .max = 30 },
312         .p1 = { .min = 1, .max = 3},
313         .p2 = { .dot_limit = 270000,
314                 .p2_slow = 10,
315                 .p2_fast = 10
316         },
317 };
318
319 static const struct intel_limit intel_limits_g4x_hdmi = {
320         .dot = { .min = 22000, .max = 400000 },
321         .vco = { .min = 1750000, .max = 3500000},
322         .n = { .min = 1, .max = 4 },
323         .m = { .min = 104, .max = 138 },
324         .m1 = { .min = 16, .max = 23 },
325         .m2 = { .min = 5, .max = 11 },
326         .p = { .min = 5, .max = 80 },
327         .p1 = { .min = 1, .max = 8},
328         .p2 = { .dot_limit = 165000,
329                 .p2_slow = 10, .p2_fast = 5 },
330 };
331
332 static const struct intel_limit intel_limits_g4x_single_channel_lvds = {
333         .dot = { .min = 20000, .max = 115000 },
334         .vco = { .min = 1750000, .max = 3500000 },
335         .n = { .min = 1, .max = 3 },
336         .m = { .min = 104, .max = 138 },
337         .m1 = { .min = 17, .max = 23 },
338         .m2 = { .min = 5, .max = 11 },
339         .p = { .min = 28, .max = 112 },
340         .p1 = { .min = 2, .max = 8 },
341         .p2 = { .dot_limit = 0,
342                 .p2_slow = 14, .p2_fast = 14
343         },
344 };
345
346 static const struct intel_limit intel_limits_g4x_dual_channel_lvds = {
347         .dot = { .min = 80000, .max = 224000 },
348         .vco = { .min = 1750000, .max = 3500000 },
349         .n = { .min = 1, .max = 3 },
350         .m = { .min = 104, .max = 138 },
351         .m1 = { .min = 17, .max = 23 },
352         .m2 = { .min = 5, .max = 11 },
353         .p = { .min = 14, .max = 42 },
354         .p1 = { .min = 2, .max = 6 },
355         .p2 = { .dot_limit = 0,
356                 .p2_slow = 7, .p2_fast = 7
357         },
358 };
359
360 static const struct intel_limit intel_limits_pineview_sdvo = {
361         .dot = { .min = 20000, .max = 400000},
362         .vco = { .min = 1700000, .max = 3500000 },
363         /* Pineview's Ncounter is a ring counter */
364         .n = { .min = 3, .max = 6 },
365         .m = { .min = 2, .max = 256 },
366         /* Pineview only has one combined m divider, which we treat as m2. */
367         .m1 = { .min = 0, .max = 0 },
368         .m2 = { .min = 0, .max = 254 },
369         .p = { .min = 5, .max = 80 },
370         .p1 = { .min = 1, .max = 8 },
371         .p2 = { .dot_limit = 200000,
372                 .p2_slow = 10, .p2_fast = 5 },
373 };
374
375 static const struct intel_limit intel_limits_pineview_lvds = {
376         .dot = { .min = 20000, .max = 400000 },
377         .vco = { .min = 1700000, .max = 3500000 },
378         .n = { .min = 3, .max = 6 },
379         .m = { .min = 2, .max = 256 },
380         .m1 = { .min = 0, .max = 0 },
381         .m2 = { .min = 0, .max = 254 },
382         .p = { .min = 7, .max = 112 },
383         .p1 = { .min = 1, .max = 8 },
384         .p2 = { .dot_limit = 112000,
385                 .p2_slow = 14, .p2_fast = 14 },
386 };
387
388 /* Ironlake / Sandybridge
389  *
390  * We calculate clock using (register_value + 2) for N/M1/M2, so here
391  * the range value for them is (actual_value - 2).
392  */
393 static const struct intel_limit intel_limits_ironlake_dac = {
394         .dot = { .min = 25000, .max = 350000 },
395         .vco = { .min = 1760000, .max = 3510000 },
396         .n = { .min = 1, .max = 5 },
397         .m = { .min = 79, .max = 127 },
398         .m1 = { .min = 12, .max = 22 },
399         .m2 = { .min = 5, .max = 9 },
400         .p = { .min = 5, .max = 80 },
401         .p1 = { .min = 1, .max = 8 },
402         .p2 = { .dot_limit = 225000,
403                 .p2_slow = 10, .p2_fast = 5 },
404 };
405
406 static const struct intel_limit intel_limits_ironlake_single_lvds = {
407         .dot = { .min = 25000, .max = 350000 },
408         .vco = { .min = 1760000, .max = 3510000 },
409         .n = { .min = 1, .max = 3 },
410         .m = { .min = 79, .max = 118 },
411         .m1 = { .min = 12, .max = 22 },
412         .m2 = { .min = 5, .max = 9 },
413         .p = { .min = 28, .max = 112 },
414         .p1 = { .min = 2, .max = 8 },
415         .p2 = { .dot_limit = 225000,
416                 .p2_slow = 14, .p2_fast = 14 },
417 };
418
419 static const struct intel_limit intel_limits_ironlake_dual_lvds = {
420         .dot = { .min = 25000, .max = 350000 },
421         .vco = { .min = 1760000, .max = 3510000 },
422         .n = { .min = 1, .max = 3 },
423         .m = { .min = 79, .max = 127 },
424         .m1 = { .min = 12, .max = 22 },
425         .m2 = { .min = 5, .max = 9 },
426         .p = { .min = 14, .max = 56 },
427         .p1 = { .min = 2, .max = 8 },
428         .p2 = { .dot_limit = 225000,
429                 .p2_slow = 7, .p2_fast = 7 },
430 };
431
432 /* LVDS 100mhz refclk limits. */
433 static const struct intel_limit intel_limits_ironlake_single_lvds_100m = {
434         .dot = { .min = 25000, .max = 350000 },
435         .vco = { .min = 1760000, .max = 3510000 },
436         .n = { .min = 1, .max = 2 },
437         .m = { .min = 79, .max = 126 },
438         .m1 = { .min = 12, .max = 22 },
439         .m2 = { .min = 5, .max = 9 },
440         .p = { .min = 28, .max = 112 },
441         .p1 = { .min = 2, .max = 8 },
442         .p2 = { .dot_limit = 225000,
443                 .p2_slow = 14, .p2_fast = 14 },
444 };
445
446 static const struct intel_limit intel_limits_ironlake_dual_lvds_100m = {
447         .dot = { .min = 25000, .max = 350000 },
448         .vco = { .min = 1760000, .max = 3510000 },
449         .n = { .min = 1, .max = 3 },
450         .m = { .min = 79, .max = 126 },
451         .m1 = { .min = 12, .max = 22 },
452         .m2 = { .min = 5, .max = 9 },
453         .p = { .min = 14, .max = 42 },
454         .p1 = { .min = 2, .max = 6 },
455         .p2 = { .dot_limit = 225000,
456                 .p2_slow = 7, .p2_fast = 7 },
457 };
458
459 static const struct intel_limit intel_limits_vlv = {
460          /*
461           * These are the data rate limits (measured in fast clocks)
462           * since those are the strictest limits we have. The fast
463           * clock and actual rate limits are more relaxed, so checking
464           * them would make no difference.
465           */
466         .dot = { .min = 25000 * 5, .max = 270000 * 5 },
467         .vco = { .min = 4000000, .max = 6000000 },
468         .n = { .min = 1, .max = 7 },
469         .m1 = { .min = 2, .max = 3 },
470         .m2 = { .min = 11, .max = 156 },
471         .p1 = { .min = 2, .max = 3 },
472         .p2 = { .p2_slow = 2, .p2_fast = 20 }, /* slow=min, fast=max */
473 };
474
475 static const struct intel_limit intel_limits_chv = {
476         /*
477          * These are the data rate limits (measured in fast clocks)
478          * since those are the strictest limits we have.  The fast
479          * clock and actual rate limits are more relaxed, so checking
480          * them would make no difference.
481          */
482         .dot = { .min = 25000 * 5, .max = 540000 * 5},
483         .vco = { .min = 4800000, .max = 6480000 },
484         .n = { .min = 1, .max = 1 },
485         .m1 = { .min = 2, .max = 2 },
486         .m2 = { .min = 24 << 22, .max = 175 << 22 },
487         .p1 = { .min = 2, .max = 4 },
488         .p2 = { .p2_slow = 1, .p2_fast = 14 },
489 };
490
491 static const struct intel_limit intel_limits_bxt = {
492         /* FIXME: find real dot limits */
493         .dot = { .min = 0, .max = INT_MAX },
494         .vco = { .min = 4800000, .max = 6700000 },
495         .n = { .min = 1, .max = 1 },
496         .m1 = { .min = 2, .max = 2 },
497         /* FIXME: find real m2 limits */
498         .m2 = { .min = 2 << 22, .max = 255 << 22 },
499         .p1 = { .min = 2, .max = 4 },
500         .p2 = { .p2_slow = 1, .p2_fast = 20 },
501 };
502
503 /* WA Display #0827: Gen9:all */
504 static void
505 skl_wa_827(struct drm_i915_private *dev_priv, enum pipe pipe, bool enable)
506 {
507         if (enable)
508                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
509                            I915_READ(CLKGATE_DIS_PSL(pipe)) |
510                            DUPS1_GATING_DIS | DUPS2_GATING_DIS);
511         else
512                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
513                            I915_READ(CLKGATE_DIS_PSL(pipe)) &
514                            ~(DUPS1_GATING_DIS | DUPS2_GATING_DIS));
515 }
516
517 /* Wa_2006604312:icl */
518 static void
519 icl_wa_scalerclkgating(struct drm_i915_private *dev_priv, enum pipe pipe,
520                        bool enable)
521 {
522         if (enable)
523                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
524                            I915_READ(CLKGATE_DIS_PSL(pipe)) | DPFR_GATING_DIS);
525         else
526                 I915_WRITE(CLKGATE_DIS_PSL(pipe),
527                            I915_READ(CLKGATE_DIS_PSL(pipe)) & ~DPFR_GATING_DIS);
528 }
529
530 static bool
531 needs_modeset(const struct intel_crtc_state *state)
532 {
533         return drm_atomic_crtc_needs_modeset(&state->base);
534 }
535
536 bool
537 is_trans_port_sync_mode(const struct intel_crtc_state *crtc_state)
538 {
539         return (crtc_state->master_transcoder != INVALID_TRANSCODER ||
540                 crtc_state->sync_mode_slaves_mask);
541 }
542
543 static bool
544 is_trans_port_sync_master(const struct intel_crtc_state *crtc_state)
545 {
546         return (crtc_state->master_transcoder == INVALID_TRANSCODER &&
547                 crtc_state->sync_mode_slaves_mask);
548 }
549
550 /*
551  * Platform specific helpers to calculate the port PLL loopback- (clock.m),
552  * and post-divider (clock.p) values, pre- (clock.vco) and post-divided fast
553  * (clock.dot) clock rates. This fast dot clock is fed to the port's IO logic.
554  * The helpers' return value is the rate of the clock that is fed to the
555  * display engine's pipe which can be the above fast dot clock rate or a
556  * divided-down version of it.
557  */
558 /* m1 is reserved as 0 in Pineview, n is a ring counter */
559 static int pnv_calc_dpll_params(int refclk, struct dpll *clock)
560 {
561         clock->m = clock->m2 + 2;
562         clock->p = clock->p1 * clock->p2;
563         if (WARN_ON(clock->n == 0 || clock->p == 0))
564                 return 0;
565         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
566         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
567
568         return clock->dot;
569 }
570
571 static u32 i9xx_dpll_compute_m(struct dpll *dpll)
572 {
573         return 5 * (dpll->m1 + 2) + (dpll->m2 + 2);
574 }
575
576 static int i9xx_calc_dpll_params(int refclk, struct dpll *clock)
577 {
578         clock->m = i9xx_dpll_compute_m(clock);
579         clock->p = clock->p1 * clock->p2;
580         if (WARN_ON(clock->n + 2 == 0 || clock->p == 0))
581                 return 0;
582         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n + 2);
583         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
584
585         return clock->dot;
586 }
587
588 static int vlv_calc_dpll_params(int refclk, struct dpll *clock)
589 {
590         clock->m = clock->m1 * clock->m2;
591         clock->p = clock->p1 * clock->p2;
592         if (WARN_ON(clock->n == 0 || clock->p == 0))
593                 return 0;
594         clock->vco = DIV_ROUND_CLOSEST(refclk * clock->m, clock->n);
595         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
596
597         return clock->dot / 5;
598 }
599
600 int chv_calc_dpll_params(int refclk, struct dpll *clock)
601 {
602         clock->m = clock->m1 * clock->m2;
603         clock->p = clock->p1 * clock->p2;
604         if (WARN_ON(clock->n == 0 || clock->p == 0))
605                 return 0;
606         clock->vco = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(refclk, clock->m),
607                                            clock->n << 22);
608         clock->dot = DIV_ROUND_CLOSEST(clock->vco, clock->p);
609
610         return clock->dot / 5;
611 }
612
613 #define INTELPllInvalid(s)   do { /* DRM_DEBUG(s); */ return false; } while (0)
614
615 /*
616  * Returns whether the given set of divisors are valid for a given refclk with
617  * the given connectors.
618  */
619 static bool intel_PLL_is_valid(struct drm_i915_private *dev_priv,
620                                const struct intel_limit *limit,
621                                const struct dpll *clock)
622 {
623         if (clock->n   < limit->n.min   || limit->n.max   < clock->n)
624                 INTELPllInvalid("n out of range\n");
625         if (clock->p1  < limit->p1.min  || limit->p1.max  < clock->p1)
626                 INTELPllInvalid("p1 out of range\n");
627         if (clock->m2  < limit->m2.min  || limit->m2.max  < clock->m2)
628                 INTELPllInvalid("m2 out of range\n");
629         if (clock->m1  < limit->m1.min  || limit->m1.max  < clock->m1)
630                 INTELPllInvalid("m1 out of range\n");
631
632         if (!IS_PINEVIEW(dev_priv) && !IS_VALLEYVIEW(dev_priv) &&
633             !IS_CHERRYVIEW(dev_priv) && !IS_GEN9_LP(dev_priv))
634                 if (clock->m1 <= clock->m2)
635                         INTELPllInvalid("m1 <= m2\n");
636
637         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv) &&
638             !IS_GEN9_LP(dev_priv)) {
639                 if (clock->p < limit->p.min || limit->p.max < clock->p)
640                         INTELPllInvalid("p out of range\n");
641                 if (clock->m < limit->m.min || limit->m.max < clock->m)
642                         INTELPllInvalid("m out of range\n");
643         }
644
645         if (clock->vco < limit->vco.min || limit->vco.max < clock->vco)
646                 INTELPllInvalid("vco out of range\n");
647         /* XXX: We may need to be checking "Dot clock" depending on the multiplier,
648          * connector, etc., rather than just a single range.
649          */
650         if (clock->dot < limit->dot.min || limit->dot.max < clock->dot)
651                 INTELPllInvalid("dot out of range\n");
652
653         return true;
654 }
655
656 static int
657 i9xx_select_p2_div(const struct intel_limit *limit,
658                    const struct intel_crtc_state *crtc_state,
659                    int target)
660 {
661         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
662
663         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
664                 /*
665                  * For LVDS just rely on its current settings for dual-channel.
666                  * We haven't figured out how to reliably set up different
667                  * single/dual channel state, if we even can.
668                  */
669                 if (intel_is_dual_link_lvds(dev_priv))
670                         return limit->p2.p2_fast;
671                 else
672                         return limit->p2.p2_slow;
673         } else {
674                 if (target < limit->p2.dot_limit)
675                         return limit->p2.p2_slow;
676                 else
677                         return limit->p2.p2_fast;
678         }
679 }
680
681 /*
682  * Returns a set of divisors for the desired target clock with the given
683  * refclk, or FALSE.  The returned values represent the clock equation:
684  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
685  *
686  * Target and reference clocks are specified in kHz.
687  *
688  * If match_clock is provided, then best_clock P divider must match the P
689  * divider from @match_clock used for LVDS downclocking.
690  */
691 static bool
692 i9xx_find_best_dpll(const struct intel_limit *limit,
693                     struct intel_crtc_state *crtc_state,
694                     int target, int refclk, struct dpll *match_clock,
695                     struct dpll *best_clock)
696 {
697         struct drm_device *dev = crtc_state->base.crtc->dev;
698         struct dpll clock;
699         int err = target;
700
701         memset(best_clock, 0, sizeof(*best_clock));
702
703         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
704
705         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
706              clock.m1++) {
707                 for (clock.m2 = limit->m2.min;
708                      clock.m2 <= limit->m2.max; clock.m2++) {
709                         if (clock.m2 >= clock.m1)
710                                 break;
711                         for (clock.n = limit->n.min;
712                              clock.n <= limit->n.max; clock.n++) {
713                                 for (clock.p1 = limit->p1.min;
714                                         clock.p1 <= limit->p1.max; clock.p1++) {
715                                         int this_err;
716
717                                         i9xx_calc_dpll_params(refclk, &clock);
718                                         if (!intel_PLL_is_valid(to_i915(dev),
719                                                                 limit,
720                                                                 &clock))
721                                                 continue;
722                                         if (match_clock &&
723                                             clock.p != match_clock->p)
724                                                 continue;
725
726                                         this_err = abs(clock.dot - target);
727                                         if (this_err < err) {
728                                                 *best_clock = clock;
729                                                 err = this_err;
730                                         }
731                                 }
732                         }
733                 }
734         }
735
736         return (err != target);
737 }
738
739 /*
740  * Returns a set of divisors for the desired target clock with the given
741  * refclk, or FALSE.  The returned values represent the clock equation:
742  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
743  *
744  * Target and reference clocks are specified in kHz.
745  *
746  * If match_clock is provided, then best_clock P divider must match the P
747  * divider from @match_clock used for LVDS downclocking.
748  */
749 static bool
750 pnv_find_best_dpll(const struct intel_limit *limit,
751                    struct intel_crtc_state *crtc_state,
752                    int target, int refclk, struct dpll *match_clock,
753                    struct dpll *best_clock)
754 {
755         struct drm_device *dev = crtc_state->base.crtc->dev;
756         struct dpll clock;
757         int err = target;
758
759         memset(best_clock, 0, sizeof(*best_clock));
760
761         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
762
763         for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max;
764              clock.m1++) {
765                 for (clock.m2 = limit->m2.min;
766                      clock.m2 <= limit->m2.max; clock.m2++) {
767                         for (clock.n = limit->n.min;
768                              clock.n <= limit->n.max; clock.n++) {
769                                 for (clock.p1 = limit->p1.min;
770                                         clock.p1 <= limit->p1.max; clock.p1++) {
771                                         int this_err;
772
773                                         pnv_calc_dpll_params(refclk, &clock);
774                                         if (!intel_PLL_is_valid(to_i915(dev),
775                                                                 limit,
776                                                                 &clock))
777                                                 continue;
778                                         if (match_clock &&
779                                             clock.p != match_clock->p)
780                                                 continue;
781
782                                         this_err = abs(clock.dot - target);
783                                         if (this_err < err) {
784                                                 *best_clock = clock;
785                                                 err = this_err;
786                                         }
787                                 }
788                         }
789                 }
790         }
791
792         return (err != target);
793 }
794
795 /*
796  * Returns a set of divisors for the desired target clock with the given
797  * refclk, or FALSE.  The returned values represent the clock equation:
798  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
799  *
800  * Target and reference clocks are specified in kHz.
801  *
802  * If match_clock is provided, then best_clock P divider must match the P
803  * divider from @match_clock used for LVDS downclocking.
804  */
805 static bool
806 g4x_find_best_dpll(const struct intel_limit *limit,
807                    struct intel_crtc_state *crtc_state,
808                    int target, int refclk, struct dpll *match_clock,
809                    struct dpll *best_clock)
810 {
811         struct drm_device *dev = crtc_state->base.crtc->dev;
812         struct dpll clock;
813         int max_n;
814         bool found = false;
815         /* approximately equals target * 0.00585 */
816         int err_most = (target >> 8) + (target >> 9);
817
818         memset(best_clock, 0, sizeof(*best_clock));
819
820         clock.p2 = i9xx_select_p2_div(limit, crtc_state, target);
821
822         max_n = limit->n.max;
823         /* based on hardware requirement, prefer smaller n to precision */
824         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
825                 /* based on hardware requirement, prefere larger m1,m2 */
826                 for (clock.m1 = limit->m1.max;
827                      clock.m1 >= limit->m1.min; clock.m1--) {
828                         for (clock.m2 = limit->m2.max;
829                              clock.m2 >= limit->m2.min; clock.m2--) {
830                                 for (clock.p1 = limit->p1.max;
831                                      clock.p1 >= limit->p1.min; clock.p1--) {
832                                         int this_err;
833
834                                         i9xx_calc_dpll_params(refclk, &clock);
835                                         if (!intel_PLL_is_valid(to_i915(dev),
836                                                                 limit,
837                                                                 &clock))
838                                                 continue;
839
840                                         this_err = abs(clock.dot - target);
841                                         if (this_err < err_most) {
842                                                 *best_clock = clock;
843                                                 err_most = this_err;
844                                                 max_n = clock.n;
845                                                 found = true;
846                                         }
847                                 }
848                         }
849                 }
850         }
851         return found;
852 }
853
854 /*
855  * Check if the calculated PLL configuration is more optimal compared to the
856  * best configuration and error found so far. Return the calculated error.
857  */
858 static bool vlv_PLL_is_optimal(struct drm_device *dev, int target_freq,
859                                const struct dpll *calculated_clock,
860                                const struct dpll *best_clock,
861                                unsigned int best_error_ppm,
862                                unsigned int *error_ppm)
863 {
864         /*
865          * For CHV ignore the error and consider only the P value.
866          * Prefer a bigger P value based on HW requirements.
867          */
868         if (IS_CHERRYVIEW(to_i915(dev))) {
869                 *error_ppm = 0;
870
871                 return calculated_clock->p > best_clock->p;
872         }
873
874         if (WARN_ON_ONCE(!target_freq))
875                 return false;
876
877         *error_ppm = div_u64(1000000ULL *
878                                 abs(target_freq - calculated_clock->dot),
879                              target_freq);
880         /*
881          * Prefer a better P value over a better (smaller) error if the error
882          * is small. Ensure this preference for future configurations too by
883          * setting the error to 0.
884          */
885         if (*error_ppm < 100 && calculated_clock->p > best_clock->p) {
886                 *error_ppm = 0;
887
888                 return true;
889         }
890
891         return *error_ppm + 10 < best_error_ppm;
892 }
893
894 /*
895  * Returns a set of divisors for the desired target clock with the given
896  * refclk, or FALSE.  The returned values represent the clock equation:
897  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
898  */
899 static bool
900 vlv_find_best_dpll(const struct intel_limit *limit,
901                    struct intel_crtc_state *crtc_state,
902                    int target, int refclk, struct dpll *match_clock,
903                    struct dpll *best_clock)
904 {
905         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
906         struct drm_device *dev = crtc->base.dev;
907         struct dpll clock;
908         unsigned int bestppm = 1000000;
909         /* min update 19.2 MHz */
910         int max_n = min(limit->n.max, refclk / 19200);
911         bool found = false;
912
913         target *= 5; /* fast clock */
914
915         memset(best_clock, 0, sizeof(*best_clock));
916
917         /* based on hardware requirement, prefer smaller n to precision */
918         for (clock.n = limit->n.min; clock.n <= max_n; clock.n++) {
919                 for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
920                         for (clock.p2 = limit->p2.p2_fast; clock.p2 >= limit->p2.p2_slow;
921                              clock.p2 -= clock.p2 > 10 ? 2 : 1) {
922                                 clock.p = clock.p1 * clock.p2;
923                                 /* based on hardware requirement, prefer bigger m1,m2 values */
924                                 for (clock.m1 = limit->m1.min; clock.m1 <= limit->m1.max; clock.m1++) {
925                                         unsigned int ppm;
926
927                                         clock.m2 = DIV_ROUND_CLOSEST(target * clock.p * clock.n,
928                                                                      refclk * clock.m1);
929
930                                         vlv_calc_dpll_params(refclk, &clock);
931
932                                         if (!intel_PLL_is_valid(to_i915(dev),
933                                                                 limit,
934                                                                 &clock))
935                                                 continue;
936
937                                         if (!vlv_PLL_is_optimal(dev, target,
938                                                                 &clock,
939                                                                 best_clock,
940                                                                 bestppm, &ppm))
941                                                 continue;
942
943                                         *best_clock = clock;
944                                         bestppm = ppm;
945                                         found = true;
946                                 }
947                         }
948                 }
949         }
950
951         return found;
952 }
953
954 /*
955  * Returns a set of divisors for the desired target clock with the given
956  * refclk, or FALSE.  The returned values represent the clock equation:
957  * reflck * (5 * (m1 + 2) + (m2 + 2)) / (n + 2) / p1 / p2.
958  */
959 static bool
960 chv_find_best_dpll(const struct intel_limit *limit,
961                    struct intel_crtc_state *crtc_state,
962                    int target, int refclk, struct dpll *match_clock,
963                    struct dpll *best_clock)
964 {
965         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
966         struct drm_device *dev = crtc->base.dev;
967         unsigned int best_error_ppm;
968         struct dpll clock;
969         u64 m2;
970         int found = false;
971
972         memset(best_clock, 0, sizeof(*best_clock));
973         best_error_ppm = 1000000;
974
975         /*
976          * Based on hardware doc, the n always set to 1, and m1 always
977          * set to 2.  If requires to support 200Mhz refclk, we need to
978          * revisit this because n may not 1 anymore.
979          */
980         clock.n = 1, clock.m1 = 2;
981         target *= 5;    /* fast clock */
982
983         for (clock.p1 = limit->p1.max; clock.p1 >= limit->p1.min; clock.p1--) {
984                 for (clock.p2 = limit->p2.p2_fast;
985                                 clock.p2 >= limit->p2.p2_slow;
986                                 clock.p2 -= clock.p2 > 10 ? 2 : 1) {
987                         unsigned int error_ppm;
988
989                         clock.p = clock.p1 * clock.p2;
990
991                         m2 = DIV_ROUND_CLOSEST_ULL(mul_u32_u32(target, clock.p * clock.n) << 22,
992                                                    refclk * clock.m1);
993
994                         if (m2 > INT_MAX/clock.m1)
995                                 continue;
996
997                         clock.m2 = m2;
998
999                         chv_calc_dpll_params(refclk, &clock);
1000
1001                         if (!intel_PLL_is_valid(to_i915(dev), limit, &clock))
1002                                 continue;
1003
1004                         if (!vlv_PLL_is_optimal(dev, target, &clock, best_clock,
1005                                                 best_error_ppm, &error_ppm))
1006                                 continue;
1007
1008                         *best_clock = clock;
1009                         best_error_ppm = error_ppm;
1010                         found = true;
1011                 }
1012         }
1013
1014         return found;
1015 }
1016
1017 bool bxt_find_best_dpll(struct intel_crtc_state *crtc_state,
1018                         struct dpll *best_clock)
1019 {
1020         int refclk = 100000;
1021         const struct intel_limit *limit = &intel_limits_bxt;
1022
1023         return chv_find_best_dpll(limit, crtc_state,
1024                                   crtc_state->port_clock, refclk,
1025                                   NULL, best_clock);
1026 }
1027
1028 bool intel_crtc_active(struct intel_crtc *crtc)
1029 {
1030         /* Be paranoid as we can arrive here with only partial
1031          * state retrieved from the hardware during setup.
1032          *
1033          * We can ditch the adjusted_mode.crtc_clock check as soon
1034          * as Haswell has gained clock readout/fastboot support.
1035          *
1036          * We can ditch the crtc->primary->state->fb check as soon as we can
1037          * properly reconstruct framebuffers.
1038          *
1039          * FIXME: The intel_crtc->active here should be switched to
1040          * crtc->state->active once we have proper CRTC states wired up
1041          * for atomic.
1042          */
1043         return crtc->active && crtc->base.primary->state->fb &&
1044                 crtc->config->base.adjusted_mode.crtc_clock;
1045 }
1046
1047 enum transcoder intel_pipe_to_cpu_transcoder(struct drm_i915_private *dev_priv,
1048                                              enum pipe pipe)
1049 {
1050         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1051
1052         return crtc->config->cpu_transcoder;
1053 }
1054
1055 static bool pipe_scanline_is_moving(struct drm_i915_private *dev_priv,
1056                                     enum pipe pipe)
1057 {
1058         i915_reg_t reg = PIPEDSL(pipe);
1059         u32 line1, line2;
1060         u32 line_mask;
1061
1062         if (IS_GEN(dev_priv, 2))
1063                 line_mask = DSL_LINEMASK_GEN2;
1064         else
1065                 line_mask = DSL_LINEMASK_GEN3;
1066
1067         line1 = I915_READ(reg) & line_mask;
1068         msleep(5);
1069         line2 = I915_READ(reg) & line_mask;
1070
1071         return line1 != line2;
1072 }
1073
1074 static void wait_for_pipe_scanline_moving(struct intel_crtc *crtc, bool state)
1075 {
1076         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1077         enum pipe pipe = crtc->pipe;
1078
1079         /* Wait for the display line to settle/start moving */
1080         if (wait_for(pipe_scanline_is_moving(dev_priv, pipe) == state, 100))
1081                 DRM_ERROR("pipe %c scanline %s wait timed out\n",
1082                           pipe_name(pipe), onoff(state));
1083 }
1084
1085 static void intel_wait_for_pipe_scanline_stopped(struct intel_crtc *crtc)
1086 {
1087         wait_for_pipe_scanline_moving(crtc, false);
1088 }
1089
1090 static void intel_wait_for_pipe_scanline_moving(struct intel_crtc *crtc)
1091 {
1092         wait_for_pipe_scanline_moving(crtc, true);
1093 }
1094
1095 static void
1096 intel_wait_for_pipe_off(const struct intel_crtc_state *old_crtc_state)
1097 {
1098         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1099         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1100
1101         if (INTEL_GEN(dev_priv) >= 4) {
1102                 enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1103                 i915_reg_t reg = PIPECONF(cpu_transcoder);
1104
1105                 /* Wait for the Pipe State to go off */
1106                 if (intel_de_wait_for_clear(dev_priv, reg,
1107                                             I965_PIPECONF_ACTIVE, 100))
1108                         WARN(1, "pipe_off wait timed out\n");
1109         } else {
1110                 intel_wait_for_pipe_scanline_stopped(crtc);
1111         }
1112 }
1113
1114 /* Only for pre-ILK configs */
1115 void assert_pll(struct drm_i915_private *dev_priv,
1116                 enum pipe pipe, bool state)
1117 {
1118         u32 val;
1119         bool cur_state;
1120
1121         val = I915_READ(DPLL(pipe));
1122         cur_state = !!(val & DPLL_VCO_ENABLE);
1123         I915_STATE_WARN(cur_state != state,
1124              "PLL state assertion failure (expected %s, current %s)\n",
1125                         onoff(state), onoff(cur_state));
1126 }
1127
1128 /* XXX: the dsi pll is shared between MIPI DSI ports */
1129 void assert_dsi_pll(struct drm_i915_private *dev_priv, bool state)
1130 {
1131         u32 val;
1132         bool cur_state;
1133
1134         vlv_cck_get(dev_priv);
1135         val = vlv_cck_read(dev_priv, CCK_REG_DSI_PLL_CONTROL);
1136         vlv_cck_put(dev_priv);
1137
1138         cur_state = val & DSI_PLL_VCO_EN;
1139         I915_STATE_WARN(cur_state != state,
1140              "DSI PLL state assertion failure (expected %s, current %s)\n",
1141                         onoff(state), onoff(cur_state));
1142 }
1143
1144 static void assert_fdi_tx(struct drm_i915_private *dev_priv,
1145                           enum pipe pipe, bool state)
1146 {
1147         bool cur_state;
1148         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1149                                                                       pipe);
1150
1151         if (HAS_DDI(dev_priv)) {
1152                 /* DDI does not have a specific FDI_TX register */
1153                 u32 val = I915_READ(TRANS_DDI_FUNC_CTL(cpu_transcoder));
1154                 cur_state = !!(val & TRANS_DDI_FUNC_ENABLE);
1155         } else {
1156                 u32 val = I915_READ(FDI_TX_CTL(pipe));
1157                 cur_state = !!(val & FDI_TX_ENABLE);
1158         }
1159         I915_STATE_WARN(cur_state != state,
1160              "FDI TX state assertion failure (expected %s, current %s)\n",
1161                         onoff(state), onoff(cur_state));
1162 }
1163 #define assert_fdi_tx_enabled(d, p) assert_fdi_tx(d, p, true)
1164 #define assert_fdi_tx_disabled(d, p) assert_fdi_tx(d, p, false)
1165
1166 static void assert_fdi_rx(struct drm_i915_private *dev_priv,
1167                           enum pipe pipe, bool state)
1168 {
1169         u32 val;
1170         bool cur_state;
1171
1172         val = I915_READ(FDI_RX_CTL(pipe));
1173         cur_state = !!(val & FDI_RX_ENABLE);
1174         I915_STATE_WARN(cur_state != state,
1175              "FDI RX state assertion failure (expected %s, current %s)\n",
1176                         onoff(state), onoff(cur_state));
1177 }
1178 #define assert_fdi_rx_enabled(d, p) assert_fdi_rx(d, p, true)
1179 #define assert_fdi_rx_disabled(d, p) assert_fdi_rx(d, p, false)
1180
1181 static void assert_fdi_tx_pll_enabled(struct drm_i915_private *dev_priv,
1182                                       enum pipe pipe)
1183 {
1184         u32 val;
1185
1186         /* ILK FDI PLL is always enabled */
1187         if (IS_GEN(dev_priv, 5))
1188                 return;
1189
1190         /* On Haswell, DDI ports are responsible for the FDI PLL setup */
1191         if (HAS_DDI(dev_priv))
1192                 return;
1193
1194         val = I915_READ(FDI_TX_CTL(pipe));
1195         I915_STATE_WARN(!(val & FDI_TX_PLL_ENABLE), "FDI TX PLL assertion failure, should be active but is disabled\n");
1196 }
1197
1198 void assert_fdi_rx_pll(struct drm_i915_private *dev_priv,
1199                        enum pipe pipe, bool state)
1200 {
1201         u32 val;
1202         bool cur_state;
1203
1204         val = I915_READ(FDI_RX_CTL(pipe));
1205         cur_state = !!(val & FDI_RX_PLL_ENABLE);
1206         I915_STATE_WARN(cur_state != state,
1207              "FDI RX PLL assertion failure (expected %s, current %s)\n",
1208                         onoff(state), onoff(cur_state));
1209 }
1210
1211 void assert_panel_unlocked(struct drm_i915_private *dev_priv, enum pipe pipe)
1212 {
1213         i915_reg_t pp_reg;
1214         u32 val;
1215         enum pipe panel_pipe = INVALID_PIPE;
1216         bool locked = true;
1217
1218         if (WARN_ON(HAS_DDI(dev_priv)))
1219                 return;
1220
1221         if (HAS_PCH_SPLIT(dev_priv)) {
1222                 u32 port_sel;
1223
1224                 pp_reg = PP_CONTROL(0);
1225                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1226
1227                 switch (port_sel) {
1228                 case PANEL_PORT_SELECT_LVDS:
1229                         intel_lvds_port_enabled(dev_priv, PCH_LVDS, &panel_pipe);
1230                         break;
1231                 case PANEL_PORT_SELECT_DPA:
1232                         intel_dp_port_enabled(dev_priv, DP_A, PORT_A, &panel_pipe);
1233                         break;
1234                 case PANEL_PORT_SELECT_DPC:
1235                         intel_dp_port_enabled(dev_priv, PCH_DP_C, PORT_C, &panel_pipe);
1236                         break;
1237                 case PANEL_PORT_SELECT_DPD:
1238                         intel_dp_port_enabled(dev_priv, PCH_DP_D, PORT_D, &panel_pipe);
1239                         break;
1240                 default:
1241                         MISSING_CASE(port_sel);
1242                         break;
1243                 }
1244         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
1245                 /* presumably write lock depends on pipe, not port select */
1246                 pp_reg = PP_CONTROL(pipe);
1247                 panel_pipe = pipe;
1248         } else {
1249                 u32 port_sel;
1250
1251                 pp_reg = PP_CONTROL(0);
1252                 port_sel = I915_READ(PP_ON_DELAYS(0)) & PANEL_PORT_SELECT_MASK;
1253
1254                 WARN_ON(port_sel != PANEL_PORT_SELECT_LVDS);
1255                 intel_lvds_port_enabled(dev_priv, LVDS, &panel_pipe);
1256         }
1257
1258         val = I915_READ(pp_reg);
1259         if (!(val & PANEL_POWER_ON) ||
1260             ((val & PANEL_UNLOCK_MASK) == PANEL_UNLOCK_REGS))
1261                 locked = false;
1262
1263         I915_STATE_WARN(panel_pipe == pipe && locked,
1264              "panel assertion failure, pipe %c regs locked\n",
1265              pipe_name(pipe));
1266 }
1267
1268 void assert_pipe(struct drm_i915_private *dev_priv,
1269                  enum pipe pipe, bool state)
1270 {
1271         bool cur_state;
1272         enum transcoder cpu_transcoder = intel_pipe_to_cpu_transcoder(dev_priv,
1273                                                                       pipe);
1274         enum intel_display_power_domain power_domain;
1275         intel_wakeref_t wakeref;
1276
1277         /* we keep both pipes enabled on 830 */
1278         if (IS_I830(dev_priv))
1279                 state = true;
1280
1281         power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
1282         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
1283         if (wakeref) {
1284                 u32 val = I915_READ(PIPECONF(cpu_transcoder));
1285                 cur_state = !!(val & PIPECONF_ENABLE);
1286
1287                 intel_display_power_put(dev_priv, power_domain, wakeref);
1288         } else {
1289                 cur_state = false;
1290         }
1291
1292         I915_STATE_WARN(cur_state != state,
1293              "pipe %c assertion failure (expected %s, current %s)\n",
1294                         pipe_name(pipe), onoff(state), onoff(cur_state));
1295 }
1296
1297 static void assert_plane(struct intel_plane *plane, bool state)
1298 {
1299         enum pipe pipe;
1300         bool cur_state;
1301
1302         cur_state = plane->get_hw_state(plane, &pipe);
1303
1304         I915_STATE_WARN(cur_state != state,
1305                         "%s assertion failure (expected %s, current %s)\n",
1306                         plane->base.name, onoff(state), onoff(cur_state));
1307 }
1308
1309 #define assert_plane_enabled(p) assert_plane(p, true)
1310 #define assert_plane_disabled(p) assert_plane(p, false)
1311
1312 static void assert_planes_disabled(struct intel_crtc *crtc)
1313 {
1314         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1315         struct intel_plane *plane;
1316
1317         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane)
1318                 assert_plane_disabled(plane);
1319 }
1320
1321 static void assert_vblank_disabled(struct drm_crtc *crtc)
1322 {
1323         if (I915_STATE_WARN_ON(drm_crtc_vblank_get(crtc) == 0))
1324                 drm_crtc_vblank_put(crtc);
1325 }
1326
1327 void assert_pch_transcoder_disabled(struct drm_i915_private *dev_priv,
1328                                     enum pipe pipe)
1329 {
1330         u32 val;
1331         bool enabled;
1332
1333         val = I915_READ(PCH_TRANSCONF(pipe));
1334         enabled = !!(val & TRANS_ENABLE);
1335         I915_STATE_WARN(enabled,
1336              "transcoder assertion failed, should be off on pipe %c but is still active\n",
1337              pipe_name(pipe));
1338 }
1339
1340 static void assert_pch_dp_disabled(struct drm_i915_private *dev_priv,
1341                                    enum pipe pipe, enum port port,
1342                                    i915_reg_t dp_reg)
1343 {
1344         enum pipe port_pipe;
1345         bool state;
1346
1347         state = intel_dp_port_enabled(dev_priv, dp_reg, port, &port_pipe);
1348
1349         I915_STATE_WARN(state && port_pipe == pipe,
1350                         "PCH DP %c enabled on transcoder %c, should be disabled\n",
1351                         port_name(port), pipe_name(pipe));
1352
1353         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1354                         "IBX PCH DP %c still using transcoder B\n",
1355                         port_name(port));
1356 }
1357
1358 static void assert_pch_hdmi_disabled(struct drm_i915_private *dev_priv,
1359                                      enum pipe pipe, enum port port,
1360                                      i915_reg_t hdmi_reg)
1361 {
1362         enum pipe port_pipe;
1363         bool state;
1364
1365         state = intel_sdvo_port_enabled(dev_priv, hdmi_reg, &port_pipe);
1366
1367         I915_STATE_WARN(state && port_pipe == pipe,
1368                         "PCH HDMI %c enabled on transcoder %c, should be disabled\n",
1369                         port_name(port), pipe_name(pipe));
1370
1371         I915_STATE_WARN(HAS_PCH_IBX(dev_priv) && !state && port_pipe == PIPE_B,
1372                         "IBX PCH HDMI %c still using transcoder B\n",
1373                         port_name(port));
1374 }
1375
1376 static void assert_pch_ports_disabled(struct drm_i915_private *dev_priv,
1377                                       enum pipe pipe)
1378 {
1379         enum pipe port_pipe;
1380
1381         assert_pch_dp_disabled(dev_priv, pipe, PORT_B, PCH_DP_B);
1382         assert_pch_dp_disabled(dev_priv, pipe, PORT_C, PCH_DP_C);
1383         assert_pch_dp_disabled(dev_priv, pipe, PORT_D, PCH_DP_D);
1384
1385         I915_STATE_WARN(intel_crt_port_enabled(dev_priv, PCH_ADPA, &port_pipe) &&
1386                         port_pipe == pipe,
1387                         "PCH VGA enabled on transcoder %c, should be disabled\n",
1388                         pipe_name(pipe));
1389
1390         I915_STATE_WARN(intel_lvds_port_enabled(dev_priv, PCH_LVDS, &port_pipe) &&
1391                         port_pipe == pipe,
1392                         "PCH LVDS enabled on transcoder %c, should be disabled\n",
1393                         pipe_name(pipe));
1394
1395         /* PCH SDVOB multiplex with HDMIB */
1396         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_B, PCH_HDMIB);
1397         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_C, PCH_HDMIC);
1398         assert_pch_hdmi_disabled(dev_priv, pipe, PORT_D, PCH_HDMID);
1399 }
1400
1401 static void _vlv_enable_pll(struct intel_crtc *crtc,
1402                             const struct intel_crtc_state *pipe_config)
1403 {
1404         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1405         enum pipe pipe = crtc->pipe;
1406
1407         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1408         POSTING_READ(DPLL(pipe));
1409         udelay(150);
1410
1411         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1412                 DRM_ERROR("DPLL %d failed to lock\n", pipe);
1413 }
1414
1415 static void vlv_enable_pll(struct intel_crtc *crtc,
1416                            const struct intel_crtc_state *pipe_config)
1417 {
1418         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1419         enum pipe pipe = crtc->pipe;
1420
1421         assert_pipe_disabled(dev_priv, pipe);
1422
1423         /* PLL is protected by panel, make sure we can write it */
1424         assert_panel_unlocked(dev_priv, pipe);
1425
1426         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1427                 _vlv_enable_pll(crtc, pipe_config);
1428
1429         I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1430         POSTING_READ(DPLL_MD(pipe));
1431 }
1432
1433
1434 static void _chv_enable_pll(struct intel_crtc *crtc,
1435                             const struct intel_crtc_state *pipe_config)
1436 {
1437         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1438         enum pipe pipe = crtc->pipe;
1439         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1440         u32 tmp;
1441
1442         vlv_dpio_get(dev_priv);
1443
1444         /* Enable back the 10bit clock to display controller */
1445         tmp = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1446         tmp |= DPIO_DCLKP_EN;
1447         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), tmp);
1448
1449         vlv_dpio_put(dev_priv);
1450
1451         /*
1452          * Need to wait > 100ns between dclkp clock enable bit and PLL enable.
1453          */
1454         udelay(1);
1455
1456         /* Enable PLL */
1457         I915_WRITE(DPLL(pipe), pipe_config->dpll_hw_state.dpll);
1458
1459         /* Check PLL is locked */
1460         if (intel_de_wait_for_set(dev_priv, DPLL(pipe), DPLL_LOCK_VLV, 1))
1461                 DRM_ERROR("PLL %d failed to lock\n", pipe);
1462 }
1463
1464 static void chv_enable_pll(struct intel_crtc *crtc,
1465                            const struct intel_crtc_state *pipe_config)
1466 {
1467         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1468         enum pipe pipe = crtc->pipe;
1469
1470         assert_pipe_disabled(dev_priv, pipe);
1471
1472         /* PLL is protected by panel, make sure we can write it */
1473         assert_panel_unlocked(dev_priv, pipe);
1474
1475         if (pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE)
1476                 _chv_enable_pll(crtc, pipe_config);
1477
1478         if (pipe != PIPE_A) {
1479                 /*
1480                  * WaPixelRepeatModeFixForC0:chv
1481                  *
1482                  * DPLLCMD is AWOL. Use chicken bits to propagate
1483                  * the value from DPLLBMD to either pipe B or C.
1484                  */
1485                 I915_WRITE(CBR4_VLV, CBR_DPLLBMD_PIPE(pipe));
1486                 I915_WRITE(DPLL_MD(PIPE_B), pipe_config->dpll_hw_state.dpll_md);
1487                 I915_WRITE(CBR4_VLV, 0);
1488                 dev_priv->chv_dpll_md[pipe] = pipe_config->dpll_hw_state.dpll_md;
1489
1490                 /*
1491                  * DPLLB VGA mode also seems to cause problems.
1492                  * We should always have it disabled.
1493                  */
1494                 WARN_ON((I915_READ(DPLL(PIPE_B)) & DPLL_VGA_MODE_DIS) == 0);
1495         } else {
1496                 I915_WRITE(DPLL_MD(pipe), pipe_config->dpll_hw_state.dpll_md);
1497                 POSTING_READ(DPLL_MD(pipe));
1498         }
1499 }
1500
1501 static bool i9xx_has_pps(struct drm_i915_private *dev_priv)
1502 {
1503         if (IS_I830(dev_priv))
1504                 return false;
1505
1506         return IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
1507 }
1508
1509 static void i9xx_enable_pll(struct intel_crtc *crtc,
1510                             const struct intel_crtc_state *crtc_state)
1511 {
1512         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1513         i915_reg_t reg = DPLL(crtc->pipe);
1514         u32 dpll = crtc_state->dpll_hw_state.dpll;
1515         int i;
1516
1517         assert_pipe_disabled(dev_priv, crtc->pipe);
1518
1519         /* PLL is protected by panel, make sure we can write it */
1520         if (i9xx_has_pps(dev_priv))
1521                 assert_panel_unlocked(dev_priv, crtc->pipe);
1522
1523         /*
1524          * Apparently we need to have VGA mode enabled prior to changing
1525          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
1526          * dividers, even though the register value does change.
1527          */
1528         I915_WRITE(reg, dpll & ~DPLL_VGA_MODE_DIS);
1529         I915_WRITE(reg, dpll);
1530
1531         /* Wait for the clocks to stabilize. */
1532         POSTING_READ(reg);
1533         udelay(150);
1534
1535         if (INTEL_GEN(dev_priv) >= 4) {
1536                 I915_WRITE(DPLL_MD(crtc->pipe),
1537                            crtc_state->dpll_hw_state.dpll_md);
1538         } else {
1539                 /* The pixel multiplier can only be updated once the
1540                  * DPLL is enabled and the clocks are stable.
1541                  *
1542                  * So write it again.
1543                  */
1544                 I915_WRITE(reg, dpll);
1545         }
1546
1547         /* We do this three times for luck */
1548         for (i = 0; i < 3; i++) {
1549                 I915_WRITE(reg, dpll);
1550                 POSTING_READ(reg);
1551                 udelay(150); /* wait for warmup */
1552         }
1553 }
1554
1555 static void i9xx_disable_pll(const struct intel_crtc_state *crtc_state)
1556 {
1557         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1558         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1559         enum pipe pipe = crtc->pipe;
1560
1561         /* Don't disable pipe or pipe PLLs if needed */
1562         if (IS_I830(dev_priv))
1563                 return;
1564
1565         /* Make sure the pipe isn't still relying on us */
1566         assert_pipe_disabled(dev_priv, pipe);
1567
1568         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
1569         POSTING_READ(DPLL(pipe));
1570 }
1571
1572 static void vlv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1573 {
1574         u32 val;
1575
1576         /* Make sure the pipe isn't still relying on us */
1577         assert_pipe_disabled(dev_priv, pipe);
1578
1579         val = DPLL_INTEGRATED_REF_CLK_VLV |
1580                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1581         if (pipe != PIPE_A)
1582                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1583
1584         I915_WRITE(DPLL(pipe), val);
1585         POSTING_READ(DPLL(pipe));
1586 }
1587
1588 static void chv_disable_pll(struct drm_i915_private *dev_priv, enum pipe pipe)
1589 {
1590         enum dpio_channel port = vlv_pipe_to_channel(pipe);
1591         u32 val;
1592
1593         /* Make sure the pipe isn't still relying on us */
1594         assert_pipe_disabled(dev_priv, pipe);
1595
1596         val = DPLL_SSC_REF_CLK_CHV |
1597                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
1598         if (pipe != PIPE_A)
1599                 val |= DPLL_INTEGRATED_CRI_CLK_VLV;
1600
1601         I915_WRITE(DPLL(pipe), val);
1602         POSTING_READ(DPLL(pipe));
1603
1604         vlv_dpio_get(dev_priv);
1605
1606         /* Disable 10bit clock to display controller */
1607         val = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port));
1608         val &= ~DPIO_DCLKP_EN;
1609         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port), val);
1610
1611         vlv_dpio_put(dev_priv);
1612 }
1613
1614 void vlv_wait_port_ready(struct drm_i915_private *dev_priv,
1615                          struct intel_digital_port *dport,
1616                          unsigned int expected_mask)
1617 {
1618         u32 port_mask;
1619         i915_reg_t dpll_reg;
1620
1621         switch (dport->base.port) {
1622         case PORT_B:
1623                 port_mask = DPLL_PORTB_READY_MASK;
1624                 dpll_reg = DPLL(0);
1625                 break;
1626         case PORT_C:
1627                 port_mask = DPLL_PORTC_READY_MASK;
1628                 dpll_reg = DPLL(0);
1629                 expected_mask <<= 4;
1630                 break;
1631         case PORT_D:
1632                 port_mask = DPLL_PORTD_READY_MASK;
1633                 dpll_reg = DPIO_PHY_STATUS;
1634                 break;
1635         default:
1636                 BUG();
1637         }
1638
1639         if (intel_de_wait_for_register(dev_priv, dpll_reg,
1640                                        port_mask, expected_mask, 1000))
1641                 WARN(1, "timed out waiting for [ENCODER:%d:%s] port ready: got 0x%x, expected 0x%x\n",
1642                      dport->base.base.base.id, dport->base.base.name,
1643                      I915_READ(dpll_reg) & port_mask, expected_mask);
1644 }
1645
1646 static void ironlake_enable_pch_transcoder(const struct intel_crtc_state *crtc_state)
1647 {
1648         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1649         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1650         enum pipe pipe = crtc->pipe;
1651         i915_reg_t reg;
1652         u32 val, pipeconf_val;
1653
1654         /* Make sure PCH DPLL is enabled */
1655         assert_shared_dpll_enabled(dev_priv, crtc_state->shared_dpll);
1656
1657         /* FDI must be feeding us bits for PCH ports */
1658         assert_fdi_tx_enabled(dev_priv, pipe);
1659         assert_fdi_rx_enabled(dev_priv, pipe);
1660
1661         if (HAS_PCH_CPT(dev_priv)) {
1662                 /* Workaround: Set the timing override bit before enabling the
1663                  * pch transcoder. */
1664                 reg = TRANS_CHICKEN2(pipe);
1665                 val = I915_READ(reg);
1666                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1667                 I915_WRITE(reg, val);
1668         }
1669
1670         reg = PCH_TRANSCONF(pipe);
1671         val = I915_READ(reg);
1672         pipeconf_val = I915_READ(PIPECONF(pipe));
1673
1674         if (HAS_PCH_IBX(dev_priv)) {
1675                 /*
1676                  * Make the BPC in transcoder be consistent with
1677                  * that in pipeconf reg. For HDMI we must use 8bpc
1678                  * here for both 8bpc and 12bpc.
1679                  */
1680                 val &= ~PIPECONF_BPC_MASK;
1681                 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
1682                         val |= PIPECONF_8BPC;
1683                 else
1684                         val |= pipeconf_val & PIPECONF_BPC_MASK;
1685         }
1686
1687         val &= ~TRANS_INTERLACE_MASK;
1688         if ((pipeconf_val & PIPECONF_INTERLACE_MASK) == PIPECONF_INTERLACED_ILK) {
1689                 if (HAS_PCH_IBX(dev_priv) &&
1690                     intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
1691                         val |= TRANS_LEGACY_INTERLACED_ILK;
1692                 else
1693                         val |= TRANS_INTERLACED;
1694         } else {
1695                 val |= TRANS_PROGRESSIVE;
1696         }
1697
1698         I915_WRITE(reg, val | TRANS_ENABLE);
1699         if (intel_de_wait_for_set(dev_priv, reg, TRANS_STATE_ENABLE, 100))
1700                 DRM_ERROR("failed to enable transcoder %c\n", pipe_name(pipe));
1701 }
1702
1703 static void lpt_enable_pch_transcoder(struct drm_i915_private *dev_priv,
1704                                       enum transcoder cpu_transcoder)
1705 {
1706         u32 val, pipeconf_val;
1707
1708         /* FDI must be feeding us bits for PCH ports */
1709         assert_fdi_tx_enabled(dev_priv, (enum pipe) cpu_transcoder);
1710         assert_fdi_rx_enabled(dev_priv, PIPE_A);
1711
1712         /* Workaround: set timing override bit. */
1713         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1714         val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
1715         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1716
1717         val = TRANS_ENABLE;
1718         pipeconf_val = I915_READ(PIPECONF(cpu_transcoder));
1719
1720         if ((pipeconf_val & PIPECONF_INTERLACE_MASK_HSW) ==
1721             PIPECONF_INTERLACED_ILK)
1722                 val |= TRANS_INTERLACED;
1723         else
1724                 val |= TRANS_PROGRESSIVE;
1725
1726         I915_WRITE(LPT_TRANSCONF, val);
1727         if (intel_de_wait_for_set(dev_priv, LPT_TRANSCONF,
1728                                   TRANS_STATE_ENABLE, 100))
1729                 DRM_ERROR("Failed to enable PCH transcoder\n");
1730 }
1731
1732 static void ironlake_disable_pch_transcoder(struct drm_i915_private *dev_priv,
1733                                             enum pipe pipe)
1734 {
1735         i915_reg_t reg;
1736         u32 val;
1737
1738         /* FDI relies on the transcoder */
1739         assert_fdi_tx_disabled(dev_priv, pipe);
1740         assert_fdi_rx_disabled(dev_priv, pipe);
1741
1742         /* Ports must be off as well */
1743         assert_pch_ports_disabled(dev_priv, pipe);
1744
1745         reg = PCH_TRANSCONF(pipe);
1746         val = I915_READ(reg);
1747         val &= ~TRANS_ENABLE;
1748         I915_WRITE(reg, val);
1749         /* wait for PCH transcoder off, transcoder state */
1750         if (intel_de_wait_for_clear(dev_priv, reg, TRANS_STATE_ENABLE, 50))
1751                 DRM_ERROR("failed to disable transcoder %c\n", pipe_name(pipe));
1752
1753         if (HAS_PCH_CPT(dev_priv)) {
1754                 /* Workaround: Clear the timing override chicken bit again. */
1755                 reg = TRANS_CHICKEN2(pipe);
1756                 val = I915_READ(reg);
1757                 val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1758                 I915_WRITE(reg, val);
1759         }
1760 }
1761
1762 void lpt_disable_pch_transcoder(struct drm_i915_private *dev_priv)
1763 {
1764         u32 val;
1765
1766         val = I915_READ(LPT_TRANSCONF);
1767         val &= ~TRANS_ENABLE;
1768         I915_WRITE(LPT_TRANSCONF, val);
1769         /* wait for PCH transcoder off, transcoder state */
1770         if (intel_de_wait_for_clear(dev_priv, LPT_TRANSCONF,
1771                                     TRANS_STATE_ENABLE, 50))
1772                 DRM_ERROR("Failed to disable PCH transcoder\n");
1773
1774         /* Workaround: clear timing override bit. */
1775         val = I915_READ(TRANS_CHICKEN2(PIPE_A));
1776         val &= ~TRANS_CHICKEN2_TIMING_OVERRIDE;
1777         I915_WRITE(TRANS_CHICKEN2(PIPE_A), val);
1778 }
1779
1780 enum pipe intel_crtc_pch_transcoder(struct intel_crtc *crtc)
1781 {
1782         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1783
1784         if (HAS_PCH_LPT(dev_priv))
1785                 return PIPE_A;
1786         else
1787                 return crtc->pipe;
1788 }
1789
1790 static u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
1791 {
1792         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
1793
1794         /*
1795          * On i965gm the hardware frame counter reads
1796          * zero when the TV encoder is enabled :(
1797          */
1798         if (IS_I965GM(dev_priv) &&
1799             (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
1800                 return 0;
1801
1802         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1803                 return 0xffffffff; /* full 32 bit counter */
1804         else if (INTEL_GEN(dev_priv) >= 3)
1805                 return 0xffffff; /* only 24 bits of frame count */
1806         else
1807                 return 0; /* Gen2 doesn't have a hardware frame counter */
1808 }
1809
1810 static void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
1811 {
1812         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
1813
1814         drm_crtc_set_max_vblank_count(&crtc->base,
1815                                       intel_crtc_max_vblank_count(crtc_state));
1816         drm_crtc_vblank_on(&crtc->base);
1817 }
1818
1819 static void intel_enable_pipe(const struct intel_crtc_state *new_crtc_state)
1820 {
1821         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
1822         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1823         enum transcoder cpu_transcoder = new_crtc_state->cpu_transcoder;
1824         enum pipe pipe = crtc->pipe;
1825         i915_reg_t reg;
1826         u32 val;
1827
1828         DRM_DEBUG_KMS("enabling pipe %c\n", pipe_name(pipe));
1829
1830         assert_planes_disabled(crtc);
1831
1832         /*
1833          * A pipe without a PLL won't actually be able to drive bits from
1834          * a plane.  On ILK+ the pipe PLLs are integrated, so we don't
1835          * need the check.
1836          */
1837         if (HAS_GMCH(dev_priv)) {
1838                 if (intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
1839                         assert_dsi_pll_enabled(dev_priv);
1840                 else
1841                         assert_pll_enabled(dev_priv, pipe);
1842         } else {
1843                 if (new_crtc_state->has_pch_encoder) {
1844                         /* if driving the PCH, we need FDI enabled */
1845                         assert_fdi_rx_pll_enabled(dev_priv,
1846                                                   intel_crtc_pch_transcoder(crtc));
1847                         assert_fdi_tx_pll_enabled(dev_priv,
1848                                                   (enum pipe) cpu_transcoder);
1849                 }
1850                 /* FIXME: assert CPU port conditions for SNB+ */
1851         }
1852
1853         trace_intel_pipe_enable(crtc);
1854
1855         reg = PIPECONF(cpu_transcoder);
1856         val = I915_READ(reg);
1857         if (val & PIPECONF_ENABLE) {
1858                 /* we keep both pipes enabled on 830 */
1859                 WARN_ON(!IS_I830(dev_priv));
1860                 return;
1861         }
1862
1863         I915_WRITE(reg, val | PIPECONF_ENABLE);
1864         POSTING_READ(reg);
1865
1866         /*
1867          * Until the pipe starts PIPEDSL reads will return a stale value,
1868          * which causes an apparent vblank timestamp jump when PIPEDSL
1869          * resets to its proper value. That also messes up the frame count
1870          * when it's derived from the timestamps. So let's wait for the
1871          * pipe to start properly before we call drm_crtc_vblank_on()
1872          */
1873         if (intel_crtc_max_vblank_count(new_crtc_state) == 0)
1874                 intel_wait_for_pipe_scanline_moving(crtc);
1875 }
1876
1877 static void intel_disable_pipe(const struct intel_crtc_state *old_crtc_state)
1878 {
1879         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
1880         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
1881         enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
1882         enum pipe pipe = crtc->pipe;
1883         i915_reg_t reg;
1884         u32 val;
1885
1886         DRM_DEBUG_KMS("disabling pipe %c\n", pipe_name(pipe));
1887
1888         /*
1889          * Make sure planes won't keep trying to pump pixels to us,
1890          * or we might hang the display.
1891          */
1892         assert_planes_disabled(crtc);
1893
1894         trace_intel_pipe_disable(crtc);
1895
1896         reg = PIPECONF(cpu_transcoder);
1897         val = I915_READ(reg);
1898         if ((val & PIPECONF_ENABLE) == 0)
1899                 return;
1900
1901         /*
1902          * Double wide has implications for planes
1903          * so best keep it disabled when not needed.
1904          */
1905         if (old_crtc_state->double_wide)
1906                 val &= ~PIPECONF_DOUBLE_WIDE;
1907
1908         /* Don't disable pipe or pipe PLLs if needed */
1909         if (!IS_I830(dev_priv))
1910                 val &= ~PIPECONF_ENABLE;
1911
1912         I915_WRITE(reg, val);
1913         if ((val & PIPECONF_ENABLE) == 0)
1914                 intel_wait_for_pipe_off(old_crtc_state);
1915 }
1916
1917 static unsigned int intel_tile_size(const struct drm_i915_private *dev_priv)
1918 {
1919         return IS_GEN(dev_priv, 2) ? 2048 : 4096;
1920 }
1921
1922 static unsigned int
1923 intel_tile_width_bytes(const struct drm_framebuffer *fb, int color_plane)
1924 {
1925         struct drm_i915_private *dev_priv = to_i915(fb->dev);
1926         unsigned int cpp = fb->format->cpp[color_plane];
1927
1928         switch (fb->modifier) {
1929         case DRM_FORMAT_MOD_LINEAR:
1930                 return intel_tile_size(dev_priv);
1931         case I915_FORMAT_MOD_X_TILED:
1932                 if (IS_GEN(dev_priv, 2))
1933                         return 128;
1934                 else
1935                         return 512;
1936         case I915_FORMAT_MOD_Y_TILED_CCS:
1937                 if (color_plane == 1)
1938                         return 128;
1939                 /* fall through */
1940         case I915_FORMAT_MOD_Y_TILED:
1941                 if (IS_GEN(dev_priv, 2) || HAS_128_BYTE_Y_TILING(dev_priv))
1942                         return 128;
1943                 else
1944                         return 512;
1945         case I915_FORMAT_MOD_Yf_TILED_CCS:
1946                 if (color_plane == 1)
1947                         return 128;
1948                 /* fall through */
1949         case I915_FORMAT_MOD_Yf_TILED:
1950                 switch (cpp) {
1951                 case 1:
1952                         return 64;
1953                 case 2:
1954                 case 4:
1955                         return 128;
1956                 case 8:
1957                 case 16:
1958                         return 256;
1959                 default:
1960                         MISSING_CASE(cpp);
1961                         return cpp;
1962                 }
1963                 break;
1964         default:
1965                 MISSING_CASE(fb->modifier);
1966                 return cpp;
1967         }
1968 }
1969
1970 static unsigned int
1971 intel_tile_height(const struct drm_framebuffer *fb, int color_plane)
1972 {
1973         return intel_tile_size(to_i915(fb->dev)) /
1974                 intel_tile_width_bytes(fb, color_plane);
1975 }
1976
1977 /* Return the tile dimensions in pixel units */
1978 static void intel_tile_dims(const struct drm_framebuffer *fb, int color_plane,
1979                             unsigned int *tile_width,
1980                             unsigned int *tile_height)
1981 {
1982         unsigned int tile_width_bytes = intel_tile_width_bytes(fb, color_plane);
1983         unsigned int cpp = fb->format->cpp[color_plane];
1984
1985         *tile_width = tile_width_bytes / cpp;
1986         *tile_height = intel_tile_size(to_i915(fb->dev)) / tile_width_bytes;
1987 }
1988
1989 unsigned int
1990 intel_fb_align_height(const struct drm_framebuffer *fb,
1991                       int color_plane, unsigned int height)
1992 {
1993         unsigned int tile_height = intel_tile_height(fb, color_plane);
1994
1995         return ALIGN(height, tile_height);
1996 }
1997
1998 unsigned int intel_rotation_info_size(const struct intel_rotation_info *rot_info)
1999 {
2000         unsigned int size = 0;
2001         int i;
2002
2003         for (i = 0 ; i < ARRAY_SIZE(rot_info->plane); i++)
2004                 size += rot_info->plane[i].width * rot_info->plane[i].height;
2005
2006         return size;
2007 }
2008
2009 unsigned int intel_remapped_info_size(const struct intel_remapped_info *rem_info)
2010 {
2011         unsigned int size = 0;
2012         int i;
2013
2014         for (i = 0 ; i < ARRAY_SIZE(rem_info->plane); i++)
2015                 size += rem_info->plane[i].width * rem_info->plane[i].height;
2016
2017         return size;
2018 }
2019
2020 static void
2021 intel_fill_fb_ggtt_view(struct i915_ggtt_view *view,
2022                         const struct drm_framebuffer *fb,
2023                         unsigned int rotation)
2024 {
2025         view->type = I915_GGTT_VIEW_NORMAL;
2026         if (drm_rotation_90_or_270(rotation)) {
2027                 view->type = I915_GGTT_VIEW_ROTATED;
2028                 view->rotated = to_intel_framebuffer(fb)->rot_info;
2029         }
2030 }
2031
2032 static unsigned int intel_cursor_alignment(const struct drm_i915_private *dev_priv)
2033 {
2034         if (IS_I830(dev_priv))
2035                 return 16 * 1024;
2036         else if (IS_I85X(dev_priv))
2037                 return 256;
2038         else if (IS_I845G(dev_priv) || IS_I865G(dev_priv))
2039                 return 32;
2040         else
2041                 return 4 * 1024;
2042 }
2043
2044 static unsigned int intel_linear_alignment(const struct drm_i915_private *dev_priv)
2045 {
2046         if (INTEL_GEN(dev_priv) >= 9)
2047                 return 256 * 1024;
2048         else if (IS_I965G(dev_priv) || IS_I965GM(dev_priv) ||
2049                  IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
2050                 return 128 * 1024;
2051         else if (INTEL_GEN(dev_priv) >= 4)
2052                 return 4 * 1024;
2053         else
2054                 return 0;
2055 }
2056
2057 static unsigned int intel_surf_alignment(const struct drm_framebuffer *fb,
2058                                          int color_plane)
2059 {
2060         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2061
2062         /* AUX_DIST needs only 4K alignment */
2063         if (color_plane == 1)
2064                 return 4096;
2065
2066         switch (fb->modifier) {
2067         case DRM_FORMAT_MOD_LINEAR:
2068                 return intel_linear_alignment(dev_priv);
2069         case I915_FORMAT_MOD_X_TILED:
2070                 if (INTEL_GEN(dev_priv) >= 9)
2071                         return 256 * 1024;
2072                 return 0;
2073         case I915_FORMAT_MOD_Y_TILED_CCS:
2074         case I915_FORMAT_MOD_Yf_TILED_CCS:
2075         case I915_FORMAT_MOD_Y_TILED:
2076         case I915_FORMAT_MOD_Yf_TILED:
2077                 return 1 * 1024 * 1024;
2078         default:
2079                 MISSING_CASE(fb->modifier);
2080                 return 0;
2081         }
2082 }
2083
2084 static bool intel_plane_uses_fence(const struct intel_plane_state *plane_state)
2085 {
2086         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2087         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2088
2089         return INTEL_GEN(dev_priv) < 4 ||
2090                 (plane->has_fbc &&
2091                  plane_state->view.type == I915_GGTT_VIEW_NORMAL);
2092 }
2093
2094 struct i915_vma *
2095 intel_pin_and_fence_fb_obj(struct drm_framebuffer *fb,
2096                            const struct i915_ggtt_view *view,
2097                            bool uses_fence,
2098                            unsigned long *out_flags)
2099 {
2100         struct drm_device *dev = fb->dev;
2101         struct drm_i915_private *dev_priv = to_i915(dev);
2102         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2103         intel_wakeref_t wakeref;
2104         struct i915_vma *vma;
2105         unsigned int pinctl;
2106         u32 alignment;
2107
2108         if (WARN_ON(!i915_gem_object_is_framebuffer(obj)))
2109                 return ERR_PTR(-EINVAL);
2110
2111         alignment = intel_surf_alignment(fb, 0);
2112
2113         /* Note that the w/a also requires 64 PTE of padding following the
2114          * bo. We currently fill all unused PTE with the shadow page and so
2115          * we should always have valid PTE following the scanout preventing
2116          * the VT-d warning.
2117          */
2118         if (intel_scanout_needs_vtd_wa(dev_priv) && alignment < 256 * 1024)
2119                 alignment = 256 * 1024;
2120
2121         /*
2122          * Global gtt pte registers are special registers which actually forward
2123          * writes to a chunk of system memory. Which means that there is no risk
2124          * that the register values disappear as soon as we call
2125          * intel_runtime_pm_put(), so it is correct to wrap only the
2126          * pin/unpin/fence and not more.
2127          */
2128         wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
2129         i915_gem_object_lock(obj);
2130
2131         atomic_inc(&dev_priv->gpu_error.pending_fb_pin);
2132
2133         pinctl = 0;
2134
2135         /* Valleyview is definitely limited to scanning out the first
2136          * 512MiB. Lets presume this behaviour was inherited from the
2137          * g4x display engine and that all earlier gen are similarly
2138          * limited. Testing suggests that it is a little more
2139          * complicated than this. For example, Cherryview appears quite
2140          * happy to scanout from anywhere within its global aperture.
2141          */
2142         if (HAS_GMCH(dev_priv))
2143                 pinctl |= PIN_MAPPABLE;
2144
2145         vma = i915_gem_object_pin_to_display_plane(obj,
2146                                                    alignment, view, pinctl);
2147         if (IS_ERR(vma))
2148                 goto err;
2149
2150         if (uses_fence && i915_vma_is_map_and_fenceable(vma)) {
2151                 int ret;
2152
2153                 /* Install a fence for tiled scan-out. Pre-i965 always needs a
2154                  * fence, whereas 965+ only requires a fence if using
2155                  * framebuffer compression.  For simplicity, we always, when
2156                  * possible, install a fence as the cost is not that onerous.
2157                  *
2158                  * If we fail to fence the tiled scanout, then either the
2159                  * modeset will reject the change (which is highly unlikely as
2160                  * the affected systems, all but one, do not have unmappable
2161                  * space) or we will not be able to enable full powersaving
2162                  * techniques (also likely not to apply due to various limits
2163                  * FBC and the like impose on the size of the buffer, which
2164                  * presumably we violated anyway with this unmappable buffer).
2165                  * Anyway, it is presumably better to stumble onwards with
2166                  * something and try to run the system in a "less than optimal"
2167                  * mode that matches the user configuration.
2168                  */
2169                 ret = i915_vma_pin_fence(vma);
2170                 if (ret != 0 && INTEL_GEN(dev_priv) < 4) {
2171                         i915_gem_object_unpin_from_display_plane(vma);
2172                         vma = ERR_PTR(ret);
2173                         goto err;
2174                 }
2175
2176                 if (ret == 0 && vma->fence)
2177                         *out_flags |= PLANE_HAS_FENCE;
2178         }
2179
2180         i915_vma_get(vma);
2181 err:
2182         atomic_dec(&dev_priv->gpu_error.pending_fb_pin);
2183
2184         i915_gem_object_unlock(obj);
2185         intel_runtime_pm_put(&dev_priv->runtime_pm, wakeref);
2186         return vma;
2187 }
2188
2189 void intel_unpin_fb_vma(struct i915_vma *vma, unsigned long flags)
2190 {
2191         i915_gem_object_lock(vma->obj);
2192         if (flags & PLANE_HAS_FENCE)
2193                 i915_vma_unpin_fence(vma);
2194         i915_gem_object_unpin_from_display_plane(vma);
2195         i915_gem_object_unlock(vma->obj);
2196
2197         i915_vma_put(vma);
2198 }
2199
2200 static int intel_fb_pitch(const struct drm_framebuffer *fb, int color_plane,
2201                           unsigned int rotation)
2202 {
2203         if (drm_rotation_90_or_270(rotation))
2204                 return to_intel_framebuffer(fb)->rotated[color_plane].pitch;
2205         else
2206                 return fb->pitches[color_plane];
2207 }
2208
2209 /*
2210  * Convert the x/y offsets into a linear offset.
2211  * Only valid with 0/180 degree rotation, which is fine since linear
2212  * offset is only used with linear buffers on pre-hsw and tiled buffers
2213  * with gen2/3, and 90/270 degree rotations isn't supported on any of them.
2214  */
2215 u32 intel_fb_xy_to_linear(int x, int y,
2216                           const struct intel_plane_state *state,
2217                           int color_plane)
2218 {
2219         const struct drm_framebuffer *fb = state->base.fb;
2220         unsigned int cpp = fb->format->cpp[color_plane];
2221         unsigned int pitch = state->color_plane[color_plane].stride;
2222
2223         return y * pitch + x * cpp;
2224 }
2225
2226 /*
2227  * Add the x/y offsets derived from fb->offsets[] to the user
2228  * specified plane src x/y offsets. The resulting x/y offsets
2229  * specify the start of scanout from the beginning of the gtt mapping.
2230  */
2231 void intel_add_fb_offsets(int *x, int *y,
2232                           const struct intel_plane_state *state,
2233                           int color_plane)
2234
2235 {
2236         *x += state->color_plane[color_plane].x;
2237         *y += state->color_plane[color_plane].y;
2238 }
2239
2240 static u32 intel_adjust_tile_offset(int *x, int *y,
2241                                     unsigned int tile_width,
2242                                     unsigned int tile_height,
2243                                     unsigned int tile_size,
2244                                     unsigned int pitch_tiles,
2245                                     u32 old_offset,
2246                                     u32 new_offset)
2247 {
2248         unsigned int pitch_pixels = pitch_tiles * tile_width;
2249         unsigned int tiles;
2250
2251         WARN_ON(old_offset & (tile_size - 1));
2252         WARN_ON(new_offset & (tile_size - 1));
2253         WARN_ON(new_offset > old_offset);
2254
2255         tiles = (old_offset - new_offset) / tile_size;
2256
2257         *y += tiles / pitch_tiles * tile_height;
2258         *x += tiles % pitch_tiles * tile_width;
2259
2260         /* minimize x in case it got needlessly big */
2261         *y += *x / pitch_pixels * tile_height;
2262         *x %= pitch_pixels;
2263
2264         return new_offset;
2265 }
2266
2267 static bool is_surface_linear(u64 modifier, int color_plane)
2268 {
2269         return modifier == DRM_FORMAT_MOD_LINEAR;
2270 }
2271
2272 static u32 intel_adjust_aligned_offset(int *x, int *y,
2273                                        const struct drm_framebuffer *fb,
2274                                        int color_plane,
2275                                        unsigned int rotation,
2276                                        unsigned int pitch,
2277                                        u32 old_offset, u32 new_offset)
2278 {
2279         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2280         unsigned int cpp = fb->format->cpp[color_plane];
2281
2282         WARN_ON(new_offset > old_offset);
2283
2284         if (!is_surface_linear(fb->modifier, color_plane)) {
2285                 unsigned int tile_size, tile_width, tile_height;
2286                 unsigned int pitch_tiles;
2287
2288                 tile_size = intel_tile_size(dev_priv);
2289                 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2290
2291                 if (drm_rotation_90_or_270(rotation)) {
2292                         pitch_tiles = pitch / tile_height;
2293                         swap(tile_width, tile_height);
2294                 } else {
2295                         pitch_tiles = pitch / (tile_width * cpp);
2296                 }
2297
2298                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2299                                          tile_size, pitch_tiles,
2300                                          old_offset, new_offset);
2301         } else {
2302                 old_offset += *y * pitch + *x * cpp;
2303
2304                 *y = (old_offset - new_offset) / pitch;
2305                 *x = ((old_offset - new_offset) - *y * pitch) / cpp;
2306         }
2307
2308         return new_offset;
2309 }
2310
2311 /*
2312  * Adjust the tile offset by moving the difference into
2313  * the x/y offsets.
2314  */
2315 static u32 intel_plane_adjust_aligned_offset(int *x, int *y,
2316                                              const struct intel_plane_state *state,
2317                                              int color_plane,
2318                                              u32 old_offset, u32 new_offset)
2319 {
2320         return intel_adjust_aligned_offset(x, y, state->base.fb, color_plane,
2321                                            state->base.rotation,
2322                                            state->color_plane[color_plane].stride,
2323                                            old_offset, new_offset);
2324 }
2325
2326 /*
2327  * Computes the aligned offset to the base tile and adjusts
2328  * x, y. bytes per pixel is assumed to be a power-of-two.
2329  *
2330  * In the 90/270 rotated case, x and y are assumed
2331  * to be already rotated to match the rotated GTT view, and
2332  * pitch is the tile_height aligned framebuffer height.
2333  *
2334  * This function is used when computing the derived information
2335  * under intel_framebuffer, so using any of that information
2336  * here is not allowed. Anything under drm_framebuffer can be
2337  * used. This is why the user has to pass in the pitch since it
2338  * is specified in the rotated orientation.
2339  */
2340 static u32 intel_compute_aligned_offset(struct drm_i915_private *dev_priv,
2341                                         int *x, int *y,
2342                                         const struct drm_framebuffer *fb,
2343                                         int color_plane,
2344                                         unsigned int pitch,
2345                                         unsigned int rotation,
2346                                         u32 alignment)
2347 {
2348         unsigned int cpp = fb->format->cpp[color_plane];
2349         u32 offset, offset_aligned;
2350
2351         if (alignment)
2352                 alignment--;
2353
2354         if (!is_surface_linear(fb->modifier, color_plane)) {
2355                 unsigned int tile_size, tile_width, tile_height;
2356                 unsigned int tile_rows, tiles, pitch_tiles;
2357
2358                 tile_size = intel_tile_size(dev_priv);
2359                 intel_tile_dims(fb, color_plane, &tile_width, &tile_height);
2360
2361                 if (drm_rotation_90_or_270(rotation)) {
2362                         pitch_tiles = pitch / tile_height;
2363                         swap(tile_width, tile_height);
2364                 } else {
2365                         pitch_tiles = pitch / (tile_width * cpp);
2366                 }
2367
2368                 tile_rows = *y / tile_height;
2369                 *y %= tile_height;
2370
2371                 tiles = *x / tile_width;
2372                 *x %= tile_width;
2373
2374                 offset = (tile_rows * pitch_tiles + tiles) * tile_size;
2375                 offset_aligned = offset & ~alignment;
2376
2377                 intel_adjust_tile_offset(x, y, tile_width, tile_height,
2378                                          tile_size, pitch_tiles,
2379                                          offset, offset_aligned);
2380         } else {
2381                 offset = *y * pitch + *x * cpp;
2382                 offset_aligned = offset & ~alignment;
2383
2384                 *y = (offset & alignment) / pitch;
2385                 *x = ((offset & alignment) - *y * pitch) / cpp;
2386         }
2387
2388         return offset_aligned;
2389 }
2390
2391 static u32 intel_plane_compute_aligned_offset(int *x, int *y,
2392                                               const struct intel_plane_state *state,
2393                                               int color_plane)
2394 {
2395         struct intel_plane *intel_plane = to_intel_plane(state->base.plane);
2396         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
2397         const struct drm_framebuffer *fb = state->base.fb;
2398         unsigned int rotation = state->base.rotation;
2399         int pitch = state->color_plane[color_plane].stride;
2400         u32 alignment;
2401
2402         if (intel_plane->id == PLANE_CURSOR)
2403                 alignment = intel_cursor_alignment(dev_priv);
2404         else
2405                 alignment = intel_surf_alignment(fb, color_plane);
2406
2407         return intel_compute_aligned_offset(dev_priv, x, y, fb, color_plane,
2408                                             pitch, rotation, alignment);
2409 }
2410
2411 /* Convert the fb->offset[] into x/y offsets */
2412 static int intel_fb_offset_to_xy(int *x, int *y,
2413                                  const struct drm_framebuffer *fb,
2414                                  int color_plane)
2415 {
2416         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2417         unsigned int height;
2418
2419         if (fb->modifier != DRM_FORMAT_MOD_LINEAR &&
2420             fb->offsets[color_plane] % intel_tile_size(dev_priv)) {
2421                 DRM_DEBUG_KMS("Misaligned offset 0x%08x for color plane %d\n",
2422                               fb->offsets[color_plane], color_plane);
2423                 return -EINVAL;
2424         }
2425
2426         height = drm_framebuffer_plane_height(fb->height, fb, color_plane);
2427         height = ALIGN(height, intel_tile_height(fb, color_plane));
2428
2429         /* Catch potential overflows early */
2430         if (add_overflows_t(u32, mul_u32_u32(height, fb->pitches[color_plane]),
2431                             fb->offsets[color_plane])) {
2432                 DRM_DEBUG_KMS("Bad offset 0x%08x or pitch %d for color plane %d\n",
2433                               fb->offsets[color_plane], fb->pitches[color_plane],
2434                               color_plane);
2435                 return -ERANGE;
2436         }
2437
2438         *x = 0;
2439         *y = 0;
2440
2441         intel_adjust_aligned_offset(x, y,
2442                                     fb, color_plane, DRM_MODE_ROTATE_0,
2443                                     fb->pitches[color_plane],
2444                                     fb->offsets[color_plane], 0);
2445
2446         return 0;
2447 }
2448
2449 static unsigned int intel_fb_modifier_to_tiling(u64 fb_modifier)
2450 {
2451         switch (fb_modifier) {
2452         case I915_FORMAT_MOD_X_TILED:
2453                 return I915_TILING_X;
2454         case I915_FORMAT_MOD_Y_TILED:
2455         case I915_FORMAT_MOD_Y_TILED_CCS:
2456                 return I915_TILING_Y;
2457         default:
2458                 return I915_TILING_NONE;
2459         }
2460 }
2461
2462 /*
2463  * From the Sky Lake PRM:
2464  * "The Color Control Surface (CCS) contains the compression status of
2465  *  the cache-line pairs. The compression state of the cache-line pair
2466  *  is specified by 2 bits in the CCS. Each CCS cache-line represents
2467  *  an area on the main surface of 16 x16 sets of 128 byte Y-tiled
2468  *  cache-line-pairs. CCS is always Y tiled."
2469  *
2470  * Since cache line pairs refers to horizontally adjacent cache lines,
2471  * each cache line in the CCS corresponds to an area of 32x16 cache
2472  * lines on the main surface. Since each pixel is 4 bytes, this gives
2473  * us a ratio of one byte in the CCS for each 8x16 pixels in the
2474  * main surface.
2475  */
2476 static const struct drm_format_info ccs_formats[] = {
2477         { .format = DRM_FORMAT_XRGB8888, .depth = 24, .num_planes = 2,
2478           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2479         { .format = DRM_FORMAT_XBGR8888, .depth = 24, .num_planes = 2,
2480           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, },
2481         { .format = DRM_FORMAT_ARGB8888, .depth = 32, .num_planes = 2,
2482           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2483         { .format = DRM_FORMAT_ABGR8888, .depth = 32, .num_planes = 2,
2484           .cpp = { 4, 1, }, .hsub = 8, .vsub = 16, .has_alpha = true, },
2485 };
2486
2487 static const struct drm_format_info *
2488 lookup_format_info(const struct drm_format_info formats[],
2489                    int num_formats, u32 format)
2490 {
2491         int i;
2492
2493         for (i = 0; i < num_formats; i++) {
2494                 if (formats[i].format == format)
2495                         return &formats[i];
2496         }
2497
2498         return NULL;
2499 }
2500
2501 static const struct drm_format_info *
2502 intel_get_format_info(const struct drm_mode_fb_cmd2 *cmd)
2503 {
2504         switch (cmd->modifier[0]) {
2505         case I915_FORMAT_MOD_Y_TILED_CCS:
2506         case I915_FORMAT_MOD_Yf_TILED_CCS:
2507                 return lookup_format_info(ccs_formats,
2508                                           ARRAY_SIZE(ccs_formats),
2509                                           cmd->pixel_format);
2510         default:
2511                 return NULL;
2512         }
2513 }
2514
2515 bool is_ccs_modifier(u64 modifier)
2516 {
2517         return modifier == I915_FORMAT_MOD_Y_TILED_CCS ||
2518                modifier == I915_FORMAT_MOD_Yf_TILED_CCS;
2519 }
2520
2521 u32 intel_plane_fb_max_stride(struct drm_i915_private *dev_priv,
2522                               u32 pixel_format, u64 modifier)
2523 {
2524         struct intel_crtc *crtc;
2525         struct intel_plane *plane;
2526
2527         /*
2528          * We assume the primary plane for pipe A has
2529          * the highest stride limits of them all.
2530          */
2531         crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_A);
2532         if (!crtc)
2533                 return 0;
2534
2535         plane = to_intel_plane(crtc->base.primary);
2536
2537         return plane->max_stride(plane, pixel_format, modifier,
2538                                  DRM_MODE_ROTATE_0);
2539 }
2540
2541 static
2542 u32 intel_fb_max_stride(struct drm_i915_private *dev_priv,
2543                         u32 pixel_format, u64 modifier)
2544 {
2545         /*
2546          * Arbitrary limit for gen4+ chosen to match the
2547          * render engine max stride.
2548          *
2549          * The new CCS hash mode makes remapping impossible
2550          */
2551         if (!is_ccs_modifier(modifier)) {
2552                 if (INTEL_GEN(dev_priv) >= 7)
2553                         return 256*1024;
2554                 else if (INTEL_GEN(dev_priv) >= 4)
2555                         return 128*1024;
2556         }
2557
2558         return intel_plane_fb_max_stride(dev_priv, pixel_format, modifier);
2559 }
2560
2561 static u32
2562 intel_fb_stride_alignment(const struct drm_framebuffer *fb, int color_plane)
2563 {
2564         struct drm_i915_private *dev_priv = to_i915(fb->dev);
2565
2566         if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2567                 u32 max_stride = intel_plane_fb_max_stride(dev_priv,
2568                                                            fb->format->format,
2569                                                            fb->modifier);
2570
2571                 /*
2572                  * To make remapping with linear generally feasible
2573                  * we need the stride to be page aligned.
2574                  */
2575                 if (fb->pitches[color_plane] > max_stride)
2576                         return intel_tile_size(dev_priv);
2577                 else
2578                         return 64;
2579         } else {
2580                 return intel_tile_width_bytes(fb, color_plane);
2581         }
2582 }
2583
2584 bool intel_plane_can_remap(const struct intel_plane_state *plane_state)
2585 {
2586         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2587         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
2588         const struct drm_framebuffer *fb = plane_state->base.fb;
2589         int i;
2590
2591         /* We don't want to deal with remapping with cursors */
2592         if (plane->id == PLANE_CURSOR)
2593                 return false;
2594
2595         /*
2596          * The display engine limits already match/exceed the
2597          * render engine limits, so not much point in remapping.
2598          * Would also need to deal with the fence POT alignment
2599          * and gen2 2KiB GTT tile size.
2600          */
2601         if (INTEL_GEN(dev_priv) < 4)
2602                 return false;
2603
2604         /*
2605          * The new CCS hash mode isn't compatible with remapping as
2606          * the virtual address of the pages affects the compressed data.
2607          */
2608         if (is_ccs_modifier(fb->modifier))
2609                 return false;
2610
2611         /* Linear needs a page aligned stride for remapping */
2612         if (fb->modifier == DRM_FORMAT_MOD_LINEAR) {
2613                 unsigned int alignment = intel_tile_size(dev_priv) - 1;
2614
2615                 for (i = 0; i < fb->format->num_planes; i++) {
2616                         if (fb->pitches[i] & alignment)
2617                                 return false;
2618                 }
2619         }
2620
2621         return true;
2622 }
2623
2624 static bool intel_plane_needs_remap(const struct intel_plane_state *plane_state)
2625 {
2626         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
2627         const struct drm_framebuffer *fb = plane_state->base.fb;
2628         unsigned int rotation = plane_state->base.rotation;
2629         u32 stride, max_stride;
2630
2631         /*
2632          * No remapping for invisible planes since we don't have
2633          * an actual source viewport to remap.
2634          */
2635         if (!plane_state->base.visible)
2636                 return false;
2637
2638         if (!intel_plane_can_remap(plane_state))
2639                 return false;
2640
2641         /*
2642          * FIXME: aux plane limits on gen9+ are
2643          * unclear in Bspec, for now no checking.
