Merge tag 'i3c/for-6.6' of git://git.kernel.org/pub/scm/linux/kernel/git/i3c/linux
[linux-2.6-microblaze.git] / drivers / gpu / drm / i915 / display / intel_crtc.c
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2020 Intel Corporation
4  */
5 #include <linux/kernel.h>
6 #include <linux/pm_qos.h>
7 #include <linux/slab.h>
8
9 #include <drm/drm_atomic_helper.h>
10 #include <drm/drm_fourcc.h>
11 #include <drm/drm_plane.h>
12 #include <drm/drm_vblank_work.h>
13
14 #include "i915_vgpu.h"
15 #include "i9xx_plane.h"
16 #include "icl_dsi.h"
17 #include "intel_atomic.h"
18 #include "intel_atomic_plane.h"
19 #include "intel_color.h"
20 #include "intel_crtc.h"
21 #include "intel_cursor.h"
22 #include "intel_display_debugfs.h"
23 #include "intel_display_irq.h"
24 #include "intel_display_trace.h"
25 #include "intel_display_types.h"
26 #include "intel_drrs.h"
27 #include "intel_dsi.h"
28 #include "intel_fifo_underrun.h"
29 #include "intel_pipe_crc.h"
30 #include "intel_psr.h"
31 #include "intel_sprite.h"
32 #include "intel_vblank.h"
33 #include "intel_vrr.h"
34 #include "skl_universal_plane.h"
35
36 static void assert_vblank_disabled(struct drm_crtc *crtc)
37 {
38         struct drm_i915_private *i915 = to_i915(crtc->dev);
39
40         if (I915_STATE_WARN(i915, drm_crtc_vblank_get(crtc) == 0,
41                             "[CRTC:%d:%s] vblank assertion failure (expected off, current on)\n",
42                             crtc->base.id, crtc->name))
43                 drm_crtc_vblank_put(crtc);
44 }
45
46 struct intel_crtc *intel_first_crtc(struct drm_i915_private *i915)
47 {
48         return to_intel_crtc(drm_crtc_from_index(&i915->drm, 0));
49 }
50
51 struct intel_crtc *intel_crtc_for_pipe(struct drm_i915_private *i915,
52                                        enum pipe pipe)
53 {
54         struct intel_crtc *crtc;
55
56         for_each_intel_crtc(&i915->drm, crtc) {
57                 if (crtc->pipe == pipe)
58                         return crtc;
59         }
60
61         return NULL;
62 }
63
64 void intel_crtc_wait_for_next_vblank(struct intel_crtc *crtc)
65 {
66         drm_crtc_wait_one_vblank(&crtc->base);
67 }
68
69 void intel_wait_for_vblank_if_active(struct drm_i915_private *i915,
70                                      enum pipe pipe)
71 {
72         struct intel_crtc *crtc = intel_crtc_for_pipe(i915, pipe);
73
74         if (crtc->active)
75                 intel_crtc_wait_for_next_vblank(crtc);
76 }
77
78 u32 intel_crtc_get_vblank_counter(struct intel_crtc *crtc)
79 {
80         struct drm_device *dev = crtc->base.dev;
81         struct drm_vblank_crtc *vblank = &dev->vblank[drm_crtc_index(&crtc->base)];
82
83         if (!crtc->active)
84                 return 0;
85
86         if (!vblank->max_vblank_count)
87                 return (u32)drm_crtc_accurate_vblank_count(&crtc->base);
88
89         return crtc->base.funcs->get_vblank_counter(&crtc->base);
90 }
91
92 u32 intel_crtc_max_vblank_count(const struct intel_crtc_state *crtc_state)
93 {
94         struct drm_i915_private *dev_priv = to_i915(crtc_state->uapi.crtc->dev);
95
96         /*
97          * From Gen 11, In case of dsi cmd mode, frame counter wouldnt
98          * have updated at the beginning of TE, if we want to use
99          * the hw counter, then we would find it updated in only
100          * the next TE, hence switching to sw counter.