2644          */
2645         stride = intel_fb_pitch(fb, 0, rotation);
2646         max_stride = plane->max_stride(plane, fb->format->format,
2647                                        fb->modifier, rotation);
2648
2649         return stride > max_stride;
2650 }
2651
2652 static int
2653 intel_fill_fb_info(struct drm_i915_private *dev_priv,
2654                    struct drm_framebuffer *fb)
2655 {
2656         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2657         struct intel_rotation_info *rot_info = &intel_fb->rot_info;
2658         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
2659         u32 gtt_offset_rotated = 0;
2660         unsigned int max_size = 0;
2661         int i, num_planes = fb->format->num_planes;
2662         unsigned int tile_size = intel_tile_size(dev_priv);
2663
2664         for (i = 0; i < num_planes; i++) {
2665                 unsigned int width, height;
2666                 unsigned int cpp, size;
2667                 u32 offset;
2668                 int x, y;
2669                 int ret;
2670
2671                 cpp = fb->format->cpp[i];
2672                 width = drm_framebuffer_plane_width(fb->width, fb, i);
2673                 height = drm_framebuffer_plane_height(fb->height, fb, i);
2674
2675                 ret = intel_fb_offset_to_xy(&x, &y, fb, i);
2676                 if (ret) {
2677                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2678                                       i, fb->offsets[i]);
2679                         return ret;
2680                 }
2681
2682                 if (is_ccs_modifier(fb->modifier) && i == 1) {
2683                         int hsub = fb->format->hsub;
2684                         int vsub = fb->format->vsub;
2685                         int tile_width, tile_height;
2686                         int main_x, main_y;
2687                         int ccs_x, ccs_y;
2688
2689                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2690                         tile_width *= hsub;
2691                         tile_height *= vsub;
2692
2693                         ccs_x = (x * hsub) % tile_width;
2694                         ccs_y = (y * vsub) % tile_height;
2695                         main_x = intel_fb->normal[0].x % tile_width;
2696                         main_y = intel_fb->normal[0].y % tile_height;
2697
2698                         /*
2699                          * CCS doesn't have its own x/y offset register, so the intra CCS tile
2700                          * x/y offsets must match between CCS and the main surface.
2701                          */
2702                         if (main_x != ccs_x || main_y != ccs_y) {
2703                                 DRM_DEBUG_KMS("Bad CCS x/y (main %d,%d ccs %d,%d) full (main %d,%d ccs %d,%d)\n",
2704                                               main_x, main_y,
2705                                               ccs_x, ccs_y,
2706                                               intel_fb->normal[0].x,
2707                                               intel_fb->normal[0].y,
2708                                               x, y);
2709                                 return -EINVAL;
2710                         }
2711                 }
2712
2713                 /*
2714                  * The fence (if used) is aligned to the start of the object
2715                  * so having the framebuffer wrap around across the edge of the
2716                  * fenced region doesn't really work. We have no API to configure
2717                  * the fence start offset within the object (nor could we probably
2718                  * on gen2/3). So it's just easier if we just require that the
2719                  * fb layout agrees with the fence layout. We already check that the
2720                  * fb stride matches the fence stride elsewhere.
2721                  */
2722                 if (i == 0 && i915_gem_object_is_tiled(obj) &&
2723                     (x + width) * cpp > fb->pitches[i]) {
2724                         DRM_DEBUG_KMS("bad fb plane %d offset: 0x%x\n",
2725                                       i, fb->offsets[i]);
2726                         return -EINVAL;
2727                 }
2728
2729                 /*
2730                  * First pixel of the framebuffer from
2731                  * the start of the normal gtt mapping.
2732                  */
2733                 intel_fb->normal[i].x = x;
2734                 intel_fb->normal[i].y = y;
2735
2736                 offset = intel_compute_aligned_offset(dev_priv, &x, &y, fb, i,
2737                                                       fb->pitches[i],
2738                                                       DRM_MODE_ROTATE_0,
2739                                                       tile_size);
2740                 offset /= tile_size;
2741
2742                 if (!is_surface_linear(fb->modifier, i)) {
2743                         unsigned int tile_width, tile_height;
2744                         unsigned int pitch_tiles;
2745                         struct drm_rect r;
2746
2747                         intel_tile_dims(fb, i, &tile_width, &tile_height);
2748
2749                         rot_info->plane[i].offset = offset;
2750                         rot_info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i], tile_width * cpp);
2751                         rot_info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2752                         rot_info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2753
2754                         intel_fb->rotated[i].pitch =
2755                                 rot_info->plane[i].height * tile_height;
2756
2757                         /* how many tiles does this plane need */
2758                         size = rot_info->plane[i].stride * rot_info->plane[i].height;
2759                         /*
2760                          * If the plane isn't horizontally tile aligned,
2761                          * we need one more tile.
2762                          */
2763                         if (x != 0)
2764                                 size++;
2765
2766                         /* rotate the x/y offsets to match the GTT view */
2767                         drm_rect_init(&r, x, y, width, height);
2768                         drm_rect_rotate(&r,
2769                                         rot_info->plane[i].width * tile_width,
2770                                         rot_info->plane[i].height * tile_height,
2771                                         DRM_MODE_ROTATE_270);
2772                         x = r.x1;
2773                         y = r.y1;
2774
2775                         /* rotate the tile dimensions to match the GTT view */
2776                         pitch_tiles = intel_fb->rotated[i].pitch / tile_height;
2777                         swap(tile_width, tile_height);
2778
2779                         /*
2780                          * We only keep the x/y offsets, so push all of the
2781                          * gtt offset into the x/y offsets.
2782                          */
2783                         intel_adjust_tile_offset(&x, &y,
2784                                                  tile_width, tile_height,
2785                                                  tile_size, pitch_tiles,
2786                                                  gtt_offset_rotated * tile_size, 0);
2787
2788                         gtt_offset_rotated += rot_info->plane[i].width * rot_info->plane[i].height;
2789
2790                         /*
2791                          * First pixel of the framebuffer from
2792                          * the start of the rotated gtt mapping.
2793                          */
2794                         intel_fb->rotated[i].x = x;
2795                         intel_fb->rotated[i].y = y;
2796                 } else {
2797                         size = DIV_ROUND_UP((y + height) * fb->pitches[i] +
2798                                             x * cpp, tile_size);
2799                 }
2800
2801                 /* how many tiles in total needed in the bo */
2802                 max_size = max(max_size, offset + size);
2803         }
2804
2805         if (mul_u32_u32(max_size, tile_size) > obj->base.size) {
2806                 DRM_DEBUG_KMS("fb too big for bo (need %llu bytes, have %zu bytes)\n",
2807                               mul_u32_u32(max_size, tile_size), obj->base.size);
2808                 return -EINVAL;
2809         }
2810
2811         return 0;
2812 }
2813
2814 static void
2815 intel_plane_remap_gtt(struct intel_plane_state *plane_state)
2816 {
2817         struct drm_i915_private *dev_priv =
2818                 to_i915(plane_state->base.plane->dev);
2819         struct drm_framebuffer *fb = plane_state->base.fb;
2820         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
2821         struct intel_rotation_info *info = &plane_state->view.rotated;
2822         unsigned int rotation = plane_state->base.rotation;
2823         int i, num_planes = fb->format->num_planes;
2824         unsigned int tile_size = intel_tile_size(dev_priv);
2825         unsigned int src_x, src_y;
2826         unsigned int src_w, src_h;
2827         u32 gtt_offset = 0;
2828
2829         memset(&plane_state->view, 0, sizeof(plane_state->view));
2830         plane_state->view.type = drm_rotation_90_or_270(rotation) ?
2831                 I915_GGTT_VIEW_ROTATED : I915_GGTT_VIEW_REMAPPED;
2832
2833         src_x = plane_state->base.src.x1 >> 16;
2834         src_y = plane_state->base.src.y1 >> 16;
2835         src_w = drm_rect_width(&plane_state->base.src) >> 16;
2836         src_h = drm_rect_height(&plane_state->base.src) >> 16;
2837
2838         WARN_ON(is_ccs_modifier(fb->modifier));
2839
2840         /* Make src coordinates relative to the viewport */
2841         drm_rect_translate(&plane_state->base.src,
2842                            -(src_x << 16), -(src_y << 16));
2843
2844         /* Rotate src coordinates to match rotated GTT view */
2845         if (drm_rotation_90_or_270(rotation))
2846                 drm_rect_rotate(&plane_state->base.src,
2847                                 src_w << 16, src_h << 16,
2848                                 DRM_MODE_ROTATE_270);
2849
2850         for (i = 0; i < num_planes; i++) {
2851                 unsigned int hsub = i ? fb->format->hsub : 1;
2852                 unsigned int vsub = i ? fb->format->vsub : 1;
2853                 unsigned int cpp = fb->format->cpp[i];
2854                 unsigned int tile_width, tile_height;
2855                 unsigned int width, height;
2856                 unsigned int pitch_tiles;
2857                 unsigned int x, y;
2858                 u32 offset;
2859
2860                 intel_tile_dims(fb, i, &tile_width, &tile_height);
2861
2862                 x = src_x / hsub;
2863                 y = src_y / vsub;
2864                 width = src_w / hsub;
2865                 height = src_h / vsub;
2866
2867                 /*
2868                  * First pixel of the src viewport from the
2869                  * start of the normal gtt mapping.
2870                  */
2871                 x += intel_fb->normal[i].x;
2872                 y += intel_fb->normal[i].y;
2873
2874                 offset = intel_compute_aligned_offset(dev_priv, &x, &y,
2875                                                       fb, i, fb->pitches[i],
2876                                                       DRM_MODE_ROTATE_0, tile_size);
2877                 offset /= tile_size;
2878
2879                 info->plane[i].offset = offset;
2880                 info->plane[i].stride = DIV_ROUND_UP(fb->pitches[i],
2881                                                      tile_width * cpp);
2882                 info->plane[i].width = DIV_ROUND_UP(x + width, tile_width);
2883                 info->plane[i].height = DIV_ROUND_UP(y + height, tile_height);
2884
2885                 if (drm_rotation_90_or_270(rotation)) {
2886                         struct drm_rect r;
2887
2888                         /* rotate the x/y offsets to match the GTT view */
2889                         drm_rect_init(&r, x, y, width, height);
2890                         drm_rect_rotate(&r,
2891                                         info->plane[i].width * tile_width,
2892                                         info->plane[i].height * tile_height,
2893                                         DRM_MODE_ROTATE_270);
2894                         x = r.x1;
2895                         y = r.y1;
2896
2897                         pitch_tiles = info->plane[i].height;
2898                         plane_state->color_plane[i].stride = pitch_tiles * tile_height;
2899
2900                         /* rotate the tile dimensions to match the GTT view */
2901                         swap(tile_width, tile_height);
2902                 } else {
2903                         pitch_tiles = info->plane[i].width;
2904                         plane_state->color_plane[i].stride = pitch_tiles * tile_width * cpp;
2905                 }
2906
2907                 /*
2908                  * We only keep the x/y offsets, so push all of the
2909                  * gtt offset into the x/y offsets.
2910                  */
2911                 intel_adjust_tile_offset(&x, &y,
2912                                          tile_width, tile_height,
2913                                          tile_size, pitch_tiles,
2914                                          gtt_offset * tile_size, 0);
2915
2916                 gtt_offset += info->plane[i].width * info->plane[i].height;
2917
2918                 plane_state->color_plane[i].offset = 0;
2919                 plane_state->color_plane[i].x = x;
2920                 plane_state->color_plane[i].y = y;
2921         }
2922 }
2923
2924 static int
2925 intel_plane_compute_gtt(struct intel_plane_state *plane_state)
2926 {
2927         const struct intel_framebuffer *fb =
2928                 to_intel_framebuffer(plane_state->base.fb);
2929         unsigned int rotation = plane_state->base.rotation;
2930         int i, num_planes;
2931
2932         if (!fb)
2933                 return 0;
2934
2935         num_planes = fb->base.format->num_planes;
2936
2937         if (intel_plane_needs_remap(plane_state)) {
2938                 intel_plane_remap_gtt(plane_state);
2939
2940                 /*
2941                  * Sometimes even remapping can't overcome
2942                  * the stride limitations :( Can happen with
2943                  * big plane sizes and suitably misaligned
2944                  * offsets.
2945                  */
2946                 return intel_plane_check_stride(plane_state);
2947         }
2948
2949         intel_fill_fb_ggtt_view(&plane_state->view, &fb->base, rotation);
2950
2951         for (i = 0; i < num_planes; i++) {
2952                 plane_state->color_plane[i].stride = intel_fb_pitch(&fb->base, i, rotation);
2953                 plane_state->color_plane[i].offset = 0;
2954
2955                 if (drm_rotation_90_or_270(rotation)) {
2956                         plane_state->color_plane[i].x = fb->rotated[i].x;
2957                         plane_state->color_plane[i].y = fb->rotated[i].y;
2958                 } else {
2959                         plane_state->color_plane[i].x = fb->normal[i].x;
2960                         plane_state->color_plane[i].y = fb->normal[i].y;
2961                 }
2962         }
2963
2964         /* Rotate src coordinates to match rotated GTT view */
2965         if (drm_rotation_90_or_270(rotation))
2966                 drm_rect_rotate(&plane_state->base.src,
2967                                 fb->base.width << 16, fb->base.height << 16,
2968                                 DRM_MODE_ROTATE_270);
2969
2970         return intel_plane_check_stride(plane_state);
2971 }
2972
2973 static int i9xx_format_to_fourcc(int format)
2974 {
2975         switch (format) {
2976         case DISPPLANE_8BPP:
2977                 return DRM_FORMAT_C8;
2978         case DISPPLANE_BGRX555:
2979                 return DRM_FORMAT_XRGB1555;
2980         case DISPPLANE_BGRX565:
2981                 return DRM_FORMAT_RGB565;
2982         default:
2983         case DISPPLANE_BGRX888:
2984                 return DRM_FORMAT_XRGB8888;
2985         case DISPPLANE_RGBX888:
2986                 return DRM_FORMAT_XBGR8888;
2987         case DISPPLANE_BGRX101010:
2988                 return DRM_FORMAT_XRGB2101010;
2989         case DISPPLANE_RGBX101010:
2990                 return DRM_FORMAT_XBGR2101010;
2991         case DISPPLANE_RGBX161616:
2992                 return DRM_FORMAT_XBGR16161616F;
2993         }
2994 }
2995
2996 int skl_format_to_fourcc(int format, bool rgb_order, bool alpha)
2997 {
2998         switch (format) {
2999         case PLANE_CTL_FORMAT_RGB_565:
3000                 return DRM_FORMAT_RGB565;
3001         case PLANE_CTL_FORMAT_NV12:
3002                 return DRM_FORMAT_NV12;
3003         case PLANE_CTL_FORMAT_P010:
3004                 return DRM_FORMAT_P010;
3005         case PLANE_CTL_FORMAT_P012:
3006                 return DRM_FORMAT_P012;
3007         case PLANE_CTL_FORMAT_P016:
3008                 return DRM_FORMAT_P016;
3009         case PLANE_CTL_FORMAT_Y210:
3010                 return DRM_FORMAT_Y210;
3011         case PLANE_CTL_FORMAT_Y212:
3012                 return DRM_FORMAT_Y212;
3013         case PLANE_CTL_FORMAT_Y216:
3014                 return DRM_FORMAT_Y216;
3015         case PLANE_CTL_FORMAT_Y410:
3016                 return DRM_FORMAT_XVYU2101010;
3017         case PLANE_CTL_FORMAT_Y412:
3018                 return DRM_FORMAT_XVYU12_16161616;
3019         case PLANE_CTL_FORMAT_Y416:
3020                 return DRM_FORMAT_XVYU16161616;
3021         default:
3022         case PLANE_CTL_FORMAT_XRGB_8888:
3023                 if (rgb_order) {
3024                         if (alpha)
3025                                 return DRM_FORMAT_ABGR8888;
3026                         else
3027                                 return DRM_FORMAT_XBGR8888;
3028                 } else {
3029                         if (alpha)
3030                                 return DRM_FORMAT_ARGB8888;
3031                         else
3032                                 return DRM_FORMAT_XRGB8888;
3033                 }
3034         case PLANE_CTL_FORMAT_XRGB_2101010:
3035                 if (rgb_order)
3036                         return DRM_FORMAT_XBGR2101010;
3037                 else
3038                         return DRM_FORMAT_XRGB2101010;
3039         case PLANE_CTL_FORMAT_XRGB_16161616F:
3040                 if (rgb_order) {
3041                         if (alpha)
3042                                 return DRM_FORMAT_ABGR16161616F;
3043                         else
3044                                 return DRM_FORMAT_XBGR16161616F;
3045                 } else {
3046                         if (alpha)
3047                                 return DRM_FORMAT_ARGB16161616F;
3048                         else
3049                                 return DRM_FORMAT_XRGB16161616F;
3050                 }
3051         }
3052 }
3053
3054 static bool
3055 intel_alloc_initial_plane_obj(struct intel_crtc *crtc,
3056                               struct intel_initial_plane_config *plane_config)
3057 {
3058         struct drm_device *dev = crtc->base.dev;
3059         struct drm_i915_private *dev_priv = to_i915(dev);
3060         struct drm_mode_fb_cmd2 mode_cmd = { 0 };
3061         struct drm_framebuffer *fb = &plane_config->fb->base;
3062         u32 base_aligned = round_down(plane_config->base, PAGE_SIZE);
3063         u32 size_aligned = round_up(plane_config->base + plane_config->size,
3064                                     PAGE_SIZE);
3065         struct drm_i915_gem_object *obj;
3066         bool ret = false;
3067
3068         size_aligned -= base_aligned;
3069
3070         if (plane_config->size == 0)
3071                 return false;
3072
3073         /* If the FB is too big, just don't use it since fbdev is not very
3074          * important and we should probably use that space with FBC or other
3075          * features. */
3076         if (size_aligned * 2 > dev_priv->stolen_usable_size)
3077                 return false;
3078
3079         switch (fb->modifier) {
3080         case DRM_FORMAT_MOD_LINEAR:
3081         case I915_FORMAT_MOD_X_TILED:
3082         case I915_FORMAT_MOD_Y_TILED:
3083                 break;
3084         default:
3085                 DRM_DEBUG_DRIVER("Unsupported modifier for initial FB: 0x%llx\n",
3086                                  fb->modifier);
3087                 return false;
3088         }
3089
3090         obj = i915_gem_object_create_stolen_for_preallocated(dev_priv,
3091                                                              base_aligned,
3092                                                              base_aligned,
3093                                                              size_aligned);
3094         if (IS_ERR(obj))
3095                 return false;
3096
3097         switch (plane_config->tiling) {
3098         case I915_TILING_NONE:
3099                 break;
3100         case I915_TILING_X:
3101         case I915_TILING_Y:
3102                 obj->tiling_and_stride = fb->pitches[0] | plane_config->tiling;
3103                 break;
3104         default:
3105                 MISSING_CASE(plane_config->tiling);
3106                 goto out;
3107         }
3108
3109         mode_cmd.pixel_format = fb->format->format;
3110         mode_cmd.width = fb->width;
3111         mode_cmd.height = fb->height;
3112         mode_cmd.pitches[0] = fb->pitches[0];
3113         mode_cmd.modifier[0] = fb->modifier;
3114         mode_cmd.flags = DRM_MODE_FB_MODIFIERS;
3115
3116         if (intel_framebuffer_init(to_intel_framebuffer(fb), obj, &mode_cmd)) {
3117                 DRM_DEBUG_KMS("intel fb init failed\n");
3118                 goto out;
3119         }
3120
3121
3122         DRM_DEBUG_KMS("initial plane fb obj %p\n", obj);
3123         ret = true;
3124 out:
3125         i915_gem_object_put(obj);
3126         return ret;
3127 }
3128
3129 static void
3130 intel_set_plane_visible(struct intel_crtc_state *crtc_state,
3131                         struct intel_plane_state *plane_state,
3132                         bool visible)
3133 {
3134         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3135
3136         plane_state->base.visible = visible;
3137
3138         if (visible)
3139                 crtc_state->base.plane_mask |= drm_plane_mask(&plane->base);
3140         else
3141                 crtc_state->base.plane_mask &= ~drm_plane_mask(&plane->base);
3142 }
3143
3144 static void fixup_active_planes(struct intel_crtc_state *crtc_state)
3145 {
3146         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
3147         struct drm_plane *plane;
3148
3149         /*
3150          * Active_planes aliases if multiple "primary" or cursor planes
3151          * have been used on the same (or wrong) pipe. plane_mask uses
3152          * unique ids, hence we can use that to reconstruct active_planes.
3153          */
3154         crtc_state->active_planes = 0;
3155
3156         drm_for_each_plane_mask(plane, &dev_priv->drm,
3157                                 crtc_state->base.plane_mask)
3158                 crtc_state->active_planes |= BIT(to_intel_plane(plane)->id);
3159 }
3160
3161 static void intel_plane_disable_noatomic(struct intel_crtc *crtc,
3162                                          struct intel_plane *plane)
3163 {
3164         struct intel_crtc_state *crtc_state =
3165                 to_intel_crtc_state(crtc->base.state);
3166         struct intel_plane_state *plane_state =
3167                 to_intel_plane_state(plane->base.state);
3168
3169         DRM_DEBUG_KMS("Disabling [PLANE:%d:%s] on [CRTC:%d:%s]\n",
3170                       plane->base.base.id, plane->base.name,
3171                       crtc->base.base.id, crtc->base.name);
3172
3173         intel_set_plane_visible(crtc_state, plane_state, false);
3174         fixup_active_planes(crtc_state);
3175         crtc_state->data_rate[plane->id] = 0;
3176         crtc_state->min_cdclk[plane->id] = 0;
3177
3178         if (plane->id == PLANE_PRIMARY)
3179                 intel_pre_disable_primary_noatomic(&crtc->base);
3180
3181         intel_disable_plane(plane, crtc_state);
3182 }
3183
3184 static struct intel_frontbuffer *
3185 to_intel_frontbuffer(struct drm_framebuffer *fb)
3186 {
3187         return fb ? to_intel_framebuffer(fb)->frontbuffer : NULL;
3188 }
3189
3190 static void
3191 intel_find_initial_plane_obj(struct intel_crtc *intel_crtc,
3192                              struct intel_initial_plane_config *plane_config)
3193 {
3194         struct drm_device *dev = intel_crtc->base.dev;
3195         struct drm_i915_private *dev_priv = to_i915(dev);
3196         struct drm_crtc *c;
3197         struct drm_plane *primary = intel_crtc->base.primary;
3198         struct drm_plane_state *plane_state = primary->state;
3199         struct intel_plane *intel_plane = to_intel_plane(primary);
3200         struct intel_plane_state *intel_state =
3201                 to_intel_plane_state(plane_state);
3202         struct drm_framebuffer *fb;
3203
3204         if (!plane_config->fb)
3205                 return;
3206
3207         if (intel_alloc_initial_plane_obj(intel_crtc, plane_config)) {
3208                 fb = &plane_config->fb->base;
3209                 goto valid_fb;
3210         }
3211
3212         kfree(plane_config->fb);
3213
3214         /*
3215          * Failed to alloc the obj, check to see if we should share
3216          * an fb with another CRTC instead
3217          */
3218         for_each_crtc(dev, c) {
3219                 struct intel_plane_state *state;
3220
3221                 if (c == &intel_crtc->base)
3222                         continue;
3223
3224                 if (!to_intel_crtc(c)->active)
3225                         continue;
3226
3227                 state = to_intel_plane_state(c->primary->state);
3228                 if (!state->vma)
3229                         continue;
3230
3231                 if (intel_plane_ggtt_offset(state) == plane_config->base) {
3232                         fb = state->base.fb;
3233                         drm_framebuffer_get(fb);
3234                         goto valid_fb;
3235                 }
3236         }
3237
3238         /*
3239          * We've failed to reconstruct the BIOS FB.  Current display state
3240          * indicates that the primary plane is visible, but has a NULL FB,
3241          * which will lead to problems later if we don't fix it up.  The
3242          * simplest solution is to just disable the primary plane now and
3243          * pretend the BIOS never had it enabled.
3244          */
3245         intel_plane_disable_noatomic(intel_crtc, intel_plane);
3246
3247         return;
3248
3249 valid_fb:
3250         intel_state->base.rotation = plane_config->rotation;
3251         intel_fill_fb_ggtt_view(&intel_state->view, fb,
3252                                 intel_state->base.rotation);
3253         intel_state->color_plane[0].stride =
3254                 intel_fb_pitch(fb, 0, intel_state->base.rotation);
3255
3256         intel_state->vma =
3257                 intel_pin_and_fence_fb_obj(fb,
3258                                            &intel_state->view,
3259                                            intel_plane_uses_fence(intel_state),
3260                                            &intel_state->flags);
3261         if (IS_ERR(intel_state->vma)) {
3262                 DRM_ERROR("failed to pin boot fb on pipe %d: %li\n",
3263                           intel_crtc->pipe, PTR_ERR(intel_state->vma));
3264
3265                 intel_state->vma = NULL;
3266                 drm_framebuffer_put(fb);
3267                 return;
3268         }
3269
3270         intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
3271
3272         plane_state->src_x = 0;
3273         plane_state->src_y = 0;
3274         plane_state->src_w = fb->width << 16;
3275         plane_state->src_h = fb->height << 16;
3276
3277         plane_state->crtc_x = 0;
3278         plane_state->crtc_y = 0;
3279         plane_state->crtc_w = fb->width;
3280         plane_state->crtc_h = fb->height;
3281
3282         intel_state->base.src = drm_plane_state_src(plane_state);
3283         intel_state->base.dst = drm_plane_state_dest(plane_state);
3284
3285         if (plane_config->tiling)
3286                 dev_priv->preserve_bios_swizzle = true;
3287
3288         plane_state->fb = fb;
3289         plane_state->crtc = &intel_crtc->base;
3290
3291         atomic_or(to_intel_plane(primary)->frontbuffer_bit,
3292                   &to_intel_frontbuffer(fb)->bits);
3293 }
3294
3295 static int skl_max_plane_width(const struct drm_framebuffer *fb,
3296                                int color_plane,
3297                                unsigned int rotation)
3298 {
3299         int cpp = fb->format->cpp[color_plane];
3300
3301         switch (fb->modifier) {
3302         case DRM_FORMAT_MOD_LINEAR:
3303         case I915_FORMAT_MOD_X_TILED:
3304                 /*
3305                  * Validated limit is 4k, but has 5k should
3306                  * work apart from the following features:
3307                  * - Ytile (already limited to 4k)
3308                  * - FP16 (already limited to 4k)
3309                  * - render compression (already limited to 4k)
3310                  * - KVMR sprite and cursor (don't care)
3311                  * - horizontal panning (TODO verify this)
3312                  * - pipe and plane scaling (TODO verify this)
3313                  */
3314                 if (cpp == 8)
3315                         return 4096;
3316                 else
3317                         return 5120;
3318         case I915_FORMAT_MOD_Y_TILED_CCS:
3319         case I915_FORMAT_MOD_Yf_TILED_CCS:
3320                 /* FIXME AUX plane? */
3321         case I915_FORMAT_MOD_Y_TILED:
3322         case I915_FORMAT_MOD_Yf_TILED:
3323                 if (cpp == 8)
3324                         return 2048;
3325                 else
3326                         return 4096;
3327         default:
3328                 MISSING_CASE(fb->modifier);
3329                 return 2048;
3330         }
3331 }
3332
3333 static int glk_max_plane_width(const struct drm_framebuffer *fb,
3334                                int color_plane,
3335                                unsigned int rotation)
3336 {
3337         int cpp = fb->format->cpp[color_plane];
3338
3339         switch (fb->modifier) {
3340         case DRM_FORMAT_MOD_LINEAR:
3341         case I915_FORMAT_MOD_X_TILED:
3342                 if (cpp == 8)
3343                         return 4096;
3344                 else
3345                         return 5120;
3346         case I915_FORMAT_MOD_Y_TILED_CCS:
3347         case I915_FORMAT_MOD_Yf_TILED_CCS:
3348                 /* FIXME AUX plane? */
3349         case I915_FORMAT_MOD_Y_TILED:
3350         case I915_FORMAT_MOD_Yf_TILED:
3351                 if (cpp == 8)
3352                         return 2048;
3353                 else
3354                         return 5120;
3355         default:
3356                 MISSING_CASE(fb->modifier);
3357                 return 2048;
3358         }
3359 }
3360
3361 static int icl_max_plane_width(const struct drm_framebuffer *fb,
3362                                int color_plane,
3363                                unsigned int rotation)
3364 {
3365         return 5120;
3366 }
3367
3368 static int skl_max_plane_height(void)
3369 {
3370         return 4096;
3371 }
3372
3373 static int icl_max_plane_height(void)
3374 {
3375         return 4320;
3376 }
3377
3378 static bool skl_check_main_ccs_coordinates(struct intel_plane_state *plane_state,
3379                                            int main_x, int main_y, u32 main_offset)
3380 {
3381         const struct drm_framebuffer *fb = plane_state->base.fb;
3382         int hsub = fb->format->hsub;
3383         int vsub = fb->format->vsub;
3384         int aux_x = plane_state->color_plane[1].x;
3385         int aux_y = plane_state->color_plane[1].y;
3386         u32 aux_offset = plane_state->color_plane[1].offset;
3387         u32 alignment = intel_surf_alignment(fb, 1);
3388
3389         while (aux_offset >= main_offset && aux_y <= main_y) {
3390                 int x, y;
3391
3392                 if (aux_x == main_x && aux_y == main_y)
3393                         break;
3394
3395                 if (aux_offset == 0)
3396                         break;
3397
3398                 x = aux_x / hsub;
3399                 y = aux_y / vsub;
3400                 aux_offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 1,
3401                                                                aux_offset, aux_offset - alignment);
3402                 aux_x = x * hsub + aux_x % hsub;
3403                 aux_y = y * vsub + aux_y % vsub;
3404         }
3405
3406         if (aux_x != main_x || aux_y != main_y)
3407                 return false;
3408
3409         plane_state->color_plane[1].offset = aux_offset;
3410         plane_state->color_plane[1].x = aux_x;
3411         plane_state->color_plane[1].y = aux_y;
3412
3413         return true;
3414 }
3415
3416 static int skl_check_main_surface(struct intel_plane_state *plane_state)
3417 {
3418         struct drm_i915_private *dev_priv = to_i915(plane_state->base.plane->dev);
3419         const struct drm_framebuffer *fb = plane_state->base.fb;
3420         unsigned int rotation = plane_state->base.rotation;
3421         int x = plane_state->base.src.x1 >> 16;
3422         int y = plane_state->base.src.y1 >> 16;
3423         int w = drm_rect_width(&plane_state->base.src) >> 16;
3424         int h = drm_rect_height(&plane_state->base.src) >> 16;
3425         int max_width;
3426         int max_height;
3427         u32 alignment, offset, aux_offset = plane_state->color_plane[1].offset;
3428
3429         if (INTEL_GEN(dev_priv) >= 11)
3430                 max_width = icl_max_plane_width(fb, 0, rotation);
3431         else if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
3432                 max_width = glk_max_plane_width(fb, 0, rotation);
3433         else
3434                 max_width = skl_max_plane_width(fb, 0, rotation);
3435
3436         if (INTEL_GEN(dev_priv) >= 11)
3437                 max_height = icl_max_plane_height();
3438         else
3439                 max_height = skl_max_plane_height();
3440
3441         if (w > max_width || h > max_height) {
3442                 DRM_DEBUG_KMS("requested Y/RGB source size %dx%d too big (limit %dx%d)\n",
3443                               w, h, max_width, max_height);
3444                 return -EINVAL;
3445         }
3446
3447         intel_add_fb_offsets(&x, &y, plane_state, 0);
3448         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 0);
3449         alignment = intel_surf_alignment(fb, 0);
3450
3451         /*
3452          * AUX surface offset is specified as the distance from the
3453          * main surface offset, and it must be non-negative. Make
3454          * sure that is what we will get.
3455          */
3456         if (offset > aux_offset)
3457                 offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3458                                                            offset, aux_offset & ~(alignment - 1));
3459
3460         /*
3461          * When using an X-tiled surface, the plane blows up
3462          * if the x offset + width exceed the stride.
3463          *
3464          * TODO: linear and Y-tiled seem fine, Yf untested,
3465          */
3466         if (fb->modifier == I915_FORMAT_MOD_X_TILED) {
3467                 int cpp = fb->format->cpp[0];
3468
3469                 while ((x + w) * cpp > plane_state->color_plane[0].stride) {
3470                         if (offset == 0) {
3471                                 DRM_DEBUG_KMS("Unable to find suitable display surface offset due to X-tiling\n");
3472                                 return -EINVAL;
3473                         }
3474
3475                         offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3476                                                                    offset, offset - alignment);
3477                 }
3478         }
3479
3480         /*
3481          * CCS AUX surface doesn't have its own x/y offsets, we must make sure
3482          * they match with the main surface x/y offsets.
3483          */
3484         if (is_ccs_modifier(fb->modifier)) {
3485                 while (!skl_check_main_ccs_coordinates(plane_state, x, y, offset)) {
3486                         if (offset == 0)
3487                                 break;
3488
3489                         offset = intel_plane_adjust_aligned_offset(&x, &y, plane_state, 0,
3490                                                                    offset, offset - alignment);
3491                 }
3492
3493                 if (x != plane_state->color_plane[1].x || y != plane_state->color_plane[1].y) {
3494                         DRM_DEBUG_KMS("Unable to find suitable display surface offset due to CCS\n");
3495                         return -EINVAL;
3496                 }
3497         }
3498
3499         plane_state->color_plane[0].offset = offset;
3500         plane_state->color_plane[0].x = x;
3501         plane_state->color_plane[0].y = y;
3502
3503         /*
3504          * Put the final coordinates back so that the src
3505          * coordinate checks will see the right values.
3506          */
3507         drm_rect_translate_to(&plane_state->base.src,
3508                               x << 16, y << 16);
3509
3510         return 0;
3511 }
3512
3513 static int skl_check_nv12_aux_surface(struct intel_plane_state *plane_state)
3514 {
3515         const struct drm_framebuffer *fb = plane_state->base.fb;
3516         unsigned int rotation = plane_state->base.rotation;
3517         int max_width = skl_max_plane_width(fb, 1, rotation);
3518         int max_height = 4096;
3519         int x = plane_state->base.src.x1 >> 17;
3520         int y = plane_state->base.src.y1 >> 17;
3521         int w = drm_rect_width(&plane_state->base.src) >> 17;
3522         int h = drm_rect_height(&plane_state->base.src) >> 17;
3523         u32 offset;
3524
3525         intel_add_fb_offsets(&x, &y, plane_state, 1);
3526         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3527
3528         /* FIXME not quite sure how/if these apply to the chroma plane */
3529         if (w > max_width || h > max_height) {
3530                 DRM_DEBUG_KMS("CbCr source size %dx%d too big (limit %dx%d)\n",
3531                               w, h, max_width, max_height);
3532                 return -EINVAL;
3533         }
3534
3535         plane_state->color_plane[1].offset = offset;
3536         plane_state->color_plane[1].x = x;
3537         plane_state->color_plane[1].y = y;
3538
3539         return 0;
3540 }
3541
3542 static int skl_check_ccs_aux_surface(struct intel_plane_state *plane_state)
3543 {
3544         const struct drm_framebuffer *fb = plane_state->base.fb;
3545         int src_x = plane_state->base.src.x1 >> 16;
3546         int src_y = plane_state->base.src.y1 >> 16;
3547         int hsub = fb->format->hsub;
3548         int vsub = fb->format->vsub;
3549         int x = src_x / hsub;
3550         int y = src_y / vsub;
3551         u32 offset;
3552
3553         intel_add_fb_offsets(&x, &y, plane_state, 1);
3554         offset = intel_plane_compute_aligned_offset(&x, &y, plane_state, 1);
3555
3556         plane_state->color_plane[1].offset = offset;
3557         plane_state->color_plane[1].x = x * hsub + src_x % hsub;
3558         plane_state->color_plane[1].y = y * vsub + src_y % vsub;
3559
3560         return 0;
3561 }
3562
3563 int skl_check_plane_surface(struct intel_plane_state *plane_state)
3564 {
3565         const struct drm_framebuffer *fb = plane_state->base.fb;
3566         int ret;
3567
3568         ret = intel_plane_compute_gtt(plane_state);
3569         if (ret)
3570                 return ret;
3571
3572         if (!plane_state->base.visible)
3573                 return 0;
3574
3575         /*
3576          * Handle the AUX surface first since
3577          * the main surface setup depends on it.
3578          */
3579         if (drm_format_info_is_yuv_semiplanar(fb->format)) {
3580                 ret = skl_check_nv12_aux_surface(plane_state);
3581                 if (ret)
3582                         return ret;
3583         } else if (is_ccs_modifier(fb->modifier)) {
3584                 ret = skl_check_ccs_aux_surface(plane_state);
3585                 if (ret)
3586                         return ret;
3587         } else {
3588                 plane_state->color_plane[1].offset = ~0xfff;
3589                 plane_state->color_plane[1].x = 0;
3590                 plane_state->color_plane[1].y = 0;
3591         }
3592
3593         ret = skl_check_main_surface(plane_state);
3594         if (ret)
3595                 return ret;
3596
3597         return 0;
3598 }
3599
3600 static void i9xx_plane_ratio(const struct intel_crtc_state *crtc_state,
3601                              const struct intel_plane_state *plane_state,
3602                              unsigned int *num, unsigned int *den)
3603 {
3604         const struct drm_framebuffer *fb = plane_state->base.fb;
3605         unsigned int cpp = fb->format->cpp[0];
3606
3607         /*
3608          * g4x bspec says 64bpp pixel rate can't exceed 80%
3609          * of cdclk when the sprite plane is enabled on the
3610          * same pipe. ilk/snb bspec says 64bpp pixel rate is
3611          * never allowed to exceed 80% of cdclk. Let's just go
3612          * with the ilk/snb limit always.
3613          */
3614         if (cpp == 8) {
3615                 *num = 10;
3616                 *den = 8;
3617         } else {
3618                 *num = 1;
3619                 *den = 1;
3620         }
3621 }
3622
3623 static int i9xx_plane_min_cdclk(const struct intel_crtc_state *crtc_state,
3624                                 const struct intel_plane_state *plane_state)
3625 {
3626         unsigned int pixel_rate;
3627         unsigned int num, den;
3628
3629         /*
3630          * Note that crtc_state->pixel_rate accounts for both
3631          * horizontal and vertical panel fitter downscaling factors.
3632          * Pre-HSW bspec tells us to only consider the horizontal
3633          * downscaling factor here. We ignore that and just consider
3634          * both for simplicity.
3635          */
3636         pixel_rate = crtc_state->pixel_rate;
3637
3638         i9xx_plane_ratio(crtc_state, plane_state, &num, &den);
3639
3640         /* two pixels per clock with double wide pipe */
3641         if (crtc_state->double_wide)
3642                 den *= 2;
3643
3644         return DIV_ROUND_UP(pixel_rate * num, den);
3645 }
3646
3647 unsigned int
3648 i9xx_plane_max_stride(struct intel_plane *plane,
3649                       u32 pixel_format, u64 modifier,
3650                       unsigned int rotation)
3651 {
3652         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3653
3654         if (!HAS_GMCH(dev_priv)) {
3655                 return 32*1024;
3656         } else if (INTEL_GEN(dev_priv) >= 4) {
3657                 if (modifier == I915_FORMAT_MOD_X_TILED)
3658                         return 16*1024;
3659                 else
3660                         return 32*1024;
3661         } else if (INTEL_GEN(dev_priv) >= 3) {
3662                 if (modifier == I915_FORMAT_MOD_X_TILED)
3663                         return 8*1024;
3664                 else
3665                         return 16*1024;
3666         } else {
3667                 if (plane->i9xx_plane == PLANE_C)
3668                         return 4*1024;
3669                 else
3670                         return 8*1024;
3671         }
3672 }
3673
3674 static u32 i9xx_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
3675 {
3676         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
3677         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
3678         u32 dspcntr = 0;
3679
3680         if (crtc_state->gamma_enable)
3681                 dspcntr |= DISPPLANE_GAMMA_ENABLE;
3682
3683         if (crtc_state->csc_enable)
3684                 dspcntr |= DISPPLANE_PIPE_CSC_ENABLE;
3685
3686         if (INTEL_GEN(dev_priv) < 5)
3687                 dspcntr |= DISPPLANE_SEL_PIPE(crtc->pipe);
3688
3689         return dspcntr;
3690 }
3691
3692 static u32 i9xx_plane_ctl(const struct intel_crtc_state *crtc_state,
3693                           const struct intel_plane_state *plane_state)
3694 {
3695         struct drm_i915_private *dev_priv =
3696                 to_i915(plane_state->base.plane->dev);
3697         const struct drm_framebuffer *fb = plane_state->base.fb;
3698         unsigned int rotation = plane_state->base.rotation;
3699         u32 dspcntr;
3700
3701         dspcntr = DISPLAY_PLANE_ENABLE;
3702
3703         if (IS_G4X(dev_priv) || IS_GEN(dev_priv, 5) ||
3704             IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
3705                 dspcntr |= DISPPLANE_TRICKLE_FEED_DISABLE;
3706
3707         switch (fb->format->format) {
3708         case DRM_FORMAT_C8:
3709                 dspcntr |= DISPPLANE_8BPP;
3710                 break;
3711         case DRM_FORMAT_XRGB1555:
3712                 dspcntr |= DISPPLANE_BGRX555;
3713                 break;
3714         case DRM_FORMAT_RGB565:
3715                 dspcntr |= DISPPLANE_BGRX565;
3716                 break;
3717         case DRM_FORMAT_XRGB8888:
3718                 dspcntr |= DISPPLANE_BGRX888;
3719                 break;
3720         case DRM_FORMAT_XBGR8888:
3721                 dspcntr |= DISPPLANE_RGBX888;
3722                 break;
3723         case DRM_FORMAT_XRGB2101010:
3724                 dspcntr |= DISPPLANE_BGRX101010;
3725                 break;
3726         case DRM_FORMAT_XBGR2101010:
3727                 dspcntr |= DISPPLANE_RGBX101010;
3728                 break;
3729         case DRM_FORMAT_XBGR16161616F:
3730                 dspcntr |= DISPPLANE_RGBX161616;
3731                 break;
3732         default:
3733                 MISSING_CASE(fb->format->format);
3734                 return 0;
3735         }
3736
3737         if (INTEL_GEN(dev_priv) >= 4 &&
3738             fb->modifier == I915_FORMAT_MOD_X_TILED)
3739                 dspcntr |= DISPPLANE_TILED;
3740
3741         if (rotation & DRM_MODE_ROTATE_180)
3742                 dspcntr |= DISPPLANE_ROTATE_180;
3743
3744         if (rotation & DRM_MODE_REFLECT_X)
3745                 dspcntr |= DISPPLANE_MIRROR;
3746
3747         return dspcntr;
3748 }
3749
3750 int i9xx_check_plane_surface(struct intel_plane_state *plane_state)
3751 {
3752         struct drm_i915_private *dev_priv =
3753                 to_i915(plane_state->base.plane->dev);
3754         const struct drm_framebuffer *fb = plane_state->base.fb;
3755         int src_x, src_y, src_w;
3756         u32 offset;
3757         int ret;
3758
3759         ret = intel_plane_compute_gtt(plane_state);
3760         if (ret)
3761                 return ret;
3762
3763         if (!plane_state->base.visible)
3764                 return 0;
3765
3766         src_w = drm_rect_width(&plane_state->base.src) >> 16;
3767         src_x = plane_state->base.src.x1 >> 16;
3768         src_y = plane_state->base.src.y1 >> 16;
3769
3770         /* Undocumented hardware limit on i965/g4x/vlv/chv */
3771         if (HAS_GMCH(dev_priv) && fb->format->cpp[0] == 8 && src_w > 2048)
3772                 return -EINVAL;
3773
3774         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
3775
3776         if (INTEL_GEN(dev_priv) >= 4)
3777                 offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
3778                                                             plane_state, 0);
3779         else
3780                 offset = 0;
3781
3782         /*
3783          * Put the final coordinates back so that the src
3784          * coordinate checks will see the right values.
3785          */
3786         drm_rect_translate_to(&plane_state->base.src,
3787                               src_x << 16, src_y << 16);
3788
3789         /* HSW/BDW do this automagically in hardware */
3790         if (!IS_HASWELL(dev_priv) && !IS_BROADWELL(dev_priv)) {
3791                 unsigned int rotation = plane_state->base.rotation;
3792                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
3793                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
3794
3795                 if (rotation & DRM_MODE_ROTATE_180) {
3796                         src_x += src_w - 1;
3797                         src_y += src_h - 1;
3798                 } else if (rotation & DRM_MODE_REFLECT_X) {
3799                         src_x += src_w - 1;
3800                 }
3801         }
3802
3803         plane_state->color_plane[0].offset = offset;
3804         plane_state->color_plane[0].x = src_x;
3805         plane_state->color_plane[0].y = src_y;
3806
3807         return 0;
3808 }
3809
3810 static bool i9xx_plane_has_windowing(struct intel_plane *plane)
3811 {
3812         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3813         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3814
3815         if (IS_CHERRYVIEW(dev_priv))
3816                 return i9xx_plane == PLANE_B;
3817         else if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
3818                 return false;
3819         else if (IS_GEN(dev_priv, 4))
3820                 return i9xx_plane == PLANE_C;
3821         else
3822                 return i9xx_plane == PLANE_B ||
3823                         i9xx_plane == PLANE_C;
3824 }
3825
3826 static int
3827 i9xx_plane_check(struct intel_crtc_state *crtc_state,
3828                  struct intel_plane_state *plane_state)
3829 {
3830         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
3831         int ret;
3832
3833         ret = chv_plane_check_rotation(plane_state);
3834         if (ret)
3835                 return ret;
3836
3837         ret = drm_atomic_helper_check_plane_state(&plane_state->base,
3838                                                   &crtc_state->base,
3839                                                   DRM_PLANE_HELPER_NO_SCALING,
3840                                                   DRM_PLANE_HELPER_NO_SCALING,
3841                                                   i9xx_plane_has_windowing(plane),
3842                                                   true);
3843         if (ret)
3844                 return ret;
3845
3846         ret = i9xx_check_plane_surface(plane_state);
3847         if (ret)
3848                 return ret;
3849
3850         if (!plane_state->base.visible)
3851                 return 0;
3852
3853         ret = intel_plane_check_src_coordinates(plane_state);
3854         if (ret)
3855                 return ret;
3856
3857         plane_state->ctl = i9xx_plane_ctl(crtc_state, plane_state);
3858
3859         return 0;
3860 }
3861
3862 static void i9xx_update_plane(struct intel_plane *plane,
3863                               const struct intel_crtc_state *crtc_state,
3864                               const struct intel_plane_state *plane_state)
3865 {
3866         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3867         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3868         u32 linear_offset;
3869         int x = plane_state->color_plane[0].x;
3870         int y = plane_state->color_plane[0].y;
3871         int crtc_x = plane_state->base.dst.x1;
3872         int crtc_y = plane_state->base.dst.y1;
3873         int crtc_w = drm_rect_width(&plane_state->base.dst);
3874         int crtc_h = drm_rect_height(&plane_state->base.dst);
3875         unsigned long irqflags;
3876         u32 dspaddr_offset;
3877         u32 dspcntr;
3878
3879         dspcntr = plane_state->ctl | i9xx_plane_ctl_crtc(crtc_state);
3880
3881         linear_offset = intel_fb_xy_to_linear(x, y, plane_state, 0);
3882
3883         if (INTEL_GEN(dev_priv) >= 4)
3884                 dspaddr_offset = plane_state->color_plane[0].offset;
3885         else
3886                 dspaddr_offset = linear_offset;
3887
3888         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3889
3890         I915_WRITE_FW(DSPSTRIDE(i9xx_plane), plane_state->color_plane[0].stride);
3891
3892         if (INTEL_GEN(dev_priv) < 4) {
3893                 /*
3894                  * PLANE_A doesn't actually have a full window
3895                  * generator but let's assume we still need to
3896                  * program whatever is there.
3897                  */
3898                 I915_WRITE_FW(DSPPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
3899                 I915_WRITE_FW(DSPSIZE(i9xx_plane),
3900                               ((crtc_h - 1) << 16) | (crtc_w - 1));
3901         } else if (IS_CHERRYVIEW(dev_priv) && i9xx_plane == PLANE_B) {
3902                 I915_WRITE_FW(PRIMPOS(i9xx_plane), (crtc_y << 16) | crtc_x);
3903                 I915_WRITE_FW(PRIMSIZE(i9xx_plane),
3904                               ((crtc_h - 1) << 16) | (crtc_w - 1));
3905                 I915_WRITE_FW(PRIMCNSTALPHA(i9xx_plane), 0);
3906         }
3907
3908         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
3909                 I915_WRITE_FW(DSPOFFSET(i9xx_plane), (y << 16) | x);
3910         } else if (INTEL_GEN(dev_priv) >= 4) {
3911                 I915_WRITE_FW(DSPLINOFF(i9xx_plane), linear_offset);
3912                 I915_WRITE_FW(DSPTILEOFF(i9xx_plane), (y << 16) | x);
3913         }
3914
3915         /*
3916          * The control register self-arms if the plane was previously
3917          * disabled. Try to make the plane enable atomic by writing
3918          * the control register just before the surface register.
3919          */
3920         I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3921         if (INTEL_GEN(dev_priv) >= 4)
3922                 I915_WRITE_FW(DSPSURF(i9xx_plane),
3923                               intel_plane_ggtt_offset(plane_state) +
3924                               dspaddr_offset);
3925         else
3926                 I915_WRITE_FW(DSPADDR(i9xx_plane),
3927                               intel_plane_ggtt_offset(plane_state) +
3928                               dspaddr_offset);
3929
3930         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3931 }
3932
3933 static void i9xx_disable_plane(struct intel_plane *plane,
3934                                const struct intel_crtc_state *crtc_state)
3935 {
3936         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3937         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3938         unsigned long irqflags;
3939         u32 dspcntr;
3940
3941         /*
3942          * DSPCNTR pipe gamma enable on g4x+ and pipe csc
3943          * enable on ilk+ affect the pipe bottom color as
3944          * well, so we must configure them even if the plane
3945          * is disabled.
3946          *
3947          * On pre-g4x there is no way to gamma correct the
3948          * pipe bottom color but we'll keep on doing this
3949          * anyway so that the crtc state readout works correctly.
3950          */
3951         dspcntr = i9xx_plane_ctl_crtc(crtc_state);
3952
3953         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
3954
3955         I915_WRITE_FW(DSPCNTR(i9xx_plane), dspcntr);
3956         if (INTEL_GEN(dev_priv) >= 4)
3957                 I915_WRITE_FW(DSPSURF(i9xx_plane), 0);
3958         else
3959                 I915_WRITE_FW(DSPADDR(i9xx_plane), 0);
3960
3961         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
3962 }
3963
3964 static bool i9xx_plane_get_hw_state(struct intel_plane *plane,
3965                                     enum pipe *pipe)
3966 {
3967         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
3968         enum intel_display_power_domain power_domain;
3969         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
3970         intel_wakeref_t wakeref;
3971         bool ret;
3972         u32 val;
3973
3974         /*
3975          * Not 100% correct for planes that can move between pipes,
3976          * but that's only the case for gen2-4 which don't have any
3977          * display power wells.
3978          */
3979         power_domain = POWER_DOMAIN_PIPE(plane->pipe);
3980         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
3981         if (!wakeref)
3982                 return false;
3983
3984         val = I915_READ(DSPCNTR(i9xx_plane));
3985
3986         ret = val & DISPLAY_PLANE_ENABLE;
3987
3988         if (INTEL_GEN(dev_priv) >= 5)
3989                 *pipe = plane->pipe;
3990         else
3991                 *pipe = (val & DISPPLANE_SEL_PIPE_MASK) >>
3992                         DISPPLANE_SEL_PIPE_SHIFT;
3993
3994         intel_display_power_put(dev_priv, power_domain, wakeref);
3995
3996         return ret;
3997 }
3998
3999 static void skl_detach_scaler(struct intel_crtc *intel_crtc, int id)
4000 {
4001         struct drm_device *dev = intel_crtc->base.dev;
4002         struct drm_i915_private *dev_priv = to_i915(dev);
4003
4004         I915_WRITE(SKL_PS_CTRL(intel_crtc->pipe, id), 0);
4005         I915_WRITE(SKL_PS_WIN_POS(intel_crtc->pipe, id), 0);
4006         I915_WRITE(SKL_PS_WIN_SZ(intel_crtc->pipe, id), 0);
4007 }
4008
4009 /*
4010  * This function detaches (aka. unbinds) unused scalers in hardware
4011  */
4012 static void skl_detach_scalers(const struct intel_crtc_state *crtc_state)
4013 {
4014         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4015         const struct intel_crtc_scaler_state *scaler_state =
4016                 &crtc_state->scaler_state;
4017         int i;
4018
4019         /* loop through and disable scalers that aren't in use */
4020         for (i = 0; i < intel_crtc->num_scalers; i++) {
4021                 if (!scaler_state->scalers[i].in_use)
4022                         skl_detach_scaler(intel_crtc, i);
4023         }
4024 }
4025
4026 static unsigned int skl_plane_stride_mult(const struct drm_framebuffer *fb,
4027                                           int color_plane, unsigned int rotation)
4028 {
4029         /*
4030          * The stride is either expressed as a multiple of 64 bytes chunks for
4031          * linear buffers or in number of tiles for tiled buffers.
4032          */
4033         if (fb->modifier == DRM_FORMAT_MOD_LINEAR)
4034                 return 64;
4035         else if (drm_rotation_90_or_270(rotation))
4036                 return intel_tile_height(fb, color_plane);
4037         else
4038                 return intel_tile_width_bytes(fb, color_plane);
4039 }
4040
4041 u32 skl_plane_stride(const struct intel_plane_state *plane_state,
4042                      int color_plane)
4043 {
4044         const struct drm_framebuffer *fb = plane_state->base.fb;
4045         unsigned int rotation = plane_state->base.rotation;
4046         u32 stride = plane_state->color_plane[color_plane].stride;
4047
4048         if (color_plane >= fb->format->num_planes)
4049                 return 0;
4050
4051         return stride / skl_plane_stride_mult(fb, color_plane, rotation);
4052 }
4053
4054 static u32 skl_plane_ctl_format(u32 pixel_format)
4055 {
4056         switch (pixel_format) {
4057         case DRM_FORMAT_C8:
4058                 return PLANE_CTL_FORMAT_INDEXED;
4059         case DRM_FORMAT_RGB565:
4060                 return PLANE_CTL_FORMAT_RGB_565;
4061         case DRM_FORMAT_XBGR8888:
4062         case DRM_FORMAT_ABGR8888:
4063                 return PLANE_CTL_FORMAT_XRGB_8888 | PLANE_CTL_ORDER_RGBX;
4064         case DRM_FORMAT_XRGB8888:
4065         case DRM_FORMAT_ARGB8888:
4066                 return PLANE_CTL_FORMAT_XRGB_8888;
4067         case DRM_FORMAT_XBGR2101010:
4068                 return PLANE_CTL_FORMAT_XRGB_2101010 | PLANE_CTL_ORDER_RGBX;
4069         case DRM_FORMAT_XRGB2101010:
4070                 return PLANE_CTL_FORMAT_XRGB_2101010;
4071         case DRM_FORMAT_XBGR16161616F:
4072         case DRM_FORMAT_ABGR16161616F:
4073                 return PLANE_CTL_FORMAT_XRGB_16161616F | PLANE_CTL_ORDER_RGBX;
4074         case DRM_FORMAT_XRGB16161616F:
4075         case DRM_FORMAT_ARGB16161616F:
4076                 return PLANE_CTL_FORMAT_XRGB_16161616F;
4077         case DRM_FORMAT_YUYV:
4078                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YUYV;
4079         case DRM_FORMAT_YVYU:
4080                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_YVYU;
4081         case DRM_FORMAT_UYVY:
4082                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_UYVY;
4083         case DRM_FORMAT_VYUY:
4084                 return PLANE_CTL_FORMAT_YUV422 | PLANE_CTL_YUV422_VYUY;
4085         case DRM_FORMAT_NV12:
4086                 return PLANE_CTL_FORMAT_NV12;
4087         case DRM_FORMAT_P010:
4088                 return PLANE_CTL_FORMAT_P010;
4089         case DRM_FORMAT_P012:
4090                 return PLANE_CTL_FORMAT_P012;
4091         case DRM_FORMAT_P016:
4092                 return PLANE_CTL_FORMAT_P016;
4093         case DRM_FORMAT_Y210:
4094                 return PLANE_CTL_FORMAT_Y210;
4095         case DRM_FORMAT_Y212:
4096                 return PLANE_CTL_FORMAT_Y212;
4097         case DRM_FORMAT_Y216:
4098                 return PLANE_CTL_FORMAT_Y216;
4099         case DRM_FORMAT_XVYU2101010:
4100                 return PLANE_CTL_FORMAT_Y410;
4101         case DRM_FORMAT_XVYU12_16161616:
4102                 return PLANE_CTL_FORMAT_Y412;
4103         case DRM_FORMAT_XVYU16161616:
4104                 return PLANE_CTL_FORMAT_Y416;
4105         default:
4106                 MISSING_CASE(pixel_format);
4107         }
4108
4109         return 0;
4110 }
4111
4112 static u32 skl_plane_ctl_alpha(const struct intel_plane_state *plane_state)
4113 {
4114         if (!plane_state->base.fb->format->has_alpha)
4115                 return PLANE_CTL_ALPHA_DISABLE;
4116
4117         switch (plane_state->base.pixel_blend_mode) {
4118         case DRM_MODE_BLEND_PIXEL_NONE:
4119                 return PLANE_CTL_ALPHA_DISABLE;
4120         case DRM_MODE_BLEND_PREMULTI:
4121                 return PLANE_CTL_ALPHA_SW_PREMULTIPLY;
4122         case DRM_MODE_BLEND_COVERAGE:
4123                 return PLANE_CTL_ALPHA_HW_PREMULTIPLY;
4124         default:
4125                 MISSING_CASE(plane_state->base.pixel_blend_mode);
4126                 return PLANE_CTL_ALPHA_DISABLE;
4127         }
4128 }
4129
4130 static u32 glk_plane_color_ctl_alpha(const struct intel_plane_state *plane_state)
4131 {
4132         if (!plane_state->base.fb->format->has_alpha)
4133                 return PLANE_COLOR_ALPHA_DISABLE;
4134
4135         switch (plane_state->base.pixel_blend_mode) {
4136         case DRM_MODE_BLEND_PIXEL_NONE:
4137                 return PLANE_COLOR_ALPHA_DISABLE;
4138         case DRM_MODE_BLEND_PREMULTI:
4139                 return PLANE_COLOR_ALPHA_SW_PREMULTIPLY;
4140         case DRM_MODE_BLEND_COVERAGE:
4141                 return PLANE_COLOR_ALPHA_HW_PREMULTIPLY;
4142         default:
4143                 MISSING_CASE(plane_state->base.pixel_blend_mode);
4144                 return PLANE_COLOR_ALPHA_DISABLE;
4145         }
4146 }
4147
4148 static u32 skl_plane_ctl_tiling(u64 fb_modifier)
4149 {
4150         switch (fb_modifier) {
4151         case DRM_FORMAT_MOD_LINEAR:
4152                 break;
4153         case I915_FORMAT_MOD_X_TILED:
4154                 return PLANE_CTL_TILED_X;
4155         case I915_FORMAT_MOD_Y_TILED:
4156                 return PLANE_CTL_TILED_Y;
4157         case I915_FORMAT_MOD_Y_TILED_CCS:
4158                 return PLANE_CTL_TILED_Y | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4159         case I915_FORMAT_MOD_Yf_TILED:
4160                 return PLANE_CTL_TILED_YF;
4161         case I915_FORMAT_MOD_Yf_TILED_CCS:
4162                 return PLANE_CTL_TILED_YF | PLANE_CTL_RENDER_DECOMPRESSION_ENABLE;
4163         default:
4164                 MISSING_CASE(fb_modifier);
4165         }
4166
4167         return 0;
4168 }
4169
4170 static u32 skl_plane_ctl_rotate(unsigned int rotate)
4171 {
4172         switch (rotate) {
4173         case DRM_MODE_ROTATE_0:
4174                 break;
4175         /*
4176          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
4177          * while i915 HW rotation is clockwise, thats why this swapping.
4178          */
4179         case DRM_MODE_ROTATE_90:
4180                 return PLANE_CTL_ROTATE_270;
4181         case DRM_MODE_ROTATE_180:
4182                 return PLANE_CTL_ROTATE_180;
4183         case DRM_MODE_ROTATE_270:
4184                 return PLANE_CTL_ROTATE_90;
4185         default:
4186                 MISSING_CASE(rotate);
4187         }
4188
4189         return 0;
4190 }
4191
4192 static u32 cnl_plane_ctl_flip(unsigned int reflect)
4193 {
4194         switch (reflect) {
4195         case 0:
4196                 break;
4197         case DRM_MODE_REFLECT_X:
4198                 return PLANE_CTL_FLIP_HORIZONTAL;
4199         case DRM_MODE_REFLECT_Y:
4200         default:
4201                 MISSING_CASE(reflect);
4202         }
4203
4204         return 0;
4205 }
4206
4207 u32 skl_plane_ctl_crtc(const struct intel_crtc_state *crtc_state)
4208 {
4209         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4210         u32 plane_ctl = 0;
4211
4212         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
4213                 return plane_ctl;
4214
4215         if (crtc_state->gamma_enable)
4216                 plane_ctl |= PLANE_CTL_PIPE_GAMMA_ENABLE;
4217
4218         if (crtc_state->csc_enable)
4219                 plane_ctl |= PLANE_CTL_PIPE_CSC_ENABLE;
4220
4221         return plane_ctl;
4222 }
4223
4224 u32 skl_plane_ctl(const struct intel_crtc_state *crtc_state,
4225                   const struct intel_plane_state *plane_state)
4226 {
4227         struct drm_i915_private *dev_priv =
4228                 to_i915(plane_state->base.plane->dev);
4229         const struct drm_framebuffer *fb = plane_state->base.fb;
4230         unsigned int rotation = plane_state->base.rotation;
4231         const struct drm_intel_sprite_colorkey *key = &plane_state->ckey;
4232         u32 plane_ctl;
4233
4234         plane_ctl = PLANE_CTL_ENABLE;
4235
4236         if (INTEL_GEN(dev_priv) < 10 && !IS_GEMINILAKE(dev_priv)) {
4237                 plane_ctl |= skl_plane_ctl_alpha(plane_state);
4238                 plane_ctl |= PLANE_CTL_PLANE_GAMMA_DISABLE;
4239
4240                 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4241                         plane_ctl |= PLANE_CTL_YUV_TO_RGB_CSC_FORMAT_BT709;
4242
4243                 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4244                         plane_ctl |= PLANE_CTL_YUV_RANGE_CORRECTION_DISABLE;
4245         }
4246
4247         plane_ctl |= skl_plane_ctl_format(fb->format->format);
4248         plane_ctl |= skl_plane_ctl_tiling(fb->modifier);
4249         plane_ctl |= skl_plane_ctl_rotate(rotation & DRM_MODE_ROTATE_MASK);
4250
4251         if (INTEL_GEN(dev_priv) >= 10)
4252                 plane_ctl |= cnl_plane_ctl_flip(rotation &
4253                                                 DRM_MODE_REFLECT_MASK);
4254
4255         if (key->flags & I915_SET_COLORKEY_DESTINATION)
4256                 plane_ctl |= PLANE_CTL_KEY_ENABLE_DESTINATION;
4257         else if (key->flags & I915_SET_COLORKEY_SOURCE)
4258                 plane_ctl |= PLANE_CTL_KEY_ENABLE_SOURCE;
4259
4260         return plane_ctl;
4261 }
4262
4263 u32 glk_plane_color_ctl_crtc(const struct intel_crtc_state *crtc_state)
4264 {
4265         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
4266         u32 plane_color_ctl = 0;
4267
4268         if (INTEL_GEN(dev_priv) >= 11)
4269                 return plane_color_ctl;
4270
4271         if (crtc_state->gamma_enable)
4272                 plane_color_ctl |= PLANE_COLOR_PIPE_GAMMA_ENABLE;
4273
4274         if (crtc_state->csc_enable)
4275                 plane_color_ctl |= PLANE_COLOR_PIPE_CSC_ENABLE;
4276
4277         return plane_color_ctl;
4278 }
4279
4280 u32 glk_plane_color_ctl(const struct intel_crtc_state *crtc_state,
4281                         const struct intel_plane_state *plane_state)
4282 {
4283         struct drm_i915_private *dev_priv =
4284                 to_i915(plane_state->base.plane->dev);
4285         const struct drm_framebuffer *fb = plane_state->base.fb;
4286         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
4287         u32 plane_color_ctl = 0;
4288
4289         plane_color_ctl |= PLANE_COLOR_PLANE_GAMMA_DISABLE;
4290         plane_color_ctl |= glk_plane_color_ctl_alpha(plane_state);
4291
4292         if (fb->format->is_yuv && !icl_is_hdr_plane(dev_priv, plane->id)) {
4293                 if (plane_state->base.color_encoding == DRM_COLOR_YCBCR_BT709)
4294                         plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV709_TO_RGB709;
4295                 else
4296                         plane_color_ctl |= PLANE_COLOR_CSC_MODE_YUV601_TO_RGB709;
4297
4298                 if (plane_state->base.color_range == DRM_COLOR_YCBCR_FULL_RANGE)
4299                         plane_color_ctl |= PLANE_COLOR_YUV_RANGE_CORRECTION_DISABLE;
4300         } else if (fb->format->is_yuv) {
4301                 plane_color_ctl |= PLANE_COLOR_INPUT_CSC_ENABLE;
4302         }
4303
4304         return plane_color_ctl;
4305 }
4306
4307 static int
4308 __intel_display_resume(struct drm_device *dev,
4309                        struct drm_atomic_state *state,
4310                        struct drm_modeset_acquire_ctx *ctx)
4311 {
4312         struct drm_crtc_state *crtc_state;
4313         struct drm_crtc *crtc;
4314         int i, ret;
4315
4316         intel_modeset_setup_hw_state(dev, ctx);
4317         intel_vga_redisable(to_i915(dev));
4318
4319         if (!state)
4320                 return 0;
4321
4322         /*
4323          * We've duplicated the state, pointers to the old state are invalid.
4324          *
4325          * Don't attempt to use the old state until we commit the duplicated state.
4326          */
4327         for_each_new_crtc_in_state(state, crtc, crtc_state, i) {
4328                 /*
4329                  * Force recalculation even if we restore
4330                  * current state. With fast modeset this may not result
4331                  * in a modeset when the state is compatible.
4332                  */
4333                 crtc_state->mode_changed = true;
4334         }
4335
4336         /* ignore any reset values/BIOS leftovers in the WM registers */
4337         if (!HAS_GMCH(to_i915(dev)))
4338                 to_intel_atomic_state(state)->skip_intermediate_wm = true;
4339
4340         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
4341
4342         WARN_ON(ret == -EDEADLK);
4343         return ret;
4344 }
4345
4346 static bool gpu_reset_clobbers_display(struct drm_i915_private *dev_priv)
4347 {
4348         return (INTEL_INFO(dev_priv)->gpu_reset_clobbers_display &&
4349                 intel_has_gpu_reset(&dev_priv->gt));
4350 }
4351
4352 void intel_prepare_reset(struct drm_i915_private *dev_priv)
4353 {
4354         struct drm_device *dev = &dev_priv->drm;
4355         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4356         struct drm_atomic_state *state;
4357         int ret;
4358
4359         /* reset doesn't touch the display */
4360         if (!i915_modparams.force_reset_modeset_test &&
4361             !gpu_reset_clobbers_display(dev_priv))
4362                 return;
4363
4364         /* We have a modeset vs reset deadlock, defensively unbreak it. */
4365         set_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4366         smp_mb__after_atomic();
4367         wake_up_bit(&dev_priv->gt.reset.flags, I915_RESET_MODESET);
4368
4369         if (atomic_read(&dev_priv->gpu_error.pending_fb_pin)) {
4370                 DRM_DEBUG_KMS("Modeset potentially stuck, unbreaking through wedging\n");
4371                 intel_gt_set_wedged(&dev_priv->gt);
4372         }
4373
4374         /*
4375          * Need mode_config.mutex so that we don't
4376          * trample ongoing ->detect() and whatnot.
4377          */
4378         mutex_lock(&dev->mode_config.mutex);
4379         drm_modeset_acquire_init(ctx, 0);
4380         while (1) {
4381                 ret = drm_modeset_lock_all_ctx(dev, ctx);
4382                 if (ret != -EDEADLK)
4383                         break;
4384
4385                 drm_modeset_backoff(ctx);
4386         }
4387         /*
4388          * Disabling the crtcs gracefully seems nicer. Also the
4389          * g33 docs say we should at least disable all the planes.
4390          */
4391         state = drm_atomic_helper_duplicate_state(dev, ctx);
4392         if (IS_ERR(state)) {
4393                 ret = PTR_ERR(state);
4394                 DRM_ERROR("Duplicating state failed with %i\n", ret);
4395                 return;
4396         }
4397
4398         ret = drm_atomic_helper_disable_all(dev, ctx);
4399         if (ret) {
4400                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
4401                 drm_atomic_state_put(state);
4402                 return;
4403         }
4404
4405         dev_priv->modeset_restore_state = state;
4406         state->acquire_ctx = ctx;
4407 }
4408
4409 void intel_finish_reset(struct drm_i915_private *dev_priv)
4410 {
4411         struct drm_device *dev = &dev_priv->drm;
4412         struct drm_modeset_acquire_ctx *ctx = &dev_priv->reset_ctx;
4413         struct drm_atomic_state *state;
4414         int ret;
4415
4416         /* reset doesn't touch the display */
4417         if (!test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
4418                 return;
4419
4420         state = fetch_and_zero(&dev_priv->modeset_restore_state);
4421         if (!state)
4422                 goto unlock;
4423
4424         /* reset doesn't touch the display */
4425         if (!gpu_reset_clobbers_display(dev_priv)) {
4426                 /* for testing only restore the display */
4427                 ret = __intel_display_resume(dev, state, ctx);
4428                 if (ret)
4429                         DRM_ERROR("Restoring old state failed with %i\n", ret);
4430         } else {
4431                 /*
4432                  * The display has been reset as well,
4433                  * so need a full re-initialization.
4434                  */
4435                 intel_pps_unlock_regs_wa(dev_priv);
4436                 intel_modeset_init_hw(dev_priv);
4437                 intel_init_clock_gating(dev_priv);
4438
4439                 spin_lock_irq(&dev_priv->irq_lock);
4440                 if (dev_priv->display.hpd_irq_setup)
4441                         dev_priv->display.hpd_irq_setup(dev_priv);
4442                 spin_unlock_irq(&dev_priv->irq_lock);
4443
4444                 ret = __intel_display_resume(dev, state, ctx);
4445                 if (ret)
4446                         DRM_ERROR("Restoring old state failed with %i\n", ret);
4447
4448                 intel_hpd_init(dev_priv);
4449         }
4450
4451         drm_atomic_state_put(state);
4452 unlock:
4453         drm_modeset_drop_locks(ctx);
4454         drm_modeset_acquire_fini(ctx);
4455         mutex_unlock(&dev->mode_config.mutex);
4456
4457         clear_bit_unlock(I915_RESET_MODESET, &dev_priv->gt.reset.flags);
4458 }
4459
4460 static void icl_set_pipe_chicken(struct intel_crtc *crtc)
4461 {
4462         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4463         enum pipe pipe = crtc->pipe;
4464         u32 tmp;
4465
4466         tmp = I915_READ(PIPE_CHICKEN(pipe));
4467
4468         /*
4469          * Display WA #1153: icl
4470          * enable hardware to bypass the alpha math
4471          * and rounding for per-pixel values 00 and 0xff
4472          */
4473         tmp |= PER_PIXEL_ALPHA_BYPASS_EN;
4474         /*
4475          * Display WA # 1605353570: icl
4476          * Set the pixel rounding bit to 1 for allowing
4477          * passthrough of Frame buffer pixels unmodified
4478          * across pipe
4479          */
4480         tmp |= PIXEL_ROUNDING_TRUNC_FB_PASSTHRU;
4481         I915_WRITE(PIPE_CHICKEN(pipe), tmp);
4482 }
4483
4484 static void icl_enable_trans_port_sync(const struct intel_crtc_state *crtc_state)
4485 {
4486         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
4487         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4488         u32 trans_ddi_func_ctl2_val;
4489         u8 master_select;
4490
4491         /*
4492          * Configure the master select and enable Transcoder Port Sync for
4493          * Slave CRTCs transcoder.
4494          */
4495         if (crtc_state->master_transcoder == INVALID_TRANSCODER)
4496                 return;
4497
4498         if (crtc_state->master_transcoder == TRANSCODER_EDP)
4499                 master_select = 0;
4500         else
4501                 master_select = crtc_state->master_transcoder + 1;
4502
4503         /* Set the master select bits for Tranascoder Port Sync */
4504         trans_ddi_func_ctl2_val = (PORT_SYNC_MODE_MASTER_SELECT(master_select) &
4505                                    PORT_SYNC_MODE_MASTER_SELECT_MASK) <<
4506                 PORT_SYNC_MODE_MASTER_SELECT_SHIFT;
4507         /* Enable Transcoder Port Sync */
4508         trans_ddi_func_ctl2_val |= PORT_SYNC_MODE_ENABLE;
4509
4510         I915_WRITE(TRANS_DDI_FUNC_CTL2(crtc_state->cpu_transcoder),
4511                    trans_ddi_func_ctl2_val);
4512 }
4513
4514 static void icl_disable_transcoder_port_sync(const struct intel_crtc_state *old_crtc_state)
4515 {
4516         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
4517         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
4518         i915_reg_t reg;
4519         u32 trans_ddi_func_ctl2_val;
4520
4521         if (old_crtc_state->master_transcoder == INVALID_TRANSCODER)
4522                 return;
4523
4524         DRM_DEBUG_KMS("Disabling Transcoder Port Sync on Slave Transcoder %s\n",
4525                       transcoder_name(old_crtc_state->cpu_transcoder));
4526
4527         reg = TRANS_DDI_FUNC_CTL2(old_crtc_state->cpu_transcoder);
4528         trans_ddi_func_ctl2_val = ~(PORT_SYNC_MODE_ENABLE |
4529                                     PORT_SYNC_MODE_MASTER_SELECT_MASK);
4530         I915_WRITE(reg, trans_ddi_func_ctl2_val);
4531 }
4532
4533 static void intel_fdi_normal_train(struct intel_crtc *crtc)
4534 {
4535         struct drm_device *dev = crtc->base.dev;
4536         struct drm_i915_private *dev_priv = to_i915(dev);
4537         enum pipe pipe = crtc->pipe;
4538         i915_reg_t reg;
4539         u32 temp;
4540
4541         /* enable normal train */
4542         reg = FDI_TX_CTL(pipe);
4543         temp = I915_READ(reg);
4544         if (IS_IVYBRIDGE(dev_priv)) {
4545                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4546                 temp |= FDI_LINK_TRAIN_NONE_IVB | FDI_TX_ENHANCE_FRAME_ENABLE;
4547         } else {
4548                 temp &= ~FDI_LINK_TRAIN_NONE;
4549                 temp |= FDI_LINK_TRAIN_NONE | FDI_TX_ENHANCE_FRAME_ENABLE;
4550         }
4551         I915_WRITE(reg, temp);
4552
4553         reg = FDI_RX_CTL(pipe);
4554         temp = I915_READ(reg);
4555         if (HAS_PCH_CPT(dev_priv)) {
4556                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4557                 temp |= FDI_LINK_TRAIN_NORMAL_CPT;
4558         } else {
4559                 temp &= ~FDI_LINK_TRAIN_NONE;
4560                 temp |= FDI_LINK_TRAIN_NONE;
4561         }
4562         I915_WRITE(reg, temp | FDI_RX_ENHANCE_FRAME_ENABLE);
4563
4564         /* wait one idle pattern time */
4565         POSTING_READ(reg);
4566         udelay(1000);
4567
4568         /* IVB wants error correction enabled */
4569         if (IS_IVYBRIDGE(dev_priv))
4570                 I915_WRITE(reg, I915_READ(reg) | FDI_FS_ERRC_ENABLE |
4571                            FDI_FE_ERRC_ENABLE);
4572 }
4573
4574 /* The FDI link training functions for ILK/Ibexpeak. */
4575 static void ironlake_fdi_link_train(struct intel_crtc *crtc,
4576                                     const struct intel_crtc_state *crtc_state)
4577 {
4578         struct drm_device *dev = crtc->base.dev;
4579         struct drm_i915_private *dev_priv = to_i915(dev);
4580         enum pipe pipe = crtc->pipe;
4581         i915_reg_t reg;
4582         u32 temp, tries;
4583
4584         /* FDI needs bits from pipe first */
4585         assert_pipe_enabled(dev_priv, pipe);
4586
4587         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4588            for train result */
4589         reg = FDI_RX_IMR(pipe);
4590         temp = I915_READ(reg);
4591         temp &= ~FDI_RX_SYMBOL_LOCK;
4592         temp &= ~FDI_RX_BIT_LOCK;
4593         I915_WRITE(reg, temp);
4594         I915_READ(reg);
4595         udelay(150);
4596
4597         /* enable CPU FDI TX and PCH FDI RX */
4598         reg = FDI_TX_CTL(pipe);
4599         temp = I915_READ(reg);
4600         temp &= ~FDI_DP_PORT_WIDTH_MASK;
4601         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4602         temp &= ~FDI_LINK_TRAIN_NONE;
4603         temp |= FDI_LINK_TRAIN_PATTERN_1;
4604         I915_WRITE(reg, temp | FDI_TX_ENABLE);
4605
4606         reg = FDI_RX_CTL(pipe);
4607         temp = I915_READ(reg);
4608         temp &= ~FDI_LINK_TRAIN_NONE;
4609         temp |= FDI_LINK_TRAIN_PATTERN_1;
4610         I915_WRITE(reg, temp | FDI_RX_ENABLE);
4611
4612         POSTING_READ(reg);
4613         udelay(150);
4614
4615         /* Ironlake workaround, enable clock pointer after FDI enable*/
4616         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
4617         I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR |
4618                    FDI_RX_PHASE_SYNC_POINTER_EN);
4619
4620         reg = FDI_RX_IIR(pipe);
4621         for (tries = 0; tries < 5; tries++) {
4622                 temp = I915_READ(reg);
4623                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4624
4625                 if ((temp & FDI_RX_BIT_LOCK)) {
4626                         DRM_DEBUG_KMS("FDI train 1 done.\n");
4627                         I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4628                         break;
4629                 }
4630         }
4631         if (tries == 5)
4632                 DRM_ERROR("FDI train 1 fail!\n");
4633
4634         /* Train 2 */
4635         reg = FDI_TX_CTL(pipe);
4636         temp = I915_READ(reg);
4637         temp &= ~FDI_LINK_TRAIN_NONE;
4638         temp |= FDI_LINK_TRAIN_PATTERN_2;
4639         I915_WRITE(reg, temp);
4640
4641         reg = FDI_RX_CTL(pipe);
4642         temp = I915_READ(reg);
4643         temp &= ~FDI_LINK_TRAIN_NONE;
4644         temp |= FDI_LINK_TRAIN_PATTERN_2;
4645         I915_WRITE(reg, temp);
4646
4647         POSTING_READ(reg);
4648         udelay(150);
4649
4650         reg = FDI_RX_IIR(pipe);
4651         for (tries = 0; tries < 5; tries++) {
4652                 temp = I915_READ(reg);
4653                 DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4654
4655                 if (temp & FDI_RX_SYMBOL_LOCK) {
4656                         I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4657                         DRM_DEBUG_KMS("FDI train 2 done.\n");
4658                         break;
4659                 }
4660         }
4661         if (tries == 5)
4662                 DRM_ERROR("FDI train 2 fail!\n");
4663
4664         DRM_DEBUG_KMS("FDI train done\n");
4665
4666 }
4667
4668 static const int snb_b_fdi_train_param[] = {
4669         FDI_LINK_TRAIN_400MV_0DB_SNB_B,
4670         FDI_LINK_TRAIN_400MV_6DB_SNB_B,
4671         FDI_LINK_TRAIN_600MV_3_5DB_SNB_B,
4672         FDI_LINK_TRAIN_800MV_0DB_SNB_B,
4673 };
4674
4675 /* The FDI link training functions for SNB/Cougarpoint. */
4676 static void gen6_fdi_link_train(struct intel_crtc *crtc,
4677                                 const struct intel_crtc_state *crtc_state)
4678 {
4679         struct drm_device *dev = crtc->base.dev;
4680         struct drm_i915_private *dev_priv = to_i915(dev);
4681         enum pipe pipe = crtc->pipe;
4682         i915_reg_t reg;
4683         u32 temp, i, retry;
4684
4685         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4686            for train result */
4687         reg = FDI_RX_IMR(pipe);
4688         temp = I915_READ(reg);
4689         temp &= ~FDI_RX_SYMBOL_LOCK;
4690         temp &= ~FDI_RX_BIT_LOCK;
4691         I915_WRITE(reg, temp);
4692
4693         POSTING_READ(reg);
4694         udelay(150);
4695
4696         /* enable CPU FDI TX and PCH FDI RX */
4697         reg = FDI_TX_CTL(pipe);
4698         temp = I915_READ(reg);
4699         temp &= ~FDI_DP_PORT_WIDTH_MASK;
4700         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4701         temp &= ~FDI_LINK_TRAIN_NONE;
4702         temp |= FDI_LINK_TRAIN_PATTERN_1;
4703         temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4704         /* SNB-B */
4705         temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4706         I915_WRITE(reg, temp | FDI_TX_ENABLE);
4707
4708         I915_WRITE(FDI_RX_MISC(pipe),
4709                    FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4710
4711         reg = FDI_RX_CTL(pipe);
4712         temp = I915_READ(reg);
4713         if (HAS_PCH_CPT(dev_priv)) {
4714                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4715                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4716         } else {
4717                 temp &= ~FDI_LINK_TRAIN_NONE;
4718                 temp |= FDI_LINK_TRAIN_PATTERN_1;
4719         }
4720         I915_WRITE(reg, temp | FDI_RX_ENABLE);
4721
4722         POSTING_READ(reg);
4723         udelay(150);
4724
4725         for (i = 0; i < 4; i++) {
4726                 reg = FDI_TX_CTL(pipe);
4727                 temp = I915_READ(reg);
4728                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4729                 temp |= snb_b_fdi_train_param[i];
4730                 I915_WRITE(reg, temp);
4731
4732                 POSTING_READ(reg);
4733                 udelay(500);
4734
4735                 for (retry = 0; retry < 5; retry++) {
4736                         reg = FDI_RX_IIR(pipe);
4737                         temp = I915_READ(reg);
4738                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4739                         if (temp & FDI_RX_BIT_LOCK) {
4740                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4741                                 DRM_DEBUG_KMS("FDI train 1 done.\n");
4742                                 break;
4743                         }
4744                         udelay(50);
4745                 }
4746                 if (retry < 5)
4747                         break;
4748         }
4749         if (i == 4)
4750                 DRM_ERROR("FDI train 1 fail!\n");
4751
4752         /* Train 2 */
4753         reg = FDI_TX_CTL(pipe);
4754         temp = I915_READ(reg);
4755         temp &= ~FDI_LINK_TRAIN_NONE;
4756         temp |= FDI_LINK_TRAIN_PATTERN_2;
4757         if (IS_GEN(dev_priv, 6)) {
4758                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4759                 /* SNB-B */
4760                 temp |= FDI_LINK_TRAIN_400MV_0DB_SNB_B;
4761         }
4762         I915_WRITE(reg, temp);
4763
4764         reg = FDI_RX_CTL(pipe);
4765         temp = I915_READ(reg);
4766         if (HAS_PCH_CPT(dev_priv)) {
4767                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4768                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4769         } else {
4770                 temp &= ~FDI_LINK_TRAIN_NONE;
4771                 temp |= FDI_LINK_TRAIN_PATTERN_2;
4772         }
4773         I915_WRITE(reg, temp);
4774
4775         POSTING_READ(reg);
4776         udelay(150);
4777
4778         for (i = 0; i < 4; i++) {
4779                 reg = FDI_TX_CTL(pipe);
4780                 temp = I915_READ(reg);
4781                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4782                 temp |= snb_b_fdi_train_param[i];
4783                 I915_WRITE(reg, temp);
4784
4785                 POSTING_READ(reg);
4786                 udelay(500);
4787
4788                 for (retry = 0; retry < 5; retry++) {
4789                         reg = FDI_RX_IIR(pipe);
4790                         temp = I915_READ(reg);
4791                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4792                         if (temp & FDI_RX_SYMBOL_LOCK) {
4793                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4794                                 DRM_DEBUG_KMS("FDI train 2 done.\n");
4795                                 break;
4796                         }
4797                         udelay(50);
4798                 }
4799                 if (retry < 5)
4800                         break;
4801         }
4802         if (i == 4)
4803                 DRM_ERROR("FDI train 2 fail!\n");
4804
4805         DRM_DEBUG_KMS("FDI train done.\n");
4806 }
4807
4808 /* Manual link training for Ivy Bridge A0 parts */
4809 static void ivb_manual_fdi_link_train(struct intel_crtc *crtc,
4810                                       const struct intel_crtc_state *crtc_state)
4811 {
4812         struct drm_device *dev = crtc->base.dev;
4813         struct drm_i915_private *dev_priv = to_i915(dev);
4814         enum pipe pipe = crtc->pipe;
4815         i915_reg_t reg;
4816         u32 temp, i, j;
4817
4818         /* Train 1: umask FDI RX Interrupt symbol_lock and bit_lock bit
4819            for train result */
4820         reg = FDI_RX_IMR(pipe);
4821         temp = I915_READ(reg);
4822         temp &= ~FDI_RX_SYMBOL_LOCK;
4823         temp &= ~FDI_RX_BIT_LOCK;
4824         I915_WRITE(reg, temp);
4825
4826         POSTING_READ(reg);
4827         udelay(150);
4828
4829         DRM_DEBUG_KMS("FDI_RX_IIR before link train 0x%x\n",
4830                       I915_READ(FDI_RX_IIR(pipe)));
4831
4832         /* Try each vswing and preemphasis setting twice before moving on */
4833         for (j = 0; j < ARRAY_SIZE(snb_b_fdi_train_param) * 2; j++) {
4834                 /* disable first in case we need to retry */
4835                 reg = FDI_TX_CTL(pipe);
4836                 temp = I915_READ(reg);
4837                 temp &= ~(FDI_LINK_TRAIN_AUTO | FDI_LINK_TRAIN_NONE_IVB);
4838                 temp &= ~FDI_TX_ENABLE;
4839                 I915_WRITE(reg, temp);
4840
4841                 reg = FDI_RX_CTL(pipe);
4842                 temp = I915_READ(reg);
4843                 temp &= ~FDI_LINK_TRAIN_AUTO;
4844                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4845                 temp &= ~FDI_RX_ENABLE;
4846                 I915_WRITE(reg, temp);
4847
4848                 /* enable CPU FDI TX and PCH FDI RX */
4849                 reg = FDI_TX_CTL(pipe);
4850                 temp = I915_READ(reg);
4851                 temp &= ~FDI_DP_PORT_WIDTH_MASK;
4852                 temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4853                 temp |= FDI_LINK_TRAIN_PATTERN_1_IVB;
4854                 temp &= ~FDI_LINK_TRAIN_VOL_EMP_MASK;
4855                 temp |= snb_b_fdi_train_param[j/2];
4856                 temp |= FDI_COMPOSITE_SYNC;
4857                 I915_WRITE(reg, temp | FDI_TX_ENABLE);
4858
4859                 I915_WRITE(FDI_RX_MISC(pipe),
4860                            FDI_RX_TP1_TO_TP2_48 | FDI_RX_FDI_DELAY_90);
4861
4862                 reg = FDI_RX_CTL(pipe);
4863                 temp = I915_READ(reg);
4864                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
4865                 temp |= FDI_COMPOSITE_SYNC;
4866                 I915_WRITE(reg, temp | FDI_RX_ENABLE);
4867
4868                 POSTING_READ(reg);
4869                 udelay(1); /* should be 0.5us */
4870
4871                 for (i = 0; i < 4; i++) {
4872                         reg = FDI_RX_IIR(pipe);
4873                         temp = I915_READ(reg);
4874                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4875
4876                         if (temp & FDI_RX_BIT_LOCK ||
4877                             (I915_READ(reg) & FDI_RX_BIT_LOCK)) {
4878                                 I915_WRITE(reg, temp | FDI_RX_BIT_LOCK);
4879                                 DRM_DEBUG_KMS("FDI train 1 done, level %i.\n",
4880                                               i);
4881                                 break;
4882                         }
4883                         udelay(1); /* should be 0.5us */
4884                 }
4885                 if (i == 4) {
4886                         DRM_DEBUG_KMS("FDI train 1 fail on vswing %d\n", j / 2);
4887                         continue;
4888                 }
4889
4890                 /* Train 2 */
4891                 reg = FDI_TX_CTL(pipe);
4892                 temp = I915_READ(reg);
4893                 temp &= ~FDI_LINK_TRAIN_NONE_IVB;
4894                 temp |= FDI_LINK_TRAIN_PATTERN_2_IVB;
4895                 I915_WRITE(reg, temp);
4896
4897                 reg = FDI_RX_CTL(pipe);
4898                 temp = I915_READ(reg);
4899                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
4900                 temp |= FDI_LINK_TRAIN_PATTERN_2_CPT;
4901                 I915_WRITE(reg, temp);
4902
4903                 POSTING_READ(reg);
4904                 udelay(2); /* should be 1.5us */
4905
4906                 for (i = 0; i < 4; i++) {
4907                         reg = FDI_RX_IIR(pipe);
4908                         temp = I915_READ(reg);
4909                         DRM_DEBUG_KMS("FDI_RX_IIR 0x%x\n", temp);
4910
4911                         if (temp & FDI_RX_SYMBOL_LOCK ||
4912                             (I915_READ(reg) & FDI_RX_SYMBOL_LOCK)) {
4913                                 I915_WRITE(reg, temp | FDI_RX_SYMBOL_LOCK);
4914                                 DRM_DEBUG_KMS("FDI train 2 done, level %i.\n",
4915                                               i);
4916                                 goto train_done;
4917                         }
4918                         udelay(2); /* should be 1.5us */
4919                 }
4920                 if (i == 4)
4921                         DRM_DEBUG_KMS("FDI train 2 fail on vswing %d\n", j / 2);
4922         }
4923
4924 train_done:
4925         DRM_DEBUG_KMS("FDI train done.\n");
4926 }
4927
4928 static void ironlake_fdi_pll_enable(const struct intel_crtc_state *crtc_state)
4929 {
4930         struct intel_crtc *intel_crtc = to_intel_crtc(crtc_state->base.crtc);
4931         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
4932         enum pipe pipe = intel_crtc->pipe;
4933         i915_reg_t reg;
4934         u32 temp;
4935
4936         /* enable PCH FDI RX PLL, wait warmup plus DMI latency */
4937         reg = FDI_RX_CTL(pipe);
4938         temp = I915_READ(reg);
4939         temp &= ~(FDI_DP_PORT_WIDTH_MASK | (0x7 << 16));
4940         temp |= FDI_DP_PORT_WIDTH(crtc_state->fdi_lanes);
4941         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
4942         I915_WRITE(reg, temp | FDI_RX_PLL_ENABLE);
4943
4944         POSTING_READ(reg);
4945         udelay(200);
4946
4947         /* Switch from Rawclk to PCDclk */
4948         temp = I915_READ(reg);
4949         I915_WRITE(reg, temp | FDI_PCDCLK);
4950
4951         POSTING_READ(reg);
4952         udelay(200);
4953
4954         /* Enable CPU FDI TX PLL, always on for Ironlake */
4955         reg = FDI_TX_CTL(pipe);
4956         temp = I915_READ(reg);
4957         if ((temp & FDI_TX_PLL_ENABLE) == 0) {
4958                 I915_WRITE(reg, temp | FDI_TX_PLL_ENABLE);
4959
4960                 POSTING_READ(reg);
4961                 udelay(100);
4962         }
4963 }
4964
4965 static void ironlake_fdi_pll_disable(struct intel_crtc *intel_crtc)
4966 {
4967         struct drm_device *dev = intel_crtc->base.dev;
4968         struct drm_i915_private *dev_priv = to_i915(dev);
4969         enum pipe pipe = intel_crtc->pipe;
4970         i915_reg_t reg;
4971         u32 temp;
4972
4973         /* Switch from PCDclk to Rawclk */
4974         reg = FDI_RX_CTL(pipe);
4975         temp = I915_READ(reg);
4976         I915_WRITE(reg, temp & ~FDI_PCDCLK);
4977
4978         /* Disable CPU FDI TX PLL */
4979         reg = FDI_TX_CTL(pipe);
4980         temp = I915_READ(reg);
4981         I915_WRITE(reg, temp & ~FDI_TX_PLL_ENABLE);
4982
4983         POSTING_READ(reg);
4984         udelay(100);
4985
4986         reg = FDI_RX_CTL(pipe);
4987         temp = I915_READ(reg);
4988         I915_WRITE(reg, temp & ~FDI_RX_PLL_ENABLE);
4989
4990         /* Wait for the clocks to turn off. */
4991         POSTING_READ(reg);
4992         udelay(100);
4993 }
4994
4995 static void ironlake_fdi_disable(struct drm_crtc *crtc)
4996 {
4997         struct drm_device *dev = crtc->dev;
4998         struct drm_i915_private *dev_priv = to_i915(dev);
4999         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5000         enum pipe pipe = intel_crtc->pipe;
5001         i915_reg_t reg;
5002         u32 temp;
5003
5004         /* disable CPU FDI tx and PCH FDI rx */
5005         reg = FDI_TX_CTL(pipe);
5006         temp = I915_READ(reg);
5007         I915_WRITE(reg, temp & ~FDI_TX_ENABLE);
5008         POSTING_READ(reg);
5009
5010         reg = FDI_RX_CTL(pipe);
5011         temp = I915_READ(reg);
5012         temp &= ~(0x7 << 16);
5013         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5014         I915_WRITE(reg, temp & ~FDI_RX_ENABLE);
5015
5016         POSTING_READ(reg);
5017         udelay(100);
5018
5019         /* Ironlake workaround, disable clock pointer after downing FDI */
5020         if (HAS_PCH_IBX(dev_priv))
5021                 I915_WRITE(FDI_RX_CHICKEN(pipe), FDI_RX_PHASE_SYNC_POINTER_OVR);
5022
5023         /* still set train pattern 1 */
5024         reg = FDI_TX_CTL(pipe);
5025         temp = I915_READ(reg);
5026         temp &= ~FDI_LINK_TRAIN_NONE;
5027         temp |= FDI_LINK_TRAIN_PATTERN_1;
5028         I915_WRITE(reg, temp);
5029
5030         reg = FDI_RX_CTL(pipe);
5031         temp = I915_READ(reg);
5032         if (HAS_PCH_CPT(dev_priv)) {
5033                 temp &= ~FDI_LINK_TRAIN_PATTERN_MASK_CPT;
5034                 temp |= FDI_LINK_TRAIN_PATTERN_1_CPT;
5035         } else {
5036                 temp &= ~FDI_LINK_TRAIN_NONE;
5037                 temp |= FDI_LINK_TRAIN_PATTERN_1;
5038         }
5039         /* BPC in FDI rx is consistent with that in PIPECONF */
5040         temp &= ~(0x07 << 16);
5041         temp |= (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) << 11;
5042         I915_WRITE(reg, temp);
5043
5044         POSTING_READ(reg);
5045         udelay(100);
5046 }
5047
5048 bool intel_has_pending_fb_unpin(struct drm_i915_private *dev_priv)
5049 {
5050         struct drm_crtc *crtc;
5051         bool cleanup_done;
5052
5053         drm_for_each_crtc(crtc, &dev_priv->drm) {
5054                 struct drm_crtc_commit *commit;
5055                 spin_lock(&crtc->commit_lock);
5056                 commit = list_first_entry_or_null(&crtc->commit_list,
5057                                                   struct drm_crtc_commit, commit_entry);
5058                 cleanup_done = commit ?
5059                         try_wait_for_completion(&commit->cleanup_done) : true;
5060                 spin_unlock(&crtc->commit_lock);
5061
5062                 if (cleanup_done)
5063                         continue;
5064
5065                 drm_crtc_wait_one_vblank(crtc);
5066
5067                 return true;
5068         }
5069
5070         return false;
5071 }
5072
5073 void lpt_disable_iclkip(struct drm_i915_private *dev_priv)
5074 {
5075         u32 temp;
5076
5077         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_GATE);
5078
5079         mutex_lock(&dev_priv->sb_lock);
5080
5081         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5082         temp |= SBI_SSCCTL_DISABLE;
5083         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5084
5085         mutex_unlock(&dev_priv->sb_lock);
5086 }
5087
5088 /* Program iCLKIP clock to the desired frequency */
5089 static void lpt_program_iclkip(const struct intel_crtc_state *crtc_state)
5090 {
5091         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5092         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5093         int clock = crtc_state->base.adjusted_mode.crtc_clock;
5094         u32 divsel, phaseinc, auxdiv, phasedir = 0;
5095         u32 temp;
5096
5097         lpt_disable_iclkip(dev_priv);
5098
5099         /* The iCLK virtual clock root frequency is in MHz,
5100          * but the adjusted_mode->crtc_clock in in KHz. To get the
5101          * divisors, it is necessary to divide one by another, so we
5102          * convert the virtual clock precision to KHz here for higher
5103          * precision.
5104          */
5105         for (auxdiv = 0; auxdiv < 2; auxdiv++) {
5106                 u32 iclk_virtual_root_freq = 172800 * 1000;
5107                 u32 iclk_pi_range = 64;
5108                 u32 desired_divisor;
5109
5110                 desired_divisor = DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5111                                                     clock << auxdiv);
5112                 divsel = (desired_divisor / iclk_pi_range) - 2;
5113                 phaseinc = desired_divisor % iclk_pi_range;
5114
5115                 /*
5116                  * Near 20MHz is a corner case which is
5117                  * out of range for the 7-bit divisor
5118                  */
5119                 if (divsel <= 0x7f)
5120                         break;
5121         }
5122
5123         /* This should not happen with any sane values */
5124         WARN_ON(SBI_SSCDIVINTPHASE_DIVSEL(divsel) &
5125                 ~SBI_SSCDIVINTPHASE_DIVSEL_MASK);
5126         WARN_ON(SBI_SSCDIVINTPHASE_DIR(phasedir) &
5127                 ~SBI_SSCDIVINTPHASE_INCVAL_MASK);
5128
5129         DRM_DEBUG_KMS("iCLKIP clock: found settings for %dKHz refresh rate: auxdiv=%x, divsel=%x, phasedir=%x, phaseinc=%x\n",
5130                         clock,
5131                         auxdiv,
5132                         divsel,
5133                         phasedir,
5134                         phaseinc);
5135
5136         mutex_lock(&dev_priv->sb_lock);
5137
5138         /* Program SSCDIVINTPHASE6 */
5139         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5140         temp &= ~SBI_SSCDIVINTPHASE_DIVSEL_MASK;
5141         temp |= SBI_SSCDIVINTPHASE_DIVSEL(divsel);
5142         temp &= ~SBI_SSCDIVINTPHASE_INCVAL_MASK;
5143         temp |= SBI_SSCDIVINTPHASE_INCVAL(phaseinc);
5144         temp |= SBI_SSCDIVINTPHASE_DIR(phasedir);
5145         temp |= SBI_SSCDIVINTPHASE_PROPAGATE;
5146         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE6, temp, SBI_ICLK);
5147
5148         /* Program SSCAUXDIV */
5149         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5150         temp &= ~SBI_SSCAUXDIV_FINALDIV2SEL(1);
5151         temp |= SBI_SSCAUXDIV_FINALDIV2SEL(auxdiv);
5152         intel_sbi_write(dev_priv, SBI_SSCAUXDIV6, temp, SBI_ICLK);
5153
5154         /* Enable modulator and associated divider */
5155         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5156         temp &= ~SBI_SSCCTL_DISABLE;
5157         intel_sbi_write(dev_priv, SBI_SSCCTL6, temp, SBI_ICLK);
5158
5159         mutex_unlock(&dev_priv->sb_lock);
5160
5161         /* Wait for initialization time */
5162         udelay(24);
5163
5164         I915_WRITE(PIXCLK_GATE, PIXCLK_GATE_UNGATE);
5165 }
5166
5167 int lpt_get_iclkip(struct drm_i915_private *dev_priv)
5168 {
5169         u32 divsel, phaseinc, auxdiv;
5170         u32 iclk_virtual_root_freq = 172800 * 1000;
5171         u32 iclk_pi_range = 64;
5172         u32 desired_divisor;
5173         u32 temp;
5174
5175         if ((I915_READ(PIXCLK_GATE) & PIXCLK_GATE_UNGATE) == 0)
5176                 return 0;
5177
5178         mutex_lock(&dev_priv->sb_lock);
5179
5180         temp = intel_sbi_read(dev_priv, SBI_SSCCTL6, SBI_ICLK);
5181         if (temp & SBI_SSCCTL_DISABLE) {
5182                 mutex_unlock(&dev_priv->sb_lock);
5183                 return 0;
5184         }
5185
5186         temp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE6, SBI_ICLK);
5187         divsel = (temp & SBI_SSCDIVINTPHASE_DIVSEL_MASK) >>
5188                 SBI_SSCDIVINTPHASE_DIVSEL_SHIFT;
5189         phaseinc = (temp & SBI_SSCDIVINTPHASE_INCVAL_MASK) >>
5190                 SBI_SSCDIVINTPHASE_INCVAL_SHIFT;
5191
5192         temp = intel_sbi_read(dev_priv, SBI_SSCAUXDIV6, SBI_ICLK);
5193         auxdiv = (temp & SBI_SSCAUXDIV_FINALDIV2SEL_MASK) >>
5194                 SBI_SSCAUXDIV_FINALDIV2SEL_SHIFT;
5195
5196         mutex_unlock(&dev_priv->sb_lock);
5197
5198         desired_divisor = (divsel + 2) * iclk_pi_range + phaseinc;
5199
5200         return DIV_ROUND_CLOSEST(iclk_virtual_root_freq,
5201                                  desired_divisor << auxdiv);
5202 }
5203
5204 static void ironlake_pch_transcoder_set_timings(const struct intel_crtc_state *crtc_state,
5205                                                 enum pipe pch_transcoder)
5206 {
5207         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5208         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5209         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5210
5211         I915_WRITE(PCH_TRANS_HTOTAL(pch_transcoder),
5212                    I915_READ(HTOTAL(cpu_transcoder)));
5213         I915_WRITE(PCH_TRANS_HBLANK(pch_transcoder),
5214                    I915_READ(HBLANK(cpu_transcoder)));
5215         I915_WRITE(PCH_TRANS_HSYNC(pch_transcoder),
5216                    I915_READ(HSYNC(cpu_transcoder)));
5217
5218         I915_WRITE(PCH_TRANS_VTOTAL(pch_transcoder),
5219                    I915_READ(VTOTAL(cpu_transcoder)));
5220         I915_WRITE(PCH_TRANS_VBLANK(pch_transcoder),
5221                    I915_READ(VBLANK(cpu_transcoder)));
5222         I915_WRITE(PCH_TRANS_VSYNC(pch_transcoder),
5223                    I915_READ(VSYNC(cpu_transcoder)));
5224         I915_WRITE(PCH_TRANS_VSYNCSHIFT(pch_transcoder),
5225                    I915_READ(VSYNCSHIFT(cpu_transcoder)));
5226 }
5227
5228 static void cpt_set_fdi_bc_bifurcation(struct drm_i915_private *dev_priv, bool enable)
5229 {
5230         u32 temp;
5231
5232         temp = I915_READ(SOUTH_CHICKEN1);
5233         if (!!(temp & FDI_BC_BIFURCATION_SELECT) == enable)
5234                 return;
5235
5236         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_B)) & FDI_RX_ENABLE);
5237         WARN_ON(I915_READ(FDI_RX_CTL(PIPE_C)) & FDI_RX_ENABLE);
5238
5239         temp &= ~FDI_BC_BIFURCATION_SELECT;
5240         if (enable)
5241                 temp |= FDI_BC_BIFURCATION_SELECT;
5242
5243         DRM_DEBUG_KMS("%sabling fdi C rx\n", enable ? "en" : "dis");
5244         I915_WRITE(SOUTH_CHICKEN1, temp);
5245         POSTING_READ(SOUTH_CHICKEN1);
5246 }
5247
5248 static void ivybridge_update_fdi_bc_bifurcation(const struct intel_crtc_state *crtc_state)
5249 {
5250         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5251         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5252
5253         switch (crtc->pipe) {
5254         case PIPE_A:
5255                 break;
5256         case PIPE_B:
5257                 if (crtc_state->fdi_lanes > 2)
5258                         cpt_set_fdi_bc_bifurcation(dev_priv, false);
5259                 else
5260                         cpt_set_fdi_bc_bifurcation(dev_priv, true);
5261
5262                 break;
5263         case PIPE_C:
5264                 cpt_set_fdi_bc_bifurcation(dev_priv, true);
5265
5266                 break;
5267         default:
5268                 BUG();
5269         }
5270 }
5271
5272 /*
5273  * Finds the encoder associated with the given CRTC. This can only be
5274  * used when we know that the CRTC isn't feeding multiple encoders!
5275  */
5276 static struct intel_encoder *
5277 intel_get_crtc_new_encoder(const struct intel_atomic_state *state,
5278                            const struct intel_crtc_state *crtc_state)
5279 {
5280         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5281         const struct drm_connector_state *connector_state;
5282         const struct drm_connector *connector;
5283         struct intel_encoder *encoder = NULL;
5284         int num_encoders = 0;
5285         int i;
5286
5287         for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
5288                 if (connector_state->crtc != &crtc->base)
5289                         continue;
5290
5291                 encoder = to_intel_encoder(connector_state->best_encoder);
5292                 num_encoders++;
5293         }
5294
5295         WARN(num_encoders != 1, "%d encoders for pipe %c\n",
5296              num_encoders, pipe_name(crtc->pipe));
5297
5298         return encoder;
5299 }
5300
5301 /*
5302  * Enable PCH resources required for PCH ports:
5303  *   - PCH PLLs
5304  *   - FDI training & RX/TX
5305  *   - update transcoder timings
5306  *   - DP transcoding bits
5307  *   - transcoder
5308  */
5309 static void ironlake_pch_enable(const struct intel_atomic_state *state,
5310                                 const struct intel_crtc_state *crtc_state)
5311 {
5312         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5313         struct drm_device *dev = crtc->base.dev;
5314         struct drm_i915_private *dev_priv = to_i915(dev);
5315         enum pipe pipe = crtc->pipe;
5316         u32 temp;
5317
5318         assert_pch_transcoder_disabled(dev_priv, pipe);
5319
5320         if (IS_IVYBRIDGE(dev_priv))
5321                 ivybridge_update_fdi_bc_bifurcation(crtc_state);
5322
5323         /* Write the TU size bits before fdi link training, so that error
5324          * detection works. */
5325         I915_WRITE(FDI_RX_TUSIZE1(pipe),
5326                    I915_READ(PIPE_DATA_M1(pipe)) & TU_SIZE_MASK);
5327
5328         /* For PCH output, training FDI link */
5329         dev_priv->display.fdi_link_train(crtc, crtc_state);
5330
5331         /* We need to program the right clock selection before writing the pixel
5332          * mutliplier into the DPLL. */
5333         if (HAS_PCH_CPT(dev_priv)) {
5334                 u32 sel;
5335
5336                 temp = I915_READ(PCH_DPLL_SEL);
5337                 temp |= TRANS_DPLL_ENABLE(pipe);
5338                 sel = TRANS_DPLLB_SEL(pipe);
5339                 if (crtc_state->shared_dpll ==
5340                     intel_get_shared_dpll_by_id(dev_priv, DPLL_ID_PCH_PLL_B))
5341                         temp |= sel;
5342                 else
5343                         temp &= ~sel;
5344                 I915_WRITE(PCH_DPLL_SEL, temp);
5345         }
5346
5347         /* XXX: pch pll's can be enabled any time before we enable the PCH
5348          * transcoder, and we actually should do this to not upset any PCH
5349          * transcoder that already use the clock when we share it.
5350          *
5351          * Note that enable_shared_dpll tries to do the right thing, but
5352          * get_shared_dpll unconditionally resets the pll - we need that to have
5353          * the right LVDS enable sequence. */
5354         intel_enable_shared_dpll(crtc_state);
5355
5356         /* set transcoder timing, panel must allow it */
5357         assert_panel_unlocked(dev_priv, pipe);
5358         ironlake_pch_transcoder_set_timings(crtc_state, pipe);
5359
5360         intel_fdi_normal_train(crtc);
5361
5362         /* For PCH DP, enable TRANS_DP_CTL */
5363         if (HAS_PCH_CPT(dev_priv) &&
5364             intel_crtc_has_dp_encoder(crtc_state)) {
5365                 const struct drm_display_mode *adjusted_mode =
5366                         &crtc_state->base.adjusted_mode;
5367                 u32 bpc = (I915_READ(PIPECONF(pipe)) & PIPECONF_BPC_MASK) >> 5;
5368                 i915_reg_t reg = TRANS_DP_CTL(pipe);
5369                 enum port port;
5370
5371                 temp = I915_READ(reg);
5372                 temp &= ~(TRANS_DP_PORT_SEL_MASK |
5373                           TRANS_DP_SYNC_MASK |
5374                           TRANS_DP_BPC_MASK);
5375                 temp |= TRANS_DP_OUTPUT_ENABLE;
5376                 temp |= bpc << 9; /* same format but at 11:9 */
5377
5378                 if (adjusted_mode->flags & DRM_MODE_FLAG_PHSYNC)
5379                         temp |= TRANS_DP_HSYNC_ACTIVE_HIGH;
5380                 if (adjusted_mode->flags & DRM_MODE_FLAG_PVSYNC)
5381                         temp |= TRANS_DP_VSYNC_ACTIVE_HIGH;
5382
5383                 port = intel_get_crtc_new_encoder(state, crtc_state)->port;
5384                 WARN_ON(port < PORT_B || port > PORT_D);
5385                 temp |= TRANS_DP_PORT_SEL(port);
5386
5387                 I915_WRITE(reg, temp);
5388         }
5389
5390         ironlake_enable_pch_transcoder(crtc_state);
5391 }
5392
5393 static void lpt_pch_enable(const struct intel_atomic_state *state,
5394                            const struct intel_crtc_state *crtc_state)
5395 {
5396         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5397         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5398         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
5399
5400         assert_pch_transcoder_disabled(dev_priv, PIPE_A);
5401
5402         lpt_program_iclkip(crtc_state);
5403
5404         /* Set transcoder timing. */
5405         ironlake_pch_transcoder_set_timings(crtc_state, PIPE_A);
5406
5407         lpt_enable_pch_transcoder(dev_priv, cpu_transcoder);
5408 }
5409
5410 static void cpt_verify_modeset(struct drm_device *dev, enum pipe pipe)
5411 {
5412         struct drm_i915_private *dev_priv = to_i915(dev);
5413         i915_reg_t dslreg = PIPEDSL(pipe);
5414         u32 temp;
5415
5416         temp = I915_READ(dslreg);
5417         udelay(500);
5418         if (wait_for(I915_READ(dslreg) != temp, 5)) {
5419                 if (wait_for(I915_READ(dslreg) != temp, 5))
5420                         DRM_ERROR("mode set failed: pipe %c stuck\n", pipe_name(pipe));
5421         }
5422 }
5423
5424 /*
5425  * The hardware phase 0.0 refers to the center of the pixel.
5426  * We want to start from the top/left edge which is phase
5427  * -0.5. That matches how the hardware calculates the scaling
5428  * factors (from top-left of the first pixel to bottom-right
5429  * of the last pixel, as opposed to the pixel centers).
5430  *
5431  * For 4:2:0 subsampled chroma planes we obviously have to
5432  * adjust that so that the chroma sample position lands in
5433  * the right spot.
5434  *
5435  * Note that for packed YCbCr 4:2:2 formats there is no way to
5436  * control chroma siting. The hardware simply replicates the
5437  * chroma samples for both of the luma samples, and thus we don't
5438  * actually get the expected MPEG2 chroma siting convention :(
5439  * The same behaviour is observed on pre-SKL platforms as well.
5440  *
5441  * Theory behind the formula (note that we ignore sub-pixel
5442  * source coordinates):
5443  * s = source sample position
5444  * d = destination sample position
5445  *
5446  * Downscaling 4:1:
5447  * -0.5
5448  * | 0.0
5449  * | |     1.5 (initial phase)
5450  * | |     |
5451  * v v     v
5452  * | s | s | s | s |
5453  * |       d       |
5454  *
5455  * Upscaling 1:4:
5456  * -0.5
5457  * | -0.375 (initial phase)
5458  * | |     0.0
5459  * | |     |
5460  * v v     v
5461  * |       s       |
5462  * | d | d | d | d |
5463  */
5464 u16 skl_scaler_calc_phase(int sub, int scale, bool chroma_cosited)
5465 {
5466         int phase = -0x8000;
5467         u16 trip = 0;
5468
5469         if (chroma_cosited)
5470                 phase += (sub - 1) * 0x8000 / sub;
5471
5472         phase += scale / (2 * sub);
5473
5474         /*
5475          * Hardware initial phase limited to [-0.5:1.5].
5476          * Since the max hardware scale factor is 3.0, we
5477          * should never actually excdeed 1.0 here.
5478          */
5479         WARN_ON(phase < -0x8000 || phase > 0x18000);
5480
5481         if (phase < 0)
5482                 phase = 0x10000 + phase;
5483         else
5484                 trip = PS_PHASE_TRIP;
5485
5486         return ((phase >> 2) & PS_PHASE_MASK) | trip;
5487 }
5488
5489 #define SKL_MIN_SRC_W 8
5490 #define SKL_MAX_SRC_W 4096
5491 #define SKL_MIN_SRC_H 8
5492 #define SKL_MAX_SRC_H 4096
5493 #define SKL_MIN_DST_W 8
5494 #define SKL_MAX_DST_W 4096
5495 #define SKL_MIN_DST_H 8
5496 #define SKL_MAX_DST_H 4096
5497 #define ICL_MAX_SRC_W 5120
5498 #define ICL_MAX_SRC_H 4096
5499 #define ICL_MAX_DST_W 5120
5500 #define ICL_MAX_DST_H 4096
5501 #define SKL_MIN_YUV_420_SRC_W 16
5502 #define SKL_MIN_YUV_420_SRC_H 16
5503
5504 static int
5505 skl_update_scaler(struct intel_crtc_state *crtc_state, bool force_detach,
5506                   unsigned int scaler_user, int *scaler_id,
5507                   int src_w, int src_h, int dst_w, int dst_h,
5508                   const struct drm_format_info *format, bool need_scaler)
5509 {
5510         struct intel_crtc_scaler_state *scaler_state =
5511                 &crtc_state->scaler_state;
5512         struct intel_crtc *intel_crtc =
5513                 to_intel_crtc(crtc_state->base.crtc);
5514         struct drm_i915_private *dev_priv = to_i915(intel_crtc->base.dev);
5515         const struct drm_display_mode *adjusted_mode =
5516                 &crtc_state->base.adjusted_mode;
5517
5518         /*
5519          * Src coordinates are already rotated by 270 degrees for
5520          * the 90/270 degree plane rotation cases (to match the
5521          * GTT mapping), hence no need to account for rotation here.
5522          */
5523         if (src_w != dst_w || src_h != dst_h)
5524                 need_scaler = true;
5525
5526         /*
5527          * Scaling/fitting not supported in IF-ID mode in GEN9+
5528          * TODO: Interlace fetch mode doesn't support YUV420 planar formats.
5529          * Once NV12 is enabled, handle it here while allocating scaler
5530          * for NV12.
5531          */
5532         if (INTEL_GEN(dev_priv) >= 9 && crtc_state->base.enable &&
5533             need_scaler && adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
5534                 DRM_DEBUG_KMS("Pipe/Plane scaling not supported with IF-ID mode\n");
5535                 return -EINVAL;
5536         }
5537
5538         /*
5539          * if plane is being disabled or scaler is no more required or force detach
5540          *  - free scaler binded to this plane/crtc
5541          *  - in order to do this, update crtc->scaler_usage
5542          *
5543          * Here scaler state in crtc_state is set free so that
5544          * scaler can be assigned to other user. Actual register
5545          * update to free the scaler is done in plane/panel-fit programming.
5546          * For this purpose crtc/plane_state->scaler_id isn't reset here.
5547          */
5548         if (force_detach || !need_scaler) {
5549                 if (*scaler_id >= 0) {
5550                         scaler_state->scaler_users &= ~(1 << scaler_user);
5551                         scaler_state->scalers[*scaler_id].in_use = 0;
5552
5553                         DRM_DEBUG_KMS("scaler_user index %u.%u: "
5554                                 "Staged freeing scaler id %d scaler_users = 0x%x\n",
5555                                 intel_crtc->pipe, scaler_user, *scaler_id,
5556                                 scaler_state->scaler_users);
5557                         *scaler_id = -1;
5558                 }
5559                 return 0;
5560         }
5561
5562         if (format && drm_format_info_is_yuv_semiplanar(format) &&
5563             (src_h < SKL_MIN_YUV_420_SRC_H || src_w < SKL_MIN_YUV_420_SRC_W)) {
5564                 DRM_DEBUG_KMS("Planar YUV: src dimensions not met\n");
5565                 return -EINVAL;
5566         }
5567
5568         /* range checks */
5569         if (src_w < SKL_MIN_SRC_W || src_h < SKL_MIN_SRC_H ||
5570             dst_w < SKL_MIN_DST_W || dst_h < SKL_MIN_DST_H ||
5571             (INTEL_GEN(dev_priv) >= 11 &&
5572              (src_w > ICL_MAX_SRC_W || src_h > ICL_MAX_SRC_H ||
5573               dst_w > ICL_MAX_DST_W || dst_h > ICL_MAX_DST_H)) ||
5574             (INTEL_GEN(dev_priv) < 11 &&
5575              (src_w > SKL_MAX_SRC_W || src_h > SKL_MAX_SRC_H ||
5576               dst_w > SKL_MAX_DST_W || dst_h > SKL_MAX_DST_H))) {
5577                 DRM_DEBUG_KMS("scaler_user index %u.%u: src %ux%u dst %ux%u "
5578                         "size is out of scaler range\n",
5579                         intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h);
5580                 return -EINVAL;
5581         }
5582
5583         /* mark this plane as a scaler user in crtc_state */
5584         scaler_state->scaler_users |= (1 << scaler_user);
5585         DRM_DEBUG_KMS("scaler_user index %u.%u: "
5586                 "staged scaling request for %ux%u->%ux%u scaler_users = 0x%x\n",
5587                 intel_crtc->pipe, scaler_user, src_w, src_h, dst_w, dst_h,
5588                 scaler_state->scaler_users);
5589
5590         return 0;
5591 }
5592
5593 /**
5594  * skl_update_scaler_crtc - Stages update to scaler state for a given crtc.
5595  *
5596  * @state: crtc's scaler state
5597  *
5598  * Return
5599  *     0 - scaler_usage updated successfully
5600  *    error - requested scaling cannot be supported or other error condition
5601  */
5602 int skl_update_scaler_crtc(struct intel_crtc_state *state)
5603 {
5604         const struct drm_display_mode *adjusted_mode = &state->base.adjusted_mode;
5605         bool need_scaler = false;
5606
5607         if (state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
5608                 need_scaler = true;
5609
5610         return skl_update_scaler(state, !state->base.active, SKL_CRTC_INDEX,
5611                                  &state->scaler_state.scaler_id,
5612                                  state->pipe_src_w, state->pipe_src_h,
5613                                  adjusted_mode->crtc_hdisplay,
5614                                  adjusted_mode->crtc_vdisplay, NULL, need_scaler);
5615 }
5616
5617 /**
5618  * skl_update_scaler_plane - Stages update to scaler state for a given plane.
5619  * @crtc_state: crtc's scaler state
5620  * @plane_state: atomic plane state to update
5621  *
5622  * Return
5623  *     0 - scaler_usage updated successfully
5624  *    error - requested scaling cannot be supported or other error condition
5625  */
5626 static int skl_update_scaler_plane(struct intel_crtc_state *crtc_state,
5627                                    struct intel_plane_state *plane_state)
5628 {
5629         struct intel_plane *intel_plane =
5630                 to_intel_plane(plane_state->base.plane);
5631         struct drm_i915_private *dev_priv = to_i915(intel_plane->base.dev);
5632         struct drm_framebuffer *fb = plane_state->base.fb;
5633         int ret;
5634         bool force_detach = !fb || !plane_state->base.visible;
5635         bool need_scaler = false;
5636
5637         /* Pre-gen11 and SDR planes always need a scaler for planar formats. */
5638         if (!icl_is_hdr_plane(dev_priv, intel_plane->id) &&
5639             fb && drm_format_info_is_yuv_semiplanar(fb->format))
5640                 need_scaler = true;
5641
5642         ret = skl_update_scaler(crtc_state, force_detach,
5643                                 drm_plane_index(&intel_plane->base),
5644                                 &plane_state->scaler_id,
5645                                 drm_rect_width(&plane_state->base.src) >> 16,
5646                                 drm_rect_height(&plane_state->base.src) >> 16,
5647                                 drm_rect_width(&plane_state->base.dst),
5648                                 drm_rect_height(&plane_state->base.dst),
5649                                 fb ? fb->format : NULL, need_scaler);
5650
5651         if (ret || plane_state->scaler_id < 0)
5652                 return ret;
5653
5654         /* check colorkey */
5655         if (plane_state->ckey.flags) {
5656                 DRM_DEBUG_KMS("[PLANE:%d:%s] scaling with color key not allowed",
5657                               intel_plane->base.base.id,
5658                               intel_plane->base.name);
5659                 return -EINVAL;
5660         }
5661
5662         /* Check src format */
5663         switch (fb->format->format) {
5664         case DRM_FORMAT_RGB565:
5665         case DRM_FORMAT_XBGR8888:
5666         case DRM_FORMAT_XRGB8888:
5667         case DRM_FORMAT_ABGR8888:
5668         case DRM_FORMAT_ARGB8888:
5669         case DRM_FORMAT_XRGB2101010:
5670         case DRM_FORMAT_XBGR2101010:
5671         case DRM_FORMAT_YUYV:
5672         case DRM_FORMAT_YVYU:
5673         case DRM_FORMAT_UYVY:
5674         case DRM_FORMAT_VYUY:
5675         case DRM_FORMAT_NV12:
5676         case DRM_FORMAT_P010:
5677         case DRM_FORMAT_P012:
5678         case DRM_FORMAT_P016:
5679         case DRM_FORMAT_Y210:
5680         case DRM_FORMAT_Y212:
5681         case DRM_FORMAT_Y216:
5682         case DRM_FORMAT_XVYU2101010:
5683         case DRM_FORMAT_XVYU12_16161616:
5684         case DRM_FORMAT_XVYU16161616:
5685                 break;
5686         case DRM_FORMAT_XBGR16161616F:
5687         case DRM_FORMAT_ABGR16161616F:
5688         case DRM_FORMAT_XRGB16161616F:
5689         case DRM_FORMAT_ARGB16161616F:
5690                 if (INTEL_GEN(dev_priv) >= 11)
5691                         break;
5692                 /* fall through */
5693         default:
5694                 DRM_DEBUG_KMS("[PLANE:%d:%s] FB:%d unsupported scaling format 0x%x\n",
5695                               intel_plane->base.base.id, intel_plane->base.name,
5696                               fb->base.id, fb->format->format);
5697                 return -EINVAL;
5698         }
5699
5700         return 0;
5701 }
5702
5703 static void skylake_scaler_disable(struct intel_crtc *crtc)
5704 {
5705         int i;
5706
5707         for (i = 0; i < crtc->num_scalers; i++)
5708                 skl_detach_scaler(crtc, i);
5709 }
5710
5711 static void skylake_pfit_enable(const struct intel_crtc_state *crtc_state)
5712 {
5713         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5714         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5715         enum pipe pipe = crtc->pipe;
5716         const struct intel_crtc_scaler_state *scaler_state =
5717                 &crtc_state->scaler_state;
5718
5719         if (crtc_state->pch_pfit.enabled) {
5720                 u16 uv_rgb_hphase, uv_rgb_vphase;
5721                 int pfit_w, pfit_h, hscale, vscale;
5722                 int id;
5723
5724                 if (WARN_ON(crtc_state->scaler_state.scaler_id < 0))
5725                         return;
5726
5727                 pfit_w = (crtc_state->pch_pfit.size >> 16) & 0xFFFF;
5728                 pfit_h = crtc_state->pch_pfit.size & 0xFFFF;
5729
5730                 hscale = (crtc_state->pipe_src_w << 16) / pfit_w;
5731                 vscale = (crtc_state->pipe_src_h << 16) / pfit_h;
5732
5733                 uv_rgb_hphase = skl_scaler_calc_phase(1, hscale, false);
5734                 uv_rgb_vphase = skl_scaler_calc_phase(1, vscale, false);
5735
5736                 id = scaler_state->scaler_id;
5737                 I915_WRITE(SKL_PS_CTRL(pipe, id), PS_SCALER_EN |
5738                         PS_FILTER_MEDIUM | scaler_state->scalers[id].mode);
5739                 I915_WRITE_FW(SKL_PS_VPHASE(pipe, id),
5740                               PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_vphase));
5741                 I915_WRITE_FW(SKL_PS_HPHASE(pipe, id),
5742                               PS_Y_PHASE(0) | PS_UV_RGB_PHASE(uv_rgb_hphase));
5743                 I915_WRITE(SKL_PS_WIN_POS(pipe, id), crtc_state->pch_pfit.pos);
5744                 I915_WRITE(SKL_PS_WIN_SZ(pipe, id), crtc_state->pch_pfit.size);
5745         }
5746 }
5747
5748 static void ironlake_pfit_enable(const struct intel_crtc_state *crtc_state)
5749 {
5750         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5751         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5752         enum pipe pipe = crtc->pipe;
5753
5754         if (crtc_state->pch_pfit.enabled) {
5755                 /* Force use of hard-coded filter coefficients
5756                  * as some pre-programmed values are broken,
5757                  * e.g. x201.
5758                  */
5759                 if (IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv))
5760                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3 |
5761                                                  PF_PIPE_SEL_IVB(pipe));
5762                 else
5763                         I915_WRITE(PF_CTL(pipe), PF_ENABLE | PF_FILTER_MED_3x3);
5764                 I915_WRITE(PF_WIN_POS(pipe), crtc_state->pch_pfit.pos);
5765                 I915_WRITE(PF_WIN_SZ(pipe), crtc_state->pch_pfit.size);
5766         }
5767 }
5768
5769 void hsw_enable_ips(const struct intel_crtc_state *crtc_state)
5770 {
5771         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5772         struct drm_device *dev = crtc->base.dev;
5773         struct drm_i915_private *dev_priv = to_i915(dev);
5774
5775         if (!crtc_state->ips_enabled)
5776                 return;
5777
5778         /*
5779          * We can only enable IPS after we enable a plane and wait for a vblank
5780          * This function is called from post_plane_update, which is run after
5781          * a vblank wait.
5782          */
5783         WARN_ON(!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)));
5784
5785         if (IS_BROADWELL(dev_priv)) {
5786                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL,
5787                                                 IPS_ENABLE | IPS_PCODE_CONTROL));
5788                 /* Quoting Art Runyan: "its not safe to expect any particular
5789                  * value in IPS_CTL bit 31 after enabling IPS through the
5790                  * mailbox." Moreover, the mailbox may return a bogus state,
5791                  * so we need to just enable it and continue on.
5792                  */
5793         } else {
5794                 I915_WRITE(IPS_CTL, IPS_ENABLE);
5795                 /* The bit only becomes 1 in the next vblank, so this wait here
5796                  * is essentially intel_wait_for_vblank. If we don't have this
5797                  * and don't wait for vblanks until the end of crtc_enable, then
5798                  * the HW state readout code will complain that the expected
5799                  * IPS_CTL value is not the one we read. */
5800                 if (intel_de_wait_for_set(dev_priv, IPS_CTL, IPS_ENABLE, 50))
5801                         DRM_ERROR("Timed out waiting for IPS enable\n");
5802         }
5803 }
5804
5805 void hsw_disable_ips(const struct intel_crtc_state *crtc_state)
5806 {
5807         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
5808         struct drm_device *dev = crtc->base.dev;
5809         struct drm_i915_private *dev_priv = to_i915(dev);
5810
5811         if (!crtc_state->ips_enabled)
5812                 return;
5813
5814         if (IS_BROADWELL(dev_priv)) {
5815                 WARN_ON(sandybridge_pcode_write(dev_priv, DISPLAY_IPS_CONTROL, 0));
5816                 /*
5817                  * Wait for PCODE to finish disabling IPS. The BSpec specified
5818                  * 42ms timeout value leads to occasional timeouts so use 100ms
5819                  * instead.
5820                  */
5821                 if (intel_de_wait_for_clear(dev_priv, IPS_CTL, IPS_ENABLE, 100))
5822                         DRM_ERROR("Timed out waiting for IPS disable\n");
5823         } else {
5824                 I915_WRITE(IPS_CTL, 0);
5825                 POSTING_READ(IPS_CTL);
5826         }
5827
5828         /* We need to wait for a vblank before we can disable the plane. */
5829         intel_wait_for_vblank(dev_priv, crtc->pipe);
5830 }
5831
5832 static void intel_crtc_dpms_overlay_disable(struct intel_crtc *intel_crtc)
5833 {
5834         if (intel_crtc->overlay)
5835                 (void) intel_overlay_switch_off(intel_crtc->overlay);
5836
5837         /* Let userspace switch the overlay on again. In most cases userspace
5838          * has to recompute where to put it anyway.
5839          */
5840 }
5841
5842 /**
5843  * intel_post_enable_primary - Perform operations after enabling primary plane
5844  * @crtc: the CRTC whose primary plane was just enabled
5845  * @new_crtc_state: the enabling state
5846  *
5847  * Performs potentially sleeping operations that must be done after the primary
5848  * plane is enabled, such as updating FBC and IPS.  Note that this may be
5849  * called due to an explicit primary plane update, or due to an implicit
5850  * re-enable that is caused when a sprite plane is updated to no longer
5851  * completely hide the primary plane.
5852  */
5853 static void
5854 intel_post_enable_primary(struct drm_crtc *crtc,
5855                           const struct intel_crtc_state *new_crtc_state)
5856 {
5857         struct drm_device *dev = crtc->dev;
5858         struct drm_i915_private *dev_priv = to_i915(dev);
5859         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5860         enum pipe pipe = intel_crtc->pipe;
5861
5862         /*
5863          * Gen2 reports pipe underruns whenever all planes are disabled.
5864          * So don't enable underrun reporting before at least some planes
5865          * are enabled.
5866          * FIXME: Need to fix the logic to work when we turn off all planes
5867          * but leave the pipe running.
5868          */
5869         if (IS_GEN(dev_priv, 2))
5870                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
5871
5872         /* Underruns don't always raise interrupts, so check manually. */
5873         intel_check_cpu_fifo_underruns(dev_priv);
5874         intel_check_pch_fifo_underruns(dev_priv);
5875 }
5876
5877 /* FIXME get rid of this and use pre_plane_update */
5878 static void
5879 intel_pre_disable_primary_noatomic(struct drm_crtc *crtc)
5880 {
5881         struct drm_device *dev = crtc->dev;
5882         struct drm_i915_private *dev_priv = to_i915(dev);
5883         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
5884         enum pipe pipe = intel_crtc->pipe;
5885
5886         /*
5887          * Gen2 reports pipe underruns whenever all planes are disabled.
5888          * So disable underrun reporting before all the planes get disabled.
5889          */
5890         if (IS_GEN(dev_priv, 2))
5891                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
5892
5893         hsw_disable_ips(to_intel_crtc_state(crtc->state));
5894
5895         /*
5896          * Vblank time updates from the shadow to live plane control register
5897          * are blocked if the memory self-refresh mode is active at that
5898          * moment. So to make sure the plane gets truly disabled, disable
5899          * first the self-refresh mode. The self-refresh enable bit in turn
5900          * will be checked/applied by the HW only at the next frame start
5901          * event which is after the vblank start event, so we need to have a
5902          * wait-for-vblank between disabling the plane and the pipe.
5903          */
5904         if (HAS_GMCH(dev_priv) &&
5905             intel_set_memory_cxsr(dev_priv, false))
5906                 intel_wait_for_vblank(dev_priv, pipe);
5907 }
5908
5909 static bool hsw_pre_update_disable_ips(const struct intel_crtc_state *old_crtc_state,
5910                                        const struct intel_crtc_state *new_crtc_state)
5911 {
5912         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5913         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5914
5915         if (!old_crtc_state->ips_enabled)
5916                 return false;
5917
5918         if (needs_modeset(new_crtc_state))
5919                 return true;
5920
5921         /*
5922          * Workaround : Do not read or write the pipe palette/gamma data while
5923          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5924          *
5925          * Disable IPS before we program the LUT.
5926          */
5927         if (IS_HASWELL(dev_priv) &&
5928             (new_crtc_state->base.color_mgmt_changed ||
5929              new_crtc_state->update_pipe) &&
5930             new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5931                 return true;
5932
5933         return !new_crtc_state->ips_enabled;
5934 }
5935
5936 static bool hsw_post_update_enable_ips(const struct intel_crtc_state *old_crtc_state,
5937                                        const struct intel_crtc_state *new_crtc_state)
5938 {
5939         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
5940         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
5941
5942         if (!new_crtc_state->ips_enabled)
5943                 return false;
5944
5945         if (needs_modeset(new_crtc_state))
5946                 return true;
5947
5948         /*
5949          * Workaround : Do not read or write the pipe palette/gamma data while
5950          * GAMMA_MODE is configured for split gamma and IPS_CTL has IPS enabled.
5951          *
5952          * Re-enable IPS after the LUT has been programmed.
5953          */
5954         if (IS_HASWELL(dev_priv) &&
5955             (new_crtc_state->base.color_mgmt_changed ||
5956              new_crtc_state->update_pipe) &&
5957             new_crtc_state->gamma_mode == GAMMA_MODE_MODE_SPLIT)
5958                 return true;
5959
5960         /*
5961          * We can't read out IPS on broadwell, assume the worst and
5962          * forcibly enable IPS on the first fastset.
5963          */
5964         if (new_crtc_state->update_pipe &&
5965             old_crtc_state->base.adjusted_mode.private_flags & I915_MODE_FLAG_INHERITED)
5966                 return true;
5967
5968         return !old_crtc_state->ips_enabled;
5969 }
5970
5971 static bool needs_nv12_wa(struct drm_i915_private *dev_priv,
5972                           const struct intel_crtc_state *crtc_state)
5973 {
5974         if (!crtc_state->nv12_planes)
5975                 return false;
5976
5977         /* WA Display #0827: Gen9:all */
5978         if (IS_GEN(dev_priv, 9) && !IS_GEMINILAKE(dev_priv))
5979                 return true;
5980
5981         return false;
5982 }
5983
5984 static bool needs_scalerclk_wa(struct drm_i915_private *dev_priv,
5985                                const struct intel_crtc_state *crtc_state)
5986 {
5987         /* Wa_2006604312:icl */
5988         if (crtc_state->scaler_state.scaler_users > 0 && IS_ICELAKE(dev_priv))
5989                 return true;
5990
5991         return false;
5992 }
5993
5994 static void intel_post_plane_update(struct intel_crtc_state *old_crtc_state)
5995 {
5996         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
5997         struct drm_device *dev = crtc->base.dev;
5998         struct drm_i915_private *dev_priv = to_i915(dev);
5999         struct drm_atomic_state *state = old_crtc_state->base.state;
6000         struct intel_crtc_state *pipe_config =
6001                 intel_atomic_get_new_crtc_state(to_intel_atomic_state(state),
6002                                                 crtc);
6003         struct drm_plane *primary = crtc->base.primary;
6004         struct drm_plane_state *old_primary_state =
6005                 drm_atomic_get_old_plane_state(state, primary);
6006
6007         intel_frontbuffer_flip(to_i915(crtc->base.dev), pipe_config->fb_bits);
6008
6009         if (pipe_config->update_wm_post && pipe_config->base.active)
6010                 intel_update_watermarks(crtc);
6011
6012         if (hsw_post_update_enable_ips(old_crtc_state, pipe_config))
6013                 hsw_enable_ips(pipe_config);
6014
6015         if (old_primary_state) {
6016                 struct drm_plane_state *new_primary_state =
6017                         drm_atomic_get_new_plane_state(state, primary);
6018
6019                 intel_fbc_post_update(crtc);
6020
6021                 if (new_primary_state->visible &&
6022                     (needs_modeset(pipe_config) ||
6023                      !old_primary_state->visible))
6024                         intel_post_enable_primary(&crtc->base, pipe_config);
6025         }
6026
6027         if (needs_nv12_wa(dev_priv, old_crtc_state) &&
6028             !needs_nv12_wa(dev_priv, pipe_config))
6029                 skl_wa_827(dev_priv, crtc->pipe, false);
6030
6031         if (needs_scalerclk_wa(dev_priv, old_crtc_state) &&
6032             !needs_scalerclk_wa(dev_priv, pipe_config))
6033                 icl_wa_scalerclkgating(dev_priv, crtc->pipe, false);
6034 }
6035
6036 static void intel_pre_plane_update(struct intel_crtc_state *old_crtc_state,
6037                                    struct intel_crtc_state *pipe_config)
6038 {
6039         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6040         struct drm_device *dev = crtc->base.dev;
6041         struct drm_i915_private *dev_priv = to_i915(dev);
6042         struct drm_atomic_state *state = old_crtc_state->base.state;
6043         struct drm_plane *primary = crtc->base.primary;
6044         struct drm_plane_state *old_primary_state =
6045                 drm_atomic_get_old_plane_state(state, primary);
6046         bool modeset = needs_modeset(pipe_config);
6047         struct intel_atomic_state *intel_state =
6048                 to_intel_atomic_state(state);
6049
6050         if (hsw_pre_update_disable_ips(old_crtc_state, pipe_config))
6051                 hsw_disable_ips(old_crtc_state);
6052
6053         if (old_primary_state) {
6054                 struct intel_plane_state *new_primary_state =
6055                         intel_atomic_get_new_plane_state(intel_state,
6056                                                          to_intel_plane(primary));
6057
6058                 intel_fbc_pre_update(crtc, pipe_config, new_primary_state);
6059                 /*
6060                  * Gen2 reports pipe underruns whenever all planes are disabled.
6061                  * So disable underrun reporting before all the planes get disabled.
6062                  */
6063                 if (IS_GEN(dev_priv, 2) && old_primary_state->visible &&
6064                     (modeset || !new_primary_state->base.visible))
6065                         intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, false);
6066         }
6067
6068         /* Display WA 827 */
6069         if (!needs_nv12_wa(dev_priv, old_crtc_state) &&
6070             needs_nv12_wa(dev_priv, pipe_config))
6071                 skl_wa_827(dev_priv, crtc->pipe, true);
6072
6073         /* Wa_2006604312:icl */
6074         if (!needs_scalerclk_wa(dev_priv, old_crtc_state) &&
6075             needs_scalerclk_wa(dev_priv, pipe_config))
6076                 icl_wa_scalerclkgating(dev_priv, crtc->pipe, true);
6077
6078         /*
6079          * Vblank time updates from the shadow to live plane control register
6080          * are blocked if the memory self-refresh mode is active at that
6081          * moment. So to make sure the plane gets truly disabled, disable
6082          * first the self-refresh mode. The self-refresh enable bit in turn
6083          * will be checked/applied by the HW only at the next frame start
6084          * event which is after the vblank start event, so we need to have a
6085          * wait-for-vblank between disabling the plane and the pipe.
6086          */
6087         if (HAS_GMCH(dev_priv) && old_crtc_state->base.active &&
6088             pipe_config->disable_cxsr && intel_set_memory_cxsr(dev_priv, false))
6089                 intel_wait_for_vblank(dev_priv, crtc->pipe);
6090
6091         /*
6092          * IVB workaround: must disable low power watermarks for at least
6093          * one frame before enabling scaling.  LP watermarks can be re-enabled
6094          * when scaling is disabled.
6095          *
6096          * WaCxSRDisabledForSpriteScaling:ivb
6097          */
6098         if (pipe_config->disable_lp_wm && ilk_disable_lp_wm(dev) &&
6099             old_crtc_state->base.active)
6100                 intel_wait_for_vblank(dev_priv, crtc->pipe);
6101
6102         /*
6103          * If we're doing a modeset, we're done.  No need to do any pre-vblank
6104          * watermark programming here.
6105          */
6106         if (needs_modeset(pipe_config))
6107                 return;
6108
6109         /*
6110          * For platforms that support atomic watermarks, program the
6111          * 'intermediate' watermarks immediately.  On pre-gen9 platforms, these
6112          * will be the intermediate values that are safe for both pre- and
6113          * post- vblank; when vblank happens, the 'active' values will be set
6114          * to the final 'target' values and we'll do this again to get the
6115          * optimal watermarks.  For gen9+ platforms, the values we program here
6116          * will be the final target values which will get automatically latched
6117          * at vblank time; no further programming will be necessary.
6118          *
6119          * If a platform hasn't been transitioned to atomic watermarks yet,
6120          * we'll continue to update watermarks the old way, if flags tell
6121          * us to.
6122          */
6123         if (dev_priv->display.initial_watermarks != NULL)
6124                 dev_priv->display.initial_watermarks(intel_state,
6125                                                      pipe_config);
6126         else if (pipe_config->update_wm_pre)
6127                 intel_update_watermarks(crtc);
6128 }
6129
6130 static void intel_crtc_disable_planes(struct intel_atomic_state *state,
6131                                       struct intel_crtc *crtc)
6132 {
6133         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6134         const struct intel_crtc_state *new_crtc_state =
6135                 intel_atomic_get_new_crtc_state(state, crtc);
6136         unsigned int update_mask = new_crtc_state->update_planes;
6137         const struct intel_plane_state *old_plane_state;
6138         struct intel_plane *plane;
6139         unsigned fb_bits = 0;
6140         int i;
6141
6142         intel_crtc_dpms_overlay_disable(crtc);
6143
6144         for_each_old_intel_plane_in_state(state, plane, old_plane_state, i) {
6145                 if (crtc->pipe != plane->pipe ||
6146                     !(update_mask & BIT(plane->id)))
6147                         continue;
6148
6149                 intel_disable_plane(plane, new_crtc_state);
6150
6151                 if (old_plane_state->base.visible)
6152                         fb_bits |= plane->frontbuffer_bit;
6153         }
6154
6155         intel_frontbuffer_flip(dev_priv, fb_bits);
6156 }
6157
6158 /*
6159  * intel_connector_primary_encoder - get the primary encoder for a connector
6160  * @connector: connector for which to return the encoder
6161  *
6162  * Returns the primary encoder for a connector. There is a 1:1 mapping from
6163  * all connectors to their encoder, except for DP-MST connectors which have
6164  * both a virtual and a primary encoder. These DP-MST primary encoders can be
6165  * pointed to by as many DP-MST connectors as there are pipes.
6166  */
6167 static struct intel_encoder *
6168 intel_connector_primary_encoder(struct intel_connector *connector)
6169 {
6170         struct intel_encoder *encoder;
6171
6172         if (connector->mst_port)
6173                 return &dp_to_dig_port(connector->mst_port)->base;
6174
6175         encoder = intel_attached_encoder(&connector->base);
6176         WARN_ON(!encoder);
6177
6178         return encoder;
6179 }
6180
6181 static bool
6182 intel_connector_needs_modeset(struct intel_atomic_state *state,
6183                               const struct drm_connector_state *old_conn_state,
6184                               const struct drm_connector_state *new_conn_state)
6185 {
6186         struct intel_crtc *old_crtc = old_conn_state->crtc ?
6187                                       to_intel_crtc(old_conn_state->crtc) : NULL;
6188         struct intel_crtc *new_crtc = new_conn_state->crtc ?
6189                                       to_intel_crtc(new_conn_state->crtc) : NULL;
6190
6191         return new_crtc != old_crtc ||
6192                (new_crtc &&
6193                 needs_modeset(intel_atomic_get_new_crtc_state(state, new_crtc)));
6194 }
6195
6196 static void intel_encoders_update_prepare(struct intel_atomic_state *state)
6197 {
6198         struct drm_connector_state *old_conn_state;
6199         struct drm_connector_state *new_conn_state;
6200         struct drm_connector *conn;
6201         int i;
6202
6203         for_each_oldnew_connector_in_state(&state->base, conn,
6204                                            old_conn_state, new_conn_state, i) {
6205                 struct intel_encoder *encoder;
6206                 struct intel_crtc *crtc;
6207
6208                 if (!intel_connector_needs_modeset(state,
6209                                                    old_conn_state,
6210                                                    new_conn_state))
6211                         continue;
6212
6213                 encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6214                 if (!encoder->update_prepare)
6215                         continue;
6216
6217                 crtc = new_conn_state->crtc ?
6218                         to_intel_crtc(new_conn_state->crtc) : NULL;
6219                 encoder->update_prepare(state, encoder, crtc);
6220         }
6221 }
6222
6223 static void intel_encoders_update_complete(struct intel_atomic_state *state)
6224 {
6225         struct drm_connector_state *old_conn_state;
6226         struct drm_connector_state *new_conn_state;
6227         struct drm_connector *conn;
6228         int i;
6229
6230         for_each_oldnew_connector_in_state(&state->base, conn,
6231                                            old_conn_state, new_conn_state, i) {
6232                 struct intel_encoder *encoder;
6233                 struct intel_crtc *crtc;
6234
6235                 if (!intel_connector_needs_modeset(state,
6236                                                    old_conn_state,
6237                                                    new_conn_state))
6238                         continue;
6239
6240                 encoder = intel_connector_primary_encoder(to_intel_connector(conn));
6241                 if (!encoder->update_complete)
6242                         continue;
6243
6244                 crtc = new_conn_state->crtc ?
6245                         to_intel_crtc(new_conn_state->crtc) : NULL;
6246                 encoder->update_complete(state, encoder, crtc);
6247         }
6248 }
6249
6250 static void intel_encoders_pre_pll_enable(struct intel_crtc *crtc,
6251                                           struct intel_crtc_state *crtc_state,
6252                                           struct intel_atomic_state *state)
6253 {
6254         struct drm_connector_state *conn_state;
6255         struct drm_connector *conn;
6256         int i;
6257
6258         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6259                 struct intel_encoder *encoder =
6260                         to_intel_encoder(conn_state->best_encoder);
6261
6262                 if (conn_state->crtc != &crtc->base)
6263                         continue;
6264
6265                 if (encoder->pre_pll_enable)
6266                         encoder->pre_pll_enable(encoder, crtc_state, conn_state);
6267         }
6268 }
6269
6270 static void intel_encoders_pre_enable(struct intel_crtc *crtc,
6271                                       struct intel_crtc_state *crtc_state,
6272                                       struct intel_atomic_state *state)
6273 {
6274         struct drm_connector_state *conn_state;
6275         struct drm_connector *conn;
6276         int i;
6277
6278         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6279                 struct intel_encoder *encoder =
6280                         to_intel_encoder(conn_state->best_encoder);
6281
6282                 if (conn_state->crtc != &crtc->base)
6283                         continue;
6284
6285                 if (encoder->pre_enable)
6286                         encoder->pre_enable(encoder, crtc_state, conn_state);
6287         }
6288 }
6289
6290 static void intel_encoders_enable(struct intel_crtc *crtc,
6291                                   struct intel_crtc_state *crtc_state,
6292                                   struct intel_atomic_state *state)
6293 {
6294         struct drm_connector_state *conn_state;
6295         struct drm_connector *conn;
6296         int i;
6297
6298         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6299                 struct intel_encoder *encoder =
6300                         to_intel_encoder(conn_state->best_encoder);
6301
6302                 if (conn_state->crtc != &crtc->base)
6303                         continue;
6304
6305                 if (encoder->enable)
6306                         encoder->enable(encoder, crtc_state, conn_state);
6307                 intel_opregion_notify_encoder(encoder, true);
6308         }
6309 }
6310
6311 static void intel_encoders_disable(struct intel_crtc *crtc,
6312                                    struct intel_crtc_state *old_crtc_state,
6313                                    struct intel_atomic_state *state)
6314 {
6315         struct drm_connector_state *old_conn_state;
6316         struct drm_connector *conn;
6317         int i;
6318
6319         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6320                 struct intel_encoder *encoder =
6321                         to_intel_encoder(old_conn_state->best_encoder);
6322
6323                 if (old_conn_state->crtc != &crtc->base)
6324                         continue;
6325
6326                 intel_opregion_notify_encoder(encoder, false);
6327                 if (encoder->disable)
6328                         encoder->disable(encoder, old_crtc_state, old_conn_state);
6329         }
6330 }
6331
6332 static void intel_encoders_post_disable(struct intel_crtc *crtc,
6333                                         struct intel_crtc_state *old_crtc_state,
6334                                         struct intel_atomic_state *state)
6335 {
6336         struct drm_connector_state *old_conn_state;
6337         struct drm_connector *conn;
6338         int i;
6339
6340         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6341                 struct intel_encoder *encoder =
6342                         to_intel_encoder(old_conn_state->best_encoder);
6343
6344                 if (old_conn_state->crtc != &crtc->base)
6345                         continue;
6346
6347                 if (encoder->post_disable)
6348                         encoder->post_disable(encoder, old_crtc_state, old_conn_state);
6349         }
6350 }
6351
6352 static void intel_encoders_post_pll_disable(struct intel_crtc *crtc,
6353                                             struct intel_crtc_state *old_crtc_state,
6354                                             struct intel_atomic_state *state)
6355 {
6356         struct drm_connector_state *old_conn_state;
6357         struct drm_connector *conn;
6358         int i;
6359
6360         for_each_old_connector_in_state(&state->base, conn, old_conn_state, i) {
6361                 struct intel_encoder *encoder =
6362                         to_intel_encoder(old_conn_state->best_encoder);
6363
6364                 if (old_conn_state->crtc != &crtc->base)
6365                         continue;
6366
6367                 if (encoder->post_pll_disable)
6368                         encoder->post_pll_disable(encoder, old_crtc_state, old_conn_state);
6369         }
6370 }
6371
6372 static void intel_encoders_update_pipe(struct intel_crtc *crtc,
6373                                        struct intel_crtc_state *crtc_state,
6374                                        struct intel_atomic_state *state)
6375 {
6376         struct drm_connector_state *conn_state;
6377         struct drm_connector *conn;
6378         int i;
6379
6380         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
6381                 struct intel_encoder *encoder =
6382                         to_intel_encoder(conn_state->best_encoder);
6383
6384                 if (conn_state->crtc != &crtc->base)
6385                         continue;
6386
6387                 if (encoder->update_pipe)
6388                         encoder->update_pipe(encoder, crtc_state, conn_state);
6389         }
6390 }
6391
6392 static void intel_disable_primary_plane(const struct intel_crtc_state *crtc_state)
6393 {
6394         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6395         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
6396
6397         plane->disable_plane(plane, crtc_state);
6398 }
6399
6400 static void ironlake_crtc_enable(struct intel_crtc_state *pipe_config,
6401                                  struct intel_atomic_state *state)
6402 {
6403         struct drm_crtc *crtc = pipe_config->base.crtc;
6404         struct drm_device *dev = crtc->dev;
6405         struct drm_i915_private *dev_priv = to_i915(dev);
6406         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6407         enum pipe pipe = intel_crtc->pipe;
6408
6409         if (WARN_ON(intel_crtc->active))
6410                 return;
6411
6412         /*
6413          * Sometimes spurious CPU pipe underruns happen during FDI
6414          * training, at least with VGA+HDMI cloning. Suppress them.
6415          *
6416          * On ILK we get an occasional spurious CPU pipe underruns
6417          * between eDP port A enable and vdd enable. Also PCH port
6418          * enable seems to result in the occasional CPU pipe underrun.
6419          *
6420          * Spurious PCH underruns also occur during PCH enabling.
6421          */
6422         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6423         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6424
6425         if (pipe_config->has_pch_encoder)
6426                 intel_prepare_shared_dpll(pipe_config);
6427
6428         if (intel_crtc_has_dp_encoder(pipe_config))
6429                 intel_dp_set_m_n(pipe_config, M1_N1);
6430
6431         intel_set_pipe_timings(pipe_config);
6432         intel_set_pipe_src_size(pipe_config);
6433
6434         if (pipe_config->has_pch_encoder) {
6435                 intel_cpu_transcoder_set_m_n(pipe_config,
6436                                              &pipe_config->fdi_m_n, NULL);
6437         }
6438
6439         ironlake_set_pipeconf(pipe_config);
6440
6441         intel_crtc->active = true;
6442
6443         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6444
6445         if (pipe_config->has_pch_encoder) {
6446                 /* Note: FDI PLL enabling _must_ be done before we enable the
6447                  * cpu pipes, hence this is separate from all the other fdi/pch
6448                  * enabling. */
6449                 ironlake_fdi_pll_enable(pipe_config);
6450         } else {
6451                 assert_fdi_tx_disabled(dev_priv, pipe);
6452                 assert_fdi_rx_disabled(dev_priv, pipe);
6453         }
6454
6455         ironlake_pfit_enable(pipe_config);
6456
6457         /*
6458          * On ILK+ LUT must be loaded before the pipe is running but with
6459          * clocks enabled
6460          */
6461         intel_color_load_luts(pipe_config);
6462         intel_color_commit(pipe_config);
6463         /* update DSPCNTR to configure gamma for pipe bottom color */
6464         intel_disable_primary_plane(pipe_config);
6465
6466         if (dev_priv->display.initial_watermarks != NULL)
6467                 dev_priv->display.initial_watermarks(state, pipe_config);
6468         intel_enable_pipe(pipe_config);
6469
6470         if (pipe_config->has_pch_encoder)
6471                 ironlake_pch_enable(state, pipe_config);
6472
6473         assert_vblank_disabled(crtc);
6474         intel_crtc_vblank_on(pipe_config);
6475
6476         intel_encoders_enable(intel_crtc, pipe_config, state);
6477
6478         if (HAS_PCH_CPT(dev_priv))
6479                 cpt_verify_modeset(dev, intel_crtc->pipe);
6480
6481         /*
6482          * Must wait for vblank to avoid spurious PCH FIFO underruns.
6483          * And a second vblank wait is needed at least on ILK with
6484          * some interlaced HDMI modes. Let's do the double wait always
6485          * in case there are more corner cases we don't know about.
6486          */
6487         if (pipe_config->has_pch_encoder) {
6488                 intel_wait_for_vblank(dev_priv, pipe);
6489                 intel_wait_for_vblank(dev_priv, pipe);
6490         }
6491         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6492         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6493 }
6494
6495 /* IPS only exists on ULT machines and is tied to pipe A. */
6496 static bool hsw_crtc_supports_ips(struct intel_crtc *crtc)
6497 {
6498         return HAS_IPS(to_i915(crtc->base.dev)) && crtc->pipe == PIPE_A;
6499 }
6500
6501 static void glk_pipe_scaler_clock_gating_wa(struct drm_i915_private *dev_priv,
6502                                             enum pipe pipe, bool apply)
6503 {
6504         u32 val = I915_READ(CLKGATE_DIS_PSL(pipe));
6505         u32 mask = DPF_GATING_DIS | DPF_RAM_GATING_DIS | DPFR_GATING_DIS;
6506
6507         if (apply)
6508                 val |= mask;
6509         else
6510                 val &= ~mask;
6511
6512         I915_WRITE(CLKGATE_DIS_PSL(pipe), val);
6513 }
6514
6515 static void icl_pipe_mbus_enable(struct intel_crtc *crtc)
6516 {
6517         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6518         enum pipe pipe = crtc->pipe;
6519         u32 val;
6520
6521         val = MBUS_DBOX_A_CREDIT(2);
6522
6523         if (INTEL_GEN(dev_priv) >= 12) {
6524                 val |= MBUS_DBOX_BW_CREDIT(2);
6525                 val |= MBUS_DBOX_B_CREDIT(12);
6526         } else {
6527                 val |= MBUS_DBOX_BW_CREDIT(1);
6528                 val |= MBUS_DBOX_B_CREDIT(8);
6529         }
6530
6531         I915_WRITE(PIPE_MBUS_DBOX_CTL(pipe), val);
6532 }
6533
6534 static void haswell_crtc_enable(struct intel_crtc_state *pipe_config,
6535                                 struct intel_atomic_state *state)
6536 {
6537         struct drm_crtc *crtc = pipe_config->base.crtc;
6538         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6539         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6540         enum pipe pipe = intel_crtc->pipe, hsw_workaround_pipe;
6541         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
6542         bool psl_clkgate_wa;
6543
6544         if (WARN_ON(intel_crtc->active))
6545                 return;
6546
6547         intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state);
6548
6549         if (pipe_config->shared_dpll)
6550                 intel_enable_shared_dpll(pipe_config);
6551
6552         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6553
6554         if (intel_crtc_has_dp_encoder(pipe_config))
6555                 intel_dp_set_m_n(pipe_config, M1_N1);
6556
6557         if (!transcoder_is_dsi(cpu_transcoder))
6558                 intel_set_pipe_timings(pipe_config);
6559
6560         if (INTEL_GEN(dev_priv) >= 11)
6561                 icl_enable_trans_port_sync(pipe_config);
6562
6563         intel_set_pipe_src_size(pipe_config);
6564
6565         if (cpu_transcoder != TRANSCODER_EDP &&
6566             !transcoder_is_dsi(cpu_transcoder)) {
6567                 I915_WRITE(PIPE_MULT(cpu_transcoder),
6568                            pipe_config->pixel_multiplier - 1);
6569         }
6570
6571         if (pipe_config->has_pch_encoder) {
6572                 intel_cpu_transcoder_set_m_n(pipe_config,
6573                                              &pipe_config->fdi_m_n, NULL);
6574         }
6575
6576         if (!transcoder_is_dsi(cpu_transcoder))
6577                 haswell_set_pipeconf(pipe_config);
6578
6579         if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
6580                 bdw_set_pipemisc(pipe_config);
6581
6582         intel_crtc->active = true;
6583
6584         /* Display WA #1180: WaDisableScalarClockGating: glk, cnl */
6585         psl_clkgate_wa = (IS_GEMINILAKE(dev_priv) || IS_CANNONLAKE(dev_priv)) &&
6586                          pipe_config->pch_pfit.enabled;
6587         if (psl_clkgate_wa)
6588                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, true);
6589
6590         if (INTEL_GEN(dev_priv) >= 9)
6591                 skylake_pfit_enable(pipe_config);
6592         else
6593                 ironlake_pfit_enable(pipe_config);
6594
6595         /*
6596          * On ILK+ LUT must be loaded before the pipe is running but with
6597          * clocks enabled
6598          */
6599         intel_color_load_luts(pipe_config);
6600         intel_color_commit(pipe_config);
6601         /* update DSPCNTR to configure gamma/csc for pipe bottom color */
6602         if (INTEL_GEN(dev_priv) < 9)
6603                 intel_disable_primary_plane(pipe_config);
6604
6605         if (INTEL_GEN(dev_priv) >= 11)
6606                 icl_set_pipe_chicken(intel_crtc);
6607
6608         if (!transcoder_is_dsi(cpu_transcoder))
6609                 intel_ddi_enable_transcoder_func(pipe_config);
6610
6611         if (dev_priv->display.initial_watermarks != NULL)
6612                 dev_priv->display.initial_watermarks(state, pipe_config);
6613
6614         if (INTEL_GEN(dev_priv) >= 11)
6615                 icl_pipe_mbus_enable(intel_crtc);
6616
6617         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6618         if (!transcoder_is_dsi(cpu_transcoder))
6619                 intel_enable_pipe(pipe_config);
6620
6621         if (pipe_config->has_pch_encoder)
6622                 lpt_pch_enable(state, pipe_config);
6623
6624         if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DP_MST))
6625                 intel_ddi_set_vc_payload_alloc(pipe_config, true);
6626
6627         assert_vblank_disabled(crtc);
6628         intel_crtc_vblank_on(pipe_config);
6629
6630         intel_encoders_enable(intel_crtc, pipe_config, state);
6631
6632         if (psl_clkgate_wa) {
6633                 intel_wait_for_vblank(dev_priv, pipe);
6634                 glk_pipe_scaler_clock_gating_wa(dev_priv, pipe, false);
6635         }
6636
6637         /* If we change the relative order between pipe/planes enabling, we need
6638          * to change the workaround. */
6639         hsw_workaround_pipe = pipe_config->hsw_workaround_pipe;
6640         if (IS_HASWELL(dev_priv) && hsw_workaround_pipe != INVALID_PIPE) {
6641                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6642                 intel_wait_for_vblank(dev_priv, hsw_workaround_pipe);
6643         }
6644 }
6645
6646 static void ironlake_pfit_disable(const struct intel_crtc_state *old_crtc_state)
6647 {
6648         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
6649         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6650         enum pipe pipe = crtc->pipe;
6651
6652         /* To avoid upsetting the power well on haswell only disable the pfit if
6653          * it's in use. The hw state code will make sure we get this right. */
6654         if (old_crtc_state->pch_pfit.enabled) {
6655                 I915_WRITE(PF_CTL(pipe), 0);
6656                 I915_WRITE(PF_WIN_POS(pipe), 0);
6657                 I915_WRITE(PF_WIN_SZ(pipe), 0);
6658         }
6659 }
6660
6661 static void ironlake_crtc_disable(struct intel_crtc_state *old_crtc_state,
6662                                   struct intel_atomic_state *state)
6663 {
6664         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6665         struct drm_device *dev = crtc->dev;
6666         struct drm_i915_private *dev_priv = to_i915(dev);
6667         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6668         enum pipe pipe = intel_crtc->pipe;
6669
6670         /*
6671          * Sometimes spurious CPU pipe underruns happen when the
6672          * pipe is already disabled, but FDI RX/TX is still enabled.
6673          * Happens at least with VGA+HDMI cloning. Suppress them.
6674          */
6675         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
6676         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, false);
6677
6678         intel_encoders_disable(intel_crtc, old_crtc_state, state);
6679
6680         drm_crtc_vblank_off(crtc);
6681         assert_vblank_disabled(crtc);
6682
6683         intel_disable_pipe(old_crtc_state);
6684
6685         ironlake_pfit_disable(old_crtc_state);
6686
6687         if (old_crtc_state->has_pch_encoder)
6688                 ironlake_fdi_disable(crtc);
6689
6690         intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
6691
6692         if (old_crtc_state->has_pch_encoder) {
6693                 ironlake_disable_pch_transcoder(dev_priv, pipe);
6694
6695                 if (HAS_PCH_CPT(dev_priv)) {
6696                         i915_reg_t reg;
6697                         u32 temp;
6698
6699                         /* disable TRANS_DP_CTL */
6700                         reg = TRANS_DP_CTL(pipe);
6701                         temp = I915_READ(reg);
6702                         temp &= ~(TRANS_DP_OUTPUT_ENABLE |
6703                                   TRANS_DP_PORT_SEL_MASK);
6704                         temp |= TRANS_DP_PORT_SEL_NONE;
6705                         I915_WRITE(reg, temp);
6706
6707                         /* disable DPLL_SEL */
6708                         temp = I915_READ(PCH_DPLL_SEL);
6709                         temp &= ~(TRANS_DPLL_ENABLE(pipe) | TRANS_DPLLB_SEL(pipe));
6710                         I915_WRITE(PCH_DPLL_SEL, temp);
6711                 }
6712
6713                 ironlake_fdi_pll_disable(intel_crtc);
6714         }
6715
6716         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6717         intel_set_pch_fifo_underrun_reporting(dev_priv, pipe, true);
6718 }
6719
6720 static void haswell_crtc_disable(struct intel_crtc_state *old_crtc_state,
6721                                  struct intel_atomic_state *state)
6722 {
6723         struct drm_crtc *crtc = old_crtc_state->base.crtc;
6724         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
6725         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6726         enum transcoder cpu_transcoder = old_crtc_state->cpu_transcoder;
6727
6728         intel_encoders_disable(intel_crtc, old_crtc_state, state);
6729
6730         drm_crtc_vblank_off(crtc);
6731         assert_vblank_disabled(crtc);
6732
6733         /* XXX: Do the pipe assertions at the right place for BXT DSI. */
6734         if (!transcoder_is_dsi(cpu_transcoder))
6735                 intel_disable_pipe(old_crtc_state);
6736
6737         if (intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DP_MST))
6738                 intel_ddi_set_vc_payload_alloc(old_crtc_state, false);
6739
6740         if (INTEL_GEN(dev_priv) >= 11)
6741                 icl_disable_transcoder_port_sync(old_crtc_state);
6742
6743         if (!transcoder_is_dsi(cpu_transcoder))
6744                 intel_ddi_disable_transcoder_func(old_crtc_state);
6745
6746         intel_dsc_disable(old_crtc_state);
6747
6748         if (INTEL_GEN(dev_priv) >= 9)
6749                 skylake_scaler_disable(intel_crtc);
6750         else
6751                 ironlake_pfit_disable(old_crtc_state);
6752
6753         intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
6754
6755         intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state);
6756 }
6757
6758 static void i9xx_pfit_enable(const struct intel_crtc_state *crtc_state)
6759 {
6760         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6761         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6762
6763         if (!crtc_state->gmch_pfit.control)
6764                 return;
6765
6766         /*
6767          * The panel fitter should only be adjusted whilst the pipe is disabled,
6768          * according to register description and PRM.
6769          */
6770         WARN_ON(I915_READ(PFIT_CONTROL) & PFIT_ENABLE);
6771         assert_pipe_disabled(dev_priv, crtc->pipe);
6772
6773         I915_WRITE(PFIT_PGM_RATIOS, crtc_state->gmch_pfit.pgm_ratios);
6774         I915_WRITE(PFIT_CONTROL, crtc_state->gmch_pfit.control);
6775
6776         /* Border color in case we don't scale up to the full screen. Black by
6777          * default, change to something else for debugging. */
6778         I915_WRITE(BCLRPAT(crtc->pipe), 0);
6779 }
6780
6781 bool intel_phy_is_combo(struct drm_i915_private *dev_priv, enum phy phy)
6782 {
6783         if (phy == PHY_NONE)
6784                 return false;
6785
6786         if (IS_ELKHARTLAKE(dev_priv))
6787                 return phy <= PHY_C;
6788
6789         if (INTEL_GEN(dev_priv) >= 11)
6790                 return phy <= PHY_B;
6791
6792         return false;
6793 }
6794
6795 bool intel_phy_is_tc(struct drm_i915_private *dev_priv, enum phy phy)
6796 {
6797         if (INTEL_GEN(dev_priv) >= 12)
6798                 return phy >= PHY_D && phy <= PHY_I;
6799
6800         if (INTEL_GEN(dev_priv) >= 11 && !IS_ELKHARTLAKE(dev_priv))
6801                 return phy >= PHY_C && phy <= PHY_F;
6802
6803         return false;
6804 }
6805
6806 enum phy intel_port_to_phy(struct drm_i915_private *i915, enum port port)
6807 {
6808         if (IS_ELKHARTLAKE(i915) && port == PORT_D)
6809                 return PHY_A;
6810
6811         return (enum phy)port;
6812 }
6813
6814 enum tc_port intel_port_to_tc(struct drm_i915_private *dev_priv, enum port port)
6815 {
6816         if (!intel_phy_is_tc(dev_priv, intel_port_to_phy(dev_priv, port)))
6817                 return PORT_TC_NONE;
6818
6819         if (INTEL_GEN(dev_priv) >= 12)
6820                 return port - PORT_D;
6821
6822         return port - PORT_C;
6823 }
6824
6825 enum intel_display_power_domain intel_port_to_power_domain(enum port port)
6826 {
6827         switch (port) {
6828         case PORT_A:
6829                 return POWER_DOMAIN_PORT_DDI_A_LANES;
6830         case PORT_B:
6831                 return POWER_DOMAIN_PORT_DDI_B_LANES;
6832         case PORT_C:
6833                 return POWER_DOMAIN_PORT_DDI_C_LANES;
6834         case PORT_D:
6835                 return POWER_DOMAIN_PORT_DDI_D_LANES;
6836         case PORT_E:
6837                 return POWER_DOMAIN_PORT_DDI_E_LANES;
6838         case PORT_F:
6839                 return POWER_DOMAIN_PORT_DDI_F_LANES;
6840         case PORT_G:
6841                 return POWER_DOMAIN_PORT_DDI_G_LANES;
6842         default:
6843                 MISSING_CASE(port);
6844                 return POWER_DOMAIN_PORT_OTHER;
6845         }
6846 }
6847
6848 enum intel_display_power_domain
6849 intel_aux_power_domain(struct intel_digital_port *dig_port)
6850 {
6851         struct drm_i915_private *dev_priv = to_i915(dig_port->base.base.dev);
6852         enum phy phy = intel_port_to_phy(dev_priv, dig_port->base.port);
6853
6854         if (intel_phy_is_tc(dev_priv, phy) &&
6855             dig_port->tc_mode == TC_PORT_TBT_ALT) {
6856                 switch (dig_port->aux_ch) {
6857                 case AUX_CH_C:
6858                         return POWER_DOMAIN_AUX_C_TBT;
6859                 case AUX_CH_D:
6860                         return POWER_DOMAIN_AUX_D_TBT;
6861                 case AUX_CH_E:
6862                         return POWER_DOMAIN_AUX_E_TBT;
6863                 case AUX_CH_F:
6864                         return POWER_DOMAIN_AUX_F_TBT;
6865                 case AUX_CH_G:
6866                         return POWER_DOMAIN_AUX_G_TBT;
6867                 default:
6868                         MISSING_CASE(dig_port->aux_ch);
6869                         return POWER_DOMAIN_AUX_C_TBT;
6870                 }
6871         }
6872
6873         switch (dig_port->aux_ch) {
6874         case AUX_CH_A:
6875                 return POWER_DOMAIN_AUX_A;
6876         case AUX_CH_B:
6877                 return POWER_DOMAIN_AUX_B;
6878         case AUX_CH_C:
6879                 return POWER_DOMAIN_AUX_C;
6880         case AUX_CH_D:
6881                 return POWER_DOMAIN_AUX_D;
6882         case AUX_CH_E:
6883                 return POWER_DOMAIN_AUX_E;
6884         case AUX_CH_F:
6885                 return POWER_DOMAIN_AUX_F;
6886         case AUX_CH_G:
6887                 return POWER_DOMAIN_AUX_G;
6888         default:
6889                 MISSING_CASE(dig_port->aux_ch);
6890                 return POWER_DOMAIN_AUX_A;
6891         }
6892 }
6893
6894 static u64 get_crtc_power_domains(struct intel_crtc_state *crtc_state)
6895 {
6896         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6897         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6898         struct drm_encoder *encoder;
6899         enum pipe pipe = crtc->pipe;
6900         u64 mask;
6901         enum transcoder transcoder = crtc_state->cpu_transcoder;
6902
6903         if (!crtc_state->base.active)
6904                 return 0;
6905
6906         mask = BIT_ULL(POWER_DOMAIN_PIPE(pipe));
6907         mask |= BIT_ULL(POWER_DOMAIN_TRANSCODER(transcoder));
6908         if (crtc_state->pch_pfit.enabled ||
6909             crtc_state->pch_pfit.force_thru)
6910                 mask |= BIT_ULL(POWER_DOMAIN_PIPE_PANEL_FITTER(pipe));
6911
6912         drm_for_each_encoder_mask(encoder, &dev_priv->drm,
6913                                   crtc_state->base.encoder_mask) {
6914                 struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
6915
6916                 mask |= BIT_ULL(intel_encoder->power_domain);
6917         }
6918
6919         if (HAS_DDI(dev_priv) && crtc_state->has_audio)
6920                 mask |= BIT_ULL(POWER_DOMAIN_AUDIO);
6921
6922         if (crtc_state->shared_dpll)
6923                 mask |= BIT_ULL(POWER_DOMAIN_DISPLAY_CORE);
6924
6925         return mask;
6926 }
6927
6928 static u64
6929 modeset_get_crtc_power_domains(struct intel_crtc_state *crtc_state)
6930 {
6931         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
6932         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
6933         enum intel_display_power_domain domain;
6934         u64 domains, new_domains, old_domains;
6935
6936         old_domains = crtc->enabled_power_domains;
6937         crtc->enabled_power_domains = new_domains =
6938                 get_crtc_power_domains(crtc_state);
6939
6940         domains = new_domains & ~old_domains;
6941
6942         for_each_power_domain(domain, domains)
6943                 intel_display_power_get(dev_priv, domain);
6944
6945         return old_domains & ~new_domains;
6946 }
6947
6948 static void modeset_put_power_domains(struct drm_i915_private *dev_priv,
6949                                       u64 domains)
6950 {
6951         enum intel_display_power_domain domain;
6952
6953         for_each_power_domain(domain, domains)
6954                 intel_display_power_put_unchecked(dev_priv, domain);
6955 }
6956
6957 static void valleyview_crtc_enable(struct intel_crtc_state *pipe_config,
6958                                    struct intel_atomic_state *state)
6959 {
6960         struct drm_crtc *crtc = pipe_config->base.crtc;
6961         struct drm_device *dev = crtc->dev;
6962         struct drm_i915_private *dev_priv = to_i915(dev);
6963         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
6964         enum pipe pipe = intel_crtc->pipe;
6965
6966         if (WARN_ON(intel_crtc->active))
6967                 return;
6968
6969         if (intel_crtc_has_dp_encoder(pipe_config))
6970                 intel_dp_set_m_n(pipe_config, M1_N1);
6971
6972         intel_set_pipe_timings(pipe_config);
6973         intel_set_pipe_src_size(pipe_config);
6974
6975         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
6976                 I915_WRITE(CHV_BLEND(pipe), CHV_BLEND_LEGACY);
6977                 I915_WRITE(CHV_CANVAS(pipe), 0);
6978         }
6979
6980         i9xx_set_pipeconf(pipe_config);
6981
6982         intel_crtc->active = true;
6983
6984         intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
6985
6986         intel_encoders_pre_pll_enable(intel_crtc, pipe_config, state);
6987
6988         if (IS_CHERRYVIEW(dev_priv)) {
6989                 chv_prepare_pll(intel_crtc, pipe_config);
6990                 chv_enable_pll(intel_crtc, pipe_config);
6991         } else {
6992                 vlv_prepare_pll(intel_crtc, pipe_config);
6993                 vlv_enable_pll(intel_crtc, pipe_config);
6994         }
6995
6996         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
6997
6998         i9xx_pfit_enable(pipe_config);
6999
7000         intel_color_load_luts(pipe_config);
7001         intel_color_commit(pipe_config);
7002         /* update DSPCNTR to configure gamma for pipe bottom color */
7003         intel_disable_primary_plane(pipe_config);
7004
7005         dev_priv->display.initial_watermarks(state, pipe_config);
7006         intel_enable_pipe(pipe_config);
7007
7008         assert_vblank_disabled(crtc);
7009         intel_crtc_vblank_on(pipe_config);
7010
7011         intel_encoders_enable(intel_crtc, pipe_config, state);
7012 }
7013
7014 static void i9xx_set_pll_dividers(const struct intel_crtc_state *crtc_state)
7015 {
7016         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7017         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7018
7019         I915_WRITE(FP0(crtc->pipe), crtc_state->dpll_hw_state.fp0);
7020         I915_WRITE(FP1(crtc->pipe), crtc_state->dpll_hw_state.fp1);
7021 }
7022
7023 static void i9xx_crtc_enable(struct intel_crtc_state *pipe_config,
7024                              struct intel_atomic_state *state)
7025 {
7026         struct drm_crtc *crtc = pipe_config->base.crtc;
7027         struct drm_device *dev = crtc->dev;
7028         struct drm_i915_private *dev_priv = to_i915(dev);
7029         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7030         enum pipe pipe = intel_crtc->pipe;
7031
7032         if (WARN_ON(intel_crtc->active))
7033                 return;
7034
7035         i9xx_set_pll_dividers(pipe_config);
7036
7037         if (intel_crtc_has_dp_encoder(pipe_config))
7038                 intel_dp_set_m_n(pipe_config, M1_N1);
7039
7040         intel_set_pipe_timings(pipe_config);
7041         intel_set_pipe_src_size(pipe_config);
7042
7043         i9xx_set_pipeconf(pipe_config);
7044
7045         intel_crtc->active = true;
7046
7047         if (!IS_GEN(dev_priv, 2))
7048                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, true);
7049
7050         intel_encoders_pre_enable(intel_crtc, pipe_config, state);
7051
7052         i9xx_enable_pll(intel_crtc, pipe_config);
7053
7054         i9xx_pfit_enable(pipe_config);
7055
7056         intel_color_load_luts(pipe_config);
7057         intel_color_commit(pipe_config);
7058         /* update DSPCNTR to configure gamma for pipe bottom color */
7059         intel_disable_primary_plane(pipe_config);
7060
7061         if (dev_priv->display.initial_watermarks != NULL)
7062                 dev_priv->display.initial_watermarks(state,
7063                                                      pipe_config);
7064         else
7065                 intel_update_watermarks(intel_crtc);
7066         intel_enable_pipe(pipe_config);
7067
7068         assert_vblank_disabled(crtc);
7069         intel_crtc_vblank_on(pipe_config);
7070
7071         intel_encoders_enable(intel_crtc, pipe_config, state);
7072 }
7073
7074 static void i9xx_pfit_disable(const struct intel_crtc_state *old_crtc_state)
7075 {
7076         struct intel_crtc *crtc = to_intel_crtc(old_crtc_state->base.crtc);
7077         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7078
7079         if (!old_crtc_state->gmch_pfit.control)
7080                 return;
7081
7082         assert_pipe_disabled(dev_priv, crtc->pipe);
7083
7084         DRM_DEBUG_KMS("disabling pfit, current: 0x%08x\n",
7085                       I915_READ(PFIT_CONTROL));
7086         I915_WRITE(PFIT_CONTROL, 0);
7087 }
7088
7089 static void i9xx_crtc_disable(struct intel_crtc_state *old_crtc_state,
7090                               struct intel_atomic_state *state)
7091 {
7092         struct drm_crtc *crtc = old_crtc_state->base.crtc;
7093         struct drm_device *dev = crtc->dev;
7094         struct drm_i915_private *dev_priv = to_i915(dev);
7095         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7096         enum pipe pipe = intel_crtc->pipe;
7097
7098         /*
7099          * On gen2 planes are double buffered but the pipe isn't, so we must
7100          * wait for planes to fully turn off before disabling the pipe.