101          */
102         if (crtc_state->mode_flags & (I915_MODE_FLAG_DSI_USE_TE0 |
103                                       I915_MODE_FLAG_DSI_USE_TE1))
104                 return 0;
105
106         /*
107          * On i965gm the hardware frame counter reads
108          * zero when the TV encoder is enabled :(
109          */
110         if (IS_I965GM(dev_priv) &&
111             (crtc_state->output_types & BIT(INTEL_OUTPUT_TVOUT)))
112                 return 0;
113
114         if (DISPLAY_VER(dev_priv) >= 5 || IS_G4X(dev_priv))
115                 return 0xffffffff; /* full 32 bit counter */
116         else if (DISPLAY_VER(dev_priv) >= 3)
117                 return 0xffffff; /* only 24 bits of frame count */
118         else
119                 return 0; /* Gen2 doesn't have a hardware frame counter */
120 }
121
122 void intel_crtc_vblank_on(const struct intel_crtc_state *crtc_state)
123 {
124         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
125
126         assert_vblank_disabled(&crtc->base);
127         drm_crtc_set_max_vblank_count(&crtc->base,
128                                       intel_crtc_max_vblank_count(crtc_state));
129         drm_crtc_vblank_on(&crtc->base);
130
131         /*
132          * Should really happen exactly when we enable the pipe
133          * but we want the frame counters in the trace, and that
134          * requires vblank support on some platforms/outputs.
135          */
136         trace_intel_pipe_enable(crtc);
137 }
138
139 void intel_crtc_vblank_off(const struct intel_crtc_state *crtc_state)
140 {
141         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
142
143         /*
144          * Should really happen exactly when we disable the pipe
145          * but we want the frame counters in the trace, and that
146          * requires vblank support on some platforms/outputs.
147          */
148         trace_intel_pipe_disable(crtc);
149
150         drm_crtc_vblank_off(&crtc->base);
151         assert_vblank_disabled(&crtc->base);
152 }
153
154 struct intel_crtc_state *intel_crtc_state_alloc(struct intel_crtc *crtc)
155 {
156         struct intel_crtc_state *crtc_state;
157
158         crtc_state = kmalloc(sizeof(*crtc_state), GFP_KERNEL);
159
160         if (crtc_state)
161                 intel_crtc_state_reset(crtc_state, crtc);
162
163         return crtc_state;
164 }
165
166 void intel_crtc_state_reset(struct intel_crtc_state *crtc_state,
167                             struct intel_crtc *crtc)
168 {
169         memset(crtc_state, 0, sizeof(*crtc_state));
170
171         __drm_atomic_helper_crtc_state_reset(&crtc_state->uapi, &crtc->base);
172
173         crtc_state->cpu_transcoder = INVALID_TRANSCODER;
174         crtc_state->master_transcoder = INVALID_TRANSCODER;
175         crtc_state->hsw_workaround_pipe = INVALID_PIPE;
176         crtc_state->scaler_state.scaler_id = -1;
177         crtc_state->mst_master_transcoder = INVALID_TRANSCODER;
178 }
179
180 static struct intel_crtc *intel_crtc_alloc(void)
181 {
182         struct intel_crtc_state *crtc_state;
183         struct intel_crtc *crtc;
184
185         crtc = kzalloc(sizeof(*crtc), GFP_KERNEL);
186         if (!crtc)
187                 return ERR_PTR(-ENOMEM);
188
189         crtc_state = intel_crtc_state_alloc(crtc);
190         if (!crtc_state) {
191                 kfree(crtc);
192                 return ERR_PTR(-ENOMEM);
193         }
194
195         crtc->base.state = &crtc_state->uapi;
196         crtc->config = crtc_state;
197
198         return crtc;
199 }
200
201 static void intel_crtc_free(struct intel_crtc *crtc)
202 {
203         intel_crtc_destroy_state(&crtc->base, crtc->base.state);
204         kfree(crtc);
205 }
206
207 static void intel_crtc_destroy(struct drm_crtc *_crtc)
208 {
209         struct intel_crtc *crtc = to_intel_crtc(_crtc);
210
211         cpu_latency_qos_remove_request(&crtc->vblank_pm_qos);
212
213         drm_crtc_cleanup(&crtc->base);
214         kfree(crtc);
215 }
216
217 static int intel_crtc_late_register(struct drm_crtc *crtc)
218 {
219         intel_crtc_debugfs_add(to_intel_crtc(crtc));
220         return 0;
221 }
222
223 #define INTEL_CRTC_FUNCS \
224         .set_config = drm_atomic_helper_set_config, \
225         .destroy = intel_crtc_destroy, \
226         .page_flip = drm_atomic_helper_page_flip, \
227         .atomic_duplicate_state = intel_crtc_duplicate_state, \
228         .atomic_destroy_state = intel_crtc_destroy_state, \
229         .set_crc_source = intel_crtc_set_crc_source, \
230         .verify_crc_source = intel_crtc_verify_crc_source, \
231         .get_crc_sources = intel_crtc_get_crc_sources, \
232         .late_register = intel_crtc_late_register
233
234 static const struct drm_crtc_funcs bdw_crtc_funcs = {
235         INTEL_CRTC_FUNCS,
236
237         .get_vblank_counter = g4x_get_vblank_counter,
238         .enable_vblank = bdw_enable_vblank,
239         .disable_vblank = bdw_disable_vblank,
240         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
241 };
242
243 static const struct drm_crtc_funcs ilk_crtc_funcs = {
244         INTEL_CRTC_FUNCS,
245
246         .get_vblank_counter = g4x_get_vblank_counter,
247         .enable_vblank = ilk_enable_vblank,
248         .disable_vblank = ilk_disable_vblank,
249         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
250 };
251
252 static const struct drm_crtc_funcs g4x_crtc_funcs = {
253         INTEL_CRTC_FUNCS,
254
255         .get_vblank_counter = g4x_get_vblank_counter,
256         .enable_vblank = i965_enable_vblank,
257         .disable_vblank = i965_disable_vblank,
258         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
259 };
260
261 static const struct drm_crtc_funcs i965_crtc_funcs = {
262         INTEL_CRTC_FUNCS,
263
264         .get_vblank_counter = i915_get_vblank_counter,
265         .enable_vblank = i965_enable_vblank,
266         .disable_vblank = i965_disable_vblank,
267         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
268 };
269
270 static const struct drm_crtc_funcs i915gm_crtc_funcs = {
271         INTEL_CRTC_FUNCS,
272
273         .get_vblank_counter = i915_get_vblank_counter,
274         .enable_vblank = i915gm_enable_vblank,
275         .disable_vblank = i915gm_disable_vblank,
276         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
277 };
278
279 static const struct drm_crtc_funcs i915_crtc_funcs = {
280         INTEL_CRTC_FUNCS,
281
282         .get_vblank_counter = i915_get_vblank_counter,
283         .enable_vblank = i8xx_enable_vblank,
284         .disable_vblank = i8xx_disable_vblank,
285         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
286 };
287
288 static const struct drm_crtc_funcs i8xx_crtc_funcs = {
289         INTEL_CRTC_FUNCS,
290
291         /* no hw vblank counter */
292         .enable_vblank = i8xx_enable_vblank,
293         .disable_vblank = i8xx_disable_vblank,
294         .get_vblank_timestamp = intel_crtc_get_vblank_timestamp,
295 };
296
297 int intel_crtc_init(struct drm_i915_private *dev_priv, enum pipe pipe)
298 {
299         struct intel_plane *primary, *cursor;
300         const struct drm_crtc_funcs *funcs;
301         struct intel_crtc *crtc;
302         int sprite, ret;
303
304         crtc = intel_crtc_alloc();
305         if (IS_ERR(crtc))
306                 return PTR_ERR(crtc);
307
308         crtc->pipe = pipe;
309         crtc->num_scalers = DISPLAY_RUNTIME_INFO(dev_priv)->num_scalers[pipe];
310
311         if (DISPLAY_VER(dev_priv) >= 9)
312                 primary = skl_universal_plane_create(dev_priv, pipe,
313                                                      PLANE_PRIMARY);
314         else
315                 primary = intel_primary_plane_create(dev_priv, pipe);
316         if (IS_ERR(primary)) {
317                 ret = PTR_ERR(primary);
318                 goto fail;
319         }
320         crtc->plane_ids_mask |= BIT(primary->id);
321
322         intel_init_fifo_underrun_reporting(dev_priv, crtc, false);
323
324         for_each_sprite(dev_priv, pipe, sprite) {
325                 struct intel_plane *plane;
326
327                 if (DISPLAY_VER(dev_priv) >= 9)
328                         plane = skl_universal_plane_create(dev_priv, pipe,