7101          */
7102         if (IS_GEN(dev_priv, 2))
7103                 intel_wait_for_vblank(dev_priv, pipe);
7104
7105         intel_encoders_disable(intel_crtc, old_crtc_state, state);
7106
7107         drm_crtc_vblank_off(crtc);
7108         assert_vblank_disabled(crtc);
7109
7110         intel_disable_pipe(old_crtc_state);
7111
7112         i9xx_pfit_disable(old_crtc_state);
7113
7114         intel_encoders_post_disable(intel_crtc, old_crtc_state, state);
7115
7116         if (!intel_crtc_has_type(old_crtc_state, INTEL_OUTPUT_DSI)) {
7117                 if (IS_CHERRYVIEW(dev_priv))
7118                         chv_disable_pll(dev_priv, pipe);
7119                 else if (IS_VALLEYVIEW(dev_priv))
7120                         vlv_disable_pll(dev_priv, pipe);
7121                 else
7122                         i9xx_disable_pll(old_crtc_state);
7123         }
7124
7125         intel_encoders_post_pll_disable(intel_crtc, old_crtc_state, state);
7126
7127         if (!IS_GEN(dev_priv, 2))
7128                 intel_set_cpu_fifo_underrun_reporting(dev_priv, pipe, false);
7129
7130         if (!dev_priv->display.initial_watermarks)
7131                 intel_update_watermarks(intel_crtc);
7132
7133         /* clock the pipe down to 640x480@60 to potentially save power */
7134         if (IS_I830(dev_priv))
7135                 i830_enable_pipe(dev_priv, pipe);
7136 }
7137
7138 static void intel_crtc_disable_noatomic(struct drm_crtc *crtc,
7139                                         struct drm_modeset_acquire_ctx *ctx)
7140 {
7141         struct intel_encoder *encoder;
7142         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
7143         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
7144         struct intel_bw_state *bw_state =
7145                 to_intel_bw_state(dev_priv->bw_obj.state);
7146         enum intel_display_power_domain domain;
7147         struct intel_plane *plane;
7148         u64 domains;
7149         struct drm_atomic_state *state;
7150         struct intel_crtc_state *crtc_state;
7151         int ret;
7152
7153         if (!intel_crtc->active)
7154                 return;
7155
7156         for_each_intel_plane_on_crtc(&dev_priv->drm, intel_crtc, plane) {
7157                 const struct intel_plane_state *plane_state =
7158                         to_intel_plane_state(plane->base.state);
7159
7160                 if (plane_state->base.visible)
7161                         intel_plane_disable_noatomic(intel_crtc, plane);
7162         }
7163
7164         state = drm_atomic_state_alloc(crtc->dev);
7165         if (!state) {
7166                 DRM_DEBUG_KMS("failed to disable [CRTC:%d:%s], out of memory",
7167                               crtc->base.id, crtc->name);
7168                 return;
7169         }
7170
7171         state->acquire_ctx = ctx;
7172
7173         /* Everything's already locked, -EDEADLK can't happen. */
7174         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
7175         ret = drm_atomic_add_affected_connectors(state, crtc);
7176
7177         WARN_ON(IS_ERR(crtc_state) || ret);
7178
7179         dev_priv->display.crtc_disable(crtc_state, to_intel_atomic_state(state));
7180
7181         drm_atomic_state_put(state);
7182
7183         DRM_DEBUG_KMS("[CRTC:%d:%s] hw state adjusted, was enabled, now disabled\n",
7184                       crtc->base.id, crtc->name);
7185
7186         WARN_ON(drm_atomic_set_mode_for_crtc(crtc->state, NULL) < 0);
7187         crtc->state->active = false;
7188         intel_crtc->active = false;
7189         crtc->enabled = false;
7190         crtc->state->connector_mask = 0;
7191         crtc->state->encoder_mask = 0;
7192
7193         for_each_encoder_on_crtc(crtc->dev, crtc, encoder)
7194                 encoder->base.crtc = NULL;
7195
7196         intel_fbc_disable(intel_crtc);
7197         intel_update_watermarks(intel_crtc);
7198         intel_disable_shared_dpll(to_intel_crtc_state(crtc->state));
7199
7200         domains = intel_crtc->enabled_power_domains;
7201         for_each_power_domain(domain, domains)
7202                 intel_display_power_put_unchecked(dev_priv, domain);
7203         intel_crtc->enabled_power_domains = 0;
7204
7205         dev_priv->active_pipes &= ~BIT(intel_crtc->pipe);
7206         dev_priv->min_cdclk[intel_crtc->pipe] = 0;
7207         dev_priv->min_voltage_level[intel_crtc->pipe] = 0;
7208
7209         bw_state->data_rate[intel_crtc->pipe] = 0;
7210         bw_state->num_active_planes[intel_crtc->pipe] = 0;
7211 }
7212
7213 /*
7214  * turn all crtc's off, but do not adjust state
7215  * This has to be paired with a call to intel_modeset_setup_hw_state.
7216  */
7217 int intel_display_suspend(struct drm_device *dev)
7218 {
7219         struct drm_i915_private *dev_priv = to_i915(dev);
7220         struct drm_atomic_state *state;
7221         int ret;
7222
7223         state = drm_atomic_helper_suspend(dev);
7224         ret = PTR_ERR_OR_ZERO(state);
7225         if (ret)
7226                 DRM_ERROR("Suspending crtc's failed with %i\n", ret);
7227         else
7228                 dev_priv->modeset_restore_state = state;
7229         return ret;
7230 }
7231
7232 void intel_encoder_destroy(struct drm_encoder *encoder)
7233 {
7234         struct intel_encoder *intel_encoder = to_intel_encoder(encoder);
7235
7236         drm_encoder_cleanup(encoder);
7237         kfree(intel_encoder);
7238 }
7239
7240 /* Cross check the actual hw state with our own modeset state tracking (and it's
7241  * internal consistency). */
7242 static void intel_connector_verify_state(struct intel_crtc_state *crtc_state,
7243                                          struct drm_connector_state *conn_state)
7244 {
7245         struct intel_connector *connector = to_intel_connector(conn_state->connector);
7246
7247         DRM_DEBUG_KMS("[CONNECTOR:%d:%s]\n",
7248                       connector->base.base.id,
7249                       connector->base.name);
7250
7251         if (connector->get_hw_state(connector)) {
7252                 struct intel_encoder *encoder = connector->encoder;
7253
7254                 I915_STATE_WARN(!crtc_state,
7255                          "connector enabled without attached crtc\n");
7256
7257                 if (!crtc_state)
7258                         return;
7259
7260                 I915_STATE_WARN(!crtc_state->base.active,
7261                       "connector is active, but attached crtc isn't\n");
7262
7263                 if (!encoder || encoder->type == INTEL_OUTPUT_DP_MST)
7264                         return;
7265
7266                 I915_STATE_WARN(conn_state->best_encoder != &encoder->base,
7267                         "atomic encoder doesn't match attached encoder\n");
7268
7269                 I915_STATE_WARN(conn_state->crtc != encoder->base.crtc,
7270                         "attached encoder crtc differs from connector crtc\n");
7271         } else {
7272                 I915_STATE_WARN(crtc_state && crtc_state->base.active,
7273                         "attached crtc is active, but connector isn't\n");
7274                 I915_STATE_WARN(!crtc_state && conn_state->best_encoder,
7275                         "best encoder set without crtc!\n");
7276         }
7277 }
7278
7279 static int pipe_required_fdi_lanes(struct intel_crtc_state *crtc_state)
7280 {
7281         if (crtc_state->base.enable && crtc_state->has_pch_encoder)
7282                 return crtc_state->fdi_lanes;
7283
7284         return 0;
7285 }
7286
7287 static int ironlake_check_fdi_lanes(struct drm_device *dev, enum pipe pipe,
7288                                      struct intel_crtc_state *pipe_config)
7289 {
7290         struct drm_i915_private *dev_priv = to_i915(dev);
7291         struct drm_atomic_state *state = pipe_config->base.state;
7292         struct intel_crtc *other_crtc;
7293         struct intel_crtc_state *other_crtc_state;
7294
7295         DRM_DEBUG_KMS("checking fdi config on pipe %c, lanes %i\n",
7296                       pipe_name(pipe), pipe_config->fdi_lanes);
7297         if (pipe_config->fdi_lanes > 4) {
7298                 DRM_DEBUG_KMS("invalid fdi lane config on pipe %c: %i lanes\n",
7299                               pipe_name(pipe), pipe_config->fdi_lanes);
7300                 return -EINVAL;
7301         }
7302
7303         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
7304                 if (pipe_config->fdi_lanes > 2) {
7305                         DRM_DEBUG_KMS("only 2 lanes on haswell, required: %i lanes\n",
7306                                       pipe_config->fdi_lanes);
7307                         return -EINVAL;
7308                 } else {
7309                         return 0;
7310                 }
7311         }
7312
7313         if (INTEL_NUM_PIPES(dev_priv) == 2)
7314                 return 0;
7315
7316         /* Ivybridge 3 pipe is really complicated */
7317         switch (pipe) {
7318         case PIPE_A:
7319                 return 0;
7320         case PIPE_B:
7321                 if (pipe_config->fdi_lanes <= 2)
7322                         return 0;
7323
7324                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_C);
7325                 other_crtc_state =
7326                         intel_atomic_get_crtc_state(state, other_crtc);
7327                 if (IS_ERR(other_crtc_state))
7328                         return PTR_ERR(other_crtc_state);
7329
7330                 if (pipe_required_fdi_lanes(other_crtc_state) > 0) {
7331                         DRM_DEBUG_KMS("invalid shared fdi lane config on pipe %c: %i lanes\n",
7332                                       pipe_name(pipe), pipe_config->fdi_lanes);
7333                         return -EINVAL;
7334                 }
7335                 return 0;
7336         case PIPE_C:
7337                 if (pipe_config->fdi_lanes > 2) {
7338                         DRM_DEBUG_KMS("only 2 lanes on pipe %c: required %i lanes\n",
7339                                       pipe_name(pipe), pipe_config->fdi_lanes);
7340                         return -EINVAL;
7341                 }
7342
7343                 other_crtc = intel_get_crtc_for_pipe(dev_priv, PIPE_B);
7344                 other_crtc_state =
7345                         intel_atomic_get_crtc_state(state, other_crtc);
7346                 if (IS_ERR(other_crtc_state))
7347                         return PTR_ERR(other_crtc_state);
7348
7349                 if (pipe_required_fdi_lanes(other_crtc_state) > 2) {
7350                         DRM_DEBUG_KMS("fdi link B uses too many lanes to enable link C\n");
7351                         return -EINVAL;
7352                 }
7353                 return 0;
7354         default:
7355                 BUG();
7356         }
7357 }
7358
7359 #define RETRY 1
7360 static int ironlake_fdi_compute_config(struct intel_crtc *intel_crtc,
7361                                        struct intel_crtc_state *pipe_config)
7362 {
7363         struct drm_device *dev = intel_crtc->base.dev;
7364         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7365         int lane, link_bw, fdi_dotclock, ret;
7366         bool needs_recompute = false;
7367
7368 retry:
7369         /* FDI is a binary signal running at ~2.7GHz, encoding
7370          * each output octet as 10 bits. The actual frequency
7371          * is stored as a divider into a 100MHz clock, and the
7372          * mode pixel clock is stored in units of 1KHz.
7373          * Hence the bw of each lane in terms of the mode signal
7374          * is:
7375          */
7376         link_bw = intel_fdi_link_freq(to_i915(dev), pipe_config);
7377
7378         fdi_dotclock = adjusted_mode->crtc_clock;
7379
7380         lane = ironlake_get_lanes_required(fdi_dotclock, link_bw,
7381                                            pipe_config->pipe_bpp);
7382
7383         pipe_config->fdi_lanes = lane;
7384
7385         intel_link_compute_m_n(pipe_config->pipe_bpp, lane, fdi_dotclock,
7386                                link_bw, &pipe_config->fdi_m_n, false, false);
7387
7388         ret = ironlake_check_fdi_lanes(dev, intel_crtc->pipe, pipe_config);
7389         if (ret == -EDEADLK)
7390                 return ret;
7391
7392         if (ret == -EINVAL && pipe_config->pipe_bpp > 6*3) {
7393                 pipe_config->pipe_bpp -= 2*3;
7394                 DRM_DEBUG_KMS("fdi link bw constraint, reducing pipe bpp to %i\n",
7395                               pipe_config->pipe_bpp);
7396                 needs_recompute = true;
7397                 pipe_config->bw_constrained = true;
7398
7399                 goto retry;
7400         }
7401
7402         if (needs_recompute)
7403                 return RETRY;
7404
7405         return ret;
7406 }
7407
7408 bool hsw_crtc_state_ips_capable(const struct intel_crtc_state *crtc_state)
7409 {
7410         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7411         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7412
7413         /* IPS only exists on ULT machines and is tied to pipe A. */
7414         if (!hsw_crtc_supports_ips(crtc))
7415                 return false;
7416
7417         if (!i915_modparams.enable_ips)
7418                 return false;
7419
7420         if (crtc_state->pipe_bpp > 24)
7421                 return false;
7422
7423         /*
7424          * We compare against max which means we must take
7425          * the increased cdclk requirement into account when
7426          * calculating the new cdclk.
7427          *
7428          * Should measure whether using a lower cdclk w/o IPS
7429          */
7430         if (IS_BROADWELL(dev_priv) &&
7431             crtc_state->pixel_rate > dev_priv->max_cdclk_freq * 95 / 100)
7432                 return false;
7433
7434         return true;
7435 }
7436
7437 static bool hsw_compute_ips_config(struct intel_crtc_state *crtc_state)
7438 {
7439         struct drm_i915_private *dev_priv =
7440                 to_i915(crtc_state->base.crtc->dev);
7441         struct intel_atomic_state *intel_state =
7442                 to_intel_atomic_state(crtc_state->base.state);
7443
7444         if (!hsw_crtc_state_ips_capable(crtc_state))
7445                 return false;
7446
7447         /*
7448          * When IPS gets enabled, the pipe CRC changes. Since IPS gets
7449          * enabled and disabled dynamically based on package C states,
7450          * user space can't make reliable use of the CRCs, so let's just
7451          * completely disable it.
7452          */
7453         if (crtc_state->crc_enabled)
7454                 return false;
7455
7456         /* IPS should be fine as long as at least one plane is enabled. */
7457         if (!(crtc_state->active_planes & ~BIT(PLANE_CURSOR)))
7458                 return false;
7459
7460         /* pixel rate mustn't exceed 95% of cdclk with IPS on BDW */
7461         if (IS_BROADWELL(dev_priv) &&
7462             crtc_state->pixel_rate > intel_state->cdclk.logical.cdclk * 95 / 100)
7463                 return false;
7464
7465         return true;
7466 }
7467
7468 static bool intel_crtc_supports_double_wide(const struct intel_crtc *crtc)
7469 {
7470         const struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7471
7472         /* GDG double wide on either pipe, otherwise pipe A only */
7473         return INTEL_GEN(dev_priv) < 4 &&
7474                 (crtc->pipe == PIPE_A || IS_I915G(dev_priv));
7475 }
7476
7477 static u32 ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
7478 {
7479         u32 pixel_rate;
7480
7481         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
7482
7483         /*
7484          * We only use IF-ID interlacing. If we ever use
7485          * PF-ID we'll need to adjust the pixel_rate here.
7486          */
7487
7488         if (pipe_config->pch_pfit.enabled) {
7489                 u64 pipe_w, pipe_h, pfit_w, pfit_h;
7490                 u32 pfit_size = pipe_config->pch_pfit.size;
7491
7492                 pipe_w = pipe_config->pipe_src_w;
7493                 pipe_h = pipe_config->pipe_src_h;
7494
7495                 pfit_w = (pfit_size >> 16) & 0xFFFF;
7496                 pfit_h = pfit_size & 0xFFFF;
7497                 if (pipe_w < pfit_w)
7498                         pipe_w = pfit_w;
7499                 if (pipe_h < pfit_h)
7500                         pipe_h = pfit_h;
7501
7502                 if (WARN_ON(!pfit_w || !pfit_h))
7503                         return pixel_rate;
7504
7505                 pixel_rate = div_u64(mul_u32_u32(pixel_rate, pipe_w * pipe_h),
7506                                      pfit_w * pfit_h);
7507         }
7508
7509         return pixel_rate;
7510 }
7511
7512 static void intel_crtc_compute_pixel_rate(struct intel_crtc_state *crtc_state)
7513 {
7514         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
7515
7516         if (HAS_GMCH(dev_priv))
7517                 /* FIXME calculate proper pipe pixel rate for GMCH pfit */
7518                 crtc_state->pixel_rate =
7519                         crtc_state->base.adjusted_mode.crtc_clock;
7520         else
7521                 crtc_state->pixel_rate =
7522                         ilk_pipe_pixel_rate(crtc_state);
7523 }
7524
7525 static int intel_crtc_compute_config(struct intel_crtc *crtc,
7526                                      struct intel_crtc_state *pipe_config)
7527 {
7528         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7529         const struct drm_display_mode *adjusted_mode = &pipe_config->base.adjusted_mode;
7530         int clock_limit = dev_priv->max_dotclk_freq;
7531
7532         if (INTEL_GEN(dev_priv) < 4) {
7533                 clock_limit = dev_priv->max_cdclk_freq * 9 / 10;
7534
7535                 /*
7536                  * Enable double wide mode when the dot clock
7537                  * is > 90% of the (display) core speed.
7538                  */
7539                 if (intel_crtc_supports_double_wide(crtc) &&
7540                     adjusted_mode->crtc_clock > clock_limit) {
7541                         clock_limit = dev_priv->max_dotclk_freq;
7542                         pipe_config->double_wide = true;
7543                 }
7544         }
7545
7546         if (adjusted_mode->crtc_clock > clock_limit) {
7547                 DRM_DEBUG_KMS("requested pixel clock (%d kHz) too high (max: %d kHz, double wide: %s)\n",
7548                               adjusted_mode->crtc_clock, clock_limit,
7549                               yesno(pipe_config->double_wide));
7550                 return -EINVAL;
7551         }
7552
7553         if ((pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
7554              pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444) &&
7555              pipe_config->base.ctm) {
7556                 /*
7557                  * There is only one pipe CSC unit per pipe, and we need that
7558                  * for output conversion from RGB->YCBCR. So if CTM is already
7559                  * applied we can't support YCBCR420 output.
7560                  */
7561                 DRM_DEBUG_KMS("YCBCR420 and CTM together are not possible\n");
7562                 return -EINVAL;
7563         }
7564
7565         /*
7566          * Pipe horizontal size must be even in:
7567          * - DVO ganged mode
7568          * - LVDS dual channel mode
7569          * - Double wide pipe
7570          */
7571         if (pipe_config->pipe_src_w & 1) {
7572                 if (pipe_config->double_wide) {
7573                         DRM_DEBUG_KMS("Odd pipe source width not supported with double wide pipe\n");
7574                         return -EINVAL;
7575                 }
7576
7577                 if (intel_crtc_has_type(pipe_config, INTEL_OUTPUT_LVDS) &&
7578                     intel_is_dual_link_lvds(dev_priv)) {
7579                         DRM_DEBUG_KMS("Odd pipe source width not supported with dual link LVDS\n");
7580                         return -EINVAL;
7581                 }
7582         }
7583
7584         /* Cantiga+ cannot handle modes with a hsync front porch of 0.
7585          * WaPruneModeWithIncorrectHsyncOffset:ctg,elk,ilk,snb,ivb,vlv,hsw.
7586          */
7587         if ((INTEL_GEN(dev_priv) > 4 || IS_G4X(dev_priv)) &&
7588                 adjusted_mode->crtc_hsync_start == adjusted_mode->crtc_hdisplay)
7589                 return -EINVAL;
7590
7591         intel_crtc_compute_pixel_rate(pipe_config);
7592
7593         if (pipe_config->has_pch_encoder)
7594                 return ironlake_fdi_compute_config(crtc, pipe_config);
7595
7596         return 0;
7597 }
7598
7599 static void
7600 intel_reduce_m_n_ratio(u32 *num, u32 *den)
7601 {
7602         while (*num > DATA_LINK_M_N_MASK ||
7603                *den > DATA_LINK_M_N_MASK) {
7604                 *num >>= 1;
7605                 *den >>= 1;
7606         }
7607 }
7608
7609 static void compute_m_n(unsigned int m, unsigned int n,
7610                         u32 *ret_m, u32 *ret_n,
7611                         bool constant_n)
7612 {
7613         /*
7614          * Several DP dongles in particular seem to be fussy about
7615          * too large link M/N values. Give N value as 0x8000 that
7616          * should be acceptable by specific devices. 0x8000 is the
7617          * specified fixed N value for asynchronous clock mode,
7618          * which the devices expect also in synchronous clock mode.
7619          */
7620         if (constant_n)
7621                 *ret_n = 0x8000;
7622         else
7623                 *ret_n = min_t(unsigned int, roundup_pow_of_two(n), DATA_LINK_N_MAX);
7624
7625         *ret_m = div_u64(mul_u32_u32(m, *ret_n), n);
7626         intel_reduce_m_n_ratio(ret_m, ret_n);
7627 }
7628
7629 void
7630 intel_link_compute_m_n(u16 bits_per_pixel, int nlanes,
7631                        int pixel_clock, int link_clock,
7632                        struct intel_link_m_n *m_n,
7633                        bool constant_n, bool fec_enable)
7634 {
7635         u32 data_clock = bits_per_pixel * pixel_clock;
7636
7637         if (fec_enable)
7638                 data_clock = intel_dp_mode_to_fec_clock(data_clock);
7639
7640         m_n->tu = 64;
7641         compute_m_n(data_clock,
7642                     link_clock * nlanes * 8,
7643                     &m_n->gmch_m, &m_n->gmch_n,
7644                     constant_n);
7645
7646         compute_m_n(pixel_clock, link_clock,
7647                     &m_n->link_m, &m_n->link_n,
7648                     constant_n);
7649 }
7650
7651 static void intel_panel_sanitize_ssc(struct drm_i915_private *dev_priv)
7652 {
7653         /*
7654          * There may be no VBT; and if the BIOS enabled SSC we can
7655          * just keep using it to avoid unnecessary flicker.  Whereas if the
7656          * BIOS isn't using it, don't assume it will work even if the VBT
7657          * indicates as much.
7658          */
7659         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv)) {
7660                 bool bios_lvds_use_ssc = I915_READ(PCH_DREF_CONTROL) &
7661                         DREF_SSC1_ENABLE;
7662
7663                 if (dev_priv->vbt.lvds_use_ssc != bios_lvds_use_ssc) {
7664                         DRM_DEBUG_KMS("SSC %s by BIOS, overriding VBT which says %s\n",
7665                                       enableddisabled(bios_lvds_use_ssc),
7666                                       enableddisabled(dev_priv->vbt.lvds_use_ssc));
7667                         dev_priv->vbt.lvds_use_ssc = bios_lvds_use_ssc;
7668                 }
7669         }
7670 }
7671
7672 static inline bool intel_panel_use_ssc(struct drm_i915_private *dev_priv)
7673 {
7674         if (i915_modparams.panel_use_ssc >= 0)
7675                 return i915_modparams.panel_use_ssc != 0;
7676         return dev_priv->vbt.lvds_use_ssc
7677                 && !(dev_priv->quirks & QUIRK_LVDS_SSC_DISABLE);
7678 }
7679
7680 static u32 pnv_dpll_compute_fp(struct dpll *dpll)
7681 {
7682         return (1 << dpll->n) << 16 | dpll->m2;
7683 }
7684
7685 static u32 i9xx_dpll_compute_fp(struct dpll *dpll)
7686 {
7687         return dpll->n << 16 | dpll->m1 << 8 | dpll->m2;
7688 }
7689
7690 static void i9xx_update_pll_dividers(struct intel_crtc *crtc,
7691                                      struct intel_crtc_state *crtc_state,
7692                                      struct dpll *reduced_clock)
7693 {
7694         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7695         u32 fp, fp2 = 0;
7696
7697         if (IS_PINEVIEW(dev_priv)) {
7698                 fp = pnv_dpll_compute_fp(&crtc_state->dpll);
7699                 if (reduced_clock)
7700                         fp2 = pnv_dpll_compute_fp(reduced_clock);
7701         } else {
7702                 fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
7703                 if (reduced_clock)
7704                         fp2 = i9xx_dpll_compute_fp(reduced_clock);
7705         }
7706
7707         crtc_state->dpll_hw_state.fp0 = fp;
7708
7709         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
7710             reduced_clock) {
7711                 crtc_state->dpll_hw_state.fp1 = fp2;
7712         } else {
7713                 crtc_state->dpll_hw_state.fp1 = fp;
7714         }
7715 }
7716
7717 static void vlv_pllb_recal_opamp(struct drm_i915_private *dev_priv, enum pipe
7718                 pipe)
7719 {
7720         u32 reg_val;
7721
7722         /*
7723          * PLLB opamp always calibrates to max value of 0x3f, force enable it
7724          * and set it to a reasonable value instead.
7725          */
7726         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7727         reg_val &= 0xffffff00;
7728         reg_val |= 0x00000030;
7729         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7730
7731         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7732         reg_val &= 0x00ffffff;
7733         reg_val |= 0x8c000000;
7734         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7735
7736         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW9(1));
7737         reg_val &= 0xffffff00;
7738         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9(1), reg_val);
7739
7740         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_REF_DW13);
7741         reg_val &= 0x00ffffff;
7742         reg_val |= 0xb0000000;
7743         vlv_dpio_write(dev_priv, pipe, VLV_REF_DW13, reg_val);
7744 }
7745
7746 static void intel_pch_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7747                                          const struct intel_link_m_n *m_n)
7748 {
7749         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7750         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7751         enum pipe pipe = crtc->pipe;
7752
7753         I915_WRITE(PCH_TRANS_DATA_M1(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7754         I915_WRITE(PCH_TRANS_DATA_N1(pipe), m_n->gmch_n);
7755         I915_WRITE(PCH_TRANS_LINK_M1(pipe), m_n->link_m);
7756         I915_WRITE(PCH_TRANS_LINK_N1(pipe), m_n->link_n);
7757 }
7758
7759 static bool transcoder_has_m2_n2(struct drm_i915_private *dev_priv,
7760                                  enum transcoder transcoder)
7761 {
7762         if (IS_HASWELL(dev_priv))
7763                 return transcoder == TRANSCODER_EDP;
7764
7765         /*
7766          * Strictly speaking some registers are available before
7767          * gen7, but we only support DRRS on gen7+
7768          */
7769         return IS_GEN(dev_priv, 7) || IS_CHERRYVIEW(dev_priv);
7770 }
7771
7772 static void intel_cpu_transcoder_set_m_n(const struct intel_crtc_state *crtc_state,
7773                                          const struct intel_link_m_n *m_n,
7774                                          const struct intel_link_m_n *m2_n2)
7775 {
7776         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
7777         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
7778         enum pipe pipe = crtc->pipe;
7779         enum transcoder transcoder = crtc_state->cpu_transcoder;
7780
7781         if (INTEL_GEN(dev_priv) >= 5) {
7782                 I915_WRITE(PIPE_DATA_M1(transcoder), TU_SIZE(m_n->tu) | m_n->gmch_m);
7783                 I915_WRITE(PIPE_DATA_N1(transcoder), m_n->gmch_n);
7784                 I915_WRITE(PIPE_LINK_M1(transcoder), m_n->link_m);
7785                 I915_WRITE(PIPE_LINK_N1(transcoder), m_n->link_n);
7786                 /*
7787                  *  M2_N2 registers are set only if DRRS is supported
7788                  * (to make sure the registers are not unnecessarily accessed).
7789                  */
7790                 if (m2_n2 && crtc_state->has_drrs &&
7791                     transcoder_has_m2_n2(dev_priv, transcoder)) {
7792                         I915_WRITE(PIPE_DATA_M2(transcoder),
7793                                         TU_SIZE(m2_n2->tu) | m2_n2->gmch_m);
7794                         I915_WRITE(PIPE_DATA_N2(transcoder), m2_n2->gmch_n);
7795                         I915_WRITE(PIPE_LINK_M2(transcoder), m2_n2->link_m);
7796                         I915_WRITE(PIPE_LINK_N2(transcoder), m2_n2->link_n);
7797                 }
7798         } else {
7799                 I915_WRITE(PIPE_DATA_M_G4X(pipe), TU_SIZE(m_n->tu) | m_n->gmch_m);
7800                 I915_WRITE(PIPE_DATA_N_G4X(pipe), m_n->gmch_n);
7801                 I915_WRITE(PIPE_LINK_M_G4X(pipe), m_n->link_m);
7802                 I915_WRITE(PIPE_LINK_N_G4X(pipe), m_n->link_n);
7803         }
7804 }
7805
7806 void intel_dp_set_m_n(const struct intel_crtc_state *crtc_state, enum link_m_n_set m_n)
7807 {
7808         const struct intel_link_m_n *dp_m_n, *dp_m2_n2 = NULL;
7809
7810         if (m_n == M1_N1) {
7811                 dp_m_n = &crtc_state->dp_m_n;
7812                 dp_m2_n2 = &crtc_state->dp_m2_n2;
7813         } else if (m_n == M2_N2) {
7814
7815                 /*
7816                  * M2_N2 registers are not supported. Hence m2_n2 divider value
7817                  * needs to be programmed into M1_N1.
7818                  */
7819                 dp_m_n = &crtc_state->dp_m2_n2;
7820         } else {
7821                 DRM_ERROR("Unsupported divider value\n");
7822                 return;
7823         }
7824
7825         if (crtc_state->has_pch_encoder)
7826                 intel_pch_transcoder_set_m_n(crtc_state, &crtc_state->dp_m_n);
7827         else
7828                 intel_cpu_transcoder_set_m_n(crtc_state, dp_m_n, dp_m2_n2);
7829 }
7830
7831 static void vlv_compute_dpll(struct intel_crtc *crtc,
7832                              struct intel_crtc_state *pipe_config)
7833 {
7834         pipe_config->dpll_hw_state.dpll = DPLL_INTEGRATED_REF_CLK_VLV |
7835                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7836         if (crtc->pipe != PIPE_A)
7837                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7838
7839         /* DPLL not used with DSI, but still need the rest set up */
7840         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7841                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE |
7842                         DPLL_EXT_BUFFER_ENABLE_VLV;
7843
7844         pipe_config->dpll_hw_state.dpll_md =
7845                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7846 }
7847
7848 static void chv_compute_dpll(struct intel_crtc *crtc,
7849                              struct intel_crtc_state *pipe_config)
7850 {
7851         pipe_config->dpll_hw_state.dpll = DPLL_SSC_REF_CLK_CHV |
7852                 DPLL_REF_CLK_ENABLE_VLV | DPLL_VGA_MODE_DIS;
7853         if (crtc->pipe != PIPE_A)
7854                 pipe_config->dpll_hw_state.dpll |= DPLL_INTEGRATED_CRI_CLK_VLV;
7855
7856         /* DPLL not used with DSI, but still need the rest set up */
7857         if (!intel_crtc_has_type(pipe_config, INTEL_OUTPUT_DSI))
7858                 pipe_config->dpll_hw_state.dpll |= DPLL_VCO_ENABLE;
7859
7860         pipe_config->dpll_hw_state.dpll_md =
7861                 (pipe_config->pixel_multiplier - 1) << DPLL_MD_UDI_MULTIPLIER_SHIFT;
7862 }
7863
7864 static void vlv_prepare_pll(struct intel_crtc *crtc,
7865                             const struct intel_crtc_state *pipe_config)
7866 {
7867         struct drm_device *dev = crtc->base.dev;
7868         struct drm_i915_private *dev_priv = to_i915(dev);
7869         enum pipe pipe = crtc->pipe;
7870         u32 mdiv;
7871         u32 bestn, bestm1, bestm2, bestp1, bestp2;
7872         u32 coreclk, reg_val;
7873
7874         /* Enable Refclk */
7875         I915_WRITE(DPLL(pipe),
7876                    pipe_config->dpll_hw_state.dpll &
7877                    ~(DPLL_VCO_ENABLE | DPLL_EXT_BUFFER_ENABLE_VLV));
7878
7879         /* No need to actually set up the DPLL with DSI */
7880         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7881                 return;
7882
7883         vlv_dpio_get(dev_priv);
7884
7885         bestn = pipe_config->dpll.n;
7886         bestm1 = pipe_config->dpll.m1;
7887         bestm2 = pipe_config->dpll.m2;
7888         bestp1 = pipe_config->dpll.p1;
7889         bestp2 = pipe_config->dpll.p2;
7890
7891         /* See eDP HDMI DPIO driver vbios notes doc */
7892
7893         /* PLL B needs special handling */
7894         if (pipe == PIPE_B)
7895                 vlv_pllb_recal_opamp(dev_priv, pipe);
7896
7897         /* Set up Tx target for periodic Rcomp update */
7898         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW9_BCAST, 0x0100000f);
7899
7900         /* Disable target IRef on PLL */
7901         reg_val = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW8(pipe));
7902         reg_val &= 0x00ffffff;
7903         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW8(pipe), reg_val);
7904
7905         /* Disable fast lock */
7906         vlv_dpio_write(dev_priv, pipe, VLV_CMN_DW0, 0x610);
7907
7908         /* Set idtafcrecal before PLL is enabled */
7909         mdiv = ((bestm1 << DPIO_M1DIV_SHIFT) | (bestm2 & DPIO_M2DIV_MASK));
7910         mdiv |= ((bestp1 << DPIO_P1_SHIFT) | (bestp2 << DPIO_P2_SHIFT));
7911         mdiv |= ((bestn << DPIO_N_SHIFT));
7912         mdiv |= (1 << DPIO_K_SHIFT);
7913
7914         /*
7915          * Post divider depends on pixel clock rate, DAC vs digital (and LVDS,
7916          * but we don't support that).
7917          * Note: don't use the DAC post divider as it seems unstable.
7918          */
7919         mdiv |= (DPIO_POST_DIV_HDMIDP << DPIO_POST_DIV_SHIFT);
7920         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7921
7922         mdiv |= DPIO_ENABLE_CALIBRATION;
7923         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW3(pipe), mdiv);
7924
7925         /* Set HBR and RBR LPF coefficients */
7926         if (pipe_config->port_clock == 162000 ||
7927             intel_crtc_has_type(pipe_config, INTEL_OUTPUT_ANALOG) ||
7928             intel_crtc_has_type(pipe_config, INTEL_OUTPUT_HDMI))
7929                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7930                                  0x009f0003);
7931         else
7932                 vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW10(pipe),
7933                                  0x00d0000f);
7934
7935         if (intel_crtc_has_dp_encoder(pipe_config)) {
7936                 /* Use SSC source */
7937                 if (pipe == PIPE_A)
7938                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7939                                          0x0df40000);
7940                 else
7941                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7942                                          0x0df70000);
7943         } else { /* HDMI or VGA */
7944                 /* Use bend source */
7945                 if (pipe == PIPE_A)
7946                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7947                                          0x0df70000);
7948                 else
7949                         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW5(pipe),
7950                                          0x0df40000);
7951         }
7952
7953         coreclk = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW7(pipe));
7954         coreclk = (coreclk & 0x0000ff00) | 0x01c00000;
7955         if (intel_crtc_has_dp_encoder(pipe_config))
7956                 coreclk |= 0x01000000;
7957         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW7(pipe), coreclk);
7958
7959         vlv_dpio_write(dev_priv, pipe, VLV_PLL_DW11(pipe), 0x87871000);
7960
7961         vlv_dpio_put(dev_priv);
7962 }
7963
7964 static void chv_prepare_pll(struct intel_crtc *crtc,
7965                             const struct intel_crtc_state *pipe_config)
7966 {
7967         struct drm_device *dev = crtc->base.dev;
7968         struct drm_i915_private *dev_priv = to_i915(dev);
7969         enum pipe pipe = crtc->pipe;
7970         enum dpio_channel port = vlv_pipe_to_channel(pipe);
7971         u32 loopfilter, tribuf_calcntr;
7972         u32 bestn, bestm1, bestm2, bestp1, bestp2, bestm2_frac;
7973         u32 dpio_val;
7974         int vco;
7975
7976         /* Enable Refclk and SSC */
7977         I915_WRITE(DPLL(pipe),
7978                    pipe_config->dpll_hw_state.dpll & ~DPLL_VCO_ENABLE);
7979
7980         /* No need to actually set up the DPLL with DSI */
7981         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
7982                 return;
7983
7984         bestn = pipe_config->dpll.n;
7985         bestm2_frac = pipe_config->dpll.m2 & 0x3fffff;
7986         bestm1 = pipe_config->dpll.m1;
7987         bestm2 = pipe_config->dpll.m2 >> 22;
7988         bestp1 = pipe_config->dpll.p1;
7989         bestp2 = pipe_config->dpll.p2;
7990         vco = pipe_config->dpll.vco;
7991         dpio_val = 0;
7992         loopfilter = 0;
7993
7994         vlv_dpio_get(dev_priv);
7995
7996         /* p1 and p2 divider */
7997         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW13(port),
7998                         5 << DPIO_CHV_S1_DIV_SHIFT |
7999                         bestp1 << DPIO_CHV_P1_DIV_SHIFT |
8000                         bestp2 << DPIO_CHV_P2_DIV_SHIFT |
8001                         1 << DPIO_CHV_K_DIV_SHIFT);
8002
8003         /* Feedback post-divider - m2 */
8004         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW0(port), bestm2);
8005
8006         /* Feedback refclk divider - n and m1 */
8007         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW1(port),
8008                         DPIO_CHV_M1_DIV_BY_2 |
8009                         1 << DPIO_CHV_N_DIV_SHIFT);
8010
8011         /* M2 fraction division */
8012         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW2(port), bestm2_frac);
8013
8014         /* M2 fraction division enable */
8015         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8016         dpio_val &= ~(DPIO_CHV_FEEDFWD_GAIN_MASK | DPIO_CHV_FRAC_DIV_EN);
8017         dpio_val |= (2 << DPIO_CHV_FEEDFWD_GAIN_SHIFT);
8018         if (bestm2_frac)
8019                 dpio_val |= DPIO_CHV_FRAC_DIV_EN;
8020         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW3(port), dpio_val);
8021
8022         /* Program digital lock detect threshold */
8023         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW9(port));
8024         dpio_val &= ~(DPIO_CHV_INT_LOCK_THRESHOLD_MASK |
8025                                         DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE);
8026         dpio_val |= (0x5 << DPIO_CHV_INT_LOCK_THRESHOLD_SHIFT);
8027         if (!bestm2_frac)
8028                 dpio_val |= DPIO_CHV_INT_LOCK_THRESHOLD_SEL_COARSE;
8029         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW9(port), dpio_val);
8030
8031         /* Loop filter */
8032         if (vco == 5400000) {
8033                 loopfilter |= (0x3 << DPIO_CHV_PROP_COEFF_SHIFT);
8034                 loopfilter |= (0x8 << DPIO_CHV_INT_COEFF_SHIFT);
8035                 loopfilter |= (0x1 << DPIO_CHV_GAIN_CTRL_SHIFT);
8036                 tribuf_calcntr = 0x9;
8037         } else if (vco <= 6200000) {
8038                 loopfilter |= (0x5 << DPIO_CHV_PROP_COEFF_SHIFT);
8039                 loopfilter |= (0xB << DPIO_CHV_INT_COEFF_SHIFT);
8040                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8041                 tribuf_calcntr = 0x9;
8042         } else if (vco <= 6480000) {
8043                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8044                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8045                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8046                 tribuf_calcntr = 0x8;
8047         } else {
8048                 /* Not supported. Apply the same limits as in the max case */
8049                 loopfilter |= (0x4 << DPIO_CHV_PROP_COEFF_SHIFT);
8050                 loopfilter |= (0x9 << DPIO_CHV_INT_COEFF_SHIFT);
8051                 loopfilter |= (0x3 << DPIO_CHV_GAIN_CTRL_SHIFT);
8052                 tribuf_calcntr = 0;
8053         }
8054         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW6(port), loopfilter);
8055
8056         dpio_val = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW8(port));
8057         dpio_val &= ~DPIO_CHV_TDC_TARGET_CNT_MASK;
8058         dpio_val |= (tribuf_calcntr << DPIO_CHV_TDC_TARGET_CNT_SHIFT);
8059         vlv_dpio_write(dev_priv, pipe, CHV_PLL_DW8(port), dpio_val);
8060
8061         /* AFC Recal */
8062         vlv_dpio_write(dev_priv, pipe, CHV_CMN_DW14(port),
8063                         vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW14(port)) |
8064                         DPIO_AFC_RECAL);
8065
8066         vlv_dpio_put(dev_priv);
8067 }
8068
8069 /**
8070  * vlv_force_pll_on - forcibly enable just the PLL
8071  * @dev_priv: i915 private structure
8072  * @pipe: pipe PLL to enable
8073  * @dpll: PLL configuration
8074  *
8075  * Enable the PLL for @pipe using the supplied @dpll config. To be used
8076  * in cases where we need the PLL enabled even when @pipe is not going to
8077  * be enabled.
8078  */
8079 int vlv_force_pll_on(struct drm_i915_private *dev_priv, enum pipe pipe,
8080                      const struct dpll *dpll)
8081 {
8082         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
8083         struct intel_crtc_state *pipe_config;
8084
8085         pipe_config = kzalloc(sizeof(*pipe_config), GFP_KERNEL);
8086         if (!pipe_config)
8087                 return -ENOMEM;
8088
8089         pipe_config->base.crtc = &crtc->base;
8090         pipe_config->pixel_multiplier = 1;
8091         pipe_config->dpll = *dpll;
8092
8093         if (IS_CHERRYVIEW(dev_priv)) {
8094                 chv_compute_dpll(crtc, pipe_config);
8095                 chv_prepare_pll(crtc, pipe_config);
8096                 chv_enable_pll(crtc, pipe_config);
8097         } else {
8098                 vlv_compute_dpll(crtc, pipe_config);
8099                 vlv_prepare_pll(crtc, pipe_config);
8100                 vlv_enable_pll(crtc, pipe_config);
8101         }
8102
8103         kfree(pipe_config);
8104
8105         return 0;
8106 }
8107
8108 /**
8109  * vlv_force_pll_off - forcibly disable just the PLL
8110  * @dev_priv: i915 private structure
8111  * @pipe: pipe PLL to disable
8112  *
8113  * Disable the PLL for @pipe. To be used in cases where we need
8114  * the PLL enabled even when @pipe is not going to be enabled.
8115  */
8116 void vlv_force_pll_off(struct drm_i915_private *dev_priv, enum pipe pipe)
8117 {
8118         if (IS_CHERRYVIEW(dev_priv))
8119                 chv_disable_pll(dev_priv, pipe);
8120         else
8121                 vlv_disable_pll(dev_priv, pipe);
8122 }
8123
8124 static void i9xx_compute_dpll(struct intel_crtc *crtc,
8125                               struct intel_crtc_state *crtc_state,
8126                               struct dpll *reduced_clock)
8127 {
8128         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8129         u32 dpll;
8130         struct dpll *clock = &crtc_state->dpll;
8131
8132         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8133
8134         dpll = DPLL_VGA_MODE_DIS;
8135
8136         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
8137                 dpll |= DPLLB_MODE_LVDS;
8138         else
8139                 dpll |= DPLLB_MODE_DAC_SERIAL;
8140
8141         if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8142             IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8143                 dpll |= (crtc_state->pixel_multiplier - 1)
8144                         << SDVO_MULTIPLIER_SHIFT_HIRES;
8145         }
8146
8147         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
8148             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
8149                 dpll |= DPLL_SDVO_HIGH_SPEED;
8150
8151         if (intel_crtc_has_dp_encoder(crtc_state))
8152                 dpll |= DPLL_SDVO_HIGH_SPEED;
8153
8154         /* compute bitmask from p1 value */
8155         if (IS_PINEVIEW(dev_priv))
8156                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW;
8157         else {
8158                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8159                 if (IS_G4X(dev_priv) && reduced_clock)
8160                         dpll |= (1 << (reduced_clock->p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
8161         }
8162         switch (clock->p2) {
8163         case 5:
8164                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
8165                 break;
8166         case 7:
8167                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
8168                 break;
8169         case 10:
8170                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
8171                 break;
8172         case 14:
8173                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
8174                 break;
8175         }
8176         if (INTEL_GEN(dev_priv) >= 4)
8177                 dpll |= (6 << PLL_LOAD_PULSE_PHASE_SHIFT);
8178
8179         if (crtc_state->sdvo_tv_clock)
8180                 dpll |= PLL_REF_INPUT_TVCLKINBC;
8181         else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8182                  intel_panel_use_ssc(dev_priv))
8183                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8184         else
8185                 dpll |= PLL_REF_INPUT_DREFCLK;
8186
8187         dpll |= DPLL_VCO_ENABLE;
8188         crtc_state->dpll_hw_state.dpll = dpll;
8189
8190         if (INTEL_GEN(dev_priv) >= 4) {
8191                 u32 dpll_md = (crtc_state->pixel_multiplier - 1)
8192                         << DPLL_MD_UDI_MULTIPLIER_SHIFT;
8193                 crtc_state->dpll_hw_state.dpll_md = dpll_md;
8194         }
8195 }
8196
8197 static void i8xx_compute_dpll(struct intel_crtc *crtc,
8198                               struct intel_crtc_state *crtc_state,
8199                               struct dpll *reduced_clock)
8200 {
8201         struct drm_device *dev = crtc->base.dev;
8202         struct drm_i915_private *dev_priv = to_i915(dev);
8203         u32 dpll;
8204         struct dpll *clock = &crtc_state->dpll;
8205
8206         i9xx_update_pll_dividers(crtc, crtc_state, reduced_clock);
8207
8208         dpll = DPLL_VGA_MODE_DIS;
8209
8210         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8211                 dpll |= (1 << (clock->p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8212         } else {
8213                 if (clock->p1 == 2)
8214                         dpll |= PLL_P1_DIVIDE_BY_TWO;
8215                 else
8216                         dpll |= (clock->p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT;
8217                 if (clock->p2 == 4)
8218                         dpll |= PLL_P2_DIVIDE_BY_4;
8219         }
8220
8221         /*
8222          * Bspec:
8223          * "[Almador Errata}: For the correct operation of the muxed DVO pins
8224          *  (GDEVSELB/I2Cdata, GIRDBY/I2CClk) and (GFRAMEB/DVI_Data,
8225          *  GTRDYB/DVI_Clk): Bit 31 (DPLL VCO Enable) and Bit 30 (2X Clock
8226          *  Enable) must be set to “1” in both the DPLL A Control Register
8227          *  (06014h-06017h) and DPLL B Control Register (06018h-0601Bh)."
8228          *
8229          * For simplicity We simply keep both bits always enabled in
8230          * both DPLLS. The spec says we should disable the DVO 2X clock
8231          * when not needed, but this seems to work fine in practice.
8232          */
8233         if (IS_I830(dev_priv) ||
8234             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO))
8235                 dpll |= DPLL_DVO_2X_MODE;
8236
8237         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
8238             intel_panel_use_ssc(dev_priv))
8239                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
8240         else
8241                 dpll |= PLL_REF_INPUT_DREFCLK;
8242
8243         dpll |= DPLL_VCO_ENABLE;
8244         crtc_state->dpll_hw_state.dpll = dpll;
8245 }
8246
8247 static void intel_set_pipe_timings(const struct intel_crtc_state *crtc_state)
8248 {
8249         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8250         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8251         enum pipe pipe = crtc->pipe;
8252         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8253         const struct drm_display_mode *adjusted_mode = &crtc_state->base.adjusted_mode;
8254         u32 crtc_vtotal, crtc_vblank_end;
8255         int vsyncshift = 0;
8256
8257         /* We need to be careful not to changed the adjusted mode, for otherwise
8258          * the hw state checker will get angry at the mismatch. */
8259         crtc_vtotal = adjusted_mode->crtc_vtotal;
8260         crtc_vblank_end = adjusted_mode->crtc_vblank_end;
8261
8262         if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE) {
8263                 /* the chip adds 2 halflines automatically */
8264                 crtc_vtotal -= 1;
8265                 crtc_vblank_end -= 1;
8266
8267                 if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8268                         vsyncshift = (adjusted_mode->crtc_htotal - 1) / 2;
8269                 else
8270                         vsyncshift = adjusted_mode->crtc_hsync_start -
8271                                 adjusted_mode->crtc_htotal / 2;
8272                 if (vsyncshift < 0)
8273                         vsyncshift += adjusted_mode->crtc_htotal;
8274         }
8275
8276         if (INTEL_GEN(dev_priv) > 3)
8277                 I915_WRITE(VSYNCSHIFT(cpu_transcoder), vsyncshift);
8278
8279         I915_WRITE(HTOTAL(cpu_transcoder),
8280                    (adjusted_mode->crtc_hdisplay - 1) |
8281                    ((adjusted_mode->crtc_htotal - 1) << 16));
8282         I915_WRITE(HBLANK(cpu_transcoder),
8283                    (adjusted_mode->crtc_hblank_start - 1) |
8284                    ((adjusted_mode->crtc_hblank_end - 1) << 16));
8285         I915_WRITE(HSYNC(cpu_transcoder),
8286                    (adjusted_mode->crtc_hsync_start - 1) |
8287                    ((adjusted_mode->crtc_hsync_end - 1) << 16));
8288
8289         I915_WRITE(VTOTAL(cpu_transcoder),
8290                    (adjusted_mode->crtc_vdisplay - 1) |
8291                    ((crtc_vtotal - 1) << 16));
8292         I915_WRITE(VBLANK(cpu_transcoder),
8293                    (adjusted_mode->crtc_vblank_start - 1) |
8294                    ((crtc_vblank_end - 1) << 16));
8295         I915_WRITE(VSYNC(cpu_transcoder),
8296                    (adjusted_mode->crtc_vsync_start - 1) |
8297                    ((adjusted_mode->crtc_vsync_end - 1) << 16));
8298
8299         /* Workaround: when the EDP input selection is B, the VTOTAL_B must be
8300          * programmed with the VTOTAL_EDP value. Same for VTOTAL_C. This is
8301          * documented on the DDI_FUNC_CTL register description, EDP Input Select
8302          * bits. */
8303         if (IS_HASWELL(dev_priv) && cpu_transcoder == TRANSCODER_EDP &&
8304             (pipe == PIPE_B || pipe == PIPE_C))
8305                 I915_WRITE(VTOTAL(pipe), I915_READ(VTOTAL(cpu_transcoder)));
8306
8307 }
8308
8309 static void intel_set_pipe_src_size(const struct intel_crtc_state *crtc_state)
8310 {
8311         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8312         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8313         enum pipe pipe = crtc->pipe;
8314
8315         /* pipesrc controls the size that is scaled from, which should
8316          * always be the user's requested size.
8317          */
8318         I915_WRITE(PIPESRC(pipe),
8319                    ((crtc_state->pipe_src_w - 1) << 16) |
8320                    (crtc_state->pipe_src_h - 1));
8321 }
8322
8323 static bool intel_pipe_is_interlaced(const struct intel_crtc_state *crtc_state)
8324 {
8325         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
8326         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
8327
8328         if (IS_GEN(dev_priv, 2))
8329                 return false;
8330
8331         if (INTEL_GEN(dev_priv) >= 9 ||
8332             IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
8333                 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK_HSW;
8334         else
8335                 return I915_READ(PIPECONF(cpu_transcoder)) & PIPECONF_INTERLACE_MASK;
8336 }
8337
8338 static void intel_get_pipe_timings(struct intel_crtc *crtc,
8339                                    struct intel_crtc_state *pipe_config)
8340 {
8341         struct drm_device *dev = crtc->base.dev;
8342         struct drm_i915_private *dev_priv = to_i915(dev);
8343         enum transcoder cpu_transcoder = pipe_config->cpu_transcoder;
8344         u32 tmp;
8345
8346         tmp = I915_READ(HTOTAL(cpu_transcoder));
8347         pipe_config->base.adjusted_mode.crtc_hdisplay = (tmp & 0xffff) + 1;
8348         pipe_config->base.adjusted_mode.crtc_htotal = ((tmp >> 16) & 0xffff) + 1;
8349
8350         if (!transcoder_is_dsi(cpu_transcoder)) {
8351                 tmp = I915_READ(HBLANK(cpu_transcoder));
8352                 pipe_config->base.adjusted_mode.crtc_hblank_start =
8353                                                         (tmp & 0xffff) + 1;
8354                 pipe_config->base.adjusted_mode.crtc_hblank_end =
8355                                                 ((tmp >> 16) & 0xffff) + 1;
8356         }
8357         tmp = I915_READ(HSYNC(cpu_transcoder));
8358         pipe_config->base.adjusted_mode.crtc_hsync_start = (tmp & 0xffff) + 1;
8359         pipe_config->base.adjusted_mode.crtc_hsync_end = ((tmp >> 16) & 0xffff) + 1;
8360
8361         tmp = I915_READ(VTOTAL(cpu_transcoder));
8362         pipe_config->base.adjusted_mode.crtc_vdisplay = (tmp & 0xffff) + 1;
8363         pipe_config->base.adjusted_mode.crtc_vtotal = ((tmp >> 16) & 0xffff) + 1;
8364
8365         if (!transcoder_is_dsi(cpu_transcoder)) {
8366                 tmp = I915_READ(VBLANK(cpu_transcoder));
8367                 pipe_config->base.adjusted_mode.crtc_vblank_start =
8368                                                         (tmp & 0xffff) + 1;
8369                 pipe_config->base.adjusted_mode.crtc_vblank_end =
8370                                                 ((tmp >> 16) & 0xffff) + 1;
8371         }
8372         tmp = I915_READ(VSYNC(cpu_transcoder));
8373         pipe_config->base.adjusted_mode.crtc_vsync_start = (tmp & 0xffff) + 1;
8374         pipe_config->base.adjusted_mode.crtc_vsync_end = ((tmp >> 16) & 0xffff) + 1;
8375
8376         if (intel_pipe_is_interlaced(pipe_config)) {
8377                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_INTERLACE;
8378                 pipe_config->base.adjusted_mode.crtc_vtotal += 1;
8379                 pipe_config->base.adjusted_mode.crtc_vblank_end += 1;
8380         }
8381 }
8382
8383 static void intel_get_pipe_src_size(struct intel_crtc *crtc,
8384                                     struct intel_crtc_state *pipe_config)
8385 {
8386         struct drm_device *dev = crtc->base.dev;
8387         struct drm_i915_private *dev_priv = to_i915(dev);
8388         u32 tmp;
8389
8390         tmp = I915_READ(PIPESRC(crtc->pipe));
8391         pipe_config->pipe_src_h = (tmp & 0xffff) + 1;
8392         pipe_config->pipe_src_w = ((tmp >> 16) & 0xffff) + 1;
8393
8394         pipe_config->base.mode.vdisplay = pipe_config->pipe_src_h;
8395         pipe_config->base.mode.hdisplay = pipe_config->pipe_src_w;
8396 }
8397
8398 void intel_mode_from_pipe_config(struct drm_display_mode *mode,
8399                                  struct intel_crtc_state *pipe_config)
8400 {
8401         mode->hdisplay = pipe_config->base.adjusted_mode.crtc_hdisplay;
8402         mode->htotal = pipe_config->base.adjusted_mode.crtc_htotal;
8403         mode->hsync_start = pipe_config->base.adjusted_mode.crtc_hsync_start;
8404         mode->hsync_end = pipe_config->base.adjusted_mode.crtc_hsync_end;
8405
8406         mode->vdisplay = pipe_config->base.adjusted_mode.crtc_vdisplay;
8407         mode->vtotal = pipe_config->base.adjusted_mode.crtc_vtotal;
8408         mode->vsync_start = pipe_config->base.adjusted_mode.crtc_vsync_start;
8409         mode->vsync_end = pipe_config->base.adjusted_mode.crtc_vsync_end;
8410
8411         mode->flags = pipe_config->base.adjusted_mode.flags;
8412         mode->type = DRM_MODE_TYPE_DRIVER;
8413
8414         mode->clock = pipe_config->base.adjusted_mode.crtc_clock;
8415
8416         mode->hsync = drm_mode_hsync(mode);
8417         mode->vrefresh = drm_mode_vrefresh(mode);
8418         drm_mode_set_name(mode);
8419 }
8420
8421 static void i9xx_set_pipeconf(const struct intel_crtc_state *crtc_state)
8422 {
8423         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8424         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8425         u32 pipeconf;
8426
8427         pipeconf = 0;
8428
8429         /* we keep both pipes enabled on 830 */
8430         if (IS_I830(dev_priv))
8431                 pipeconf |= I915_READ(PIPECONF(crtc->pipe)) & PIPECONF_ENABLE;
8432
8433         if (crtc_state->double_wide)
8434                 pipeconf |= PIPECONF_DOUBLE_WIDE;
8435
8436         /* only g4x and later have fancy bpc/dither controls */
8437         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8438             IS_CHERRYVIEW(dev_priv)) {
8439                 /* Bspec claims that we can't use dithering for 30bpp pipes. */
8440                 if (crtc_state->dither && crtc_state->pipe_bpp != 30)
8441                         pipeconf |= PIPECONF_DITHER_EN |
8442                                     PIPECONF_DITHER_TYPE_SP;
8443
8444                 switch (crtc_state->pipe_bpp) {
8445                 case 18:
8446                         pipeconf |= PIPECONF_6BPC;
8447                         break;
8448                 case 24:
8449                         pipeconf |= PIPECONF_8BPC;
8450                         break;
8451                 case 30:
8452                         pipeconf |= PIPECONF_10BPC;
8453                         break;
8454                 default:
8455                         /* Case prevented by intel_choose_pipe_bpp_dither. */
8456                         BUG();
8457                 }
8458         }
8459
8460         if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE) {
8461                 if (INTEL_GEN(dev_priv) < 4 ||
8462                     intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO))
8463                         pipeconf |= PIPECONF_INTERLACE_W_FIELD_INDICATION;
8464                 else
8465                         pipeconf |= PIPECONF_INTERLACE_W_SYNC_SHIFT;
8466         } else {
8467                 pipeconf |= PIPECONF_PROGRESSIVE;
8468         }
8469
8470         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8471              crtc_state->limited_color_range)
8472                 pipeconf |= PIPECONF_COLOR_RANGE_SELECT;
8473
8474         pipeconf |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
8475
8476         I915_WRITE(PIPECONF(crtc->pipe), pipeconf);
8477         POSTING_READ(PIPECONF(crtc->pipe));
8478 }
8479
8480 static int i8xx_crtc_compute_clock(struct intel_crtc *crtc,
8481                                    struct intel_crtc_state *crtc_state)
8482 {
8483         struct drm_device *dev = crtc->base.dev;
8484         struct drm_i915_private *dev_priv = to_i915(dev);
8485         const struct intel_limit *limit;
8486         int refclk = 48000;
8487
8488         memset(&crtc_state->dpll_hw_state, 0,
8489                sizeof(crtc_state->dpll_hw_state));
8490
8491         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8492                 if (intel_panel_use_ssc(dev_priv)) {
8493                         refclk = dev_priv->vbt.lvds_ssc_freq;
8494                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8495                 }
8496
8497                 limit = &intel_limits_i8xx_lvds;
8498         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DVO)) {
8499                 limit = &intel_limits_i8xx_dvo;
8500         } else {
8501                 limit = &intel_limits_i8xx_dac;
8502         }
8503
8504         if (!crtc_state->clock_set &&
8505             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8506                                  refclk, NULL, &crtc_state->dpll)) {
8507                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8508                 return -EINVAL;
8509         }
8510
8511         i8xx_compute_dpll(crtc, crtc_state, NULL);
8512
8513         return 0;
8514 }
8515
8516 static int g4x_crtc_compute_clock(struct intel_crtc *crtc,
8517                                   struct intel_crtc_state *crtc_state)
8518 {
8519         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8520         const struct intel_limit *limit;
8521         int refclk = 96000;
8522
8523         memset(&crtc_state->dpll_hw_state, 0,
8524                sizeof(crtc_state->dpll_hw_state));
8525
8526         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8527                 if (intel_panel_use_ssc(dev_priv)) {
8528                         refclk = dev_priv->vbt.lvds_ssc_freq;
8529                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8530                 }
8531
8532                 if (intel_is_dual_link_lvds(dev_priv))
8533                         limit = &intel_limits_g4x_dual_channel_lvds;
8534                 else
8535                         limit = &intel_limits_g4x_single_channel_lvds;
8536         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI) ||
8537                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG)) {
8538                 limit = &intel_limits_g4x_hdmi;
8539         } else if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO)) {
8540                 limit = &intel_limits_g4x_sdvo;
8541         } else {
8542                 /* The option is for other outputs */
8543                 limit = &intel_limits_i9xx_sdvo;
8544         }
8545
8546         if (!crtc_state->clock_set &&
8547             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8548                                 refclk, NULL, &crtc_state->dpll)) {
8549                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8550                 return -EINVAL;
8551         }
8552
8553         i9xx_compute_dpll(crtc, crtc_state, NULL);
8554
8555         return 0;
8556 }
8557
8558 static int pnv_crtc_compute_clock(struct intel_crtc *crtc,
8559                                   struct intel_crtc_state *crtc_state)
8560 {
8561         struct drm_device *dev = crtc->base.dev;
8562         struct drm_i915_private *dev_priv = to_i915(dev);
8563         const struct intel_limit *limit;
8564         int refclk = 96000;
8565
8566         memset(&crtc_state->dpll_hw_state, 0,
8567                sizeof(crtc_state->dpll_hw_state));
8568
8569         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8570                 if (intel_panel_use_ssc(dev_priv)) {
8571                         refclk = dev_priv->vbt.lvds_ssc_freq;
8572                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8573                 }
8574
8575                 limit = &intel_limits_pineview_lvds;
8576         } else {
8577                 limit = &intel_limits_pineview_sdvo;
8578         }
8579
8580         if (!crtc_state->clock_set &&
8581             !pnv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8582                                 refclk, NULL, &crtc_state->dpll)) {
8583                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8584                 return -EINVAL;
8585         }
8586
8587         i9xx_compute_dpll(crtc, crtc_state, NULL);
8588
8589         return 0;
8590 }
8591
8592 static int i9xx_crtc_compute_clock(struct intel_crtc *crtc,
8593                                    struct intel_crtc_state *crtc_state)
8594 {
8595         struct drm_device *dev = crtc->base.dev;
8596         struct drm_i915_private *dev_priv = to_i915(dev);
8597         const struct intel_limit *limit;
8598         int refclk = 96000;
8599
8600         memset(&crtc_state->dpll_hw_state, 0,
8601                sizeof(crtc_state->dpll_hw_state));
8602
8603         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
8604                 if (intel_panel_use_ssc(dev_priv)) {
8605                         refclk = dev_priv->vbt.lvds_ssc_freq;
8606                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n", refclk);
8607                 }
8608
8609                 limit = &intel_limits_i9xx_lvds;
8610         } else {
8611                 limit = &intel_limits_i9xx_sdvo;
8612         }
8613
8614         if (!crtc_state->clock_set &&
8615             !i9xx_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8616                                  refclk, NULL, &crtc_state->dpll)) {
8617                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8618                 return -EINVAL;
8619         }
8620
8621         i9xx_compute_dpll(crtc, crtc_state, NULL);
8622
8623         return 0;
8624 }
8625
8626 static int chv_crtc_compute_clock(struct intel_crtc *crtc,
8627                                   struct intel_crtc_state *crtc_state)
8628 {
8629         int refclk = 100000;
8630         const struct intel_limit *limit = &intel_limits_chv;
8631
8632         memset(&crtc_state->dpll_hw_state, 0,
8633                sizeof(crtc_state->dpll_hw_state));
8634
8635         if (!crtc_state->clock_set &&
8636             !chv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8637                                 refclk, NULL, &crtc_state->dpll)) {
8638                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8639                 return -EINVAL;
8640         }
8641
8642         chv_compute_dpll(crtc, crtc_state);
8643
8644         return 0;
8645 }
8646
8647 static int vlv_crtc_compute_clock(struct intel_crtc *crtc,
8648                                   struct intel_crtc_state *crtc_state)
8649 {
8650         int refclk = 100000;
8651         const struct intel_limit *limit = &intel_limits_vlv;
8652
8653         memset(&crtc_state->dpll_hw_state, 0,
8654                sizeof(crtc_state->dpll_hw_state));
8655
8656         if (!crtc_state->clock_set &&
8657             !vlv_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
8658                                 refclk, NULL, &crtc_state->dpll)) {
8659                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
8660                 return -EINVAL;
8661         }
8662
8663         vlv_compute_dpll(crtc, crtc_state);
8664
8665         return 0;
8666 }
8667
8668 static bool i9xx_has_pfit(struct drm_i915_private *dev_priv)
8669 {
8670         if (IS_I830(dev_priv))
8671                 return false;
8672
8673         return INTEL_GEN(dev_priv) >= 4 ||
8674                 IS_PINEVIEW(dev_priv) || IS_MOBILE(dev_priv);
8675 }
8676
8677 static void i9xx_get_pfit_config(struct intel_crtc *crtc,
8678                                  struct intel_crtc_state *pipe_config)
8679 {
8680         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8681         u32 tmp;
8682
8683         if (!i9xx_has_pfit(dev_priv))
8684                 return;
8685
8686         tmp = I915_READ(PFIT_CONTROL);
8687         if (!(tmp & PFIT_ENABLE))
8688                 return;
8689
8690         /* Check whether the pfit is attached to our pipe. */
8691         if (INTEL_GEN(dev_priv) < 4) {
8692                 if (crtc->pipe != PIPE_B)
8693                         return;
8694         } else {
8695                 if ((tmp & PFIT_PIPE_MASK) != (crtc->pipe << PFIT_PIPE_SHIFT))
8696                         return;
8697         }
8698
8699         pipe_config->gmch_pfit.control = tmp;
8700         pipe_config->gmch_pfit.pgm_ratios = I915_READ(PFIT_PGM_RATIOS);
8701 }
8702
8703 static void vlv_crtc_clock_get(struct intel_crtc *crtc,
8704                                struct intel_crtc_state *pipe_config)
8705 {
8706         struct drm_device *dev = crtc->base.dev;
8707         struct drm_i915_private *dev_priv = to_i915(dev);
8708         enum pipe pipe = crtc->pipe;
8709         struct dpll clock;
8710         u32 mdiv;
8711         int refclk = 100000;
8712
8713         /* In case of DSI, DPLL will not be used */
8714         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8715                 return;
8716
8717         vlv_dpio_get(dev_priv);
8718         mdiv = vlv_dpio_read(dev_priv, pipe, VLV_PLL_DW3(pipe));
8719         vlv_dpio_put(dev_priv);
8720
8721         clock.m1 = (mdiv >> DPIO_M1DIV_SHIFT) & 7;
8722         clock.m2 = mdiv & DPIO_M2DIV_MASK;
8723         clock.n = (mdiv >> DPIO_N_SHIFT) & 0xf;
8724         clock.p1 = (mdiv >> DPIO_P1_SHIFT) & 7;
8725         clock.p2 = (mdiv >> DPIO_P2_SHIFT) & 0x1f;
8726
8727         pipe_config->port_clock = vlv_calc_dpll_params(refclk, &clock);
8728 }
8729
8730 static void
8731 i9xx_get_initial_plane_config(struct intel_crtc *crtc,
8732                               struct intel_initial_plane_config *plane_config)
8733 {
8734         struct drm_device *dev = crtc->base.dev;
8735         struct drm_i915_private *dev_priv = to_i915(dev);
8736         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8737         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8738         enum pipe pipe;
8739         u32 val, base, offset;
8740         int fourcc, pixel_format;
8741         unsigned int aligned_height;
8742         struct drm_framebuffer *fb;
8743         struct intel_framebuffer *intel_fb;
8744
8745         if (!plane->get_hw_state(plane, &pipe))
8746                 return;
8747
8748         WARN_ON(pipe != crtc->pipe);
8749
8750         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
8751         if (!intel_fb) {
8752                 DRM_DEBUG_KMS("failed to alloc fb\n");
8753                 return;
8754         }
8755
8756         fb = &intel_fb->base;
8757
8758         fb->dev = dev;
8759
8760         val = I915_READ(DSPCNTR(i9xx_plane));
8761
8762         if (INTEL_GEN(dev_priv) >= 4) {
8763                 if (val & DISPPLANE_TILED) {
8764                         plane_config->tiling = I915_TILING_X;
8765                         fb->modifier = I915_FORMAT_MOD_X_TILED;
8766                 }
8767
8768                 if (val & DISPPLANE_ROTATE_180)
8769                         plane_config->rotation = DRM_MODE_ROTATE_180;
8770         }
8771
8772         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B &&
8773             val & DISPPLANE_MIRROR)
8774                 plane_config->rotation |= DRM_MODE_REFLECT_X;
8775
8776         pixel_format = val & DISPPLANE_PIXFORMAT_MASK;
8777         fourcc = i9xx_format_to_fourcc(pixel_format);
8778         fb->format = drm_format_info(fourcc);
8779
8780         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
8781                 offset = I915_READ(DSPOFFSET(i9xx_plane));
8782                 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8783         } else if (INTEL_GEN(dev_priv) >= 4) {
8784                 if (plane_config->tiling)
8785                         offset = I915_READ(DSPTILEOFF(i9xx_plane));
8786                 else
8787                         offset = I915_READ(DSPLINOFF(i9xx_plane));
8788                 base = I915_READ(DSPSURF(i9xx_plane)) & 0xfffff000;
8789         } else {
8790                 base = I915_READ(DSPADDR(i9xx_plane));
8791         }
8792         plane_config->base = base;
8793
8794         val = I915_READ(PIPESRC(pipe));
8795         fb->width = ((val >> 16) & 0xfff) + 1;
8796         fb->height = ((val >> 0) & 0xfff) + 1;
8797
8798         val = I915_READ(DSPSTRIDE(i9xx_plane));
8799         fb->pitches[0] = val & 0xffffffc0;
8800
8801         aligned_height = intel_fb_align_height(fb, 0, fb->height);
8802
8803         plane_config->size = fb->pitches[0] * aligned_height;
8804
8805         DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
8806                       crtc->base.name, plane->base.name, fb->width, fb->height,
8807                       fb->format->cpp[0] * 8, base, fb->pitches[0],
8808                       plane_config->size);
8809
8810         plane_config->fb = intel_fb;
8811 }
8812
8813 static void chv_crtc_clock_get(struct intel_crtc *crtc,
8814                                struct intel_crtc_state *pipe_config)
8815 {
8816         struct drm_device *dev = crtc->base.dev;
8817         struct drm_i915_private *dev_priv = to_i915(dev);
8818         enum pipe pipe = crtc->pipe;
8819         enum dpio_channel port = vlv_pipe_to_channel(pipe);
8820         struct dpll clock;
8821         u32 cmn_dw13, pll_dw0, pll_dw1, pll_dw2, pll_dw3;
8822         int refclk = 100000;
8823
8824         /* In case of DSI, DPLL will not be used */
8825         if ((pipe_config->dpll_hw_state.dpll & DPLL_VCO_ENABLE) == 0)
8826                 return;
8827
8828         vlv_dpio_get(dev_priv);
8829         cmn_dw13 = vlv_dpio_read(dev_priv, pipe, CHV_CMN_DW13(port));
8830         pll_dw0 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW0(port));
8831         pll_dw1 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW1(port));
8832         pll_dw2 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW2(port));
8833         pll_dw3 = vlv_dpio_read(dev_priv, pipe, CHV_PLL_DW3(port));
8834         vlv_dpio_put(dev_priv);
8835
8836         clock.m1 = (pll_dw1 & 0x7) == DPIO_CHV_M1_DIV_BY_2 ? 2 : 0;
8837         clock.m2 = (pll_dw0 & 0xff) << 22;
8838         if (pll_dw3 & DPIO_CHV_FRAC_DIV_EN)
8839                 clock.m2 |= pll_dw2 & 0x3fffff;
8840         clock.n = (pll_dw1 >> DPIO_CHV_N_DIV_SHIFT) & 0xf;
8841         clock.p1 = (cmn_dw13 >> DPIO_CHV_P1_DIV_SHIFT) & 0x7;
8842         clock.p2 = (cmn_dw13 >> DPIO_CHV_P2_DIV_SHIFT) & 0x1f;
8843
8844         pipe_config->port_clock = chv_calc_dpll_params(refclk, &clock);
8845 }
8846
8847 static enum intel_output_format
8848 bdw_get_pipemisc_output_format(struct intel_crtc *crtc)
8849 {
8850         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8851         u32 tmp;
8852
8853         tmp = I915_READ(PIPEMISC(crtc->pipe));
8854
8855         if (tmp & PIPEMISC_YUV420_ENABLE) {
8856                 /* We support 4:2:0 in full blend mode only */
8857                 WARN_ON((tmp & PIPEMISC_YUV420_MODE_FULL_BLEND) == 0);
8858
8859                 return INTEL_OUTPUT_FORMAT_YCBCR420;
8860         } else if (tmp & PIPEMISC_OUTPUT_COLORSPACE_YUV) {
8861                 return INTEL_OUTPUT_FORMAT_YCBCR444;
8862         } else {
8863                 return INTEL_OUTPUT_FORMAT_RGB;
8864         }
8865 }
8866
8867 static void i9xx_get_pipe_color_config(struct intel_crtc_state *crtc_state)
8868 {
8869         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
8870         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
8871         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8872         enum i9xx_plane_id i9xx_plane = plane->i9xx_plane;
8873         u32 tmp;
8874
8875         tmp = I915_READ(DSPCNTR(i9xx_plane));
8876
8877         if (tmp & DISPPLANE_GAMMA_ENABLE)
8878                 crtc_state->gamma_enable = true;
8879
8880         if (!HAS_GMCH(dev_priv) &&
8881             tmp & DISPPLANE_PIPE_CSC_ENABLE)
8882                 crtc_state->csc_enable = true;
8883 }
8884
8885 static bool i9xx_get_pipe_config(struct intel_crtc *crtc,
8886                                  struct intel_crtc_state *pipe_config)
8887 {
8888         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
8889         enum intel_display_power_domain power_domain;
8890         intel_wakeref_t wakeref;
8891         u32 tmp;
8892         bool ret;
8893
8894         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
8895         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
8896         if (!wakeref)
8897                 return false;
8898
8899         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
8900         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
8901         pipe_config->shared_dpll = NULL;
8902         pipe_config->master_transcoder = INVALID_TRANSCODER;
8903
8904         ret = false;
8905
8906         tmp = I915_READ(PIPECONF(crtc->pipe));
8907         if (!(tmp & PIPECONF_ENABLE))
8908                 goto out;
8909
8910         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
8911             IS_CHERRYVIEW(dev_priv)) {
8912                 switch (tmp & PIPECONF_BPC_MASK) {
8913                 case PIPECONF_6BPC:
8914                         pipe_config->pipe_bpp = 18;
8915                         break;
8916                 case PIPECONF_8BPC:
8917                         pipe_config->pipe_bpp = 24;
8918                         break;
8919                 case PIPECONF_10BPC:
8920                         pipe_config->pipe_bpp = 30;
8921                         break;
8922                 default:
8923                         break;
8924                 }
8925         }
8926
8927         if ((IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
8928             (tmp & PIPECONF_COLOR_RANGE_SELECT))
8929                 pipe_config->limited_color_range = true;
8930
8931         pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_I9XX) >>
8932                 PIPECONF_GAMMA_MODE_SHIFT;
8933
8934         if (IS_CHERRYVIEW(dev_priv))
8935                 pipe_config->cgm_mode = I915_READ(CGM_PIPE_MODE(crtc->pipe));
8936
8937         i9xx_get_pipe_color_config(pipe_config);
8938         intel_color_get_config(pipe_config);
8939
8940         if (INTEL_GEN(dev_priv) < 4)
8941                 pipe_config->double_wide = tmp & PIPECONF_DOUBLE_WIDE;
8942
8943         intel_get_pipe_timings(crtc, pipe_config);
8944         intel_get_pipe_src_size(crtc, pipe_config);
8945
8946         i9xx_get_pfit_config(crtc, pipe_config);
8947
8948         if (INTEL_GEN(dev_priv) >= 4) {
8949                 /* No way to read it out on pipes B and C */
8950                 if (IS_CHERRYVIEW(dev_priv) && crtc->pipe != PIPE_A)
8951                         tmp = dev_priv->chv_dpll_md[crtc->pipe];
8952                 else
8953                         tmp = I915_READ(DPLL_MD(crtc->pipe));
8954                 pipe_config->pixel_multiplier =
8955                         ((tmp & DPLL_MD_UDI_MULTIPLIER_MASK)
8956                          >> DPLL_MD_UDI_MULTIPLIER_SHIFT) + 1;
8957                 pipe_config->dpll_hw_state.dpll_md = tmp;
8958         } else if (IS_I945G(dev_priv) || IS_I945GM(dev_priv) ||
8959                    IS_G33(dev_priv) || IS_PINEVIEW(dev_priv)) {
8960                 tmp = I915_READ(DPLL(crtc->pipe));
8961                 pipe_config->pixel_multiplier =
8962                         ((tmp & SDVO_MULTIPLIER_MASK)
8963                          >> SDVO_MULTIPLIER_SHIFT_HIRES) + 1;
8964         } else {
8965                 /* Note that on i915G/GM the pixel multiplier is in the sdvo
8966                  * port and will be fixed up in the encoder->get_config
8967                  * function. */
8968                 pipe_config->pixel_multiplier = 1;
8969         }
8970         pipe_config->dpll_hw_state.dpll = I915_READ(DPLL(crtc->pipe));
8971         if (!IS_VALLEYVIEW(dev_priv) && !IS_CHERRYVIEW(dev_priv)) {
8972                 pipe_config->dpll_hw_state.fp0 = I915_READ(FP0(crtc->pipe));
8973                 pipe_config->dpll_hw_state.fp1 = I915_READ(FP1(crtc->pipe));
8974         } else {
8975                 /* Mask out read-only status bits. */
8976                 pipe_config->dpll_hw_state.dpll &= ~(DPLL_LOCK_VLV |
8977                                                      DPLL_PORTC_READY_MASK |
8978                                                      DPLL_PORTB_READY_MASK);
8979         }
8980
8981         if (IS_CHERRYVIEW(dev_priv))
8982                 chv_crtc_clock_get(crtc, pipe_config);
8983         else if (IS_VALLEYVIEW(dev_priv))
8984                 vlv_crtc_clock_get(crtc, pipe_config);
8985         else
8986                 i9xx_crtc_clock_get(crtc, pipe_config);
8987
8988         /*
8989          * Normally the dotclock is filled in by the encoder .get_config()
8990          * but in case the pipe is enabled w/o any ports we need a sane
8991          * default.
8992          */
8993         pipe_config->base.adjusted_mode.crtc_clock =
8994                 pipe_config->port_clock / pipe_config->pixel_multiplier;
8995
8996         ret = true;
8997
8998 out:
8999         intel_display_power_put(dev_priv, power_domain, wakeref);
9000
9001         return ret;
9002 }
9003
9004 static void ironlake_init_pch_refclk(struct drm_i915_private *dev_priv)
9005 {
9006         struct intel_encoder *encoder;
9007         int i;
9008         u32 val, final;
9009         bool has_lvds = false;
9010         bool has_cpu_edp = false;
9011         bool has_panel = false;
9012         bool has_ck505 = false;
9013         bool can_ssc = false;
9014         bool using_ssc_source = false;
9015
9016         /* We need to take the global config into account */
9017         for_each_intel_encoder(&dev_priv->drm, encoder) {
9018                 switch (encoder->type) {
9019                 case INTEL_OUTPUT_LVDS:
9020                         has_panel = true;
9021                         has_lvds = true;
9022                         break;
9023                 case INTEL_OUTPUT_EDP:
9024                         has_panel = true;
9025                         if (encoder->port == PORT_A)
9026                                 has_cpu_edp = true;
9027                         break;
9028                 default:
9029                         break;
9030                 }
9031         }
9032
9033         if (HAS_PCH_IBX(dev_priv)) {
9034                 has_ck505 = dev_priv->vbt.display_clock_mode;
9035                 can_ssc = has_ck505;
9036         } else {
9037                 has_ck505 = false;
9038                 can_ssc = true;
9039         }
9040
9041         /* Check if any DPLLs are using the SSC source */
9042         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
9043                 u32 temp = I915_READ(PCH_DPLL(i));
9044
9045                 if (!(temp & DPLL_VCO_ENABLE))
9046                         continue;
9047
9048                 if ((temp & PLL_REF_INPUT_MASK) ==
9049                     PLLB_REF_INPUT_SPREADSPECTRUMIN) {
9050                         using_ssc_source = true;
9051                         break;
9052                 }
9053         }
9054
9055         DRM_DEBUG_KMS("has_panel %d has_lvds %d has_ck505 %d using_ssc_source %d\n",
9056                       has_panel, has_lvds, has_ck505, using_ssc_source);
9057
9058         /* Ironlake: try to setup display ref clock before DPLL
9059          * enabling. This is only under driver's control after
9060          * PCH B stepping, previous chipset stepping should be
9061          * ignoring this setting.
9062          */
9063         val = I915_READ(PCH_DREF_CONTROL);
9064
9065         /* As we must carefully and slowly disable/enable each source in turn,
9066          * compute the final state we want first and check if we need to
9067          * make any changes at all.