329                                                            PLANE_SPRITE0 + sprite);
330                 else
331                         plane = intel_sprite_plane_create(dev_priv, pipe, sprite);
332                 if (IS_ERR(plane)) {
333                         ret = PTR_ERR(plane);
334                         goto fail;
335                 }
336                 crtc->plane_ids_mask |= BIT(plane->id);
337         }
338
339         cursor = intel_cursor_plane_create(dev_priv, pipe);
340         if (IS_ERR(cursor)) {
341                 ret = PTR_ERR(cursor);
342                 goto fail;
343         }
344         crtc->plane_ids_mask |= BIT(cursor->id);
345
346         if (HAS_GMCH(dev_priv)) {
347                 if (IS_CHERRYVIEW(dev_priv) ||
348                     IS_VALLEYVIEW(dev_priv) || IS_G4X(dev_priv))
349                         funcs = &g4x_crtc_funcs;
350                 else if (DISPLAY_VER(dev_priv) == 4)
351                         funcs = &i965_crtc_funcs;
352                 else if (IS_I945GM(dev_priv) || IS_I915GM(dev_priv))
353                         funcs = &i915gm_crtc_funcs;
354                 else if (DISPLAY_VER(dev_priv) == 3)
355                         funcs = &i915_crtc_funcs;
356                 else
357                         funcs = &i8xx_crtc_funcs;
358         } else {
359                 if (DISPLAY_VER(dev_priv) >= 8)
360                         funcs = &bdw_crtc_funcs;
361                 else
362                         funcs = &ilk_crtc_funcs;
363         }
364
365         ret = drm_crtc_init_with_planes(&dev_priv->drm, &crtc->base,
366                                         &primary->base, &cursor->base,
367                                         funcs, "pipe %c", pipe_name(pipe));
368         if (ret)
369                 goto fail;
370
371         if (DISPLAY_VER(dev_priv) >= 11)
372                 drm_crtc_create_scaling_filter_property(&crtc->base,
373                                                 BIT(DRM_SCALING_FILTER_DEFAULT) |
374                                                 BIT(DRM_SCALING_FILTER_NEAREST_NEIGHBOR));
375
376         intel_color_crtc_init(crtc);
377         intel_drrs_crtc_init(crtc);
378         intel_crtc_crc_init(crtc);
379
380         cpu_latency_qos_add_request(&crtc->vblank_pm_qos, PM_QOS_DEFAULT_VALUE);
381
382         drm_WARN_ON(&dev_priv->drm, drm_crtc_index(&crtc->base) != crtc->pipe);
383
384         return 0;
385
386 fail:
387         intel_crtc_free(crtc);
388
389         return ret;
390 }
391
392 static bool intel_crtc_needs_vblank_work(const struct intel_crtc_state *crtc_state)
393 {
394         return crtc_state->hw.active &&
395                 !intel_crtc_needs_modeset(crtc_state) &&
396                 !crtc_state->preload_luts &&
397                 intel_crtc_needs_color_update(crtc_state);
398 }
399
400 static void intel_crtc_vblank_work(struct kthread_work *base)
401 {
402         struct drm_vblank_work *work = to_drm_vblank_work(base);
403         struct intel_crtc_state *crtc_state =
404                 container_of(work, typeof(*crtc_state), vblank_work);
405         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
406
407         trace_intel_crtc_vblank_work_start(crtc);
408
409         intel_color_load_luts(crtc_state);
410
411         if (crtc_state->uapi.event) {
412                 spin_lock_irq(&crtc->base.dev->event_lock);
413                 drm_crtc_send_vblank_event(&crtc->base, crtc_state->uapi.event);
414                 crtc_state->uapi.event = NULL;
415                 spin_unlock_irq(&crtc->base.dev->event_lock);
416         }
417
418         trace_intel_crtc_vblank_work_end(crtc);
419 }
420
421 static void intel_crtc_vblank_work_init(struct intel_crtc_state *crtc_state)
422 {
423         struct intel_crtc *crtc = to_intel_crtc(crtc_state->uapi.crtc);
424
425         drm_vblank_work_init(&crtc_state->vblank_work, &crtc->base,
426                              intel_crtc_vblank_work);
427         /*
428          * Interrupt latency is critical for getting the vblank
429          * work executed as early as possible during the vblank.