9068          */
9069         final = val;
9070         final &= ~DREF_NONSPREAD_SOURCE_MASK;
9071         if (has_ck505)
9072                 final |= DREF_NONSPREAD_CK505_ENABLE;
9073         else
9074                 final |= DREF_NONSPREAD_SOURCE_ENABLE;
9075
9076         final &= ~DREF_SSC_SOURCE_MASK;
9077         final &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9078         final &= ~DREF_SSC1_ENABLE;
9079
9080         if (has_panel) {
9081                 final |= DREF_SSC_SOURCE_ENABLE;
9082
9083                 if (intel_panel_use_ssc(dev_priv) && can_ssc)
9084                         final |= DREF_SSC1_ENABLE;
9085
9086                 if (has_cpu_edp) {
9087                         if (intel_panel_use_ssc(dev_priv) && can_ssc)
9088                                 final |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9089                         else
9090                                 final |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9091                 } else
9092                         final |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9093         } else if (using_ssc_source) {
9094                 final |= DREF_SSC_SOURCE_ENABLE;
9095                 final |= DREF_SSC1_ENABLE;
9096         }
9097
9098         if (final == val)
9099                 return;
9100
9101         /* Always enable nonspread source */
9102         val &= ~DREF_NONSPREAD_SOURCE_MASK;
9103
9104         if (has_ck505)
9105                 val |= DREF_NONSPREAD_CK505_ENABLE;
9106         else
9107                 val |= DREF_NONSPREAD_SOURCE_ENABLE;
9108
9109         if (has_panel) {
9110                 val &= ~DREF_SSC_SOURCE_MASK;
9111                 val |= DREF_SSC_SOURCE_ENABLE;
9112
9113                 /* SSC must be turned on before enabling the CPU output  */
9114                 if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9115                         DRM_DEBUG_KMS("Using SSC on panel\n");
9116                         val |= DREF_SSC1_ENABLE;
9117                 } else
9118                         val &= ~DREF_SSC1_ENABLE;
9119
9120                 /* Get SSC going before enabling the outputs */
9121                 I915_WRITE(PCH_DREF_CONTROL, val);
9122                 POSTING_READ(PCH_DREF_CONTROL);
9123                 udelay(200);
9124
9125                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9126
9127                 /* Enable CPU source on CPU attached eDP */
9128                 if (has_cpu_edp) {
9129                         if (intel_panel_use_ssc(dev_priv) && can_ssc) {
9130                                 DRM_DEBUG_KMS("Using SSC on eDP\n");
9131                                 val |= DREF_CPU_SOURCE_OUTPUT_DOWNSPREAD;
9132                         } else
9133                                 val |= DREF_CPU_SOURCE_OUTPUT_NONSPREAD;
9134                 } else
9135                         val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9136
9137                 I915_WRITE(PCH_DREF_CONTROL, val);
9138                 POSTING_READ(PCH_DREF_CONTROL);
9139                 udelay(200);
9140         } else {
9141                 DRM_DEBUG_KMS("Disabling CPU source output\n");
9142
9143                 val &= ~DREF_CPU_SOURCE_OUTPUT_MASK;
9144
9145                 /* Turn off CPU output */
9146                 val |= DREF_CPU_SOURCE_OUTPUT_DISABLE;
9147
9148                 I915_WRITE(PCH_DREF_CONTROL, val);
9149                 POSTING_READ(PCH_DREF_CONTROL);
9150                 udelay(200);
9151
9152                 if (!using_ssc_source) {
9153                         DRM_DEBUG_KMS("Disabling SSC source\n");
9154
9155                         /* Turn off the SSC source */
9156                         val &= ~DREF_SSC_SOURCE_MASK;
9157                         val |= DREF_SSC_SOURCE_DISABLE;
9158
9159                         /* Turn off SSC1 */
9160                         val &= ~DREF_SSC1_ENABLE;
9161
9162                         I915_WRITE(PCH_DREF_CONTROL, val);
9163                         POSTING_READ(PCH_DREF_CONTROL);
9164                         udelay(200);
9165                 }
9166         }
9167
9168         BUG_ON(val != final);
9169 }
9170
9171 static void lpt_reset_fdi_mphy(struct drm_i915_private *dev_priv)
9172 {
9173         u32 tmp;
9174
9175         tmp = I915_READ(SOUTH_CHICKEN2);
9176         tmp |= FDI_MPHY_IOSFSB_RESET_CTL;
9177         I915_WRITE(SOUTH_CHICKEN2, tmp);
9178
9179         if (wait_for_us(I915_READ(SOUTH_CHICKEN2) &
9180                         FDI_MPHY_IOSFSB_RESET_STATUS, 100))
9181                 DRM_ERROR("FDI mPHY reset assert timeout\n");
9182
9183         tmp = I915_READ(SOUTH_CHICKEN2);
9184         tmp &= ~FDI_MPHY_IOSFSB_RESET_CTL;
9185         I915_WRITE(SOUTH_CHICKEN2, tmp);
9186
9187         if (wait_for_us((I915_READ(SOUTH_CHICKEN2) &
9188                          FDI_MPHY_IOSFSB_RESET_STATUS) == 0, 100))
9189                 DRM_ERROR("FDI mPHY reset de-assert timeout\n");
9190 }
9191
9192 /* WaMPhyProgramming:hsw */
9193 static void lpt_program_fdi_mphy(struct drm_i915_private *dev_priv)
9194 {
9195         u32 tmp;
9196
9197         tmp = intel_sbi_read(dev_priv, 0x8008, SBI_MPHY);
9198         tmp &= ~(0xFF << 24);
9199         tmp |= (0x12 << 24);
9200         intel_sbi_write(dev_priv, 0x8008, tmp, SBI_MPHY);
9201
9202         tmp = intel_sbi_read(dev_priv, 0x2008, SBI_MPHY);
9203         tmp |= (1 << 11);
9204         intel_sbi_write(dev_priv, 0x2008, tmp, SBI_MPHY);
9205
9206         tmp = intel_sbi_read(dev_priv, 0x2108, SBI_MPHY);
9207         tmp |= (1 << 11);
9208         intel_sbi_write(dev_priv, 0x2108, tmp, SBI_MPHY);
9209
9210         tmp = intel_sbi_read(dev_priv, 0x206C, SBI_MPHY);
9211         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9212         intel_sbi_write(dev_priv, 0x206C, tmp, SBI_MPHY);
9213
9214         tmp = intel_sbi_read(dev_priv, 0x216C, SBI_MPHY);
9215         tmp |= (1 << 24) | (1 << 21) | (1 << 18);
9216         intel_sbi_write(dev_priv, 0x216C, tmp, SBI_MPHY);
9217
9218         tmp = intel_sbi_read(dev_priv, 0x2080, SBI_MPHY);
9219         tmp &= ~(7 << 13);
9220         tmp |= (5 << 13);
9221         intel_sbi_write(dev_priv, 0x2080, tmp, SBI_MPHY);
9222
9223         tmp = intel_sbi_read(dev_priv, 0x2180, SBI_MPHY);
9224         tmp &= ~(7 << 13);
9225         tmp |= (5 << 13);
9226         intel_sbi_write(dev_priv, 0x2180, tmp, SBI_MPHY);
9227
9228         tmp = intel_sbi_read(dev_priv, 0x208C, SBI_MPHY);
9229         tmp &= ~0xFF;
9230         tmp |= 0x1C;
9231         intel_sbi_write(dev_priv, 0x208C, tmp, SBI_MPHY);
9232
9233         tmp = intel_sbi_read(dev_priv, 0x218C, SBI_MPHY);
9234         tmp &= ~0xFF;
9235         tmp |= 0x1C;
9236         intel_sbi_write(dev_priv, 0x218C, tmp, SBI_MPHY);
9237
9238         tmp = intel_sbi_read(dev_priv, 0x2098, SBI_MPHY);
9239         tmp &= ~(0xFF << 16);
9240         tmp |= (0x1C << 16);
9241         intel_sbi_write(dev_priv, 0x2098, tmp, SBI_MPHY);
9242
9243         tmp = intel_sbi_read(dev_priv, 0x2198, SBI_MPHY);
9244         tmp &= ~(0xFF << 16);
9245         tmp |= (0x1C << 16);
9246         intel_sbi_write(dev_priv, 0x2198, tmp, SBI_MPHY);
9247
9248         tmp = intel_sbi_read(dev_priv, 0x20C4, SBI_MPHY);
9249         tmp |= (1 << 27);
9250         intel_sbi_write(dev_priv, 0x20C4, tmp, SBI_MPHY);
9251
9252         tmp = intel_sbi_read(dev_priv, 0x21C4, SBI_MPHY);
9253         tmp |= (1 << 27);
9254         intel_sbi_write(dev_priv, 0x21C4, tmp, SBI_MPHY);
9255
9256         tmp = intel_sbi_read(dev_priv, 0x20EC, SBI_MPHY);
9257         tmp &= ~(0xF << 28);
9258         tmp |= (4 << 28);
9259         intel_sbi_write(dev_priv, 0x20EC, tmp, SBI_MPHY);
9260
9261         tmp = intel_sbi_read(dev_priv, 0x21EC, SBI_MPHY);
9262         tmp &= ~(0xF << 28);
9263         tmp |= (4 << 28);
9264         intel_sbi_write(dev_priv, 0x21EC, tmp, SBI_MPHY);
9265 }
9266
9267 /* Implements 3 different sequences from BSpec chapter "Display iCLK
9268  * Programming" based on the parameters passed:
9269  * - Sequence to enable CLKOUT_DP
9270  * - Sequence to enable CLKOUT_DP without spread
9271  * - Sequence to enable CLKOUT_DP for FDI usage and configure PCH FDI I/O
9272  */
9273 static void lpt_enable_clkout_dp(struct drm_i915_private *dev_priv,
9274                                  bool with_spread, bool with_fdi)
9275 {
9276         u32 reg, tmp;
9277
9278         if (WARN(with_fdi && !with_spread, "FDI requires downspread\n"))
9279                 with_spread = true;
9280         if (WARN(HAS_PCH_LPT_LP(dev_priv) &&
9281             with_fdi, "LP PCH doesn't have FDI\n"))
9282                 with_fdi = false;
9283
9284         mutex_lock(&dev_priv->sb_lock);
9285
9286         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9287         tmp &= ~SBI_SSCCTL_DISABLE;
9288         tmp |= SBI_SSCCTL_PATHALT;
9289         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9290
9291         udelay(24);
9292
9293         if (with_spread) {
9294                 tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9295                 tmp &= ~SBI_SSCCTL_PATHALT;
9296                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9297
9298                 if (with_fdi) {
9299                         lpt_reset_fdi_mphy(dev_priv);
9300                         lpt_program_fdi_mphy(dev_priv);
9301                 }
9302         }
9303
9304         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9305         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9306         tmp |= SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9307         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9308
9309         mutex_unlock(&dev_priv->sb_lock);
9310 }
9311
9312 /* Sequence to disable CLKOUT_DP */
9313 void lpt_disable_clkout_dp(struct drm_i915_private *dev_priv)
9314 {
9315         u32 reg, tmp;
9316
9317         mutex_lock(&dev_priv->sb_lock);
9318
9319         reg = HAS_PCH_LPT_LP(dev_priv) ? SBI_GEN0 : SBI_DBUFF0;
9320         tmp = intel_sbi_read(dev_priv, reg, SBI_ICLK);
9321         tmp &= ~SBI_GEN0_CFG_BUFFENABLE_DISABLE;
9322         intel_sbi_write(dev_priv, reg, tmp, SBI_ICLK);
9323
9324         tmp = intel_sbi_read(dev_priv, SBI_SSCCTL, SBI_ICLK);
9325         if (!(tmp & SBI_SSCCTL_DISABLE)) {
9326                 if (!(tmp & SBI_SSCCTL_PATHALT)) {
9327                         tmp |= SBI_SSCCTL_PATHALT;
9328                         intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9329                         udelay(32);
9330                 }
9331                 tmp |= SBI_SSCCTL_DISABLE;
9332                 intel_sbi_write(dev_priv, SBI_SSCCTL, tmp, SBI_ICLK);
9333         }
9334
9335         mutex_unlock(&dev_priv->sb_lock);
9336 }
9337
9338 #define BEND_IDX(steps) ((50 + (steps)) / 5)
9339
9340 static const u16 sscdivintphase[] = {
9341         [BEND_IDX( 50)] = 0x3B23,
9342         [BEND_IDX( 45)] = 0x3B23,
9343         [BEND_IDX( 40)] = 0x3C23,
9344         [BEND_IDX( 35)] = 0x3C23,
9345         [BEND_IDX( 30)] = 0x3D23,
9346         [BEND_IDX( 25)] = 0x3D23,
9347         [BEND_IDX( 20)] = 0x3E23,
9348         [BEND_IDX( 15)] = 0x3E23,
9349         [BEND_IDX( 10)] = 0x3F23,
9350         [BEND_IDX(  5)] = 0x3F23,
9351         [BEND_IDX(  0)] = 0x0025,
9352         [BEND_IDX( -5)] = 0x0025,
9353         [BEND_IDX(-10)] = 0x0125,
9354         [BEND_IDX(-15)] = 0x0125,
9355         [BEND_IDX(-20)] = 0x0225,
9356         [BEND_IDX(-25)] = 0x0225,
9357         [BEND_IDX(-30)] = 0x0325,
9358         [BEND_IDX(-35)] = 0x0325,
9359         [BEND_IDX(-40)] = 0x0425,
9360         [BEND_IDX(-45)] = 0x0425,
9361         [BEND_IDX(-50)] = 0x0525,
9362 };
9363
9364 /*
9365  * Bend CLKOUT_DP
9366  * steps -50 to 50 inclusive, in steps of 5
9367  * < 0 slow down the clock, > 0 speed up the clock, 0 == no bend (135MHz)
9368  * change in clock period = -(steps / 10) * 5.787 ps
9369  */
9370 static void lpt_bend_clkout_dp(struct drm_i915_private *dev_priv, int steps)
9371 {
9372         u32 tmp;
9373         int idx = BEND_IDX(steps);
9374
9375         if (WARN_ON(steps % 5 != 0))
9376                 return;
9377
9378         if (WARN_ON(idx >= ARRAY_SIZE(sscdivintphase)))
9379                 return;
9380
9381         mutex_lock(&dev_priv->sb_lock);
9382
9383         if (steps % 10 != 0)
9384                 tmp = 0xAAAAAAAB;
9385         else
9386                 tmp = 0x00000000;
9387         intel_sbi_write(dev_priv, SBI_SSCDITHPHASE, tmp, SBI_ICLK);
9388
9389         tmp = intel_sbi_read(dev_priv, SBI_SSCDIVINTPHASE, SBI_ICLK);
9390         tmp &= 0xffff0000;
9391         tmp |= sscdivintphase[idx];
9392         intel_sbi_write(dev_priv, SBI_SSCDIVINTPHASE, tmp, SBI_ICLK);
9393
9394         mutex_unlock(&dev_priv->sb_lock);
9395 }
9396
9397 #undef BEND_IDX
9398
9399 static bool spll_uses_pch_ssc(struct drm_i915_private *dev_priv)
9400 {
9401         u32 fuse_strap = I915_READ(FUSE_STRAP);
9402         u32 ctl = I915_READ(SPLL_CTL);
9403
9404         if ((ctl & SPLL_PLL_ENABLE) == 0)
9405                 return false;
9406
9407         if ((ctl & SPLL_REF_MASK) == SPLL_REF_MUXED_SSC &&
9408             (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9409                 return true;
9410
9411         if (IS_BROADWELL(dev_priv) &&
9412             (ctl & SPLL_REF_MASK) == SPLL_REF_PCH_SSC_BDW)
9413                 return true;
9414
9415         return false;
9416 }
9417
9418 static bool wrpll_uses_pch_ssc(struct drm_i915_private *dev_priv,
9419                                enum intel_dpll_id id)
9420 {
9421         u32 fuse_strap = I915_READ(FUSE_STRAP);
9422         u32 ctl = I915_READ(WRPLL_CTL(id));
9423
9424         if ((ctl & WRPLL_PLL_ENABLE) == 0)
9425                 return false;
9426
9427         if ((ctl & WRPLL_REF_MASK) == WRPLL_REF_PCH_SSC)
9428                 return true;
9429
9430         if ((IS_BROADWELL(dev_priv) || IS_HSW_ULT(dev_priv)) &&
9431             (ctl & WRPLL_REF_MASK) == WRPLL_REF_MUXED_SSC_BDW &&
9432             (fuse_strap & HSW_CPU_SSC_ENABLE) == 0)
9433                 return true;
9434
9435         return false;
9436 }
9437
9438 static void lpt_init_pch_refclk(struct drm_i915_private *dev_priv)
9439 {
9440         struct intel_encoder *encoder;
9441         bool has_fdi = false;
9442
9443         for_each_intel_encoder(&dev_priv->drm, encoder) {
9444                 switch (encoder->type) {
9445                 case INTEL_OUTPUT_ANALOG:
9446                         has_fdi = true;
9447                         break;
9448                 default:
9449                         break;
9450                 }
9451         }
9452
9453         /*
9454          * The BIOS may have decided to use the PCH SSC
9455          * reference so we must not disable it until the
9456          * relevant PLLs have stopped relying on it. We'll
9457          * just leave the PCH SSC reference enabled in case
9458          * any active PLL is using it. It will get disabled
9459          * after runtime suspend if we don't have FDI.
9460          *
9461          * TODO: Move the whole reference clock handling
9462          * to the modeset sequence proper so that we can
9463          * actually enable/disable/reconfigure these things
9464          * safely. To do that we need to introduce a real
9465          * clock hierarchy. That would also allow us to do
9466          * clock bending finally.
9467          */
9468         dev_priv->pch_ssc_use = 0;
9469
9470         if (spll_uses_pch_ssc(dev_priv)) {
9471                 DRM_DEBUG_KMS("SPLL using PCH SSC\n");
9472                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_SPLL);
9473         }
9474
9475         if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL1)) {
9476                 DRM_DEBUG_KMS("WRPLL1 using PCH SSC\n");
9477                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL1);
9478         }
9479
9480         if (wrpll_uses_pch_ssc(dev_priv, DPLL_ID_WRPLL2)) {
9481                 DRM_DEBUG_KMS("WRPLL2 using PCH SSC\n");
9482                 dev_priv->pch_ssc_use |= BIT(DPLL_ID_WRPLL2);
9483         }
9484
9485         if (dev_priv->pch_ssc_use)
9486                 return;
9487
9488         if (has_fdi) {
9489                 lpt_bend_clkout_dp(dev_priv, 0);
9490                 lpt_enable_clkout_dp(dev_priv, true, true);
9491         } else {
9492                 lpt_disable_clkout_dp(dev_priv);
9493         }
9494 }
9495
9496 /*
9497  * Initialize reference clocks when the driver loads
9498  */
9499 void intel_init_pch_refclk(struct drm_i915_private *dev_priv)
9500 {
9501         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv))
9502                 ironlake_init_pch_refclk(dev_priv);
9503         else if (HAS_PCH_LPT(dev_priv))
9504                 lpt_init_pch_refclk(dev_priv);
9505 }
9506
9507 static void ironlake_set_pipeconf(const struct intel_crtc_state *crtc_state)
9508 {
9509         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9510         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9511         enum pipe pipe = crtc->pipe;
9512         u32 val;
9513
9514         val = 0;
9515
9516         switch (crtc_state->pipe_bpp) {
9517         case 18:
9518                 val |= PIPECONF_6BPC;
9519                 break;
9520         case 24:
9521                 val |= PIPECONF_8BPC;
9522                 break;
9523         case 30:
9524                 val |= PIPECONF_10BPC;
9525                 break;
9526         case 36:
9527                 val |= PIPECONF_12BPC;
9528                 break;
9529         default:
9530                 /* Case prevented by intel_choose_pipe_bpp_dither. */
9531                 BUG();
9532         }
9533
9534         if (crtc_state->dither)
9535                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9536
9537         if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9538                 val |= PIPECONF_INTERLACED_ILK;
9539         else
9540                 val |= PIPECONF_PROGRESSIVE;
9541
9542         /*
9543          * This would end up with an odd purple hue over
9544          * the entire display. Make sure we don't do it.
9545          */
9546         WARN_ON(crtc_state->limited_color_range &&
9547                 crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB);
9548
9549         if (crtc_state->limited_color_range)
9550                 val |= PIPECONF_COLOR_RANGE_SELECT;
9551
9552         if (crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9553                 val |= PIPECONF_OUTPUT_COLORSPACE_YUV709;
9554
9555         val |= PIPECONF_GAMMA_MODE(crtc_state->gamma_mode);
9556
9557         I915_WRITE(PIPECONF(pipe), val);
9558         POSTING_READ(PIPECONF(pipe));
9559 }
9560
9561 static void haswell_set_pipeconf(const struct intel_crtc_state *crtc_state)
9562 {
9563         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9564         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9565         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
9566         u32 val = 0;
9567
9568         if (IS_HASWELL(dev_priv) && crtc_state->dither)
9569                 val |= (PIPECONF_DITHER_EN | PIPECONF_DITHER_TYPE_SP);
9570
9571         if (crtc_state->base.adjusted_mode.flags & DRM_MODE_FLAG_INTERLACE)
9572                 val |= PIPECONF_INTERLACED_ILK;
9573         else
9574                 val |= PIPECONF_PROGRESSIVE;
9575
9576         if (IS_HASWELL(dev_priv) &&
9577             crtc_state->output_format != INTEL_OUTPUT_FORMAT_RGB)
9578                 val |= PIPECONF_OUTPUT_COLORSPACE_YUV_HSW;
9579
9580         I915_WRITE(PIPECONF(cpu_transcoder), val);
9581         POSTING_READ(PIPECONF(cpu_transcoder));
9582 }
9583
9584 static void bdw_set_pipemisc(const struct intel_crtc_state *crtc_state)
9585 {
9586         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
9587         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9588         u32 val = 0;
9589
9590         switch (crtc_state->pipe_bpp) {
9591         case 18:
9592                 val |= PIPEMISC_DITHER_6_BPC;
9593                 break;
9594         case 24:
9595                 val |= PIPEMISC_DITHER_8_BPC;
9596                 break;
9597         case 30:
9598                 val |= PIPEMISC_DITHER_10_BPC;
9599                 break;
9600         case 36:
9601                 val |= PIPEMISC_DITHER_12_BPC;
9602                 break;
9603         default:
9604                 MISSING_CASE(crtc_state->pipe_bpp);
9605                 break;
9606         }
9607
9608         if (crtc_state->dither)
9609                 val |= PIPEMISC_DITHER_ENABLE | PIPEMISC_DITHER_TYPE_SP;
9610
9611         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420 ||
9612             crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR444)
9613                 val |= PIPEMISC_OUTPUT_COLORSPACE_YUV;
9614
9615         if (crtc_state->output_format == INTEL_OUTPUT_FORMAT_YCBCR420)
9616                 val |= PIPEMISC_YUV420_ENABLE |
9617                         PIPEMISC_YUV420_MODE_FULL_BLEND;
9618
9619         if (INTEL_GEN(dev_priv) >= 11 &&
9620             (crtc_state->active_planes & ~(icl_hdr_plane_mask() |
9621                                            BIT(PLANE_CURSOR))) == 0)
9622                 val |= PIPEMISC_HDR_MODE_PRECISION;
9623
9624         I915_WRITE(PIPEMISC(crtc->pipe), val);
9625 }
9626
9627 int bdw_get_pipemisc_bpp(struct intel_crtc *crtc)
9628 {
9629         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9630         u32 tmp;
9631
9632         tmp = I915_READ(PIPEMISC(crtc->pipe));
9633
9634         switch (tmp & PIPEMISC_DITHER_BPC_MASK) {
9635         case PIPEMISC_DITHER_6_BPC:
9636                 return 18;
9637         case PIPEMISC_DITHER_8_BPC:
9638                 return 24;
9639         case PIPEMISC_DITHER_10_BPC:
9640                 return 30;
9641         case PIPEMISC_DITHER_12_BPC:
9642                 return 36;
9643         default:
9644                 MISSING_CASE(tmp);
9645                 return 0;
9646         }
9647 }
9648
9649 int ironlake_get_lanes_required(int target_clock, int link_bw, int bpp)
9650 {
9651         /*
9652          * Account for spread spectrum to avoid
9653          * oversubscribing the link. Max center spread
9654          * is 2.5%; use 5% for safety's sake.
9655          */
9656         u32 bps = target_clock * bpp * 21 / 20;
9657         return DIV_ROUND_UP(bps, link_bw * 8);
9658 }
9659
9660 static bool ironlake_needs_fb_cb_tune(struct dpll *dpll, int factor)
9661 {
9662         return i9xx_dpll_compute_m(dpll) < factor * dpll->n;
9663 }
9664
9665 static void ironlake_compute_dpll(struct intel_crtc *crtc,
9666                                   struct intel_crtc_state *crtc_state,
9667                                   struct dpll *reduced_clock)
9668 {
9669         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9670         u32 dpll, fp, fp2;
9671         int factor;
9672
9673         /* Enable autotuning of the PLL clock (if permissible) */
9674         factor = 21;
9675         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9676                 if ((intel_panel_use_ssc(dev_priv) &&
9677                      dev_priv->vbt.lvds_ssc_freq == 100000) ||
9678                     (HAS_PCH_IBX(dev_priv) &&
9679                      intel_is_dual_link_lvds(dev_priv)))
9680                         factor = 25;
9681         } else if (crtc_state->sdvo_tv_clock) {
9682                 factor = 20;
9683         }
9684
9685         fp = i9xx_dpll_compute_fp(&crtc_state->dpll);
9686
9687         if (ironlake_needs_fb_cb_tune(&crtc_state->dpll, factor))
9688                 fp |= FP_CB_TUNE;
9689
9690         if (reduced_clock) {
9691                 fp2 = i9xx_dpll_compute_fp(reduced_clock);
9692
9693                 if (reduced_clock->m < factor * reduced_clock->n)
9694                         fp2 |= FP_CB_TUNE;
9695         } else {
9696                 fp2 = fp;
9697         }
9698
9699         dpll = 0;
9700
9701         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS))
9702                 dpll |= DPLLB_MODE_LVDS;
9703         else
9704                 dpll |= DPLLB_MODE_DAC_SERIAL;
9705
9706         dpll |= (crtc_state->pixel_multiplier - 1)
9707                 << PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT;
9708
9709         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_SDVO) ||
9710             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI))
9711                 dpll |= DPLL_SDVO_HIGH_SPEED;
9712
9713         if (intel_crtc_has_dp_encoder(crtc_state))
9714                 dpll |= DPLL_SDVO_HIGH_SPEED;
9715
9716         /*
9717          * The high speed IO clock is only really required for
9718          * SDVO/HDMI/DP, but we also enable it for CRT to make it
9719          * possible to share the DPLL between CRT and HDMI. Enabling
9720          * the clock needlessly does no real harm, except use up a
9721          * bit of power potentially.
9722          *
9723          * We'll limit this to IVB with 3 pipes, since it has only two
9724          * DPLLs and so DPLL sharing is the only way to get three pipes
9725          * driving PCH ports at the same time. On SNB we could do this,
9726          * and potentially avoid enabling the second DPLL, but it's not
9727          * clear if it''s a win or loss power wise. No point in doing
9728          * this on ILK at all since it has a fixed DPLL<->pipe mapping.
9729          */
9730         if (INTEL_NUM_PIPES(dev_priv) == 3 &&
9731             intel_crtc_has_type(crtc_state, INTEL_OUTPUT_ANALOG))
9732                 dpll |= DPLL_SDVO_HIGH_SPEED;
9733
9734         /* compute bitmask from p1 value */
9735         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA01_P1_POST_DIV_SHIFT;
9736         /* also FPA1 */
9737         dpll |= (1 << (crtc_state->dpll.p1 - 1)) << DPLL_FPA1_P1_POST_DIV_SHIFT;
9738
9739         switch (crtc_state->dpll.p2) {
9740         case 5:
9741                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_5;
9742                 break;
9743         case 7:
9744                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_7;
9745                 break;
9746         case 10:
9747                 dpll |= DPLL_DAC_SERIAL_P2_CLOCK_DIV_10;
9748                 break;
9749         case 14:
9750                 dpll |= DPLLB_LVDS_P2_CLOCK_DIV_14;
9751                 break;
9752         }
9753
9754         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS) &&
9755             intel_panel_use_ssc(dev_priv))
9756                 dpll |= PLLB_REF_INPUT_SPREADSPECTRUMIN;
9757         else
9758                 dpll |= PLL_REF_INPUT_DREFCLK;
9759
9760         dpll |= DPLL_VCO_ENABLE;
9761
9762         crtc_state->dpll_hw_state.dpll = dpll;
9763         crtc_state->dpll_hw_state.fp0 = fp;
9764         crtc_state->dpll_hw_state.fp1 = fp2;
9765 }
9766
9767 static int ironlake_crtc_compute_clock(struct intel_crtc *crtc,
9768                                        struct intel_crtc_state *crtc_state)
9769 {
9770         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9771         struct intel_atomic_state *state =
9772                 to_intel_atomic_state(crtc_state->base.state);
9773         const struct intel_limit *limit;
9774         int refclk = 120000;
9775
9776         memset(&crtc_state->dpll_hw_state, 0,
9777                sizeof(crtc_state->dpll_hw_state));
9778
9779         /* CPU eDP is the only output that doesn't need a PCH PLL of its own. */
9780         if (!crtc_state->has_pch_encoder)
9781                 return 0;
9782
9783         if (intel_crtc_has_type(crtc_state, INTEL_OUTPUT_LVDS)) {
9784                 if (intel_panel_use_ssc(dev_priv)) {
9785                         DRM_DEBUG_KMS("using SSC reference clock of %d kHz\n",
9786                                       dev_priv->vbt.lvds_ssc_freq);
9787                         refclk = dev_priv->vbt.lvds_ssc_freq;
9788                 }
9789
9790                 if (intel_is_dual_link_lvds(dev_priv)) {
9791                         if (refclk == 100000)
9792                                 limit = &intel_limits_ironlake_dual_lvds_100m;
9793                         else
9794                                 limit = &intel_limits_ironlake_dual_lvds;
9795                 } else {
9796                         if (refclk == 100000)
9797                                 limit = &intel_limits_ironlake_single_lvds_100m;
9798                         else
9799                                 limit = &intel_limits_ironlake_single_lvds;
9800                 }
9801         } else {
9802                 limit = &intel_limits_ironlake_dac;
9803         }
9804
9805         if (!crtc_state->clock_set &&
9806             !g4x_find_best_dpll(limit, crtc_state, crtc_state->port_clock,
9807                                 refclk, NULL, &crtc_state->dpll)) {
9808                 DRM_ERROR("Couldn't find PLL settings for mode!\n");
9809                 return -EINVAL;
9810         }
9811
9812         ironlake_compute_dpll(crtc, crtc_state, NULL);
9813
9814         if (!intel_reserve_shared_dplls(state, crtc, NULL)) {
9815                 DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
9816                               pipe_name(crtc->pipe));
9817                 return -EINVAL;
9818         }
9819
9820         return 0;
9821 }
9822
9823 static void intel_pch_transcoder_get_m_n(struct intel_crtc *crtc,
9824                                          struct intel_link_m_n *m_n)
9825 {
9826         struct drm_device *dev = crtc->base.dev;
9827         struct drm_i915_private *dev_priv = to_i915(dev);
9828         enum pipe pipe = crtc->pipe;
9829
9830         m_n->link_m = I915_READ(PCH_TRANS_LINK_M1(pipe));
9831         m_n->link_n = I915_READ(PCH_TRANS_LINK_N1(pipe));
9832         m_n->gmch_m = I915_READ(PCH_TRANS_DATA_M1(pipe))
9833                 & ~TU_SIZE_MASK;
9834         m_n->gmch_n = I915_READ(PCH_TRANS_DATA_N1(pipe));
9835         m_n->tu = ((I915_READ(PCH_TRANS_DATA_M1(pipe))
9836                     & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9837 }
9838
9839 static void intel_cpu_transcoder_get_m_n(struct intel_crtc *crtc,
9840                                          enum transcoder transcoder,
9841                                          struct intel_link_m_n *m_n,
9842                                          struct intel_link_m_n *m2_n2)
9843 {
9844         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
9845         enum pipe pipe = crtc->pipe;
9846
9847         if (INTEL_GEN(dev_priv) >= 5) {
9848                 m_n->link_m = I915_READ(PIPE_LINK_M1(transcoder));
9849                 m_n->link_n = I915_READ(PIPE_LINK_N1(transcoder));
9850                 m_n->gmch_m = I915_READ(PIPE_DATA_M1(transcoder))
9851                         & ~TU_SIZE_MASK;
9852                 m_n->gmch_n = I915_READ(PIPE_DATA_N1(transcoder));
9853                 m_n->tu = ((I915_READ(PIPE_DATA_M1(transcoder))
9854                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9855
9856                 if (m2_n2 && transcoder_has_m2_n2(dev_priv, transcoder)) {
9857                         m2_n2->link_m = I915_READ(PIPE_LINK_M2(transcoder));
9858                         m2_n2->link_n = I915_READ(PIPE_LINK_N2(transcoder));
9859                         m2_n2->gmch_m = I915_READ(PIPE_DATA_M2(transcoder))
9860                                         & ~TU_SIZE_MASK;
9861                         m2_n2->gmch_n = I915_READ(PIPE_DATA_N2(transcoder));
9862                         m2_n2->tu = ((I915_READ(PIPE_DATA_M2(transcoder))
9863                                         & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9864                 }
9865         } else {
9866                 m_n->link_m = I915_READ(PIPE_LINK_M_G4X(pipe));
9867                 m_n->link_n = I915_READ(PIPE_LINK_N_G4X(pipe));
9868                 m_n->gmch_m = I915_READ(PIPE_DATA_M_G4X(pipe))
9869                         & ~TU_SIZE_MASK;
9870                 m_n->gmch_n = I915_READ(PIPE_DATA_N_G4X(pipe));
9871                 m_n->tu = ((I915_READ(PIPE_DATA_M_G4X(pipe))
9872                             & TU_SIZE_MASK) >> TU_SIZE_SHIFT) + 1;
9873         }
9874 }
9875
9876 void intel_dp_get_m_n(struct intel_crtc *crtc,
9877                       struct intel_crtc_state *pipe_config)
9878 {
9879         if (pipe_config->has_pch_encoder)
9880                 intel_pch_transcoder_get_m_n(crtc, &pipe_config->dp_m_n);
9881         else
9882                 intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9883                                              &pipe_config->dp_m_n,
9884                                              &pipe_config->dp_m2_n2);
9885 }
9886
9887 static void ironlake_get_fdi_m_n_config(struct intel_crtc *crtc,
9888                                         struct intel_crtc_state *pipe_config)
9889 {
9890         intel_cpu_transcoder_get_m_n(crtc, pipe_config->cpu_transcoder,
9891                                      &pipe_config->fdi_m_n, NULL);
9892 }
9893
9894 static void skylake_get_pfit_config(struct intel_crtc *crtc,
9895                                     struct intel_crtc_state *pipe_config)
9896 {
9897         struct drm_device *dev = crtc->base.dev;
9898         struct drm_i915_private *dev_priv = to_i915(dev);
9899         struct intel_crtc_scaler_state *scaler_state = &pipe_config->scaler_state;
9900         u32 ps_ctrl = 0;
9901         int id = -1;
9902         int i;
9903
9904         /* find scaler attached to this pipe */
9905         for (i = 0; i < crtc->num_scalers; i++) {
9906                 ps_ctrl = I915_READ(SKL_PS_CTRL(crtc->pipe, i));
9907                 if (ps_ctrl & PS_SCALER_EN && !(ps_ctrl & PS_PLANE_SEL_MASK)) {
9908                         id = i;
9909                         pipe_config->pch_pfit.enabled = true;
9910                         pipe_config->pch_pfit.pos = I915_READ(SKL_PS_WIN_POS(crtc->pipe, i));
9911                         pipe_config->pch_pfit.size = I915_READ(SKL_PS_WIN_SZ(crtc->pipe, i));
9912                         scaler_state->scalers[i].in_use = true;
9913                         break;
9914                 }
9915         }
9916
9917         scaler_state->scaler_id = id;
9918         if (id >= 0) {
9919                 scaler_state->scaler_users |= (1 << SKL_CRTC_INDEX);
9920         } else {
9921                 scaler_state->scaler_users &= ~(1 << SKL_CRTC_INDEX);
9922         }
9923 }
9924
9925 static void
9926 skylake_get_initial_plane_config(struct intel_crtc *crtc,
9927                                  struct intel_initial_plane_config *plane_config)
9928 {
9929         struct drm_device *dev = crtc->base.dev;
9930         struct drm_i915_private *dev_priv = to_i915(dev);
9931         struct intel_plane *plane = to_intel_plane(crtc->base.primary);
9932         enum plane_id plane_id = plane->id;
9933         enum pipe pipe;
9934         u32 val, base, offset, stride_mult, tiling, alpha;
9935         int fourcc, pixel_format;
9936         unsigned int aligned_height;
9937         struct drm_framebuffer *fb;
9938         struct intel_framebuffer *intel_fb;
9939
9940         if (!plane->get_hw_state(plane, &pipe))
9941                 return;
9942
9943         WARN_ON(pipe != crtc->pipe);
9944
9945         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
9946         if (!intel_fb) {
9947                 DRM_DEBUG_KMS("failed to alloc fb\n");
9948                 return;
9949         }
9950
9951         fb = &intel_fb->base;
9952
9953         fb->dev = dev;
9954
9955         val = I915_READ(PLANE_CTL(pipe, plane_id));
9956
9957         if (INTEL_GEN(dev_priv) >= 11)
9958                 pixel_format = val & ICL_PLANE_CTL_FORMAT_MASK;
9959         else
9960                 pixel_format = val & PLANE_CTL_FORMAT_MASK;
9961
9962         if (INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv)) {
9963                 alpha = I915_READ(PLANE_COLOR_CTL(pipe, plane_id));
9964                 alpha &= PLANE_COLOR_ALPHA_MASK;
9965         } else {
9966                 alpha = val & PLANE_CTL_ALPHA_MASK;
9967         }
9968
9969         fourcc = skl_format_to_fourcc(pixel_format,
9970                                       val & PLANE_CTL_ORDER_RGBX, alpha);
9971         fb->format = drm_format_info(fourcc);
9972
9973         tiling = val & PLANE_CTL_TILED_MASK;
9974         switch (tiling) {
9975         case PLANE_CTL_TILED_LINEAR:
9976                 fb->modifier = DRM_FORMAT_MOD_LINEAR;
9977                 break;
9978         case PLANE_CTL_TILED_X:
9979                 plane_config->tiling = I915_TILING_X;
9980                 fb->modifier = I915_FORMAT_MOD_X_TILED;
9981                 break;
9982         case PLANE_CTL_TILED_Y:
9983                 plane_config->tiling = I915_TILING_Y;
9984                 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9985                         fb->modifier = I915_FORMAT_MOD_Y_TILED_CCS;
9986                 else
9987                         fb->modifier = I915_FORMAT_MOD_Y_TILED;
9988                 break;
9989         case PLANE_CTL_TILED_YF:
9990                 if (val & PLANE_CTL_RENDER_DECOMPRESSION_ENABLE)
9991                         fb->modifier = I915_FORMAT_MOD_Yf_TILED_CCS;
9992                 else
9993                         fb->modifier = I915_FORMAT_MOD_Yf_TILED;
9994                 break;
9995         default:
9996                 MISSING_CASE(tiling);
9997                 goto error;
9998         }
9999
10000         /*
10001          * DRM_MODE_ROTATE_ is counter clockwise to stay compatible with Xrandr
10002          * while i915 HW rotation is clockwise, thats why this swapping.
10003          */
10004         switch (val & PLANE_CTL_ROTATE_MASK) {
10005         case PLANE_CTL_ROTATE_0:
10006                 plane_config->rotation = DRM_MODE_ROTATE_0;
10007                 break;
10008         case PLANE_CTL_ROTATE_90:
10009                 plane_config->rotation = DRM_MODE_ROTATE_270;
10010                 break;
10011         case PLANE_CTL_ROTATE_180:
10012                 plane_config->rotation = DRM_MODE_ROTATE_180;
10013                 break;
10014         case PLANE_CTL_ROTATE_270:
10015                 plane_config->rotation = DRM_MODE_ROTATE_90;
10016                 break;
10017         }
10018
10019         if (INTEL_GEN(dev_priv) >= 10 &&
10020             val & PLANE_CTL_FLIP_HORIZONTAL)
10021                 plane_config->rotation |= DRM_MODE_REFLECT_X;
10022
10023         base = I915_READ(PLANE_SURF(pipe, plane_id)) & 0xfffff000;
10024         plane_config->base = base;
10025
10026         offset = I915_READ(PLANE_OFFSET(pipe, plane_id));
10027
10028         val = I915_READ(PLANE_SIZE(pipe, plane_id));
10029         fb->height = ((val >> 16) & 0xffff) + 1;
10030         fb->width = ((val >> 0) & 0xffff) + 1;
10031
10032         val = I915_READ(PLANE_STRIDE(pipe, plane_id));
10033         stride_mult = skl_plane_stride_mult(fb, 0, DRM_MODE_ROTATE_0);
10034         fb->pitches[0] = (val & 0x3ff) * stride_mult;
10035
10036         aligned_height = intel_fb_align_height(fb, 0, fb->height);
10037
10038         plane_config->size = fb->pitches[0] * aligned_height;
10039
10040         DRM_DEBUG_KMS("%s/%s with fb: size=%dx%d@%d, offset=%x, pitch %d, size 0x%x\n",
10041                       crtc->base.name, plane->base.name, fb->width, fb->height,
10042                       fb->format->cpp[0] * 8, base, fb->pitches[0],
10043                       plane_config->size);
10044
10045         plane_config->fb = intel_fb;
10046         return;
10047
10048 error:
10049         kfree(intel_fb);
10050 }
10051
10052 static void ironlake_get_pfit_config(struct intel_crtc *crtc,
10053                                      struct intel_crtc_state *pipe_config)
10054 {
10055         struct drm_device *dev = crtc->base.dev;
10056         struct drm_i915_private *dev_priv = to_i915(dev);
10057         u32 tmp;
10058
10059         tmp = I915_READ(PF_CTL(crtc->pipe));
10060
10061         if (tmp & PF_ENABLE) {
10062                 pipe_config->pch_pfit.enabled = true;
10063                 pipe_config->pch_pfit.pos = I915_READ(PF_WIN_POS(crtc->pipe));
10064                 pipe_config->pch_pfit.size = I915_READ(PF_WIN_SZ(crtc->pipe));
10065
10066                 /* We currently do not free assignements of panel fitters on
10067                  * ivb/hsw (since we don't use the higher upscaling modes which
10068                  * differentiates them) so just WARN about this case for now. */
10069                 if (IS_GEN(dev_priv, 7)) {
10070                         WARN_ON((tmp & PF_PIPE_SEL_MASK_IVB) !=
10071                                 PF_PIPE_SEL_IVB(crtc->pipe));
10072                 }
10073         }
10074 }
10075
10076 static bool ironlake_get_pipe_config(struct intel_crtc *crtc,
10077                                      struct intel_crtc_state *pipe_config)
10078 {
10079         struct drm_device *dev = crtc->base.dev;
10080         struct drm_i915_private *dev_priv = to_i915(dev);
10081         enum intel_display_power_domain power_domain;
10082         intel_wakeref_t wakeref;
10083         u32 tmp;
10084         bool ret;
10085
10086         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10087         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
10088         if (!wakeref)
10089                 return false;
10090
10091         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10092         pipe_config->shared_dpll = NULL;
10093         pipe_config->master_transcoder = INVALID_TRANSCODER;
10094
10095         ret = false;
10096         tmp = I915_READ(PIPECONF(crtc->pipe));
10097         if (!(tmp & PIPECONF_ENABLE))
10098                 goto out;
10099
10100         switch (tmp & PIPECONF_BPC_MASK) {
10101         case PIPECONF_6BPC:
10102                 pipe_config->pipe_bpp = 18;
10103                 break;
10104         case PIPECONF_8BPC:
10105                 pipe_config->pipe_bpp = 24;
10106                 break;
10107         case PIPECONF_10BPC:
10108                 pipe_config->pipe_bpp = 30;
10109                 break;
10110         case PIPECONF_12BPC:
10111                 pipe_config->pipe_bpp = 36;
10112                 break;
10113         default:
10114                 break;
10115         }
10116
10117         if (tmp & PIPECONF_COLOR_RANGE_SELECT)
10118                 pipe_config->limited_color_range = true;
10119
10120         switch (tmp & PIPECONF_OUTPUT_COLORSPACE_MASK) {
10121         case PIPECONF_OUTPUT_COLORSPACE_YUV601:
10122         case PIPECONF_OUTPUT_COLORSPACE_YUV709:
10123                 pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10124                 break;
10125         default:
10126                 pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10127                 break;
10128         }
10129
10130         pipe_config->gamma_mode = (tmp & PIPECONF_GAMMA_MODE_MASK_ILK) >>
10131                 PIPECONF_GAMMA_MODE_SHIFT;
10132
10133         pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10134
10135         i9xx_get_pipe_color_config(pipe_config);
10136         intel_color_get_config(pipe_config);
10137
10138         if (I915_READ(PCH_TRANSCONF(crtc->pipe)) & TRANS_ENABLE) {
10139                 struct intel_shared_dpll *pll;
10140                 enum intel_dpll_id pll_id;
10141
10142                 pipe_config->has_pch_encoder = true;
10143
10144                 tmp = I915_READ(FDI_RX_CTL(crtc->pipe));
10145                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10146                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10147
10148                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10149
10150                 if (HAS_PCH_IBX(dev_priv)) {
10151                         /*
10152                          * The pipe->pch transcoder and pch transcoder->pll
10153                          * mapping is fixed.
10154                          */
10155                         pll_id = (enum intel_dpll_id) crtc->pipe;
10156                 } else {
10157                         tmp = I915_READ(PCH_DPLL_SEL);
10158                         if (tmp & TRANS_DPLLB_SEL(crtc->pipe))
10159                                 pll_id = DPLL_ID_PCH_PLL_B;
10160                         else
10161                                 pll_id= DPLL_ID_PCH_PLL_A;
10162                 }
10163
10164                 pipe_config->shared_dpll =
10165                         intel_get_shared_dpll_by_id(dev_priv, pll_id);
10166                 pll = pipe_config->shared_dpll;
10167
10168                 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10169                                                 &pipe_config->dpll_hw_state));
10170
10171                 tmp = pipe_config->dpll_hw_state.dpll;
10172                 pipe_config->pixel_multiplier =
10173                         ((tmp & PLL_REF_SDVO_HDMI_MULTIPLIER_MASK)
10174                          >> PLL_REF_SDVO_HDMI_MULTIPLIER_SHIFT) + 1;
10175
10176                 ironlake_pch_clock_get(crtc, pipe_config);
10177         } else {
10178                 pipe_config->pixel_multiplier = 1;
10179         }
10180
10181         intel_get_pipe_timings(crtc, pipe_config);
10182         intel_get_pipe_src_size(crtc, pipe_config);
10183
10184         ironlake_get_pfit_config(crtc, pipe_config);
10185
10186         ret = true;
10187
10188 out:
10189         intel_display_power_put(dev_priv, power_domain, wakeref);
10190
10191         return ret;
10192 }
10193 static int haswell_crtc_compute_clock(struct intel_crtc *crtc,
10194                                       struct intel_crtc_state *crtc_state)
10195 {
10196         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10197         struct intel_atomic_state *state =
10198                 to_intel_atomic_state(crtc_state->base.state);
10199
10200         if (!intel_crtc_has_type(crtc_state, INTEL_OUTPUT_DSI) ||
10201             INTEL_GEN(dev_priv) >= 11) {
10202                 struct intel_encoder *encoder =
10203                         intel_get_crtc_new_encoder(state, crtc_state);
10204
10205                 if (!intel_reserve_shared_dplls(state, crtc, encoder)) {
10206                         DRM_DEBUG_KMS("failed to find PLL for pipe %c\n",
10207                                       pipe_name(crtc->pipe));
10208                         return -EINVAL;
10209                 }
10210         }
10211
10212         return 0;
10213 }
10214
10215 static void cannonlake_get_ddi_pll(struct drm_i915_private *dev_priv,
10216                                    enum port port,
10217                                    struct intel_crtc_state *pipe_config)
10218 {
10219         enum intel_dpll_id id;
10220         u32 temp;
10221
10222         temp = I915_READ(DPCLKA_CFGCR0) & DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(port);
10223         id = temp >> DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(port);
10224
10225         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL2))
10226                 return;
10227
10228         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10229 }
10230
10231 static void icelake_get_ddi_pll(struct drm_i915_private *dev_priv,
10232                                 enum port port,
10233                                 struct intel_crtc_state *pipe_config)
10234 {
10235         enum phy phy = intel_port_to_phy(dev_priv, port);
10236         enum icl_port_dpll_id port_dpll_id;
10237         enum intel_dpll_id id;
10238         u32 temp;
10239
10240         if (intel_phy_is_combo(dev_priv, phy)) {
10241                 temp = I915_READ(ICL_DPCLKA_CFGCR0) &
10242                         ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_MASK(phy);
10243                 id = temp >> ICL_DPCLKA_CFGCR0_DDI_CLK_SEL_SHIFT(phy);
10244                 port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10245         } else if (intel_phy_is_tc(dev_priv, phy)) {
10246                 u32 clk_sel = I915_READ(DDI_CLK_SEL(port)) & DDI_CLK_SEL_MASK;
10247
10248                 if (clk_sel == DDI_CLK_SEL_MG) {
10249                         id = icl_tc_port_to_pll_id(intel_port_to_tc(dev_priv,
10250                                                                     port));
10251                         port_dpll_id = ICL_PORT_DPLL_MG_PHY;
10252                 } else {
10253                         WARN_ON(clk_sel < DDI_CLK_SEL_TBT_162);
10254                         id = DPLL_ID_ICL_TBTPLL;
10255                         port_dpll_id = ICL_PORT_DPLL_DEFAULT;
10256                 }
10257         } else {
10258                 WARN(1, "Invalid port %x\n", port);
10259                 return;
10260         }
10261
10262         pipe_config->icl_port_dplls[port_dpll_id].pll =
10263                 intel_get_shared_dpll_by_id(dev_priv, id);
10264
10265         icl_set_active_port_dpll(pipe_config, port_dpll_id);
10266 }
10267
10268 static void bxt_get_ddi_pll(struct drm_i915_private *dev_priv,
10269                                 enum port port,
10270                                 struct intel_crtc_state *pipe_config)
10271 {
10272         enum intel_dpll_id id;
10273
10274         switch (port) {
10275         case PORT_A:
10276                 id = DPLL_ID_SKL_DPLL0;
10277                 break;
10278         case PORT_B:
10279                 id = DPLL_ID_SKL_DPLL1;
10280                 break;
10281         case PORT_C:
10282                 id = DPLL_ID_SKL_DPLL2;
10283                 break;
10284         default:
10285                 DRM_ERROR("Incorrect port type\n");
10286                 return;
10287         }
10288
10289         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10290 }
10291
10292 static void skylake_get_ddi_pll(struct drm_i915_private *dev_priv,
10293                                 enum port port,
10294                                 struct intel_crtc_state *pipe_config)
10295 {
10296         enum intel_dpll_id id;
10297         u32 temp;
10298
10299         temp = I915_READ(DPLL_CTRL2) & DPLL_CTRL2_DDI_CLK_SEL_MASK(port);
10300         id = temp >> (port * 3 + 1);
10301
10302         if (WARN_ON(id < SKL_DPLL0 || id > SKL_DPLL3))
10303                 return;
10304
10305         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10306 }
10307
10308 static void haswell_get_ddi_pll(struct drm_i915_private *dev_priv,
10309                                 enum port port,
10310                                 struct intel_crtc_state *pipe_config)
10311 {
10312         enum intel_dpll_id id;
10313         u32 ddi_pll_sel = I915_READ(PORT_CLK_SEL(port));
10314
10315         switch (ddi_pll_sel) {
10316         case PORT_CLK_SEL_WRPLL1:
10317                 id = DPLL_ID_WRPLL1;
10318                 break;
10319         case PORT_CLK_SEL_WRPLL2:
10320                 id = DPLL_ID_WRPLL2;
10321                 break;
10322         case PORT_CLK_SEL_SPLL:
10323                 id = DPLL_ID_SPLL;
10324                 break;
10325         case PORT_CLK_SEL_LCPLL_810:
10326                 id = DPLL_ID_LCPLL_810;
10327                 break;
10328         case PORT_CLK_SEL_LCPLL_1350:
10329                 id = DPLL_ID_LCPLL_1350;
10330                 break;
10331         case PORT_CLK_SEL_LCPLL_2700:
10332                 id = DPLL_ID_LCPLL_2700;
10333                 break;
10334         default:
10335                 MISSING_CASE(ddi_pll_sel);
10336                 /* fall through */
10337         case PORT_CLK_SEL_NONE:
10338                 return;
10339         }
10340
10341         pipe_config->shared_dpll = intel_get_shared_dpll_by_id(dev_priv, id);
10342 }
10343
10344 static bool hsw_get_transcoder_state(struct intel_crtc *crtc,
10345                                      struct intel_crtc_state *pipe_config,
10346                                      u64 *power_domain_mask,
10347                                      intel_wakeref_t *wakerefs)
10348 {
10349         struct drm_device *dev = crtc->base.dev;
10350         struct drm_i915_private *dev_priv = to_i915(dev);
10351         enum intel_display_power_domain power_domain;
10352         unsigned long panel_transcoder_mask = 0;
10353         unsigned long enabled_panel_transcoders = 0;
10354         enum transcoder panel_transcoder;
10355         intel_wakeref_t wf;
10356         u32 tmp;
10357
10358         if (INTEL_GEN(dev_priv) >= 11)
10359                 panel_transcoder_mask |=
10360                         BIT(TRANSCODER_DSI_0) | BIT(TRANSCODER_DSI_1);
10361
10362         if (HAS_TRANSCODER_EDP(dev_priv))
10363                 panel_transcoder_mask |= BIT(TRANSCODER_EDP);
10364
10365         /*
10366          * The pipe->transcoder mapping is fixed with the exception of the eDP
10367          * and DSI transcoders handled below.
10368          */
10369         pipe_config->cpu_transcoder = (enum transcoder) crtc->pipe;
10370
10371         /*
10372          * XXX: Do intel_display_power_get_if_enabled before reading this (for
10373          * consistency and less surprising code; it's in always on power).
10374          */
10375         for_each_set_bit(panel_transcoder,
10376                          &panel_transcoder_mask,
10377                          ARRAY_SIZE(INTEL_INFO(dev_priv)->trans_offsets)) {
10378                 bool force_thru = false;
10379                 enum pipe trans_pipe;
10380
10381                 tmp = I915_READ(TRANS_DDI_FUNC_CTL(panel_transcoder));
10382                 if (!(tmp & TRANS_DDI_FUNC_ENABLE))
10383                         continue;
10384
10385                 /*
10386                  * Log all enabled ones, only use the first one.
10387                  *
10388                  * FIXME: This won't work for two separate DSI displays.
10389                  */
10390                 enabled_panel_transcoders |= BIT(panel_transcoder);
10391                 if (enabled_panel_transcoders != BIT(panel_transcoder))
10392                         continue;
10393
10394                 switch (tmp & TRANS_DDI_EDP_INPUT_MASK) {
10395                 default:
10396                         WARN(1, "unknown pipe linked to transcoder %s\n",
10397                              transcoder_name(panel_transcoder));
10398                         /* fall through */
10399                 case TRANS_DDI_EDP_INPUT_A_ONOFF:
10400                         force_thru = true;
10401                         /* fall through */
10402                 case TRANS_DDI_EDP_INPUT_A_ON:
10403                         trans_pipe = PIPE_A;
10404                         break;
10405                 case TRANS_DDI_EDP_INPUT_B_ONOFF:
10406                         trans_pipe = PIPE_B;
10407                         break;
10408                 case TRANS_DDI_EDP_INPUT_C_ONOFF:
10409                         trans_pipe = PIPE_C;
10410                         break;
10411                 }
10412
10413                 if (trans_pipe == crtc->pipe) {
10414                         pipe_config->cpu_transcoder = panel_transcoder;
10415                         pipe_config->pch_pfit.force_thru = force_thru;
10416                 }
10417         }
10418
10419         /*
10420          * Valid combos: none, eDP, DSI0, DSI1, DSI0+DSI1
10421          */
10422         WARN_ON((enabled_panel_transcoders & BIT(TRANSCODER_EDP)) &&
10423                 enabled_panel_transcoders != BIT(TRANSCODER_EDP));
10424
10425         power_domain = POWER_DOMAIN_TRANSCODER(pipe_config->cpu_transcoder);
10426         WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10427
10428         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10429         if (!wf)
10430                 return false;
10431
10432         wakerefs[power_domain] = wf;
10433         *power_domain_mask |= BIT_ULL(power_domain);
10434
10435         tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10436
10437         return tmp & PIPECONF_ENABLE;
10438 }
10439
10440 static bool bxt_get_dsi_transcoder_state(struct intel_crtc *crtc,
10441                                          struct intel_crtc_state *pipe_config,
10442                                          u64 *power_domain_mask,
10443                                          intel_wakeref_t *wakerefs)
10444 {
10445         struct drm_device *dev = crtc->base.dev;
10446         struct drm_i915_private *dev_priv = to_i915(dev);
10447         enum intel_display_power_domain power_domain;
10448         enum transcoder cpu_transcoder;
10449         intel_wakeref_t wf;
10450         enum port port;
10451         u32 tmp;
10452
10453         for_each_port_masked(port, BIT(PORT_A) | BIT(PORT_C)) {
10454                 if (port == PORT_A)
10455                         cpu_transcoder = TRANSCODER_DSI_A;
10456                 else
10457                         cpu_transcoder = TRANSCODER_DSI_C;
10458
10459                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10460                 WARN_ON(*power_domain_mask & BIT_ULL(power_domain));
10461
10462                 wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10463                 if (!wf)
10464                         continue;
10465
10466                 wakerefs[power_domain] = wf;
10467                 *power_domain_mask |= BIT_ULL(power_domain);
10468
10469                 /*
10470                  * The PLL needs to be enabled with a valid divider
10471                  * configuration, otherwise accessing DSI registers will hang
10472                  * the machine. See BSpec North Display Engine
10473                  * registers/MIPI[BXT]. We can break out here early, since we
10474                  * need the same DSI PLL to be enabled for both DSI ports.
10475                  */
10476                 if (!bxt_dsi_pll_is_enabled(dev_priv))
10477                         break;
10478
10479                 /* XXX: this works for video mode only */
10480                 tmp = I915_READ(BXT_MIPI_PORT_CTRL(port));
10481                 if (!(tmp & DPI_ENABLE))
10482                         continue;
10483
10484                 tmp = I915_READ(MIPI_CTRL(port));
10485                 if ((tmp & BXT_PIPE_SELECT_MASK) != BXT_PIPE_SELECT(crtc->pipe))
10486                         continue;
10487
10488                 pipe_config->cpu_transcoder = cpu_transcoder;
10489                 break;
10490         }
10491
10492         return transcoder_is_dsi(pipe_config->cpu_transcoder);
10493 }
10494
10495 static void haswell_get_ddi_port_state(struct intel_crtc *crtc,
10496                                        struct intel_crtc_state *pipe_config)
10497 {
10498         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10499         struct intel_shared_dpll *pll;
10500         enum port port;
10501         u32 tmp;
10502
10503         tmp = I915_READ(TRANS_DDI_FUNC_CTL(pipe_config->cpu_transcoder));
10504
10505         if (INTEL_GEN(dev_priv) >= 12)
10506                 port = TGL_TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10507         else
10508                 port = TRANS_DDI_FUNC_CTL_VAL_TO_PORT(tmp);
10509
10510         if (INTEL_GEN(dev_priv) >= 11)
10511                 icelake_get_ddi_pll(dev_priv, port, pipe_config);
10512         else if (IS_CANNONLAKE(dev_priv))
10513                 cannonlake_get_ddi_pll(dev_priv, port, pipe_config);
10514         else if (IS_GEN9_BC(dev_priv))
10515                 skylake_get_ddi_pll(dev_priv, port, pipe_config);
10516         else if (IS_GEN9_LP(dev_priv))
10517                 bxt_get_ddi_pll(dev_priv, port, pipe_config);
10518         else
10519                 haswell_get_ddi_pll(dev_priv, port, pipe_config);
10520
10521         pll = pipe_config->shared_dpll;
10522         if (pll) {
10523                 WARN_ON(!pll->info->funcs->get_hw_state(dev_priv, pll,
10524                                                 &pipe_config->dpll_hw_state));
10525         }
10526
10527         /*
10528          * Haswell has only FDI/PCH transcoder A. It is which is connected to
10529          * DDI E. So just check whether this pipe is wired to DDI E and whether
10530          * the PCH transcoder is on.
10531          */
10532         if (INTEL_GEN(dev_priv) < 9 &&
10533             (port == PORT_E) && I915_READ(LPT_TRANSCONF) & TRANS_ENABLE) {
10534                 pipe_config->has_pch_encoder = true;
10535
10536                 tmp = I915_READ(FDI_RX_CTL(PIPE_A));
10537                 pipe_config->fdi_lanes = ((FDI_DP_PORT_WIDTH_MASK & tmp) >>
10538                                           FDI_DP_PORT_WIDTH_SHIFT) + 1;
10539
10540                 ironlake_get_fdi_m_n_config(crtc, pipe_config);
10541         }
10542 }
10543
10544 static enum transcoder transcoder_master_readout(struct drm_i915_private *dev_priv,
10545                                                  enum transcoder cpu_transcoder)
10546 {
10547         u32 trans_port_sync, master_select;
10548
10549         trans_port_sync = I915_READ(TRANS_DDI_FUNC_CTL2(cpu_transcoder));
10550
10551         if ((trans_port_sync & PORT_SYNC_MODE_ENABLE) == 0)
10552                 return INVALID_TRANSCODER;
10553
10554         master_select = trans_port_sync &
10555                         PORT_SYNC_MODE_MASTER_SELECT_MASK;
10556         if (master_select == 0)
10557                 return TRANSCODER_EDP;
10558         else
10559                 return master_select - 1;
10560 }
10561
10562 static void icelake_get_trans_port_sync_config(struct intel_crtc_state *crtc_state)
10563 {
10564         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
10565         u32 transcoders;
10566         enum transcoder cpu_transcoder;
10567
10568         crtc_state->master_transcoder = transcoder_master_readout(dev_priv,
10569                                                                   crtc_state->cpu_transcoder);
10570
10571         transcoders = BIT(TRANSCODER_A) |
10572                 BIT(TRANSCODER_B) |
10573                 BIT(TRANSCODER_C) |
10574                 BIT(TRANSCODER_D);
10575         for_each_cpu_transcoder_masked(dev_priv, cpu_transcoder, transcoders) {
10576                 enum intel_display_power_domain power_domain;
10577                 intel_wakeref_t trans_wakeref;
10578
10579                 power_domain = POWER_DOMAIN_TRANSCODER(cpu_transcoder);
10580                 trans_wakeref = intel_display_power_get_if_enabled(dev_priv,
10581                                                                    power_domain);
10582
10583                 if (!trans_wakeref)
10584                         continue;
10585
10586                 if (transcoder_master_readout(dev_priv, cpu_transcoder) ==
10587                     crtc_state->cpu_transcoder)
10588                         crtc_state->sync_mode_slaves_mask |= BIT(cpu_transcoder);
10589
10590                 intel_display_power_put(dev_priv, power_domain, trans_wakeref);
10591         }
10592
10593         WARN_ON(crtc_state->master_transcoder != INVALID_TRANSCODER &&
10594                 crtc_state->sync_mode_slaves_mask);
10595 }
10596
10597 static bool haswell_get_pipe_config(struct intel_crtc *crtc,
10598                                     struct intel_crtc_state *pipe_config)
10599 {
10600         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
10601         intel_wakeref_t wakerefs[POWER_DOMAIN_NUM], wf;
10602         enum intel_display_power_domain power_domain;
10603         u64 power_domain_mask;
10604         bool active;
10605
10606         intel_crtc_init_scalers(crtc, pipe_config);
10607
10608         pipe_config->master_transcoder = INVALID_TRANSCODER;
10609
10610         power_domain = POWER_DOMAIN_PIPE(crtc->pipe);
10611         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10612         if (!wf)
10613                 return false;
10614
10615         wakerefs[power_domain] = wf;
10616         power_domain_mask = BIT_ULL(power_domain);
10617
10618         pipe_config->shared_dpll = NULL;
10619
10620         active = hsw_get_transcoder_state(crtc, pipe_config,
10621                                           &power_domain_mask, wakerefs);
10622
10623         if (IS_GEN9_LP(dev_priv) &&
10624             bxt_get_dsi_transcoder_state(crtc, pipe_config,
10625                                          &power_domain_mask, wakerefs)) {
10626                 WARN_ON(active);
10627                 active = true;
10628         }
10629
10630         if (!active)
10631                 goto out;
10632
10633         if (!transcoder_is_dsi(pipe_config->cpu_transcoder) ||
10634             INTEL_GEN(dev_priv) >= 11) {
10635                 haswell_get_ddi_port_state(crtc, pipe_config);
10636                 intel_get_pipe_timings(crtc, pipe_config);
10637         }
10638
10639         intel_get_pipe_src_size(crtc, pipe_config);
10640
10641         if (IS_HASWELL(dev_priv)) {
10642                 u32 tmp = I915_READ(PIPECONF(pipe_config->cpu_transcoder));
10643
10644                 if (tmp & PIPECONF_OUTPUT_COLORSPACE_YUV_HSW)
10645                         pipe_config->output_format = INTEL_OUTPUT_FORMAT_YCBCR444;
10646                 else
10647                         pipe_config->output_format = INTEL_OUTPUT_FORMAT_RGB;
10648         } else {
10649                 pipe_config->output_format =
10650                         bdw_get_pipemisc_output_format(crtc);
10651
10652                 /*
10653                  * Currently there is no interface defined to
10654                  * check user preference between RGB/YCBCR444
10655                  * or YCBCR420. So the only possible case for
10656                  * YCBCR444 usage is driving YCBCR420 output
10657                  * with LSPCON, when pipe is configured for
10658                  * YCBCR444 output and LSPCON takes care of
10659                  * downsampling it.
10660                  */
10661                 pipe_config->lspcon_downsampling =
10662                         pipe_config->output_format == INTEL_OUTPUT_FORMAT_YCBCR444;
10663         }
10664
10665         pipe_config->gamma_mode = I915_READ(GAMMA_MODE(crtc->pipe));
10666
10667         pipe_config->csc_mode = I915_READ(PIPE_CSC_MODE(crtc->pipe));
10668
10669         if (INTEL_GEN(dev_priv) >= 9) {
10670                 u32 tmp = I915_READ(SKL_BOTTOM_COLOR(crtc->pipe));
10671
10672                 if (tmp & SKL_BOTTOM_COLOR_GAMMA_ENABLE)
10673                         pipe_config->gamma_enable = true;
10674
10675                 if (tmp & SKL_BOTTOM_COLOR_CSC_ENABLE)
10676                         pipe_config->csc_enable = true;
10677         } else {
10678                 i9xx_get_pipe_color_config(pipe_config);
10679         }
10680
10681         intel_color_get_config(pipe_config);
10682
10683         power_domain = POWER_DOMAIN_PIPE_PANEL_FITTER(crtc->pipe);
10684         WARN_ON(power_domain_mask & BIT_ULL(power_domain));
10685
10686         wf = intel_display_power_get_if_enabled(dev_priv, power_domain);
10687         if (wf) {
10688                 wakerefs[power_domain] = wf;
10689                 power_domain_mask |= BIT_ULL(power_domain);
10690
10691                 if (INTEL_GEN(dev_priv) >= 9)
10692                         skylake_get_pfit_config(crtc, pipe_config);
10693                 else
10694                         ironlake_get_pfit_config(crtc, pipe_config);
10695         }
10696
10697         if (hsw_crtc_supports_ips(crtc)) {
10698                 if (IS_HASWELL(dev_priv))
10699                         pipe_config->ips_enabled = I915_READ(IPS_CTL) & IPS_ENABLE;
10700                 else {
10701                         /*
10702                          * We cannot readout IPS state on broadwell, set to
10703                          * true so we can set it to a defined state on first
10704                          * commit.
10705                          */
10706                         pipe_config->ips_enabled = true;
10707                 }
10708         }
10709
10710         if (pipe_config->cpu_transcoder != TRANSCODER_EDP &&
10711             !transcoder_is_dsi(pipe_config->cpu_transcoder)) {
10712                 pipe_config->pixel_multiplier =
10713                         I915_READ(PIPE_MULT(pipe_config->cpu_transcoder)) + 1;
10714         } else {
10715                 pipe_config->pixel_multiplier = 1;
10716         }
10717
10718         if (INTEL_GEN(dev_priv) >= 11 &&
10719             !transcoder_is_dsi(pipe_config->cpu_transcoder))
10720                 icelake_get_trans_port_sync_config(pipe_config);
10721
10722 out:
10723         for_each_power_domain(power_domain, power_domain_mask)
10724                 intel_display_power_put(dev_priv,
10725                                         power_domain, wakerefs[power_domain]);
10726
10727         return active;
10728 }
10729
10730 static u32 intel_cursor_base(const struct intel_plane_state *plane_state)
10731 {
10732         struct drm_i915_private *dev_priv =
10733                 to_i915(plane_state->base.plane->dev);
10734         const struct drm_framebuffer *fb = plane_state->base.fb;
10735         const struct drm_i915_gem_object *obj = intel_fb_obj(fb);
10736         u32 base;
10737
10738         if (INTEL_INFO(dev_priv)->display.cursor_needs_physical)
10739                 base = obj->phys_handle->busaddr;
10740         else
10741                 base = intel_plane_ggtt_offset(plane_state);
10742
10743         return base + plane_state->color_plane[0].offset;
10744 }
10745
10746 static u32 intel_cursor_position(const struct intel_plane_state *plane_state)
10747 {
10748         int x = plane_state->base.dst.x1;
10749         int y = plane_state->base.dst.y1;
10750         u32 pos = 0;
10751
10752         if (x < 0) {
10753                 pos |= CURSOR_POS_SIGN << CURSOR_X_SHIFT;
10754                 x = -x;
10755         }
10756         pos |= x << CURSOR_X_SHIFT;
10757
10758         if (y < 0) {
10759                 pos |= CURSOR_POS_SIGN << CURSOR_Y_SHIFT;
10760                 y = -y;
10761         }
10762         pos |= y << CURSOR_Y_SHIFT;
10763
10764         return pos;
10765 }
10766
10767 static bool intel_cursor_size_ok(const struct intel_plane_state *plane_state)
10768 {
10769         const struct drm_mode_config *config =
10770                 &plane_state->base.plane->dev->mode_config;
10771         int width = drm_rect_width(&plane_state->base.dst);
10772         int height = drm_rect_height(&plane_state->base.dst);
10773
10774         return width > 0 && width <= config->cursor_width &&
10775                 height > 0 && height <= config->cursor_height;
10776 }
10777
10778 static int intel_cursor_check_surface(struct intel_plane_state *plane_state)
10779 {
10780         struct drm_i915_private *dev_priv =
10781                 to_i915(plane_state->base.plane->dev);
10782         unsigned int rotation = plane_state->base.rotation;
10783         int src_x, src_y;
10784         u32 offset;
10785         int ret;
10786
10787         ret = intel_plane_compute_gtt(plane_state);
10788         if (ret)
10789                 return ret;
10790
10791         if (!plane_state->base.visible)
10792                 return 0;
10793
10794         src_x = plane_state->base.src.x1 >> 16;
10795         src_y = plane_state->base.src.y1 >> 16;
10796
10797         intel_add_fb_offsets(&src_x, &src_y, plane_state, 0);
10798         offset = intel_plane_compute_aligned_offset(&src_x, &src_y,
10799                                                     plane_state, 0);
10800
10801         if (src_x != 0 || src_y != 0) {
10802                 DRM_DEBUG_KMS("Arbitrary cursor panning not supported\n");
10803                 return -EINVAL;
10804         }
10805
10806         /*
10807          * Put the final coordinates back so that the src
10808          * coordinate checks will see the right values.
10809          */
10810         drm_rect_translate_to(&plane_state->base.src,
10811                               src_x << 16, src_y << 16);
10812
10813         /* ILK+ do this automagically in hardware */
10814         if (HAS_GMCH(dev_priv) && rotation & DRM_MODE_ROTATE_180) {
10815                 const struct drm_framebuffer *fb = plane_state->base.fb;
10816                 int src_w = drm_rect_width(&plane_state->base.src) >> 16;
10817                 int src_h = drm_rect_height(&plane_state->base.src) >> 16;
10818
10819                 offset += (src_h * src_w - 1) * fb->format->cpp[0];
10820         }
10821
10822         plane_state->color_plane[0].offset = offset;
10823         plane_state->color_plane[0].x = src_x;
10824         plane_state->color_plane[0].y = src_y;
10825
10826         return 0;
10827 }
10828
10829 static int intel_check_cursor(struct intel_crtc_state *crtc_state,
10830                               struct intel_plane_state *plane_state)
10831 {
10832         const struct drm_framebuffer *fb = plane_state->base.fb;
10833         int ret;
10834
10835         if (fb && fb->modifier != DRM_FORMAT_MOD_LINEAR) {
10836                 DRM_DEBUG_KMS("cursor cannot be tiled\n");
10837                 return -EINVAL;
10838         }
10839
10840         ret = drm_atomic_helper_check_plane_state(&plane_state->base,
10841                                                   &crtc_state->base,
10842                                                   DRM_PLANE_HELPER_NO_SCALING,
10843                                                   DRM_PLANE_HELPER_NO_SCALING,
10844                                                   true, true);
10845         if (ret)
10846                 return ret;
10847
10848         /* Use the unclipped src/dst rectangles, which we program to hw */
10849         plane_state->base.src = drm_plane_state_src(&plane_state->base);
10850         plane_state->base.dst = drm_plane_state_dest(&plane_state->base);
10851
10852         ret = intel_cursor_check_surface(plane_state);
10853         if (ret)
10854                 return ret;
10855
10856         if (!plane_state->base.visible)
10857                 return 0;
10858
10859         ret = intel_plane_check_src_coordinates(plane_state);
10860         if (ret)
10861                 return ret;
10862
10863         return 0;
10864 }
10865
10866 static unsigned int
10867 i845_cursor_max_stride(struct intel_plane *plane,
10868                        u32 pixel_format, u64 modifier,
10869                        unsigned int rotation)
10870 {
10871         return 2048;
10872 }
10873
10874 static u32 i845_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
10875 {
10876         u32 cntl = 0;
10877
10878         if (crtc_state->gamma_enable)
10879                 cntl |= CURSOR_GAMMA_ENABLE;
10880
10881         return cntl;
10882 }
10883
10884 static u32 i845_cursor_ctl(const struct intel_crtc_state *crtc_state,
10885                            const struct intel_plane_state *plane_state)
10886 {
10887         return CURSOR_ENABLE |
10888                 CURSOR_FORMAT_ARGB |
10889                 CURSOR_STRIDE(plane_state->color_plane[0].stride);
10890 }
10891
10892 static bool i845_cursor_size_ok(const struct intel_plane_state *plane_state)
10893 {
10894         int width = drm_rect_width(&plane_state->base.dst);
10895
10896         /*
10897          * 845g/865g are only limited by the width of their cursors,
10898          * the height is arbitrary up to the precision of the register.
10899          */
10900         return intel_cursor_size_ok(plane_state) && IS_ALIGNED(width, 64);
10901 }
10902
10903 static int i845_check_cursor(struct intel_crtc_state *crtc_state,
10904                              struct intel_plane_state *plane_state)
10905 {
10906         const struct drm_framebuffer *fb = plane_state->base.fb;
10907         int ret;
10908
10909         ret = intel_check_cursor(crtc_state, plane_state);
10910         if (ret)
10911                 return ret;
10912
10913         /* if we want to turn off the cursor ignore width and height */
10914         if (!fb)
10915                 return 0;
10916
10917         /* Check for which cursor types we support */
10918         if (!i845_cursor_size_ok(plane_state)) {
10919                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
10920                           drm_rect_width(&plane_state->base.dst),
10921                           drm_rect_height(&plane_state->base.dst));
10922                 return -EINVAL;
10923         }
10924
10925         WARN_ON(plane_state->base.visible &&
10926                 plane_state->color_plane[0].stride != fb->pitches[0]);
10927
10928         switch (fb->pitches[0]) {
10929         case 256:
10930         case 512:
10931         case 1024:
10932         case 2048:
10933                 break;
10934         default:
10935                 DRM_DEBUG_KMS("Invalid cursor stride (%u)\n",
10936                               fb->pitches[0]);
10937                 return -EINVAL;
10938         }
10939
10940         plane_state->ctl = i845_cursor_ctl(crtc_state, plane_state);
10941
10942         return 0;
10943 }
10944
10945 static void i845_update_cursor(struct intel_plane *plane,
10946                                const struct intel_crtc_state *crtc_state,
10947                                const struct intel_plane_state *plane_state)
10948 {
10949         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
10950         u32 cntl = 0, base = 0, pos = 0, size = 0;
10951         unsigned long irqflags;
10952
10953         if (plane_state && plane_state->base.visible) {
10954                 unsigned int width = drm_rect_width(&plane_state->base.dst);
10955                 unsigned int height = drm_rect_height(&plane_state->base.dst);
10956
10957                 cntl = plane_state->ctl |
10958                         i845_cursor_ctl_crtc(crtc_state);
10959
10960                 size = (height << 12) | width;
10961
10962                 base = intel_cursor_base(plane_state);
10963                 pos = intel_cursor_position(plane_state);
10964         }
10965
10966         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
10967
10968         /* On these chipsets we can only modify the base/size/stride
10969          * whilst the cursor is disabled.
10970          */
10971         if (plane->cursor.base != base ||
10972             plane->cursor.size != size ||
10973             plane->cursor.cntl != cntl) {
10974                 I915_WRITE_FW(CURCNTR(PIPE_A), 0);
10975                 I915_WRITE_FW(CURBASE(PIPE_A), base);
10976                 I915_WRITE_FW(CURSIZE, size);
10977                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
10978                 I915_WRITE_FW(CURCNTR(PIPE_A), cntl);
10979
10980                 plane->cursor.base = base;
10981                 plane->cursor.size = size;
10982                 plane->cursor.cntl = cntl;
10983         } else {
10984                 I915_WRITE_FW(CURPOS(PIPE_A), pos);
10985         }
10986
10987         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
10988 }
10989
10990 static void i845_disable_cursor(struct intel_plane *plane,
10991                                 const struct intel_crtc_state *crtc_state)
10992 {
10993         i845_update_cursor(plane, crtc_state, NULL);
10994 }
10995
10996 static bool i845_cursor_get_hw_state(struct intel_plane *plane,
10997                                      enum pipe *pipe)
10998 {
10999         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11000         enum intel_display_power_domain power_domain;
11001         intel_wakeref_t wakeref;
11002         bool ret;
11003
11004         power_domain = POWER_DOMAIN_PIPE(PIPE_A);
11005         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11006         if (!wakeref)
11007                 return false;
11008
11009         ret = I915_READ(CURCNTR(PIPE_A)) & CURSOR_ENABLE;
11010
11011         *pipe = PIPE_A;
11012
11013         intel_display_power_put(dev_priv, power_domain, wakeref);
11014
11015         return ret;
11016 }
11017
11018 static unsigned int
11019 i9xx_cursor_max_stride(struct intel_plane *plane,
11020                        u32 pixel_format, u64 modifier,
11021                        unsigned int rotation)
11022 {
11023         return plane->base.dev->mode_config.cursor_width * 4;
11024 }
11025
11026 static u32 i9xx_cursor_ctl_crtc(const struct intel_crtc_state *crtc_state)
11027 {
11028         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11029         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11030         u32 cntl = 0;
11031
11032         if (INTEL_GEN(dev_priv) >= 11)
11033                 return cntl;
11034
11035         if (crtc_state->gamma_enable)
11036                 cntl = MCURSOR_GAMMA_ENABLE;
11037
11038         if (crtc_state->csc_enable)
11039                 cntl |= MCURSOR_PIPE_CSC_ENABLE;
11040
11041         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11042                 cntl |= MCURSOR_PIPE_SELECT(crtc->pipe);
11043
11044         return cntl;
11045 }
11046
11047 static u32 i9xx_cursor_ctl(const struct intel_crtc_state *crtc_state,
11048                            const struct intel_plane_state *plane_state)
11049 {
11050         struct drm_i915_private *dev_priv =
11051                 to_i915(plane_state->base.plane->dev);
11052         u32 cntl = 0;
11053
11054         if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv))
11055                 cntl |= MCURSOR_TRICKLE_FEED_DISABLE;
11056
11057         switch (drm_rect_width(&plane_state->base.dst)) {
11058         case 64:
11059                 cntl |= MCURSOR_MODE_64_ARGB_AX;
11060                 break;
11061         case 128:
11062                 cntl |= MCURSOR_MODE_128_ARGB_AX;
11063                 break;
11064         case 256:
11065                 cntl |= MCURSOR_MODE_256_ARGB_AX;
11066                 break;
11067         default:
11068                 MISSING_CASE(drm_rect_width(&plane_state->base.dst));
11069                 return 0;
11070         }
11071
11072         if (plane_state->base.rotation & DRM_MODE_ROTATE_180)
11073                 cntl |= MCURSOR_ROTATE_180;
11074
11075         return cntl;
11076 }
11077
11078 static bool i9xx_cursor_size_ok(const struct intel_plane_state *plane_state)
11079 {
11080         struct drm_i915_private *dev_priv =
11081                 to_i915(plane_state->base.plane->dev);
11082         int width = drm_rect_width(&plane_state->base.dst);
11083         int height = drm_rect_height(&plane_state->base.dst);
11084
11085         if (!intel_cursor_size_ok(plane_state))
11086                 return false;
11087
11088         /* Cursor width is limited to a few power-of-two sizes */
11089         switch (width) {
11090         case 256:
11091         case 128:
11092         case 64:
11093                 break;
11094         default:
11095                 return false;
11096         }
11097
11098         /*
11099          * IVB+ have CUR_FBC_CTL which allows an arbitrary cursor
11100          * height from 8 lines up to the cursor width, when the
11101          * cursor is not rotated. Everything else requires square
11102          * cursors.
11103          */
11104         if (HAS_CUR_FBC(dev_priv) &&
11105             plane_state->base.rotation & DRM_MODE_ROTATE_0) {
11106                 if (height < 8 || height > width)
11107                         return false;
11108         } else {
11109                 if (height != width)
11110                         return false;
11111         }
11112
11113         return true;
11114 }
11115
11116 static int i9xx_check_cursor(struct intel_crtc_state *crtc_state,
11117                              struct intel_plane_state *plane_state)
11118 {
11119         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
11120         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11121         const struct drm_framebuffer *fb = plane_state->base.fb;
11122         enum pipe pipe = plane->pipe;
11123         int ret;
11124
11125         ret = intel_check_cursor(crtc_state, plane_state);
11126         if (ret)
11127                 return ret;
11128
11129         /* if we want to turn off the cursor ignore width and height */
11130         if (!fb)
11131                 return 0;
11132
11133         /* Check for which cursor types we support */
11134         if (!i9xx_cursor_size_ok(plane_state)) {
11135                 DRM_DEBUG("Cursor dimension %dx%d not supported\n",
11136                           drm_rect_width(&plane_state->base.dst),
11137                           drm_rect_height(&plane_state->base.dst));
11138                 return -EINVAL;
11139         }
11140
11141         WARN_ON(plane_state->base.visible &&
11142                 plane_state->color_plane[0].stride != fb->pitches[0]);
11143
11144         if (fb->pitches[0] !=
11145             drm_rect_width(&plane_state->base.dst) * fb->format->cpp[0]) {
11146                 DRM_DEBUG_KMS("Invalid cursor stride (%u) (cursor width %d)\n",
11147                               fb->pitches[0],
11148                               drm_rect_width(&plane_state->base.dst));
11149                 return -EINVAL;
11150         }
11151
11152         /*
11153          * There's something wrong with the cursor on CHV pipe C.
11154          * If it straddles the left edge of the screen then
11155          * moving it away from the edge or disabling it often
11156          * results in a pipe underrun, and often that can lead to
11157          * dead pipe (constant underrun reported, and it scans
11158          * out just a solid color). To recover from that, the
11159          * display power well must be turned off and on again.
11160          * Refuse the put the cursor into that compromised position.
11161          */
11162         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_C &&
11163             plane_state->base.visible && plane_state->base.dst.x1 < 0) {
11164                 DRM_DEBUG_KMS("CHV cursor C not allowed to straddle the left screen edge\n");
11165                 return -EINVAL;
11166         }
11167
11168         plane_state->ctl = i9xx_cursor_ctl(crtc_state, plane_state);
11169
11170         return 0;
11171 }
11172
11173 static void i9xx_update_cursor(struct intel_plane *plane,
11174                                const struct intel_crtc_state *crtc_state,
11175                                const struct intel_plane_state *plane_state)
11176 {
11177         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11178         enum pipe pipe = plane->pipe;
11179         u32 cntl = 0, base = 0, pos = 0, fbc_ctl = 0;
11180         unsigned long irqflags;
11181
11182         if (plane_state && plane_state->base.visible) {
11183                 unsigned width = drm_rect_width(&plane_state->base.dst);
11184                 unsigned height = drm_rect_height(&plane_state->base.dst);
11185
11186                 cntl = plane_state->ctl |
11187                         i9xx_cursor_ctl_crtc(crtc_state);
11188
11189                 if (width != height)
11190                         fbc_ctl = CUR_FBC_CTL_EN | (height - 1);
11191
11192                 base = intel_cursor_base(plane_state);
11193                 pos = intel_cursor_position(plane_state);
11194         }
11195
11196         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
11197
11198         /*
11199          * On some platforms writing CURCNTR first will also
11200          * cause CURPOS to be armed by the CURBASE write.
11201          * Without the CURCNTR write the CURPOS write would
11202          * arm itself. Thus we always update CURCNTR before
11203          * CURPOS.
11204          *
11205          * On other platforms CURPOS always requires the
11206          * CURBASE write to arm the update. Additonally
11207          * a write to any of the cursor register will cancel
11208          * an already armed cursor update. Thus leaving out
11209          * the CURBASE write after CURPOS could lead to a
11210          * cursor that doesn't appear to move, or even change
11211          * shape. Thus we always write CURBASE.
11212          *
11213          * The other registers are armed by by the CURBASE write
11214          * except when the plane is getting enabled at which time
11215          * the CURCNTR write arms the update.
11216          */
11217
11218         if (INTEL_GEN(dev_priv) >= 9)
11219                 skl_write_cursor_wm(plane, crtc_state);
11220
11221         if (plane->cursor.base != base ||
11222             plane->cursor.size != fbc_ctl ||
11223             plane->cursor.cntl != cntl) {
11224                 if (HAS_CUR_FBC(dev_priv))
11225                         I915_WRITE_FW(CUR_FBC_CTL(pipe), fbc_ctl);
11226                 I915_WRITE_FW(CURCNTR(pipe), cntl);
11227                 I915_WRITE_FW(CURPOS(pipe), pos);
11228                 I915_WRITE_FW(CURBASE(pipe), base);
11229
11230                 plane->cursor.base = base;
11231                 plane->cursor.size = fbc_ctl;
11232                 plane->cursor.cntl = cntl;
11233         } else {
11234                 I915_WRITE_FW(CURPOS(pipe), pos);
11235                 I915_WRITE_FW(CURBASE(pipe), base);
11236         }
11237
11238         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
11239 }
11240
11241 static void i9xx_disable_cursor(struct intel_plane *plane,
11242                                 const struct intel_crtc_state *crtc_state)
11243 {
11244         i9xx_update_cursor(plane, crtc_state, NULL);
11245 }
11246
11247 static bool i9xx_cursor_get_hw_state(struct intel_plane *plane,
11248                                      enum pipe *pipe)
11249 {
11250         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
11251         enum intel_display_power_domain power_domain;
11252         intel_wakeref_t wakeref;
11253         bool ret;
11254         u32 val;
11255
11256         /*
11257          * Not 100% correct for planes that can move between pipes,
11258          * but that's only the case for gen2-3 which don't have any
11259          * display power wells.
11260          */
11261         power_domain = POWER_DOMAIN_PIPE(plane->pipe);
11262         wakeref = intel_display_power_get_if_enabled(dev_priv, power_domain);
11263         if (!wakeref)
11264                 return false;
11265
11266         val = I915_READ(CURCNTR(plane->pipe));
11267
11268         ret = val & MCURSOR_MODE;
11269
11270         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
11271                 *pipe = plane->pipe;
11272         else
11273                 *pipe = (val & MCURSOR_PIPE_SELECT_MASK) >>
11274                         MCURSOR_PIPE_SELECT_SHIFT;
11275
11276         intel_display_power_put(dev_priv, power_domain, wakeref);
11277
11278         return ret;
11279 }
11280
11281 /* VESA 640x480x72Hz mode to set on the pipe */
11282 static const struct drm_display_mode load_detect_mode = {
11283         DRM_MODE("640x480", DRM_MODE_TYPE_DEFAULT, 31500, 640, 664,
11284                  704, 832, 0, 480, 489, 491, 520, 0, DRM_MODE_FLAG_NHSYNC | DRM_MODE_FLAG_NVSYNC),
11285 };
11286
11287 struct drm_framebuffer *
11288 intel_framebuffer_create(struct drm_i915_gem_object *obj,
11289                          struct drm_mode_fb_cmd2 *mode_cmd)
11290 {
11291         struct intel_framebuffer *intel_fb;
11292         int ret;
11293
11294         intel_fb = kzalloc(sizeof(*intel_fb), GFP_KERNEL);
11295         if (!intel_fb)
11296                 return ERR_PTR(-ENOMEM);
11297
11298         ret = intel_framebuffer_init(intel_fb, obj, mode_cmd);
11299         if (ret)
11300                 goto err;
11301
11302         return &intel_fb->base;
11303
11304 err:
11305         kfree(intel_fb);
11306         return ERR_PTR(ret);
11307 }
11308
11309 static int intel_modeset_disable_planes(struct drm_atomic_state *state,
11310                                         struct drm_crtc *crtc)
11311 {
11312         struct drm_plane *plane;
11313         struct drm_plane_state *plane_state;
11314         int ret, i;
11315
11316         ret = drm_atomic_add_affected_planes(state, crtc);
11317         if (ret)
11318                 return ret;
11319
11320         for_each_new_plane_in_state(state, plane, plane_state, i) {
11321                 if (plane_state->crtc != crtc)
11322                         continue;
11323
11324                 ret = drm_atomic_set_crtc_for_plane(plane_state, NULL);
11325                 if (ret)
11326                         return ret;
11327
11328                 drm_atomic_set_fb_for_plane(plane_state, NULL);
11329         }
11330
11331         return 0;
11332 }
11333
11334 int intel_get_load_detect_pipe(struct drm_connector *connector,
11335                                struct intel_load_detect_pipe *old,
11336                                struct drm_modeset_acquire_ctx *ctx)
11337 {
11338         struct intel_crtc *intel_crtc;
11339         struct intel_encoder *intel_encoder =
11340                 intel_attached_encoder(connector);
11341         struct drm_crtc *possible_crtc;
11342         struct drm_encoder *encoder = &intel_encoder->base;
11343         struct drm_crtc *crtc = NULL;
11344         struct drm_device *dev = encoder->dev;
11345         struct drm_i915_private *dev_priv = to_i915(dev);
11346         struct drm_mode_config *config = &dev->mode_config;
11347         struct drm_atomic_state *state = NULL, *restore_state = NULL;
11348         struct drm_connector_state *connector_state;
11349         struct intel_crtc_state *crtc_state;
11350         int ret, i = -1;
11351
11352         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11353                       connector->base.id, connector->name,
11354                       encoder->base.id, encoder->name);
11355
11356         old->restore_state = NULL;
11357
11358         WARN_ON(!drm_modeset_is_locked(&config->connection_mutex));
11359
11360         /*
11361          * Algorithm gets a little messy:
11362          *
11363          *   - if the connector already has an assigned crtc, use it (but make
11364          *     sure it's on first)
11365          *
11366          *   - try to find the first unused crtc that can drive this connector,
11367          *     and use that if we find one
11368          */
11369
11370         /* See if we already have a CRTC for this connector */
11371         if (connector->state->crtc) {
11372                 crtc = connector->state->crtc;
11373
11374                 ret = drm_modeset_lock(&crtc->mutex, ctx);
11375                 if (ret)
11376                         goto fail;
11377
11378                 /* Make sure the crtc and connector are running */
11379                 goto found;
11380         }
11381
11382         /* Find an unused one (if possible) */
11383         for_each_crtc(dev, possible_crtc) {
11384                 i++;
11385                 if (!(encoder->possible_crtcs & (1 << i)))
11386                         continue;
11387
11388                 ret = drm_modeset_lock(&possible_crtc->mutex, ctx);
11389                 if (ret)
11390                         goto fail;
11391
11392                 if (possible_crtc->state->enable) {
11393                         drm_modeset_unlock(&possible_crtc->mutex);
11394                         continue;
11395                 }
11396
11397                 crtc = possible_crtc;
11398                 break;
11399         }
11400
11401         /*
11402          * If we didn't find an unused CRTC, don't use any.
11403          */
11404         if (!crtc) {
11405                 DRM_DEBUG_KMS("no pipe available for load-detect\n");
11406                 ret = -ENODEV;
11407                 goto fail;
11408         }
11409
11410 found:
11411         intel_crtc = to_intel_crtc(crtc);
11412
11413         state = drm_atomic_state_alloc(dev);
11414         restore_state = drm_atomic_state_alloc(dev);
11415         if (!state || !restore_state) {
11416                 ret = -ENOMEM;
11417                 goto fail;
11418         }
11419
11420         state->acquire_ctx = ctx;
11421         restore_state->acquire_ctx = ctx;
11422
11423         connector_state = drm_atomic_get_connector_state(state, connector);
11424         if (IS_ERR(connector_state)) {
11425                 ret = PTR_ERR(connector_state);
11426                 goto fail;
11427         }
11428
11429         ret = drm_atomic_set_crtc_for_connector(connector_state, crtc);
11430         if (ret)
11431                 goto fail;
11432
11433         crtc_state = intel_atomic_get_crtc_state(state, intel_crtc);
11434         if (IS_ERR(crtc_state)) {
11435                 ret = PTR_ERR(crtc_state);
11436                 goto fail;
11437         }
11438
11439         crtc_state->base.active = crtc_state->base.enable = true;
11440
11441         ret = drm_atomic_set_mode_for_crtc(&crtc_state->base,
11442                                            &load_detect_mode);
11443         if (ret)
11444                 goto fail;
11445
11446         ret = intel_modeset_disable_planes(state, crtc);
11447         if (ret)
11448                 goto fail;
11449
11450         ret = PTR_ERR_OR_ZERO(drm_atomic_get_connector_state(restore_state, connector));
11451         if (!ret)
11452                 ret = PTR_ERR_OR_ZERO(drm_atomic_get_crtc_state(restore_state, crtc));
11453         if (!ret)
11454                 ret = drm_atomic_add_affected_planes(restore_state, crtc);
11455         if (ret) {
11456                 DRM_DEBUG_KMS("Failed to create a copy of old state to restore: %i\n", ret);
11457                 goto fail;
11458         }
11459
11460         ret = drm_atomic_commit(state);
11461         if (ret) {
11462                 DRM_DEBUG_KMS("failed to set mode on load-detect pipe\n");
11463                 goto fail;
11464         }
11465
11466         old->restore_state = restore_state;
11467         drm_atomic_state_put(state);
11468
11469         /* let the connector get through one full cycle before testing */
11470         intel_wait_for_vblank(dev_priv, intel_crtc->pipe);
11471         return true;
11472
11473 fail:
11474         if (state) {
11475                 drm_atomic_state_put(state);
11476                 state = NULL;
11477         }
11478         if (restore_state) {
11479                 drm_atomic_state_put(restore_state);
11480                 restore_state = NULL;
11481         }
11482
11483         if (ret == -EDEADLK)
11484                 return ret;
11485
11486         return false;
11487 }
11488
11489 void intel_release_load_detect_pipe(struct drm_connector *connector,
11490                                     struct intel_load_detect_pipe *old,
11491                                     struct drm_modeset_acquire_ctx *ctx)
11492 {
11493         struct intel_encoder *intel_encoder =
11494                 intel_attached_encoder(connector);
11495         struct drm_encoder *encoder = &intel_encoder->base;
11496         struct drm_atomic_state *state = old->restore_state;
11497         int ret;
11498
11499         DRM_DEBUG_KMS("[CONNECTOR:%d:%s], [ENCODER:%d:%s]\n",
11500                       connector->base.id, connector->name,
11501                       encoder->base.id, encoder->name);
11502
11503         if (!state)
11504                 return;
11505
11506         ret = drm_atomic_helper_commit_duplicated_state(state, ctx);
11507         if (ret)
11508                 DRM_DEBUG_KMS("Couldn't release load detect pipe: %i\n", ret);
11509         drm_atomic_state_put(state);
11510 }
11511
11512 static int i9xx_pll_refclk(struct drm_device *dev,
11513                            const struct intel_crtc_state *pipe_config)
11514 {
11515         struct drm_i915_private *dev_priv = to_i915(dev);
11516         u32 dpll = pipe_config->dpll_hw_state.dpll;
11517
11518         if ((dpll & PLL_REF_INPUT_MASK) == PLLB_REF_INPUT_SPREADSPECTRUMIN)
11519                 return dev_priv->vbt.lvds_ssc_freq;
11520         else if (HAS_PCH_SPLIT(dev_priv))
11521                 return 120000;
11522         else if (!IS_GEN(dev_priv, 2))
11523                 return 96000;
11524         else
11525                 return 48000;
11526 }
11527
11528 /* Returns the clock of the currently programmed mode of the given pipe. */
11529 static void i9xx_crtc_clock_get(struct intel_crtc *crtc,
11530                                 struct intel_crtc_state *pipe_config)
11531 {
11532         struct drm_device *dev = crtc->base.dev;
11533         struct drm_i915_private *dev_priv = to_i915(dev);
11534         enum pipe pipe = crtc->pipe;
11535         u32 dpll = pipe_config->dpll_hw_state.dpll;
11536         u32 fp;
11537         struct dpll clock;
11538         int port_clock;
11539         int refclk = i9xx_pll_refclk(dev, pipe_config);
11540
11541         if ((dpll & DISPLAY_RATE_SELECT_FPA1) == 0)
11542                 fp = pipe_config->dpll_hw_state.fp0;
11543         else
11544                 fp = pipe_config->dpll_hw_state.fp1;
11545
11546         clock.m1 = (fp & FP_M1_DIV_MASK) >> FP_M1_DIV_SHIFT;
11547         if (IS_PINEVIEW(dev_priv)) {
11548                 clock.n = ffs((fp & FP_N_PINEVIEW_DIV_MASK) >> FP_N_DIV_SHIFT) - 1;
11549                 clock.m2 = (fp & FP_M2_PINEVIEW_DIV_MASK) >> FP_M2_DIV_SHIFT;
11550         } else {
11551                 clock.n = (fp & FP_N_DIV_MASK) >> FP_N_DIV_SHIFT;
11552                 clock.m2 = (fp & FP_M2_DIV_MASK) >> FP_M2_DIV_SHIFT;
11553         }
11554
11555         if (!IS_GEN(dev_priv, 2)) {
11556                 if (IS_PINEVIEW(dev_priv))
11557                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_PINEVIEW) >>
11558                                 DPLL_FPA01_P1_POST_DIV_SHIFT_PINEVIEW);
11559                 else
11560                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK) >>
11561                                DPLL_FPA01_P1_POST_DIV_SHIFT);
11562
11563                 switch (dpll & DPLL_MODE_MASK) {
11564                 case DPLLB_MODE_DAC_SERIAL:
11565                         clock.p2 = dpll & DPLL_DAC_SERIAL_P2_CLOCK_DIV_5 ?
11566                                 5 : 10;
11567                         break;
11568                 case DPLLB_MODE_LVDS:
11569                         clock.p2 = dpll & DPLLB_LVDS_P2_CLOCK_DIV_7 ?
11570                                 7 : 14;
11571                         break;
11572                 default:
11573                         DRM_DEBUG_KMS("Unknown DPLL mode %08x in programmed "
11574                                   "mode\n", (int)(dpll & DPLL_MODE_MASK));
11575                         return;
11576                 }
11577
11578                 if (IS_PINEVIEW(dev_priv))
11579                         port_clock = pnv_calc_dpll_params(refclk, &clock);
11580                 else
11581                         port_clock = i9xx_calc_dpll_params(refclk, &clock);
11582         } else {
11583                 u32 lvds = IS_I830(dev_priv) ? 0 : I915_READ(LVDS);
11584                 bool is_lvds = (pipe == 1) && (lvds & LVDS_PORT_EN);
11585
11586                 if (is_lvds) {
11587                         clock.p1 = ffs((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830_LVDS) >>
11588                                        DPLL_FPA01_P1_POST_DIV_SHIFT);
11589
11590                         if (lvds & LVDS_CLKB_POWER_UP)
11591                                 clock.p2 = 7;
11592                         else
11593                                 clock.p2 = 14;
11594                 } else {
11595                         if (dpll & PLL_P1_DIVIDE_BY_TWO)
11596                                 clock.p1 = 2;
11597                         else {
11598                                 clock.p1 = ((dpll & DPLL_FPA01_P1_POST_DIV_MASK_I830) >>
11599                                             DPLL_FPA01_P1_POST_DIV_SHIFT) + 2;
11600                         }
11601                         if (dpll & PLL_P2_DIVIDE_BY_4)
11602                                 clock.p2 = 4;
11603                         else
11604                                 clock.p2 = 2;
11605                 }
11606
11607                 port_clock = i9xx_calc_dpll_params(refclk, &clock);
11608         }
11609
11610         /*
11611          * This value includes pixel_multiplier. We will use
11612          * port_clock to compute adjusted_mode.crtc_clock in the
11613          * encoder's get_config() function.
11614          */
11615         pipe_config->port_clock = port_clock;
11616 }
11617
11618 int intel_dotclock_calculate(int link_freq,
11619                              const struct intel_link_m_n *m_n)
11620 {
11621         /*
11622          * The calculation for the data clock is:
11623          * pixel_clock = ((m/n)*(link_clock * nr_lanes))/bpp
11624          * But we want to avoid losing precison if possible, so:
11625          * pixel_clock = ((m * link_clock * nr_lanes)/(n*bpp))
11626          *
11627          * and the link clock is simpler:
11628          * link_clock = (m * link_clock) / n
11629          */
11630
11631         if (!m_n->link_n)
11632                 return 0;
11633
11634         return div_u64(mul_u32_u32(m_n->link_m, link_freq), m_n->link_n);
11635 }
11636
11637 static void ironlake_pch_clock_get(struct intel_crtc *crtc,
11638                                    struct intel_crtc_state *pipe_config)
11639 {
11640         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11641
11642         /* read out port_clock from the DPLL */
11643         i9xx_crtc_clock_get(crtc, pipe_config);
11644
11645         /*
11646          * In case there is an active pipe without active ports,
11647          * we may need some idea for the dotclock anyway.
11648          * Calculate one based on the FDI configuration.
11649          */
11650         pipe_config->base.adjusted_mode.crtc_clock =
11651                 intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
11652                                          &pipe_config->fdi_m_n);
11653 }
11654
11655 /* Returns the currently programmed mode of the given encoder. */
11656 struct drm_display_mode *
11657 intel_encoder_current_mode(struct intel_encoder *encoder)
11658 {
11659         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
11660         struct intel_crtc_state *crtc_state;
11661         struct drm_display_mode *mode;
11662         struct intel_crtc *crtc;
11663         enum pipe pipe;
11664
11665         if (!encoder->get_hw_state(encoder, &pipe))
11666                 return NULL;
11667
11668         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
11669
11670         mode = kzalloc(sizeof(*mode), GFP_KERNEL);
11671         if (!mode)
11672                 return NULL;
11673
11674         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
11675         if (!crtc_state) {
11676                 kfree(mode);
11677                 return NULL;
11678         }
11679
11680         crtc_state->base.crtc = &crtc->base;
11681
11682         if (!dev_priv->display.get_pipe_config(crtc, crtc_state)) {
11683                 kfree(crtc_state);
11684                 kfree(mode);
11685                 return NULL;
11686         }
11687
11688         encoder->get_config(encoder, crtc_state);
11689
11690         intel_mode_from_pipe_config(mode, crtc_state);
11691
11692         kfree(crtc_state);
11693
11694         return mode;
11695 }
11696
11697 static void intel_crtc_destroy(struct drm_crtc *crtc)
11698 {
11699         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
11700
11701         drm_crtc_cleanup(crtc);
11702         kfree(intel_crtc);
11703 }
11704
11705 /**
11706  * intel_wm_need_update - Check whether watermarks need updating
11707  * @cur: current plane state
11708  * @new: new plane state
11709  *
11710  * Check current plane state versus the new one to determine whether
11711  * watermarks need to be recalculated.
11712  *
11713  * Returns true or false.
11714  */
11715 static bool intel_wm_need_update(const struct intel_plane_state *cur,
11716                                  struct intel_plane_state *new)
11717 {
11718         /* Update watermarks on tiling or size changes. */
11719         if (new->base.visible != cur->base.visible)
11720                 return true;
11721
11722         if (!cur->base.fb || !new->base.fb)
11723                 return false;
11724
11725         if (cur->base.fb->modifier != new->base.fb->modifier ||
11726             cur->base.rotation != new->base.rotation ||
11727             drm_rect_width(&new->base.src) != drm_rect_width(&cur->base.src) ||
11728             drm_rect_height(&new->base.src) != drm_rect_height(&cur->base.src) ||
11729             drm_rect_width(&new->base.dst) != drm_rect_width(&cur->base.dst) ||
11730             drm_rect_height(&new->base.dst) != drm_rect_height(&cur->base.dst))
11731                 return true;
11732
11733         return false;
11734 }
11735
11736 static bool needs_scaling(const struct intel_plane_state *state)
11737 {
11738         int src_w = drm_rect_width(&state->base.src) >> 16;
11739         int src_h = drm_rect_height(&state->base.src) >> 16;
11740         int dst_w = drm_rect_width(&state->base.dst);
11741         int dst_h = drm_rect_height(&state->base.dst);
11742
11743         return (src_w != dst_w || src_h != dst_h);
11744 }
11745
11746 int intel_plane_atomic_calc_changes(const struct intel_crtc_state *old_crtc_state,
11747                                     struct intel_crtc_state *crtc_state,
11748                                     const struct intel_plane_state *old_plane_state,
11749                                     struct intel_plane_state *plane_state)
11750 {
11751         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11752         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
11753         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11754         bool mode_changed = needs_modeset(crtc_state);
11755         bool was_crtc_enabled = old_crtc_state->base.active;
11756         bool is_crtc_enabled = crtc_state->base.active;
11757         bool turn_off, turn_on, visible, was_visible;
11758         int ret;
11759
11760         if (INTEL_GEN(dev_priv) >= 9 && plane->id != PLANE_CURSOR) {
11761                 ret = skl_update_scaler_plane(crtc_state, plane_state);
11762                 if (ret)
11763                         return ret;
11764         }
11765
11766         was_visible = old_plane_state->base.visible;
11767         visible = plane_state->base.visible;
11768
11769         if (!was_crtc_enabled && WARN_ON(was_visible))
11770                 was_visible = false;
11771
11772         /*
11773          * Visibility is calculated as if the crtc was on, but
11774          * after scaler setup everything depends on it being off
11775          * when the crtc isn't active.
11776          *
11777          * FIXME this is wrong for watermarks. Watermarks should also
11778          * be computed as if the pipe would be active. Perhaps move
11779          * per-plane wm computation to the .check_plane() hook, and
11780          * only combine the results from all planes in the current place?
11781          */
11782         if (!is_crtc_enabled) {
11783                 plane_state->base.visible = visible = false;
11784                 crtc_state->active_planes &= ~BIT(plane->id);
11785                 crtc_state->data_rate[plane->id] = 0;
11786                 crtc_state->min_cdclk[plane->id] = 0;
11787         }
11788
11789         if (!was_visible && !visible)
11790                 return 0;
11791
11792         turn_off = was_visible && (!visible || mode_changed);
11793         turn_on = visible && (!was_visible || mode_changed);
11794
11795         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] with [PLANE:%d:%s] visible %i -> %i, off %i, on %i, ms %i\n",
11796                          crtc->base.base.id, crtc->base.name,
11797                          plane->base.base.id, plane->base.name,
11798                          was_visible, visible,
11799                          turn_off, turn_on, mode_changed);
11800
11801         if (turn_on) {
11802                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11803                         crtc_state->update_wm_pre = true;
11804
11805                 /* must disable cxsr around plane enable/disable */
11806                 if (plane->id != PLANE_CURSOR)
11807                         crtc_state->disable_cxsr = true;
11808         } else if (turn_off) {
11809                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv))
11810                         crtc_state->update_wm_post = true;
11811
11812                 /* must disable cxsr around plane enable/disable */
11813                 if (plane->id != PLANE_CURSOR)
11814                         crtc_state->disable_cxsr = true;
11815         } else if (intel_wm_need_update(old_plane_state, plane_state)) {
11816                 if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv)) {
11817                         /* FIXME bollocks */
11818                         crtc_state->update_wm_pre = true;
11819                         crtc_state->update_wm_post = true;
11820                 }
11821         }
11822
11823         if (visible || was_visible)
11824                 crtc_state->fb_bits |= plane->frontbuffer_bit;
11825
11826         /*
11827          * ILK/SNB DVSACNTR/Sprite Enable
11828          * IVB SPR_CTL/Sprite Enable
11829          * "When in Self Refresh Big FIFO mode, a write to enable the
11830          *  plane will be internally buffered and delayed while Big FIFO
11831          *  mode is exiting."
11832          *
11833          * Which means that enabling the sprite can take an extra frame
11834          * when we start in big FIFO mode (LP1+). Thus we need to drop
11835          * down to LP0 and wait for vblank in order to make sure the
11836          * sprite gets enabled on the next vblank after the register write.
11837          * Doing otherwise would risk enabling the sprite one frame after
11838          * we've already signalled flip completion. We can resume LP1+
11839          * once the sprite has been enabled.
11840          *
11841          *
11842          * WaCxSRDisabledForSpriteScaling:ivb
11843          * IVB SPR_SCALE/Scaling Enable
11844          * "Low Power watermarks must be disabled for at least one
11845          *  frame before enabling sprite scaling, and kept disabled
11846          *  until sprite scaling is disabled."
11847          *
11848          * ILK/SNB DVSASCALE/Scaling Enable
11849          * "When in Self Refresh Big FIFO mode, scaling enable will be
11850          *  masked off while Big FIFO mode is exiting."
11851          *
11852          * Despite the w/a only being listed for IVB we assume that
11853          * the ILK/SNB note has similar ramifications, hence we apply
11854          * the w/a on all three platforms.
11855          *
11856          * With experimental results seems this is needed also for primary
11857          * plane, not only sprite plane.
11858          */
11859         if (plane->id != PLANE_CURSOR &&
11860             (IS_GEN_RANGE(dev_priv, 5, 6) ||
11861              IS_IVYBRIDGE(dev_priv)) &&
11862             (turn_on || (!needs_scaling(old_plane_state) &&
11863                          needs_scaling(plane_state))))
11864                 crtc_state->disable_lp_wm = true;
11865
11866         return 0;
11867 }
11868
11869 static bool encoders_cloneable(const struct intel_encoder *a,
11870                                const struct intel_encoder *b)
11871 {
11872         /* masks could be asymmetric, so check both ways */
11873         return a == b || (a->cloneable & (1 << b->type) &&
11874                           b->cloneable & (1 << a->type));
11875 }
11876
11877 static bool check_single_encoder_cloning(struct drm_atomic_state *state,
11878                                          struct intel_crtc *crtc,
11879                                          struct intel_encoder *encoder)
11880 {
11881         struct intel_encoder *source_encoder;
11882         struct drm_connector *connector;
11883         struct drm_connector_state *connector_state;
11884         int i;
11885
11886         for_each_new_connector_in_state(state, connector, connector_state, i) {
11887                 if (connector_state->crtc != &crtc->base)
11888                         continue;
11889
11890                 source_encoder =
11891                         to_intel_encoder(connector_state->best_encoder);
11892                 if (!encoders_cloneable(encoder, source_encoder))
11893                         return false;
11894         }
11895
11896         return true;
11897 }
11898
11899 static int icl_add_linked_planes(struct intel_atomic_state *state)
11900 {
11901         struct intel_plane *plane, *linked;
11902         struct intel_plane_state *plane_state, *linked_plane_state;
11903         int i;
11904
11905         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11906                 linked = plane_state->planar_linked_plane;
11907
11908                 if (!linked)
11909                         continue;
11910
11911                 linked_plane_state = intel_atomic_get_plane_state(state, linked);
11912                 if (IS_ERR(linked_plane_state))
11913                         return PTR_ERR(linked_plane_state);
11914
11915                 WARN_ON(linked_plane_state->planar_linked_plane != plane);
11916                 WARN_ON(linked_plane_state->planar_slave == plane_state->planar_slave);
11917         }
11918
11919         return 0;
11920 }
11921
11922 static int icl_check_nv12_planes(struct intel_crtc_state *crtc_state)
11923 {
11924         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
11925         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
11926         struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
11927         struct intel_plane *plane, *linked;
11928         struct intel_plane_state *plane_state;
11929         int i;
11930
11931         if (INTEL_GEN(dev_priv) < 11)
11932                 return 0;
11933
11934         /*
11935          * Destroy all old plane links and make the slave plane invisible
11936          * in the crtc_state->active_planes mask.
11937          */
11938         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11939                 if (plane->pipe != crtc->pipe || !plane_state->planar_linked_plane)
11940                         continue;
11941
11942                 plane_state->planar_linked_plane = NULL;
11943                 if (plane_state->planar_slave && !plane_state->base.visible) {
11944                         crtc_state->active_planes &= ~BIT(plane->id);
11945                         crtc_state->update_planes |= BIT(plane->id);
11946                 }
11947
11948                 plane_state->planar_slave = false;
11949         }
11950
11951         if (!crtc_state->nv12_planes)
11952                 return 0;
11953
11954         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
11955                 struct intel_plane_state *linked_state = NULL;
11956
11957                 if (plane->pipe != crtc->pipe ||
11958                     !(crtc_state->nv12_planes & BIT(plane->id)))
11959                         continue;
11960
11961                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, linked) {
11962                         if (!icl_is_nv12_y_plane(linked->id))
11963                                 continue;
11964
11965                         if (crtc_state->active_planes & BIT(linked->id))
11966                                 continue;
11967
11968                         linked_state = intel_atomic_get_plane_state(state, linked);
11969                         if (IS_ERR(linked_state))
11970                                 return PTR_ERR(linked_state);
11971
11972                         break;
11973                 }
11974
11975                 if (!linked_state) {
11976                         DRM_DEBUG_KMS("Need %d free Y planes for planar YUV\n",
11977                                       hweight8(crtc_state->nv12_planes));
11978
11979                         return -EINVAL;
11980                 }
11981
11982                 plane_state->planar_linked_plane = linked;
11983
11984                 linked_state->planar_slave = true;
11985                 linked_state->planar_linked_plane = plane;
11986                 crtc_state->active_planes |= BIT(linked->id);
11987                 crtc_state->update_planes |= BIT(linked->id);
11988                 DRM_DEBUG_KMS("Using %s as Y plane for %s\n", linked->base.name, plane->base.name);
11989         }
11990
11991         return 0;
11992 }
11993
11994 static bool c8_planes_changed(const struct intel_crtc_state *new_crtc_state)
11995 {
11996         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
11997         struct intel_atomic_state *state =
11998                 to_intel_atomic_state(new_crtc_state->base.state);
11999         const struct intel_crtc_state *old_crtc_state =
12000                 intel_atomic_get_old_crtc_state(state, crtc);
12001
12002         return !old_crtc_state->c8_planes != !new_crtc_state->c8_planes;
12003 }
12004
12005 static int icl_add_sync_mode_crtcs(struct intel_crtc_state *crtc_state)
12006 {
12007         struct drm_crtc *crtc = crtc_state->base.crtc;
12008         struct intel_atomic_state *state = to_intel_atomic_state(crtc_state->base.state);
12009         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
12010         struct drm_connector *master_connector, *connector;
12011         struct drm_connector_state *connector_state;
12012         struct drm_connector_list_iter conn_iter;
12013         struct drm_crtc *master_crtc = NULL;
12014         struct drm_crtc_state *master_crtc_state;
12015         struct intel_crtc_state *master_pipe_config;
12016         int i, tile_group_id;
12017
12018         if (INTEL_GEN(dev_priv) < 11)
12019                 return 0;
12020
12021         /*
12022          * In case of tiled displays there could be one or more slaves but there is
12023          * only one master. Lets make the CRTC used by the connector corresponding
12024          * to the last horizonal and last vertical tile a master/genlock CRTC.
12025          * All the other CRTCs corresponding to other tiles of the same Tile group
12026          * are the slave CRTCs and hold a pointer to their genlock CRTC.
12027          */
12028         for_each_new_connector_in_state(&state->base, connector, connector_state, i) {
12029                 if (connector_state->crtc != crtc)
12030                         continue;
12031                 if (!connector->has_tile)
12032                         continue;
12033                 if (crtc_state->base.mode.hdisplay != connector->tile_h_size ||
12034                     crtc_state->base.mode.vdisplay != connector->tile_v_size)
12035                         return 0;
12036                 if (connector->tile_h_loc == connector->num_h_tile - 1 &&
12037                     connector->tile_v_loc == connector->num_v_tile - 1)
12038                         continue;
12039                 crtc_state->sync_mode_slaves_mask = 0;
12040                 tile_group_id = connector->tile_group->id;
12041                 drm_connector_list_iter_begin(&dev_priv->drm, &conn_iter);
12042                 drm_for_each_connector_iter(master_connector, &conn_iter) {
12043                         struct drm_connector_state *master_conn_state = NULL;
12044
12045                         if (!master_connector->has_tile)
12046                                 continue;
12047                         if (master_connector->tile_h_loc != master_connector->num_h_tile - 1 ||
12048                             master_connector->tile_v_loc != master_connector->num_v_tile - 1)
12049                                 continue;
12050                         if (master_connector->tile_group->id != tile_group_id)
12051                                 continue;
12052
12053                         master_conn_state = drm_atomic_get_connector_state(&state->base,
12054                                                                            master_connector);
12055                         if (IS_ERR(master_conn_state)) {
12056                                 drm_connector_list_iter_end(&conn_iter);
12057                                 return PTR_ERR(master_conn_state);
12058                         }
12059                         if (master_conn_state->crtc) {
12060                                 master_crtc = master_conn_state->crtc;
12061                                 break;
12062                         }
12063                 }
12064                 drm_connector_list_iter_end(&conn_iter);
12065
12066                 if (!master_crtc) {
12067                         DRM_DEBUG_KMS("Could not find Master CRTC for Slave CRTC %d\n",
12068                                       connector_state->crtc->base.id);
12069                         return -EINVAL;
12070                 }
12071
12072                 master_crtc_state = drm_atomic_get_crtc_state(&state->base,
12073                                                               master_crtc);
12074                 if (IS_ERR(master_crtc_state))
12075                         return PTR_ERR(master_crtc_state);
12076
12077                 master_pipe_config = to_intel_crtc_state(master_crtc_state);
12078                 crtc_state->master_transcoder = master_pipe_config->cpu_transcoder;
12079                 master_pipe_config->sync_mode_slaves_mask |=
12080                         BIT(crtc_state->cpu_transcoder);
12081                 DRM_DEBUG_KMS("Master Transcoder = %s added for Slave CRTC = %d, slave transcoder bitmask = %d\n",
12082                               transcoder_name(crtc_state->master_transcoder),
12083                               crtc_state->base.crtc->base.id,
12084                               master_pipe_config->sync_mode_slaves_mask);
12085         }
12086
12087         return 0;
12088 }
12089
12090 static int intel_crtc_atomic_check(struct intel_atomic_state *state,
12091                                    struct intel_crtc *crtc)
12092 {
12093         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12094         struct intel_crtc_state *crtc_state =
12095                 intel_atomic_get_new_crtc_state(state, crtc);
12096         bool mode_changed = needs_modeset(crtc_state);
12097         int ret;
12098
12099         if (INTEL_GEN(dev_priv) < 5 && !IS_G4X(dev_priv) &&
12100             mode_changed && !crtc_state->base.active)
12101                 crtc_state->update_wm_post = true;
12102
12103         if (mode_changed && crtc_state->base.enable &&
12104             dev_priv->display.crtc_compute_clock &&
12105             !WARN_ON(crtc_state->shared_dpll)) {
12106                 ret = dev_priv->display.crtc_compute_clock(crtc, crtc_state);
12107                 if (ret)
12108                         return ret;
12109         }
12110
12111         /*
12112          * May need to update pipe gamma enable bits
12113          * when C8 planes are getting enabled/disabled.
12114          */
12115         if (c8_planes_changed(crtc_state))
12116                 crtc_state->base.color_mgmt_changed = true;
12117
12118         if (mode_changed || crtc_state->update_pipe ||
12119             crtc_state->base.color_mgmt_changed) {
12120                 ret = intel_color_check(crtc_state);
12121                 if (ret)
12122                         return ret;
12123         }
12124
12125         ret = 0;
12126         if (dev_priv->display.compute_pipe_wm) {
12127                 ret = dev_priv->display.compute_pipe_wm(crtc_state);
12128                 if (ret) {
12129                         DRM_DEBUG_KMS("Target pipe watermarks are invalid\n");
12130                         return ret;
12131                 }
12132         }
12133
12134         if (dev_priv->display.compute_intermediate_wm) {
12135                 if (WARN_ON(!dev_priv->display.compute_pipe_wm))
12136                         return 0;
12137
12138                 /*
12139                  * Calculate 'intermediate' watermarks that satisfy both the
12140                  * old state and the new state.  We can program these
12141                  * immediately.
12142                  */
12143                 ret = dev_priv->display.compute_intermediate_wm(crtc_state);
12144                 if (ret) {
12145                         DRM_DEBUG_KMS("No valid intermediate pipe watermarks are possible\n");
12146                         return ret;
12147                 }
12148         }
12149
12150         if (INTEL_GEN(dev_priv) >= 9) {
12151                 if (mode_changed || crtc_state->update_pipe)
12152                         ret = skl_update_scaler_crtc(crtc_state);
12153                 if (!ret)
12154                         ret = intel_atomic_setup_scalers(dev_priv, crtc,
12155                                                          crtc_state);
12156         }
12157
12158         if (HAS_IPS(dev_priv))
12159                 crtc_state->ips_enabled = hsw_compute_ips_config(crtc_state);
12160
12161         return ret;
12162 }
12163
12164 static void intel_modeset_update_connector_atomic_state(struct drm_device *dev)
12165 {
12166         struct intel_connector *connector;
12167         struct drm_connector_list_iter conn_iter;
12168
12169         drm_connector_list_iter_begin(dev, &conn_iter);
12170         for_each_intel_connector_iter(connector, &conn_iter) {
12171                 if (connector->base.state->crtc)
12172                         drm_connector_put(&connector->base);
12173
12174                 if (connector->base.encoder) {
12175                         connector->base.state->best_encoder =
12176                                 connector->base.encoder;
12177                         connector->base.state->crtc =
12178                                 connector->base.encoder->crtc;
12179
12180                         drm_connector_get(&connector->base);
12181                 } else {
12182                         connector->base.state->best_encoder = NULL;
12183                         connector->base.state->crtc = NULL;
12184                 }
12185         }
12186         drm_connector_list_iter_end(&conn_iter);
12187 }
12188
12189 static int
12190 compute_sink_pipe_bpp(const struct drm_connector_state *conn_state,
12191                       struct intel_crtc_state *pipe_config)
12192 {
12193         struct drm_connector *connector = conn_state->connector;
12194         const struct drm_display_info *info = &connector->display_info;
12195         int bpp;
12196
12197         switch (conn_state->max_bpc) {
12198         case 6 ... 7:
12199                 bpp = 6 * 3;
12200                 break;
12201         case 8 ... 9:
12202                 bpp = 8 * 3;
12203                 break;
12204         case 10 ... 11:
12205                 bpp = 10 * 3;
12206                 break;
12207         case 12:
12208                 bpp = 12 * 3;
12209                 break;
12210         default:
12211                 return -EINVAL;
12212         }
12213
12214         if (bpp < pipe_config->pipe_bpp) {
12215                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] Limiting display bpp to %d instead of "
12216                               "EDID bpp %d, requested bpp %d, max platform bpp %d\n",
12217                               connector->base.id, connector->name,
12218                               bpp, 3 * info->bpc, 3 * conn_state->max_requested_bpc,
12219                               pipe_config->pipe_bpp);
12220
12221                 pipe_config->pipe_bpp = bpp;
12222         }
12223
12224         return 0;
12225 }
12226
12227 static int
12228 compute_baseline_pipe_bpp(struct intel_crtc *crtc,
12229                           struct intel_crtc_state *pipe_config)
12230 {
12231         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12232         struct drm_atomic_state *state = pipe_config->base.state;
12233         struct drm_connector *connector;
12234         struct drm_connector_state *connector_state;
12235         int bpp, i;
12236
12237         if ((IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
12238             IS_CHERRYVIEW(dev_priv)))
12239                 bpp = 10*3;
12240         else if (INTEL_GEN(dev_priv) >= 5)
12241                 bpp = 12*3;
12242         else
12243                 bpp = 8*3;
12244
12245         pipe_config->pipe_bpp = bpp;
12246
12247         /* Clamp display bpp to connector max bpp */
12248         for_each_new_connector_in_state(state, connector, connector_state, i) {
12249                 int ret;
12250
12251                 if (connector_state->crtc != &crtc->base)
12252                         continue;
12253
12254                 ret = compute_sink_pipe_bpp(connector_state, pipe_config);
12255                 if (ret)
12256                         return ret;
12257         }
12258
12259         return 0;
12260 }
12261
12262 static void intel_dump_crtc_timings(const struct drm_display_mode *mode)
12263 {
12264         DRM_DEBUG_KMS("crtc timings: %d %d %d %d %d %d %d %d %d, "
12265                       "type: 0x%x flags: 0x%x\n",
12266                       mode->crtc_clock,
12267                       mode->crtc_hdisplay, mode->crtc_hsync_start,
12268                       mode->crtc_hsync_end, mode->crtc_htotal,
12269                       mode->crtc_vdisplay, mode->crtc_vsync_start,
12270                       mode->crtc_vsync_end, mode->crtc_vtotal,
12271                       mode->type, mode->flags);
12272 }
12273
12274 static inline void
12275 intel_dump_m_n_config(const struct intel_crtc_state *pipe_config,
12276                       const char *id, unsigned int lane_count,
12277                       const struct intel_link_m_n *m_n)
12278 {
12279         DRM_DEBUG_KMS("%s: lanes: %i; gmch_m: %u, gmch_n: %u, link_m: %u, link_n: %u, tu: %u\n",
12280                       id, lane_count,
12281                       m_n->gmch_m, m_n->gmch_n,
12282                       m_n->link_m, m_n->link_n, m_n->tu);
12283 }
12284
12285 static void
12286 intel_dump_infoframe(struct drm_i915_private *dev_priv,
12287                      const union hdmi_infoframe *frame)
12288 {
12289         if ((drm_debug & DRM_UT_KMS) == 0)
12290                 return;
12291
12292         hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, frame);
12293 }
12294
12295 #define OUTPUT_TYPE(x) [INTEL_OUTPUT_ ## x] = #x
12296
12297 static const char * const output_type_str[] = {
12298         OUTPUT_TYPE(UNUSED),
12299         OUTPUT_TYPE(ANALOG),
12300         OUTPUT_TYPE(DVO),
12301         OUTPUT_TYPE(SDVO),
12302         OUTPUT_TYPE(LVDS),
12303         OUTPUT_TYPE(TVOUT),
12304         OUTPUT_TYPE(HDMI),
12305         OUTPUT_TYPE(DP),
12306         OUTPUT_TYPE(EDP),
12307         OUTPUT_TYPE(DSI),
12308         OUTPUT_TYPE(DDI),
12309         OUTPUT_TYPE(DP_MST),
12310 };
12311
12312 #undef OUTPUT_TYPE
12313
12314 static void snprintf_output_types(char *buf, size_t len,
12315                                   unsigned int output_types)
12316 {
12317         char *str = buf;
12318         int i;
12319
12320         str[0] = '\0';
12321
12322         for (i = 0; i < ARRAY_SIZE(output_type_str); i++) {
12323                 int r;
12324
12325                 if ((output_types & BIT(i)) == 0)
12326                         continue;
12327
12328                 r = snprintf(str, len, "%s%s",
12329                              str != buf ? "," : "", output_type_str[i]);
12330                 if (r >= len)
12331                         break;
12332                 str += r;
12333                 len -= r;
12334
12335                 output_types &= ~BIT(i);
12336         }
12337
12338         WARN_ON_ONCE(output_types != 0);
12339 }
12340
12341 static const char * const output_format_str[] = {
12342         [INTEL_OUTPUT_FORMAT_INVALID] = "Invalid",
12343         [INTEL_OUTPUT_FORMAT_RGB] = "RGB",
12344         [INTEL_OUTPUT_FORMAT_YCBCR420] = "YCBCR4:2:0",
12345         [INTEL_OUTPUT_FORMAT_YCBCR444] = "YCBCR4:4:4",
12346 };
12347
12348 static const char *output_formats(enum intel_output_format format)
12349 {
12350         if (format >= ARRAY_SIZE(output_format_str))
12351                 format = INTEL_OUTPUT_FORMAT_INVALID;
12352         return output_format_str[format];
12353 }
12354
12355 static void intel_dump_plane_state(const struct intel_plane_state *plane_state)
12356 {
12357         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
12358         const struct drm_framebuffer *fb = plane_state->base.fb;
12359         struct drm_format_name_buf format_name;
12360
12361         if (!fb) {
12362                 DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [NOFB], visible: %s\n",
12363                               plane->base.base.id, plane->base.name,
12364                               yesno(plane_state->base.visible));
12365                 return;
12366         }
12367
12368         DRM_DEBUG_KMS("[PLANE:%d:%s] fb: [FB:%d] %ux%u format = %s, visible: %s\n",
12369                       plane->base.base.id, plane->base.name,
12370                       fb->base.id, fb->width, fb->height,
12371                       drm_get_format_name(fb->format->format, &format_name),
12372                       yesno(plane_state->base.visible));
12373         DRM_DEBUG_KMS("\trotation: 0x%x, scaler: %d\n",
12374                       plane_state->base.rotation, plane_state->scaler_id);
12375         if (plane_state->base.visible)
12376                 DRM_DEBUG_KMS("\tsrc: " DRM_RECT_FP_FMT " dst: " DRM_RECT_FMT "\n",
12377                               DRM_RECT_FP_ARG(&plane_state->base.src),
12378                               DRM_RECT_ARG(&plane_state->base.dst));
12379 }
12380
12381 static void intel_dump_pipe_config(const struct intel_crtc_state *pipe_config,
12382                                    struct intel_atomic_state *state,
12383                                    const char *context)
12384 {
12385         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
12386         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
12387         const struct intel_plane_state *plane_state;
12388         struct intel_plane *plane;
12389         char buf[64];
12390         int i;
12391
12392         DRM_DEBUG_KMS("[CRTC:%d:%s] enable: %s %s\n",
12393                       crtc->base.base.id, crtc->base.name,
12394                       yesno(pipe_config->base.enable), context);
12395
12396         if (!pipe_config->base.enable)
12397                 goto dump_planes;
12398
12399         snprintf_output_types(buf, sizeof(buf), pipe_config->output_types);
12400         DRM_DEBUG_KMS("active: %s, output_types: %s (0x%x), output format: %s\n",
12401                       yesno(pipe_config->base.active),
12402                       buf, pipe_config->output_types,
12403                       output_formats(pipe_config->output_format));
12404
12405         DRM_DEBUG_KMS("cpu_transcoder: %s, pipe bpp: %i, dithering: %i\n",
12406                       transcoder_name(pipe_config->cpu_transcoder),
12407                       pipe_config->pipe_bpp, pipe_config->dither);
12408
12409         if (pipe_config->has_pch_encoder)
12410                 intel_dump_m_n_config(pipe_config, "fdi",
12411                                       pipe_config->fdi_lanes,
12412                                       &pipe_config->fdi_m_n);
12413
12414         if (intel_crtc_has_dp_encoder(pipe_config)) {
12415                 intel_dump_m_n_config(pipe_config, "dp m_n",
12416                                 pipe_config->lane_count, &pipe_config->dp_m_n);
12417                 if (pipe_config->has_drrs)
12418                         intel_dump_m_n_config(pipe_config, "dp m2_n2",
12419                                               pipe_config->lane_count,
12420                                               &pipe_config->dp_m2_n2);
12421         }
12422
12423         DRM_DEBUG_KMS("audio: %i, infoframes: %i, infoframes enabled: 0x%x\n",
12424                       pipe_config->has_audio, pipe_config->has_infoframe,
12425                       pipe_config->infoframes.enable);
12426
12427         if (pipe_config->infoframes.enable &
12428             intel_hdmi_infoframe_enable(HDMI_PACKET_TYPE_GENERAL_CONTROL))
12429                 DRM_DEBUG_KMS("GCP: 0x%x\n", pipe_config->infoframes.gcp);
12430         if (pipe_config->infoframes.enable &
12431             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_AVI))
12432                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.avi);
12433         if (pipe_config->infoframes.enable &
12434             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_SPD))
12435                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.spd);
12436         if (pipe_config->infoframes.enable &
12437             intel_hdmi_infoframe_enable(HDMI_INFOFRAME_TYPE_VENDOR))
12438                 intel_dump_infoframe(dev_priv, &pipe_config->infoframes.hdmi);
12439
12440         DRM_DEBUG_KMS("requested mode:\n");
12441         drm_mode_debug_printmodeline(&pipe_config->base.mode);
12442         DRM_DEBUG_KMS("adjusted mode:\n");
12443         drm_mode_debug_printmodeline(&pipe_config->base.adjusted_mode);
12444         intel_dump_crtc_timings(&pipe_config->base.adjusted_mode);
12445         DRM_DEBUG_KMS("port clock: %d, pipe src size: %dx%d, pixel rate %d\n",
12446                       pipe_config->port_clock,
12447                       pipe_config->pipe_src_w, pipe_config->pipe_src_h,
12448                       pipe_config->pixel_rate);
12449
12450         if (INTEL_GEN(dev_priv) >= 9)
12451                 DRM_DEBUG_KMS("num_scalers: %d, scaler_users: 0x%x, scaler_id: %d\n",
12452                               crtc->num_scalers,
12453                               pipe_config->scaler_state.scaler_users,
12454                               pipe_config->scaler_state.scaler_id);
12455
12456         if (HAS_GMCH(dev_priv))
12457                 DRM_DEBUG_KMS("gmch pfit: control: 0x%08x, ratios: 0x%08x, lvds border: 0x%08x\n",
12458                               pipe_config->gmch_pfit.control,
12459                               pipe_config->gmch_pfit.pgm_ratios,
12460                               pipe_config->gmch_pfit.lvds_border_bits);
12461         else
12462                 DRM_DEBUG_KMS("pch pfit: pos: 0x%08x, size: 0x%08x, %s, force thru: %s\n",
12463                               pipe_config->pch_pfit.pos,
12464                               pipe_config->pch_pfit.size,
12465                               enableddisabled(pipe_config->pch_pfit.enabled),
12466                               yesno(pipe_config->pch_pfit.force_thru));
12467
12468         DRM_DEBUG_KMS("ips: %i, double wide: %i\n",
12469                       pipe_config->ips_enabled, pipe_config->double_wide);
12470
12471         intel_dpll_dump_hw_state(dev_priv, &pipe_config->dpll_hw_state);
12472
12473         if (IS_CHERRYVIEW(dev_priv))
12474                 DRM_DEBUG_KMS("cgm_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12475                               pipe_config->cgm_mode, pipe_config->gamma_mode,
12476                               pipe_config->gamma_enable, pipe_config->csc_enable);
12477         else
12478                 DRM_DEBUG_KMS("csc_mode: 0x%x gamma_mode: 0x%x gamma_enable: %d csc_enable: %d\n",
12479                               pipe_config->csc_mode, pipe_config->gamma_mode,
12480                               pipe_config->gamma_enable, pipe_config->csc_enable);
12481
12482 dump_planes:
12483         if (!state)
12484                 return;
12485
12486         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
12487                 if (plane->pipe == crtc->pipe)
12488                         intel_dump_plane_state(plane_state);
12489         }
12490 }
12491
12492 static bool check_digital_port_conflicts(struct intel_atomic_state *state)
12493 {
12494         struct drm_device *dev = state->base.dev;
12495         struct drm_connector *connector;
12496         struct drm_connector_list_iter conn_iter;
12497         unsigned int used_ports = 0;
12498         unsigned int used_mst_ports = 0;
12499         bool ret = true;
12500
12501         /*
12502          * We're going to peek into connector->state,
12503          * hence connection_mutex must be held.
12504          */
12505         drm_modeset_lock_assert_held(&dev->mode_config.connection_mutex);
12506
12507         /*
12508          * Walk the connector list instead of the encoder
12509          * list to detect the problem on ddi platforms
12510          * where there's just one encoder per digital port.
12511          */
12512         drm_connector_list_iter_begin(dev, &conn_iter);
12513         drm_for_each_connector_iter(connector, &conn_iter) {
12514                 struct drm_connector_state *connector_state;
12515                 struct intel_encoder *encoder;
12516
12517                 connector_state =
12518                         drm_atomic_get_new_connector_state(&state->base,
12519                                                            connector);
12520                 if (!connector_state)
12521                         connector_state = connector->state;
12522
12523                 if (!connector_state->best_encoder)
12524                         continue;
12525
12526                 encoder = to_intel_encoder(connector_state->best_encoder);
12527
12528                 WARN_ON(!connector_state->crtc);
12529
12530                 switch (encoder->type) {
12531                         unsigned int port_mask;
12532                 case INTEL_OUTPUT_DDI:
12533                         if (WARN_ON(!HAS_DDI(to_i915(dev))))
12534                                 break;
12535                         /* else, fall through */
12536                 case INTEL_OUTPUT_DP:
12537                 case INTEL_OUTPUT_HDMI:
12538                 case INTEL_OUTPUT_EDP:
12539                         port_mask = 1 << encoder->port;
12540
12541                         /* the same port mustn't appear more than once */
12542                         if (used_ports & port_mask)
12543                                 ret = false;
12544
12545                         used_ports |= port_mask;
12546                         break;
12547                 case INTEL_OUTPUT_DP_MST:
12548                         used_mst_ports |=
12549                                 1 << encoder->port;
12550                         break;
12551                 default:
12552                         break;
12553                 }
12554         }
12555         drm_connector_list_iter_end(&conn_iter);
12556
12557         /* can't mix MST and SST/HDMI on the same port */
12558         if (used_ports & used_mst_ports)
12559                 return false;
12560
12561         return ret;
12562 }
12563
12564 static int
12565 clear_intel_crtc_state(struct intel_crtc_state *crtc_state)
12566 {
12567         struct drm_i915_private *dev_priv =
12568                 to_i915(crtc_state->base.crtc->dev);
12569         struct intel_crtc_state *saved_state;
12570
12571         saved_state = kzalloc(sizeof(*saved_state), GFP_KERNEL);
12572         if (!saved_state)
12573                 return -ENOMEM;
12574
12575         /* FIXME: before the switch to atomic started, a new pipe_config was
12576          * kzalloc'd. Code that depends on any field being zero should be
12577          * fixed, so that the crtc_state can be safely duplicated. For now,
12578          * only fields that are know to not cause problems are preserved. */
12579
12580         saved_state->scaler_state = crtc_state->scaler_state;
12581         saved_state->shared_dpll = crtc_state->shared_dpll;
12582         saved_state->dpll_hw_state = crtc_state->dpll_hw_state;
12583         memcpy(saved_state->icl_port_dplls, crtc_state->icl_port_dplls,
12584                sizeof(saved_state->icl_port_dplls));
12585         saved_state->crc_enabled = crtc_state->crc_enabled;
12586         if (IS_G4X(dev_priv) ||
12587             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12588                 saved_state->wm = crtc_state->wm;
12589         /*
12590          * Save the slave bitmask which gets filled for master crtc state during
12591          * slave atomic check call.
12592          */
12593         if (is_trans_port_sync_master(crtc_state))
12594                 saved_state->sync_mode_slaves_mask =
12595                         crtc_state->sync_mode_slaves_mask;
12596
12597         /* Keep base drm_crtc_state intact, only clear our extended struct */
12598         BUILD_BUG_ON(offsetof(struct intel_crtc_state, base));
12599         memcpy(&crtc_state->base + 1, &saved_state->base + 1,
12600                sizeof(*crtc_state) - sizeof(crtc_state->base));
12601
12602         kfree(saved_state);
12603         return 0;
12604 }
12605
12606 static int
12607 intel_modeset_pipe_config(struct intel_crtc_state *pipe_config)
12608 {
12609         struct drm_crtc *crtc = pipe_config->base.crtc;
12610         struct drm_atomic_state *state = pipe_config->base.state;
12611         struct intel_encoder *encoder;
12612         struct drm_connector *connector;
12613         struct drm_connector_state *connector_state;
12614         int base_bpp, ret;
12615         int i;
12616         bool retry = true;
12617
12618         ret = clear_intel_crtc_state(pipe_config);
12619         if (ret)
12620                 return ret;
12621
12622         pipe_config->cpu_transcoder =
12623                 (enum transcoder) to_intel_crtc(crtc)->pipe;
12624
12625         /*
12626          * Sanitize sync polarity flags based on requested ones. If neither
12627          * positive or negative polarity is requested, treat this as meaning
12628          * negative polarity.
12629          */
12630         if (!(pipe_config->base.adjusted_mode.flags &
12631               (DRM_MODE_FLAG_PHSYNC | DRM_MODE_FLAG_NHSYNC)))
12632                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NHSYNC;
12633
12634         if (!(pipe_config->base.adjusted_mode.flags &
12635               (DRM_MODE_FLAG_PVSYNC | DRM_MODE_FLAG_NVSYNC)))
12636                 pipe_config->base.adjusted_mode.flags |= DRM_MODE_FLAG_NVSYNC;
12637
12638         ret = compute_baseline_pipe_bpp(to_intel_crtc(crtc),
12639                                         pipe_config);
12640         if (ret)
12641                 return ret;
12642
12643         base_bpp = pipe_config->pipe_bpp;
12644
12645         /*
12646          * Determine the real pipe dimensions. Note that stereo modes can
12647          * increase the actual pipe size due to the frame doubling and
12648          * insertion of additional space for blanks between the frame. This
12649          * is stored in the crtc timings. We use the requested mode to do this
12650          * computation to clearly distinguish it from the adjusted mode, which
12651          * can be changed by the connectors in the below retry loop.
12652          */
12653         drm_mode_get_hv_timing(&pipe_config->base.mode,
12654                                &pipe_config->pipe_src_w,
12655                                &pipe_config->pipe_src_h);
12656
12657         for_each_new_connector_in_state(state, connector, connector_state, i) {
12658                 if (connector_state->crtc != crtc)
12659                         continue;
12660
12661                 encoder = to_intel_encoder(connector_state->best_encoder);
12662
12663                 if (!check_single_encoder_cloning(state, to_intel_crtc(crtc), encoder)) {
12664                         DRM_DEBUG_KMS("rejecting invalid cloning configuration\n");
12665                         return -EINVAL;
12666                 }
12667
12668                 /*
12669                  * Determine output_types before calling the .compute_config()
12670                  * hooks so that the hooks can use this information safely.
12671                  */
12672                 if (encoder->compute_output_type)
12673                         pipe_config->output_types |=
12674                                 BIT(encoder->compute_output_type(encoder, pipe_config,
12675                                                                  connector_state));
12676                 else
12677                         pipe_config->output_types |= BIT(encoder->type);
12678         }
12679
12680 encoder_retry:
12681         /* Ensure the port clock defaults are reset when retrying. */
12682         pipe_config->port_clock = 0;
12683         pipe_config->pixel_multiplier = 1;
12684
12685         /* Fill in default crtc timings, allow encoders to overwrite them. */
12686         drm_mode_set_crtcinfo(&pipe_config->base.adjusted_mode,
12687                               CRTC_STEREO_DOUBLE);
12688
12689         /* Set the crtc_state defaults for trans_port_sync */
12690         pipe_config->master_transcoder = INVALID_TRANSCODER;
12691         ret = icl_add_sync_mode_crtcs(pipe_config);
12692         if (ret) {
12693                 DRM_DEBUG_KMS("Cannot assign Sync Mode CRTCs: %d\n",
12694                               ret);
12695                 return ret;
12696         }
12697
12698         /* Pass our mode to the connectors and the CRTC to give them a chance to
12699          * adjust it according to limitations or connector properties, and also
12700          * a chance to reject the mode entirely.
12701          */
12702         for_each_new_connector_in_state(state, connector, connector_state, i) {
12703                 if (connector_state->crtc != crtc)
12704                         continue;
12705
12706                 encoder = to_intel_encoder(connector_state->best_encoder);
12707                 ret = encoder->compute_config(encoder, pipe_config,
12708                                               connector_state);
12709                 if (ret < 0) {
12710                         if (ret != -EDEADLK)
12711                                 DRM_DEBUG_KMS("Encoder config failure: %d\n",
12712                                               ret);
12713                         return ret;
12714                 }
12715         }
12716
12717         /* Set default port clock if not overwritten by the encoder. Needs to be
12718          * done afterwards in case the encoder adjusts the mode. */
12719         if (!pipe_config->port_clock)
12720                 pipe_config->port_clock = pipe_config->base.adjusted_mode.crtc_clock
12721                         * pipe_config->pixel_multiplier;
12722
12723         ret = intel_crtc_compute_config(to_intel_crtc(crtc), pipe_config);
12724         if (ret == -EDEADLK)
12725                 return ret;
12726         if (ret < 0) {
12727                 DRM_DEBUG_KMS("CRTC fixup failed\n");
12728                 return ret;
12729         }
12730
12731         if (ret == RETRY) {
12732                 if (WARN(!retry, "loop in pipe configuration computation\n"))
12733                         return -EINVAL;
12734
12735                 DRM_DEBUG_KMS("CRTC bw constrained, retrying\n");
12736                 retry = false;
12737                 goto encoder_retry;
12738         }
12739
12740         /* Dithering seems to not pass-through bits correctly when it should, so
12741          * only enable it on 6bpc panels and when its not a compliance
12742          * test requesting 6bpc video pattern.
12743          */
12744         pipe_config->dither = (pipe_config->pipe_bpp == 6*3) &&
12745                 !pipe_config->dither_force_disable;
12746         DRM_DEBUG_KMS("hw max bpp: %i, pipe bpp: %i, dithering: %i\n",
12747                       base_bpp, pipe_config->pipe_bpp, pipe_config->dither);
12748
12749         return 0;
12750 }
12751
12752 bool intel_fuzzy_clock_check(int clock1, int clock2)
12753 {
12754         int diff;
12755
12756         if (clock1 == clock2)
12757                 return true;
12758
12759         if (!clock1 || !clock2)
12760                 return false;
12761
12762         diff = abs(clock1 - clock2);
12763
12764         if (((((diff + clock1 + clock2) * 100)) / (clock1 + clock2)) < 105)
12765                 return true;
12766
12767         return false;
12768 }
12769
12770 static bool
12771 intel_compare_m_n(unsigned int m, unsigned int n,
12772                   unsigned int m2, unsigned int n2,
12773                   bool exact)
12774 {
12775         if (m == m2 && n == n2)
12776                 return true;
12777
12778         if (exact || !m || !n || !m2 || !n2)
12779                 return false;
12780
12781         BUILD_BUG_ON(DATA_LINK_M_N_MASK > INT_MAX);
12782
12783         if (n > n2) {
12784                 while (n > n2) {
12785                         m2 <<= 1;
12786                         n2 <<= 1;
12787                 }
12788         } else if (n < n2) {
12789                 while (n < n2) {
12790                         m <<= 1;
12791                         n <<= 1;
12792                 }
12793         }
12794
12795         if (n != n2)
12796                 return false;
12797
12798         return intel_fuzzy_clock_check(m, m2);
12799 }
12800
12801 static bool
12802 intel_compare_link_m_n(const struct intel_link_m_n *m_n,
12803                        const struct intel_link_m_n *m2_n2,
12804                        bool exact)
12805 {
12806         return m_n->tu == m2_n2->tu &&
12807                 intel_compare_m_n(m_n->gmch_m, m_n->gmch_n,
12808                                   m2_n2->gmch_m, m2_n2->gmch_n, exact) &&
12809                 intel_compare_m_n(m_n->link_m, m_n->link_n,
12810                                   m2_n2->link_m, m2_n2->link_n, exact);
12811 }
12812
12813 static bool
12814 intel_compare_infoframe(const union hdmi_infoframe *a,
12815                         const union hdmi_infoframe *b)
12816 {
12817         return memcmp(a, b, sizeof(*a)) == 0;
12818 }
12819
12820 static void
12821 pipe_config_infoframe_mismatch(struct drm_i915_private *dev_priv,
12822                                bool fastset, const char *name,
12823                                const union hdmi_infoframe *a,
12824                                const union hdmi_infoframe *b)
12825 {
12826         if (fastset) {
12827                 if ((drm_debug & DRM_UT_KMS) == 0)
12828                         return;
12829
12830                 DRM_DEBUG_KMS("fastset mismatch in %s infoframe\n", name);
12831                 DRM_DEBUG_KMS("expected:\n");
12832                 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, a);
12833                 DRM_DEBUG_KMS("found:\n");
12834                 hdmi_infoframe_log(KERN_DEBUG, dev_priv->drm.dev, b);
12835         } else {
12836                 DRM_ERROR("mismatch in %s infoframe\n", name);
12837                 DRM_ERROR("expected:\n");
12838                 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, a);
12839                 DRM_ERROR("found:\n");
12840                 hdmi_infoframe_log(KERN_ERR, dev_priv->drm.dev, b);
12841         }
12842 }
12843
12844 static void __printf(4, 5)
12845 pipe_config_mismatch(bool fastset, const struct intel_crtc *crtc,
12846                      const char *name, const char *format, ...)
12847 {
12848         struct va_format vaf;
12849         va_list args;
12850
12851         va_start(args, format);
12852         vaf.fmt = format;
12853         vaf.va = &args;
12854
12855         if (fastset)
12856                 DRM_DEBUG_KMS("[CRTC:%d:%s] fastset mismatch in %s %pV\n",
12857                               crtc->base.base.id, crtc->base.name, name, &vaf);
12858         else
12859                 DRM_ERROR("[CRTC:%d:%s] mismatch in %s %pV\n",
12860                           crtc->base.base.id, crtc->base.name, name, &vaf);
12861
12862         va_end(args);
12863 }
12864
12865 static bool fastboot_enabled(struct drm_i915_private *dev_priv)
12866 {
12867         if (i915_modparams.fastboot != -1)
12868                 return i915_modparams.fastboot;
12869
12870         /* Enable fastboot by default on Skylake and newer */
12871         if (INTEL_GEN(dev_priv) >= 9)
12872                 return true;
12873
12874         /* Enable fastboot by default on VLV and CHV */
12875         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
12876                 return true;
12877
12878         /* Disabled by default on all others */
12879         return false;
12880 }
12881
12882 static bool
12883 intel_pipe_config_compare(const struct intel_crtc_state *current_config,
12884                           const struct intel_crtc_state *pipe_config,
12885                           bool fastset)
12886 {
12887         struct drm_i915_private *dev_priv = to_i915(current_config->base.crtc->dev);
12888         struct intel_crtc *crtc = to_intel_crtc(pipe_config->base.crtc);
12889         bool ret = true;
12890         u32 bp_gamma = 0;
12891         bool fixup_inherited = fastset &&
12892                 (current_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED) &&
12893                 !(pipe_config->base.mode.private_flags & I915_MODE_FLAG_INHERITED);
12894
12895         if (fixup_inherited && !fastboot_enabled(dev_priv)) {
12896                 DRM_DEBUG_KMS("initial modeset and fastboot not set\n");
12897                 ret = false;
12898         }
12899
12900 #define PIPE_CONF_CHECK_X(name) do { \
12901         if (current_config->name != pipe_config->name) { \
12902                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12903                                      "(expected 0x%08x, found 0x%08x)", \
12904                                      current_config->name, \
12905                                      pipe_config->name); \
12906                 ret = false; \
12907         } \
12908 } while (0)
12909
12910 #define PIPE_CONF_CHECK_I(name) do { \
12911         if (current_config->name != pipe_config->name) { \
12912                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12913                                      "(expected %i, found %i)", \
12914                                      current_config->name, \
12915                                      pipe_config->name); \
12916                 ret = false; \
12917         } \
12918 } while (0)
12919
12920 #define PIPE_CONF_CHECK_BOOL(name) do { \
12921         if (current_config->name != pipe_config->name) { \
12922                 pipe_config_mismatch(fastset, crtc,  __stringify(name), \
12923                                      "(expected %s, found %s)", \
12924                                      yesno(current_config->name), \
12925                                      yesno(pipe_config->name)); \
12926                 ret = false; \
12927         } \
12928 } while (0)
12929
12930 /*
12931  * Checks state where we only read out the enabling, but not the entire
12932  * state itself (like full infoframes or ELD for audio). These states
12933  * require a full modeset on bootup to fix up.
12934  */
12935 #define PIPE_CONF_CHECK_BOOL_INCOMPLETE(name) do { \
12936         if (!fixup_inherited || (!current_config->name && !pipe_config->name)) { \
12937                 PIPE_CONF_CHECK_BOOL(name); \
12938         } else { \
12939                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12940                                      "unable to verify whether state matches exactly, forcing modeset (expected %s, found %s)", \
12941                                      yesno(current_config->name), \
12942                                      yesno(pipe_config->name)); \
12943                 ret = false; \
12944         } \
12945 } while (0)
12946
12947 #define PIPE_CONF_CHECK_P(name) do { \
12948         if (current_config->name != pipe_config->name) { \
12949                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12950                                      "(expected %p, found %p)", \
12951                                      current_config->name, \
12952                                      pipe_config->name); \
12953                 ret = false; \
12954         } \
12955 } while (0)
12956
12957 #define PIPE_CONF_CHECK_M_N(name) do { \
12958         if (!intel_compare_link_m_n(&current_config->name, \
12959                                     &pipe_config->name,\
12960                                     !fastset)) { \
12961                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12962                                      "(expected tu %i gmch %i/%i link %i/%i, " \
12963                                      "found tu %i, gmch %i/%i link %i/%i)", \
12964                                      current_config->name.tu, \
12965                                      current_config->name.gmch_m, \
12966                                      current_config->name.gmch_n, \
12967                                      current_config->name.link_m, \
12968                                      current_config->name.link_n, \
12969                                      pipe_config->name.tu, \
12970                                      pipe_config->name.gmch_m, \
12971                                      pipe_config->name.gmch_n, \
12972                                      pipe_config->name.link_m, \
12973                                      pipe_config->name.link_n); \
12974                 ret = false; \
12975         } \
12976 } while (0)
12977
12978 /* This is required for BDW+ where there is only one set of registers for
12979  * switching between high and low RR.
12980  * This macro can be used whenever a comparison has to be made between one
12981  * hw state and multiple sw state variables.
12982  */
12983 #define PIPE_CONF_CHECK_M_N_ALT(name, alt_name) do { \
12984         if (!intel_compare_link_m_n(&current_config->name, \
12985                                     &pipe_config->name, !fastset) && \
12986             !intel_compare_link_m_n(&current_config->alt_name, \
12987                                     &pipe_config->name, !fastset)) { \
12988                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
12989                                      "(expected tu %i gmch %i/%i link %i/%i, " \
12990                                      "or tu %i gmch %i/%i link %i/%i, " \
12991                                      "found tu %i, gmch %i/%i link %i/%i)", \
12992                                      current_config->name.tu, \
12993                                      current_config->name.gmch_m, \
12994                                      current_config->name.gmch_n, \
12995                                      current_config->name.link_m, \
12996                                      current_config->name.link_n, \
12997                                      current_config->alt_name.tu, \
12998                                      current_config->alt_name.gmch_m, \
12999                                      current_config->alt_name.gmch_n, \
13000                                      current_config->alt_name.link_m, \
13001                                      current_config->alt_name.link_n, \
13002                                      pipe_config->name.tu, \
13003                                      pipe_config->name.gmch_m, \
13004                                      pipe_config->name.gmch_n, \
13005                                      pipe_config->name.link_m, \
13006                                      pipe_config->name.link_n); \
13007                 ret = false; \
13008         } \
13009 } while (0)
13010
13011 #define PIPE_CONF_CHECK_FLAGS(name, mask) do { \
13012         if ((current_config->name ^ pipe_config->name) & (mask)) { \
13013                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13014                                      "(%x) (expected %i, found %i)", \
13015                                      (mask), \
13016                                      current_config->name & (mask), \
13017                                      pipe_config->name & (mask)); \
13018                 ret = false; \
13019         } \
13020 } while (0)
13021
13022 #define PIPE_CONF_CHECK_CLOCK_FUZZY(name) do { \
13023         if (!intel_fuzzy_clock_check(current_config->name, pipe_config->name)) { \
13024                 pipe_config_mismatch(fastset, crtc, __stringify(name), \
13025                                      "(expected %i, found %i)", \
13026                                      current_config->name, \
13027                                      pipe_config->name); \
13028                 ret = false; \
13029         } \
13030 } while (0)
13031
13032 #define PIPE_CONF_CHECK_INFOFRAME(name) do { \
13033         if (!intel_compare_infoframe(&current_config->infoframes.name, \
13034                                      &pipe_config->infoframes.name)) { \
13035                 pipe_config_infoframe_mismatch(dev_priv, fastset, __stringify(name), \
13036                                                &current_config->infoframes.name, \
13037                                                &pipe_config->infoframes.name); \
13038                 ret = false; \
13039         } \
13040 } while (0)
13041
13042 #define PIPE_CONF_CHECK_COLOR_LUT(name1, name2, bit_precision) do { \
13043         if (current_config->name1 != pipe_config->name1) { \
13044                 pipe_config_mismatch(fastset, crtc, __stringify(name1), \
13045                                 "(expected %i, found %i, won't compare lut values)", \
13046                                 current_config->name1, \
13047                                 pipe_config->name1); \
13048                 ret = false;\
13049         } else { \
13050                 if (!intel_color_lut_equal(current_config->name2, \
13051                                         pipe_config->name2, pipe_config->name1, \
13052                                         bit_precision)) { \
13053                         pipe_config_mismatch(fastset, crtc, __stringify(name2), \
13054                                         "hw_state doesn't match sw_state"); \
13055                         ret = false; \
13056                 } \
13057         } \
13058 } while (0)
13059
13060 #define PIPE_CONF_QUIRK(quirk) \
13061         ((current_config->quirks | pipe_config->quirks) & (quirk))
13062
13063         PIPE_CONF_CHECK_I(cpu_transcoder);
13064
13065         PIPE_CONF_CHECK_BOOL(has_pch_encoder);
13066         PIPE_CONF_CHECK_I(fdi_lanes);
13067         PIPE_CONF_CHECK_M_N(fdi_m_n);
13068
13069         PIPE_CONF_CHECK_I(lane_count);
13070         PIPE_CONF_CHECK_X(lane_lat_optim_mask);
13071
13072         if (INTEL_GEN(dev_priv) < 8) {
13073                 PIPE_CONF_CHECK_M_N(dp_m_n);
13074
13075                 if (current_config->has_drrs)
13076                         PIPE_CONF_CHECK_M_N(dp_m2_n2);
13077         } else
13078                 PIPE_CONF_CHECK_M_N_ALT(dp_m_n, dp_m2_n2);
13079
13080         PIPE_CONF_CHECK_X(output_types);
13081
13082         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hdisplay);
13083         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_htotal);
13084         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_start);
13085         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hblank_end);
13086         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_start);
13087         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_hsync_end);
13088
13089         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vdisplay);
13090         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vtotal);
13091         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_start);
13092         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vblank_end);
13093         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_start);
13094         PIPE_CONF_CHECK_I(base.adjusted_mode.crtc_vsync_end);
13095
13096         PIPE_CONF_CHECK_I(pixel_multiplier);
13097         PIPE_CONF_CHECK_I(output_format);
13098         PIPE_CONF_CHECK_I(dc3co_exitline);
13099         PIPE_CONF_CHECK_BOOL(has_hdmi_sink);
13100         if ((INTEL_GEN(dev_priv) < 8 && !IS_HASWELL(dev_priv)) ||
13101             IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
13102                 PIPE_CONF_CHECK_BOOL(limited_color_range);
13103
13104         PIPE_CONF_CHECK_BOOL(hdmi_scrambling);
13105         PIPE_CONF_CHECK_BOOL(hdmi_high_tmds_clock_ratio);
13106         PIPE_CONF_CHECK_BOOL(has_infoframe);
13107         PIPE_CONF_CHECK_BOOL(fec_enable);
13108
13109         PIPE_CONF_CHECK_BOOL_INCOMPLETE(has_audio);
13110
13111         PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13112                               DRM_MODE_FLAG_INTERLACE);
13113
13114         if (!PIPE_CONF_QUIRK(PIPE_CONFIG_QUIRK_MODE_SYNC_FLAGS)) {
13115                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13116                                       DRM_MODE_FLAG_PHSYNC);
13117                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13118                                       DRM_MODE_FLAG_NHSYNC);
13119                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13120                                       DRM_MODE_FLAG_PVSYNC);
13121                 PIPE_CONF_CHECK_FLAGS(base.adjusted_mode.flags,
13122                                       DRM_MODE_FLAG_NVSYNC);
13123         }
13124
13125         PIPE_CONF_CHECK_X(gmch_pfit.control);
13126         /* pfit ratios are autocomputed by the hw on gen4+ */
13127         if (INTEL_GEN(dev_priv) < 4)
13128                 PIPE_CONF_CHECK_X(gmch_pfit.pgm_ratios);
13129         PIPE_CONF_CHECK_X(gmch_pfit.lvds_border_bits);
13130
13131         /*
13132          * Changing the EDP transcoder input mux
13133          * (A_ONOFF vs. A_ON) requires a full modeset.
13134          */
13135         PIPE_CONF_CHECK_BOOL(pch_pfit.force_thru);
13136
13137         if (!fastset) {
13138                 PIPE_CONF_CHECK_I(pipe_src_w);
13139                 PIPE_CONF_CHECK_I(pipe_src_h);
13140
13141                 PIPE_CONF_CHECK_BOOL(pch_pfit.enabled);
13142                 if (current_config->pch_pfit.enabled) {
13143                         PIPE_CONF_CHECK_X(pch_pfit.pos);
13144                         PIPE_CONF_CHECK_X(pch_pfit.size);
13145                 }
13146
13147                 PIPE_CONF_CHECK_I(scaler_state.scaler_id);
13148                 PIPE_CONF_CHECK_CLOCK_FUZZY(pixel_rate);
13149
13150                 PIPE_CONF_CHECK_X(gamma_mode);
13151                 if (IS_CHERRYVIEW(dev_priv))
13152                         PIPE_CONF_CHECK_X(cgm_mode);
13153                 else
13154                         PIPE_CONF_CHECK_X(csc_mode);
13155                 PIPE_CONF_CHECK_BOOL(gamma_enable);
13156                 PIPE_CONF_CHECK_BOOL(csc_enable);
13157
13158                 bp_gamma = intel_color_get_gamma_bit_precision(pipe_config);
13159                 if (bp_gamma)
13160                         PIPE_CONF_CHECK_COLOR_LUT(gamma_mode, base.gamma_lut, bp_gamma);
13161
13162         }
13163
13164         PIPE_CONF_CHECK_BOOL(double_wide);
13165
13166         PIPE_CONF_CHECK_P(shared_dpll);
13167         PIPE_CONF_CHECK_X(dpll_hw_state.dpll);
13168         PIPE_CONF_CHECK_X(dpll_hw_state.dpll_md);
13169         PIPE_CONF_CHECK_X(dpll_hw_state.fp0);
13170         PIPE_CONF_CHECK_X(dpll_hw_state.fp1);
13171         PIPE_CONF_CHECK_X(dpll_hw_state.wrpll);
13172         PIPE_CONF_CHECK_X(dpll_hw_state.spll);
13173         PIPE_CONF_CHECK_X(dpll_hw_state.ctrl1);
13174         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr1);
13175         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr2);
13176         PIPE_CONF_CHECK_X(dpll_hw_state.cfgcr0);
13177         PIPE_CONF_CHECK_X(dpll_hw_state.ebb0);
13178         PIPE_CONF_CHECK_X(dpll_hw_state.ebb4);
13179         PIPE_CONF_CHECK_X(dpll_hw_state.pll0);
13180         PIPE_CONF_CHECK_X(dpll_hw_state.pll1);
13181         PIPE_CONF_CHECK_X(dpll_hw_state.pll2);
13182         PIPE_CONF_CHECK_X(dpll_hw_state.pll3);
13183         PIPE_CONF_CHECK_X(dpll_hw_state.pll6);
13184         PIPE_CONF_CHECK_X(dpll_hw_state.pll8);
13185         PIPE_CONF_CHECK_X(dpll_hw_state.pll9);
13186         PIPE_CONF_CHECK_X(dpll_hw_state.pll10);
13187         PIPE_CONF_CHECK_X(dpll_hw_state.pcsdw12);
13188         PIPE_CONF_CHECK_X(dpll_hw_state.mg_refclkin_ctl);
13189         PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_coreclkctl1);
13190         PIPE_CONF_CHECK_X(dpll_hw_state.mg_clktop2_hsclkctl);
13191         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div0);
13192         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_div1);
13193         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_lf);
13194         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_frac_lock);
13195         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_ssc);
13196         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_bias);
13197         PIPE_CONF_CHECK_X(dpll_hw_state.mg_pll_tdc_coldst_bias);
13198
13199         PIPE_CONF_CHECK_X(dsi_pll.ctrl);
13200         PIPE_CONF_CHECK_X(dsi_pll.div);
13201
13202         if (IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5)
13203                 PIPE_CONF_CHECK_I(pipe_bpp);
13204
13205         PIPE_CONF_CHECK_CLOCK_FUZZY(base.adjusted_mode.crtc_clock);
13206         PIPE_CONF_CHECK_CLOCK_FUZZY(port_clock);
13207
13208         PIPE_CONF_CHECK_I(min_voltage_level);
13209
13210         PIPE_CONF_CHECK_X(infoframes.enable);
13211         PIPE_CONF_CHECK_X(infoframes.gcp);
13212         PIPE_CONF_CHECK_INFOFRAME(avi);
13213         PIPE_CONF_CHECK_INFOFRAME(spd);
13214         PIPE_CONF_CHECK_INFOFRAME(hdmi);
13215         PIPE_CONF_CHECK_INFOFRAME(drm);
13216
13217         PIPE_CONF_CHECK_I(sync_mode_slaves_mask);
13218         PIPE_CONF_CHECK_I(master_transcoder);
13219
13220 #undef PIPE_CONF_CHECK_X
13221 #undef PIPE_CONF_CHECK_I
13222 #undef PIPE_CONF_CHECK_BOOL
13223 #undef PIPE_CONF_CHECK_BOOL_INCOMPLETE
13224 #undef PIPE_CONF_CHECK_P
13225 #undef PIPE_CONF_CHECK_FLAGS
13226 #undef PIPE_CONF_CHECK_CLOCK_FUZZY
13227 #undef PIPE_CONF_CHECK_COLOR_LUT
13228 #undef PIPE_CONF_QUIRK
13229
13230         return ret;
13231 }
13232
13233 static void intel_pipe_config_sanity_check(struct drm_i915_private *dev_priv,
13234                                            const struct intel_crtc_state *pipe_config)
13235 {
13236         if (pipe_config->has_pch_encoder) {
13237                 int fdi_dotclock = intel_dotclock_calculate(intel_fdi_link_freq(dev_priv, pipe_config),
13238                                                             &pipe_config->fdi_m_n);
13239                 int dotclock = pipe_config->base.adjusted_mode.crtc_clock;
13240
13241                 /*
13242                  * FDI already provided one idea for the dotclock.
13243                  * Yell if the encoder disagrees.
13244                  */
13245                 WARN(!intel_fuzzy_clock_check(fdi_dotclock, dotclock),
13246                      "FDI dotclock and encoder dotclock mismatch, fdi: %i, encoder: %i\n",
13247                      fdi_dotclock, dotclock);
13248         }
13249 }
13250
13251 static void verify_wm_state(struct intel_crtc *crtc,
13252                             struct intel_crtc_state *new_crtc_state)
13253 {
13254         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13255         struct skl_hw_state {
13256                 struct skl_ddb_entry ddb_y[I915_MAX_PLANES];
13257                 struct skl_ddb_entry ddb_uv[I915_MAX_PLANES];
13258                 struct skl_ddb_allocation ddb;
13259                 struct skl_pipe_wm wm;
13260         } *hw;
13261         struct skl_ddb_allocation *sw_ddb;
13262         struct skl_pipe_wm *sw_wm;
13263         struct skl_ddb_entry *hw_ddb_entry, *sw_ddb_entry;
13264         const enum pipe pipe = crtc->pipe;
13265         int plane, level, max_level = ilk_wm_max_level(dev_priv);
13266
13267         if (INTEL_GEN(dev_priv) < 9 || !new_crtc_state->base.active)
13268                 return;
13269
13270         hw = kzalloc(sizeof(*hw), GFP_KERNEL);
13271         if (!hw)
13272                 return;
13273
13274         skl_pipe_wm_get_hw_state(crtc, &hw->wm);
13275         sw_wm = &new_crtc_state->wm.skl.optimal;
13276
13277         skl_pipe_ddb_get_hw_state(crtc, hw->ddb_y, hw->ddb_uv);
13278
13279         skl_ddb_get_hw_state(dev_priv, &hw->ddb);
13280         sw_ddb = &dev_priv->wm.skl_hw.ddb;
13281
13282         if (INTEL_GEN(dev_priv) >= 11 &&
13283             hw->ddb.enabled_slices != sw_ddb->enabled_slices)
13284                 DRM_ERROR("mismatch in DBUF Slices (expected %u, got %u)\n",
13285                           sw_ddb->enabled_slices,
13286                           hw->ddb.enabled_slices);
13287
13288         /* planes */
13289         for_each_universal_plane(dev_priv, pipe, plane) {
13290                 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13291
13292                 hw_plane_wm = &hw->wm.planes[plane];
13293                 sw_plane_wm = &sw_wm->planes[plane];
13294
13295                 /* Watermarks */
13296                 for (level = 0; level <= max_level; level++) {
13297                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13298                                                 &sw_plane_wm->wm[level]))
13299                                 continue;
13300
13301                         DRM_ERROR("mismatch in WM pipe %c plane %d level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13302                                   pipe_name(pipe), plane + 1, level,
13303                                   sw_plane_wm->wm[level].plane_en,
13304                                   sw_plane_wm->wm[level].plane_res_b,
13305                                   sw_plane_wm->wm[level].plane_res_l,
13306                                   hw_plane_wm->wm[level].plane_en,
13307                                   hw_plane_wm->wm[level].plane_res_b,
13308                                   hw_plane_wm->wm[level].plane_res_l);
13309                 }
13310
13311                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13312                                          &sw_plane_wm->trans_wm)) {
13313                         DRM_ERROR("mismatch in trans WM pipe %c plane %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13314                                   pipe_name(pipe), plane + 1,
13315                                   sw_plane_wm->trans_wm.plane_en,
13316                                   sw_plane_wm->trans_wm.plane_res_b,
13317                                   sw_plane_wm->trans_wm.plane_res_l,
13318                                   hw_plane_wm->trans_wm.plane_en,
13319                                   hw_plane_wm->trans_wm.plane_res_b,
13320                                   hw_plane_wm->trans_wm.plane_res_l);
13321                 }
13322
13323                 /* DDB */
13324                 hw_ddb_entry = &hw->ddb_y[plane];
13325                 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[plane];
13326
13327                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13328                         DRM_ERROR("mismatch in DDB state pipe %c plane %d (expected (%u,%u), found (%u,%u))\n",
13329                                   pipe_name(pipe), plane + 1,
13330                                   sw_ddb_entry->start, sw_ddb_entry->end,
13331                                   hw_ddb_entry->start, hw_ddb_entry->end);
13332                 }
13333         }
13334
13335         /*
13336          * cursor
13337          * If the cursor plane isn't active, we may not have updated it's ddb
13338          * allocation. In that case since the ddb allocation will be updated
13339          * once the plane becomes visible, we can skip this check
13340          */
13341         if (1) {
13342                 struct skl_plane_wm *hw_plane_wm, *sw_plane_wm;
13343
13344                 hw_plane_wm = &hw->wm.planes[PLANE_CURSOR];
13345                 sw_plane_wm = &sw_wm->planes[PLANE_CURSOR];
13346
13347                 /* Watermarks */
13348                 for (level = 0; level <= max_level; level++) {
13349                         if (skl_wm_level_equals(&hw_plane_wm->wm[level],
13350                                                 &sw_plane_wm->wm[level]))
13351                                 continue;
13352
13353                         DRM_ERROR("mismatch in WM pipe %c cursor level %d (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13354                                   pipe_name(pipe), level,
13355                                   sw_plane_wm->wm[level].plane_en,
13356                                   sw_plane_wm->wm[level].plane_res_b,
13357                                   sw_plane_wm->wm[level].plane_res_l,
13358                                   hw_plane_wm->wm[level].plane_en,
13359                                   hw_plane_wm->wm[level].plane_res_b,
13360                                   hw_plane_wm->wm[level].plane_res_l);
13361                 }
13362
13363                 if (!skl_wm_level_equals(&hw_plane_wm->trans_wm,
13364                                          &sw_plane_wm->trans_wm)) {
13365                         DRM_ERROR("mismatch in trans WM pipe %c cursor (expected e=%d b=%u l=%u, got e=%d b=%u l=%u)\n",
13366                                   pipe_name(pipe),
13367                                   sw_plane_wm->trans_wm.plane_en,
13368                                   sw_plane_wm->trans_wm.plane_res_b,
13369                                   sw_plane_wm->trans_wm.plane_res_l,
13370                                   hw_plane_wm->trans_wm.plane_en,
13371                                   hw_plane_wm->trans_wm.plane_res_b,
13372                                   hw_plane_wm->trans_wm.plane_res_l);
13373                 }
13374
13375                 /* DDB */
13376                 hw_ddb_entry = &hw->ddb_y[PLANE_CURSOR];
13377                 sw_ddb_entry = &new_crtc_state->wm.skl.plane_ddb_y[PLANE_CURSOR];
13378
13379                 if (!skl_ddb_entry_equal(hw_ddb_entry, sw_ddb_entry)) {
13380                         DRM_ERROR("mismatch in DDB state pipe %c cursor (expected (%u,%u), found (%u,%u))\n",
13381                                   pipe_name(pipe),
13382                                   sw_ddb_entry->start, sw_ddb_entry->end,
13383                                   hw_ddb_entry->start, hw_ddb_entry->end);
13384                 }
13385         }
13386
13387         kfree(hw);
13388 }
13389
13390 static void
13391 verify_connector_state(struct intel_atomic_state *state,
13392                        struct intel_crtc *crtc)
13393 {
13394         struct drm_connector *connector;
13395         struct drm_connector_state *new_conn_state;
13396         int i;
13397
13398         for_each_new_connector_in_state(&state->base, connector, new_conn_state, i) {
13399                 struct drm_encoder *encoder = connector->encoder;
13400                 struct intel_crtc_state *crtc_state = NULL;
13401
13402                 if (new_conn_state->crtc != &crtc->base)
13403                         continue;
13404
13405                 if (crtc)
13406                         crtc_state = intel_atomic_get_new_crtc_state(state, crtc);
13407
13408                 intel_connector_verify_state(crtc_state, new_conn_state);
13409
13410                 I915_STATE_WARN(new_conn_state->best_encoder != encoder,
13411                      "connector's atomic encoder doesn't match legacy encoder\n");
13412         }
13413 }
13414
13415 static void
13416 verify_encoder_state(struct drm_i915_private *dev_priv, struct intel_atomic_state *state)
13417 {
13418         struct intel_encoder *encoder;
13419         struct drm_connector *connector;
13420         struct drm_connector_state *old_conn_state, *new_conn_state;
13421         int i;
13422
13423         for_each_intel_encoder(&dev_priv->drm, encoder) {
13424                 bool enabled = false, found = false;
13425                 enum pipe pipe;
13426
13427                 DRM_DEBUG_KMS("[ENCODER:%d:%s]\n",
13428                               encoder->base.base.id,
13429                               encoder->base.name);
13430
13431                 for_each_oldnew_connector_in_state(&state->base, connector, old_conn_state,
13432                                                    new_conn_state, i) {
13433                         if (old_conn_state->best_encoder == &encoder->base)
13434                                 found = true;
13435
13436                         if (new_conn_state->best_encoder != &encoder->base)
13437                                 continue;
13438                         found = enabled = true;
13439
13440                         I915_STATE_WARN(new_conn_state->crtc !=
13441                                         encoder->base.crtc,
13442                              "connector's crtc doesn't match encoder crtc\n");
13443                 }
13444
13445                 if (!found)
13446                         continue;
13447
13448                 I915_STATE_WARN(!!encoder->base.crtc != enabled,
13449                      "encoder's enabled state mismatch "
13450                      "(expected %i, found %i)\n",
13451                      !!encoder->base.crtc, enabled);
13452
13453                 if (!encoder->base.crtc) {
13454                         bool active;
13455
13456                         active = encoder->get_hw_state(encoder, &pipe);
13457                         I915_STATE_WARN(active,
13458                              "encoder detached but still enabled on pipe %c.\n",
13459                              pipe_name(pipe));
13460                 }
13461         }
13462 }
13463
13464 static void
13465 verify_crtc_state(struct intel_crtc *crtc,
13466                   struct intel_crtc_state *old_crtc_state,
13467                   struct intel_crtc_state *new_crtc_state)
13468 {
13469         struct drm_device *dev = crtc->base.dev;
13470         struct drm_i915_private *dev_priv = to_i915(dev);
13471         struct intel_encoder *encoder;
13472         struct intel_crtc_state *pipe_config;
13473         struct drm_atomic_state *state;
13474         bool active;
13475
13476         state = old_crtc_state->base.state;
13477         __drm_atomic_helper_crtc_destroy_state(&old_crtc_state->base);
13478         pipe_config = old_crtc_state;
13479         memset(pipe_config, 0, sizeof(*pipe_config));
13480         pipe_config->base.crtc = &crtc->base;
13481         pipe_config->base.state = state;
13482
13483         DRM_DEBUG_KMS("[CRTC:%d:%s]\n", crtc->base.base.id, crtc->base.name);
13484
13485         active = dev_priv->display.get_pipe_config(crtc, pipe_config);
13486
13487         /* we keep both pipes enabled on 830 */
13488         if (IS_I830(dev_priv))
13489                 active = new_crtc_state->base.active;
13490
13491         I915_STATE_WARN(new_crtc_state->base.active != active,
13492              "crtc active state doesn't match with hw state "
13493              "(expected %i, found %i)\n", new_crtc_state->base.active, active);
13494
13495         I915_STATE_WARN(crtc->active != new_crtc_state->base.active,
13496              "transitional active state does not match atomic hw state "
13497              "(expected %i, found %i)\n", new_crtc_state->base.active, crtc->active);
13498
13499         for_each_encoder_on_crtc(dev, &crtc->base, encoder) {
13500                 enum pipe pipe;
13501
13502                 active = encoder->get_hw_state(encoder, &pipe);
13503                 I915_STATE_WARN(active != new_crtc_state->base.active,
13504                         "[ENCODER:%i] active %i with crtc active %i\n",
13505                         encoder->base.base.id, active, new_crtc_state->base.active);
13506
13507                 I915_STATE_WARN(active && crtc->pipe != pipe,
13508                                 "Encoder connected to wrong pipe %c\n",
13509                                 pipe_name(pipe));
13510
13511                 if (active)
13512                         encoder->get_config(encoder, pipe_config);
13513         }
13514
13515         intel_crtc_compute_pixel_rate(pipe_config);
13516
13517         if (!new_crtc_state->base.active)
13518                 return;
13519
13520         intel_pipe_config_sanity_check(dev_priv, pipe_config);
13521
13522         if (!intel_pipe_config_compare(new_crtc_state,
13523                                        pipe_config, false)) {
13524                 I915_STATE_WARN(1, "pipe state doesn't match!\n");
13525                 intel_dump_pipe_config(pipe_config, NULL, "[hw state]");
13526                 intel_dump_pipe_config(new_crtc_state, NULL, "[sw state]");
13527         }
13528 }
13529
13530 static void
13531 intel_verify_planes(struct intel_atomic_state *state)
13532 {
13533         struct intel_plane *plane;
13534         const struct intel_plane_state *plane_state;
13535         int i;
13536
13537         for_each_new_intel_plane_in_state(state, plane,
13538                                           plane_state, i)
13539                 assert_plane(plane, plane_state->planar_slave ||
13540                              plane_state->base.visible);
13541 }
13542
13543 static void
13544 verify_single_dpll_state(struct drm_i915_private *dev_priv,
13545                          struct intel_shared_dpll *pll,
13546                          struct intel_crtc *crtc,
13547                          struct intel_crtc_state *new_crtc_state)
13548 {
13549         struct intel_dpll_hw_state dpll_hw_state;
13550         unsigned int crtc_mask;
13551         bool active;
13552
13553         memset(&dpll_hw_state, 0, sizeof(dpll_hw_state));
13554
13555         DRM_DEBUG_KMS("%s\n", pll->info->name);
13556
13557         active = pll->info->funcs->get_hw_state(dev_priv, pll, &dpll_hw_state);
13558
13559         if (!(pll->info->flags & INTEL_DPLL_ALWAYS_ON)) {
13560                 I915_STATE_WARN(!pll->on && pll->active_mask,
13561                      "pll in active use but not on in sw tracking\n");
13562                 I915_STATE_WARN(pll->on && !pll->active_mask,
13563                      "pll is on but not used by any active crtc\n");
13564                 I915_STATE_WARN(pll->on != active,
13565                      "pll on state mismatch (expected %i, found %i)\n",
13566                      pll->on, active);
13567         }
13568
13569         if (!crtc) {
13570                 I915_STATE_WARN(pll->active_mask & ~pll->state.crtc_mask,
13571                                 "more active pll users than references: %x vs %x\n",
13572                                 pll->active_mask, pll->state.crtc_mask);
13573
13574                 return;
13575         }
13576
13577         crtc_mask = drm_crtc_mask(&crtc->base);
13578
13579         if (new_crtc_state->base.active)
13580                 I915_STATE_WARN(!(pll->active_mask & crtc_mask),
13581                                 "pll active mismatch (expected pipe %c in active mask 0x%02x)\n",
13582                                 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13583         else
13584                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13585                                 "pll active mismatch (didn't expect pipe %c in active mask 0x%02x)\n",
13586                                 pipe_name(drm_crtc_index(&crtc->base)), pll->active_mask);
13587
13588         I915_STATE_WARN(!(pll->state.crtc_mask & crtc_mask),
13589                         "pll enabled crtcs mismatch (expected 0x%x in 0x%02x)\n",
13590                         crtc_mask, pll->state.crtc_mask);
13591
13592         I915_STATE_WARN(pll->on && memcmp(&pll->state.hw_state,
13593                                           &dpll_hw_state,
13594                                           sizeof(dpll_hw_state)),
13595                         "pll hw state mismatch\n");
13596 }
13597
13598 static void
13599 verify_shared_dpll_state(struct intel_crtc *crtc,
13600                          struct intel_crtc_state *old_crtc_state,
13601                          struct intel_crtc_state *new_crtc_state)
13602 {
13603         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13604
13605         if (new_crtc_state->shared_dpll)
13606                 verify_single_dpll_state(dev_priv, new_crtc_state->shared_dpll, crtc, new_crtc_state);
13607
13608         if (old_crtc_state->shared_dpll &&
13609             old_crtc_state->shared_dpll != new_crtc_state->shared_dpll) {
13610                 unsigned int crtc_mask = drm_crtc_mask(&crtc->base);
13611                 struct intel_shared_dpll *pll = old_crtc_state->shared_dpll;
13612
13613                 I915_STATE_WARN(pll->active_mask & crtc_mask,
13614                                 "pll active mismatch (didn't expect pipe %c in active mask)\n",
13615                                 pipe_name(drm_crtc_index(&crtc->base)));
13616                 I915_STATE_WARN(pll->state.crtc_mask & crtc_mask,
13617                                 "pll enabled crtcs mismatch (found %x in enabled mask)\n",
13618                                 pipe_name(drm_crtc_index(&crtc->base)));
13619         }
13620 }
13621
13622 static void
13623 intel_modeset_verify_crtc(struct intel_crtc *crtc,
13624                           struct intel_atomic_state *state,
13625                           struct intel_crtc_state *old_crtc_state,
13626                           struct intel_crtc_state *new_crtc_state)
13627 {
13628         if (!needs_modeset(new_crtc_state) && !new_crtc_state->update_pipe)
13629                 return;
13630
13631         verify_wm_state(crtc, new_crtc_state);
13632         verify_connector_state(state, crtc);
13633         verify_crtc_state(crtc, old_crtc_state, new_crtc_state);
13634         verify_shared_dpll_state(crtc, old_crtc_state, new_crtc_state);
13635 }
13636
13637 static void
13638 verify_disabled_dpll_state(struct drm_i915_private *dev_priv)
13639 {
13640         int i;
13641
13642         for (i = 0; i < dev_priv->num_shared_dpll; i++)
13643                 verify_single_dpll_state(dev_priv, &dev_priv->shared_dplls[i], NULL, NULL);
13644 }
13645
13646 static void
13647 intel_modeset_verify_disabled(struct drm_i915_private *dev_priv,
13648                               struct intel_atomic_state *state)
13649 {
13650         verify_encoder_state(dev_priv, state);
13651         verify_connector_state(state, NULL);
13652         verify_disabled_dpll_state(dev_priv);
13653 }
13654
13655 static void
13656 intel_crtc_update_active_timings(const struct intel_crtc_state *crtc_state)
13657 {
13658         struct intel_crtc *crtc = to_intel_crtc(crtc_state->base.crtc);
13659         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
13660         const struct drm_display_mode *adjusted_mode =
13661                 &crtc_state->base.adjusted_mode;
13662
13663         drm_calc_timestamping_constants(&crtc->base, adjusted_mode);
13664
13665         /*
13666          * The scanline counter increments at the leading edge of hsync.