430          */
431         cpu_latency_qos_update_request(&crtc->vblank_pm_qos, 0);
432 }
433
434 void intel_wait_for_vblank_workers(struct intel_atomic_state *state)
435 {
436         struct intel_crtc_state *crtc_state;
437         struct intel_crtc *crtc;
438         int i;
439
440         for_each_new_intel_crtc_in_state(state, crtc, crtc_state, i) {
441                 if (!intel_crtc_needs_vblank_work(crtc_state))
442                         continue;
443
444                 drm_vblank_work_flush(&crtc_state->vblank_work);
445                 cpu_latency_qos_update_request(&crtc->vblank_pm_qos,
446                                                PM_QOS_DEFAULT_VALUE);
447         }
448 }
449
450 int intel_usecs_to_scanlines(const struct drm_display_mode *adjusted_mode,
451                              int usecs)
452 {
453         /* paranoia */
454         if (!adjusted_mode->crtc_htotal)
455                 return 1;
456
457         return DIV_ROUND_UP(usecs * adjusted_mode->crtc_clock,
458                             1000 * adjusted_mode->crtc_htotal);
459 }
460
461 static int intel_mode_vblank_start(const struct drm_display_mode *mode)
462 {
463         int vblank_start = mode->crtc_vblank_start;
464
465         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
466                 vblank_start = DIV_ROUND_UP(vblank_start, 2);
467
468         return vblank_start;
469 }
470
471 /**
472  * intel_pipe_update_start() - start update of a set of display registers
473  * @new_crtc_state: the new crtc state
474  *
475  * Mark the start of an update to pipe registers that should be updated
476  * atomically regarding vblank. If the next vblank will happens within
477  * the next 100 us, this function waits until the vblank passes.
478  *
479  * After a successful call to this function, interrupts will be disabled
480  * until a subsequent call to intel_pipe_update_end(). That is done to
481  * avoid random delays.
482  */
483 void intel_pipe_update_start(struct intel_crtc_state *new_crtc_state)
484 {
485         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
486         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
487         const struct drm_display_mode *adjusted_mode = &new_crtc_state->hw.adjusted_mode;
488         long timeout = msecs_to_jiffies_timeout(1);
489         int scanline, min, max, vblank_start;
490         wait_queue_head_t *wq = drm_crtc_vblank_waitqueue(&crtc->base);
491         bool need_vlv_dsi_wa = (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) &&
492                 intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI);
493         DEFINE_WAIT(wait);
494
495         intel_psr_lock(new_crtc_state);
496
497         if (new_crtc_state->do_async_flip)
498                 return;
499
500         if (intel_crtc_needs_vblank_work(new_crtc_state))
501                 intel_crtc_vblank_work_init(new_crtc_state);
502
503         if (new_crtc_state->vrr.enable) {
504                 if (intel_vrr_is_push_sent(new_crtc_state))
505                         vblank_start = intel_vrr_vmin_vblank_start(new_crtc_state);
506                 else
507                         vblank_start = intel_vrr_vmax_vblank_start(new_crtc_state);
508         } else {
509                 vblank_start = intel_mode_vblank_start(adjusted_mode);
510         }
511
512         /* FIXME needs to be calibrated sensibly */
513         min = vblank_start - intel_usecs_to_scanlines(adjusted_mode,
514                                                       VBLANK_EVASION_TIME_US);
515         max = vblank_start - 1;
516
517         /*
518          * M/N is double buffered on the transcoder's undelayed vblank,
519          * so with seamless M/N we must evade both vblanks.