13667          *
13668          * On most platforms it starts counting from vtotal-1 on the
13669          * first active line. That means the scanline counter value is
13670          * always one less than what we would expect. Ie. just after
13671          * start of vblank, which also occurs at start of hsync (on the
13672          * last active line), the scanline counter will read vblank_start-1.
13673          *
13674          * On gen2 the scanline counter starts counting from 1 instead
13675          * of vtotal-1, so we have to subtract one (or rather add vtotal-1
13676          * to keep the value positive), instead of adding one.
13677          *
13678          * On HSW+ the behaviour of the scanline counter depends on the output
13679          * type. For DP ports it behaves like most other platforms, but on HDMI
13680          * there's an extra 1 line difference. So we need to add two instead of
13681          * one to the value.
13682          *
13683          * On VLV/CHV DSI the scanline counter would appear to increment
13684          * approx. 1/3 of a scanline before start of vblank. Unfortunately
13685          * that means we can't tell whether we're in vblank or not while
13686          * we're on that particular line. We must still set scanline_offset
13687          * to 1 so that the vblank timestamps come out correct when we query
13688          * the scanline counter from within the vblank interrupt handler.
13689          * However if queried just before the start of vblank we'll get an
13690          * answer that's slightly in the future.
13691          */
13692         if (IS_GEN(dev_priv, 2)) {
13693                 int vtotal;
13694
13695                 vtotal = adjusted_mode->crtc_vtotal;
13696                 if (adjusted_mode->flags & DRM_MODE_FLAG_INTERLACE)
13697                         vtotal /= 2;
13698
13699                 crtc->scanline_offset = vtotal - 1;
13700         } else if (HAS_DDI(dev_priv) &&
13701                    intel_crtc_has_type(crtc_state, INTEL_OUTPUT_HDMI)) {
13702                 crtc->scanline_offset = 2;
13703         } else {
13704                 crtc->scanline_offset = 1;
13705         }
13706 }
13707
13708 static void intel_modeset_clear_plls(struct intel_atomic_state *state)
13709 {
13710         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13711         struct intel_crtc_state *new_crtc_state;
13712         struct intel_crtc *crtc;
13713         int i;
13714
13715         if (!dev_priv->display.crtc_compute_clock)
13716                 return;
13717
13718         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
13719                 if (!needs_modeset(new_crtc_state))
13720                         continue;
13721
13722                 intel_release_shared_dplls(state, crtc);
13723         }
13724 }
13725
13726 /*
13727  * This implements the workaround described in the "notes" section of the mode
13728  * set sequence documentation. When going from no pipes or single pipe to
13729  * multiple pipes, and planes are enabled after the pipe, we need to wait at
13730  * least 2 vblanks on the first pipe before enabling planes on the second pipe.
13731  */
13732 static int haswell_mode_set_planes_workaround(struct intel_atomic_state *state)
13733 {
13734         struct intel_crtc_state *crtc_state;
13735         struct intel_crtc *crtc;
13736         struct intel_crtc_state *first_crtc_state = NULL;
13737         struct intel_crtc_state *other_crtc_state = NULL;
13738         enum pipe first_pipe = INVALID_PIPE, enabled_pipe = INVALID_PIPE;
13739         int i;
13740
13741         /* look at all crtc's that are going to be enabled in during modeset */
13742         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
13743                 if (!crtc_state->base.active ||
13744                     !needs_modeset(crtc_state))
13745                         continue;
13746
13747                 if (first_crtc_state) {
13748                         other_crtc_state = crtc_state;
13749                         break;
13750                 } else {
13751                         first_crtc_state = crtc_state;
13752                         first_pipe = crtc->pipe;
13753                 }
13754         }
13755
13756         /* No workaround needed? */
13757         if (!first_crtc_state)
13758                 return 0;
13759
13760         /* w/a possibly needed, check how many crtc's are already enabled. */
13761         for_each_intel_crtc(state->base.dev, crtc) {
13762                 crtc_state = intel_atomic_get_crtc_state(&state->base, crtc);
13763                 if (IS_ERR(crtc_state))
13764                         return PTR_ERR(crtc_state);
13765
13766                 crtc_state->hsw_workaround_pipe = INVALID_PIPE;
13767
13768                 if (!crtc_state->base.active ||
13769                     needs_modeset(crtc_state))
13770                         continue;
13771
13772                 /* 2 or more enabled crtcs means no need for w/a */
13773                 if (enabled_pipe != INVALID_PIPE)
13774                         return 0;
13775
13776                 enabled_pipe = crtc->pipe;
13777         }
13778
13779         if (enabled_pipe != INVALID_PIPE)
13780                 first_crtc_state->hsw_workaround_pipe = enabled_pipe;
13781         else if (other_crtc_state)
13782                 other_crtc_state->hsw_workaround_pipe = first_pipe;
13783
13784         return 0;
13785 }
13786
13787 static int intel_modeset_checks(struct intel_atomic_state *state)
13788 {
13789         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13790         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13791         struct intel_crtc *crtc;
13792         int ret, i;
13793
13794         /* keep the current setting */
13795         if (!state->cdclk.force_min_cdclk_changed)
13796                 state->cdclk.force_min_cdclk = dev_priv->cdclk.force_min_cdclk;
13797
13798         state->modeset = true;
13799         state->active_pipes = dev_priv->active_pipes;
13800         state->cdclk.logical = dev_priv->cdclk.logical;
13801         state->cdclk.actual = dev_priv->cdclk.actual;
13802
13803         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13804                                             new_crtc_state, i) {
13805                 if (new_crtc_state->base.active)
13806                         state->active_pipes |= BIT(crtc->pipe);
13807                 else
13808                         state->active_pipes &= ~BIT(crtc->pipe);
13809
13810                 if (old_crtc_state->base.active != new_crtc_state->base.active)
13811                         state->active_pipe_changes |= BIT(crtc->pipe);
13812         }
13813
13814         if (state->active_pipe_changes) {
13815                 ret = intel_atomic_lock_global_state(state);
13816                 if (ret)
13817                         return ret;
13818         }
13819
13820         ret = intel_modeset_calc_cdclk(state);
13821         if (ret)
13822                 return ret;
13823
13824         intel_modeset_clear_plls(state);
13825
13826         if (IS_HASWELL(dev_priv))
13827                 return haswell_mode_set_planes_workaround(state);
13828
13829         return 0;
13830 }
13831
13832 /*
13833  * Handle calculation of various watermark data at the end of the atomic check
13834  * phase.  The code here should be run after the per-crtc and per-plane 'check'
13835  * handlers to ensure that all derived state has been updated.
13836  */
13837 static int calc_watermark_data(struct intel_atomic_state *state)
13838 {
13839         struct drm_device *dev = state->base.dev;
13840         struct drm_i915_private *dev_priv = to_i915(dev);
13841
13842         /* Is there platform-specific watermark information to calculate? */
13843         if (dev_priv->display.compute_global_watermarks)
13844                 return dev_priv->display.compute_global_watermarks(state);
13845
13846         return 0;
13847 }
13848
13849 static void intel_crtc_check_fastset(const struct intel_crtc_state *old_crtc_state,
13850                                      struct intel_crtc_state *new_crtc_state)
13851 {
13852         if (!intel_pipe_config_compare(old_crtc_state, new_crtc_state, true))
13853                 return;
13854
13855         new_crtc_state->base.mode_changed = false;
13856         new_crtc_state->update_pipe = true;
13857
13858         /*
13859          * If we're not doing the full modeset we want to
13860          * keep the current M/N values as they may be
13861          * sufficiently different to the computed values
13862          * to cause problems.
13863          *
13864          * FIXME: should really copy more fuzzy state here
13865          */
13866         new_crtc_state->fdi_m_n = old_crtc_state->fdi_m_n;
13867         new_crtc_state->dp_m_n = old_crtc_state->dp_m_n;
13868         new_crtc_state->dp_m2_n2 = old_crtc_state->dp_m2_n2;
13869         new_crtc_state->has_drrs = old_crtc_state->has_drrs;
13870 }
13871
13872 static int intel_crtc_add_planes_to_state(struct intel_atomic_state *state,
13873                                           struct intel_crtc *crtc,
13874                                           u8 plane_ids_mask)
13875 {
13876         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13877         struct intel_plane *plane;
13878
13879         for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
13880                 struct intel_plane_state *plane_state;
13881
13882                 if ((plane_ids_mask & BIT(plane->id)) == 0)
13883                         continue;
13884
13885                 plane_state = intel_atomic_get_plane_state(state, plane);
13886                 if (IS_ERR(plane_state))
13887                         return PTR_ERR(plane_state);
13888         }
13889
13890         return 0;
13891 }
13892
13893 static bool active_planes_affects_min_cdclk(struct drm_i915_private *dev_priv)
13894 {
13895         /* See {hsw,vlv,ivb}_plane_ratio() */
13896         return IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv) ||
13897                 IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
13898                 IS_IVYBRIDGE(dev_priv);
13899 }
13900
13901 static int intel_atomic_check_planes(struct intel_atomic_state *state,
13902                                      bool *need_modeset)
13903 {
13904         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
13905         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13906         struct intel_plane_state *plane_state;
13907         struct intel_plane *plane;
13908         struct intel_crtc *crtc;
13909         int i, ret;
13910
13911         ret = icl_add_linked_planes(state);
13912         if (ret)
13913                 return ret;
13914
13915         for_each_new_intel_plane_in_state(state, plane, plane_state, i) {
13916                 ret = intel_plane_atomic_check(state, plane);
13917                 if (ret) {
13918                         DRM_DEBUG_ATOMIC("[PLANE:%d:%s] atomic driver check failed\n",
13919                                          plane->base.base.id, plane->base.name);
13920                         return ret;
13921                 }
13922         }
13923
13924         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13925                                             new_crtc_state, i) {
13926                 u8 old_active_planes, new_active_planes;
13927
13928                 ret = icl_check_nv12_planes(new_crtc_state);
13929                 if (ret)
13930                         return ret;
13931
13932                 /*
13933                  * On some platforms the number of active planes affects
13934                  * the planes' minimum cdclk calculation. Add such planes
13935                  * to the state before we compute the minimum cdclk.
13936                  */
13937                 if (!active_planes_affects_min_cdclk(dev_priv))
13938                         continue;
13939
13940                 old_active_planes = old_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
13941                 new_active_planes = new_crtc_state->active_planes & ~BIT(PLANE_CURSOR);
13942
13943                 if (hweight8(old_active_planes) == hweight8(new_active_planes))
13944                         continue;
13945
13946                 ret = intel_crtc_add_planes_to_state(state, crtc, new_active_planes);
13947                 if (ret)
13948                         return ret;
13949         }
13950
13951         /*
13952          * active_planes bitmask has been updated, and potentially
13953          * affected planes are part of the state. We can now
13954          * compute the minimum cdclk for each plane.
13955          */
13956         for_each_new_intel_plane_in_state(state, plane, plane_state, i)
13957                 *need_modeset |= intel_plane_calc_min_cdclk(state, plane);
13958
13959         return 0;
13960 }
13961
13962 static int intel_atomic_check_crtcs(struct intel_atomic_state *state)
13963 {
13964         struct intel_crtc_state *crtc_state;
13965         struct intel_crtc *crtc;
13966         int i;
13967
13968         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
13969                 int ret = intel_crtc_atomic_check(state, crtc);
13970                 if (ret) {
13971                         DRM_DEBUG_ATOMIC("[CRTC:%d:%s] atomic driver check failed\n",
13972                                          crtc->base.base.id, crtc->base.name);
13973                         return ret;
13974                 }
13975         }
13976
13977         return 0;
13978 }
13979
13980 /**
13981  * intel_atomic_check - validate state object
13982  * @dev: drm device
13983  * @_state: state to validate
13984  */
13985 static int intel_atomic_check(struct drm_device *dev,
13986                               struct drm_atomic_state *_state)
13987 {
13988         struct drm_i915_private *dev_priv = to_i915(dev);
13989         struct intel_atomic_state *state = to_intel_atomic_state(_state);
13990         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
13991         struct intel_crtc *crtc;
13992         int ret, i;
13993         bool any_ms = false;
13994
13995         /* Catch I915_MODE_FLAG_INHERITED */
13996         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
13997                                             new_crtc_state, i) {
13998                 if (new_crtc_state->base.mode.private_flags !=
13999                     old_crtc_state->base.mode.private_flags)
14000                         new_crtc_state->base.mode_changed = true;
14001         }
14002
14003         ret = drm_atomic_helper_check_modeset(dev, &state->base);
14004         if (ret)
14005                 goto fail;
14006
14007         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14008                                             new_crtc_state, i) {
14009                 if (!needs_modeset(new_crtc_state))
14010                         continue;
14011
14012                 if (!new_crtc_state->base.enable) {
14013                         any_ms = true;
14014                         continue;
14015                 }
14016
14017                 ret = intel_modeset_pipe_config(new_crtc_state);
14018                 if (ret)
14019                         goto fail;
14020
14021                 intel_crtc_check_fastset(old_crtc_state, new_crtc_state);
14022
14023                 if (needs_modeset(new_crtc_state))
14024                         any_ms = true;
14025         }
14026
14027         if (any_ms && !check_digital_port_conflicts(state)) {
14028                 DRM_DEBUG_KMS("rejecting conflicting digital port configuration\n");
14029                 ret = EINVAL;
14030                 goto fail;
14031         }
14032
14033         ret = drm_dp_mst_atomic_check(&state->base);
14034         if (ret)
14035                 goto fail;
14036
14037         any_ms |= state->cdclk.force_min_cdclk_changed;
14038
14039         ret = intel_atomic_check_planes(state, &any_ms);
14040         if (ret)
14041                 goto fail;
14042
14043         if (any_ms) {
14044                 ret = intel_modeset_checks(state);
14045                 if (ret)
14046                         goto fail;
14047         } else {
14048                 state->cdclk.logical = dev_priv->cdclk.logical;
14049         }
14050
14051         ret = intel_atomic_check_crtcs(state);
14052         if (ret)
14053                 goto fail;
14054
14055         intel_fbc_choose_crtc(dev_priv, state);
14056         ret = calc_watermark_data(state);
14057         if (ret)
14058                 goto fail;
14059
14060         ret = intel_bw_atomic_check(state);
14061         if (ret)
14062                 goto fail;
14063
14064         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14065                                             new_crtc_state, i) {
14066                 if (!needs_modeset(new_crtc_state) &&
14067                     !new_crtc_state->update_pipe)
14068                         continue;
14069
14070                 intel_dump_pipe_config(new_crtc_state, state,
14071                                        needs_modeset(new_crtc_state) ?
14072                                        "[modeset]" : "[fastset]");
14073         }
14074
14075         return 0;
14076
14077  fail:
14078         if (ret == -EDEADLK)
14079                 return ret;
14080
14081         /*
14082          * FIXME would probably be nice to know which crtc specifically
14083          * caused the failure, in cases where we can pinpoint it.
14084          */
14085         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14086                                             new_crtc_state, i)
14087                 intel_dump_pipe_config(new_crtc_state, state, "[failed]");
14088
14089         return ret;
14090 }
14091
14092 static int intel_atomic_prepare_commit(struct intel_atomic_state *state)
14093 {
14094         return drm_atomic_helper_prepare_planes(state->base.dev,
14095                                                 &state->base);
14096 }
14097
14098 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
14099 {
14100         struct drm_device *dev = crtc->base.dev;
14101         struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
14102
14103         if (!vblank->max_vblank_count)
14104                 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
14105
14106         return crtc->base.funcs->get_vblank_counter(&crtc->base);
14107 }
14108
14109 void intel_crtc_arm_fifo_underrun(struct intel_crtc *crtc,
14110                                   struct intel_crtc_state *crtc_state)
14111 {
14112         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14113
14114         if (!IS_GEN(dev_priv, 2))
14115                 intel_set_cpu_fifo_underrun_reporting(dev_priv, crtc->pipe, true);
14116
14117         if (crtc_state->has_pch_encoder) {
14118                 enum pipe pch_transcoder =
14119                         intel_crtc_pch_transcoder(crtc);
14120
14121                 intel_set_pch_fifo_underrun_reporting(dev_priv, pch_transcoder, true);
14122         }
14123 }
14124
14125 static void intel_pipe_fastset(const struct intel_crtc_state *old_crtc_state,
14126                                const struct intel_crtc_state *new_crtc_state)
14127 {
14128         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->base.crtc);
14129         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
14130
14131         /*
14132          * Update pipe size and adjust fitter if needed: the reason for this is
14133          * that in compute_mode_changes we check the native mode (not the pfit
14134          * mode) to see if we can flip rather than do a full mode set. In the
14135          * fastboot case, we'll flip, but if we don't update the pipesrc and
14136          * pfit state, we'll end up with a big fb scanned out into the wrong
14137          * sized surface.
14138          */
14139         intel_set_pipe_src_size(new_crtc_state);
14140
14141         /* on skylake this is done by detaching scalers */
14142         if (INTEL_GEN(dev_priv) >= 9) {
14143                 skl_detach_scalers(new_crtc_state);
14144
14145                 if (new_crtc_state->pch_pfit.enabled)
14146                         skylake_pfit_enable(new_crtc_state);
14147         } else if (HAS_PCH_SPLIT(dev_priv)) {
14148                 if (new_crtc_state->pch_pfit.enabled)
14149                         ironlake_pfit_enable(new_crtc_state);
14150                 else if (old_crtc_state->pch_pfit.enabled)
14151                         ironlake_pfit_disable(old_crtc_state);
14152         }
14153
14154         if (INTEL_GEN(dev_priv) >= 11)
14155                 icl_set_pipe_chicken(crtc);
14156 }
14157
14158 static void commit_pipe_config(struct intel_atomic_state *state,
14159                                struct intel_crtc_state *old_crtc_state,
14160                                struct intel_crtc_state *new_crtc_state)
14161 {
14162         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14163         bool modeset = needs_modeset(new_crtc_state);
14164
14165         /*
14166          * During modesets pipe configuration was programmed as the
14167          * CRTC was enabled.
14168          */
14169         if (!modeset) {
14170                 if (new_crtc_state->base.color_mgmt_changed ||
14171                     new_crtc_state->update_pipe)
14172                         intel_color_commit(new_crtc_state);
14173
14174                 if (INTEL_GEN(dev_priv) >= 9)
14175                         skl_detach_scalers(new_crtc_state);
14176
14177                 if (INTEL_GEN(dev_priv) >= 9 || IS_BROADWELL(dev_priv))
14178                         bdw_set_pipemisc(new_crtc_state);
14179
14180                 if (new_crtc_state->update_pipe)
14181                         intel_pipe_fastset(old_crtc_state, new_crtc_state);
14182         }
14183
14184         if (dev_priv->display.atomic_update_watermarks)
14185                 dev_priv->display.atomic_update_watermarks(state,
14186                                                            new_crtc_state);
14187 }
14188
14189 static void intel_update_crtc(struct intel_crtc *crtc,
14190                               struct intel_atomic_state *state,
14191                               struct intel_crtc_state *old_crtc_state,
14192                               struct intel_crtc_state *new_crtc_state)
14193 {
14194         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14195         bool modeset = needs_modeset(new_crtc_state);
14196         struct intel_plane_state *new_plane_state =
14197                 intel_atomic_get_new_plane_state(state,
14198                                                  to_intel_plane(crtc->base.primary));
14199
14200         if (modeset) {
14201                 intel_crtc_update_active_timings(new_crtc_state);
14202
14203                 dev_priv->display.crtc_enable(new_crtc_state, state);
14204
14205                 /* vblanks work again, re-enable pipe CRC. */
14206                 intel_crtc_enable_pipe_crc(crtc);
14207         } else {
14208                 if (new_crtc_state->preload_luts &&
14209                     (new_crtc_state->base.color_mgmt_changed ||
14210                      new_crtc_state->update_pipe))
14211                         intel_color_load_luts(new_crtc_state);
14212
14213                 intel_pre_plane_update(old_crtc_state, new_crtc_state);
14214
14215                 if (new_crtc_state->update_pipe)
14216                         intel_encoders_update_pipe(crtc, new_crtc_state, state);
14217         }
14218
14219         if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14220                 intel_fbc_disable(crtc);
14221         else if (new_plane_state)
14222                 intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14223
14224         /* Perform vblank evasion around commit operation */
14225         intel_pipe_update_start(new_crtc_state);
14226
14227         commit_pipe_config(state, old_crtc_state, new_crtc_state);
14228
14229         if (INTEL_GEN(dev_priv) >= 9)
14230                 skl_update_planes_on_crtc(state, crtc);
14231         else
14232                 i9xx_update_planes_on_crtc(state, crtc);
14233
14234         intel_pipe_update_end(new_crtc_state);
14235
14236         /*
14237          * We usually enable FIFO underrun interrupts as part of the
14238          * CRTC enable sequence during modesets.  But when we inherit a
14239          * valid pipe configuration from the BIOS we need to take care
14240          * of enabling them on the CRTC's first fastset.
14241          */
14242         if (new_crtc_state->update_pipe && !modeset &&
14243             old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
14244                 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14245 }
14246
14247 static struct intel_crtc *intel_get_slave_crtc(const struct intel_crtc_state *new_crtc_state)
14248 {
14249         struct drm_i915_private *dev_priv = to_i915(new_crtc_state->base.crtc->dev);
14250         enum transcoder slave_transcoder;
14251
14252         WARN_ON(!is_power_of_2(new_crtc_state->sync_mode_slaves_mask));
14253
14254         slave_transcoder = ffs(new_crtc_state->sync_mode_slaves_mask) - 1;
14255         return intel_get_crtc_for_pipe(dev_priv,
14256                                        (enum pipe)slave_transcoder);
14257 }
14258
14259 static void intel_old_crtc_state_disables(struct intel_atomic_state *state,
14260                                           struct intel_crtc_state *old_crtc_state,
14261                                           struct intel_crtc_state *new_crtc_state,
14262                                           struct intel_crtc *crtc)
14263 {
14264         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14265
14266         intel_crtc_disable_planes(state, crtc);
14267
14268         /*
14269          * We need to disable pipe CRC before disabling the pipe,
14270          * or we race against vblank off.
14271          */
14272         intel_crtc_disable_pipe_crc(crtc);
14273
14274         dev_priv->display.crtc_disable(old_crtc_state, state);
14275         crtc->active = false;
14276         intel_fbc_disable(crtc);
14277         intel_disable_shared_dpll(old_crtc_state);
14278
14279         /*
14280          * Underruns don't always raise interrupts,
14281          * so check manually.
14282          */
14283         intel_check_cpu_fifo_underruns(dev_priv);
14284         intel_check_pch_fifo_underruns(dev_priv);
14285
14286         /* FIXME unify this for all platforms */
14287         if (!new_crtc_state->base.active &&
14288             !HAS_GMCH(dev_priv) &&
14289             dev_priv->display.initial_watermarks)
14290                 dev_priv->display.initial_watermarks(state,
14291                                                      new_crtc_state);
14292 }
14293
14294 static void intel_trans_port_sync_modeset_disables(struct intel_atomic_state *state,
14295                                                    struct intel_crtc *crtc,
14296                                                    struct intel_crtc_state *old_crtc_state,
14297                                                    struct intel_crtc_state *new_crtc_state)
14298 {
14299         struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
14300         struct intel_crtc_state *new_slave_crtc_state =
14301                 intel_atomic_get_new_crtc_state(state, slave_crtc);
14302         struct intel_crtc_state *old_slave_crtc_state =
14303                 intel_atomic_get_old_crtc_state(state, slave_crtc);
14304
14305         WARN_ON(!slave_crtc || !new_slave_crtc_state ||
14306                 !old_slave_crtc_state);
14307
14308         /* Disable Slave first */
14309         intel_pre_plane_update(old_slave_crtc_state, new_slave_crtc_state);
14310         if (old_slave_crtc_state->base.active)
14311                 intel_old_crtc_state_disables(state,
14312                                               old_slave_crtc_state,
14313                                               new_slave_crtc_state,
14314                                               slave_crtc);
14315
14316         /* Disable Master */
14317         intel_pre_plane_update(old_crtc_state, new_crtc_state);
14318         if (old_crtc_state->base.active)
14319                 intel_old_crtc_state_disables(state,
14320                                               old_crtc_state,
14321                                               new_crtc_state,
14322                                               crtc);
14323 }
14324
14325 static void intel_commit_modeset_disables(struct intel_atomic_state *state)
14326 {
14327         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14328         struct intel_crtc *crtc;
14329         int i;
14330
14331         /*
14332          * Disable CRTC/pipes in reverse order because some features(MST in
14333          * TGL+) requires master and slave relationship between pipes, so it
14334          * should always pick the lowest pipe as master as it will be enabled
14335          * first and disable in the reverse order so the master will be the
14336          * last one to be disabled.
14337          */
14338         for_each_oldnew_intel_crtc_in_state_reverse(state, crtc, old_crtc_state,
14339                                                     new_crtc_state, i) {
14340                 if (!needs_modeset(new_crtc_state))
14341                         continue;
14342
14343                 /* In case of Transcoder port Sync master slave CRTCs can be
14344                  * assigned in any order and we need to make sure that
14345                  * slave CRTCs are disabled first and then master CRTC since
14346                  * Slave vblanks are masked till Master Vblanks.
14347                  */
14348                 if (is_trans_port_sync_mode(new_crtc_state)) {
14349                         if (is_trans_port_sync_master(new_crtc_state))
14350                                 intel_trans_port_sync_modeset_disables(state,
14351                                                                        crtc,
14352                                                                        old_crtc_state,
14353                                                                        new_crtc_state);
14354                         else
14355                                 continue;
14356                 } else {
14357                         intel_pre_plane_update(old_crtc_state, new_crtc_state);
14358
14359                         if (old_crtc_state->base.active)
14360                                 intel_old_crtc_state_disables(state,
14361                                                               old_crtc_state,
14362                                                               new_crtc_state,
14363                                                               crtc);
14364                 }
14365         }
14366 }
14367
14368 static void intel_commit_modeset_enables(struct intel_atomic_state *state)
14369 {
14370         struct intel_crtc *crtc;
14371         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14372         int i;
14373
14374         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14375                 if (!new_crtc_state->base.active)
14376                         continue;
14377
14378                 intel_update_crtc(crtc, state, old_crtc_state,
14379                                   new_crtc_state);
14380         }
14381 }
14382
14383 static void intel_crtc_enable_trans_port_sync(struct intel_crtc *crtc,
14384                                               struct intel_atomic_state *state,
14385                                               struct intel_crtc_state *new_crtc_state)
14386 {
14387         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14388
14389         intel_crtc_update_active_timings(new_crtc_state);
14390         dev_priv->display.crtc_enable(new_crtc_state, state);
14391         intel_crtc_enable_pipe_crc(crtc);
14392 }
14393
14394 static void intel_set_dp_tp_ctl_normal(struct intel_crtc *crtc,
14395                                        struct intel_atomic_state *state)
14396 {
14397         struct drm_connector *uninitialized_var(conn);
14398         struct drm_connector_state *conn_state;
14399         struct intel_dp *intel_dp;
14400         int i;
14401
14402         for_each_new_connector_in_state(&state->base, conn, conn_state, i) {
14403                 if (conn_state->crtc == &crtc->base)
14404                         break;
14405         }
14406         intel_dp = enc_to_intel_dp(&intel_attached_encoder(conn)->base);
14407         intel_dp_stop_link_train(intel_dp);
14408 }
14409
14410 static void intel_post_crtc_enable_updates(struct intel_crtc *crtc,
14411                                            struct intel_atomic_state *state)
14412 {
14413         struct intel_crtc_state *new_crtc_state =
14414                 intel_atomic_get_new_crtc_state(state, crtc);
14415         struct intel_crtc_state *old_crtc_state =
14416                 intel_atomic_get_old_crtc_state(state, crtc);
14417         struct intel_plane_state *new_plane_state =
14418                 intel_atomic_get_new_plane_state(state,
14419                                                  to_intel_plane(crtc->base.primary));
14420         bool modeset = needs_modeset(new_crtc_state);
14421
14422         if (new_crtc_state->update_pipe && !new_crtc_state->enable_fbc)
14423                 intel_fbc_disable(crtc);
14424         else if (new_plane_state)
14425                 intel_fbc_enable(crtc, new_crtc_state, new_plane_state);
14426
14427         /* Perform vblank evasion around commit operation */
14428         intel_pipe_update_start(new_crtc_state);
14429         commit_pipe_config(state, old_crtc_state, new_crtc_state);
14430         skl_update_planes_on_crtc(state, crtc);
14431         intel_pipe_update_end(new_crtc_state);
14432
14433         /*
14434          * We usually enable FIFO underrun interrupts as part of the
14435          * CRTC enable sequence during modesets.  But when we inherit a
14436          * valid pipe configuration from the BIOS we need to take care
14437          * of enabling them on the CRTC's first fastset.
14438          */
14439         if (new_crtc_state->update_pipe && !modeset &&
14440             old_crtc_state->base.mode.private_flags & I915_MODE_FLAG_INHERITED)
14441                 intel_crtc_arm_fifo_underrun(crtc, new_crtc_state);
14442 }
14443
14444 static void intel_update_trans_port_sync_crtcs(struct intel_crtc *crtc,
14445                                                struct intel_atomic_state *state,
14446                                                struct intel_crtc_state *old_crtc_state,
14447                                                struct intel_crtc_state *new_crtc_state)
14448 {
14449         struct intel_crtc *slave_crtc = intel_get_slave_crtc(new_crtc_state);
14450         struct intel_crtc_state *new_slave_crtc_state =
14451                 intel_atomic_get_new_crtc_state(state, slave_crtc);
14452         struct intel_crtc_state *old_slave_crtc_state =
14453                 intel_atomic_get_old_crtc_state(state, slave_crtc);
14454
14455         WARN_ON(!slave_crtc || !new_slave_crtc_state ||
14456                 !old_slave_crtc_state);
14457
14458         DRM_DEBUG_KMS("Updating Transcoder Port Sync Master CRTC = %d %s and Slave CRTC %d %s\n",
14459                       crtc->base.base.id, crtc->base.name, slave_crtc->base.base.id,
14460                       slave_crtc->base.name);
14461
14462         /* Enable seq for slave with with DP_TP_CTL left Idle until the
14463          * master is ready
14464          */
14465         intel_crtc_enable_trans_port_sync(slave_crtc,
14466                                           state,
14467                                           new_slave_crtc_state);
14468
14469         /* Enable seq for master with with DP_TP_CTL left Idle */
14470         intel_crtc_enable_trans_port_sync(crtc,
14471                                           state,
14472                                           new_crtc_state);
14473
14474         /* Set Slave's DP_TP_CTL to Normal */
14475         intel_set_dp_tp_ctl_normal(slave_crtc,
14476                                    state);
14477
14478         /* Set Master's DP_TP_CTL To Normal */
14479         usleep_range(200, 400);
14480         intel_set_dp_tp_ctl_normal(crtc,
14481                                    state);
14482
14483         /* Now do the post crtc enable for all master and slaves */
14484         intel_post_crtc_enable_updates(slave_crtc,
14485                                        state);
14486         intel_post_crtc_enable_updates(crtc,
14487                                        state);
14488 }
14489
14490 static void skl_commit_modeset_enables(struct intel_atomic_state *state)
14491 {
14492         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
14493         struct intel_crtc *crtc;
14494         struct intel_crtc_state *old_crtc_state, *new_crtc_state;
14495         unsigned int updated = 0;
14496         bool progress;
14497         int i;
14498         u8 hw_enabled_slices = dev_priv->wm.skl_hw.ddb.enabled_slices;
14499         u8 required_slices = state->wm_results.ddb.enabled_slices;
14500         struct skl_ddb_entry entries[I915_MAX_PIPES] = {};
14501
14502         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i)
14503                 /* ignore allocations for crtc's that have been turned off. */
14504                 if (new_crtc_state->base.active)
14505                         entries[i] = old_crtc_state->wm.skl.ddb;
14506
14507         /* If 2nd DBuf slice required, enable it here */
14508         if (INTEL_GEN(dev_priv) >= 11 && required_slices > hw_enabled_slices)
14509                 icl_dbuf_slices_update(dev_priv, required_slices);
14510
14511         /*
14512          * Whenever the number of active pipes changes, we need to make sure we
14513          * update the pipes in the right order so that their ddb allocations
14514          * never overlap with eachother inbetween CRTC updates. Otherwise we'll
14515          * cause pipe underruns and other bad stuff.
14516          */
14517         do {
14518                 progress = false;
14519
14520                 for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14521                         enum pipe pipe = crtc->pipe;
14522                         bool vbl_wait = false;
14523                         bool modeset = needs_modeset(new_crtc_state);
14524
14525                         if (updated & BIT(crtc->pipe) || !new_crtc_state->base.active)
14526                                 continue;
14527
14528                         if (skl_ddb_allocation_overlaps(&new_crtc_state->wm.skl.ddb,
14529                                                         entries,
14530                                                         INTEL_NUM_PIPES(dev_priv), i))
14531                                 continue;
14532
14533                         updated |= BIT(pipe);
14534                         entries[i] = new_crtc_state->wm.skl.ddb;
14535
14536                         /*
14537                          * If this is an already active pipe, it's DDB changed,
14538                          * and this isn't the last pipe that needs updating
14539                          * then we need to wait for a vblank to pass for the
14540                          * new ddb allocation to take effect.
14541                          */
14542                         if (!skl_ddb_entry_equal(&new_crtc_state->wm.skl.ddb,
14543                                                  &old_crtc_state->wm.skl.ddb) &&
14544                             !modeset &&
14545                             state->wm_results.dirty_pipes != updated)
14546                                 vbl_wait = true;
14547
14548                         if (modeset && is_trans_port_sync_mode(new_crtc_state)) {
14549                                 if (is_trans_port_sync_master(new_crtc_state))
14550                                         intel_update_trans_port_sync_crtcs(crtc,
14551                                                                            state,
14552                                                                            old_crtc_state,
14553                                                                            new_crtc_state);
14554                                 else
14555                                         continue;
14556                         } else {
14557                                 intel_update_crtc(crtc, state, old_crtc_state,
14558                                                   new_crtc_state);
14559                         }
14560
14561                         if (vbl_wait)
14562                                 intel_wait_for_vblank(dev_priv, pipe);
14563
14564                         progress = true;
14565                 }
14566         } while (progress);
14567
14568         /* If 2nd DBuf slice is no more required disable it */
14569         if (INTEL_GEN(dev_priv) >= 11 && required_slices < hw_enabled_slices)
14570                 icl_dbuf_slices_update(dev_priv, required_slices);
14571 }
14572
14573 static void intel_atomic_helper_free_state(struct drm_i915_private *dev_priv)
14574 {
14575         struct intel_atomic_state *state, *next;
14576         struct llist_node *freed;
14577
14578         freed = llist_del_all(&dev_priv->atomic_helper.free_list);
14579         llist_for_each_entry_safe(state, next, freed, freed)
14580                 drm_atomic_state_put(&state->base);
14581 }
14582
14583 static void intel_atomic_helper_free_state_worker(struct work_struct *work)
14584 {
14585         struct drm_i915_private *dev_priv =
14586                 container_of(work, typeof(*dev_priv), atomic_helper.free_work);
14587
14588         intel_atomic_helper_free_state(dev_priv);
14589 }
14590
14591 static void intel_atomic_commit_fence_wait(struct intel_atomic_state *intel_state)
14592 {
14593         struct wait_queue_entry wait_fence, wait_reset;
14594         struct drm_i915_private *dev_priv = to_i915(intel_state->base.dev);
14595
14596         init_wait_entry(&wait_fence, 0);
14597         init_wait_entry(&wait_reset, 0);
14598         for (;;) {
14599                 prepare_to_wait(&intel_state->commit_ready.wait,
14600                                 &wait_fence, TASK_UNINTERRUPTIBLE);
14601                 prepare_to_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
14602                                               I915_RESET_MODESET),
14603                                 &wait_reset, TASK_UNINTERRUPTIBLE);
14604
14605
14606                 if (i915_sw_fence_done(&intel_state->commit_ready) ||
14607                     test_bit(I915_RESET_MODESET, &dev_priv->gt.reset.flags))
14608                         break;
14609
14610                 schedule();
14611         }
14612         finish_wait(&intel_state->commit_ready.wait, &wait_fence);
14613         finish_wait(bit_waitqueue(&dev_priv->gt.reset.flags,
14614                                   I915_RESET_MODESET),
14615                     &wait_reset);
14616 }
14617
14618 static void intel_atomic_cleanup_work(struct work_struct *work)
14619 {
14620         struct drm_atomic_state *state =
14621                 container_of(work, struct drm_atomic_state, commit_work);
14622         struct drm_i915_private *i915 = to_i915(state->dev);
14623
14624         drm_atomic_helper_cleanup_planes(&i915->drm, state);
14625         drm_atomic_helper_commit_cleanup_done(state);
14626         drm_atomic_state_put(state);
14627
14628         intel_atomic_helper_free_state(i915);
14629 }
14630
14631 static void intel_atomic_commit_tail(struct intel_atomic_state *state)
14632 {
14633         struct drm_device *dev = state->base.dev;
14634         struct drm_i915_private *dev_priv = to_i915(dev);
14635         struct intel_crtc_state *new_crtc_state, *old_crtc_state;
14636         struct intel_crtc *crtc;
14637         u64 put_domains[I915_MAX_PIPES] = {};
14638         intel_wakeref_t wakeref = 0;
14639         int i;
14640
14641         intel_atomic_commit_fence_wait(state);
14642
14643         drm_atomic_helper_wait_for_dependencies(&state->base);
14644
14645         if (state->modeset)
14646                 wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_MODESET);
14647
14648         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state,
14649                                             new_crtc_state, i) {
14650                 if (needs_modeset(new_crtc_state) ||
14651                     new_crtc_state->update_pipe) {
14652
14653                         put_domains[crtc->pipe] =
14654                                 modeset_get_crtc_power_domains(new_crtc_state);
14655                 }
14656         }
14657
14658         intel_commit_modeset_disables(state);
14659
14660         /* FIXME: Eventually get rid of our crtc->config pointer */
14661         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14662                 crtc->config = new_crtc_state;
14663
14664         if (state->modeset) {
14665                 drm_atomic_helper_update_legacy_modeset_state(dev, &state->base);
14666
14667                 intel_set_cdclk_pre_plane_update(dev_priv,
14668                                                  &state->cdclk.actual,
14669                                                  &dev_priv->cdclk.actual,
14670                                                  state->cdclk.pipe);
14671
14672                 /*
14673                  * SKL workaround: bspec recommends we disable the SAGV when we
14674                  * have more then one pipe enabled
14675                  */
14676                 if (!intel_can_enable_sagv(state))
14677                         intel_disable_sagv(dev_priv);
14678
14679                 intel_modeset_verify_disabled(dev_priv, state);
14680         }
14681
14682         /* Complete the events for pipes that have now been disabled */
14683         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14684                 bool modeset = needs_modeset(new_crtc_state);
14685
14686                 /* Complete events for now disable pipes here. */
14687                 if (modeset && !new_crtc_state->base.active && new_crtc_state->base.event) {
14688                         spin_lock_irq(&dev->event_lock);
14689                         drm_crtc_send_vblank_event(&crtc->base, new_crtc_state->base.event);
14690                         spin_unlock_irq(&dev->event_lock);
14691
14692                         new_crtc_state->base.event = NULL;
14693                 }
14694         }
14695
14696         if (state->modeset)
14697                 intel_encoders_update_prepare(state);
14698
14699         /* Now enable the clocks, plane, pipe, and connectors that we set up. */
14700         dev_priv->display.commit_modeset_enables(state);
14701
14702         if (state->modeset) {
14703                 intel_encoders_update_complete(state);
14704
14705                 intel_set_cdclk_post_plane_update(dev_priv,
14706                                                   &state->cdclk.actual,
14707                                                   &dev_priv->cdclk.actual,
14708                                                   state->cdclk.pipe);
14709         }
14710
14711         /* FIXME: We should call drm_atomic_helper_commit_hw_done() here
14712          * already, but still need the state for the delayed optimization. To
14713          * fix this:
14714          * - wrap the optimization/post_plane_update stuff into a per-crtc work.
14715          * - schedule that vblank worker _before_ calling hw_done
14716          * - at the start of commit_tail, cancel it _synchrously
14717          * - switch over to the vblank wait helper in the core after that since
14718          *   we don't need out special handling any more.
14719          */
14720         drm_atomic_helper_wait_for_flip_done(dev, &state->base);
14721
14722         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14723                 if (new_crtc_state->base.active &&
14724                     !needs_modeset(new_crtc_state) &&
14725                     !new_crtc_state->preload_luts &&
14726                     (new_crtc_state->base.color_mgmt_changed ||
14727                      new_crtc_state->update_pipe))
14728                         intel_color_load_luts(new_crtc_state);
14729         }
14730
14731         /*
14732          * Now that the vblank has passed, we can go ahead and program the
14733          * optimal watermarks on platforms that need two-step watermark
14734          * programming.
14735          *
14736          * TODO: Move this (and other cleanup) to an async worker eventually.
14737          */
14738         for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i) {
14739                 if (dev_priv->display.optimize_watermarks)
14740                         dev_priv->display.optimize_watermarks(state,
14741                                                               new_crtc_state);
14742         }
14743
14744         for_each_oldnew_intel_crtc_in_state(state, crtc, old_crtc_state, new_crtc_state, i) {
14745                 intel_post_plane_update(old_crtc_state);
14746
14747                 if (put_domains[i])
14748                         modeset_put_power_domains(dev_priv, put_domains[i]);
14749
14750                 intel_modeset_verify_crtc(crtc, state, old_crtc_state, new_crtc_state);
14751         }
14752
14753         if (state->modeset)
14754                 intel_verify_planes(state);
14755
14756         if (state->modeset && intel_can_enable_sagv(state))
14757                 intel_enable_sagv(dev_priv);
14758
14759         drm_atomic_helper_commit_hw_done(&state->base);
14760
14761         if (state->modeset) {
14762                 /* As one of the primary mmio accessors, KMS has a high
14763                  * likelihood of triggering bugs in unclaimed access. After we
14764                  * finish modesetting, see if an error has been flagged, and if
14765                  * so enable debugging for the next modeset - and hope we catch
14766                  * the culprit.
14767                  */
14768                 intel_uncore_arm_unclaimed_mmio_detection(&dev_priv->uncore);
14769                 intel_display_power_put(dev_priv, POWER_DOMAIN_MODESET, wakeref);
14770         }
14771         intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14772
14773         /*
14774          * Defer the cleanup of the old state to a separate worker to not
14775          * impede the current task (userspace for blocking modesets) that
14776          * are executed inline. For out-of-line asynchronous modesets/flips,
14777          * deferring to a new worker seems overkill, but we would place a
14778          * schedule point (cond_resched()) here anyway to keep latencies
14779          * down.
14780          */
14781         INIT_WORK(&state->base.commit_work, intel_atomic_cleanup_work);
14782         queue_work(system_highpri_wq, &state->base.commit_work);
14783 }
14784
14785 static void intel_atomic_commit_work(struct work_struct *work)
14786 {
14787         struct intel_atomic_state *state =
14788                 container_of(work, struct intel_atomic_state, base.commit_work);
14789
14790         intel_atomic_commit_tail(state);
14791 }
14792
14793 static int __i915_sw_fence_call
14794 intel_atomic_commit_ready(struct i915_sw_fence *fence,
14795                           enum i915_sw_fence_notify notify)
14796 {
14797         struct intel_atomic_state *state =
14798                 container_of(fence, struct intel_atomic_state, commit_ready);
14799
14800         switch (notify) {
14801         case FENCE_COMPLETE:
14802                 /* we do blocking waits in the worker, nothing to do here */
14803                 break;
14804         case FENCE_FREE:
14805                 {
14806                         struct intel_atomic_helper *helper =
14807                                 &to_i915(state->base.dev)->atomic_helper;
14808
14809                         if (llist_add(&state->freed, &helper->free_list))
14810                                 schedule_work(&helper->free_work);
14811                         break;
14812                 }
14813         }
14814
14815         return NOTIFY_DONE;
14816 }
14817
14818 static void intel_atomic_track_fbs(struct intel_atomic_state *state)
14819 {
14820         struct intel_plane_state *old_plane_state, *new_plane_state;
14821         struct intel_plane *plane;
14822         int i;
14823
14824         for_each_oldnew_intel_plane_in_state(state, plane, old_plane_state,
14825                                              new_plane_state, i)
14826                 intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb),
14827                                         to_intel_frontbuffer(new_plane_state->base.fb),
14828                                         plane->frontbuffer_bit);
14829 }
14830
14831 static void assert_global_state_locked(struct drm_i915_private *dev_priv)
14832 {
14833         struct intel_crtc *crtc;
14834
14835         for_each_intel_crtc(&dev_priv->drm, crtc)
14836                 drm_modeset_lock_assert_held(&crtc->base.mutex);
14837 }
14838
14839 static int intel_atomic_commit(struct drm_device *dev,
14840                                struct drm_atomic_state *_state,
14841                                bool nonblock)
14842 {
14843         struct intel_atomic_state *state = to_intel_atomic_state(_state);
14844         struct drm_i915_private *dev_priv = to_i915(dev);
14845         int ret = 0;
14846
14847         state->wakeref = intel_runtime_pm_get(&dev_priv->runtime_pm);
14848
14849         drm_atomic_state_get(&state->base);
14850         i915_sw_fence_init(&state->commit_ready,
14851                            intel_atomic_commit_ready);
14852
14853         /*
14854          * The intel_legacy_cursor_update() fast path takes care
14855          * of avoiding the vblank waits for simple cursor
14856          * movement and flips. For cursor on/off and size changes,
14857          * we want to perform the vblank waits so that watermark
14858          * updates happen during the correct frames. Gen9+ have
14859          * double buffered watermarks and so shouldn't need this.
14860          *
14861          * Unset state->legacy_cursor_update before the call to
14862          * drm_atomic_helper_setup_commit() because otherwise
14863          * drm_atomic_helper_wait_for_flip_done() is a noop and
14864          * we get FIFO underruns because we didn't wait
14865          * for vblank.
14866          *
14867          * FIXME doing watermarks and fb cleanup from a vblank worker
14868          * (assuming we had any) would solve these problems.
14869          */
14870         if (INTEL_GEN(dev_priv) < 9 && state->base.legacy_cursor_update) {
14871                 struct intel_crtc_state *new_crtc_state;
14872                 struct intel_crtc *crtc;
14873                 int i;
14874
14875                 for_each_new_intel_crtc_in_state(state, crtc, new_crtc_state, i)
14876                         if (new_crtc_state->wm.need_postvbl_update ||
14877                             new_crtc_state->update_wm_post)
14878                                 state->base.legacy_cursor_update = false;
14879         }
14880
14881         ret = intel_atomic_prepare_commit(state);
14882         if (ret) {
14883                 DRM_DEBUG_ATOMIC("Preparing state failed with %i\n", ret);
14884                 i915_sw_fence_commit(&state->commit_ready);
14885                 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14886                 return ret;
14887         }
14888
14889         ret = drm_atomic_helper_setup_commit(&state->base, nonblock);
14890         if (!ret)
14891                 ret = drm_atomic_helper_swap_state(&state->base, true);
14892
14893         if (ret) {
14894                 i915_sw_fence_commit(&state->commit_ready);
14895
14896                 drm_atomic_helper_cleanup_planes(dev, &state->base);
14897                 intel_runtime_pm_put(&dev_priv->runtime_pm, state->wakeref);
14898                 return ret;
14899         }
14900         dev_priv->wm.distrust_bios_wm = false;
14901         intel_shared_dpll_swap_state(state);
14902         intel_atomic_track_fbs(state);
14903
14904         if (state->global_state_changed) {
14905                 assert_global_state_locked(dev_priv);
14906
14907                 memcpy(dev_priv->min_cdclk, state->min_cdclk,
14908                        sizeof(state->min_cdclk));
14909                 memcpy(dev_priv->min_voltage_level, state->min_voltage_level,
14910                        sizeof(state->min_voltage_level));
14911                 dev_priv->active_pipes = state->active_pipes;
14912                 dev_priv->cdclk.force_min_cdclk = state->cdclk.force_min_cdclk;
14913
14914                 intel_cdclk_swap_state(state);
14915         }
14916
14917         drm_atomic_state_get(&state->base);
14918         INIT_WORK(&state->base.commit_work, intel_atomic_commit_work);
14919
14920         i915_sw_fence_commit(&state->commit_ready);
14921         if (nonblock && state->modeset) {
14922                 queue_work(dev_priv->modeset_wq, &state->base.commit_work);
14923         } else if (nonblock) {
14924                 queue_work(dev_priv->flip_wq, &state->base.commit_work);
14925         } else {
14926                 if (state->modeset)
14927                         flush_workqueue(dev_priv->modeset_wq);
14928                 intel_atomic_commit_tail(state);
14929         }
14930
14931         return 0;
14932 }
14933
14934 struct wait_rps_boost {
14935         struct wait_queue_entry wait;
14936
14937         struct drm_crtc *crtc;
14938         struct i915_request *request;
14939 };
14940
14941 static int do_rps_boost(struct wait_queue_entry *_wait,
14942                         unsigned mode, int sync, void *key)
14943 {
14944         struct wait_rps_boost *wait = container_of(_wait, typeof(*wait), wait);
14945         struct i915_request *rq = wait->request;
14946
14947         /*
14948          * If we missed the vblank, but the request is already running it
14949          * is reasonable to assume that it will complete before the next
14950          * vblank without our intervention, so leave RPS alone.
14951          */
14952         if (!i915_request_started(rq))
14953                 intel_rps_boost(rq);
14954         i915_request_put(rq);
14955
14956         drm_crtc_vblank_put(wait->crtc);
14957
14958         list_del(&wait->wait.entry);
14959         kfree(wait);
14960         return 1;
14961 }
14962
14963 static void add_rps_boost_after_vblank(struct drm_crtc *crtc,
14964                                        struct dma_fence *fence)
14965 {
14966         struct wait_rps_boost *wait;
14967
14968         if (!dma_fence_is_i915(fence))
14969                 return;
14970
14971         if (INTEL_GEN(to_i915(crtc->dev)) < 6)
14972                 return;
14973
14974         if (drm_crtc_vblank_get(crtc))
14975                 return;
14976
14977         wait = kmalloc(sizeof(*wait), GFP_KERNEL);
14978         if (!wait) {
14979                 drm_crtc_vblank_put(crtc);
14980                 return;
14981         }
14982
14983         wait->request = to_request(dma_fence_get(fence));
14984         wait->crtc = crtc;
14985
14986         wait->wait.func = do_rps_boost;
14987         wait->wait.flags = 0;
14988
14989         add_wait_queue(drm_crtc_vblank_waitqueue(crtc), &wait->wait);
14990 }
14991
14992 static int intel_plane_pin_fb(struct intel_plane_state *plane_state)
14993 {
14994         struct intel_plane *plane = to_intel_plane(plane_state->base.plane);
14995         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
14996         struct drm_framebuffer *fb = plane_state->base.fb;
14997         struct i915_vma *vma;
14998
14999         if (plane->id == PLANE_CURSOR &&
15000             INTEL_INFO(dev_priv)->display.cursor_needs_physical) {
15001                 struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15002                 const int align = intel_cursor_alignment(dev_priv);
15003                 int err;
15004
15005                 err = i915_gem_object_attach_phys(obj, align);
15006                 if (err)
15007                         return err;
15008         }
15009
15010         vma = intel_pin_and_fence_fb_obj(fb,
15011                                          &plane_state->view,
15012                                          intel_plane_uses_fence(plane_state),
15013                                          &plane_state->flags);
15014         if (IS_ERR(vma))
15015                 return PTR_ERR(vma);
15016
15017         plane_state->vma = vma;
15018
15019         return 0;
15020 }
15021
15022 static void intel_plane_unpin_fb(struct intel_plane_state *old_plane_state)
15023 {
15024         struct i915_vma *vma;
15025
15026         vma = fetch_and_zero(&old_plane_state->vma);
15027         if (vma)
15028                 intel_unpin_fb_vma(vma, old_plane_state->flags);
15029 }
15030
15031 static void fb_obj_bump_render_priority(struct drm_i915_gem_object *obj)
15032 {
15033         struct i915_sched_attr attr = {
15034                 .priority = I915_USER_PRIORITY(I915_PRIORITY_DISPLAY),
15035         };
15036
15037         i915_gem_object_wait_priority(obj, 0, &attr);
15038 }
15039
15040 /**
15041  * intel_prepare_plane_fb - Prepare fb for usage on plane
15042  * @plane: drm plane to prepare for
15043  * @_new_plane_state: the plane state being prepared
15044  *
15045  * Prepares a framebuffer for usage on a display plane.  Generally this
15046  * involves pinning the underlying object and updating the frontbuffer tracking
15047  * bits.  Some older platforms need special physical address handling for
15048  * cursor planes.
15049  *
15050  * Returns 0 on success, negative error code on failure.
15051  */
15052 int
15053 intel_prepare_plane_fb(struct drm_plane *plane,
15054                        struct drm_plane_state *_new_plane_state)
15055 {
15056         struct intel_plane_state *new_plane_state =
15057                 to_intel_plane_state(_new_plane_state);
15058         struct intel_atomic_state *intel_state =
15059                 to_intel_atomic_state(new_plane_state->base.state);
15060         struct drm_i915_private *dev_priv = to_i915(plane->dev);
15061         struct drm_framebuffer *fb = new_plane_state->base.fb;
15062         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
15063         struct drm_i915_gem_object *old_obj = intel_fb_obj(plane->state->fb);
15064         int ret;
15065
15066         if (old_obj) {
15067                 struct intel_crtc_state *crtc_state =
15068                         intel_atomic_get_new_crtc_state(intel_state,
15069                                                         to_intel_crtc(plane->state->crtc));
15070
15071                 /* Big Hammer, we also need to ensure that any pending
15072                  * MI_WAIT_FOR_EVENT inside a user batch buffer on the
15073                  * current scanout is retired before unpinning the old
15074                  * framebuffer. Note that we rely on userspace rendering
15075                  * into the buffer attached to the pipe they are waiting
15076                  * on. If not, userspace generates a GPU hang with IPEHR
15077                  * point to the MI_WAIT_FOR_EVENT.
15078                  *
15079                  * This should only fail upon a hung GPU, in which case we
15080                  * can safely continue.
15081                  */
15082                 if (needs_modeset(crtc_state)) {
15083                         ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15084                                                               old_obj->base.resv, NULL,
15085                                                               false, 0,
15086                                                               GFP_KERNEL);
15087                         if (ret < 0)
15088                                 return ret;
15089                 }
15090         }
15091
15092         if (new_plane_state->base.fence) { /* explicit fencing */
15093                 ret = i915_sw_fence_await_dma_fence(&intel_state->commit_ready,
15094                                                     new_plane_state->base.fence,
15095                                                     I915_FENCE_TIMEOUT,
15096                                                     GFP_KERNEL);
15097                 if (ret < 0)
15098                         return ret;
15099         }
15100
15101         if (!obj)
15102                 return 0;
15103
15104         ret = i915_gem_object_pin_pages(obj);
15105         if (ret)
15106                 return ret;
15107
15108         ret = intel_plane_pin_fb(new_plane_state);
15109
15110         i915_gem_object_unpin_pages(obj);
15111         if (ret)
15112                 return ret;
15113
15114         fb_obj_bump_render_priority(obj);
15115         intel_frontbuffer_flush(obj->frontbuffer, ORIGIN_DIRTYFB);
15116
15117         if (!new_plane_state->base.fence) { /* implicit fencing */
15118                 struct dma_fence *fence;
15119
15120                 ret = i915_sw_fence_await_reservation(&intel_state->commit_ready,
15121                                                       obj->base.resv, NULL,
15122                                                       false, I915_FENCE_TIMEOUT,
15123                                                       GFP_KERNEL);
15124                 if (ret < 0)
15125                         return ret;
15126
15127                 fence = dma_resv_get_excl_rcu(obj->base.resv);
15128                 if (fence) {
15129                         add_rps_boost_after_vblank(new_plane_state->base.crtc,
15130                                                    fence);
15131                         dma_fence_put(fence);
15132                 }
15133         } else {
15134                 add_rps_boost_after_vblank(new_plane_state->base.crtc,
15135                                            new_plane_state->base.fence);
15136         }
15137
15138         /*
15139          * We declare pageflips to be interactive and so merit a small bias
15140          * towards upclocking to deliver the frame on time. By only changing
15141          * the RPS thresholds to sample more regularly and aim for higher
15142          * clocks we can hopefully deliver low power workloads (like kodi)
15143          * that are not quite steady state without resorting to forcing
15144          * maximum clocks following a vblank miss (see do_rps_boost()).
15145          */
15146         if (!intel_state->rps_interactive) {
15147                 intel_rps_mark_interactive(&dev_priv->gt.rps, true);
15148                 intel_state->rps_interactive = true;
15149         }
15150
15151         return 0;
15152 }
15153
15154 /**
15155  * intel_cleanup_plane_fb - Cleans up an fb after plane use
15156  * @plane: drm plane to clean up for
15157  * @_old_plane_state: the state from the previous modeset
15158  *
15159  * Cleans up a framebuffer that has just been removed from a plane.
15160  */
15161 void
15162 intel_cleanup_plane_fb(struct drm_plane *plane,
15163                        struct drm_plane_state *_old_plane_state)
15164 {
15165         struct intel_plane_state *old_plane_state =
15166                 to_intel_plane_state(_old_plane_state);
15167         struct intel_atomic_state *intel_state =
15168                 to_intel_atomic_state(old_plane_state->base.state);
15169         struct drm_i915_private *dev_priv = to_i915(plane->dev);
15170
15171         if (intel_state->rps_interactive) {
15172                 intel_rps_mark_interactive(&dev_priv->gt.rps, false);
15173                 intel_state->rps_interactive = false;
15174         }
15175
15176         /* Should only be called after a successful intel_prepare_plane_fb()! */
15177         intel_plane_unpin_fb(old_plane_state);
15178 }
15179
15180 /**
15181  * intel_plane_destroy - destroy a plane
15182  * @plane: plane to destroy
15183  *
15184  * Common destruction function for all types of planes (primary, cursor,
15185  * sprite).
15186  */
15187 void intel_plane_destroy(struct drm_plane *plane)
15188 {
15189         drm_plane_cleanup(plane);
15190         kfree(to_intel_plane(plane));
15191 }
15192
15193 static bool i8xx_plane_format_mod_supported(struct drm_plane *_plane,
15194                                             u32 format, u64 modifier)
15195 {
15196         switch (modifier) {
15197         case DRM_FORMAT_MOD_LINEAR:
15198         case I915_FORMAT_MOD_X_TILED:
15199                 break;
15200         default:
15201                 return false;
15202         }
15203
15204         switch (format) {
15205         case DRM_FORMAT_C8:
15206         case DRM_FORMAT_RGB565:
15207         case DRM_FORMAT_XRGB1555:
15208         case DRM_FORMAT_XRGB8888:
15209                 return modifier == DRM_FORMAT_MOD_LINEAR ||
15210                         modifier == I915_FORMAT_MOD_X_TILED;
15211         default:
15212                 return false;
15213         }
15214 }
15215
15216 static bool i965_plane_format_mod_supported(struct drm_plane *_plane,
15217                                             u32 format, u64 modifier)
15218 {
15219         switch (modifier) {
15220         case DRM_FORMAT_MOD_LINEAR:
15221         case I915_FORMAT_MOD_X_TILED:
15222                 break;
15223         default:
15224                 return false;
15225         }
15226
15227         switch (format) {
15228         case DRM_FORMAT_C8:
15229         case DRM_FORMAT_RGB565:
15230         case DRM_FORMAT_XRGB8888:
15231         case DRM_FORMAT_XBGR8888:
15232         case DRM_FORMAT_XRGB2101010:
15233         case DRM_FORMAT_XBGR2101010:
15234         case DRM_FORMAT_XBGR16161616F:
15235                 return modifier == DRM_FORMAT_MOD_LINEAR ||
15236                         modifier == I915_FORMAT_MOD_X_TILED;
15237         default:
15238                 return false;
15239         }
15240 }
15241
15242 static bool intel_cursor_format_mod_supported(struct drm_plane *_plane,
15243                                               u32 format, u64 modifier)
15244 {
15245         return modifier == DRM_FORMAT_MOD_LINEAR &&
15246                 format == DRM_FORMAT_ARGB8888;
15247 }
15248
15249 static const struct drm_plane_funcs i965_plane_funcs = {
15250         .update_plane = drm_atomic_helper_update_plane,
15251         .disable_plane = drm_atomic_helper_disable_plane,
15252         .destroy = intel_plane_destroy,
15253         .atomic_duplicate_state = intel_plane_duplicate_state,
15254         .atomic_destroy_state = intel_plane_destroy_state,
15255         .format_mod_supported = i965_plane_format_mod_supported,
15256 };
15257
15258 static const struct drm_plane_funcs i8xx_plane_funcs = {
15259         .update_plane = drm_atomic_helper_update_plane,
15260         .disable_plane = drm_atomic_helper_disable_plane,
15261         .destroy = intel_plane_destroy,
15262         .atomic_duplicate_state = intel_plane_duplicate_state,
15263         .atomic_destroy_state = intel_plane_destroy_state,
15264         .format_mod_supported = i8xx_plane_format_mod_supported,
15265 };
15266
15267 static int
15268 intel_legacy_cursor_update(struct drm_plane *_plane,
15269                            struct drm_crtc *_crtc,
15270                            struct drm_framebuffer *fb,
15271                            int crtc_x, int crtc_y,
15272                            unsigned int crtc_w, unsigned int crtc_h,
15273                            u32 src_x, u32 src_y,
15274                            u32 src_w, u32 src_h,
15275                            struct drm_modeset_acquire_ctx *ctx)
15276 {
15277         struct intel_plane *plane = to_intel_plane(_plane);
15278         struct intel_crtc *crtc = to_intel_crtc(_crtc);
15279         struct intel_plane_state *old_plane_state =
15280                 to_intel_plane_state(plane->base.state);
15281         struct intel_plane_state *new_plane_state;
15282         struct intel_crtc_state *crtc_state =
15283                 to_intel_crtc_state(crtc->base.state);
15284         struct intel_crtc_state *new_crtc_state;
15285         int ret;
15286
15287         /*
15288          * When crtc is inactive or there is a modeset pending,
15289          * wait for it to complete in the slowpath
15290          */
15291         if (!crtc_state->base.active || needs_modeset(crtc_state) ||
15292             crtc_state->update_pipe)
15293                 goto slow;
15294
15295         /*
15296          * Don't do an async update if there is an outstanding commit modifying
15297          * the plane.  This prevents our async update's changes from getting
15298          * overridden by a previous synchronous update's state.
15299          */
15300         if (old_plane_state->base.commit &&
15301             !try_wait_for_completion(&old_plane_state->base.commit->hw_done))
15302                 goto slow;
15303
15304         /*
15305          * If any parameters change that may affect watermarks,
15306          * take the slowpath. Only changing fb or position should be
15307          * in the fastpath.
15308          */
15309         if (old_plane_state->base.crtc != &crtc->base ||
15310             old_plane_state->base.src_w != src_w ||
15311             old_plane_state->base.src_h != src_h ||
15312             old_plane_state->base.crtc_w != crtc_w ||
15313             old_plane_state->base.crtc_h != crtc_h ||
15314             !old_plane_state->base.fb != !fb)
15315                 goto slow;
15316
15317         new_plane_state = to_intel_plane_state(intel_plane_duplicate_state(&plane->base));
15318         if (!new_plane_state)
15319                 return -ENOMEM;
15320
15321         new_crtc_state = to_intel_crtc_state(intel_crtc_duplicate_state(&crtc->base));
15322         if (!new_crtc_state) {
15323                 ret = -ENOMEM;
15324                 goto out_free;
15325         }
15326
15327         drm_atomic_set_fb_for_plane(&new_plane_state->base, fb);
15328
15329         new_plane_state->base.src_x = src_x;
15330         new_plane_state->base.src_y = src_y;
15331         new_plane_state->base.src_w = src_w;
15332         new_plane_state->base.src_h = src_h;
15333         new_plane_state->base.crtc_x = crtc_x;
15334         new_plane_state->base.crtc_y = crtc_y;
15335         new_plane_state->base.crtc_w = crtc_w;
15336         new_plane_state->base.crtc_h = crtc_h;
15337
15338         ret = intel_plane_atomic_check_with_state(crtc_state, new_crtc_state,
15339                                                   old_plane_state, new_plane_state);
15340         if (ret)
15341                 goto out_free;
15342
15343         ret = intel_plane_pin_fb(new_plane_state);
15344         if (ret)
15345                 goto out_free;
15346
15347         intel_frontbuffer_flush(to_intel_frontbuffer(new_plane_state->base.fb), ORIGIN_FLIP);
15348         intel_frontbuffer_track(to_intel_frontbuffer(old_plane_state->base.fb),
15349                                 to_intel_frontbuffer(new_plane_state->base.fb),
15350                                 plane->frontbuffer_bit);
15351
15352         /* Swap plane state */
15353         plane->base.state = &new_plane_state->base;
15354
15355         /*
15356          * We cannot swap crtc_state as it may be in use by an atomic commit or
15357          * page flip that's running simultaneously. If we swap crtc_state and
15358          * destroy the old state, we will cause a use-after-free there.
15359          *
15360          * Only update active_planes, which is needed for our internal
15361          * bookkeeping. Either value will do the right thing when updating
15362          * planes atomically. If the cursor was part of the atomic update then
15363          * we would have taken the slowpath.
15364          */
15365         crtc_state->active_planes = new_crtc_state->active_planes;
15366
15367         if (new_plane_state->base.visible)
15368                 intel_update_plane(plane, crtc_state, new_plane_state);
15369         else
15370                 intel_disable_plane(plane, crtc_state);
15371
15372         intel_plane_unpin_fb(old_plane_state);
15373
15374 out_free:
15375         if (new_crtc_state)
15376                 intel_crtc_destroy_state(&crtc->base, &new_crtc_state->base);
15377         if (ret)
15378                 intel_plane_destroy_state(&plane->base, &new_plane_state->base);
15379         else
15380                 intel_plane_destroy_state(&plane->base, &old_plane_state->base);
15381         return ret;
15382
15383 slow:
15384         return drm_atomic_helper_update_plane(&plane->base, &crtc->base, fb,
15385                                               crtc_x, crtc_y, crtc_w, crtc_h,
15386                                               src_x, src_y, src_w, src_h, ctx);
15387 }
15388
15389 static const struct drm_plane_funcs intel_cursor_plane_funcs = {
15390         .update_plane = intel_legacy_cursor_update,
15391         .disable_plane = drm_atomic_helper_disable_plane,
15392         .destroy = intel_plane_destroy,
15393         .atomic_duplicate_state = intel_plane_duplicate_state,
15394         .atomic_destroy_state = intel_plane_destroy_state,
15395         .format_mod_supported = intel_cursor_format_mod_supported,
15396 };
15397
15398 static bool i9xx_plane_has_fbc(struct drm_i915_private *dev_priv,
15399                                enum i9xx_plane_id i9xx_plane)
15400 {
15401         if (!HAS_FBC(dev_priv))
15402                 return false;
15403
15404         if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15405                 return i9xx_plane == PLANE_A; /* tied to pipe A */
15406         else if (IS_IVYBRIDGE(dev_priv))
15407                 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B ||
15408                         i9xx_plane == PLANE_C;
15409         else if (INTEL_GEN(dev_priv) >= 4)
15410                 return i9xx_plane == PLANE_A || i9xx_plane == PLANE_B;
15411         else
15412                 return i9xx_plane == PLANE_A;
15413 }
15414
15415 static struct intel_plane *
15416 intel_primary_plane_create(struct drm_i915_private *dev_priv, enum pipe pipe)
15417 {
15418         struct intel_plane *plane;
15419         const struct drm_plane_funcs *plane_funcs;
15420         unsigned int supported_rotations;
15421         unsigned int possible_crtcs;
15422         const u64 *modifiers;
15423         const u32 *formats;
15424         int num_formats;
15425         int ret, zpos;
15426
15427         if (INTEL_GEN(dev_priv) >= 9)
15428                 return skl_universal_plane_create(dev_priv, pipe,
15429                                                   PLANE_PRIMARY);
15430
15431         plane = intel_plane_alloc();
15432         if (IS_ERR(plane))
15433                 return plane;
15434
15435         plane->pipe = pipe;
15436         /*
15437          * On gen2/3 only plane A can do FBC, but the panel fitter and LVDS
15438          * port is hooked to pipe B. Hence we want plane A feeding pipe B.
15439          */
15440         if (HAS_FBC(dev_priv) && INTEL_GEN(dev_priv) < 4)
15441                 plane->i9xx_plane = (enum i9xx_plane_id) !pipe;
15442         else
15443                 plane->i9xx_plane = (enum i9xx_plane_id) pipe;
15444         plane->id = PLANE_PRIMARY;
15445         plane->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, plane->id);
15446
15447         plane->has_fbc = i9xx_plane_has_fbc(dev_priv, plane->i9xx_plane);
15448         if (plane->has_fbc) {
15449                 struct intel_fbc *fbc = &dev_priv->fbc;
15450
15451                 fbc->possible_framebuffer_bits |= plane->frontbuffer_bit;
15452         }
15453
15454         if (INTEL_GEN(dev_priv) >= 4) {
15455                 /*
15456                  * WaFP16GammaEnabling:ivb
15457                  * "Workaround : When using the 64-bit format, the plane
15458                  *  output on each color channel has one quarter amplitude.
15459                  *  It can be brought up to full amplitude by using pipe
15460                  *  gamma correction or pipe color space conversion to
15461                  *  multiply the plane output by four."
15462                  *
15463                  * There is no dedicated plane gamma for the primary plane,
15464                  * and using the pipe gamma/csc could conflict with other
15465                  * planes, so we choose not to expose fp16 on IVB primary
15466                  * planes. HSW primary planes no longer have this problem.
15467                  */
15468                 if (IS_IVYBRIDGE(dev_priv)) {
15469                         formats = ivb_primary_formats;
15470                         num_formats = ARRAY_SIZE(ivb_primary_formats);
15471                 } else {
15472                         formats = i965_primary_formats;
15473                         num_formats = ARRAY_SIZE(i965_primary_formats);
15474                 }
15475                 modifiers = i9xx_format_modifiers;
15476
15477                 plane->max_stride = i9xx_plane_max_stride;
15478                 plane->update_plane = i9xx_update_plane;
15479                 plane->disable_plane = i9xx_disable_plane;
15480                 plane->get_hw_state = i9xx_plane_get_hw_state;
15481                 plane->check_plane = i9xx_plane_check;
15482
15483                 if (IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv))
15484                         plane->min_cdclk = hsw_plane_min_cdclk;
15485                 else if (IS_IVYBRIDGE(dev_priv))
15486                         plane->min_cdclk = ivb_plane_min_cdclk;
15487                 else if (IS_CHERRYVIEW(dev_priv) || IS_VALLEYVIEW(dev_priv))
15488                         plane->min_cdclk = vlv_plane_min_cdclk;
15489                 else
15490                         plane->min_cdclk = i9xx_plane_min_cdclk;
15491
15492                 plane_funcs = &i965_plane_funcs;
15493         } else {
15494                 formats = i8xx_primary_formats;
15495                 num_formats = ARRAY_SIZE(i8xx_primary_formats);
15496                 modifiers = i9xx_format_modifiers;
15497
15498                 plane->max_stride = i9xx_plane_max_stride;
15499                 plane->update_plane = i9xx_update_plane;
15500                 plane->disable_plane = i9xx_disable_plane;
15501                 plane->get_hw_state = i9xx_plane_get_hw_state;
15502                 plane->check_plane = i9xx_plane_check;
15503                 plane->min_cdclk = i9xx_plane_min_cdclk;
15504
15505                 plane_funcs = &i8xx_plane_funcs;
15506         }
15507
15508         possible_crtcs = BIT(pipe);
15509
15510         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
15511                 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
15512                                                possible_crtcs, plane_funcs,
15513                                                formats, num_formats, modifiers,
15514                                                DRM_PLANE_TYPE_PRIMARY,
15515                                                "primary %c", pipe_name(pipe));
15516         else
15517                 ret = drm_universal_plane_init(&dev_priv->drm, &plane->base,
15518                                                possible_crtcs, plane_funcs,
15519                                                formats, num_formats, modifiers,
15520                                                DRM_PLANE_TYPE_PRIMARY,
15521                                                "plane %c",
15522                                                plane_name(plane->i9xx_plane));
15523         if (ret)
15524                 goto fail;
15525
15526         if (IS_CHERRYVIEW(dev_priv) && pipe == PIPE_B) {
15527                 supported_rotations =
15528                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180 |
15529                         DRM_MODE_REFLECT_X;
15530         } else if (INTEL_GEN(dev_priv) >= 4) {
15531                 supported_rotations =
15532                         DRM_MODE_ROTATE_0 | DRM_MODE_ROTATE_180;
15533         } else {
15534                 supported_rotations = DRM_MODE_ROTATE_0;
15535         }
15536
15537         if (INTEL_GEN(dev_priv) >= 4)
15538                 drm_plane_create_rotation_property(&plane->base,
15539                                                    DRM_MODE_ROTATE_0,
15540                                                    supported_rotations);
15541
15542         zpos = 0;
15543         drm_plane_create_zpos_immutable_property(&plane->base, zpos);
15544
15545         drm_plane_helper_add(&plane->base, &intel_plane_helper_funcs);
15546
15547         return plane;
15548
15549 fail:
15550         intel_plane_free(plane);
15551
15552         return ERR_PTR(ret);
15553 }
15554
15555 static struct intel_plane *
15556 intel_cursor_plane_create(struct drm_i915_private *dev_priv,
15557                           enum pipe pipe)
15558 {
15559         unsigned int possible_crtcs;
15560         struct intel_plane *cursor;
15561         int ret, zpos;
15562
15563         cursor = intel_plane_alloc();
15564         if (IS_ERR(cursor))
15565                 return cursor;
15566
15567         cursor->pipe = pipe;
15568         cursor->i9xx_plane = (enum i9xx_plane_id) pipe;
15569         cursor->id = PLANE_CURSOR;
15570         cursor->frontbuffer_bit = INTEL_FRONTBUFFER(pipe, cursor->id);
15571
15572         if (IS_I845G(dev_priv) || IS_I865G(dev_priv)) {
15573                 cursor->max_stride = i845_cursor_max_stride;
15574                 cursor->update_plane = i845_update_cursor;
15575                 cursor->disable_plane = i845_disable_cursor;
15576                 cursor->get_hw_state = i845_cursor_get_hw_state;
15577                 cursor->check_plane = i845_check_cursor;
15578         } else {
15579                 cursor->max_stride = i9xx_cursor_max_stride;
15580                 cursor->update_plane = i9xx_update_cursor;
15581                 cursor->disable_plane = i9xx_disable_cursor;
15582                 cursor->get_hw_state = i9xx_cursor_get_hw_state;
15583                 cursor->check_plane = i9xx_check_cursor;
15584         }
15585
15586         cursor->cursor.base = ~0;
15587         cursor->cursor.cntl = ~0;
15588
15589         if (IS_I845G(dev_priv) || IS_I865G(dev_priv) || HAS_CUR_FBC(dev_priv))
15590                 cursor->cursor.size = ~0;
15591
15592         possible_crtcs = BIT(pipe);
15593
15594         ret = drm_universal_plane_init(&dev_priv->drm, &cursor->base,
15595                                        possible_crtcs, &intel_cursor_plane_funcs,
15596                                        intel_cursor_formats,
15597                                        ARRAY_SIZE(intel_cursor_formats),
15598                                        cursor_format_modifiers,
15599                                        DRM_PLANE_TYPE_CURSOR,
15600                                        "cursor %c", pipe_name(pipe));
15601         if (ret)
15602                 goto fail;
15603
15604         if (INTEL_GEN(dev_priv) >= 4)
15605                 drm_plane_create_rotation_property(&cursor->base,
15606                                                    DRM_MODE_ROTATE_0,
15607                                                    DRM_MODE_ROTATE_0 |
15608                                                    DRM_MODE_ROTATE_180);
15609
15610         zpos = RUNTIME_INFO(dev_priv)->num_sprites[pipe] + 1;
15611         drm_plane_create_zpos_immutable_property(&cursor->base, zpos);
15612
15613         drm_plane_helper_add(&cursor->base, &intel_plane_helper_funcs);
15614
15615         return cursor;
15616
15617 fail:
15618         intel_plane_free(cursor);
15619
15620         return ERR_PTR(ret);
15621 }
15622
15623 static void intel_crtc_init_scalers(struct intel_crtc *crtc,
15624                                     struct intel_crtc_state *crtc_state)
15625 {
15626         struct intel_crtc_scaler_state *scaler_state =
15627                 &crtc_state->scaler_state;
15628         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
15629         int i;
15630
15631         crtc->num_scalers = RUNTIME_INFO(dev_priv)->num_scalers[crtc->pipe];
15632         if (!crtc->num_scalers)
15633                 return;
15634
15635         for (i = 0; i < crtc->num_scalers; i++) {
15636                 struct intel_scaler *scaler = &scaler_state->scalers[i];
15637
15638                 scaler->in_use = 0;
15639                 scaler->mode = 0;
15640         }
15641
15642         scaler_state->scaler_id = -1;
15643 }
15644
15645 #define INTEL_CRTC_FUNCS \
15646         .gamma_set = drm_atomic_helper_legacy_gamma_set, \
15647         .set_config = drm_atomic_helper_set_config, \
15648         .destroy = intel_crtc_destroy, \
15649         .page_flip = drm_atomic_helper_page_flip, \
15650         .atomic_duplicate_state = intel_crtc_duplicate_state, \
15651         .atomic_destroy_state = intel_crtc_destroy_state, \
15652         .set_crc_source = intel_crtc_set_crc_source, \
15653         .verify_crc_source = intel_crtc_verify_crc_source, \
15654         .get_crc_sources = intel_crtc_get_crc_sources
15655
15656 static const struct drm_crtc_funcs bdw_crtc_funcs = {
15657         INTEL_CRTC_FUNCS,
15658
15659         .get_vblank_counter = g4x_get_vblank_counter,
15660         .enable_vblank = bdw_enable_vblank,
15661         .disable_vblank = bdw_disable_vblank,
15662 };
15663
15664 static const struct drm_crtc_funcs ilk_crtc_funcs = {
15665         INTEL_CRTC_FUNCS,
15666
15667         .get_vblank_counter = g4x_get_vblank_counter,
15668         .enable_vblank = ilk_enable_vblank,
15669         .disable_vblank = ilk_disable_vblank,
15670 };
15671
15672 static const struct drm_crtc_funcs g4x_crtc_funcs = {
15673         INTEL_CRTC_FUNCS,
15674
15675         .get_vblank_counter = g4x_get_vblank_counter,
15676         .enable_vblank = i965_enable_vblank,
15677         .disable_vblank = i965_disable_vblank,
15678 };
15679
15680 static const struct drm_crtc_funcs i965_crtc_funcs = {
15681         INTEL_CRTC_FUNCS,
15682
15683         .get_vblank_counter = i915_get_vblank_counter,
15684         .enable_vblank = i965_enable_vblank,
15685         .disable_vblank = i965_disable_vblank,
15686 };
15687
15688 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
15689         INTEL_CRTC_FUNCS,
15690
15691         .get_vblank_counter = i915_get_vblank_counter,
15692         .enable_vblank = i915gm_enable_vblank,
15693         .disable_vblank = i915gm_disable_vblank,
15694 };
15695
15696 static const struct drm_crtc_funcs i915_crtc_funcs = {
15697         INTEL_CRTC_FUNCS,
15698
15699         .get_vblank_counter = i915_get_vblank_counter,
15700         .enable_vblank = i8xx_enable_vblank,
15701         .disable_vblank = i8xx_disable_vblank,
15702 };
15703
15704 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
15705         INTEL_CRTC_FUNCS,
15706
15707         /* no hw vblank counter */
15708         .enable_vblank = i8xx_enable_vblank,
15709         .disable_vblank = i8xx_disable_vblank,
15710 };
15711
15712 static int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
15713 {
15714         const struct drm_crtc_funcs *funcs;
15715         struct intel_crtc *intel_crtc;
15716         struct intel_crtc_state *crtc_state = NULL;
15717         struct intel_plane *primary = NULL;
15718         struct intel_plane *cursor = NULL;
15719         int sprite, ret;
15720
15721         intel_crtc = kzalloc(sizeof(*intel_crtc), GFP_KERNEL);
15722         if (!intel_crtc)
15723                 return -ENOMEM;
15724
15725         crtc_state = kzalloc(sizeof(*crtc_state), GFP_KERNEL);
15726         if (!crtc_state) {
15727                 ret = -ENOMEM;
15728                 goto fail;
15729         }
15730         __drm_atomic_helper_crtc_reset(&intel_crtc->base, &crtc_state->base);
15731         intel_crtc->config = crtc_state;
15732
15733         primary = intel_primary_plane_create(dev_priv, pipe);
15734         if (IS_ERR(primary)) {
15735                 ret = PTR_ERR(primary);
15736                 goto fail;
15737         }
15738         intel_crtc->plane_ids_mask |= BIT(primary->id);
15739
15740         for_each_sprite(dev_priv, pipe, sprite) {
15741                 struct intel_plane *plane;
15742
15743                 plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
15744                 if (IS_ERR(plane)) {
15745                         ret = PTR_ERR(plane);
15746                         goto fail;
15747                 }
15748                 intel_crtc->plane_ids_mask |= BIT(plane->id);
15749         }
15750
15751         cursor = intel_cursor_plane_create(dev_priv, pipe);
15752         if (IS_ERR(cursor)) {
15753                 ret = PTR_ERR(cursor);
15754                 goto fail;
15755         }
15756         intel_crtc->plane_ids_mask |= BIT(cursor->id);
15757
15758         if (HAS_GMCH(dev_priv)) {
15759                 if (IS_CHERRYVIEW(dev_priv) ||
15760                     IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
15761                         funcs = &g4x_crtc_funcs;
15762                 else if (IS_GEN(dev_priv, 4))
15763                         funcs = &i965_crtc_funcs;
15764                 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
15765                         funcs = &i915gm_crtc_funcs;
15766                 else if (IS_GEN(dev_priv, 3))
15767                         funcs = &i915_crtc_funcs;
15768                 else
15769                         funcs = &i8xx_crtc_funcs;
15770         } else {
15771                 if (INTEL_GEN(dev_priv) >= 8)
15772                         funcs = &bdw_crtc_funcs;
15773                 else
15774                         funcs = &ilk_crtc_funcs;
15775         }
15776
15777         ret = drm_crtc_init_with_planes(&dev_priv->drm, &intel_crtc->base,
15778                                         &primary->base, &cursor->base,
15779                                         funcs, "pipe %c", pipe_name(pipe));
15780         if (ret)
15781                 goto fail;
15782
15783         intel_crtc->pipe = pipe;
15784
15785         /* initialize shared scalers */
15786         intel_crtc_init_scalers(intel_crtc, crtc_state);
15787
15788         BUG_ON(pipe >= ARRAY_SIZE(dev_priv->pipe_to_crtc_mapping) ||
15789                dev_priv->pipe_to_crtc_mapping[pipe] != NULL);
15790         dev_priv->pipe_to_crtc_mapping[pipe] = intel_crtc;
15791
15792         if (INTEL_GEN(dev_priv) < 9) {
15793                 enum i9xx_plane_id i9xx_plane = primary->i9xx_plane;
15794
15795                 BUG_ON(i9xx_plane >= ARRAY_SIZE(dev_priv->plane_to_crtc_mapping) ||
15796                        dev_priv->plane_to_crtc_mapping[i9xx_plane] != NULL);
15797                 dev_priv->plane_to_crtc_mapping[i9xx_plane] = intel_crtc;
15798         }
15799
15800         intel_color_init(intel_crtc);
15801
15802         WARN_ON(drm_crtc_index(&intel_crtc->base) != intel_crtc->pipe);
15803
15804         return 0;
15805
15806 fail:
15807         /*
15808          * drm_mode_config_cleanup() will free up any
15809          * crtcs/planes already initialized.