520          */
521         if (new_crtc_state->seamless_m_n && intel_crtc_needs_fastset(new_crtc_state))
522                 min -= adjusted_mode->crtc_vblank_start - adjusted_mode->crtc_vdisplay;
523
524         if (min <= 0 || max <= 0)
525                 goto irq_disable;
526
527         if (drm_WARN_ON(&dev_priv->drm, drm_crtc_vblank_get(&crtc->base)))
528                 goto irq_disable;
529
530         /*
531          * Wait for psr to idle out after enabling the VBL interrupts
532          * VBL interrupts will start the PSR exit and prevent a PSR
533          * re-entry as well.
534          */
535         intel_psr_wait_for_idle_locked(new_crtc_state);
536
537         local_irq_disable();
538
539         crtc->debug.min_vbl = min;
540         crtc->debug.max_vbl = max;
541         trace_intel_pipe_update_start(crtc);
542
543         for (;;) {
544                 /*
545                  * prepare_to_wait() has a memory barrier, which guarantees
546                  * other CPUs can see the task state update by the time we
547                  * read the scanline.
548                  */
549                 prepare_to_wait(wq, &wait, TASK_UNINTERRUPTIBLE);
550
551                 scanline = intel_get_crtc_scanline(crtc);
552                 if (scanline < min || scanline > max)
553                         break;
554
555                 if (!timeout) {
556                         drm_err(&dev_priv->drm,
557                                 "Potential atomic update failure on pipe %c\n",
558                                 pipe_name(crtc->pipe));
559                         break;
560                 }
561
562                 local_irq_enable();
563
564                 timeout = schedule_timeout(timeout);
565
566                 local_irq_disable();
567         }
568
569         finish_wait(wq, &wait);
570
571         drm_crtc_vblank_put(&crtc->base);
572
573         /*
574          * On VLV/CHV DSI the scanline counter would appear to
575          * increment approx. 1/3 of a scanline before start of vblank.
576          * The registers still get latched at start of vblank however.
577          * This means we must not write any registers on the first
578          * line of vblank (since not the whole line is actually in
579          * vblank). And unfortunately we can't use the interrupt to
580          * wait here since it will fire too soon. We could use the
581          * frame start interrupt instead since it will fire after the
582          * critical scanline, but that would require more changes
583          * in the interrupt code. So for now we'll just do the nasty
584          * thing and poll for the bad scanline to pass us by.
585          *
586          * FIXME figure out if BXT+ DSI suffers from this as well
587          */
588         while (need_vlv_dsi_wa && scanline == vblank_start)
589                 scanline = intel_get_crtc_scanline(crtc);
590
591         crtc->debug.scanline_start = scanline;
592         crtc->debug.start_vbl_time = ktime_get();
593         crtc->debug.start_vbl_count = intel_crtc_get_vblank_counter(crtc);
594
595         trace_intel_pipe_update_vblank_evaded(crtc);
596         return;
597
598 irq_disable:
599         local_irq_disable();
600 }
601
602 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_VBLANK_EVADE)
603 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end)
604 {
605         u64 delta = ktime_to_ns(ktime_sub(end, crtc->debug.start_vbl_time));
606         unsigned int h;
607
608         h = ilog2(delta >> 9);
609         if (h >= ARRAY_SIZE(crtc->debug.vbl.times))
610                 h = ARRAY_SIZE(crtc->debug.vbl.times) - 1;
611         crtc->debug.vbl.times[h]++;
612
613         crtc->debug.vbl.sum += delta;
614         if (!crtc->debug.vbl.min || delta < crtc->debug.vbl.min)
615                 crtc->debug.vbl.min = delta;
616         if (delta > crtc->debug.vbl.max)
617                 crtc->debug.vbl.max = delta;
618
619         if (delta > 1000 * VBLANK_EVASION_TIME_US) {
620                 drm_dbg_kms(crtc->base.dev,
621                             "Atomic update on pipe (%c) took %lld us, max time under evasion is %u us\n",
622                             pipe_name(crtc->pipe),
623                             div_u64(delta, 1000),
624                             VBLANK_EVASION_TIME_US);
625                 crtc->debug.vbl.over++;
626         }
627 }
628 #else
629 static void dbg_vblank_evade(struct intel_crtc *crtc, ktime_t end) {}
630 #endif
631
632 /**
633  * intel_pipe_update_end() - end update of a set of display registers
634  * @new_crtc_state: the new crtc state
635  *
636  * Mark the end of an update started with intel_pipe_update_start(). This
637  * re-enables interrupts and verifies the update was actually completed
638  * before a vblank.
639  */
640 void intel_pipe_update_end(struct intel_crtc_state *new_crtc_state)
641 {
642         struct intel_crtc *crtc = to_intel_crtc(new_crtc_state->uapi.crtc);
643         enum pipe pipe = crtc->pipe;
644         int scanline_end = intel_get_crtc_scanline(crtc);
645         u32 end_vbl_count = intel_crtc_get_vblank_counter(crtc);
646         ktime_t end_vbl_time = ktime_get();
647         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
648
649         intel_psr_unlock(new_crtc_state);
650
651         if (new_crtc_state->do_async_flip)
652                 return;
653
654         trace_intel_pipe_update_end(crtc, end_vbl_count, scanline_end);
655
656         /*
657          * Incase of mipi dsi command mode, we need to set frame update
658          * request for every commit.
659          */
660         if (DISPLAY_VER(dev_priv) >= 11 &&
661             intel_crtc_has_type(new_crtc_state, INTEL_OUTPUT_DSI))
662                 icl_dsi_frame_update(new_crtc_state);
663
664         /* We're still in the vblank-evade critical section, this can't race.
665          * Would be slightly nice to just grab the vblank count and arm the
666          * event outside of the critical section - the spinlock might spin for a
667          * while ... */
668         if (intel_crtc_needs_vblank_work(new_crtc_state)) {
669                 drm_vblank_work_schedule(&new_crtc_state->vblank_work,
670                                          drm_crtc_accurate_vblank_count(&crtc->base) + 1,
671                                          false);
672         } else if (new_crtc_state->uapi.event) {
673                 drm_WARN_ON(&dev_priv->drm,
674                             drm_crtc_vblank_get(&crtc->base) != 0);
675
676                 spin_lock(&crtc->base.dev->event_lock);
677                 drm_crtc_arm_vblank_event(&crtc->base,
678                                           new_crtc_state->uapi.event);
679                 spin_unlock(&crtc->base.dev->event_lock);
680
681                 new_crtc_state->uapi.event = NULL;
682         }
683
684         /*
685          * Send VRR Push to terminate Vblank. If we are already in vblank
686          * this has to be done _after_ sampling the frame counter, as
687          * otherwise the push would immediately terminate the vblank and
688          * the sampled frame counter would correspond to the next frame
689          * instead of the current frame.
690          *
691          * There is a tiny race here (iff vblank evasion failed us) where
692          * we might sample the frame counter just before vmax vblank start
693          * but the push would be sent just after it. That would cause the
694          * push to affect the next frame instead of the current frame,
695          * which would cause the next frame to terminate already at vmin
696          * vblank start instead of vmax vblank start.
697          */
698         intel_vrr_send_push(new_crtc_state);
699
700         /*
701          * Seamless M/N update may need to update frame timings.
702          *
703          * FIXME Should be synchronized with the start of vblank somehow...
704          */
705         if (new_crtc_state->seamless_m_n && intel_crtc_needs_fastset(new_crtc_state))
706                 intel_crtc_update_active_timings(new_crtc_state,
707                                                  new_crtc_state->vrr.enable);
708
709         local_irq_enable();
710
711         if (intel_vgpu_active(dev_priv))
712                 return;
713
714         if (crtc->debug.start_vbl_count &&
715             crtc->debug.start_vbl_count != end_vbl_count) {
716                 drm_err(&dev_priv->drm,
717                         "Atomic update failure on pipe %c (start=%u end=%u) time %lld us, min %d, max %d, scanline start %d, end %d\n",
718                         pipe_name(pipe), crtc->debug.start_vbl_count,
719                         end_vbl_count,
720                         ktime_us_delta(end_vbl_time,
721                                        crtc->debug.start_vbl_time),
722                         crtc->debug.min_vbl, crtc->debug.max_vbl,
723                         crtc->debug.scanline_start, scanline_end);
724         }
725
726         dbg_vblank_evade(crtc, end_vbl_time);
727 }