15810          */
15811         kfree(crtc_state);
15812         kfree(intel_crtc);
15813
15814         return ret;
15815 }
15816
15817 int intel_get_pipe_from_crtc_id_ioctl(struct drm_device *dev, void *data,
15818                                       struct drm_file *file)
15819 {
15820         struct drm_i915_get_pipe_from_crtc_id *pipe_from_crtc_id = data;
15821         struct drm_crtc *drmmode_crtc;
15822         struct intel_crtc *crtc;
15823
15824         drmmode_crtc = drm_crtc_find(dev, file, pipe_from_crtc_id->crtc_id);
15825         if (!drmmode_crtc)
15826                 return -ENOENT;
15827
15828         crtc = to_intel_crtc(drmmode_crtc);
15829         pipe_from_crtc_id->pipe = crtc->pipe;
15830
15831         return 0;
15832 }
15833
15834 static u32 intel_encoder_possible_clones(struct intel_encoder *encoder)
15835 {
15836         struct drm_device *dev = encoder->base.dev;
15837         struct intel_encoder *source_encoder;
15838         u32 possible_clones = 0;
15839
15840         for_each_intel_encoder(dev, source_encoder) {
15841                 if (encoders_cloneable(encoder, source_encoder))
15842                         possible_clones |= drm_encoder_mask(&source_encoder->base);
15843         }
15844
15845         return possible_clones;
15846 }
15847
15848 static u32 intel_encoder_possible_crtcs(struct intel_encoder *encoder)
15849 {
15850         struct drm_device *dev = encoder->base.dev;
15851         struct intel_crtc *crtc;
15852         u32 possible_crtcs = 0;
15853
15854         for_each_intel_crtc(dev, crtc) {
15855                 if (encoder->pipe_mask & BIT(crtc->pipe))
15856                         possible_crtcs |= drm_crtc_mask(&crtc->base);
15857         }
15858
15859         return possible_crtcs;
15860 }
15861
15862 static bool ilk_has_edp_a(struct drm_i915_private *dev_priv)
15863 {
15864         if (!IS_MOBILE(dev_priv))
15865                 return false;
15866
15867         if ((I915_READ(DP_A) & DP_DETECTED) == 0)
15868                 return false;
15869
15870         if (IS_GEN(dev_priv, 5) && (I915_READ(FUSE_STRAP) & ILK_eDP_A_DISABLE))
15871                 return false;
15872
15873         return true;
15874 }
15875
15876 static bool intel_ddi_crt_present(struct drm_i915_private *dev_priv)
15877 {
15878         if (INTEL_GEN(dev_priv) >= 9)
15879                 return false;
15880
15881         if (IS_HSW_ULT(dev_priv) || IS_BDW_ULT(dev_priv))
15882                 return false;
15883
15884         if (HAS_PCH_LPT_H(dev_priv) &&
15885             I915_READ(SFUSE_STRAP) & SFUSE_STRAP_CRT_DISABLED)
15886                 return false;
15887
15888         /* DDI E can't be used if DDI A requires 4 lanes */
15889         if (I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_A_4_LANES)
15890                 return false;
15891
15892         if (!dev_priv->vbt.int_crt_support)
15893                 return false;
15894
15895         return true;
15896 }
15897
15898 void intel_pps_unlock_regs_wa(struct drm_i915_private *dev_priv)
15899 {
15900         int pps_num;
15901         int pps_idx;
15902
15903         if (HAS_DDI(dev_priv))
15904                 return;
15905         /*
15906          * This w/a is needed at least on CPT/PPT, but to be sure apply it
15907          * everywhere where registers can be write protected.
15908          */
15909         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15910                 pps_num = 2;
15911         else
15912                 pps_num = 1;
15913
15914         for (pps_idx = 0; pps_idx < pps_num; pps_idx++) {
15915                 u32 val = I915_READ(PP_CONTROL(pps_idx));
15916
15917                 val = (val & ~PANEL_UNLOCK_MASK) | PANEL_UNLOCK_REGS;
15918                 I915_WRITE(PP_CONTROL(pps_idx), val);
15919         }
15920 }
15921
15922 static void intel_pps_init(struct drm_i915_private *dev_priv)
15923 {
15924         if (HAS_PCH_SPLIT(dev_priv) || IS_GEN9_LP(dev_priv))
15925                 dev_priv->pps_mmio_base = PCH_PPS_BASE;
15926         else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
15927                 dev_priv->pps_mmio_base = VLV_PPS_BASE;
15928         else
15929                 dev_priv->pps_mmio_base = PPS_BASE;
15930
15931         intel_pps_unlock_regs_wa(dev_priv);
15932 }
15933
15934 static void intel_setup_outputs(struct drm_i915_private *dev_priv)
15935 {
15936         struct intel_encoder *encoder;
15937         bool dpd_is_edp = false;
15938
15939         intel_pps_init(dev_priv);
15940
15941         if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
15942                 return;
15943
15944         if (INTEL_GEN(dev_priv) >= 12) {
15945                 intel_ddi_init(dev_priv, PORT_A);
15946                 intel_ddi_init(dev_priv, PORT_B);
15947                 intel_ddi_init(dev_priv, PORT_D);
15948                 intel_ddi_init(dev_priv, PORT_E);
15949                 intel_ddi_init(dev_priv, PORT_F);
15950                 intel_ddi_init(dev_priv, PORT_G);
15951                 intel_ddi_init(dev_priv, PORT_H);
15952                 intel_ddi_init(dev_priv, PORT_I);
15953                 icl_dsi_init(dev_priv);
15954         } else if (IS_ELKHARTLAKE(dev_priv)) {
15955                 intel_ddi_init(dev_priv, PORT_A);
15956                 intel_ddi_init(dev_priv, PORT_B);
15957                 intel_ddi_init(dev_priv, PORT_C);
15958                 intel_ddi_init(dev_priv, PORT_D);
15959                 icl_dsi_init(dev_priv);
15960         } else if (IS_GEN(dev_priv, 11)) {
15961                 intel_ddi_init(dev_priv, PORT_A);
15962                 intel_ddi_init(dev_priv, PORT_B);
15963                 intel_ddi_init(dev_priv, PORT_C);
15964                 intel_ddi_init(dev_priv, PORT_D);
15965                 intel_ddi_init(dev_priv, PORT_E);
15966                 /*
15967                  * On some ICL SKUs port F is not present. No strap bits for
15968                  * this, so rely on VBT.
15969                  * Work around broken VBTs on SKUs known to have no port F.
15970                  */
15971                 if (IS_ICL_WITH_PORT_F(dev_priv) &&
15972                     intel_bios_is_port_present(dev_priv, PORT_F))
15973                         intel_ddi_init(dev_priv, PORT_F);
15974
15975                 icl_dsi_init(dev_priv);
15976         } else if (IS_GEN9_LP(dev_priv)) {
15977                 /*
15978                  * FIXME: Broxton doesn't support port detection via the
15979                  * DDI_BUF_CTL_A or SFUSE_STRAP registers, find another way to
15980                  * detect the ports.
15981                  */
15982                 intel_ddi_init(dev_priv, PORT_A);
15983                 intel_ddi_init(dev_priv, PORT_B);
15984                 intel_ddi_init(dev_priv, PORT_C);
15985
15986                 vlv_dsi_init(dev_priv);
15987         } else if (HAS_DDI(dev_priv)) {
15988                 int found;
15989
15990                 if (intel_ddi_crt_present(dev_priv))
15991                         intel_crt_init(dev_priv);
15992
15993                 /*
15994                  * Haswell uses DDI functions to detect digital outputs.
15995                  * On SKL pre-D0 the strap isn't connected, so we assume
15996                  * it's there.
15997                  */
15998                 found = I915_READ(DDI_BUF_CTL(PORT_A)) & DDI_INIT_DISPLAY_DETECTED;
15999                 /* WaIgnoreDDIAStrap: skl */
16000                 if (found || IS_GEN9_BC(dev_priv))
16001                         intel_ddi_init(dev_priv, PORT_A);
16002
16003                 /* DDI B, C, D, and F detection is indicated by the SFUSE_STRAP
16004                  * register */
16005                 found = I915_READ(SFUSE_STRAP);
16006
16007                 if (found & SFUSE_STRAP_DDIB_DETECTED)
16008                         intel_ddi_init(dev_priv, PORT_B);
16009                 if (found & SFUSE_STRAP_DDIC_DETECTED)
16010                         intel_ddi_init(dev_priv, PORT_C);
16011                 if (found & SFUSE_STRAP_DDID_DETECTED)
16012                         intel_ddi_init(dev_priv, PORT_D);
16013                 if (found & SFUSE_STRAP_DDIF_DETECTED)
16014                         intel_ddi_init(dev_priv, PORT_F);
16015                 /*
16016                  * On SKL we don't have a way to detect DDI-E so we rely on VBT.
16017                  */
16018                 if (IS_GEN9_BC(dev_priv) &&
16019                     intel_bios_is_port_present(dev_priv, PORT_E))
16020                         intel_ddi_init(dev_priv, PORT_E);
16021
16022         } else if (HAS_PCH_SPLIT(dev_priv)) {
16023                 int found;
16024
16025                 /*
16026                  * intel_edp_init_connector() depends on this completing first,
16027                  * to prevent the registration of both eDP and LVDS and the
16028                  * incorrect sharing of the PPS.
16029                  */
16030                 intel_lvds_init(dev_priv);
16031                 intel_crt_init(dev_priv);
16032
16033                 dpd_is_edp = intel_dp_is_port_edp(dev_priv, PORT_D);
16034
16035                 if (ilk_has_edp_a(dev_priv))
16036                         intel_dp_init(dev_priv, DP_A, PORT_A);
16037
16038                 if (I915_READ(PCH_HDMIB) & SDVO_DETECTED) {
16039                         /* PCH SDVOB multiplex with HDMIB */
16040                         found = intel_sdvo_init(dev_priv, PCH_SDVOB, PORT_B);
16041                         if (!found)
16042                                 intel_hdmi_init(dev_priv, PCH_HDMIB, PORT_B);
16043                         if (!found && (I915_READ(PCH_DP_B) & DP_DETECTED))
16044                                 intel_dp_init(dev_priv, PCH_DP_B, PORT_B);
16045                 }
16046
16047                 if (I915_READ(PCH_HDMIC) & SDVO_DETECTED)
16048                         intel_hdmi_init(dev_priv, PCH_HDMIC, PORT_C);
16049
16050                 if (!dpd_is_edp && I915_READ(PCH_HDMID) & SDVO_DETECTED)
16051                         intel_hdmi_init(dev_priv, PCH_HDMID, PORT_D);
16052
16053                 if (I915_READ(PCH_DP_C) & DP_DETECTED)
16054                         intel_dp_init(dev_priv, PCH_DP_C, PORT_C);
16055
16056                 if (I915_READ(PCH_DP_D) & DP_DETECTED)
16057                         intel_dp_init(dev_priv, PCH_DP_D, PORT_D);
16058         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
16059                 bool has_edp, has_port;
16060
16061                 if (IS_VALLEYVIEW(dev_priv) && dev_priv->vbt.int_crt_support)
16062                         intel_crt_init(dev_priv);
16063
16064                 /*
16065                  * The DP_DETECTED bit is the latched state of the DDC
16066                  * SDA pin at boot. However since eDP doesn't require DDC
16067                  * (no way to plug in a DP->HDMI dongle) the DDC pins for
16068                  * eDP ports may have been muxed to an alternate function.
16069                  * Thus we can't rely on the DP_DETECTED bit alone to detect
16070                  * eDP ports. Consult the VBT as well as DP_DETECTED to
16071                  * detect eDP ports.
16072                  *
16073                  * Sadly the straps seem to be missing sometimes even for HDMI
16074                  * ports (eg. on Voyo V3 - CHT x7-Z8700), so check both strap
16075                  * and VBT for the presence of the port. Additionally we can't
16076                  * trust the port type the VBT declares as we've seen at least
16077                  * HDMI ports that the VBT claim are DP or eDP.
16078                  */
16079                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_B);
16080                 has_port = intel_bios_is_port_present(dev_priv, PORT_B);
16081                 if (I915_READ(VLV_DP_B) & DP_DETECTED || has_port)
16082                         has_edp &= intel_dp_init(dev_priv, VLV_DP_B, PORT_B);
16083                 if ((I915_READ(VLV_HDMIB) & SDVO_DETECTED || has_port) && !has_edp)
16084                         intel_hdmi_init(dev_priv, VLV_HDMIB, PORT_B);
16085
16086                 has_edp = intel_dp_is_port_edp(dev_priv, PORT_C);
16087                 has_port = intel_bios_is_port_present(dev_priv, PORT_C);
16088                 if (I915_READ(VLV_DP_C) & DP_DETECTED || has_port)
16089                         has_edp &= intel_dp_init(dev_priv, VLV_DP_C, PORT_C);
16090                 if ((I915_READ(VLV_HDMIC) & SDVO_DETECTED || has_port) && !has_edp)
16091                         intel_hdmi_init(dev_priv, VLV_HDMIC, PORT_C);
16092
16093                 if (IS_CHERRYVIEW(dev_priv)) {
16094                         /*
16095                          * eDP not supported on port D,
16096                          * so no need to worry about it
16097                          */
16098                         has_port = intel_bios_is_port_present(dev_priv, PORT_D);
16099                         if (I915_READ(CHV_DP_D) & DP_DETECTED || has_port)
16100                                 intel_dp_init(dev_priv, CHV_DP_D, PORT_D);
16101                         if (I915_READ(CHV_HDMID) & SDVO_DETECTED || has_port)
16102                                 intel_hdmi_init(dev_priv, CHV_HDMID, PORT_D);
16103                 }
16104
16105                 vlv_dsi_init(dev_priv);
16106         } else if (IS_PINEVIEW(dev_priv)) {
16107                 intel_lvds_init(dev_priv);
16108                 intel_crt_init(dev_priv);
16109         } else if (IS_GEN_RANGE(dev_priv, 3, 4)) {
16110                 bool found = false;
16111
16112                 if (IS_MOBILE(dev_priv))
16113                         intel_lvds_init(dev_priv);
16114
16115                 intel_crt_init(dev_priv);
16116
16117                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16118                         DRM_DEBUG_KMS("probing SDVOB\n");
16119                         found = intel_sdvo_init(dev_priv, GEN3_SDVOB, PORT_B);
16120                         if (!found && IS_G4X(dev_priv)) {
16121                                 DRM_DEBUG_KMS("probing HDMI on SDVOB\n");
16122                                 intel_hdmi_init(dev_priv, GEN4_HDMIB, PORT_B);
16123                         }
16124
16125                         if (!found && IS_G4X(dev_priv))
16126                                 intel_dp_init(dev_priv, DP_B, PORT_B);
16127                 }
16128
16129                 /* Before G4X SDVOC doesn't have its own detect register */
16130
16131                 if (I915_READ(GEN3_SDVOB) & SDVO_DETECTED) {
16132                         DRM_DEBUG_KMS("probing SDVOC\n");
16133                         found = intel_sdvo_init(dev_priv, GEN3_SDVOC, PORT_C);
16134                 }
16135
16136                 if (!found && (I915_READ(GEN3_SDVOC) & SDVO_DETECTED)) {
16137
16138                         if (IS_G4X(dev_priv)) {
16139                                 DRM_DEBUG_KMS("probing HDMI on SDVOC\n");
16140                                 intel_hdmi_init(dev_priv, GEN4_HDMIC, PORT_C);
16141                         }
16142                         if (IS_G4X(dev_priv))
16143                                 intel_dp_init(dev_priv, DP_C, PORT_C);
16144                 }
16145
16146                 if (IS_G4X(dev_priv) && (I915_READ(DP_D) & DP_DETECTED))
16147                         intel_dp_init(dev_priv, DP_D, PORT_D);
16148
16149                 if (SUPPORTS_TV(dev_priv))
16150                         intel_tv_init(dev_priv);
16151         } else if (IS_GEN(dev_priv, 2)) {
16152                 if (IS_I85X(dev_priv))
16153                         intel_lvds_init(dev_priv);
16154
16155                 intel_crt_init(dev_priv);
16156                 intel_dvo_init(dev_priv);
16157         }
16158
16159         intel_psr_init(dev_priv);
16160
16161         for_each_intel_encoder(&dev_priv->drm, encoder) {
16162                 encoder->base.possible_crtcs =
16163                         intel_encoder_possible_crtcs(encoder);
16164                 encoder->base.possible_clones =
16165                         intel_encoder_possible_clones(encoder);
16166         }
16167
16168         intel_init_pch_refclk(dev_priv);
16169
16170         drm_helper_move_panel_connectors_to_head(&dev_priv->drm);
16171 }
16172
16173 static void intel_user_framebuffer_destroy(struct drm_framebuffer *fb)
16174 {
16175         struct intel_framebuffer *intel_fb = to_intel_framebuffer(fb);
16176
16177         drm_framebuffer_cleanup(fb);
16178         intel_frontbuffer_put(intel_fb->frontbuffer);
16179
16180         kfree(intel_fb);
16181 }
16182
16183 static int intel_user_framebuffer_create_handle(struct drm_framebuffer *fb,
16184                                                 struct drm_file *file,
16185                                                 unsigned int *handle)
16186 {
16187         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16188
16189         if (obj->userptr.mm) {
16190                 DRM_DEBUG("attempting to use a userptr for a framebuffer, denied\n");
16191                 return -EINVAL;
16192         }
16193
16194         return drm_gem_handle_create(file, &obj->base, handle);
16195 }
16196
16197 static int intel_user_framebuffer_dirty(struct drm_framebuffer *fb,
16198                                         struct drm_file *file,
16199                                         unsigned flags, unsigned color,
16200                                         struct drm_clip_rect *clips,
16201                                         unsigned num_clips)
16202 {
16203         struct drm_i915_gem_object *obj = intel_fb_obj(fb);
16204
16205         i915_gem_object_flush_if_display(obj);
16206         intel_frontbuffer_flush(to_intel_frontbuffer(fb), ORIGIN_DIRTYFB);
16207
16208         return 0;
16209 }
16210
16211 static const struct drm_framebuffer_funcs intel_fb_funcs = {
16212         .destroy = intel_user_framebuffer_destroy,
16213         .create_handle = intel_user_framebuffer_create_handle,
16214         .dirty = intel_user_framebuffer_dirty,
16215 };
16216
16217 static int intel_framebuffer_init(struct intel_framebuffer *intel_fb,
16218                                   struct drm_i915_gem_object *obj,
16219                                   struct drm_mode_fb_cmd2 *mode_cmd)
16220 {
16221         struct drm_i915_private *dev_priv = to_i915(obj->base.dev);
16222         struct drm_framebuffer *fb = &intel_fb->base;
16223         u32 max_stride;
16224         unsigned int tiling, stride;
16225         int ret = -EINVAL;
16226         int i;
16227
16228         intel_fb->frontbuffer = intel_frontbuffer_get(obj);
16229         if (!intel_fb->frontbuffer)
16230                 return -ENOMEM;
16231
16232         i915_gem_object_lock(obj);
16233         tiling = i915_gem_object_get_tiling(obj);
16234         stride = i915_gem_object_get_stride(obj);
16235         i915_gem_object_unlock(obj);
16236
16237         if (mode_cmd->flags & DRM_MODE_FB_MODIFIERS) {
16238                 /*
16239                  * If there's a fence, enforce that
16240                  * the fb modifier and tiling mode match.
16241                  */
16242                 if (tiling != I915_TILING_NONE &&
16243                     tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16244                         DRM_DEBUG_KMS("tiling_mode doesn't match fb modifier\n");
16245                         goto err;
16246                 }
16247         } else {
16248                 if (tiling == I915_TILING_X) {
16249                         mode_cmd->modifier[0] = I915_FORMAT_MOD_X_TILED;
16250                 } else if (tiling == I915_TILING_Y) {
16251                         DRM_DEBUG_KMS("No Y tiling for legacy addfb\n");
16252                         goto err;
16253                 }
16254         }
16255
16256         if (!drm_any_plane_has_format(&dev_priv->drm,
16257                                       mode_cmd->pixel_format,
16258                                       mode_cmd->modifier[0])) {
16259                 struct drm_format_name_buf format_name;
16260
16261                 DRM_DEBUG_KMS("unsupported pixel format %s / modifier 0x%llx\n",
16262                               drm_get_format_name(mode_cmd->pixel_format,
16263                                                   &format_name),
16264                               mode_cmd->modifier[0]);
16265                 goto err;
16266         }
16267
16268         /*
16269          * gen2/3 display engine uses the fence if present,
16270          * so the tiling mode must match the fb modifier exactly.
16271          */
16272         if (INTEL_GEN(dev_priv) < 4 &&
16273             tiling != intel_fb_modifier_to_tiling(mode_cmd->modifier[0])) {
16274                 DRM_DEBUG_KMS("tiling_mode must match fb modifier exactly on gen2/3\n");
16275                 goto err;
16276         }
16277
16278         max_stride = intel_fb_max_stride(dev_priv, mode_cmd->pixel_format,
16279                                          mode_cmd->modifier[0]);
16280         if (mode_cmd->pitches[0] > max_stride) {
16281                 DRM_DEBUG_KMS("%s pitch (%u) must be at most %d\n",
16282                               mode_cmd->modifier[0] != DRM_FORMAT_MOD_LINEAR ?
16283                               "tiled" : "linear",
16284                               mode_cmd->pitches[0], max_stride);
16285                 goto err;
16286         }
16287
16288         /*
16289          * If there's a fence, enforce that
16290          * the fb pitch and fence stride match.
16291          */
16292         if (tiling != I915_TILING_NONE && mode_cmd->pitches[0] != stride) {
16293                 DRM_DEBUG_KMS("pitch (%d) must match tiling stride (%d)\n",
16294                               mode_cmd->pitches[0], stride);
16295                 goto err;
16296         }
16297
16298         /* FIXME need to adjust LINOFF/TILEOFF accordingly. */
16299         if (mode_cmd->offsets[0] != 0)
16300                 goto err;
16301
16302         drm_helper_mode_fill_fb_struct(&dev_priv->drm, fb, mode_cmd);
16303
16304         for (i = 0; i < fb->format->num_planes; i++) {
16305                 u32 stride_alignment;
16306
16307                 if (mode_cmd->handles[i] != mode_cmd->handles[0]) {
16308                         DRM_DEBUG_KMS("bad plane %d handle\n", i);
16309                         goto err;
16310                 }
16311
16312                 stride_alignment = intel_fb_stride_alignment(fb, i);
16313
16314                 /*
16315                  * Display WA #0531: skl,bxt,kbl,glk
16316                  *
16317                  * Render decompression and plane width > 3840
16318                  * combined with horizontal panning requires the
16319                  * plane stride to be a multiple of 4. We'll just
16320                  * require the entire fb to accommodate that to avoid
16321                  * potential runtime errors at plane configuration time.
16322                  */
16323                 if (IS_GEN(dev_priv, 9) && i == 0 && fb->width > 3840 &&
16324                     is_ccs_modifier(fb->modifier))
16325                         stride_alignment *= 4;
16326
16327                 if (fb->pitches[i] & (stride_alignment - 1)) {
16328                         DRM_DEBUG_KMS("plane %d pitch (%d) must be at least %u byte aligned\n",
16329                                       i, fb->pitches[i], stride_alignment);
16330                         goto err;
16331                 }
16332
16333                 fb->obj[i] = &obj->base;
16334         }
16335
16336         ret = intel_fill_fb_info(dev_priv, fb);
16337         if (ret)
16338                 goto err;
16339
16340         ret = drm_framebuffer_init(&dev_priv->drm, fb, &intel_fb_funcs);
16341         if (ret) {
16342                 DRM_ERROR("framebuffer init failed %d\n", ret);
16343                 goto err;
16344         }
16345
16346         return 0;
16347
16348 err:
16349         intel_frontbuffer_put(intel_fb->frontbuffer);
16350         return ret;
16351 }
16352
16353 static struct drm_framebuffer *
16354 intel_user_framebuffer_create(struct drm_device *dev,
16355                               struct drm_file *filp,
16356                               const struct drm_mode_fb_cmd2 *user_mode_cmd)
16357 {
16358         struct drm_framebuffer *fb;
16359         struct drm_i915_gem_object *obj;
16360         struct drm_mode_fb_cmd2 mode_cmd = *user_mode_cmd;
16361
16362         obj = i915_gem_object_lookup(filp, mode_cmd.handles[0]);
16363         if (!obj)
16364                 return ERR_PTR(-ENOENT);
16365
16366         fb = intel_framebuffer_create(obj, &mode_cmd);
16367         i915_gem_object_put(obj);
16368
16369         return fb;
16370 }
16371
16372 static void intel_atomic_state_free(struct drm_atomic_state *state)
16373 {
16374         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
16375
16376         drm_atomic_state_default_release(state);
16377
16378         i915_sw_fence_fini(&intel_state->commit_ready);
16379
16380         kfree(state);
16381 }
16382
16383 static enum drm_mode_status
16384 intel_mode_valid(struct drm_device *dev,
16385                  const struct drm_display_mode *mode)
16386 {
16387         struct drm_i915_private *dev_priv = to_i915(dev);
16388         int hdisplay_max, htotal_max;
16389         int vdisplay_max, vtotal_max;
16390
16391         /*
16392          * Can't reject DBLSCAN here because Xorg ddxen can add piles
16393          * of DBLSCAN modes to the output's mode list when they detect
16394          * the scaling mode property on the connector. And they don't
16395          * ask the kernel to validate those modes in any way until
16396          * modeset time at which point the client gets a protocol error.
16397          * So in order to not upset those clients we silently ignore the
16398          * DBLSCAN flag on such connectors. For other connectors we will
16399          * reject modes with the DBLSCAN flag in encoder->compute_config().
16400          * And we always reject DBLSCAN modes in connector->mode_valid()
16401          * as we never want such modes on the connector's mode list.
16402          */
16403
16404         if (mode->vscan > 1)
16405                 return MODE_NO_VSCAN;
16406
16407         if (mode->flags & DRM_MODE_FLAG_HSKEW)
16408                 return MODE_H_ILLEGAL;
16409
16410         if (mode->flags & (DRM_MODE_FLAG_CSYNC |
16411                            DRM_MODE_FLAG_NCSYNC |
16412                            DRM_MODE_FLAG_PCSYNC))
16413                 return MODE_HSYNC;
16414
16415         if (mode->flags & (DRM_MODE_FLAG_BCAST |
16416                            DRM_MODE_FLAG_PIXMUX |
16417                            DRM_MODE_FLAG_CLKDIV2))
16418                 return MODE_BAD;
16419
16420         /* Transcoder timing limits */
16421         if (INTEL_GEN(dev_priv) >= 11) {
16422                 hdisplay_max = 16384;
16423                 vdisplay_max = 8192;
16424                 htotal_max = 16384;
16425                 vtotal_max = 8192;
16426         } else if (INTEL_GEN(dev_priv) >= 9 ||
16427                    IS_BROADWELL(dev_priv) || IS_HASWELL(dev_priv)) {
16428                 hdisplay_max = 8192; /* FDI max 4096 handled elsewhere */
16429                 vdisplay_max = 4096;
16430                 htotal_max = 8192;
16431                 vtotal_max = 8192;
16432         } else if (INTEL_GEN(dev_priv) >= 3) {
16433                 hdisplay_max = 4096;
16434                 vdisplay_max = 4096;
16435                 htotal_max = 8192;
16436                 vtotal_max = 8192;
16437         } else {
16438                 hdisplay_max = 2048;
16439                 vdisplay_max = 2048;
16440                 htotal_max = 4096;
16441                 vtotal_max = 4096;
16442         }
16443
16444         if (mode->hdisplay > hdisplay_max ||
16445             mode->hsync_start > htotal_max ||
16446             mode->hsync_end > htotal_max ||
16447             mode->htotal > htotal_max)
16448                 return MODE_H_ILLEGAL;
16449
16450         if (mode->vdisplay > vdisplay_max ||
16451             mode->vsync_start > vtotal_max ||
16452             mode->vsync_end > vtotal_max ||
16453             mode->vtotal > vtotal_max)
16454                 return MODE_V_ILLEGAL;
16455
16456         if (INTEL_GEN(dev_priv) >= 5) {
16457                 if (mode->hdisplay < 64 ||
16458                     mode->htotal - mode->hdisplay < 32)
16459                         return MODE_H_ILLEGAL;
16460
16461                 if (mode->vtotal - mode->vdisplay < 5)
16462                         return MODE_V_ILLEGAL;
16463         } else {
16464                 if (mode->htotal - mode->hdisplay < 32)
16465                         return MODE_H_ILLEGAL;
16466
16467                 if (mode->vtotal - mode->vdisplay < 3)
16468                         return MODE_V_ILLEGAL;
16469         }
16470
16471         return MODE_OK;
16472 }
16473
16474 enum drm_mode_status
16475 intel_mode_valid_max_plane_size(struct drm_i915_private *dev_priv,
16476                                 const struct drm_display_mode *mode)
16477 {
16478         int plane_width_max, plane_height_max;
16479
16480         /*
16481          * intel_mode_valid() should be
16482          * sufficient on older platforms.
16483          */
16484         if (INTEL_GEN(dev_priv) < 9)
16485                 return MODE_OK;
16486
16487         /*
16488          * Most people will probably want a fullscreen
16489          * plane so let's not advertize modes that are
16490          * too big for that.
16491          */
16492         if (INTEL_GEN(dev_priv) >= 11) {
16493                 plane_width_max = 5120;
16494                 plane_height_max = 4320;
16495         } else {
16496                 plane_width_max = 5120;
16497                 plane_height_max = 4096;
16498         }
16499
16500         if (mode->hdisplay > plane_width_max)
16501                 return MODE_H_ILLEGAL;
16502
16503         if (mode->vdisplay > plane_height_max)
16504                 return MODE_V_ILLEGAL;
16505
16506         return MODE_OK;
16507 }
16508
16509 static const struct drm_mode_config_funcs intel_mode_funcs = {
16510         .fb_create = intel_user_framebuffer_create,
16511         .get_format_info = intel_get_format_info,
16512         .output_poll_changed = intel_fbdev_output_poll_changed,
16513         .mode_valid = intel_mode_valid,
16514         .atomic_check = intel_atomic_check,
16515         .atomic_commit = intel_atomic_commit,
16516         .atomic_state_alloc = intel_atomic_state_alloc,
16517         .atomic_state_clear = intel_atomic_state_clear,
16518         .atomic_state_free = intel_atomic_state_free,
16519 };
16520
16521 /**
16522  * intel_init_display_hooks - initialize the display modesetting hooks
16523  * @dev_priv: device private
16524  */
16525 void intel_init_display_hooks(struct drm_i915_private *dev_priv)
16526 {
16527         intel_init_cdclk_hooks(dev_priv);
16528
16529         if (INTEL_GEN(dev_priv) >= 9) {
16530                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16531                 dev_priv->display.get_initial_plane_config =
16532                         skylake_get_initial_plane_config;
16533                 dev_priv->display.crtc_compute_clock =
16534                         haswell_crtc_compute_clock;
16535                 dev_priv->display.crtc_enable = haswell_crtc_enable;
16536                 dev_priv->display.crtc_disable = haswell_crtc_disable;
16537         } else if (HAS_DDI(dev_priv)) {
16538                 dev_priv->display.get_pipe_config = haswell_get_pipe_config;
16539                 dev_priv->display.get_initial_plane_config =
16540                         i9xx_get_initial_plane_config;
16541                 dev_priv->display.crtc_compute_clock =
16542                         haswell_crtc_compute_clock;
16543                 dev_priv->display.crtc_enable = haswell_crtc_enable;
16544                 dev_priv->display.crtc_disable = haswell_crtc_disable;
16545         } else if (HAS_PCH_SPLIT(dev_priv)) {
16546                 dev_priv->display.get_pipe_config = ironlake_get_pipe_config;
16547                 dev_priv->display.get_initial_plane_config =
16548                         i9xx_get_initial_plane_config;
16549                 dev_priv->display.crtc_compute_clock =
16550                         ironlake_crtc_compute_clock;
16551                 dev_priv->display.crtc_enable = ironlake_crtc_enable;
16552                 dev_priv->display.crtc_disable = ironlake_crtc_disable;
16553         } else if (IS_CHERRYVIEW(dev_priv)) {
16554                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16555                 dev_priv->display.get_initial_plane_config =
16556                         i9xx_get_initial_plane_config;
16557                 dev_priv->display.crtc_compute_clock = chv_crtc_compute_clock;
16558                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16559                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16560         } else if (IS_VALLEYVIEW(dev_priv)) {
16561                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16562                 dev_priv->display.get_initial_plane_config =
16563                         i9xx_get_initial_plane_config;
16564                 dev_priv->display.crtc_compute_clock = vlv_crtc_compute_clock;
16565                 dev_priv->display.crtc_enable = valleyview_crtc_enable;
16566                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16567         } else if (IS_G4X(dev_priv)) {
16568                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16569                 dev_priv->display.get_initial_plane_config =
16570                         i9xx_get_initial_plane_config;
16571                 dev_priv->display.crtc_compute_clock = g4x_crtc_compute_clock;
16572                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16573                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16574         } else if (IS_PINEVIEW(dev_priv)) {
16575                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16576                 dev_priv->display.get_initial_plane_config =
16577                         i9xx_get_initial_plane_config;
16578                 dev_priv->display.crtc_compute_clock = pnv_crtc_compute_clock;
16579                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16580                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16581         } else if (!IS_GEN(dev_priv, 2)) {
16582                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16583                 dev_priv->display.get_initial_plane_config =
16584                         i9xx_get_initial_plane_config;
16585                 dev_priv->display.crtc_compute_clock = i9xx_crtc_compute_clock;
16586                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16587                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16588         } else {
16589                 dev_priv->display.get_pipe_config = i9xx_get_pipe_config;
16590                 dev_priv->display.get_initial_plane_config =
16591                         i9xx_get_initial_plane_config;
16592                 dev_priv->display.crtc_compute_clock = i8xx_crtc_compute_clock;
16593                 dev_priv->display.crtc_enable = i9xx_crtc_enable;
16594                 dev_priv->display.crtc_disable = i9xx_crtc_disable;
16595         }
16596
16597         if (IS_GEN(dev_priv, 5)) {
16598                 dev_priv->display.fdi_link_train = ironlake_fdi_link_train;
16599         } else if (IS_GEN(dev_priv, 6)) {
16600                 dev_priv->display.fdi_link_train = gen6_fdi_link_train;
16601         } else if (IS_IVYBRIDGE(dev_priv)) {
16602                 /* FIXME: detect B0+ stepping and use auto training */
16603                 dev_priv->display.fdi_link_train = ivb_manual_fdi_link_train;
16604         } else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv)) {
16605                 dev_priv->display.fdi_link_train = hsw_fdi_link_train;
16606         }
16607
16608         if (INTEL_GEN(dev_priv) >= 9)
16609                 dev_priv->display.commit_modeset_enables = skl_commit_modeset_enables;
16610         else
16611                 dev_priv->display.commit_modeset_enables = intel_commit_modeset_enables;
16612
16613 }
16614
16615 void intel_modeset_init_hw(struct drm_i915_private *i915)
16616 {
16617         intel_update_cdclk(i915);
16618         intel_dump_cdclk_state(&i915->cdclk.hw, "Current CDCLK");
16619         i915->cdclk.logical = i915->cdclk.actual = i915->cdclk.hw;
16620 }
16621
16622 /*
16623  * Calculate what we think the watermarks should be for the state we've read
16624  * out of the hardware and then immediately program those watermarks so that
16625  * we ensure the hardware settings match our internal state.
16626  *
16627  * We can calculate what we think WM's should be by creating a duplicate of the
16628  * current state (which was constructed during hardware readout) and running it
16629  * through the atomic check code to calculate new watermark values in the
16630  * state object.
16631  */
16632 static void sanitize_watermarks(struct drm_device *dev)
16633 {
16634         struct drm_i915_private *dev_priv = to_i915(dev);
16635         struct drm_atomic_state *state;
16636         struct intel_atomic_state *intel_state;
16637         struct intel_crtc *crtc;
16638         struct intel_crtc_state *crtc_state;
16639         struct drm_modeset_acquire_ctx ctx;
16640         int ret;
16641         int i;
16642
16643         /* Only supported on platforms that use atomic watermark design */
16644         if (!dev_priv->display.optimize_watermarks)
16645                 return;
16646
16647         /*
16648          * We need to hold connection_mutex before calling duplicate_state so
16649          * that the connector loop is protected.
16650          */
16651         drm_modeset_acquire_init(&ctx, 0);
16652 retry:
16653         ret = drm_modeset_lock_all_ctx(dev, &ctx);
16654         if (ret == -EDEADLK) {
16655                 drm_modeset_backoff(&ctx);
16656                 goto retry;
16657         } else if (WARN_ON(ret)) {
16658                 goto fail;
16659         }
16660
16661         state = drm_atomic_helper_duplicate_state(dev, &ctx);
16662         if (WARN_ON(IS_ERR(state)))
16663                 goto fail;
16664
16665         intel_state = to_intel_atomic_state(state);
16666
16667         /*
16668          * Hardware readout is the only time we don't want to calculate
16669          * intermediate watermarks (since we don't trust the current
16670          * watermarks).
16671          */
16672         if (!HAS_GMCH(dev_priv))
16673                 intel_state->skip_intermediate_wm = true;
16674
16675         ret = intel_atomic_check(dev, state);
16676         if (ret) {
16677                 /*
16678                  * If we fail here, it means that the hardware appears to be
16679                  * programmed in a way that shouldn't be possible, given our
16680                  * understanding of watermark requirements.  This might mean a
16681                  * mistake in the hardware readout code or a mistake in the
16682                  * watermark calculations for a given platform.  Raise a WARN
16683                  * so that this is noticeable.
16684                  *
16685                  * If this actually happens, we'll have to just leave the
16686                  * BIOS-programmed watermarks untouched and hope for the best.
16687                  */
16688                 WARN(true, "Could not determine valid watermarks for inherited state\n");
16689                 goto put_state;
16690         }
16691
16692         /* Write calculated watermark values back */
16693         for_each_new_intel_crtc_in_state(intel_state, crtc, crtc_state, i) {
16694                 crtc_state->wm.need_postvbl_update = true;
16695                 dev_priv->display.optimize_watermarks(intel_state, crtc_state);
16696
16697                 to_intel_crtc_state(crtc->base.state)->wm = crtc_state->wm;
16698         }
16699
16700 put_state:
16701         drm_atomic_state_put(state);
16702 fail:
16703         drm_modeset_drop_locks(&ctx);
16704         drm_modeset_acquire_fini(&ctx);
16705 }
16706
16707 static void intel_update_fdi_pll_freq(struct drm_i915_private *dev_priv)
16708 {
16709         if (IS_GEN(dev_priv, 5)) {
16710                 u32 fdi_pll_clk =
16711                         I915_READ(FDI_PLL_BIOS_0) & FDI_PLL_FB_CLOCK_MASK;
16712
16713                 dev_priv->fdi_pll_freq = (fdi_pll_clk + 2) * 10000;
16714         } else if (IS_GEN(dev_priv, 6) || IS_IVYBRIDGE(dev_priv)) {
16715                 dev_priv->fdi_pll_freq = 270000;
16716         } else {
16717                 return;
16718         }
16719
16720         DRM_DEBUG_DRIVER("FDI PLL freq=%d\n", dev_priv->fdi_pll_freq);
16721 }
16722
16723 static int intel_initial_commit(struct drm_device *dev)
16724 {
16725         struct drm_atomic_state *state = NULL;
16726         struct drm_modeset_acquire_ctx ctx;
16727         struct drm_crtc *crtc;
16728         struct drm_crtc_state *crtc_state;
16729         int ret = 0;
16730
16731         state = drm_atomic_state_alloc(dev);
16732         if (!state)
16733                 return -ENOMEM;
16734
16735         drm_modeset_acquire_init(&ctx, 0);
16736
16737 retry:
16738         state->acquire_ctx = &ctx;
16739
16740         drm_for_each_crtc(crtc, dev) {
16741                 crtc_state = drm_atomic_get_crtc_state(state, crtc);
16742                 if (IS_ERR(crtc_state)) {
16743                         ret = PTR_ERR(crtc_state);
16744                         goto out;
16745                 }
16746
16747                 if (crtc_state->active) {
16748                         ret = drm_atomic_add_affected_planes(state, crtc);
16749                         if (ret)
16750                                 goto out;
16751
16752                         /*
16753                          * FIXME hack to force a LUT update to avoid the
16754                          * plane update forcing the pipe gamma on without
16755                          * having a proper LUT loaded. Remove once we
16756                          * have readout for pipe gamma enable.
16757                          */
16758                         crtc_state->color_mgmt_changed = true;
16759                 }
16760         }
16761
16762         ret = drm_atomic_commit(state);
16763
16764 out:
16765         if (ret == -EDEADLK) {
16766                 drm_atomic_state_clear(state);
16767                 drm_modeset_backoff(&ctx);
16768                 goto retry;
16769         }
16770
16771         drm_atomic_state_put(state);
16772
16773         drm_modeset_drop_locks(&ctx);
16774         drm_modeset_acquire_fini(&ctx);
16775
16776         return ret;
16777 }
16778
16779 static void intel_mode_config_init(struct drm_i915_private *i915)
16780 {
16781         struct drm_mode_config *mode_config = &i915->drm.mode_config;
16782
16783         drm_mode_config_init(&i915->drm);
16784
16785         mode_config->min_width = 0;
16786         mode_config->min_height = 0;
16787
16788         mode_config->preferred_depth = 24;
16789         mode_config->prefer_shadow = 1;
16790
16791         mode_config->allow_fb_modifiers = true;
16792
16793         mode_config->funcs = &intel_mode_funcs;
16794
16795         /*
16796          * Maximum framebuffer dimensions, chosen to match
16797          * the maximum render engine surface size on gen4+.
16798          */
16799         if (INTEL_GEN(i915) >= 7) {
16800                 mode_config->max_width = 16384;
16801                 mode_config->max_height = 16384;
16802         } else if (INTEL_GEN(i915) >= 4) {
16803                 mode_config->max_width = 8192;
16804                 mode_config->max_height = 8192;
16805         } else if (IS_GEN(i915, 3)) {
16806                 mode_config->max_width = 4096;
16807                 mode_config->max_height = 4096;
16808         } else {
16809                 mode_config->max_width = 2048;
16810                 mode_config->max_height = 2048;
16811         }
16812
16813         if (IS_I845G(i915) || IS_I865G(i915)) {
16814                 mode_config->cursor_width = IS_I845G(i915) ? 64 : 512;
16815                 mode_config->cursor_height = 1023;
16816         } else if (IS_GEN(i915, 2)) {
16817                 mode_config->cursor_width = 64;
16818                 mode_config->cursor_height = 64;
16819         } else {
16820                 mode_config->cursor_width = 256;
16821                 mode_config->cursor_height = 256;
16822         }
16823 }
16824
16825 int intel_modeset_init(struct drm_i915_private *i915)
16826 {
16827         struct drm_device *dev = &i915->drm;
16828         enum pipe pipe;
16829         struct intel_crtc *crtc;
16830         int ret;
16831
16832         i915->modeset_wq = alloc_ordered_workqueue("i915_modeset", 0);
16833         i915->flip_wq = alloc_workqueue("i915_flip", WQ_HIGHPRI |
16834                                         WQ_UNBOUND, WQ_UNBOUND_MAX_ACTIVE);
16835
16836         intel_mode_config_init(i915);
16837
16838         ret = intel_bw_init(i915);
16839         if (ret)
16840                 return ret;
16841
16842         init_llist_head(&i915->atomic_helper.free_list);
16843         INIT_WORK(&i915->atomic_helper.free_work,
16844                   intel_atomic_helper_free_state_worker);
16845
16846         intel_init_quirks(i915);
16847
16848         intel_fbc_init(i915);
16849
16850         intel_init_pm(i915);
16851
16852         intel_panel_sanitize_ssc(i915);
16853
16854         intel_gmbus_setup(i915);
16855
16856         DRM_DEBUG_KMS("%d display pipe%s available.\n",
16857                       INTEL_NUM_PIPES(i915),
16858                       INTEL_NUM_PIPES(i915) > 1 ? "s" : "");
16859
16860         if (HAS_DISPLAY(i915) && INTEL_DISPLAY_ENABLED(i915)) {
16861                 for_each_pipe(i915, pipe) {
16862                         ret = intel_crtc_init(i915, pipe);
16863                         if (ret) {
16864                                 drm_mode_config_cleanup(dev);
16865                                 return ret;
16866                         }
16867                 }
16868         }
16869
16870         intel_shared_dpll_init(dev);
16871         intel_update_fdi_pll_freq(i915);
16872
16873         intel_update_czclk(i915);
16874         intel_modeset_init_hw(i915);
16875
16876         intel_hdcp_component_init(i915);
16877
16878         if (i915->max_cdclk_freq == 0)
16879                 intel_update_max_cdclk(i915);
16880
16881         /* Just disable it once at startup */
16882         intel_vga_disable(i915);
16883         intel_setup_outputs(i915);
16884
16885         drm_modeset_lock_all(dev);
16886         intel_modeset_setup_hw_state(dev, dev->mode_config.acquire_ctx);
16887         drm_modeset_unlock_all(dev);
16888
16889         for_each_intel_crtc(dev, crtc) {
16890                 struct intel_initial_plane_config plane_config = {};
16891
16892                 if (!crtc->active)
16893                         continue;
16894
16895                 /*
16896                  * Note that reserving the BIOS fb up front prevents us
16897                  * from stuffing other stolen allocations like the ring
16898                  * on top.  This prevents some ugliness at boot time, and
16899                  * can even allow for smooth boot transitions if the BIOS
16900                  * fb is large enough for the active pipe configuration.
16901                  */
16902                 i915->display.get_initial_plane_config(crtc, &plane_config);
16903
16904                 /*
16905                  * If the fb is shared between multiple heads, we'll
16906                  * just get the first one.
16907                  */
16908                 intel_find_initial_plane_obj(crtc, &plane_config);
16909         }
16910
16911         /*
16912          * Make sure hardware watermarks really match the state we read out.
16913          * Note that we need to do this after reconstructing the BIOS fb's
16914          * since the watermark calculation done here will use pstate->fb.
16915          */
16916         if (!HAS_GMCH(i915))
16917                 sanitize_watermarks(dev);
16918
16919         /*
16920          * Force all active planes to recompute their states. So that on
16921          * mode_setcrtc after probe, all the intel_plane_state variables
16922          * are already calculated and there is no assert_plane warnings
16923          * during bootup.
16924          */
16925         ret = intel_initial_commit(dev);
16926         if (ret)
16927                 DRM_DEBUG_KMS("Initial commit in probe failed.\n");
16928
16929         return 0;
16930 }
16931
16932 void i830_enable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
16933 {
16934         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
16935         /* 640x480@60Hz, ~25175 kHz */
16936         struct dpll clock = {
16937                 .m1 = 18,
16938                 .m2 = 7,
16939                 .p1 = 13,
16940                 .p2 = 4,
16941                 .n = 2,
16942         };
16943         u32 dpll, fp;
16944         int i;
16945
16946         WARN_ON(i9xx_calc_dpll_params(48000, &clock) != 25154);
16947
16948         DRM_DEBUG_KMS("enabling pipe %c due to force quirk (vco=%d dot=%d)\n",
16949                       pipe_name(pipe), clock.vco, clock.dot);
16950
16951         fp = i9xx_dpll_compute_fp(&clock);
16952         dpll = DPLL_DVO_2X_MODE |
16953                 DPLL_VGA_MODE_DIS |
16954                 ((clock.p1 - 2) << DPLL_FPA01_P1_POST_DIV_SHIFT) |
16955                 PLL_P2_DIVIDE_BY_4 |
16956                 PLL_REF_INPUT_DREFCLK |
16957                 DPLL_VCO_ENABLE;
16958
16959         I915_WRITE(FP0(pipe), fp);
16960         I915_WRITE(FP1(pipe), fp);
16961
16962         I915_WRITE(HTOTAL(pipe), (640 - 1) | ((800 - 1) << 16));
16963         I915_WRITE(HBLANK(pipe), (640 - 1) | ((800 - 1) << 16));
16964         I915_WRITE(HSYNC(pipe), (656 - 1) | ((752 - 1) << 16));
16965         I915_WRITE(VTOTAL(pipe), (480 - 1) | ((525 - 1) << 16));
16966         I915_WRITE(VBLANK(pipe), (480 - 1) | ((525 - 1) << 16));
16967         I915_WRITE(VSYNC(pipe), (490 - 1) | ((492 - 1) << 16));
16968         I915_WRITE(PIPESRC(pipe), ((640 - 1) << 16) | (480 - 1));
16969
16970         /*
16971          * Apparently we need to have VGA mode enabled prior to changing
16972          * the P1/P2 dividers. Otherwise the DPLL will keep using the old
16973          * dividers, even though the register value does change.
16974          */
16975         I915_WRITE(DPLL(pipe), dpll & ~DPLL_VGA_MODE_DIS);
16976         I915_WRITE(DPLL(pipe), dpll);
16977
16978         /* Wait for the clocks to stabilize. */
16979         POSTING_READ(DPLL(pipe));
16980         udelay(150);
16981
16982         /* The pixel multiplier can only be updated once the
16983          * DPLL is enabled and the clocks are stable.
16984          *
16985          * So write it again.
16986          */
16987         I915_WRITE(DPLL(pipe), dpll);
16988
16989         /* We do this three times for luck */
16990         for (i = 0; i < 3 ; i++) {
16991                 I915_WRITE(DPLL(pipe), dpll);
16992                 POSTING_READ(DPLL(pipe));
16993                 udelay(150); /* wait for warmup */
16994         }
16995
16996         I915_WRITE(PIPECONF(pipe), PIPECONF_ENABLE | PIPECONF_PROGRESSIVE);
16997         POSTING_READ(PIPECONF(pipe));
16998
16999         intel_wait_for_pipe_scanline_moving(crtc);
17000 }
17001
17002 void i830_disable_pipe(struct drm_i915_private *dev_priv, enum pipe pipe)
17003 {
17004         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17005
17006         DRM_DEBUG_KMS("disabling pipe %c due to force quirk\n",
17007                       pipe_name(pipe));
17008
17009         WARN_ON(I915_READ(DSPCNTR(PLANE_A)) & DISPLAY_PLANE_ENABLE);
17010         WARN_ON(I915_READ(DSPCNTR(PLANE_B)) & DISPLAY_PLANE_ENABLE);
17011         WARN_ON(I915_READ(DSPCNTR(PLANE_C)) & DISPLAY_PLANE_ENABLE);
17012         WARN_ON(I915_READ(CURCNTR(PIPE_A)) & MCURSOR_MODE);
17013         WARN_ON(I915_READ(CURCNTR(PIPE_B)) & MCURSOR_MODE);
17014
17015         I915_WRITE(PIPECONF(pipe), 0);
17016         POSTING_READ(PIPECONF(pipe));
17017
17018         intel_wait_for_pipe_scanline_stopped(crtc);
17019
17020         I915_WRITE(DPLL(pipe), DPLL_VGA_MODE_DIS);
17021         POSTING_READ(DPLL(pipe));
17022 }
17023
17024 static void
17025 intel_sanitize_plane_mapping(struct drm_i915_private *dev_priv)
17026 {
17027         struct intel_crtc *crtc;
17028
17029         if (INTEL_GEN(dev_priv) >= 4)
17030                 return;
17031
17032         for_each_intel_crtc(&dev_priv->drm, crtc) {
17033                 struct intel_plane *plane =
17034                         to_intel_plane(crtc->base.primary);
17035                 struct intel_crtc *plane_crtc;
17036                 enum pipe pipe;
17037
17038                 if (!plane->get_hw_state(plane, &pipe))
17039                         continue;
17040
17041                 if (pipe == crtc->pipe)
17042                         continue;
17043
17044                 DRM_DEBUG_KMS("[PLANE:%d:%s] attached to the wrong pipe, disabling plane\n",
17045                               plane->base.base.id, plane->base.name);
17046
17047                 plane_crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17048                 intel_plane_disable_noatomic(plane_crtc, plane);
17049         }
17050 }
17051
17052 static bool intel_crtc_has_encoders(struct intel_crtc *crtc)
17053 {
17054         struct drm_device *dev = crtc->base.dev;
17055         struct intel_encoder *encoder;
17056
17057         for_each_encoder_on_crtc(dev, &crtc->base, encoder)
17058                 return true;
17059
17060         return false;
17061 }
17062
17063 static struct intel_connector *intel_encoder_find_connector(struct intel_encoder *encoder)
17064 {
17065         struct drm_device *dev = encoder->base.dev;
17066         struct intel_connector *connector;
17067
17068         for_each_connector_on_encoder(dev, &encoder->base, connector)
17069                 return connector;
17070
17071         return NULL;
17072 }
17073
17074 static bool has_pch_trancoder(struct drm_i915_private *dev_priv,
17075                               enum pipe pch_transcoder)
17076 {
17077         return HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
17078                 (HAS_PCH_LPT_H(dev_priv) && pch_transcoder == PIPE_A);
17079 }
17080
17081 static void intel_sanitize_crtc(struct intel_crtc *crtc,
17082                                 struct drm_modeset_acquire_ctx *ctx)
17083 {
17084         struct drm_device *dev = crtc->base.dev;
17085         struct drm_i915_private *dev_priv = to_i915(dev);
17086         struct intel_crtc_state *crtc_state = to_intel_crtc_state(crtc->base.state);
17087         enum transcoder cpu_transcoder = crtc_state->cpu_transcoder;
17088
17089         /* Clear any frame start delays used for debugging left by the BIOS */
17090         if (crtc->active && !transcoder_is_dsi(cpu_transcoder)) {
17091                 i915_reg_t reg = PIPECONF(cpu_transcoder);
17092
17093                 I915_WRITE(reg,
17094                            I915_READ(reg) & ~PIPECONF_FRAME_START_DELAY_MASK);
17095         }
17096
17097         if (crtc_state->base.active) {
17098                 struct intel_plane *plane;
17099
17100                 /* Disable everything but the primary plane */
17101                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
17102                         const struct intel_plane_state *plane_state =
17103                                 to_intel_plane_state(plane->base.state);
17104
17105                         if (plane_state->base.visible &&
17106                             plane->base.type != DRM_PLANE_TYPE_PRIMARY)
17107                                 intel_plane_disable_noatomic(crtc, plane);
17108                 }
17109
17110                 /*
17111                  * Disable any background color set by the BIOS, but enable the
17112                  * gamma and CSC to match how we program our planes.
17113                  */
17114                 if (INTEL_GEN(dev_priv) >= 9)
17115                         I915_WRITE(SKL_BOTTOM_COLOR(crtc->pipe),
17116                                    SKL_BOTTOM_COLOR_GAMMA_ENABLE |
17117                                    SKL_BOTTOM_COLOR_CSC_ENABLE);
17118         }
17119
17120         /* Adjust the state of the output pipe according to whether we
17121          * have active connectors/encoders. */
17122         if (crtc_state->base.active && !intel_crtc_has_encoders(crtc))
17123                 intel_crtc_disable_noatomic(&crtc->base, ctx);
17124
17125         if (crtc_state->base.active || HAS_GMCH(dev_priv)) {
17126                 /*
17127                  * We start out with underrun reporting disabled to avoid races.
17128                  * For correct bookkeeping mark this on active crtcs.
17129                  *
17130                  * Also on gmch platforms we dont have any hardware bits to
17131                  * disable the underrun reporting. Which means we need to start
17132                  * out with underrun reporting disabled also on inactive pipes,
17133                  * since otherwise we'll complain about the garbage we read when
17134                  * e.g. coming up after runtime pm.
17135                  *
17136                  * No protection against concurrent access is required - at
17137                  * worst a fifo underrun happens which also sets this to false.
17138                  */
17139                 crtc->cpu_fifo_underrun_disabled = true;
17140                 /*
17141                  * We track the PCH trancoder underrun reporting state
17142                  * within the crtc. With crtc for pipe A housing the underrun
17143                  * reporting state for PCH transcoder A, crtc for pipe B housing
17144                  * it for PCH transcoder B, etc. LPT-H has only PCH transcoder A,
17145                  * and marking underrun reporting as disabled for the non-existing
17146                  * PCH transcoders B and C would prevent enabling the south
17147                  * error interrupt (see cpt_can_enable_serr_int()).
17148                  */
17149                 if (has_pch_trancoder(dev_priv, crtc->pipe))
17150                         crtc->pch_fifo_underrun_disabled = true;
17151         }
17152 }
17153
17154 static bool has_bogus_dpll_config(const struct intel_crtc_state *crtc_state)
17155 {
17156         struct drm_i915_private *dev_priv = to_i915(crtc_state->base.crtc->dev);
17157
17158         /*
17159          * Some SNB BIOSen (eg. ASUS K53SV) are known to misprogram
17160          * the hardware when a high res displays plugged in. DPLL P
17161          * divider is zero, and the pipe timings are bonkers. We'll
17162          * try to disable everything in that case.
17163          *
17164          * FIXME would be nice to be able to sanitize this state
17165          * without several WARNs, but for now let's take the easy
17166          * road.
17167          */
17168         return IS_GEN(dev_priv, 6) &&
17169                 crtc_state->base.active &&
17170                 crtc_state->shared_dpll &&
17171                 crtc_state->port_clock == 0;
17172 }
17173
17174 static void intel_sanitize_encoder(struct intel_encoder *encoder)
17175 {
17176         struct drm_i915_private *dev_priv = to_i915(encoder->base.dev);
17177         struct intel_connector *connector;
17178         struct intel_crtc *crtc = to_intel_crtc(encoder->base.crtc);
17179         struct intel_crtc_state *crtc_state = crtc ?
17180                 to_intel_crtc_state(crtc->base.state) : NULL;
17181
17182         /* We need to check both for a crtc link (meaning that the
17183          * encoder is active and trying to read from a pipe) and the
17184          * pipe itself being active. */
17185         bool has_active_crtc = crtc_state &&
17186                 crtc_state->base.active;
17187
17188         if (crtc_state && has_bogus_dpll_config(crtc_state)) {
17189                 DRM_DEBUG_KMS("BIOS has misprogrammed the hardware. Disabling pipe %c\n",
17190                               pipe_name(crtc->pipe));
17191                 has_active_crtc = false;
17192         }
17193
17194         connector = intel_encoder_find_connector(encoder);
17195         if (connector && !has_active_crtc) {
17196                 DRM_DEBUG_KMS("[ENCODER:%d:%s] has active connectors but no active pipe!\n",
17197                               encoder->base.base.id,
17198                               encoder->base.name);
17199
17200                 /* Connector is active, but has no active pipe. This is
17201                  * fallout from our resume register restoring. Disable
17202                  * the encoder manually again. */
17203                 if (crtc_state) {
17204                         struct drm_encoder *best_encoder;
17205
17206                         DRM_DEBUG_KMS("[ENCODER:%d:%s] manually disabled\n",
17207                                       encoder->base.base.id,
17208                                       encoder->base.name);
17209
17210                         /* avoid oopsing in case the hooks consult best_encoder */
17211                         best_encoder = connector->base.state->best_encoder;
17212                         connector->base.state->best_encoder = &encoder->base;
17213
17214                         if (encoder->disable)
17215                                 encoder->disable(encoder, crtc_state,
17216                                                  connector->base.state);
17217                         if (encoder->post_disable)
17218                                 encoder->post_disable(encoder, crtc_state,
17219                                                       connector->base.state);
17220
17221                         connector->base.state->best_encoder = best_encoder;
17222                 }
17223                 encoder->base.crtc = NULL;
17224
17225                 /* Inconsistent output/port/pipe state happens presumably due to
17226                  * a bug in one of the get_hw_state functions. Or someplace else
17227                  * in our code, like the register restore mess on resume. Clamp
17228                  * things to off as a safer default. */
17229
17230                 connector->base.dpms = DRM_MODE_DPMS_OFF;
17231                 connector->base.encoder = NULL;
17232         }
17233
17234         /* notify opregion of the sanitized encoder state */
17235         intel_opregion_notify_encoder(encoder, connector && has_active_crtc);
17236
17237         if (INTEL_GEN(dev_priv) >= 11)
17238                 icl_sanitize_encoder_pll_mapping(encoder);
17239 }
17240
17241 /* FIXME read out full plane state for all planes */
17242 static void readout_plane_state(struct drm_i915_private *dev_priv)
17243 {
17244         struct intel_plane *plane;
17245         struct intel_crtc *crtc;
17246
17247         for_each_intel_plane(&dev_priv->drm, plane) {
17248                 struct intel_plane_state *plane_state =
17249                         to_intel_plane_state(plane->base.state);
17250                 struct intel_crtc_state *crtc_state;
17251                 enum pipe pipe = PIPE_A;
17252                 bool visible;
17253
17254                 visible = plane->get_hw_state(plane, &pipe);
17255
17256                 crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17257                 crtc_state = to_intel_crtc_state(crtc->base.state);
17258
17259                 intel_set_plane_visible(crtc_state, plane_state, visible);
17260
17261                 DRM_DEBUG_KMS("[PLANE:%d:%s] hw state readout: %s, pipe %c\n",
17262                               plane->base.base.id, plane->base.name,
17263                               enableddisabled(visible), pipe_name(pipe));
17264         }
17265
17266         for_each_intel_crtc(&dev_priv->drm, crtc) {
17267                 struct intel_crtc_state *crtc_state =
17268                         to_intel_crtc_state(crtc->base.state);
17269
17270                 fixup_active_planes(crtc_state);
17271         }
17272 }
17273
17274 static void intel_modeset_readout_hw_state(struct drm_device *dev)
17275 {
17276         struct drm_i915_private *dev_priv = to_i915(dev);
17277         enum pipe pipe;
17278         struct intel_crtc *crtc;
17279         struct intel_encoder *encoder;
17280         struct intel_connector *connector;
17281         struct drm_connector_list_iter conn_iter;
17282         int i;
17283
17284         dev_priv->active_pipes = 0;
17285
17286         for_each_intel_crtc(dev, crtc) {
17287                 struct intel_crtc_state *crtc_state =
17288                         to_intel_crtc_state(crtc->base.state);
17289
17290                 __drm_atomic_helper_crtc_destroy_state(&crtc_state->base);
17291                 memset(crtc_state, 0, sizeof(*crtc_state));
17292                 __drm_atomic_helper_crtc_reset(&crtc->base, &crtc_state->base);
17293
17294                 crtc_state->base.active = crtc_state->base.enable =
17295                         dev_priv->display.get_pipe_config(crtc, crtc_state);
17296
17297                 crtc->base.enabled = crtc_state->base.enable;
17298                 crtc->active = crtc_state->base.active;
17299
17300                 if (crtc_state->base.active)
17301                         dev_priv->active_pipes |= BIT(crtc->pipe);
17302
17303                 DRM_DEBUG_KMS("[CRTC:%d:%s] hw state readout: %s\n",
17304                               crtc->base.base.id, crtc->base.name,
17305                               enableddisabled(crtc_state->base.active));
17306         }
17307
17308         readout_plane_state(dev_priv);
17309
17310         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17311                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17312
17313                 pll->on = pll->info->funcs->get_hw_state(dev_priv, pll,
17314                                                         &pll->state.hw_state);
17315
17316                 if (IS_ELKHARTLAKE(dev_priv) && pll->on &&
17317                     pll->info->id == DPLL_ID_EHL_DPLL4) {
17318                         pll->wakeref = intel_display_power_get(dev_priv,
17319                                                                POWER_DOMAIN_DPLL_DC_OFF);
17320                 }
17321
17322                 pll->state.crtc_mask = 0;
17323                 for_each_intel_crtc(dev, crtc) {
17324                         struct intel_crtc_state *crtc_state =
17325                                 to_intel_crtc_state(crtc->base.state);
17326
17327                         if (crtc_state->base.active &&
17328                             crtc_state->shared_dpll == pll)
17329                                 pll->state.crtc_mask |= 1 << crtc->pipe;
17330                 }
17331                 pll->active_mask = pll->state.crtc_mask;
17332
17333                 DRM_DEBUG_KMS("%s hw state readout: crtc_mask 0x%08x, on %i\n",
17334                               pll->info->name, pll->state.crtc_mask, pll->on);
17335         }
17336
17337         for_each_intel_encoder(dev, encoder) {
17338                 pipe = 0;
17339
17340                 if (encoder->get_hw_state(encoder, &pipe)) {
17341                         struct intel_crtc_state *crtc_state;
17342
17343                         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
17344                         crtc_state = to_intel_crtc_state(crtc->base.state);
17345
17346                         encoder->base.crtc = &crtc->base;
17347                         encoder->get_config(encoder, crtc_state);
17348                 } else {
17349                         encoder->base.crtc = NULL;
17350                 }
17351
17352                 DRM_DEBUG_KMS("[ENCODER:%d:%s] hw state readout: %s, pipe %c\n",
17353                               encoder->base.base.id, encoder->base.name,
17354                               enableddisabled(encoder->base.crtc),
17355                               pipe_name(pipe));
17356         }
17357
17358         drm_connector_list_iter_begin(dev, &conn_iter);
17359         for_each_intel_connector_iter(connector, &conn_iter) {
17360                 if (connector->get_hw_state(connector)) {
17361                         struct intel_crtc_state *crtc_state;
17362                         struct intel_crtc *crtc;
17363
17364                         connector->base.dpms = DRM_MODE_DPMS_ON;
17365
17366                         encoder = connector->encoder;
17367                         connector->base.encoder = &encoder->base;
17368
17369                         crtc = to_intel_crtc(encoder->base.crtc);
17370                         crtc_state = crtc ? to_intel_crtc_state(crtc->base.state) : NULL;
17371
17372                         if (crtc_state && crtc_state->base.active) {
17373                                 /*
17374                                  * This has to be done during hardware readout
17375                                  * because anything calling .crtc_disable may
17376                                  * rely on the connector_mask being accurate.
17377                                  */
17378                                 crtc_state->base.connector_mask |=
17379                                         drm_connector_mask(&connector->base);
17380                                 crtc_state->base.encoder_mask |=
17381                                         drm_encoder_mask(&encoder->base);
17382                         }
17383                 } else {
17384                         connector->base.dpms = DRM_MODE_DPMS_OFF;
17385                         connector->base.encoder = NULL;
17386                 }
17387                 DRM_DEBUG_KMS("[CONNECTOR:%d:%s] hw state readout: %s\n",
17388                               connector->base.base.id, connector->base.name,
17389                               enableddisabled(connector->base.encoder));
17390         }
17391         drm_connector_list_iter_end(&conn_iter);
17392
17393         for_each_intel_crtc(dev, crtc) {
17394                 struct intel_bw_state *bw_state =
17395                         to_intel_bw_state(dev_priv->bw_obj.state);
17396                 struct intel_crtc_state *crtc_state =
17397                         to_intel_crtc_state(crtc->base.state);
17398                 struct intel_plane *plane;
17399                 int min_cdclk = 0;
17400
17401                 if (crtc_state->base.active) {
17402                         struct drm_display_mode mode;
17403
17404                         intel_mode_from_pipe_config(&crtc_state->base.adjusted_mode,
17405                                                     crtc_state);
17406
17407                         mode = crtc_state->base.adjusted_mode;
17408                         mode.hdisplay = crtc_state->pipe_src_w;
17409                         mode.vdisplay = crtc_state->pipe_src_h;
17410                         WARN_ON(drm_atomic_set_mode_for_crtc(&crtc_state->base, &mode));
17411
17412                         /*
17413                          * The initial mode needs to be set in order to keep
17414                          * the atomic core happy. It wants a valid mode if the
17415                          * crtc's enabled, so we do the above call.
17416                          *
17417                          * But we don't set all the derived state fully, hence
17418                          * set a flag to indicate that a full recalculation is
17419                          * needed on the next commit.
17420                          */
17421                         crtc_state->base.mode.private_flags = I915_MODE_FLAG_INHERITED;
17422
17423                         intel_crtc_compute_pixel_rate(crtc_state);
17424
17425                         intel_crtc_update_active_timings(crtc_state);
17426                 }
17427
17428                 for_each_intel_plane_on_crtc(&dev_priv->drm, crtc, plane) {
17429                         const struct intel_plane_state *plane_state =
17430                                 to_intel_plane_state(plane->base.state);
17431
17432                         /*
17433                          * FIXME don't have the fb yet, so can't
17434                          * use intel_plane_data_rate() :(
17435                          */
17436                         if (plane_state->base.visible)
17437                                 crtc_state->data_rate[plane->id] =
17438                                         4 * crtc_state->pixel_rate;
17439                         /*
17440                          * FIXME don't have the fb yet, so can't
17441                          * use plane->min_cdclk() :(
17442                          */
17443                         if (plane_state->base.visible && plane->min_cdclk) {
17444                                 if (crtc_state->double_wide ||
17445                                     INTEL_GEN(dev_priv) >= 10 || IS_GEMINILAKE(dev_priv))
17446                                         crtc_state->min_cdclk[plane->id] =
17447                                                 DIV_ROUND_UP(crtc_state->pixel_rate, 2);
17448                                 else
17449                                         crtc_state->min_cdclk[plane->id] =
17450                                                 crtc_state->pixel_rate;
17451                         }
17452                         DRM_DEBUG_KMS("[PLANE:%d:%s] min_cdclk %d kHz\n",
17453                                       plane->base.base.id, plane->base.name,
17454                                       crtc_state->min_cdclk[plane->id]);
17455                 }
17456
17457                 if (crtc_state->base.active) {
17458                         min_cdclk = intel_crtc_compute_min_cdclk(crtc_state);
17459                         if (WARN_ON(min_cdclk < 0))
17460                                 min_cdclk = 0;
17461                 }
17462
17463                 dev_priv->min_cdclk[crtc->pipe] = min_cdclk;
17464                 dev_priv->min_voltage_level[crtc->pipe] =
17465                         crtc_state->min_voltage_level;
17466
17467                 intel_bw_crtc_update(bw_state, crtc_state);
17468
17469                 intel_pipe_config_sanity_check(dev_priv, crtc_state);
17470         }
17471 }
17472
17473 static void
17474 get_encoder_power_domains(struct drm_i915_private *dev_priv)
17475 {
17476         struct intel_encoder *encoder;
17477
17478         for_each_intel_encoder(&dev_priv->drm, encoder) {
17479                 struct intel_crtc_state *crtc_state;
17480
17481                 if (!encoder->get_power_domains)
17482                         continue;
17483
17484                 /*
17485                  * MST-primary and inactive encoders don't have a crtc state
17486                  * and neither of these require any power domain references.
17487                  */
17488                 if (!encoder->base.crtc)
17489                         continue;
17490
17491                 crtc_state = to_intel_crtc_state(encoder->base.crtc->state);
17492                 encoder->get_power_domains(encoder, crtc_state);
17493         }
17494 }
17495
17496 static void intel_early_display_was(struct drm_i915_private *dev_priv)
17497 {
17498         /* Display WA #1185 WaDisableDARBFClkGating:cnl,glk */
17499         if (IS_CANNONLAKE(dev_priv) || IS_GEMINILAKE(dev_priv))
17500                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
17501                            DARBF_GATING_DIS);
17502
17503         if (IS_HASWELL(dev_priv)) {
17504                 /*
17505                  * WaRsPkgCStateDisplayPMReq:hsw
17506                  * System hang if this isn't done before disabling all planes!
17507                  */
17508                 I915_WRITE(CHICKEN_PAR1_1,
17509                            I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
17510         }
17511 }
17512
17513 static void ibx_sanitize_pch_hdmi_port(struct drm_i915_private *dev_priv,
17514                                        enum port port, i915_reg_t hdmi_reg)
17515 {
17516         u32 val = I915_READ(hdmi_reg);
17517
17518         if (val & SDVO_ENABLE ||
17519             (val & SDVO_PIPE_SEL_MASK) == SDVO_PIPE_SEL(PIPE_A))
17520                 return;
17521
17522         DRM_DEBUG_KMS("Sanitizing transcoder select for HDMI %c\n",
17523                       port_name(port));
17524
17525         val &= ~SDVO_PIPE_SEL_MASK;
17526         val |= SDVO_PIPE_SEL(PIPE_A);
17527
17528         I915_WRITE(hdmi_reg, val);
17529 }
17530
17531 static void ibx_sanitize_pch_dp_port(struct drm_i915_private *dev_priv,
17532                                      enum port port, i915_reg_t dp_reg)
17533 {
17534         u32 val = I915_READ(dp_reg);
17535
17536         if (val & DP_PORT_EN ||
17537             (val & DP_PIPE_SEL_MASK) == DP_PIPE_SEL(PIPE_A))
17538                 return;
17539
17540         DRM_DEBUG_KMS("Sanitizing transcoder select for DP %c\n",
17541                       port_name(port));
17542
17543         val &= ~DP_PIPE_SEL_MASK;
17544         val |= DP_PIPE_SEL(PIPE_A);
17545
17546         I915_WRITE(dp_reg, val);
17547 }
17548
17549 static void ibx_sanitize_pch_ports(struct drm_i915_private *dev_priv)
17550 {
17551         /*
17552          * The BIOS may select transcoder B on some of the PCH
17553          * ports even it doesn't enable the port. This would trip
17554          * assert_pch_dp_disabled() and assert_pch_hdmi_disabled().
17555          * Sanitize the transcoder select bits to prevent that. We
17556          * assume that the BIOS never actually enabled the port,
17557          * because if it did we'd actually have to toggle the port
17558          * on and back off to make the transcoder A select stick
17559          * (see. intel_dp_link_down(), intel_disable_hdmi(),
17560          * intel_disable_sdvo()).
17561          */
17562         ibx_sanitize_pch_dp_port(dev_priv, PORT_B, PCH_DP_B);
17563         ibx_sanitize_pch_dp_port(dev_priv, PORT_C, PCH_DP_C);
17564         ibx_sanitize_pch_dp_port(dev_priv, PORT_D, PCH_DP_D);
17565
17566         /* PCH SDVOB multiplex with HDMIB */
17567         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_B, PCH_HDMIB);
17568         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_C, PCH_HDMIC);
17569         ibx_sanitize_pch_hdmi_port(dev_priv, PORT_D, PCH_HDMID);
17570 }
17571
17572 /* Scan out the current hw modeset state,
17573  * and sanitizes it to the current state
17574  */
17575 static void
17576 intel_modeset_setup_hw_state(struct drm_device *dev,
17577                              struct drm_modeset_acquire_ctx *ctx)
17578 {
17579         struct drm_i915_private *dev_priv = to_i915(dev);
17580         struct intel_crtc_state *crtc_state;
17581         struct intel_encoder *encoder;
17582         struct intel_crtc *crtc;
17583         intel_wakeref_t wakeref;
17584         int i;
17585
17586         wakeref = intel_display_power_get(dev_priv, POWER_DOMAIN_INIT);
17587
17588         intel_early_display_was(dev_priv);
17589         intel_modeset_readout_hw_state(dev);
17590
17591         /* HW state is read out, now we need to sanitize this mess. */
17592
17593         /* Sanitize the TypeC port mode upfront, encoders depend on this */
17594         for_each_intel_encoder(dev, encoder) {
17595                 enum phy phy = intel_port_to_phy(dev_priv, encoder->port);
17596
17597                 /* We need to sanitize only the MST primary port. */
17598                 if (encoder->type != INTEL_OUTPUT_DP_MST &&
17599                     intel_phy_is_tc(dev_priv, phy))
17600                         intel_tc_port_sanitize(enc_to_dig_port(&encoder->base));
17601         }
17602
17603         get_encoder_power_domains(dev_priv);
17604
17605         if (HAS_PCH_IBX(dev_priv))
17606                 ibx_sanitize_pch_ports(dev_priv);
17607
17608         /*
17609          * intel_sanitize_plane_mapping() may need to do vblank
17610          * waits, so we need vblank interrupts restored beforehand.
17611          */
17612         for_each_intel_crtc(&dev_priv->drm, crtc) {
17613                 crtc_state = to_intel_crtc_state(crtc->base.state);
17614
17615                 drm_crtc_vblank_reset(&crtc->base);
17616
17617                 if (crtc_state->base.active)
17618                         intel_crtc_vblank_on(crtc_state);
17619         }
17620
17621         intel_sanitize_plane_mapping(dev_priv);
17622
17623         for_each_intel_encoder(dev, encoder)
17624                 intel_sanitize_encoder(encoder);
17625
17626         for_each_intel_crtc(&dev_priv->drm, crtc) {
17627                 crtc_state = to_intel_crtc_state(crtc->base.state);
17628                 intel_sanitize_crtc(crtc, ctx);
17629                 intel_dump_pipe_config(crtc_state, NULL, "[setup_hw_state]");
17630         }
17631
17632         intel_modeset_update_connector_atomic_state(dev);
17633
17634         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
17635                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
17636
17637                 if (!pll->on || pll->active_mask)
17638                         continue;
17639
17640                 DRM_DEBUG_KMS("%s enabled but not in use, disabling\n",
17641                               pll->info->name);
17642
17643                 pll->info->funcs->disable(dev_priv, pll);
17644                 pll->on = false;
17645         }
17646
17647         if (IS_G4X(dev_priv)) {
17648                 g4x_wm_get_hw_state(dev_priv);
17649                 g4x_wm_sanitize(dev_priv);
17650         } else if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
17651                 vlv_wm_get_hw_state(dev_priv);
17652                 vlv_wm_sanitize(dev_priv);
17653         } else if (INTEL_GEN(dev_priv) >= 9) {
17654                 skl_wm_get_hw_state(dev_priv);
17655         } else if (HAS_PCH_SPLIT(dev_priv)) {
17656                 ilk_wm_get_hw_state(dev_priv);
17657         }
17658
17659         for_each_intel_crtc(dev, crtc) {
17660                 u64 put_domains;
17661
17662                 crtc_state = to_intel_crtc_state(crtc->base.state);
17663                 put_domains = modeset_get_crtc_power_domains(crtc_state);
17664                 if (WARN_ON(put_domains))
17665                         modeset_put_power_domains(dev_priv, put_domains);
17666         }
17667
17668         intel_display_power_put(dev_priv, POWER_DOMAIN_INIT, wakeref);
17669
17670         intel_fbc_init_pipe_state(dev_priv);
17671 }
17672
17673 void intel_display_resume(struct drm_device *dev)
17674 {
17675         struct drm_i915_private *dev_priv = to_i915(dev);
17676         struct drm_atomic_state *state = dev_priv->modeset_restore_state;
17677         struct drm_modeset_acquire_ctx ctx;
17678         int ret;
17679
17680         dev_priv->modeset_restore_state = NULL;
17681         if (state)
17682                 state->acquire_ctx = &ctx;
17683
17684         drm_modeset_acquire_init(&ctx, 0);
17685
17686         while (1) {
17687                 ret = drm_modeset_lock_all_ctx(dev, &ctx);
17688                 if (ret != -EDEADLK)
17689                         break;
17690
17691                 drm_modeset_backoff(&ctx);
17692         }
17693
17694         if (!ret)
17695                 ret = __intel_display_resume(dev, state, &ctx);
17696
17697         intel_enable_ipc(dev_priv);
17698         drm_modeset_drop_locks(&ctx);
17699         drm_modeset_acquire_fini(&ctx);
17700
17701         if (ret)
17702                 DRM_ERROR("Restoring old state failed with %i\n", ret);
17703         if (state)
17704                 drm_atomic_state_put(state);
17705 }
17706
17707 static void intel_hpd_poll_fini(struct drm_i915_private *i915)
17708 {
17709         struct intel_connector *connector;
17710         struct drm_connector_list_iter conn_iter;
17711
17712         /* Kill all the work that may have been queued by hpd. */
17713         drm_connector_list_iter_begin(&i915->drm, &conn_iter);
17714         for_each_intel_connector_iter(connector, &conn_iter) {
17715                 if (connector->modeset_retry_work.func)
17716                         cancel_work_sync(&connector->modeset_retry_work);
17717                 if (connector->hdcp.shim) {
17718                         cancel_delayed_work_sync(&connector->hdcp.check_work);
17719                         cancel_work_sync(&connector->hdcp.prop_work);
17720                 }
17721         }
17722         drm_connector_list_iter_end(&conn_iter);
17723 }
17724
17725 void intel_modeset_driver_remove(struct drm_i915_private *i915)
17726 {
17727         flush_workqueue(i915->flip_wq);
17728         flush_workqueue(i915->modeset_wq);
17729
17730         flush_work(&i915->atomic_helper.free_work);
17731         WARN_ON(!llist_empty(&i915->atomic_helper.free_list));
17732
17733         /*
17734          * Interrupts and polling as the first thing to avoid creating havoc.
17735          * Too much stuff here (turning of connectors, ...) would
17736          * experience fancy races otherwise.
17737          */
17738         intel_irq_uninstall(i915);
17739
17740         /*
17741          * Due to the hpd irq storm handling the hotplug work can re-arm the
17742          * poll handlers. Hence disable polling after hpd handling is shut down.
17743          */
17744         intel_hpd_poll_fini(i915);
17745
17746         /* poll work can call into fbdev, hence clean that up afterwards */
17747         intel_fbdev_fini(i915);
17748
17749         intel_unregister_dsm_handler();
17750
17751         intel_fbc_global_disable(i915);
17752
17753         /* flush any delayed tasks or pending work */
17754         flush_scheduled_work();
17755
17756         intel_hdcp_component_fini(i915);
17757
17758         drm_mode_config_cleanup(&i915->drm);
17759
17760         intel_overlay_cleanup(i915);
17761
17762         intel_gmbus_teardown(i915);
17763
17764         destroy_workqueue(i915->flip_wq);
17765         destroy_workqueue(i915->modeset_wq);
17766
17767         intel_fbc_cleanup_cfb(i915);
17768 }
17769
17770 #if IS_ENABLED(CONFIG_DRM_I915_CAPTURE_ERROR)
17771
17772 struct intel_display_error_state {
17773
17774         u32 power_well_driver;
17775
17776         struct intel_cursor_error_state {
17777                 u32 control;
17778                 u32 position;
17779                 u32 base;
17780                 u32 size;
17781         } cursor[I915_MAX_PIPES];
17782
17783         struct intel_pipe_error_state {
17784                 bool power_domain_on;
17785                 u32 source;
17786                 u32 stat;
17787         } pipe[I915_MAX_PIPES];
17788
17789         struct intel_plane_error_state {
17790                 u32 control;
17791                 u32 stride;
17792                 u32 size;
17793                 u32 pos;
17794                 u32 addr;
17795                 u32 surface;
17796                 u32 tile_offset;
17797         } plane[I915_MAX_PIPES];
17798
17799         struct intel_transcoder_error_state {
17800                 bool available;
17801                 bool power_domain_on;
17802                 enum transcoder cpu_transcoder;
17803
17804                 u32 conf;
17805
17806                 u32 htotal;
17807                 u32 hblank;
17808                 u32 hsync;
17809                 u32 vtotal;
17810                 u32 vblank;
17811                 u32 vsync;
17812         } transcoder[5];
17813 };
17814
17815 struct intel_display_error_state *
17816 intel_display_capture_error_state(struct drm_i915_private *dev_priv)
17817 {
17818         struct intel_display_error_state *error;
17819         int transcoders[] = {
17820                 TRANSCODER_A,
17821                 TRANSCODER_B,
17822                 TRANSCODER_C,
17823                 TRANSCODER_D,
17824                 TRANSCODER_EDP,
17825         };
17826         int i;
17827
17828         BUILD_BUG_ON(ARRAY_SIZE(transcoders) != ARRAY_SIZE(error->transcoder));
17829
17830         if (!HAS_DISPLAY(dev_priv) || !INTEL_DISPLAY_ENABLED(dev_priv))
17831                 return NULL;
17832
17833         error = kzalloc(sizeof(*error), GFP_ATOMIC);
17834         if (error == NULL)
17835                 return NULL;
17836
17837         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17838                 error->power_well_driver = I915_READ(HSW_PWR_WELL_CTL2);
17839
17840         for_each_pipe(dev_priv, i) {
17841                 error->pipe[i].power_domain_on =
17842                         __intel_display_power_is_enabled(dev_priv,
17843                                                          POWER_DOMAIN_PIPE(i));
17844                 if (!error->pipe[i].power_domain_on)
17845                         continue;
17846
17847                 error->cursor[i].control = I915_READ(CURCNTR(i));
17848                 error->cursor[i].position = I915_READ(CURPOS(i));
17849                 error->cursor[i].base = I915_READ(CURBASE(i));
17850
17851                 error->plane[i].control = I915_READ(DSPCNTR(i));
17852                 error->plane[i].stride = I915_READ(DSPSTRIDE(i));
17853                 if (INTEL_GEN(dev_priv) <= 3) {
17854                         error->plane[i].size = I915_READ(DSPSIZE(i));
17855                         error->plane[i].pos = I915_READ(DSPPOS(i));
17856                 }
17857                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17858                         error->plane[i].addr = I915_READ(DSPADDR(i));
17859                 if (INTEL_GEN(dev_priv) >= 4) {
17860                         error->plane[i].surface = I915_READ(DSPSURF(i));
17861                         error->plane[i].tile_offset = I915_READ(DSPTILEOFF(i));
17862                 }
17863
17864                 error->pipe[i].source = I915_READ(PIPESRC(i));
17865
17866                 if (HAS_GMCH(dev_priv))
17867                         error->pipe[i].stat = I915_READ(PIPESTAT(i));
17868         }
17869
17870         for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
17871                 enum transcoder cpu_transcoder = transcoders[i];
17872
17873                 if (!INTEL_INFO(dev_priv)->trans_offsets[cpu_transcoder])
17874                         continue;
17875
17876                 error->transcoder[i].available = true;
17877                 error->transcoder[i].power_domain_on =
17878                         __intel_display_power_is_enabled(dev_priv,
17879                                 POWER_DOMAIN_TRANSCODER(cpu_transcoder));
17880                 if (!error->transcoder[i].power_domain_on)
17881                         continue;
17882
17883                 error->transcoder[i].cpu_transcoder = cpu_transcoder;
17884
17885                 error->transcoder[i].conf = I915_READ(PIPECONF(cpu_transcoder));
17886                 error->transcoder[i].htotal = I915_READ(HTOTAL(cpu_transcoder));
17887                 error->transcoder[i].hblank = I915_READ(HBLANK(cpu_transcoder));
17888                 error->transcoder[i].hsync = I915_READ(HSYNC(cpu_transcoder));
17889                 error->transcoder[i].vtotal = I915_READ(VTOTAL(cpu_transcoder));
17890                 error->transcoder[i].vblank = I915_READ(VBLANK(cpu_transcoder));
17891                 error->transcoder[i].vsync = I915_READ(VSYNC(cpu_transcoder));
17892         }
17893
17894         return error;
17895 }
17896
17897 #define err_printf(e, ...) i915_error_printf(e, __VA_ARGS__)
17898
17899 void
17900 intel_display_print_error_state(struct drm_i915_error_state_buf *m,
17901                                 struct intel_display_error_state *error)
17902 {
17903         struct drm_i915_private *dev_priv = m->i915;
17904         int i;
17905
17906         if (!error)
17907                 return;
17908
17909         err_printf(m, "Num Pipes: %d\n", INTEL_NUM_PIPES(dev_priv));
17910         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
17911                 err_printf(m, "PWR_WELL_CTL2: %08x\n",
17912                            error->power_well_driver);
17913         for_each_pipe(dev_priv, i) {
17914                 err_printf(m, "Pipe [%d]:\n", i);
17915                 err_printf(m, "  Power: %s\n",
17916                            onoff(error->pipe[i].power_domain_on));
17917                 err_printf(m, "  SRC: %08x\n", error->pipe[i].source);
17918                 err_printf(m, "  STAT: %08x\n", error->pipe[i].stat);
17919
17920                 err_printf(m, "Plane [%d]:\n", i);
17921                 err_printf(m, "  CNTR: %08x\n", error->plane[i].control);
17922                 err_printf(m, "  STRIDE: %08x\n", error->plane[i].stride);
17923                 if (INTEL_GEN(dev_priv) <= 3) {
17924                         err_printf(m, "  SIZE: %08x\n", error->plane[i].size);
17925                         err_printf(m, "  POS: %08x\n", error->plane[i].pos);
17926                 }
17927                 if (INTEL_GEN(dev_priv) <= 7 && !IS_HASWELL(dev_priv))
17928                         err_printf(m, "  ADDR: %08x\n", error->plane[i].addr);
17929                 if (INTEL_GEN(dev_priv) >= 4) {
17930                         err_printf(m, "  SURF: %08x\n", error->plane[i].surface);
17931                         err_printf(m, "  TILEOFF: %08x\n", error->plane[i].tile_offset);
17932                 }
17933
17934                 err_printf(m, "Cursor [%d]:\n", i);
17935                 err_printf(m, "  CNTR: %08x\n", error->cursor[i].control);
17936                 err_printf(m, "  POS: %08x\n", error->cursor[i].position);
17937                 err_printf(m, "  BASE: %08x\n", error->cursor[i].base);
17938         }
17939
17940         for (i = 0; i < ARRAY_SIZE(error->transcoder); i++) {
17941                 if (!error->transcoder[i].available)
17942                         continue;
17943
17944                 err_printf(m, "CPU transcoder: %s\n",
17945                            transcoder_name(error->transcoder[i].cpu_transcoder));
17946                 err_printf(m, "  Power: %s\n",
17947                            onoff(error->transcoder[i].power_domain_on));
17948                 err_printf(m, "  CONF: %08x\n", error->transcoder[i].conf);
17949                 err_printf(m, "  HTOTAL: %08x\n", error->transcoder[i].htotal);
17950                 err_printf(m, "  HBLANK: %08x\n", error->transcoder[i].hblank);
17951                 err_printf(m, "  HSYNC: %08x\n", error->transcoder[i].hsync);
17952                 err_printf(m, "  VTOTAL: %08x\n", error->transcoder[i].vtotal);
17953                 err_printf(m, "  VBLANK: %08x\n", error->transcoder[i].vblank);
17954                 err_printf(m, "  VSYNC: %08x\n", error->transcoder[i].vsync);
17955         }
17956 }
17957
17958 #endif